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Introduction to Electrical
Engineering

he aim of this chapter isto introduce electrical engineering. The chapter is

organized to provide the newcomer with aview of the different specialties

making up electrical engineering and to place the intent and organization

of the book into perspective. Perhaps the first question that surfacesin the
mind of the student approaching the subject is, Why electrical engineering? Since
this book is directed at a readership having a mix of engineering backgrounds
(including electrical engineering), the question iswell justified and deserves some
discussion. The chapter begins by defining the various branches of electrical engi-
neering, showing some of the interactions among them, and illustrating by means
of apractical example how electrical engineering isintimately connected to many
other engineering disciplines. In the second section, mechatronic systems engi-
neering isintroduced, with an explanation of how thisbook can lay the foundation
for interdisciplinary mechatronic product design. This design approach is illus-
trated by an example. The next section introduces the Engineer-in-Training (EIT)
national examination. A brief historical perspectiveisalso provided, to outlinethe
growth and development of this relatively young engineering specialty. Next, the
fundamental physical quantitiesand the system of unitsare defined, to set the stage
for the chapters that follow. Finally, the organization of the book is discussed, to
give the student, as well as the teacher, a sense of continuity in the development
of the different subjects covered in Chapters 2 through 18.



2 Chapter 1 Introduction to Electrical Engineering

1.1 ELECTRICAL ENGINEERING

Thetypical curriculum of an undergraduate el ectrical engineering student includes
the subjects listed in Table 1.1. Although the distinction between some of these
subjectsis not always clear-cut, the table is sufficiently representative to serve our
purposes. Figure 1.1 illustrates a possible interconnection between the disciplines
of Table 1.1. The aim of this book is to introduce the non-electrical engineering
student to those aspects of electrical engineering that arelikely to be most rel evant
to his or her professional career. Virtualy all of the topics of Table 1.1 will be
touched on in the book, with varying degrees of emphasis. Thefollowing example
illustrates the pervasive presence of electrical, electronic, and electromechanical
devices and systemsin avery common application: the automobile. Asyou read

Table 1.1 Electrical through the example, it will be instructive to refer to Figure 1.1 and Table 1.1.
engineering disciplines

Circuit analysis

El ef:tromagnetics ) Engineering
Solid-state electronics applications
Electric machines
Electric power systems Power
- N systems
Digital logic circuits /
Computer systems
Communication systems Electric
Electro-optics Mathematical 7| machinery [T\ Physical
Instrumentation systems foundations / foundations
Control systems Network é | | .| Andog Electro-
theory electronics \\ magnetics
Logic Digital Solid-state
theory electronics physics
System ™| computer Optics
) /
\ Control
systems
\ Communication
systems
\ Instrumentation
systems

Figure 1.1 Electrical engineering disciplines

EXAMPLE 1.1 Electrical Systems in a Passenger Automobile
A familiar exampleillustrates how the seemingly disparate specialties of electrical
engineering actually interact to permit the operation of a very familiar engineering
system: the automobile. Figure 1.2 presents aview of electrical engineering systemsin a
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Body Vehicle Power train
electronics control
Airbags Antilock brake Engine
Climate Traction Transmission
Security and Suspension Charging
keylessentry Power steering Cruise
Ao belts 4-wheel steer Cooling fan
Memory seat Tire pressure Ignition
Memory mirror 4-wheel drive
MUX
Instrumentation Entertainment
Analog dash Cellular phone
Digital dash CD/DAT
Navigation AM/FM radio
Digital radio
TV sound

Figure 1.2 Electrical engineering systems in the automobile

modern automobile. Even in older vehicles, the electrical system—in effect, an electric
circuit—plays a very important part in the overall operation. An inductor coil generates a
sufficiently high voltage to allow a spark to form across the spark plug gap, and to ignite
the air and fuel mixture; the coil is supplied by a DC voltage provided by alead-acid
battery. In addition to providing the energy for the ignition circuits, the battery also
supplies power to many other electrical components, the most obvious of which are the
lights, the windshield wipers, and the radio. Electric power is carried from the battery to
al of these components by means of awire harness, which constitutes a rather elaborate
electrical circuit. In recent years, the conventional electrical ignition system has been
supplanted by electronic ignition; that is, solid-state el ectronic devices called transistors
have replaced the traditional breaker points. The advantage of transistorized ignition
systems over the conventional mechanical onesistheir greater reliability, ease of control,
and life span (mechanical breaker points are subject to wear).

Other electrical engineering disciplines are fairly obviousin the automobile. The
on-board radio receives el ectromagnetic waves by means of the antenna, and decodes the
communication signals to reproduce sounds and speech of remote origin; other common
communication systems that exploit electromagnetics are CB radios and the ever more
common cellular phones. But thisisnot all! The battery is, in effect, a self-contained
12-VDC electric power system, providing the energy for al of the aforementioned
functions. In order for the battery to have a useful lifetime, a charging system, composed
of an alternator and of power electronic devices, is present in every automobile. The
aternator is an electric machine, as are the motors that drive the power mirrors, power
windows, power seats, and other convenience features found in luxury cars. Incidentally,
the loudspeakers are al so electric machines!
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The list does not end here, though. In fact, some of the more interesting applications
of electrical engineering to the automobile have not been discussed yet. Consider
computer systems. You are certainly aware that in the last two decades, environmental
concerns related to exhaust emissions from automobiles have led to the introduction of
sophisticated engine emission control systems. The heart of such control systemsisatype
of computer called a microprocessor. The microprocessor receives signals from devices
(called sensors) that measure relevant variables—such as the engine speed, the
concentration of oxygen in the exhaust gases, the position of the throttle valve (i.e., the
driver's demand for engine power), and the amount of air aspirated by the engine—and
subsequently computes the optimal amount of fuel and the correct timing of the spark to
result in the cleanest combustion possible under the circumstances. The measurement of
the aforementioned variables falls under the heading of instrumentation, and the
interconnection between the sensors and the microprocessor is usually made up of digital
circuits. Finaly, as the presence of computers on board becomes more pervasive—in
areas such as antilock braking, electronically controlled suspensions, four-wheel steering
systems, and electronic cruise control—communications among the various on-board
computers will have to occur at faster and faster rates. Some day in the not-so-distant
future, these communications may occur over afiber optic network, and el ectro-optics
will replace the conventional wire harness. It should be noted that electro-opticsis already
present in some of the more advanced displays that are part of an automotive
instrumentation system.

1.2 ELECTRICAL ENGINEERING
AS A FOUNDATION FOR THE DESIGN
OF MECHATRONIC SYSTEMS

Many of today’s machines and processes, ranging from chemical plants to auto-
mobiles, require some form of electronic or computer control for proper operation.
Computer control of machines and processesis common to the automotive, chem-
ical, aerospace, manufacturing, test and instrumentation, consumer, and industrial
electronics industries. The extensive use of microelectronics in manufacturing
systems and in engineering products and processes has led to a new approach to
the design of such engineering systems. To use aterm coined in Japan and widely
adopted in Europe, mechatronic design has surfaced as a new philosophy of de-
sign, based on the integration of existing disciplines—primarily mechanical, and
electrical, electronic, and software engineering.t

A very important issue, often neglected in a strictly disciplinary approach
to engineering education, is the integrated aspect of engineering practice, which
is unavoidable in the design and analysis of large scale and/or complex systems.
One aim of this book is to give engineering students of different backgrounds
exposure to the integration of electrical, electronic, and software engineering into
their domain. This is accomplished by making use of modern computer-aided
tools and by providing relevant examples and references. Section 1.6 describes
how some of these goals are accomplished.

1D. A. Bradley, D. Dawson, N. C. Burd, A. J. Loader, 1991, “Mechatronics, Electronicsin Products
and Processes,” Chapman and Hall, London. See also ASME/IEEE Transactions on Mechatronics,
Vol. 1, No. 1, 1996.
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Example 1.2 illustrates some of the thinking behind the mechatronic system
design philosophy through a practical example drawn from the design experience
of undergraduate students at a number of U.S. universities.

EXAMPLE 1.2 Mechatronic Systems—Design of a Formula
Lightning Electric Race Car

The Formula Lightning electric race car competition is an interuniversity? competition
project that has been active since 1994. This project involves the design, analysis, and
testing of an electric open-wheel race car. A photo and the generic layout of the car are
shown in Figures 1.3 and 1.4. The student-designed propulsion and energy storage
systems have been tested in interuniversity competitions since 1994. Projects have
included vehicle dynamics and race track simulation, motor and battery pack selection,
battery pack and loading system design, and transmission and driveline design. Thisisan
ongoing competition, and new projects are defined in advance of each race season. The
objective of this competitive seriesisto demonstrate advancement in electric drive
technology for propulsion applications using motorsports as a means of extending existing
technology to its performance limit. This example describes some of the development that
has taken place at the Ohio State University. The description given below is representative
of work done at all of the participating universities.

Instrumentation
panel

DC-AC converter
(electric drive)

Differential Gearbox

Figure 1.3 The Ohio State University Smokin’ Figure 1.4 Block diagram of electric race car
Buckeye

Design Constraints:

The Formula Lightning series is based on a specification chassis; thus, extensive
modifications to the frame, suspension, brakes, and body are not permitted. The focus of
the competition is therefore to optimize the performance of the spec vehicle by selecting a

2Universities that have participated in this competition are Arizona State University, Bowling Green
State University, Case Western Reserve University, Kettering University, Georgia Institute of
Technology, Indiana University—Purdue University at Indianapolis, Northern Arizona University,
Notre Dame University, Ohio State University, Ohio University, Rennselaer Polytechnic Institute,
University of Oklahoma, and Wright State University.
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suitable combination of drivetrain and energy storage components. In addition, since the
vehicle isintended to compete in arace series, issues such as energy management, quick
and efficient pit stops for battery pack replacement, and the ability to adapt system
performance to varying race conditions and different race tracks are also important design
congtraints.

Design Solutions:3

Teams of undergraduate aerospace, electrical, industrial, and mechanical engineering
students participate in the design of the all-electric Formula Lightning drivetrain through a
special design course, made available especially for student design competitions.

In arepresentative course at Ohio State, the student team was divided into four
groups. battery system selection, motor and controller selection, transmission and
driveline design, and instrumentation and vehicle dynamics. Each of these groups was
charged with the responsibility of determining the technology that would be best suited to
matching the requirements of the competition and result in a highly competitive vehicle.

Figure 1.5 illustrates the interdisciplinary mechatronics team approach; it is apparent
that, to arrive at an optimal solution, an iterative process had to be followed and that the
various iterations required significant interaction between different teams.

To begin the process, a gross vehicle weight was assumed and energy storage
limitations were ignored in a dynamic computer simulation of the vehicle on asimulated
road course (the Cleveland Grand Prix Burke Lakefront Airport racetrack, site of the first
race in the series). The simulation employed arealistic model of the vehicle and tire
dynamics, but asimple model of an electric drive—energy storage limitations would be
considered later.

Vehicle weight and Motor
weight distribution  Energy  Torque-speed

Gear andfind _ Y Y fouves 1| o time

driveratios Vehicle-track
dynamic simulation

Energy
l consumption

Motor
selection

!

Transmission
selection

!

Battery
selection

Figure 1.5 Iterative design process for electric race
car drivetrain

The simulation was exercised under various scenarios to determine the limit
performance of the vehicle and the choice of a proper drivetrain design. The first round of
simulations led to the conclusion that a multispeed gearbox would be a necessity for

3K. Grider, G. Rizzoni, “Design of the Ohio State University electric race car,” SAE Technical Paper
in Proceedings, 1996 SAE Motorsports Conference and Exposition, Dearborn, M1, Dec.10-12,
1996.
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competitive performance on aroad course, and al so showed the need for avery high
performance AC drive as the propulsion system. The motor and controller are depicted in
Figure 1.6.

Figure 1.6 Motor and controller

Figure 1.7 Open side pod

Once the electric drive had been selected, the results of battery tests performed by the  with battery pack and single
battery team were evaluated to determine the proper battery technology, and the resulting ~ Pattery
geometry and weight distribution of the battery packs. With the preferred battery
technology identified (see Figure 1.7), energy criteriawas included in the simulation, and
lap times and energy consumption were predicted. Finally, appropriate instrumentation
was designed to permit monitoring of the most important functions in the vehicle (e.g.,
battery voltage and current, motor temperature, vehicle and motor speed). Figure 1.8
depicts the vehicle dashboard. Table 1.2 gives the specifications for the vehicle.

Table 1.2 Smokin’ Buckeye specifications

Drive system:
Vector controlled AC propulsion model 150
Motor type: three-phase induction, 150 kW
Weight: motor 100 Ib, controller 75 Ib
Motor dimensions: 12-in diameter, 15-in length
Transmission/clutch:

Webster four-speed supplied by Taylor Race Engineering .
Tilton metallic clutch Figure 1.8 Dashboard

Battery system:
Total voltage: 372V (nominal)
Total weight: 1440 1b
Number of batteries: 31
Battery: Optima spiral-wound lead-acid gel-cell battery
Configuration: 16 battery packs, 12 or 24 V each
Instrumentation:
Ohio Semitronics model EV'1 electric vehicle monitor
Stack model SR 800 Data Acquisition

Vehicle dimensions:
Wheelbase: 115in
Total length: 163in
Width: 77in
Weight: 2690 Ib
Stock components:
Tires: Yokohama
Chassis: 1994 Stewart Racing Formula Lightning
Springs: Eibach
Shocks: Penske racing coil-over shocks
Brakes: Wilwood Dynalite I




Chapter 1 Introduction to Electrical Engineering

Altogether approximately 30 students from different engineering disciplines
participated in the initial design process. They received credit for their effort either
through the course—ME 580.04, Analysis, Design, Testing and Fabrication of Alternative
Vehicles—or through a senior design project. As noted, interaction among teams and
among students from different disciplines was an integral part of the design process.

Comments: The exampleillustrates the importance of interdisciplinary thinking in the
design of mechatronics systems. The aim of this book isto provide studentsin different
engineering disciplines with the foundations of electrical/electronic engineering that are
necessary to effectively participate in interdisciplinary engineering design projects. The
next 17 chapters will present the foundations and vocabulary of electrical engineering.

1.3 FUNDAMENTALS OF ENGINEERING
EXAM REVIEW

Each of the 50 states regul ates the engineering profession by requiring individuals
who intend to practice the profession to become registered professional engineers.
To become a professional engineer, it is necessary to satisfy four requirements.
The first is the completion of a B.S. degree in engineering from an accredited
college or university (although it is theoretically possible to be registered with-
out having completed a degree). The second is the successful completion of the
Fundamentals of Engineering (FE) Examination. Thisis an eight-hour exam that
covers general engineering undergraduate education. The third requirement is
two to four years of engineering experience after passing the FE exam. Finally,
the fourth requirement is successful completion of the Principles and Practice of
Engineering or Professional Engineer (PE) Examination.

The FE exam isatwo-part national examination given twiceayear (in April
and October). The exam isdivided into two 4-hour sessions. The morning session
consists of 140 multiple choice questions (five possible answers are given); the
afternoon session consists of 70 questions. The exam is prepared by the State
Board of Engineers for each state.

One of the aims of this book is to assist you in preparing for one part of
the FE exam, entitled Electrical Circuits. This part of the examination consists of
atotal of 18 questions in the morning session and 10 questions in the afternoon
session. The examination topics for the electrical circuits part are the following:

DC Circuits

AC Circuits

Three-Phase Circuits
Capacitance and Inductance
Transients

Diode Applications
Operational Amplifiers (Ideal)
Electric and Magnetic Fields
Electric Machinery

Appendix B contains a complete review of the Electrical Circuits portion
of the FE examination. In Appendix B you will find a detailed listing of the
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topics covered in the examination, with references to the relevant materia in the
book. The appendix also contains a collection of sample problems similar to those
found in the examination, with answers. These sample problems are arranged in
two sections: The first includes worked examples with a full explanation of the
solution; the second consists of a sample exam with answers supplied separately.
This material is based on the author’s experience in teaching the FE Electrical
Circuitsreview coursefor mechanical engineering seniorsat Ohio State University
over several years.

1.4 BRIEF HISTORY OF ELECTRICAL
ENGINEERING

The historical evolution of electrical engineering can be attributed, in part, to
the work and discoveries of the people in the following list. You will find these
scientists, mathematicians, and physicists referenced throughout the text.

William Gilbert (1540-1603), English physician, founder of magnetic
science, published De Magnete, a treatise on magnetism, in 1600.
Charles A. Coulomb (1736-1806), French engineer and physicist,
published the laws of electrostatics in seven memoirs to the French
Academy of Science between 1785 and 1791. His hame is associated with
the unit of charge.

James Watt(1736-1819), English inventor, devel oped the steam engine.
His name is used to represent the unit of power.

Alessandro Volta(1745-1827), Italian physicist, discovered the electric
pile. The unit of electric potential and the alternate name of this quantity
(voltage) are named after him.

Hans Christian Oersted (1777-1851), Danish physicist, discovered the
connection between electricity and magnetism in 1820. The unit of
magnetic field strength is named after him.

Andr & Marie Ampére (1775-1836), French mathematician, chemist, and
physicist, experimentally quantified the relationship between electric
current and the magnetic field. Hisworks were summarized in atreatise
published in 1827. The unit of electric current is named after him.

Georg Simon Ohm(1789-1854), German mathematician, investigated the
relationship between voltage and current and quantified the phenomenon of
resistance. Hisfirst results were published in 1827. His nameis used to
represent the unit of resistance.

Michael Faraday (1791-1867), English experimenter, demonstrated
electromagnetic induction in 1831. His electrical transformer and
electromagnetic generator marked the beginning of the age of electric
power. His name is associated with the unit of capacitance.

Joseph Henry(1797-1878), American physicist, discovered
self-induction around 1831, and his name has been designated to represent
the unit of inductance. He had a so recognized the essentia structure of the
telegraph, which was later perfected by Samuel F. B. Morse.

Carl Friedrich Gauss (1777-1855), German mathematician, and
Wilhelm Eduard Weber (1804-1891), German physicist, published a
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treatise in 1833 describing the measurement of the earth’s magnetic field.
The gaussis a unit of magnetic field strength, while the weber is a unit of
magnetic flux.

James Clerk Maxwell (1831-1879), Scottish physicist, discovered the
electromagnetic theory of light and the laws of electrodynamics. The
modern theory of electromagneticsis entirely founded upon Maxwell’s
equations.

Ernst Werner Siemens(1816-1892) and Wilhelm Siemens(1823-1883),
German inventors and engineers, contributed to the invention and
development of electric machines, as well asto perfecting electrical
science. The modern unit of conductance is named after them.
Heinrich Rudolph Hertz (1857-1894), German scientist and
experimenter, discovered the nature of electromagnetic waves and
published his findingsin 1888. His name is associated with the unit of
frequency.

Nikola Tesla (1856-1943), Croatian inventor, emigrated to the United
Statesin 1884. Heinvented polyphase electric power systems and the
induction motor and pioneered modern AC electric power systems. His
name is used to represent the unit of magnetic flux density.

1.5 SYSTEM OF UNITS

This book employs the International System of Units (also called S, from the
French Systéme I nternational des Unités). Sl units are commonly adhered to by
virtually al engineering professional societies. This section summarizes Sl units
and will serve as a useful reference in reading the book.

Sl units are based on six fundamental quantities, listed in Table 1.3. All
other units may be derived in terms of the fundamental units of Table 1.3. Since,
in practice, one often needs to describe quantities that occur in large multiples or
small fractions of a unit, standard prefixes are used to denote powers of 10 of S|
(and derived) units. These prefixes are listed in Table 1.4. Note that, in general,
engineering units are expressed in powers of 10 that are multiples of 3.

Table 1.3 Sl units Table 1.4 Standard prefixes
Quantity Unit Symbol Prefix ~ Symbol  Power
Length Meter m ato a 10718
Mass Kilogram kg femto  f 10715
Time Second s pico p 10712
Electric current Ampere A nano n 10-°
Temperature Kelvin K micro 1076
Luminousintensity ~Candela  cd milli m 1073

centi c 1072
deci d 1071
deka da 10
kilo k 108
mega M 108
gga G 10°
tera T 1012
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For example, 10~4 swould be referred to as 100 x 108 s, or 100us (or, less
frequently, 0.1 ms).

1.6 SPECIAL FEATURES OF THIS BOOK

This book includes a number of special features designed to make learning easier
and also to allow studentsto explore the subject matter of the book in more depth, if
so desired, through the use of computer-aided tools and the Internet. The principal
features of the book are described below.
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EXAMPLES

The examplesin the book have also been set aside from the main text, so that they can be
easily identified. All examples are solved by following the same basic methodology: A
clear and simple problem statement is given, followed by a solution. The solution consists
of several parts: All known quantities in the problem are summarized, and the problem
statement is translated into a specific objective (e.g., “Find the equivalent resistance, R”).

Next, the given data and assumptions are listed, and finally the analysis is presented.
The analysis method is based on the following principle: All problems are solved
symbolically first, to obtain more general solutions that may guide the student in solving
homework problems; the numerical solution is provided at the very end of the analysis.
Each problem closes with comments summarizing the findings and tying the example to
other sections of the book.

The solution methodology used in this book can be used as a general guide to
problem-solving techniques well beyond the material taught in the introductory electrical
engineering courses. The examples contained in this book are intended to help you
develop sound problem-solving habits for the remainder of your engineering career.

Focus on Computer-Aided Tools, Virtual Lab

One of the very important changes to engineering education in the 1990s has been
the ever more common use of computersfor analysis, design, dataacquisition, and
control. This book is designed to permit students and instructors to experiment
with various computer-aided design and analysistools. Some of thetoolsused are
generic computing tools that are likely to be in use in most engineering schools
(e.g., Matlab, MathCad). Many examplesare supplemented by el ectronic solutions
that areintended to teach you how to solvetypical electrical engineering problems
using such computer aids, and to stimulate you to experiment in developing your
own solution methods. Many of these methods will aso be useful later in your
curriculum.

Some examples (and also some of the figures in the main text) are supple-
mented by circuit simulation created using Electronics Workbench™, a circuit
analysis and simulation program that has aparticularly friendly user interface, and
that permits a more in-depth analysis of realistic electrical/electronic circuits and
devices. Use of this feature could be limited to just running a simulated circuit to
observe its behavior (with virtually no new learning required), or could be more
involved and result in the design of new circuit smulations. You might find it

VIRTUAL LAB
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FIND IT

ON THE WEB

VIRTUAL LAB
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FOCUSONMETHODOLOGY

Each chapter, especialy the early ones, includes “boxes’ titled “Focus on
Methodology.” The content of these boxes (which are set asidefromthemain
text) is to summarize important methods and procedures for the solution of
common problems. They usualy consist of step-by-step instructions, and
are designed to assist you in methodically solving problems.

useful to learn how to use thistool for some of your homework and project assign-
ments. The electronic examples supplied with the book form a veritable Virtual
Electrical and Electronic Circuits Laboratory. The use of these computer aidsis
not mandatory, but you will find that the electronic supplements to the book may
become a formidable partner and teaching assi stant.

Find It on the Web!

The use of the Internet as a resource for knowledge and information is becoming
increasingly common. In recognition of this fact, Web site references have been
included in this book to give you a starting point in the exploration of the world of
electrical engineering. Typical Web references give you information on electrical
engineering companies, products, and methods. Some of the sites contain tutorial
material that may supplement the book’s contents.

CD-ROM Content

The inclusion of a CD-ROM in the book allows you to have a wealth of supple-
ments. We list afew major ones. Matlab, MathCad, and Electronics Workbench
electronic files, demo version of Electronics Workbench; Virtual Laboratory ex-
periments;, data sheets for common electrical/electronic circuit components; addi-
tional reference material.

MEASUREMENTS

As stated many timesin this book, the need for measurements is a common
thread to all engineering and scientific disciplines. To emphasize the great
relevance of electrical engineering to the science and practice of
measurements, a special set of examples focuses on measurement problems.
These examples very often relate to disciplines outside electrical engineering
(e.g., biomedical, mechanical, thermal, fluid system measurements). The
“Focus on Measurements” sections are intended to stimulate your thinking
about the many possible applications of electrical engineering to
measurementsin your chosen field of study. Many of these examples are a
direct result of the author’s work as a teacher and researcher in both
mechanical and electrical engineering.
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Web Site

Thelist of features would not be complete without a reference to the book’s Web
site, http://www.mhhe.com/engcs/electrical/rizzoni Create abookmark for this

site now! The siteis designed to provide up-to-date additions, examples, errata,
and other important information.

HOMEWORK PROBLEMS

1.1 List five applications of electric motorsin the c. Your household.

common household. d. A chemical process control plant.

1.2 By analogy with the discussion of electrical systems 1.3 Electric power systems provide energy in avariety of
in the automobile, list examples of applications of the commercial and industrial settings. Make alist of
electrical engineering disciplines of Table 1.1 for each systems and devices that receive electric power in:
of the following engineering systems: a A large office building.

a A ship.

b. A factory floor.
b. A commercia passenger aircraft. c. A construction site.
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Fundamentals of Electric Circuits

his chapter presents the fundamental laws of circuit analysis and serves
as the foundation for the study of electrical circuits. The fundamental
concepts developed in these first pages will be called upon throughout
the book.

Thechapter startswith definitions of charge, current, voltage, and power, and
with the introduction of the basic laws of electrical circuit analysis. Kirchhoff's
laws. Next, the basic circuit elements are introduced, first in their ideal form,
then including the most important physical limitations. The elements discussedin
the chapter include voltage and current sources, measuring instruments, and the
ideal resistor. Once the basic circuit el ements have been presented, the concept
of an electrical circuit isintroduced, and some simple circuits are analyzed using
Kirchhoff'sand Ohm’slaws. The student should appreciate the fact that, although
thematerial presented at thisearly stageisstrictly introductory, itisalready possible
to discuss some useful applications of electric circuits to practical engineering
problems. Tothisend, two examplesareintroduced which discusssimpleresistive
devices that can measure displacements and forces. The topics introduced in
Chapter 2 form the foundations for the remainder of this book and should be
mastered thoroughly. By the end of the chapter, you should have accomplished
the following learning objectives:

+ Application of Kirchhoff’s and Ohm’s laws to elementary resistive
circuits.

15
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CharlesCoulomb (1736-1806). Photo
courtesy of French Embassy, Wash-

ington, D.C.

Current i = dg/dtis generated by
the flow of charge through the
cross-sectional areaAina
conductor.

Figure 2.1 Current flow in
an electric conductor

Chapter 2 Fundamentals of Electric Circuits

« Power computation for a circuit element.

+ Use of the passive sign convention in determining voltage and current
directions.

- Solution of simple voltage and current divider circuits.
- Assigning node voltages and mesh currentsin an electrical circuit.

- Writing the circuit equations for alinear resistive circuit by applying
Kirchhoff’s voltage law and Kirchhoff's current law.

2.1 CHARGE, CURRENT, AND KIRCHHOFF'S
CURRENT LAW

The earliest accounts of electricity date from about 2,500 years ago, when it was
discovered that static charge on a piece of amber was capable of attracting very
light objects, such asfeathers. Theword itself—electricity—originated about 600
B.C.; it comes from elektron which was the ancient Greek word for amber. The
true nature of electricity was not understood until much later, however. Following
the work of Alessandro Volta and his invention of the copper-zinc battery, it was
determined that static el ectricity and the current that flowsin metal wiresconnected
to a battery are due to the same fundamental mechanism: the atomic structure of
matter, consisting of a nucleus—neutrons and protons—surrounded by electrons.
The fundamental electric quantity is charge, and the smallest amount of charge
that existsisthe charge carried by an electron, equal to

ge=-1602x 10" C (2.1)

As you can see, the amount of charge associated with an electron is rather
small. This, of course, has to do with the size of the unit we use to measure
charge, the coulomb (C), named after Charles Coulomb.? However, the definition
of the coulomb leads to an appropriate unit when we define electric current, since
current consists of the flow of very large numbers of charge particles. The other
charge-carrying particlein an atom, the proton, is assigned a positive sign, and the
same magnitude. The charge of aprotonis

:—|— X | .
q» 1.602 x 1071°C (2.2)

Electrons and protons are often referred to as elementary charges.

Electric current is defined as the time rate of change of charge passing
through a predetermined area. Typically, this area is the cross-sectional area of
ametal wire; however, there are a number of cases we shall explore later in this
book where the current-carrying material is not a conducting wire. Figure 2.1
depicts amacroscopic view of the flow of chargein awire, where weimagine Ag
units of charge flowing through the cross-sectional area A in Az unitsof time. The
resulting current, i, isthen given by

. Ag C

= — 2.
! At s (2:3)

1see brief biography on page 9.
2See brief biography on page 9.
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If we consider the effect of the enormous number of elementary charges actually
flowing, we can write this relationship in differential form:

. dg C
i = I s (2.4)
Theunitsof current are called amperes (A) where 1 ampere = 1 coulomb/second.
The name of the unit is a tribute to the French scientist André Marie Ampeére.®
The electrical engineering convention states that the positive direction of current
flow isthat of positive charges. In metallic conductors, however, current is carried
by negative charges; these charges are the free electrons in the conduction band,
which are only weakly attracted to the atomic structure in metallic elements and
are therefore easily displaced in the presence of electric fields.
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EXAMPLE 2.1 Charge and Current in a Conductor

Problem

Find thetotal charge in acylindrical conductor (solid wire) and compute the current
flowing in the wire.

Solution
Known Quantities: Conductor geometry, charge density, charge carrier velocity.
Find: Tota charge of carriers, Q; current in the wire, 1.

Schematics, Diagrams, Circuits, and Given Data: Conductor length: L = 1 m.
Conductor diameter: 2r = 2 x 1073 m.
Charge density: n = 10% carriers/m?®.
Charge of one electron: g, = —1.602 x 107%°.
Charge carrier velocity: u = 19.9 x 1076 m/s.

Assumptions: None.

Analysis: To compute the total charge in the conductor, we first determine the volume of
the conductor:

Volume = Length x Cross-sectiona area
2x1073\?
V=L><7tr2=(lm)><|:n< ><2 >m2:|=71><106 m°

Next, we compute the number of carriers (electrons) in the conductor and the total
charge:

Number of carriers = Volume x Carrier density

carriers
m3

N=Vxn=(7x10°m’) x <1029 > =7 x 10%carriers
Charge = number of carriers x charge/carrier
0 =N x g. = (m x 10® carriers)

coulomb
x (—1.602 x 10-29 2240 ) — 5033 x 10° C.
carrier

3See brief biography on page 9.
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To compute the current, we consider the velocity of the charge carriers, and the charge
density per unit length of the conductor:

Current = Carrier charge density per unit length x Carrier velocity

= (% %) « (u?) - (—50.33 « 10° %) x (199 10—62) =14

Comments: Charge carrier density is afunction of material properties. Carrier velocity
isafunction of the applied electric field.

i = Current flowing
in closed circuit

—

Light
o bulb

5v | F E
battery | 1.5V

—~

Figure 2.2 A smple
electrical circuit

Node 1
— ‘_’:
i iig ii3
Bane.y (©JO)C)

—— 1T

—s—>
Node 2
Ilustration of KCL at

nodel:—i+i;+i,+i3=0

Figure 2.3 lllustration of
Kirchhoff’s current law

In order for current to flow there must exist a closed circuit. Figure 2.2
depicts a simple circuit, composed of a battery (e.g., adry-cell or akaline 1.5-V
battery) and alight bulb.

Notethat in the circuit of Figure 2.2, the current, i, flowing from the battery
to the light bulb is equal to the current flowing from the light bulb to the battery.
In other words, no current (and therefore no charge) is “lost” around the closed
circuit. This principle was observed by the German scientist G. R. Kirchhoff 4
and is now known as Kirchhoff’s current law (KCL). Kirchhoff’s current law
states that because charge cannot be created but must be conserved, the sum of the
currents at a node must equal zdra an electrical circuit, anodeis the junction
of two or more conductors). Formally:

ihn=0 Kirchhoff’s current law (2.5)

1

The significance of Kirchhoff’s current law isillustrated in Figure 2.3, where the
simplecircuit of Figure 2.2 has been augmented by the addition of two light bulbs
(note how the two nodes that exist in this circuit have been emphasized by the
shaded areas). In applying KCL, one usually defines currents entering a node as
being negative and currents exiting the node as being positive. Thus, the resulting
expression for node 1 of the circuit of Figure 2.3 is:

—i4i1+ix+iz3=0

Kirchhoff’s current law is one of the fundamental laws of circuit analysis,
making it possible to express currents in a circuit in terms of each other; for
example, one can express the current leaving a node in terms of al the other
currents at the node. The ability to write such equations is a great aid in the
systematic solution of large electric circuits. Much of the material presented in
Chapter 3 will be an extension of this concept.

4Gustav Robert Kirchhoff (1824-1887), a German scientist, who published the first systematic
description of the laws of circuit analysis. His contribution—though not original in terms of its
scientific content—forms the basis of al circuit analysis.
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EXAMPLE 2.2 Kirchhoff’s Current Law Applied
to an Automotive Electrical Harness

Problem

Figure 2.4 shows an automotive battery connected to avariety of circuitsin an FINDEIT
automobile. The circuitsinclude headlights, taillights, starter motor, fan, power locks, and o 20
dashboard panel. The battery must supply enough current to independently satisfy the
requirements of each of the “load” circuits. Apply KCL to the automotive circuits. ON THE WEB

I head! lar ] lsar ltn| liocks|  ldash

| +

YVYVY
\AAA
YVYVY
AAAAS
YVYVY

>
<
<
Vot — =
<>

AAAA
AAAA
AAAA
AAAA
AAAA

(b)

Figure 2.4 (a) Automoative circuits (b) equivalent electrical circuit

Solution

Known Quantities: Components of electrical harness. headlights, taillights, starter
motor, fan, power locks, and dashboard panel.

Find: Expression relating battery current to load currents.
Schematics, Diagrams, Circuits, and Given Data: Figure 2.4.

Assumptions: None.
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Stereo wiring
Radio wiring Printed circuit
Ash tray lamp board connectors

Glove box lamp

To door
courtesy w
switch "o ﬁ"
To heater blower
motor resistor

To A/C blower

motor resistor Headlamp switch

Heated rear window
switch and lamp

Rear wipe and wash
switch and lamp

motor feed

Toright front H
.. Cigarette lighter

door resistor
To key-in buzzer
To key-lamp

To wiper switch |. body M-Z 44
To ignition switch lamp Lamp
To intermittent wipe T i
To turn signal switch -'---::.‘:M oo |L Igg%?%?lze;fe
! Ground
To accessory lamps Fuse block

head| ~ = T0 stereo speakers MZ24
To amp ~e B XL, )
dimmer switch = * 24—~ T0 left door speakers

Toignition ot o To left door courtesy switches
switch
To rear wipe wash
To heated rear window

To hatch release

To body wiring

To stop lamp switch
To speed control switch wiring
To speed control brake wiring
To speed control clutch switch
To speed control servo Bulkhead disconnect

Automotive wiring harness

©

Figure 2.4 (c) Automotive wiring harness Copyright(©1995 by Delmar Publishers. Copyrigf)1995-1997 Automotive
Information Center. All rights reserved.

Analysis: Figure 2.4(b) depicts the equivalent electrical circuit, illustrating how the
current supplied by the battery must divide among the various circuits. The application of
KCL to the equivalent circuit of Figure 2.4 requires that:

Tbatt — Theed — ITtail — Istart — Ifan — liocks — Jdesh = 0

Comments: Thisillustration is meant to give the reader an intuitive feel for the
significance of KCL; more detailed numerical examples of KCL will be presented later in
this chapter, when voltage and current sources and resistors are defined more precisely.
Figure 2.4(c) depicts areal automotive electrical harness—a rather complicated electrical
circuit!
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2.2 VOLTAGE AND KIRCHHOFF'S VOLTAGE
LAW

Chargemovinginanelectriccircuit givesrisetoacurrent, asstated in the preceding
section. Naturally, it must take some work, or energy, for the charge to move
between two points in a circuit, say, from point a to point 5. The total work per
unit chargeassociated with the motion of charge between two points is called
voltage. Thus, the units of voltage are those of energy per unit charge; they have
been called volts in honor of Alessandro Volta:

1ljoule

1volt = 2.6
coulomb (2.6)

Thevoltage, or potential difference, between two pointsin acircuit indicates the
energy required to move charge from one point to the other. Aswill be presently
shown, the direction, or polarity, of the voltage is closely tied to whether energy
is being dissipated or generated in the process. The seemingly abstract concept
of work being done in moving charges can be directly applied to the analysis of
electrical circuits, consider again the simple circuit consisting of a battery and a
light bulb. The circuit is drawn again for convenience in Figure 2.5, with nodes
defined by the letters @ and b. A series of carefully conducted experimental
observations regarding the nature of voltagesin an electric circuit led Kirchhoff to
the formulation of the second of hislaws, Kirchhoff’s voltage law, or KVL. The
principle underlying KVL isthat no energy islost or created in an electric circuit;
in circuit terms, the sum of all voltages associated with sources must equal the

sum of the load voltages, so that the net voltage around a closed circuit is zelb.

this were not the case, we would need to find a physical explanation for the excess
(or missing) energy not accounted for in the voltages around acircuit. Kirchhoff’s
voltage law may be stated in aform similar to that used for KCL:

N
> v, =0 Kirchhoff’svoltage law (2.7)
n=1

where the v, are the individual voltages around the closed circuit. Making refer-
ence to Figure 2.5, we see that it must follow from KVL that the work generated
by the battery is equal to the energy dissipated in the light bulb in order to sustain
the current flow and to convert the electric energy to heat and light:

Vab = —Vba

or
V1 = V2

One may think of the work done in moving a charge from point a to point
b and the work done moving it back from b to a as corresponding directly to the
voltages across individual circuit elements. Let Q be the total charge that moves
around the circuit per unit time, giving rise to the current i. Then the work done
inmoving Q from b to a (i.e., across the battery) is

Wy = Q x 15V (2.8)

Gustav Robert Kirchhoff
(1824-1887). Photo courtesy of
Deutsches Museum, Munich.

Illustration of Kirchhoff’'s
voltage law: vi = vp

Figure 2.5 Voltages around
a circuit
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Similarly, work isdonein moving Q froma to b, that is, acrossthelight bulb. Note
that theword potential isquite appropriate asasynonym of voltage, in that voltage
represents the potential energy between two pointsin acircuit: if we remove the
light bulb from its connections to the battery, there till exists avoltage across the
(now disconnected) terminals b and a. Thisisillustrated in Figure 2.6.

A moment’sreflection upon the significance of voltage should suggest that it
must be necessary to specify asign for thisquantity. Consider, again, thesamedry-
cell or akalinebattery, where, by virtue of an el ectrochemically induced separation
of charge, a 1.5-V potential difference is generated. The potential generated by
the battery may be used to move charge in a circuit. The rate at which chargeis
moved once a closed circuit is established (i.e., the current drawn by the circuit
connected to the battery) depends now on the circuit e ement we choose to connect
tothebattery. Thus, whilethevoltage acrossthe battery representsthe potential for
providing energy to acircuit, the voltage across the light bulb indicates the amount
of work done in dissipating energy. In the first case, energy is generated; in the
second, it is consumed (note that energy may also be stored, by suitable circuit
elements yet to be introduced). Thisfundamental distinction requires attention in
defining the sign (or polarity) of voltages.

We shall, in general, refer to elements that provide energy as sources and
to elements that dissipate energy as loads Standard symbols for a generalized
source-and-load circuit are shown in Figure 2.7. Formal definitions will be given
in alater section.

The presence of avoltage, vy, A symbolic representation of the
across the open terminalsa and b battery—light bulb circuit of Figure
indicates the potential energy that 2.5.

can enable the motion of charge, a

once aclosed circuit is established O

to alow current to flow. i

Vs ES
souee(D) [oat ]«

Figure 2.7 Sources and
loads in an electrical circuit

Figure 2.6 Concept of
voltage as potential difference

EXAMPLE 2.3 Kirchhoff’s Voltage Law—Electric Vehicle
Battery Pack

Problem

Figure 2.8a depicts the battery pack in the Smokin’ Buckeye electric race car. In this
example we apply KVL to the series connection of 31 12-V batteries that make up the
battery supply for the electric vehicle.
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Va1 Va2 Voattn Vbatz Vbats  Vbatsi

= = -

[FlFil
i

+ power
Vpattl — converter | vy
DC-AC converter bart = e drive
(electric drive) -
'AC motor

@ (b) ©

Figure 2.8 Electric vehicle battery pack: illustration of KVL

Solution

Known Quantities: Nominal characteristics of Optima™ lead-acid batteries. FIND IT
Find: Expression relating battery and electric motor drive voltages.
Schematics, Diagrams, Circuits, and Given Data: Vyat = 12 V. Figure 2.8(a), (b) and (¢)  ENREEEE
Assumptions: None.

Analysis: Figure 2.8(b) depicts the equivalent electrical circuit, illustrating how the
voltages supplied by the battery are applied across the electric drive that powers the
vehicle's 150-kW three-phase induction motor. The application of KVL to the equivalent
circuit of Figure 2.8(b) requires that:

31
Z Vbatt,, — Vrive = 0.
n=1

Thus, the electric drive is nominally supplied by a31 x 12 = 372-V battery pack. In
reality, the voltage supplied by lead-acid batteries varies depending on the state of charge
of the battery. When fully charged, the battery pack of Figure 2.8(a) is closer to supplying
around 400 V (i.e., around 13V per battery).

Comments: Thisillustration is meant to give the reader an intuitive feel for the
significance of KVL; more detailed numerical examples of KVVL will be presented later in
this chapter, when voltage and current sources and resistors are defined more precisely.
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2.3 IDEAL VOLTAGE AND CURRENT
SOURCES

In the examples presented in the preceding sections, abattery was used as a source
of energy, under the unspoken assumption that the voltage provided by the battery
(e.g., L.5voltsfor adry-cell or akaline battery, or 12 voltsfor an automotive lead-
acid battery) isfixed. Under such an assumption, we implicitly treat the battery as
an ideal source. In this section, we will formally define ideal sources. Intuitively,
an ideal sourceis asource that can provide an arbitrary amount of energy. Ideal
sourcesare divided into two types: voltage sources and current sources. Of these,
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Vs

Vvs(t)

General symbol
for ideal voltage
source. Vs (t)
may be constant
(DC source).
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Figure 2.9 Ided
voltage sources
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you are probably morefamiliar with thefirst, sincedry-cell, akaline, and lead-acid
batteries are al voltage sources (they are not ideal, of course). You might have to
think harder to come up with aphysical example that approximatesthe behavior of
anideal current source; however, reasonably good approximations of ideal current
sources also exist. For instance, avoltage source connected in serieswith acircuit
element that has alarge resistance to the flow of current from the source provides
a nearly constant—though small—current and therefore acts very nearly like an
ideal current source.

Ideal Voltage Sources

An ideal voltage sourceis an electrical device that will generate a prescribed
voltage at its terminals. The ability of an idea voltage source to generate its
output voltage is not affected by the current it must supply to the other circuit
elements. Another way to phrase the same ideais as follows:

An ideal voltage source provides a prescribed voltage across its terminals
irrespective of the current flowing through it. The amount of current
supplied by the source is determined by the circuit connected to it.

Figure 2.9 depictsvarious symbolsfor voltage sourcesthat will be employed
throughout this book. Note that the output voltage of an ideal source can be a
function of time. In general, the following notation will be employed in this book,
unless otherwise noted. A generic voltage source will be denoted by alowercase
v. If it is necessary to emphasize that the source produces atime-varying voltage,
then the notation v(¢) will be employed. Finally, a constant, or direct current, or
DC, voltage source will be denoted by the uppercase character V. Note that by
convention the direction of positive current flow out of a voltage source is out of
the positive terminal.

The notion of an ideal voltage source is best appreciated within the context
of the source-load representation of electrical circuits, which will frequently be
referred to in the remainder of this book. Figure 2.10 depicts the connection of
an energy source with apassive circuit (i.e., acircuit that can absorb and dissipate
energy—for exampl e, the headlightsand light bulb of our earlier examples). Three
different representations are shown to illustrate the conceptual, symbolic, and
physical significance of this source-load idea.

Source

—-T o< +<>i -

Power flow

(a) Conceptual
representation

i
P
b
Load L i
Vs v 3R = = =
_ Car battery Headlight
(b) Symbolic (circuit) (c) Physica
representation representation

Figure 2.10 Various representations of an electrical system.
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In the analysis of electrical circuits, we choose to represent the physical
reality of Figure 2.10(c) by means of the approximation provided by idea circuit
elements, as depicted in Figure 2.10(b).

Ideal Current Sources

An ideal current sourceis a device that can generate a prescribed current inde-
pendent of the circuit it is connected to. To do so, it must be able to generate
an arbitrary voltage across its terminals. Figure 2.11 depicts the symbol used to
represent ideal current sources. By analogy with the definition of theideal voltage
source stated in the previous section, we write:

Anideal current source provides a prescribed current to any circuit
connected to it. The voltage generated by the source is determined by the
circuit connected to it.

The same uppercase and lowercase convention used for voltage sources will be
employed in denoting current sources.

Dependent (Controlled) Sources

The sources described so far have the capability of generating a prescribed voltage
or current independent of any other element within the circuit. Thus, they are
termed independent sources. There exists another category of sources, however,
whose output (current or voltage) is a function of some other voltage or current
in a circuit. These are called dependent(or controlled) sources A different
symbol, in the shape of a diamond, is used to represent dependent sources and
to distinguish them from independent sources. The symbols typically used to
represent dependent sources are depicted in Figure 2.12; the table illustrates the
relationship between the source voltage or current and the voltage or current it
depends on—u, or i,, respectively—which can be any voltage or current in the
circuit.

Source type | Relationship

Voltage controlled voltage source (VCVS) Vs = Avy
Current controlled voltage source (CCVS) Vs= Al
Voltage controlled current source (VCCS) is= Avy

Current controlled current source (CCCS) is= Ay

Figure 2.12 Symbols for dependent sources

Dependent sources are very useful in describing certain types of electronic
circuits. You will encounter dependent sources again in Chapters 9, 10, and 12,
when electronic amplifiers are discussed.
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2.4 ELECTRIC POWER AND SIGN
CONVENTION

The definition of voltage as work per unit charge lends itself very conveniently to
the introduction of power. Recall that power is defined as the work done per unit
time. Thus, the power, P, either generated or dissipated by acircuit element can
be represented by the following relationship:

_ Work  Work Charge

= = = Volt C I 2.9
Time Charge Time oltege x Lurren (2.9)

Power

Thus,

The electrical power generated by an active element, or that dissipated or
stored by a passive element, is equal to the product of the voltage across
the element and the current flowing through it.

P=VI (2.10)

It is easy to verify that the units of voltage (joules/coulomb) times current
(coulombs/second) are indeed those of power (joules/second, or watts).

It isimportant to realize that, just like voltage, power is a signed quantity,
and that it is necessary to make a distinction between positive and negative power.
Thisdistinction can be understood with referenceto Figure 2.13, in which asource
and aload are shown side by side. The polarity of the voltage acrossthe source and
thedirection of the current through it indicate that the voltage sourceis doing work
in moving charge from a lower potential to a higher potential. On the other hand,
the load is dissipating energy, because the direction of the current indicates that
charge is being displaced from a higher potential to a lower potential. To avoid
confusion with regard to the sign of power, the electrical engineering community
uniformly adoptsthe passive sign conventiopwhich simply statesthat the power
dissipated by aload isa positive quantity (or, conversely, that the power generated
by a source is a positive quantity). Another way of phrasing the same concept is
to state that if current flows from a higher to alower voltage (+ to —), the power
is dissipated and will be a positive quantity.

It isimportant to note also that the actual numerical values of voltages and
currents do not matter: once the proper reference directions have been established
and the passive sign convention has been applied consistently, the answer will
be correct regardless of the reference direction chosen. The following examples
illustrate this point.

FOCUSONMETHODOLOGY
The Passive Sign Convention

1. Choose an arbitrary direction of current flow.
2. Label polarities of all active elements (voltage and current sources).
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FOCUSONMETHODOLOGY

3. Assign polaritiesto al passive elements (resistors and other |oads); for
passive elements, current always flows into the positive terminal .

4. Compute the power dissipated by each element according to the
following rule: If positive current flows into the positive terminal of an
element, then the power dissipated is positive (i.e., the element absorbs
power); if the current leaves the positive terminal of an element, then
the power dissipated is negative (i.e., the element delivers power).

EXAMPLE 2.4 Use of the Passive Sign Convention

Problem

Apply the passive sign convention to the circuit of Figure 2.14.

Solution @
Known Quantities: Voltages across each circuit element; current in circuit. Ve "_;_ %
Find: Power dissipated or generated by each element. N =
Schematics, Diagrams, Circuits, and Given Data: Figure 2.15(a) and (b). The voltage )

drop across Load 1 is 8V, that across Load 2 is4 V; the current in the circuit is 0.1 A. Figure 2.14

Assumptions: None.

Analysis: Following the passive sign convention, we first select an arbitrary direction for
the current in the circuit; the example will be repeated for both possible directions of
current flow to demonstrate that the methodology is sound.

1. Assume clockwise direction of current flow, as shown in Figure 2.15(a).

2. Labd polarity of voltage source, as shown in Figure 2.15(a); since the arbitrarily
chosen direction of the current is consistent with the true polarity of the voltage
source, the source voltage will be a positive quantity.

3. Assign polarity to each passive element, as shown in Figure 2.15(a). vg=12V v, =8V

i=01A v;=4V
4. Compute the power dissipated by each element: Since current flows from — to + ’
through the battery, the power dissipated by this element will be a negative quantity: @

Py =—vp xi=—(12V) x (0.1A) = —1.2W

that is, the battery generates 1.2 W. The power dissipated by the two loads will be a
positive quantity in both cases, since current flows from + to —:

Pi=vixi=(8V)x (01A) =08W
Pr=vy xi=(4V)x (0.1A) =04W

Next, we repeat the analysis assuming counterclockwise current direction. Vg=-12V v =-8V

i=—01A wvy=—-4V
1. Assume counterclockwise direction of current flow, as shown in Figure 2.15(b). 2

2. Label polarity of voltage source, as shown in Figure 2.15(b); since the arbitrarily (&)
chosen direction of the current is not consistent with the true polarity of the voltage Figure 2.15
source, the source voltage will be a negative quantity.
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3. Assign polarity to each passive element, as shown in Figure 2.15(b).

4. Compute the power dissipated by each element: Since current flows from + to —
through the battery, the power dissipated by this element will be a positive quantity;
however, the source voltage is a negative quantity:

Pg=vp xi=(-12V) x (0.1A)=-12W

that is, the battery generates 1.2 W, asin the previous case. The power dissipated by
the two loads will be a positive quantity in both cases, since current flows from + to

Pi=v1xi=(8V)x(01A)=08W
P=vy;xi=(4V)x(01A)=04W

Comments: |t should be apparent that the most important step in the exampleis the
correct assignment of source voltage; passive elementswill always result in positive power
dissipation. Note also that energy is conserved, as the sum of the power dissipated by
source and loadsis zero. In other words: Power supplied always equals power dissipated.

Element

Element

Figure 2.16

EXAMPLE 2.5 Another Use of the Passive Sign Convention

Problem

Determine whether a given element is dissipating or generating power from known
voltages and currents.

Solution
Known Quantities: Voltages across each circuit element; current in circuit.
Find: Which element dissipates power and which generates it.

Schematics, Diagrams, Circuits, and Given Data: Voltage across element A: 1,000 V.
Current flowing into element A: 420 A.
See Figure 2.16(a) for voltage polarity and current direction.

Analysis: According to the passive sign convention, an element dissipates power when
current flows from a point of higher potential to one of lower potential; thus, element A
actsasaload. Since power must be conserved, element B must be a source [Figure
2.16(b)]. Element A dissipates (1,000 V) x (420 A) = 420 kW. Element B generates the
same amount of power.

Comments: The procedure described in this example can be easily conducted
experimentally, by performing simple current and voltage measurements. Measuring
devices are discussed in Section 2.8.

Check Your Understanding

2.1 Compute the current flowing through each of the headlights of Example 2.2 if each
headlight has a power rating of 50 W. How much power is the battery providing?
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2.2 Determinewhich circuit element in theillustration (below, left) is supplying power
and which is dissipating power. Also determine the amount of power dissipated and sup-
plied.

+
22A

T 1.1 v¢ Ol

: : T T

2.3 If the battery in the accompanying diagram (above, right) supplies atotal of 10 mw
to the three elements shown and i; = 2 mA and i, = 1.5 mA, what is the current i3? If
i1=1mA and iz=15mA, what |Sl2f)

2.5 CIRCUIT ELEMENTS AND THEIR i-v
CHARACTERISTICS

The relationship between current and voltage at the terminals of acircuit element
defines the behavior of that element within the circuit. In this section we shall
introduce a graphical means of representing the terminal characteristics of circuit
elements. Figure 2.17 depictsthe representation that will be employed throughout
the chapter to denote a generalized circuit element: the variable i represents the
current flowing through the element, while v isthe potential difference, or voltage,
across the element.

Suppose now that a known voltage were imposed across a circuit el ement.
The current that woul d flow as aconsequence of thisvoltage, and thevoltageitself,
form a unique pair of values. If the voltage applied to the element were varied
and the resulting current measured, it would be possible to construct a functional
rel ationship between voltage and current known asthei-v characteristic (or volt-
ampere characteristiq. Such a relationship defines the circuit element, in the
sense that if we impose any prescribed voltage (or current), the resulting current
(or voltage) isdirectly obtainablefrom thei-v characteristic. A direct consequence
isthat the power dissipated (or generated) by the element may also be determined
from thei-v curve.

Figure 2.18 depicts an experiment for empirically determining the i-v char-
acterigtic of atungsten filament light bulb. A variable voltage source is used to
apply various voltages, and the current flowing through the element is measured
for each applied voltage.

We could certainly expressthei-v characteristic of acircuit element in func-
tional form:

i=f@  v=g0) (2.11)

In some circumstances, however, the graphical representation is more desirable,
especidly if there is no simple functional form relating voltage to current. The
simplest form of the i-v characteristic for a circuit element is a straight line, that
is,

i = kv (2.12)

Figure 2.17 Generalized
representation of circuit elements
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Figure 2.18 Volt-ampere characteristic of a tungsten light bulb
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characteristics of idea
sources

with k a constant. In the next section we shall see how this simple model of
a circuit element is quite useful in practice and can be used to define the most
common circuit elements: ideal voltage and current sources and the resistor.

We can also relate the graphical i-v representation of circuit elementsto the
power dissipated or generated by acircuit element. For example, thegraphical rep-
resentation of the light bulb i-v characteristic of Figure 2.18 illustrates that when a
positive current flowsthrough the bulb, the voltageis positive, and that, conversely,
anegative current flow corresponds to a negative voltage. In both cases the power
dissipated by the device is a positive quantity, as it should be, on the basis of the
discussion of the preceding section, since the light bulb is a passive device. Note
that thei-v characteristic appearsin only two of thefour possible quadrantsin thei-
v plane. Inthe other two quadrants, the product of voltage and current (i.e., power)
isnegative, and ani-v curvewith aportionin either of these quadrantswould there-
fore correspond to power generated. Thisisnot possible for a passive load such as
alight bulb; however, there are electronic devices that can operate, for example, in
three of the four quadrants of thei-v characteristic and can therefore act as sources
of energy for specific combinations of voltages and currents. An example of this
dual behavior isintroduced in Chapter 8, whereit is shown that the photodiode can
act either in apassive mode (asalight sensor) or in an active mode (asasolar cell).

Thei-v characteristics of ideal current and voltage sources can also be use-
ful in visualy representing their behavior. An ideal voltage source generates a
prescribed voltage independent of the current drawn from the load; thus, itsi-v
characteristic isastraight vertical line with avoltage axis intercept corresponding
to the source voltage. Similarly, thei-v characteristic of an ideal current sourceis
ahorizontal line with a current axis intercept corresponding to the source current.
Figure 2.19 depicts these behaviors.

2.6 RESISTANCE AND OHM’S LAW

When el ectric current flowsthrough ametal wire or through other circuit el ements,
it encounters a certain amount of resistance the magnitude of which depends on
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the electrical properties of the material. Resistance to the flow of current may
be undesired—for example, in the case of lead wires and connection cable—or it
may be exploited in an electrical circuit in auseful way. Nevertheless, practically
all circuit elements exhibit some resistance; as a consequence, current flowing
through an element will cause energy to be dissipated in theform of heat. Anideal
resistor is a device that exhibits linear resistance properties according to Ohm’s
law, which states that

V=IR Ohm'slaw (2.13)

that is, that the voltage across an element is directly proportiona to the current
flow through it. R isthe value of the resistance in units of ohms (Q), where

1Q=1VIA (2.14)

The resistance of a material depends on a property called resistivity, denoted by
the symbol p; the inverse of resistivity is called conductivity and is denoted by
the symbol o. For a cylindrical resistance element (shown in Figure 2.20), the
resistance is proportional to the length of the sample, , and inversely proportional
to its cross-sectiona area, A, and conductivity, o .

v=—1I 2.15
vy (2.15)
i i
—
O—
+
|
- RZv 1R
IR oA >

A

o——1 v

Physical resistors Circuit symbol i-v characteristic

with resistance R.
Typical materials are
carbon, metal film.

Figure 2.20 The resistance element

It is often convenient to define the conductanceof a circuit element as the
inverseof itsresistance. The symbol used to denote the conductance of an element
is G, where
where 1S=1A/N

1
G = n siemens (S) (2.16)

Thus, Ohm'’s law can be restated in terms of conductance as:

I1=GV (2.17)

Interactive Experiments
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Ohm'slaw isan empirical relationship that finds widespread application in
electrical engineering, because of its simplicity. It is, however, only an approx-
imation of the physics of electrically conducting materials. Typically, the linear
rel ationship between voltage and current in el ectrical conductors does not apply at
very high voltages and currents. Further, not all electrically conducting materials
exhibit linear behavior even for small voltagesand currents. Itisusually true, how-
ever, that for some range of voltages and currents, most elements display alinear
i-v characteristic. Figure 2.21 illustrates how the linear resistance concept may
apply to elements with nonlinear i-v characteristics, by graphically defining the
linear portion of thei-v characteristic of two common electrical devices: the light
bulb, which we have already encountered, and the semiconductor diode, which we
study in greater detail in Chapter 8.

Thetypical construction and the circuit symbol of the resistor are shown in
Figure 2.20. Resistors made of cylindrical sectionsof carbon (with resistivity p =
3.5 x 10~° ©-m) are very common and are commercially availablein awide range
of valuesfor several power ratings (aswill be explained shortly). Another common
construction technique for resistors employs metal film. A common power rating
for resistorsusedin electronic circuits(e.g., in most consumer el ectronic appliances
such as radios and television sets) is ;11 W. Table 2.1 lists the standard values for
commonly used resistors and the color code associated with these values (i.e.,
the common combinations of the digits b1b,b3 as defined in Figure 2.22). For
example, if thefirst three color bands on a resistor show the colorsred (b1 = 2),
violet (b, = 7), and yellow (b3 = 4), the resistance value can be interpreted as
follows:

R = 27 x 10* = 270,000 2 = 270 k2

Table 2.1 Common resistor values values (3-, -, 1-, 1-, 2-W rating)

Q Code Q  Multiplier | kQ Multiplier | kQ Multiplier | kQ Multiplier
10 Brn-blk-blk | 100 Brown 10 Red 10 Orange 100 Yellow
12 Brn-red-blk | 120 Brown 12 Red 12 Orange 120 Yellow
15 Brn-grn-blk | 150 Brown 15 Red 15 Orange 150 Yellow
18 Brn-gry-blk | 180 Brown 18 Red 18 Orange 180 Yellow
22 Red-red-blk | 220 Brown 22 Ra 22 Orange 220 Yellow
27 Red-vit-blk | 270 Brown 27 Rea 27 Orange 270 Yellow
33 Org-org-blk | 330 Brown 33 R« 33 Orange 330 Yellow
39 Org-wht-blk | 390 Brown 39 Red 39 Orange 390 Yellow
47 Ylw-vit-blk | 470 Brown 4.7 Red 47  Orange 470 Yellow
56 Grn-blu-blk | 560 Brown 56 Red 56 Orange 560 Yellow
68 Blu-gry-blk | 680 Brown 6.8 Red 68 Orange 680 Yellow
82 Gry-red-blk | 820 Brown 82 Read 82 Orange 820 Yellow

InTable2.1, theleftmost column representsthe compl ete col or code; columns
totheright of it only show thethird color, sincethisistheonly onethat changes. For
example, a 10-Q2 resistor has the code brown-black-black, while a 100-$2 resistor
has brown-black-brown.

In addition to theresistance in ohms, the maximum allowabl e power dissipa-
tion (or power rating) istypically specified for commercial resistors. Exceeding
this power rating leads to overheating and can cause the resistor to literaly burn
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up. For aresistor R, the power dissipated can be expressed, with Ohm's Law
substituted into equation 2.10, by
V2
P=VI=I’R=— (2.18)
R
That is, the power dissipated by aresistor isproportional tothe square of thecurrent
flowing through it, as well as the square of the voltage across it. The following
exampleillustrates how one can make use of the power rating to determine whether
agiven resistor will be suitable for a certain application.

EXAMPLE 2.6 Using Resistor Power Ratings

Problem

Determine the minimum resistor sizethat can be connected to a given battery without FIND IT
exceeding the resistor’s ;-watt power rating.

ON THE WEB

Solution

Known Quantities: Resistor power rating = 0.25 W.
Battery voltages: 1.5and 3 V.

Find: Thesmallest size %-watt resistor that can be connected to each battery.

Schematics, Diagrams, Circuits, and Given Data: Figure 2.23, Figure 2.24.

+(
~_

+C
~_

D1

Figure 2.23

o}l

Figure 2.24

Analysis: Wefirst need to obtain an expression for resistor power dissipation asa
function of itsresistance. We know that P = V I and that V = I R. Thus, the power
dissipated by any resistor is:

1% V2
Pr=VXxI=Vx|—=)=—
R R

Since the maximum allowable power dissipation is 0.25 W, we can write
V2/R < 0.25,0r R > V?/0.25. Thus, for a 1.5-volt battery, the minimum size resistor
will be R = 1.5%/0.25 = 9. For a 3-volt battery the minimum size resistor will be
R = 3?/0.25 = 36Q.
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Comments: Sizing resistors on the basis of power rating is very important in practice.
Note how the minimum resistor size quadrupled as we doubled the voltage acrossit. This
is because power increases as the square of the voltage. Remember that exceeding power
ratings will inevitably lead to resistor failure!

Resistive Throttle Position Sensor 200 v

Problem: ON THE WEB
The aim of this exampleis to determine the calibration of an automotive
resistive throttle position sensorshown in Figure 2.25(a). Figure 2.25(b)
and (c) depict the geometry of the throttle plate and the equivalent circuit of
the throttle sensor. The throttle plate in atypical throttle body has a range of
rotation of just under 90°, ranging from closed throttle to wide-open throttle.

@

Figure 2.25 (@) A throttle position sensor. Photo
courtesy of CTS Corporation.

Solution:
Known Quantities— Functional specifications of throttle position sensor.
Find— Calibration of sensor in volts per degree of throttle plate opening.
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Figure 2.25 (b) Throttle blade geometry (c) Throttle position
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Figure 2.25 (d) Cdlibration curve for throttle position sensor

Schematics, Diagrams, Circuits, and Given Data—

Functional specifications of throttle position sensor

Overall Resistance, R, + AR

3t012 k2

Input, Vg 5V + 4% regulated
Output, Veensor 5% to 95% V
Current draw, I, <20 mA
Recommended load, R, < 220k
Electrical Travel, Max. 110 degrees

The nominal supply voltageis 12 V and total throttle plate travel is 88°,
with a closed-throttle angle of 2° and a wide-open throttle angle of 90°.
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Analysis— The equivalent circuit describing the variable resistor that makes
up the sensor is shown in Figure 2.25(c). Thewiper arm, that is, the moving
part of the variable resistor, or potentiometer, defines a voltage proportional
to position. The actual construction of the potentiometer isin the shape of a
circle—the figure depicts the potentiometer resistor as a straight line for
simplicity. The range of the potentiometer (see specifications above) is 0 to
112° for aresistance of 3 to 12 k2; thus, the calibration constant of the
potentiometer is:

112 — O degrees degrees
kpot = ———= % =1244 %
12-3 kQ k2
The calibration of the throttle position sensor is:
R AR R AR
Ko+ AR =V < 0 + )

R sensor

V. =V
Sensor ? Reensor ~ Reensor

=Vp ( il + o > (6 in degrees)

Rsensor kpot X Rsensor

The calibration curve for the sensor is shown in Figure 2.25(d).
So, if the throttle is closed, the sensor voltage will be:

Vensor = Vi [ =12 4 o
sensor = T8 Reensor kpot X Reensor

3 2
When the throttle is wide open, the sensor voltage will be;

V. V(R°+ ’ )
= VB
sensar Rsensor kpot X Rsensor

3 90

=12 —=+-——-)=1023V
<u+quu>

Comments— The fixed resistor Ry prevents the wiper arm from shorting to

ground. Note that the throttle position measurement does not use the entire

range of the sensor.

Resistance Strain Gauges FIND IT

Another common application of the resistance concept to ON THE WEB
engineering measurements is the resistance strain gauge Strain gauges are
devices that are bonded to the surface of an object, and whose resistance
varies as afunction of the surface strain experienced by the object. Strain
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gauges may be used to perform measurements of strain, stress, force, torque,
and pressure. Recall that the resistance of acylindrical conductor of
cross-sectional area A, length L, and conductivity o is given by the
expression
L

gA
If the conductor is compressed or elongated as a consequence of an external
force, its dimensions will change, and with them itsresistance. In particular,
if the conductor is stretched, its cross-sectional areawill decrease and the
resistance will increase. If the conductor is compressed, its resistance
decreases, since the length, L, will decrease. The relationship between
change in resistance and change in length is given by the gauge factor, G,
defined by

G _ AR/R

AL/L

and since the strain e is defined as the fractional change in length of an
object, by the formula

AL
L
the change in resistance due to an applied strain € is given by the expression

€

AR=RyGe

where Ry isthe resistance of the strain gauge under no strain and is called
the zero strain resistance. The value of G for resistance strain gauges made
of metal foil isusually about 2.

Figure 2.26 depicts atypical foil strain gauge. The maximum strain that
can be measured by afoil gauge is about 0.4 to 0.5 percent; that is, AL/L =
0.004 —0.005. For a120-2 gauge, this corresponds to a change in resistance
of the order of 0.96 to 1.2 2. Although this change in resistanceis very
small, it can be detected by means of suitable circuitry. Resistance strain

Meta-foil resistance strain gauge.
Thefoil isformed by a photo-
etching process and is less than

Circuit symbol for 0.00002 in thick. Typical resistance
Re the strain gauge velues are 120, 350, and 1,000 Q.
The wide areas are bonding pads

for electrical connections.

Figure 2.26 Metal-foil resistance strain gauge. The fail is formed by a
photo-etching process and is less than 0.00002 in thick. Typical resistance
values are 120, 350, and 1,000 2. The wide areas are bonding pads for
electrical connections.
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gauges are usually connected in acircuit called the Wheatstone bridge,
which we analyze later in this chapter.

Comments— Resistance strain gauges find application in many
measurement circuits and instruments.

2
3R, 14

wS
V22 R

[+

@

= Vs

1
RS v(Ds

Figure 2.27

EXAMPLE 2.7 Application of Kirchhoff’s Laws

Problem
Apply both KVL and KCL to each of the two circuits depicted in Figure 2.27.

Solution
Known Quantities: Current and voltage source and resistor values.
Find: Obtain equations for each of the two circuits by applying KCL and KVL.
Schematics, Diagrams, Circuits, and Given Data: Figure 2.27.
Analysis: We start with the circuit of Figure 2.27(a). Applying KVL we write
Ve—Vi—V,=0
Vs = IR, + IR>.

Applying KCL we obtain two eguations, one at the top node, the other at the node

between the two resistors:
V \% \Z
I-2=0 ad —*t-2=0
Ry Ri Ry

With reference to the circuit of Figure 2.27(b), we apply KVL to two equations (one for
each loop):

V= [2R2; V= I]_Rl
Applying KCL we obtain asingle equation at the top node:

Is—ILi—L=0 o I[j———-2=0

Comments: Note that in each circuit one of Kirchhoff’s laws resultsin a single equation,
while the other resultsin two equations. In Chapter 3 we shall develop methods for
systematically writing the smallest possible number of equations sufficient to solve a
circuit.

Open and Short Circuits

Two convenient idealizations of the resistance element are provided by the limit-
ing cases of Ohm's law as the resistance of a circuit element approaches zero or
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infinity. A circuit element with resistance approaching zero is called a short
circuit. Intuitively, one would expect a short circuit to allow for unimpeded
flow of current. In fact, metallic conductors (e.g., short wires of large diameter)
approximate the behavior of a short circuit. Formally, a short circuit is defined as
acircuit element acrosswhich the voltageis zero, regardless of the current flowing
through it. Figure 2.28 depicts the circuit symbol for an ideal short circuit.

Physically, any wire or other metallic conductor will exhibit someresistance,
though small. For practical purposes, however, many elementsapproximate ashort
circuit quite accurately under certain conditions. For example, a large-diameter
copper pipe is effectively a short circuit in the context of a residential electrical
power supply, while in alow-power microelectronic circuit (e.g., an FM radio) a
short length of 24 gauge wire (refer to Table 2.2 for the resistance of 24 gauge
wire) is a more than adequate short circuit.

Table 2.2 Resistance of copper wire

Number of Diameter per Resistance per

AWG size strands strand 1,000 ft ©2)
24 Solid 0.0201 284
24 7 0.0080 284
22 Solid 0.0254 18.0
22 7 0.0100 19.0
20 Solid 0.0320 11.3
20 7 0.0126 11.9
18 Solid 0.0403 7.2
18 7 0.0159 75
16 Solid 0.0508 45
16 19 0.0113 47

A circuit element whose resistance approaches infinity is called an open
circuit. Intuitively, one would expect no current to flow through an open circuit,
since it offers infinite resistance to any current. In an open circuit, we would
expect to see zero current regardless of the externally applied voltage. Figure 2.29
illustrates this idea.

In practice, it is not too difficult to approximate an open circuit: any break
in continuity in a conducting path amounts to an open circuit. The idealization
of the open circuit, as defined in Figure 2.29, does not hold, however, for very
high voltages. Theinsulating material between two insulated terminals will break
down at a sufficiently high voltage. If the insulator is air, ionized particles in
the neighborhood of the two conducting elements may lead to the phenomenon
of arcing; in other words, a pulse of current may be generated that momentarily
jumps agap between conductors (thanksto this principle, we are able to ignite the
air-fuel mixture in aspark-ignition internal combustion engine by means of spark
plugs). The ideal open and short circuits are useful concepts and find extensive
usein circuit analysis.

Series Resistors and the VVoltage Divider Rule

Although electrical circuits can take rather complicated forms, even the most in-
volved circuits can be reduced to combinations of circuit elementsin parallel and

+0
The short circuit:

v R=0
v=0foranyi

- o0—!

Figure 2.28 The short
circuit

i
—

+
l The open circuit:

\ R - o

T i=0foranyv

Figure 2.29 The open
circuit
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15V

The current i flows through each of
the four series elements. Thus, by
KVL,

15=vi+w+v3

Rs

)

Ry

N seriesresistors are equivalent to a
single resistor equal to the sum of
theindividual resistances.

Figure 2.30

Chapter 2 Fundamentals of Electric Circuits

in series. Thus, it isimportant that you become acquainted with parallel and se-
ries circuits as early as possible, even before formally approaching the topic of
network analysis. Parallel and seriescircuits have adirect relationship with Kirch-
hoff’s laws. The objective of this section and the next isto illustrate two common
circuits based on seriesand parallel combinations of resistors. thevoltage and cur-
rent dividers. These circuits form the basis of all network analysis; it is therefore
important to master these topics as early as possible.

For an example of a series circuit, refer to the circuit of Figure 2.30, where
abattery has been connected to resistors Ry, R», and R3. Thefollowing definition

applies:

Definition

Two or more circuit €l ements are said to be in seriesif the identical current
flows through each of the elements.

By applying KVL, you can verify that the sum of the voltages across the three
resistors equal s the voltage externally provided by the battery:

15V =v1+vy+v3
and since, according to Ohm's law, the separate voltages can be expressed by the
relations

v =IiR; vo =IiR> v3 =IiR3
we can therefore write

1.5V =i(R1+ Rz + Ra)

This simple result illustrates a very important principle: To the battery, the three
series resistors appear as a single equivalent resistance of value Rgg, Where

Reo=R1+ R+ R3

Thethreeresistors could thus be replaced by asingle resistor of value Rgg Without
changing the amount of current required of the battery. From this result we may
extrapolate to the more general relationship defining the equivalent resistance of
N seriesresistors:

N
Reg =Y R, (2.19)
n=1

which is aso illustrated in Figure 2.30. A concept very closely tied to series
resistors is that of the voltage divider. This terminology originates from the
observation that the source voltage in the circuit of Figure 2.30 divides among the
three resistors according to KVL. If we now observe that the series current, i, is
given by

) 15V 15V
1 = =
Reg R1+ R>+ R3
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we can write each of the voltages across the resistors as.

R
vy = iR = —=(15V)
REQ
. R
VU = le = —(1.5V)
REQ

. R3
V3 = lR3 = R—Q(15V)
E

That is:

The voltage across each resistor in a series circuit is directly proportional
to the ratio of its resistance to the total series resistance of the circuit.

An instructive exercise consists of verifying that KVL is till satisfied, by adding
the voltage drops around the circuit and equating their sum to the source voltage:

R R R
v+ vt vg= —(1L5V) + —(L5V) + —(15V) =15V
Req Req Req
since
Reg=R1+ R>+ R3
Therefore, since KVL is satisfied, we are certain that the voltage divider rule is
consistent with Kirchhoff’s laws. By virtue of the voltage divider rule, then, we
can always determine the proportion in which voltage drops are distributed around
acircuit. This result will be useful in reducing complicated circuits to simpler

forms. The general form of the voltage divider rule for a circuit with N series
resistors and a voltage source is:

— Rn
 Ri+Ry+---+R,+-+Ry

vs Voltage divider (2.20)

UI’[
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EXAMPLE 2.8 Voltage Divider

Problem

Determine the voltage vs in the circuit of Figure 2.31.

Solution
Known Quantities: Source voltage, resistance values
Find: Unknown voltage vs.

Schematics, Diagrams, Circuits, and Given Data: R; = 10R2; R, = 62; R3 = 8%;
Vs = 3 V. Figure 2.31.

Vs
&,

Rs

v -
Figure 2.31

Vi
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Analysis: Figure 2.31 indicates areference direction for the current (dictated by the
polarity of the voltage source). Following the passive sign convention, we label the
polarities of the three resistors, and apply KVL to determine that

Vs—Ul—vz—U3=0
The voltage divider rule tells us that

R3 8

RitRatRs - 10+6+8

vz = Vg X
Comments: Application of the voltage divider rule to a series circuit is very
straightforward. The difficulty usually arisesin determining whether acircuitisin fact a
series circuit. Thispoint is explored later in this section, and in Example 2.10.

Focus on Computer-Aided Tools: The simple voltagedivider circuit introduced in this
example provides an excellent introduction to the capabilities of the Electronics
Workbench, or EWB™!, a computer-aided tool for solving electrical and electronic
circuits. You will find the EWB™ version of the circuit of Figure 2.31 in the electronic
files that accompany this book in CD-ROM format. This simple example may serve as a
workbench to practice your own skillsin constructing circuits using Electronics
Workbench.

Parallel Resistors and the Current Divider Rule

A concept analogous to that of the voltage divider may be devel oped by applying
Kirchhoff’s current law to a circuit containing only parallel resistances.

Definition

Two or more circuit elements are said to be in parallel if the identical
voltage appears across each of the elements.

Figure 2.32illustrates the notion of parallel resistors connected to an ideal current
source. Kirchhoff’s current law requires that the sum of the currentsinto, say, the
top node of the circuit be zero:

is=1i1+i2+13

KCL applied at this node

e © N
+
T jiz tia :}R3 R SRy Req
iS Ry Ry Ry v

N resistorsin parallel are equivalent to a single equivalent
The voltage v appears across each parallel resistor with resistance equal to the inverse of the sum of
element; by KCL, is=iy +iz+i3 the inverse resistances.

Figure 2.32 Pardld circuits
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But by virtue of Ohm'’s law we may express each current as follows:

v . v . v

i1=— lp = — 3= —
Ry R R3

since, by definition, the same voltage, v, appears across each element. Kirchhoff’s
current law may then be restated as follows:

. 1 + 1 N 1
s=v|\—+—+—
§ Ri ' Ry ' Rs
Notethat thisequation can beal so writtenintermsof asingle equivalent resistance:
1

is =V —
REQ

1 _1,1 1
REQ_Rl R, R3

Asillustrated in Figure 2.32, one can generalize thisresult to an arbitrary number
of resistors connected in parallel by stating that N resistors in parallel act as a
single equivalent resistance, Req, given by the expression

S e e M (2.21)

or

Reo (2.22)

T 1R+ 1/Ra+ -+ 1/Ry
Very often in the remainder of this book we shall refer to the parallel combination
of two or more resistors with the following notation:

Ry Rz |l -

where the symbol || signifies“in paralle with.”

From the results shown in eguations 2.21 and 2.22, which were obtained
directly from KCL, the current divider rule can be easily derived. Consider,
again, the three-resistor circuit of Figure 2.32. From the expressions already
derived from each of the currents, i1, i, and i3, we can write:

v . v . v

i1=— lp = — 3= —
Ry R R3

and since v = Regis, these currents may be expressed by:

Req. 1/Ry . /Ry :
1] = —1Is = g = ls
Ry 1/Req 1/R1+1/Ry+ 1/R3
. 1/R; .
lp = ls
1/Ri1+1/R>+ 1/R3
1/R;

i3 = i
3 l/Rl—I—l/R2+1/R3S
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One can easily seethat the current inaparallel circuit dividesininverse proportion
to the resistances of the individual parallel elements. The general expression for
the current divider for acircuit with N parallel resistorsis the following:

1/R, .
= Current
1/R1+1/R2+~-~+1/Rn+-~-+1/RNZS divider (2.23)

In

Example 2.9 illustrates the application of the current divider rule.

+
bz bz |}is
R1 IS R2 R3 \"
Figure 2.33
]
VIRTUAL LAB
Multisim

EXAMPLE 2.9 Current Divider

Problem

Determine the current i, in the circuit of Figure 2.33.

Solution
Known Quantities: Source current, resistance values.
Find: Unknown current i;.

Schematics, Diagrams, Circuits, and Given Data:

Analysis: Application of the current divider rule yields:

1 1
. R1 10
l1=15>< 1 1 1 =4 x 1 1 1=06154A
R71+R72+R73 1*0+§+2*0

Comments: While application of the current divider rule to aparalel circuit is very
straightforward, it is sometimes not so obvious whether two or more resistors are actually
in paralel. A method for ensuring that circuit elements are connected in parallel is
explored later in this section, and in Example 2.10.

Focus on Computer-Aided Tools: You will find the EWB™ version of the circuit of
Figure 2.33 in the electronic files that accompany this book in CD-ROM format. This
simple example may serve as aworkbench to practice your own skillsin constructing
circuits using Electronics Workbench.

Interactive Experiments

Much of theresistive network analysisthat will beintroduced in Chapter 3is
based on the simple principles of thevoltage and current dividersintroduced inthis
section. Unfortunately, practical circuits are rarely composed only of parallel or
only of series elements. The following examples and Check Your Understanding
exercisesillustrate some simple and slightly more advanced circuits that combine
parallel and series elements.
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EXAMPLE 2.10 Series-Parallel Circuit

Problem

Determine the voltage v in the circuit of Figure 2.34.

Solution
Known Quantities: Source voltage, resistance values.
Find: Unknown voltage v.

Schematics, Diagrams, Circuits, and Given Data: See Figures 2.34, 2.35.

Ry Elementsin parallel
VAVAV +

> >
. = Ry v = R3
< <
Vs I > >

>
<
<E Ro[MR3
-

Equivalent circuit

Figure 2.34

Figure 2.35

Analysis: Thecircuit of Figure 2.34 is neither a series nor a parallel circuit because the
following two conditions do not apply:

1. Thecurrent through all resistorsis the same (series circuit condition)
2. Thevoltage across al resistors is the same (parallel circuit condition)

The circuit takes amuch simplier appearance once it becomes evident that the same
voltage appears across both R, and Rz and, therefore, that these elements arein parallel.
If these two resistors are replaced by a single equivalent resistor according to the
procedures described in this section, the circuit of Figure 2.35 is obtained. Note that now
the equivalent circuit is asimple series circuit and the voltage divider rule can be applied Ewb
to determine that:

VIRTUAL LAB

R>||R3

= 71}3
R1+ Ro||R3

while the current is found to be

. Vs

= ————
R1+ R2||R3

Comments: Systematic methods for analyzing arbitrary circuit configurations are

explored in Chapter 3.
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FIND IT

ON THE WEB

Figure 2.36 Wheatstone
bridge circuits

EXAMPLE 2.11 The Wheatstone Bridge

Problem

The Wheatstone bridgeis aresistive circuit that is frequently encountered in a variety of
measurement circuits. The general form of the bridge circuit is shown in Figure 2.36(a),
where Ry, R,, and R3 are known while R, is an unknown resistance, to be determined.
The circuit may also be redrawn as shown in Figure 2.36(b). The latter circuit will be used
to demonstrate the use of the voltage divider rule in amixed series-parallel circuit. The
objective is to determine the unknown resistance, R, .

1

Find the value of the voltage v, = v,q — v, in terms of the four resistances and the
source voltage, vs. Note that since the reference point d is the same for both
voltages, we can also write v,, = v, — v,.

If R]_ = R2 = R3 =1 kQ, Vg = 12 V, and VUap = 12 mV, what is the value of RX’)

Solution

Known Quantities: Source voltage, resistance values, bridge voltage.

Find: Unknown resistance R, .

Schematics, Diagrams, Circuits, and Given Data: See Figure 2.36.

Ri =Ry = R3=1kQ, U_g=12V, Vab =12mV.

Analysis:

1. First, we observe that the circuit consists of the parallel combination of three

subcircuits: the voltage source, the series combination of R; and R,, and the series
combination of Rz and R,. Since these three subcircuits arein pardlel, the same
voltage will appear across each of them, namely, the source voltage, vs.

Thus, the source voltage divides between each resistor pair, R; — R, and Rz — R,,
according to the voltage divider rule: v, isthe fraction of the source voltage
appearing across R,, while v, isthe voltage appearing across R, :

R,
SRi+ R

R,

and v = vg—————
b SR3+RX

Vg =V

Finally, the voltage difference between pointsa and b is given by:

( R2 RX )
D, =V, —UVUp, =0V —
ab a b N Ri+ R, Rs+ R,

Thisresult is very useful and quite general.

. In order to solve for the unknown resistance, we substitute the numerical valuesin

the preceding equation to obtain

0.012 =12 (1’000 R, )

2,000 1,000+ R,


http://www.mhhe.com/engcs/electrical/rizzoni/student/olc/fiotw02.htm
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which may be solved for R, toyield
R, =996 Q

Comments: The Wheatstone bridge finds application in many measurement circuits and
instruments.

Focus on Computer-Aided Tools: Virtual Lab You will find aVirtual Lab version of the
circuit of Figure 2.36 in the electronic files that accompany this book. If you have
practiced building some simple circuits using Electronics Workbench, you should by now
be convinced that thisis an invaluable tool in validating numerical solutions to problems, VIRTUAL LAB
and in exploring more advanced concepts.

The Wheatstone Bridge and Force Measurements

Strain gauges, which were introduced in a Focus on M easurements section
earlier in this chapter, are frequently employed in the measurement of force.
One of the simplest applications of strain gauges is in the measurement of
the force applied to a cantilever beam, asillustrated in Figure 2.37. Four
strain gauges are employed in this case, of which two are bonded to the
upper surface of the beam at adistance L from the point where the external
force, F, isapplied and two are bonded on the lower surface, also at a
distance L. Under the influence of the external force, the beam deforms and
causes the upper gauges to extend and the lower gauges to compress. Thus,
the resistance of the upper gauges will increase by an amount AR, and that
of the lower gauges will decrease by an equal amount, assuming that the 1
gauges are symmetrically placed. Let R; and R4 bethe upper gaugesand R, [@ = gl o ™

and R3 the lower gauges. Thus, under the influence of the external force, we ﬂ F! !i
have:

Ri= Ry = Ro+ AR
Ry = R3 = Ro— AR

where Ry isthe zero strain resistance of the gauges. It can be shown from
elementary statics that the relationship between the strain € and aforce F

to bottom surface

Y
Beam cross section I:I E
<7

Figure 2.37 A force-measuring instrument
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applied at adistance L for a cantilever beamiis:

6LF
~ wh?y
where h and w are as defined in Figure 2.37 and Y is the beam’s modulus of
elasticity.
In the circuit of Figure 2.37, the currents i, and i, are given by
== ad =
Ri1+ R> R3+ R4

The bridge output voltage is defined by v, = v, — v, and may be found from
the following expression:

vs R4 vsR»
R3+Rs Ri1+ R

Vo =ipRq4—i,Ry =

Ro+ AR Ro— AR
v — U
SRo+ AR+ Ro— AR  °Ro+ AR+ Ro— AR

AR
= vg— = vg Ge

Ro
where the expression for AR/ R was obtained in “Focus on M easurements:
Resistance Strain Gauges’ section. Thus, it is possible to obtain a
relationship between the output voltage of the bridge circuit and the force,
F, asfollows:
6LF _ GvsGL
wh2Y ~— wh?Y
where k isthe calibration constant for this force transducer.

v, =vg Ge = v5 G F =kF

Comments— Strain gauge bridgesare commonly used in Sk

mechanical, chemical, aerospace, biomedical, and civil
engineering applications (and wherever measurements of force,
pressure, torque, stress, or strain are sought).

ON THE WEB

Check Your Understanding

2.4 Repeat Example 2.8 by reversing the reference direction of the current, to show that
the same result is obtained.

2.5 The circuit in the accompanying illustration contains a battery, a resistor, and an

unknown circuit element.
Unknown

element 1. If thevoltage Viatery iIS1.45V and i = 5mA, find power supplied to or by the battery.
2. Repeatpatlifi = —2mA.

2.6 Thebattery in the accompanying circuit supplies power to the resistors Ry, R, and
R3. Use KCL to determine the current i, and find the power supplied by the battery if
Voatey = 3 V.


http://www.mhhe.com/engcs/electrical/rizzoni/student/olc/fiotw02.htm
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Voatery (7) IR 3R 3R

li1=0.2mA li2=0.4mA li3=1.2mA

2.7 Usetheresultsof part 1 of Example 2.11 to find the condition for which the voltage
vay = U, — Uy i1Sequal to zero (thisis called the balanced condition for the bridge). Does
this result necessarily require that all four resistors be identical? Why?

2.8 Verify that KCL is satisfied by the current divider rule and that the source current
is divides in inverse proportion to the parallel resistors R;, R, and Rz in the circuit of
Figure 2.33. (Thisshould not be a surprise, since we would expect to see more current flow
through the smaller resistance.)

2.9 Compute the full-scale (i.e., largest) output voltage for the force-measuring ap-
paratus of “Focus on Measurements: The Wheatstone Bridge and Force M easurements.”
Assume that the strain gauge bridge isto measure forces ranging from0to 500 N, L = 0.3
m, w = 0.05m, & = 0.01 m, G = 2, and the modulus of elasticity for the beam is 69 x 10°
N/m? (aluminum). The source voltageis 12 V. What isthe calibration constant of thisforce
transducer?

2.10 Repeat the derivation of the current divider law by using conductance elements—
that is, by replacing each resistance with its equivalent conductance, G = 1/R.

2.7 PRACTICAL VOLTAGE AND CURRENT
SOURCES

The idealized models of voltage and current sources we discussed in Section 2.3
fail to consider theinternal resistance of practical voltage and current sources. The
objective of this section is to extend the ideal models to models that are capable
of describing the physical limitations of the voltage and current sources used in
practice. Consider, for example, the model of an ideal voltage source shown in
Figure 2.9. Astheload resistance (R) decreases, the source isrequired to provide
increasing amounts of current to maintain the voltage vs(¢) across itsterminals:

vs()
R

Thiscircuit suggests that the ideal voltage sourceisrequired to provide an infinite
amount of current to the load, in the limit as the load resistance approaches zero.
Naturally, you can seethat thisisimpossible; for example, think about the ratings of
aconventional car battery: 12 V, 450 A-h (ampere-hours). Thisimpliesthat there
isalimit (albeit alarge one) to the amount of current apractical source can deliver
toaload. Fortunately, it will not be necessary to delvetoo deeply into the physical
nature of each type of sourcein order to describe the behavior of a practical volt-
age source: Thelimitations of practical sources can be approximated quite simply
by exploiting the notion of theinternal resistance of asource. Although the models

i(1) = (2.24)
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The maximum (short circuit)
current which can be supplied
by apractical voltage sourceis

i = o3
Smax rs

Figure 2.38 Practical
voltage source
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A model for practical current
sources consists of an ideal source
in parallel with an internal
resistance.
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Vs

Maximum output
voltage for practica
current source with
open-circuit load:

Vsmax = isl's

Figure 2.39 Practical
current source
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described in this section are only approximations of the actual behavior of energy
sources, they will provide good insight into the limitations of practical voltage
and current sources. Figure 2.38 depicts a model for a practical voltage source,
composed of an ideal voltage source, vg, in series with a resistance, rs. The
resistance rg in effect poses alimit to the maximum current the voltage source can
provide:

ismax = — (2.25)

rs

Typicaly, rg is small. Note, however, that its presence affects the voltage
acrosstheloadresistance: Now thisvoltageisnolonger equal tothesourcevoltage.
Since the current provided by the sourceis

Us

¢ = 2.26
s rs+ Ry ( )
the load voltage can be determined to be
Ry
= igR;, = 2.27
Vp = Isip Uer+RL ( )

Thus, in the limit as the source internal resistance, rg, approaches zero, the load
voltage, v; , becomesexactly equal to the sourcevoltage. It should be apparent that
adesirable feature of an ideal voltage sourceisavery small internal resistance, so
that the current requirements of an arbitrary load may be satisfied. Often, the effec-
tiveinternal resistance of avoltage sourceis quoted in the technical specifications
for the source, so that the user may take this parameter into account.

A similar modification of theideal current source model isuseful to describe
the behavior of a practical current source. The circuit illustrated in Figure 2.39
depicts asimple representation of apractical current source, consisting of anidea
source in parallel with a resistor. Note that as the load resistance approaches
infinity (i.e., an open circuit), the output voltage of the current source approaches
itslimit,

Usmax = Is7's (2.28)

A good current source should be able to approximate the behavior of an ideal
current source. Therefore, a desirable characteristic for the internal resistance of
acurrent sourceisthat it be as large as possible.

2.8 MEASURING DEVICES

In this section, you should gain a basic understanding of the desirable properties
of practical devices for the measurement of electrical parameters. The measure-
ments most often of interest are those of current, voltage, power, and resistance.
In analogy with the models we have just developed to describe the nonideal be-
havior of voltage and current sources, we shall similarly present circuit modelsfor
practical measuring instruments suitable for describing the nonideal properties of
these devices.

The Ohmmeter

The ohmmeter is a device that, when connected across a circuit element, can
measure the resistance of the element. Figure 2.40 depicts the circuit connection
of an ohmmeter to aresistor. One important rule needs to be remembered:
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The resistance of an element can be measured only when the element is
disconnected from any other circuit. %
R

<

The Ammeter

The ammeter is a device that, when connected in series with a circuit element,  symbol for ~ Circuiit for the
can measure the current flowing through the element. Figure 2.41 illustrates this ~ ohmmeter meaeranentR of
idea. From Figure 2.41, two requirements are evident for obtaining a correct resistance

measurement of current: Figure 2.40 Ohmmeter
and measurement of
resistance

Vs

Symbol for A series Circuit for the measurement
ideal ammeter circuit of the current i

Figure 2.41 Measurement of current

1. Theammeter must be placed in series with the element whose current isto
be measured (e.g., resistor R»).

2. The ammeter should not restrict the flow of current (i.e., cause a voltage
drop), or elseit will not be measuring the true current flowing in the circuit.
An ideal ammeter has zero internal resistance.

The VVoltmeter

The voltmeter is a device that can measure the voltage across a circuit element.
Since voltage is the difference in potential between two points in a circuit, the
voltmeter needs to be connected across the element whose voltage we wish to
measure. A voltmeter must also fulfill two requirements:

1. Thevoltmeter must be placed in parallel with the element whose voltageit is
measuring.

2. The voltmeter should draw no current awvay from the element whose voltage
it is measuring, or else it will not be measuring the true voltage across that
element. Thus, an ideal voltmeter hasinfinite internal resistance.

Figure 2.42 illustrates these two points.

Once again, the definitions just stated for the ideal voltmeter and ammeter
need to be augmented by considering the practical limitations of the devices. A
practical ammeter will contribute some series resistance to the circuit in which
it is measuring current; a practical voltmeter will not act as an ideal open circuit
but will always draw some current from the measured circuit. The homework
problems verify that these practical restrictions do not necessarily pose a limit to
the accuracy of the measurements obtainable with practical measuring devices,
as long as the internal resistance of the measuring devices is known. Figure 2.43
depictsthe circuit models for the practical ammeter and voltmeter.



52

©

\AAAS

rm:

(¢]
Practical
voltmeter

T

m

5

Practical
ammeter

Figure 2.43 Models for
practical ammeter and voltmeter

Chapter 2 Fundamentals of Electric Circuits

Ry Ry
A\
+ + +
" O wER " O wgR W)
i - i - -
A series Ideal Circuit for the measurement
circuit voltmeter of the voltage v,

Figure 2.42 Measurement of voltage

All of the considerations that pertain to practical ammeters and voltmeters
can be applied to the operation of a wattmeter, a measuring instrument that
provides a measurement of the power dissipated by a circuit element, since the
wattmeter is in effect made up of a combination of a voltmeter and an ammeter.
Figure 2.44 depictsthetypical connection of awattmeter in the same seriescircuit
used in the preceding paragraphs. In effect, the wattmeter measures the current
flowing through the load and, simultaneously, the voltage across it and multiplies
thetwoto provideareading of the power dissipated by theload. Theinternal power
consumption of a practical wattmeter is explored in the homework problems.

—

Rl 4>| Rl
\ W W (»)
+ +
Vs Vo § Ry Vs o Vo % Ry
Measurement of the power Internal wattmeter connections
dissipated in the resistor Ry:

P2=V2i

Figure 2.44 Measurement of power

2.9 ELECTRICAL NETWORKS

In the previous sections we have outlined models for the basic circuit elements:
sources, resistors, and measuring instruments. We have assembled all the tools
and partswe need in order to define an electrical network. Itisappropriate at this
stage to formally define the elements of the electrical circuit; the definitions that
follow are part of standard electrical engineering terminology.

Branch

A branch isany portion of acircuit with two terminals connected to it. A branch
may consist of one or more circuit elements (Figure 2.45). In practice, any circuit
element with two terminals connected to it is a branch.
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Ideal A battery Practical
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Examples of circuit branches
Figure 2.45 Définition of a branch
DC Measurements with the Digital MultiMeter ENNDAIIT

(Courtesy: Hewlett-Packard)

ON THE WEB
Digital multimeters (DMMs) are the workhorse of all measurement
laboratories. Figure 2.46 depicts the front panel of atypical benchtop DMM.
Tables 2.3 and 2.4 list the features and specifications of the multimeter.

o L

~EEe8E0e
(I E

"fhesecs

HP 34401A Benchtop Digital Multimeter

Figure 2.46 Hewlett-Packard 34401A 6.5-digit multimeter.

Table 2.3 Features of the 34401A multimeter

e 6.5 digit resolution uncovers the detail s that hide from other DMMs

e Accuracy you can count on: 0.0015% for dc, 0.06% for ac

o Perfect for your bench - morethan adozen functionsoneor two key presses
away

e True RMS AC volts and current

o Perfect for your system - 1000 rdgs/sec in ASCII format acrossthe HP-1B
bus

e RS-232 and HP-IB Standard

The Measurements section in the accompanying
CD-ROM contains interactive programs that illustrate the use of
the DMM and of other common measuring instruments.

VIRTUAL LAB
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Table 2.4 Specifications for the 34401A multimeter

DC Voltage Accuracy specs

Rangedc  6.5Digits  Accuracy: 1 year
voltage Resolution  (%reading + %range)  Input resistance
100mV ~ 100nV 0.0050 + 0.0035 10 M2 or >10 G2
v 1nV 0.0040 + 0.0007 10 MQ or >10 G2
1oV 10uV 0.0035 + 0.0005 10 MQ or >10 G2
100V 100pV 0.0045 + 0.0006 10MQ
1000V Imv 0.0045 + 0.0010 10MQ
True RMS AC Voltage Accuracy specs
Accuracy: 1 year
Frequency (%reading + %range)
100 mV 3Hz5Hz 1.00 4 0.04
range 5Hz-10 Hz 0.35+ 0.04
10 Hz—20 kHz 0.06 4+ 0.04
20 kHz-50 kHz 0.12+40.04
50 kHz-100kHz  0.60 + 0.08
100 kHz-300 kHz ~ 4.00 + 0.50
1V-750V 3Hz5Hz 1.00 4 0.03
ranges 5Hz-10 Hz 0.35+ 0.03
10 Hz—20 kHz 0.06 4+ 0.03
20 kHz-50 kHz 0.12 4 0.05
50 kHz-100kHz  0.60 + 0.08
100 kHz-300 kHz 400 + 0.50
Resistance Accuracy specs
Accuracy: 1 year
Range Resolution  (%reading + %range)  Current Source
100 ohm 100 0.010 4 0.004 1mA
1kQ 1mQ 0.010 + 0.001 1mA
10k 10 mQ 0.010 4- 0.001 100 A
100 kohm 100 m2 0.010 +- 0.001 10 nA
1MQ 1Q 0.010 + 0.001 5uA
10MQ 10Q 0.040 + 0.001 500 nA
100 Mohm 100 € 0.800 + 0.010 500 nA

Other Accuracy specs (basic 1 year accuracy)

dc current accuracy:
(10 mA to 3 A ranges)

ac current accuracy:
(1 A to 3 A ranges)

Frequency (and Period):
(3 Hz to 300 kHz,
0.333 sec to 3.33 psec)

Continuity:
(1000 €2 range,
1 mA test current)

Diode test:
1V range,
1 mA test current

0.05% of reading +
0.005% of range

0.1% of reading +
0.04% of range

0.01% of reading

0.01% of reading +
0.02% of range

0.01% of reading =
0.02% of range
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Node

A node is the junction of two or more branches (one often refers to the junction
of only two branches as a trivial node). Figure 2.47 illustrates the concept. In
effect, any connection that can be accomplished by soldering various terminals
together isanode. It isvery important to identify nodes properly in the analysis
of electrical networks.

Node a
Node c Node a
Vs — is
Node
Node b
Nodeb

Examples of nodesin practical circuits

Figure 2.47 Définition of a node

Loop

A loop is any closed connection of branches. Various loop configurations are
illustrated in Figure 2.48.

Note how two different loops R
in the same circuit may in-
clude some of the same ele-
ments or branches.
Loop 1 Loop 2 Vs T is Ry Ry

1-loop circuit 3-loop circuit
(How many nodesin
thiscircuit?)

Loop 3

Figure 2.48 Définition of aloop

Mesh

A meshis aloop that does not contain other loops. Meshes are an important
aid to certain analysis methods. In Figure 2.48, the circuit with loops 1, 2, and
3 consists of two meshes: loops 1 and 2 are meshes, but loop 3 is not a mesh,
becauseit encircles both loops 1 and 2. The one-loop circuit of Figure 2.48 isalso
aone-mesh circuit. Figure 2.49 illustrates how meshes are simpler to visualizein
complex networks than loops are.

Network Analysis

Theanalysis of an electrical network consists of determining each of the unknown
branch currents and node voltages. It is therefore important to define al of the
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Va

VR lIR

Vb

Figure 2.50 Variablesin a
network analysis problem
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R3 Ry

A‘/\M A

wena

MWW
Ry
| Mesh Mesh < Rs
Vs — 1 Ry 3 () is
How many loops can you

identify in this four-mesh cir-
cuit? (Answer: 14)

| +
N
VVVv

Figure 2.49 Définition of a mesh

relevant variables as clearly as possible, and in systematic fashion. Once the
known and unknown variables have been identified, a set of equations relating
thesevariablesisconstructed, and these are solved by meansof suitabletechniques.
The analysis of electrical circuits consists of writing the smallest set of equations
sufficient to solve for al of the unknown variables. The procedures required to
write these equations are the subject of Chapter 3 and are very well documented
and codified in the form of simple rules. The analysis of electrical circuits is
greatly simplified if some standard conventions are followed. The objective of
this section is precisely to outline the preliminary procedures that will render the
task of analyzing an electrical circuit manageable.

Circuit Variables

Thefirst observation to be made is that the relevant variables in network analysis
are the node voltages and the branch currents. This fact is really nothing more
than a consequence of Ohm’s law. Consider the branch depicted in Figure 2.50,
consisting of asingleresistor. Here, onceavoltage vy isdefined acrosstheresistor
R, acurrent ig will flow through the resistor, according to vy = ixR. But the
voltage vg, which causes the current to flow, is realy the difference in electric
potential between nodesa and b:

VR = Vg — VUp (229)

What meaning do we assign to the variables v, and v,? Was it not stated that
voltage is a potential difference? Is it then legitimate to define the voltage at a
single point (node) in a circuit? Whenever we reference the voltage at anode in
a circuit, we imply an assumption that the voltage at that node is the potential
difference between the node itself and a reference node called ground, which is
located somewhere elsein the circuit and which for convenience has been assigned
apotential of zero volts. Thus, in Figure 2.50, the expression

UR = Vg — Up

really signifies that vg is the difference between the voltage differences v, — v,
and v, — v, where v, is the (arbitrary) ground potential. Note that the equation
vg = v, — v, Would hold evenif thereference node, ¢, werenot assigned apotential
of zero valts, since

VR = Vg — Vp = (Vg — V) — (v — V) (2.30)

What, then, is this ground or reference voltage?
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Ground

The choice of the word ground is not arbitrary. This point can be illustrated by
a simple analogy with the physics of fluid motion. Consider a tank of water, as
shown in Figure 2.51, located at a certain height above the ground. The potential
energy due to gravity will cause water to flow out of the pipe at a certain flow
rate. The pressure that forces water out of the pipeis directly related to the head,
(h1—hy), insuch away that this pressureiszerowhen i, = h;. Now the point A3,
corresponding to the ground level, is defined as having zero potential energy. It
should be apparent that the pressure acting on the fluid in the pipeisreally caused
by the difference in potential energy, (h1 — h3) — (h2 — h3). It can be seen, then,
that it is not necessary to assign a precise energy level to the height 43; in fact, it
would be extremely cumbersome to do so, since the equations describing the flow
of water would then be different, say, in Denver (k3 = 1,600 m above sea level)
from those that would apply in Miami (k3 = 0 m above sealevel). You see, then,
that it is the relative difference in potential energy that matters in the water tank

problem.
Circuit Circuit

hy 7 symbol for symbol for

[——— earth ground chassis ground

— = /177

H>0 R,
—
hy—» \\\
Flow of water Vs
from pipe

h3 YLLLTTLS S ISS LSS LSS ST S S S

Physical ground

Figure 2.51 Analogy between electrical and earth ground

In analogous fashion, in every circuit a point can be defined that is recog-
nized as “ground” and is assigned the electric potential of zero volts for conve-
nience. Note that, unless they are purposely connected together, the grounds in
two completely separate circuits are not necessarily at the same potential. This
last statement may seem puzzling, but Example 2.12 should clarify the idea.

Itisauseful exerciseat thispoint to put the conceptsillustrated in thischapter
into practice by identifying the relevant variables in afew examples of electrical
circuits. In the following example, we shall illustrate how it is possible to define
unknown voltages and currents in a circuit in terms of the source voltages and
currents and of the resistances in the circuit.

EXAMPLE 2.12

Identify the branch and node voltages and the loop and mesh currents in the circuit of
Figure 2.52.
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Solution

a +Y_ b +YRs_

The following node voltages may be identified:

Node voltages Branch voltages

v, = vs (Sourcevoltage) vs = v, — vy = vy

Up = UR2 VR1 = VUg — Vp

Ve = VR4 VR2 = Vp — Vg = Vp

vg = 0 (ground) VR3 = Up — V¢
Figure 2.52 VR4 = Ve — Vg = Ve

Comments: Currentsi,, i, and i. are loop currents, but only i, and i, are mesh currents.

It should be clear at this stage that some method is needed to organize the
wealth of information that can be generated simply by applying Ohm'’slaw at each
branchinacircuit. What would be desirableat this point isameans of reducing the
number of equations needed to solve acircuit to the minimum necessary, that is, a
method for obtaining N equationsin N unknowns. The next chapter is devoted to
the development of systematic circuit analysis methods that will greatly simplify
the solution of electrical network problems.

Check Your Understanding

2.11 Write expressions for the voltage across each resistor in Example 2.12 in terms
of the mesh currents.

2.12 Writeexpressions for the current through each resistor in Example 2.12 in terms
of the node voltages.

Conclusion

The objective of this chapter was to introduce the background needed in the following
chapters for the analysis of linear resistive networks. The fundamental laws of circuit
analysis, Kirchhoff’scurrent law, Kirchhoff’svoltage law, and Ohm’slaw, wereintroduced,
aong with the basic circuit elements, and all were used to analyze the most basic circuits:
voltage and current dividers. Measuring devicesand afew other practical circuitsemployed
in common engineering measurements were also introduced to provide a flavor of the
applicability of these basic ideas to practical engineering problems. The remainder of the
book draws on the concepts developed in this chapter. Mastery of the principles exposed
in these first pages is therefore of fundamental importance.

CHECK YOUR UNDERSTANDING ANSWERS

cvu2l Ip = Ip = 4.17 A; 100 W
Cyu2.2 A, supplying 30.8 W; B, dissipating 30.8 W
Cyu 2.3 iz=—1mA;i, =0mA

CYu25 P; = 7.25 x 1073 W (supplied by); P, = 2.9 x 1073 W (supplied to)
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CYU 2.6 ip =1.8mA Py =54mW

cYu2.7 RiR, = RoRs

CYU 2.9 v, (full scale) = 62.6 MV k = 0.125 mV/N

Cvuz211 Vg1 = i4R1; Vro = (iy — ip)R2, V3 = i, R3, Vra = iy Ra

CYU 2.12 =l b W e YTl
Ry R, Ra Ra

HOMEWORK PROBLEMS

Section 1: Charge and Kirchhoff’s Laws;
Voltages and Currents

2.1 Anisolated free electron istraveling through an
eectric field from some initial point where its
Coulombic potential energy per unit charge (voltage)
is 17 kJ/C and velocity = 93 Mm/sto some final point
where its Coulombic potential energy per unit charge
is 6 kJ/C. Determine the change in velocity of the
electron. Neglect gravitational forces.

2.2 Theunit used for voltage isthe volt, for current the
ampere, and for resistance the ohm. Using the
definitions of voltage, current, and resistance, express
each quantity in fundamental MKS units.

2.3 Suppose the current flowing through awireis given
by the curve shown in Figure P2.3.

al
gf; | | [ | L1
§_2712\34 5 6 7 8 9 10 (g
4

Figure P2.3

a Find the amount of charge, ¢, that flows through
thewirebetweenr, = 0andr, = 1s.

b. Repeat partafors, =2,3,4,5,6,7,8,9,and10s.

c. Sketchg(r)for0<r <10s.

2.4 The capacity of acar battery is usually specifiedin
ampere-hours. A battery rated at, say, 100 A-h should
be able to supply 100 A for 1 hour, 50 A for 2 hours,
25 A for 4 hours, 1 A for 100 hours, or any other
combination yielding a product of 100 A-h.

a. How many coulombs of charge should we be able
to draw from afully charged 100 A-h battery?

b. How many electrons does your answer to part a
require?

2.5 The current in a semiconductor device results from
the motion of two different kinds of charge carriers:
electrons and holes. The holes and electrons have
charge of equal magnitude but opposite sign. Ina
particular device, suppose the electron density is
2 x 10% eectrons/m?, and the hole density is 5 x 108
holes/m®. This device has a cross-sectional area of 50
nm?. If the electrons are moving to the left at a
velocity of 0.5 mm/s, and the holes are moving to the
right at avelocity of 0.2 mm/s, what are:

a. Thedirection of the current in the semiconductor.
b. The magnitude of the current in the device.

2.6 Thecharge cycle shown in Figure P2.6 is an example
of atwo-rate charge. The current is held constant at 50

mA for 5 h. Thenit isswitched to 20 mA for the next
5h. Find:

a Thetotal charge transferred to the battery.
b. The energy transferred to the battery.

Hint: Recall that energy, w, istheintegral of power, or
P =dw/dr.

175V
15V

125V

Battery voltage

v

50 mA

20 mA

Battery current

0 5hrs 10hrs t

Figure P2.6



60 Chapter 2

2.7 Batteries(e.g., lead-acid batteries) store chemical
energy and convert it to electrical energy on demand.
Batteries do not store electrical charge or charge
carriers. Charge carriers (electrons) enter one terminal
of the battery, acquire electrical potential energy and
exit from the other termina at alower voltage.
Remember the el ectron has a negative charge! Itis
convenient to think of positive carriers flowing in the
opposite direction, i.e., conventional current, and
exiting at a higher voltage. All currentsin this course,
unless otherwise stated, will be conventional current.
(Benjamin Franklin caused this mess!) For abattery
with arated voltage = 12 V and arated capacity = 350
ampere-hours (A-h), determine:

a. Therated chemical energy stored in the battery.

b. Thetotal charge that can be supplied at the rated
voltage.

2.8 What determines:

a. How much current is supplied (at a constant
voltage) by an ideal voltage source?

b. How much voltageis supplied (at a constant
current) by an ideal current source?
2.9 Determinethe current through Rs in Figure P2.9 for:
Ry =2kQ

R, =4kQ

R3 =6KkQ

Figure P2.9

Section 2: Electric Power
2.10 Intheblock diagramin Figure P2.10:

I =420 A

Figure P2.10

a. Which component must be a voltage or current
source?

b. What could the other component be? Include all
possible answers.

2.11 |If anelectric heater requires 23 A at 110V,
determine:

Fundamentals of Electric Circuits

a. The power is dissipates as heat or other losses.

b. The energy dissipated by the heater in a 24-hour
period.

¢. Thecost of the energy if the power company
charges at the rate 6 cents/kW-h.

2.12 Determine which elementsin the circuit of Figure
P2.12 are supplying power and which are dissipating
power. Also determine the amount of power dissipated
and supplied.

LHBY
25A B
——
¥ —
A |-12v 27v| C

- +

Figure P2.12

2.13 Inthecircuit shown in Figure P2.13, determine the
terminal voltage of the source, the power supplied to
the circuit (or load), and the efficiency of the circuit.
Assume that the only lossis due to the internal
resistance of the source. Efficiency is defined asthe
ratio of load power to source power.

A
VVVY

Non-Ideal Source
Figure P2.13

2.14 For the circuit shown in Figure P2.14:

-3V + 2A
B —_—
] [E]wov
SV + l?’A
C

Figure P2.14

a. Determine which components are absorbing power
and which are delivering power.

b. Isconservation of power satisfied? Explain your
answer.



2.15 Suppose one of the two headlightsin Example 2.2
has been replaced with the wrong part and the 12-V
battery is now connected to a 75-W and a 50-W
headlight. What is the resistance of each headlight,
and what isthe total resistance seen by the battery?

2.16 What isthe equivaent resistance seen by the
battery of Example 2.2 if two 10-W taillights are added
to the 50-W (each) headlights?

2.17 For thecircuit shown in Figure P2.17, determine
the power absorbed by the 5 2 resistor.

50

AAA
VVVY

v ©)

AAA

\AAA
[
o
0

Figure P2.17

2.18 With reference to Figure P2.18, determine:

Nonideal Source
Figure P2.18

a Thetotal power supplied by the ideal source.

b. The power dissipated and lost within the nonideal
source.

c. The power supplied by the source to the circuit as
modeled by the load resistance.

d. Plot theterminal voltage and power supplied to the
circuit asafunction of current.

Calculatefor I7 =0, 5, 10, 20, 30 A.
2.19 Inthecircuit of Figure P2.19, if v; = v/8 and the

power delivered by the sourceis8 mW, find R, v, vy,
andi.

O )

Pl
A
VVVy

kQ
A
VWy

Figure P2.19
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2.20 A GE Softwhite Longlife light bulb israted as
follows:

P = Rated power = 60 W
Por = Rated optical power = 820 lumens (average)
Operating life = 1500 h (average)

Vr = Rated operating voltage = 115V

The resistance of the filament of the bulb, measured
with astandard multimeter, is 16.7 2. When the bulb
is connected into acircuit and is operating at the rated
values given above, determine:

a. Theresistance of the filament.

b. The efficiency of the bulb.

2.21 Anincandescent light bulb rated at 100 W will
dissipate 100 W as heat and light when connected
across a110-V ideal voltage source. If three of these
bulbs are connected in series across the same source,
determine the power each bulb will dissipate.

2.22 Anincandescent light bulb rated at 60 W will
dissipate 60 W as heat and light when connected
across a 100-V ideal voltage source. A 100-W bulb
will dissipate 100 W when connected across the same
source. If the bulbs are connected in series across the
same source, determine the power that either one of the
two bulbs will dissipate.

Section 3: Resistance Calculations

2.23 UseKirchhoff’s current law to determine the
current in each of the 30-Q resistors in the circuit of
Figure P2.23.

60 Q 20Q

@ 25a

AAA
AAAA
YVVY

YVVY
AAA

> 30 Q each

1

Figure P2.23

2.24 Cheap resistors are fabricated by depositing athin
layer of carbon onto a nonconducting cylindrical
substrate (see Figure P2.24). If such acylinder has
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radius a and length d, determine the thickness of the however, may not be exactly the same; that is, their
film required for aresistance R if: tolerances are such that the resistances may not be
1 R — 33KO exactly 10 k<2.
a=1mm - a. If theresistors have 410 percent tolerance, find the
o= 1 —-29 ME d =9mm worst-case output voltages.
0 m

b. Find these voltages for tolerances of +5 percent.
Neglect the end surfaces of the cylinder and assume

that the thicknessis much smaller than the radius.
2R =10ko
5V (D +—OVour
ZR,=10kQ
Acs
/A‘ Figure P2.26
2.27 For thecircuits of Figure P2.27, determine the
resistor values (including the power rating) necessary
to achieve the indicated voltages.
Resistors are availablein 3-, 3-, 3-, and 1-W ratings.
3§ R,=15kQ
Figure P2.24 sov(®) +——o°
g . = Vour =20V
)
2.25 Theresistive elements of fuses, light bulbs, heaters, _L
etc., are significantly nonlinear, i.e., the resistanceis
dependent on the current through the element. Assume @
the resistance of afuse (Figure P2.25) is given by the
expression: R = Ro[1+ A(T — Tp)] with
T —Ty=kP;To=25C; A = 07[OC]‘1, RnEE
k_=_0'35W_; Roz.O.Z-Ll Q; and Pisthe power 5V<D |
dissipated in the resistive element of the fuse. T | Vour = 225V
Determine; 2R=2700Q
a. Therated current at which the circuit will melt and
open, i.e, “blow.” Hint: The fuse blowswhen R _L
becomes infinite. =
b. The temperature of the element at which this ®)
occurs.
Ri= 1kQ
RS
1ov (T +—o
<—> Vour =283V
ZR=27kQ
Fuse
Figure P2.25 _L
2.26 The voltage divider network of Figure P2.26 is ©

expected to provide 2.5V at the output. Theresistors, Figure P2.27



2.28 For thecircuit shown in Figure P2.28, find

2Q 6Q

Figure P2.28

The equivalent resistance seen by the source.
The current, i.

. The power delivered by the source.

. Thevoltages, vy, v,.

. The minimum power rating required for R;.

Poo T

2.29 Find the equivalent resistance of the circuit of
Figure P2.29 by combining resistorsin seriesand in

parallel.
140 Q
(>___%~N~ %AN%

\AAJ

Re— 1203 210

AMAA

Figure P2.29

2.30 Find the equivalent resistance seen by the source
and the current i in the circuit of Figure P2.30.

1Q 4Q
AAA

p—
AMAA

2220

50V ) a3

AA
A4
o]
o]

N
@)
AA
\A4
~
@)
AA
\A4

Figure P2.30

2.31 Inthecircuit of Figure P2.31, the power absorbed
by the 15-Q2 resistor is 15 W. Find R.

R 4Q
AAA AAAA
\AAAS YVVY
6 QEE L
L 240%
-+ <> <
sv(®) 102
= <
= =
4 Q:: 4 Q::
< <

Figure P2.31
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2.32 Find the equivalent resistance between terminals a

and b in the circuit of Figure P2.32.

30
ao ANV
60 X T120
3
40
AAAA
Yvvy
240 240 220
< < <
20
b() Nﬁﬁﬂ

Figure P2.32

2.33 For thecircuit shown in Figure P2.33:

70 4Q 20
AAAA AAAA AAAA
YVVy YVVy \AAAA
C 14v 260 230 210
50
AAAA

Figure P2.33

a. Find the equivalent resistance seen by the source.
b. How much power is delivered by the source?

2.34 Inthecircuit of Figure P2.34, find the equivalent

resistance looking in at terminalsa and b if terminals ¢
and d are open and again if terminals ¢ and d are
shorted together. Also, find the equivalent resistance
looking in at terminals ¢ and d if terminalsa and b are
open and if terminals « and b are shorted together.

Figure P2.34

2.35 Find the currentsi, and i,, the power delivered by
the 2-A current source and by the 10-V voltage source,
and the total power dissipated by the circuit of Figure
P2.35. Ry =32, R = R3 =69,andR4=509
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AAA AAA
VVVY VVVY

I2

2A<> ilT §§R2 1ov('_j

AA
VVV¥
Y

Figure P2.35

2.36 Determine the power delivered by the dependent
source in the circuit of Figure P2.36.

10Q 50Q i
%ﬁﬁ %%V& \\

A>3i (_) 10V

AAAA
VVVY

Figure P2.36

2.37 Consider the circuit shown in Figure P2.37.

I LL
R L
RZ
____\ﬁ
Load
Battery #1
. o]
I, Iy ILL +
Ry Ry L
EEFﬁ_ VL
=V, —V
O
Load
Battery #2 Battery #1

Figure P2.37

a IfV, =100V, R; =0.05Q,and R, = 0.45,

find the load current 7, and the power dissipated by

the load.

b. If we connect a second battery in parallel with
battery 1 that has voltage V, = 10V and
R, = 0.1 2, will theload current I; increase or
decrease? Will the power dissipated by the load
increase or decrease? By how much?

2.38 With no load attached, the voltage at the terminals
of aparticular power supply is25.5V. Whena5W
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load is attached, the voltage dropsto 25 V.

a. Determine vy and Ry for this nonideal source.

b. What voltage would be measured at the terminals
in the presence of a 10-2 load resistor?

¢. How much current could be drawn from this power
supply under short-circuit conditions?

2.39 A 120-V electric heater has two heating coils
which can be switched such that either can be used
independently, or the two can be connected in series or
paralel, yielding atotal of four possible
configurations. If the warmest setting corresponds to
1500-W power dissipation and the coolest corresponds
to 200 W, determine;

a. Theresistance of each of the two coils.

b. The power dissipation for each of the other two
possible arrangements.

2.40 At an engineering site which you are supervising, a
1-horsepower motor must be sited a distance d from a
portable generator (Figure P2.40). Assume the
generator can be modeled as an ideal source with the
voltage given. The nameplate on the motor gives the
following rated voltages and the corresponding
full-load current:

Ve =110V
Vi min =105V — Iy ¢ =7.10A
vﬁl max = 117V — IAIFL =6.37A

If d = 150 m and the motor must deliver its full rated
power, determine the minimum AWG conductors
which must be used in a rubber insulated cable.
Assume that the only losses in the circuit occur in the
wires.

Conductors

O ] %O

d
Cable

Figure P2.40

2.41 A building has been added to your plant to house
an additional production line. Thetotal electrical load
in the building is 23 kW. The nameplates on the
various |oads give the minimum and maximum
voltages below with the related full-load current:

Vs =450V
VLmin =446V — IL L= 515A
VLmax =463V — IL FL = 49.6 A



The building is sited a distance d from the transformer
bank which can be modeled as an ideal source (see
Figure P2.41). If d = 85 m, determine the AWG of the
smallest conductors which can beusedin a
rubber-insulated cable used to supply the load.

Conductors I
—
_}. + >
Ow [/ uz
d
-
Cable

Figure P2.41

2.42 At anengineering site which you are supervising, a
1-horsepower motor must be sited a distance d from a
portable generator (Figure P2.42). Assume the
generator can be modeled as an ideal source with the
voltage given. The nameplate on the motor gives the
rated voltages and the corresponding full load current:

Ve =110V
Virmin =105V — I, i =7.10A
VMmax =117V — IM FL =6.37A

The cable must have AWG #14 or larger conductorsto
carry acurrent of 7.103 A without overheating.
Determine the maximum length of a rubber insulated
cable with AWG #14 conductors which can be used to
connect the motor and generator.

Conductors

Ow ]

d

>

Cable
Figure P2.42

2.43 Anadditiona building has been added to your
plant to house a production line. The total electrical
load in the building is 23 kW. The nameplates on the
loads give the minimum and maximum voltages with
the related full load current:

Vs =450V
Vimin =446V — I, i =5157A
Vimax =463V — I} i = 49.68 A
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The building is sited a distance d from the transformer
bank which can be modeled as an ideal source (Figure
P2.43). The cable must have AWG 4 or larger
conductorsto carry acurrent of 51.57 A without
overheating. Determine the maximum length d of a
rubber-insulated cable with AWG 4 conductors which
can be used to connect the source to the load.

Conductors |
5
5+ + >
(_) Ve / w3
d
-
Cable

Figure P2.43

2.44 |nthe bridge circuit in Figure P2.44, if nodes (or
terminals) C and D are shorted, and:

Ri=22KQ R,=18kQ
R3=47KQ Ry=3.3kQ

determine the equivalent resistance between the nodes
or terminals A and B.

Figure P2.44

2.45 Determine the voltage between nodes A and B in
the circuit shown in Figure P2.45.
Vs =12V
Ry = 11k R3; = 6.8kQ
R, =220kQ2 R4 =0.22mQ

Figure P2.45

2.46 Determine the voltage between the nodes A and B
in the circuit shown in Figure P2.45.
Ve =5V
R1=22kQ R,=18kQ
R3=47kQ R4=33kQ
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2.47 Determinethe voltage across Rs in Figure P2.47.

Vg = 12V R, =17mQ
R, =3KkQ Rs; =10k

AMAA
A\AAAZ

Ry

Ow ®

AAAA
VVVY
P
AAAA
VVVY

Figure P2.47

Section 4: Measuring Devices

2.48 A thermistor isadevice whose terminal resistance
changes with the temperature of its surroundings. Its
resistance is an exponential relationship:

Rn(T) = RyeF"

where R, istheterminal resistanceat T = 0°C and 8
isamaterial parameter with units [°C] 2.
a If R, =100 Q2 and B8 = 0.10/C°, plot Rn(T)
versus T for 0 < T < 100°C.
b. Thethermistor is placed in parallel with aresistor
whose valueis 100 €.
i. Find an expression for the equivalent
resistance.
ii. Plot Req(T) on the same plot you madein
part a

2.49 A certain resistor has the following nonlinear
characteristic:

R(x) = 100e*
where x isanormalized displacement. The nonlinear

resistor isto be used to measure the displacement x in
the circuit of Figure P2.49.

+

C 0V

A[AA
%#VVVV

Vout X
o !
Figure P2.49

a. If thetotal length of theresistor is 10 cm, find an
expression for voy (x).
b. If vox = 4V, what isthe distance, x?

2.50 A moving coil meter movement has a meter
resistance r,, = 200 2 and full-scale deflection is
caused by a meter current 7,, = 10 A. The movement
must be used to indicate pressure measured by the
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sensor up to amaximum of 100 kPa. See Figure P2.50.

Rs
Vs
Sensor Meter
< C ]
< 5[ .
S r ]
ol L L]
0 50 100

P (PSIG)
Figure P2.50

a. Draw acircuit regquired to do this showing all
appropriate connections between the terminal s of
the sensor and meter movement.

b. Determine the value of each component in the
circuit.

c. What isthe linear range, i.e., the minimum and
maximum pressure that can accurately be
measured?

2.51 A moving coil meter and pressure transducer are
used to monitor the pressure at acritical pointin a
system. The meter movement israted at 1.8 k2 and
50 1A (full scale). A new transducer must be installed
with the pressure-voltage characteristic shown in
Figure P2.51 (different from the previous transducer).
The maximum pressure that must be measured by the
monitoring system is 100 kPa.

Rs
Vs
Sensor Meter
O o o o B 5~ s s s B S LN i o o
< C ]
< 5k .
S r ]
ol L L
0 50 100
P (PSIG)

Figure P2.51



a Redesign the meter circuit required for these
specifications and draw the circuit between the
terminals of the sensor and meter showing all
appropriate connections.

b. Determine the value for each component in your
circuit.

c. What isthelinear range (i.e., the minimum and
maximum pressure that can accurately be
measured) of this system?

2.52 |Inthecircuit shown in Figure P2.52 the
temperature sensor and moving coil meter movement
are used to monitor the temperature in a chemical
process. The sensor has malfunctioned and must be
replaced with another sensor with the
current-temperature characteristic shown (not the same
as the previous sensor). Temperatures up to a
maximum of 400°C must be measured. The meter is
rated at 2.5 k2 and 250 mV (full scale). Redesign the
meter circuit for these specifications.

—_—
Rs
" Ru(Z
Vs
Sensor Meter
O o o e e LA N B B
g ]
E 5 -
= r ]
:II'
200 300 400

T(°C)

Figure P2.52

a. Draw the circuit between the terminals of the sensor
and meter showing all appropriate connections.

b. Determine the value of each component in the
circuit.

c. What isthe linear range (i.e., the minimum and
maximum temperature that can accurately be
measured) of the system?

2.53 Inthecircuit in Figure P2.53, atemperature sensor
with the current-temperature characteristic shown and
aTriplett Electric Manufacturing Company Model
321L moving coil meter will be used to monitor the
condenser temperature in a steam power plant.
Temperatures up to a maximum of 350°C must be
measured. The meter israted at 1 k2 and 100 A (full
scale). Design acircuit for these specifications.
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—_—
Rs
+ Ru(Z
Vs
Sensor Meter
O e e e L I e
g ]
Es| =
= C ]
:II'
200 300 400

T(°C)
Figure P2.53

a. Draw thecircuit between the terminals of the sensor
and meter showing all appropriate connections.

b. Determine the value of each component in the
circuit.

¢. What isthe minimum temperature that can
accurately be measured?

2.54 Thecircuit of Figure P2.54 is used to measure the
internal impedance of a battery. The battery being
tested isazinc-carbon dry cell.

g 10Q
Vout

Battery — T/ Switch

Figure P2.54

a. A fresh battery is being tested, and it is found that
the voltage, Vou, 1s1.64 V with the switch open and
1.63 V with the switch closed. Find theinternal
resistance of the battery.

b. The same battery istested one year later, and Vo is
found to be 1.6 V with the switch open but 0.17 V
with the switch closed. Find the internal resistance
of the battery.

2.55 Consider the practical ammeter, diagrammed in
Figure P2.55, consisting of an ideal ammeter in series
with a 2-kS2 resistor. The meter seesafull-scale
deflection when the current through it is 50uA. If we
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wished to construct a multirange ammeter reading
full-scale values of 1 mA, 10 mA, or 100 mA,
depending on the setting of arotary switch, what
should Ry, R, and Rz be?

Switch

Figure P2.55

2.56 A circuit that measures the internal resistance of a
practical ammeter is shown in Figure P2.56, where
Rs =10,000 2, Vs = 10V, and R, isavariable
resistor that can be adjusted at will.

AMA
\
<0

&~
€

(0]

Figure P2.56

a. Assumethat r, « 10,000 2. Estimate the current
i.

b. If the meter displays a current of 0.43 mA when

R, =7, find the internal resistance of the meter,

Tq.

2.57 A practical voltmeter has an internal resistancer,,,.
What isthe value of r,, if the meter reads 9.89 V when
connected as shown in Figure P2.57.

AMAA
vy
=
=

Voltmeter
Rs = 10kQ
Vs= 10V

Figure P2.57
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2.58 Using thecircuit of Figure P2.57, find the voltage
that the meter reads if Vs = 10V and Ry hasthe
following values:

Ry =0.1r,,0.3r,,, 0.5, 1, 3\, 5r,y, and 10r,,,.
How large (or small) should the internal resistance of
the meter berelativeto Rs?

2.59 A voltmeter is used to determine the voltage across
aresistive element in the circuit of Figure P2.59. The
instrument is modeled by an ideal voltmeter in parallel
with a 97-k<2 resistor, as shown. The meter is placed to
measure the voltage across R3. Let Ry = 10k2, Ry =
100 kL2, R, = 40k, and I = 90 mA. Find the
voltage across R3 with and without the voltmeter in the
circuit for the following values:

Ry
AVAVAVAV L C
EE Re
IS(B 3R —o° 3o7ke (v)
E; RS VR3
o) o
Circuit _l_ Voltmeter

Figure P2.59

a R3;=100%Q
b. R3 =1kQ

C. R3:10|(Q
d. R; = 100 k2

2.60 Anammeter isused as shown in Figure P2.60. The
ammeter model consists of anideal ammeter in series
with aresistance. The ammeter model is placed in the
branch as shown in the figure. Find the current through
R3 both with and without the ammeter in the circuit for
the following values, assuming that Vs = 10V, Ry =
10Q, R = 1k, and R, =100 Q: (a) R3 =
1k, (b) Rz =100, (c) Rs =102, (d) R3 =1 Q.

I _LCi reuit

Figure P2.60

Ammeter model



2.61 ShowninFigure P2.61 isan auminum

cantilevered beam |loaded by the force F. Strain
gauges R1, R, Rz, and R, are attached to the beam as
shown in Figure P2.61 and connected into the circuit
shown. The force causes atension stress on the top of
the beam that causes the length (and therefore the
resistance) of Ry and R, to increase and a compression
stress on the bottom of the beam that causes the length
[and therefore the resistance] of R, and R3 to decrease.
This causes avoltage 50 mV at node B with respect to
node A. Determine the forceif:

R, =1k Vs =12V L=03m
w=25mm h=100mm Y =69GN/m?

R R Fi a1

| h [ ]
R R b
C)vs A$— Ven +9B

Figure P2.61
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2.62 Shownin Figure P2.62 isastructural steel

cantilevered beam |loaded by aforce F. Strain gauges
R1, R, R3, and R, are attached to the beam as shown
and connected into the circuit shown. The force causes
atension stress on the top of the beam that causes the
length (and therefore the resistance) of R; and R, to
increase and a compression stress on the bottom of the
beam that causes the length (and therefore the
resistance) of R, and R; to decrease. This generates a
voltage between nodes B and A. Determine this
voltage if F = 1.3 MN and:

R,=1kQ V¢=24V L=17m
w=3cm h=7cm Y =200GN/m?

R R Fi i
| [ ]
R R t
<> <>
Rl:E 1ER3
< <
C)vs Af— Vo +¢B
<> <>
Rz 3R

Figure P2.62
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CHAWPTER

Resistive Network Analysis

his chapter will illustrate the fundamental techniques for the analysis of

resistive circuits. The methods introduced are based on the circuit laws

presented in Chapter 2: Kirchhoff’s and Ohm’s laws. The main thrust of

the chapter is to introduce and illustrate various methods of circuit analysis
that will be applied throughout the book.

The first topic is the analysis of resistive circuits by the methods of mesh
currents and node voltages; these are fundamental techniques, which you should
master as early as possible. The second topic is a brief introduction to the princi-
ple of superposition. Section 3.5 introduces another fundamental concept in the
analysis of electrical circuits: the reduction of an arbitrary circuit to equivalent
circuit forms (Thévenin and Norton equivalent circuits). In this section it will
be shown that it is generally possible to reduce all linear circuits to one of two
equivalent forms, and that any linear circuit analysis problem can be reduced to a
simple voltage or current divider problem. The Thévenin and Norton equivalent
representations of electrical circuits naturally lead to the description of electrical
circuits in terms of sources and loads. This notion, in turn, leads to the analysis
of the transfer of power between a source and a load, and of the phenomenon of
source loading. Finally, some graphical and numerical techniques are introduced
for the analysis of nonlinear circuit elements.

Upon completing this chapter, you should have developed confidence in your
ability to compute numerical solutions for a wide range of resistive circuits. Good

71



72

In the node voltage method, we

assign the node voltages v, and vj;

the branch current flowing from a
to b is then expressed in terms of
these node voltages.
Va— Vb

R

=

R
Va O——AMWW——O0 "
—

1

Figure 3.1 Branch current
formulation in nodal analysis

By KCL: ij —ip — i3 = 0. In the node
voltage method, we express KCL by

Va=Vh _Vb=Ve Vb=Vd _g
Ry Ry R3

Figure 3.2 Use of KCL in
nodal analysis

Chapter 3 Resistive Network Analysis

familiarity with the techniques illustrated in this chapter will greatly simplify the
study of AC circuits in Chapter 4. The objective of the chapter is to develop a solid
understanding of the following topics:

+ Node voltage and mesh current analysis.
+ The principle of superposition.
+ Thévenin and Norton equivalent circuits.

* Numerical and graphical (load-line) analysis of nonlinear circuit
elements.

3.1 THE NODE VOLTAGE METHOD

Chapter 2 introduced the essential elements of network analysis, paving the way
for a systematic treatment of the analysis methods that will be introduced in this
chapter. You are by now familiar with the application of the three fundamental
laws of network analysis: KCL, KVL, and Ohm’s law; these will be employed to
develop a variety of solution methods that can be applied to linear resistive circuits.
The material presented in the following sections presumes good understanding of
Chapter 2. You can resolve many of the doubts and questions that may occasionally
arise by reviewing the material presented in the preceding chapter.

Node voltage analysis is the most general method for the analysis of electrical
circuits. In this section, its application to linear resistive circuits will be illustrated.
The node voltage method is based on defining the voltage at each node as an
independent variable. One of the nodes is selected as a reference node (usually—
but not necessarily—ground), and each of the other node voltages is referenced to
this node. Once each node voltage is defined, Ohm’s law may be applied between
any two adjacent nodes in order to determine the current flowing in each branch. In
the node voltage method, each branch current is expressed in terms of one or more
node voltages; thus, currents do not explicitly enter into the equations. Figure
3.1 illustrates how one defines branch currents in this method. You may recall a
similar description given in Chapter 2.

Once each branch current is defined in terms of the node voltages, Kirchhoff’s
current law is applied at each node:

Zi =0 (3.1

Figure 3.2 illustrates this procedure.

The systematic application of this method to a circuit with #» nodes would
lead to writing n linear equations. However, one of the node voltages is the
reference voltage and is therefore already known, since it is usually assumed to be
zero (recall that the choice of reference voltage is dictated mostly by convenience,
as explained in Chapter 2). Thus, we can write n — 1 independent linear equations
in the n — 1 independent variables (the node voltages). Nodal analysis provides
the minimum number of equations required to solve the circuit, since any branch
voltage or current may be determined from knowledge of nodal voltages. At this
stage, you might wish to review Example 2.12, to verify that, indeed, knowledge
of the node voltages is sufficient to solve for any other current or voltage in the
circuit.

The nodal analysis method may also be defined as a sequence of steps, as
outlined in the following box:
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FOCUSONMETHODOLOGY
Node Voltage Analysis Method
1. Select a reference node (usually ground). All other node voltages will
be referenced to this node.
2. Define the remaining n — 1 node voltages as the independent variables.

3. Apply KCL at each of the n — 1 nodes, expressing each current in
terms of the adjacent node voltages.

4. Solve the linear system of n — 1 equations in n — 1 unknowns.

Following the procedure outlined in the box guarantees that the correct solution
to a given circuit will be found, provided that the nodes are properly identified
and KCL is applied consistently. As an illustration of the method, consider the
circuit shown in Figure 3.3. The circuit is shown in two different forms to illustrate
equivalent graphical representations of the same circuit. The bottom circuit leaves
no question where the nodes are. The direction of current flow is selected arbitrarily
(assuming that i is a positive current). Application of KCL at node a yields:

is—ip—ir=0 3.2)
whereas, at node b,

ir—i3=0 3.3)
It is instructive to verify (at least the first time the method is applied) that it is not
necessary to apply KCL at the reference node. The equation obtained at node c,

ih—iz—ig=0 3.4

is not independent of equations 3.2 and 3.3; in fact, it may be obtained by adding
the equations obtained at nodes a and b (verify this, as an exercise). This obser-
vation confirms the statement made earlier:

In a circuit containing n nodes, we can write at most n — 1 independent
equations.

Now, in applying the node voltage method, the currents iy, i, and i3 are expressed
as functions of v,, vy, and v, the independent variables. Ohm’s law requires that
i1, for example, be given by
Vg — Ve
Ry
since it is the potential difference, v, — v, across R, that causes the current i; to
flow from node a to node c¢. Similarly,

3.5)

ip=

Vg — VUp
R,
Vp — V¢
R3

ih =

(3.6)

i3 =

Figure 3.3 Illustration of
nodal analysis
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Substituting the expression for the three currents in the nodal equations (equations
3.2 and 3.3), we obtain the following relationships:
Vg Vg — Up

jo— 4
TR R,

-0 3.7)

L% % 3.8)
Ry R3

Equations 3.7 and 3.8 may be obtained directly from the circuit, with a little

practice. Note that these equations may be solved for v, and v;, assuming that i,

Ry, Ry, and Rj3 are known. The same equations may be reformulated as follows:

3.9)

The following examples further illustrate the application of the method.

EXAMPLE 3.1 Nodal Analysis

Problem

Solve for all unknown currents and voltages in the circuit of Figure 3.4.

Solution

R Known Quantities: Source currents, resistor values.

Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: I, = 10 mA; I, = 50 mA; R =
1kQ; R, =2kQ; R; = 10kQ; Ry = 2kQ.

2R 2R () . .
C) s B Assumptions: The reference (ground) node is chosen to be the node at the bottom of the
circuit.

] Analysis: The circuit of Figure 3.4 is shown again in Figure 3.5, with a graphical
Figure 3.4 indication of how KCL will be applied to determine the nodal equations. Note that we
have selected to ground the lower part of the circuit, resulting in a reference voltage of
zero at that node. Applying KCL at nodes 1 and 2 we obtain
v—0 vi—vy, v—w

I — _ _ =0 (node 1)
R, R, R;

VvV — Uy Vv — Uy U2—0
- -5L=0 de 2
& TR 7 (node 2)

Now we can write the same equations more systematically as a function of the unknown
node voltages, as was done in equation 3.9.

I P G I (node 1)
— 4+ —+— v ———— = node
R R R R, Ry)

1 1 1 1 1
—_— —  — + — =1 de 2
( % R3>vl+<R2+R3+R4>v2 ) (node 2)
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With some manipulation, the equations finally lead to the following form:

10
—50

1.61)1 - 0.61)2
—0.61)1 + 1.11)2

These equations may be solved simultaneously to obtain

v =—1357V
vy = —52.86 V

Knowing the node voltages, we can determine each of the branch currents and voltages in
the circuit. For example, the current through the 10-k<2 resistor is given by:

vy — V2

—3.93mA
10,000 — >3 m

ioke =

indicating that the initial (arbitrary) choice of direction for this current was the same as the
actual direction of current flow. As another example, consider the current through the
1-kS2 resistor:

vy

——— = —13.57TmA
1,000

i1 =

In this case, the current is negative, indicating that current actually flows from ground to
node 1, as it should, since the voltage at node 1 is negative with respect to ground. You
may continue the branch-by-branch analysis started in this example to verify that the
solution obtained in the example is indeed correct.

Comments: Note that we have chose to assign a positive sign to currents entering a node,
and a negative sign to currents exiting a node; this choice is arbitrary (one could use the
opposite convention), but we shall use it consistently in this book.

Node 1 —
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Figure 3.5

EXAMPLE 3.2 Nodal Analysis

Problem

Write the nodal equations and solve for the node voltages in the circuit of Figure 3.6.

Solution
Known Quantities: Source currents, resistor values.
Find: All node voltages and branch currents.

Schematics, Diagrams, Circuits, and Given Data: i, = 1 mA; i, =2 mA; R; = 1kQ;
R, =500 Q; R; =2.2kQ; Ry =4.7kQ.

Assumptions: The reference (ground) node is chosen to be the node at the bottom of the
circuit.

Analysis: To write the node equations, we start by selecting the reference node (step 1).
Figure 3.7 illustrates that two nodes remain after the selection of the reference node. Let
us label these a and b and define voltages v, and v, (step 2).

l(l(

AA
Wy
=
=
S
AMA
VWy

<

i

Figure 3.6

Vo R,

< AAAA_{ —
= \AAA —
-

> >
AOE NG

Wy—/—V
=

AAAA

Figure 3.7
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Next, we apply KCL at each of the nodes, a and b (step 3):

Va Vg — Up

=0 (node a)

Yoy =2 0 (node b)

and rewrite the equations to obtain a linear system:

1 n 1 n 1 .
— — |, —— |V, =1
Rl Rz a RZ b a

Yy o (e Y,
R)V“T\R TR TR)TY

Substituting the numerical values in these equations, we get
3x 107y, —2x 107y, =1 x 1073
—2 x 107y, +2.67 x 107y, =2 x 1073
or
3v, —2v, =1
—2v, +2.67v, =2

The solution v, = 1.667 V, v, = 2 V may then be obtained by solving the system of
equations.

EXAMPLE 3.3 Solution of Linear System of Equations Using
Cramer’s Rule

Problem

Solve the circuit equations obtained in Example 3.2 using Cramer’s rule (see Appendix A).

Solution
Known Quantities: Linear system of equations.
Find: Node voltages.

Analysis: The system of equations generated in Example 3.2 may also be solved by using
linear algebra methods, by recognizing that the system of equations can be written as:

[ 3 Sallu]-[av]

By using Cramer’s rule (see Appendix A), the solution for the two unknown variables, v,
and v, can be written as follows:

1 =2
v = ‘ 2 261 _ (DR6N— (=) _ 667 _
3 -2 (3)(2.67) — (=2)(=2) 4
‘ -2 267 ‘
;]
_ 22 e0-0n _8_
Vp = = =-=2V
3 =2 3)(2.67) — (=2)(=2) 4
-2 267 ‘

The result is the same as in Example 3.2.
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Comments: While Cramer’s rule is an efficient solution method for simple circuits (e.g.,
two nodes), it is customary to use computer-aided methods for larger circuits. Once the
nodal equations have been set in the general form presented in equation 3.9, a variety of
computer aids may be employed to compute the solution. You will find the solution to the
same example computed using MathCad in the electronic files that accompany this book.
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Nodal Analysis with Voltage Sources

It would appear from the examples just shown that the node voltage method is very
easily applied when current sources are present in a circuit. This is, in fact, the
case, since current sources are directly accounted for by KCL. Some confusion
occasionally arises, however, when voltage sources are present in a circuit analyzed
by the node voltage method. In fact, the presence of voltage sources actually
simplifies the calculations. To further illustrate this point, consider the circuit of
Figure 3.8. Note immediately that one of the node voltages is known already!
The voltage at node a is forced to be equal to that of the voltage source; that is,
v, = vg. Thus, only two nodal equations will be needed, at nodes » and c:

U % BT g (node b)
R Ry R
(3.10)
% i~ 220 (nodec)
Rs * Ry
Rewriting these equations, we obtain:
LI (] vs
ST ) — v = =
R1 Rz R3 b R3 Rl
(3.11)

1 1 1 )
(-z) v (o) ve=s

Note how the term vg/R; on the right-hand side of the first equation is really a
current, as is dimensionally required by the nature of the node equations.

Figure 3.8 Nodal analysis
with voltage sources

EXAMPLE 3.4 Nodal Analysis with Voltage Sources

Problem

Find the node voltages in the circuit of Figure 3.9.

Solution
Known Quantities: Source current and voltage; resistor values.
Find: Node voltages.

Schematics, Diagrams, Circuits, and Givendata: | = —2mA;V =3V; R =1kQ;
R, = 2kQ; Ry = 3kQ.

Assumptions: Place the reference node at the bottom of the circuit.

Va vy

R,
r\/ AW Node b
Node a
%
<>

®r  z=

R;
Figure 3.9
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Analysis: Apply KCL at nodes a and b:

v, —0 v, —v
Ry R

I— =0

Uy — U vb—3=0

R, R3

Reformulating the last two equations, we derive the following system:
1.5v, — 0.5v, = =2
—0.5v, +0.833v, =1
Solving the last set of equations, we obtain the following values:
v, = —1.167V and v, =05V

Comments: To compute the current flowing through resistor R; we noted that the
voltage immediately above resistor R; (at the negative terminal of the voltage source)
must be 3 volts lower than v,; thus, the current through Rj is equal to (v, — 3)/R;.

The current i, defined as flowing
from left to right, establishes the
polarity of the voltage across R.
+ Vg -
o—WW—>o0
71‘» R

Figure 3.10 Basic principle
of mesh analysis

Check Your Understanding

3.1 Find the current i in the circuit shown on the left, using the node voltage method.

100 Q 50 Q 109 _ v,
%%%V ﬂﬂh& &‘ %%%V A%JVV
¥ 30Q
| 10V

= () 20 Q3
T 2A <

=
>
wn
S
[e)
AAAA
\AAA
~
W
o)
AAAA
YVYVY
\AAA
[ )
S
[e)
AAAA
\AAA

3.2 Find the voltage v, by the node voltage method for the circuit shown on the right.

3.3 Show that the answer to Example 3.2 is correct by applying KCL at one or more
nodes.

3.2 THE MESH CURRENT METHOD

The second method of circuit analysis discussed in this chapter, which is in many
respects analogous to the method of node voltages, employs mesh currents as the
independent variables. The idea is to write the appropriate number of independent
equations, using mesh currents as the independent variables. Analysis by mesh
currents consists of defining the currents around the individual meshes as the
independent variables. Subsequent application of Kirchhoff’s voltage law around
each mesh provides the desired system of equations.

In the mesh current method, we observe that a current flowing through a
resistor in a specified direction defines the polarity of the voltage across the resistor,
as illustrated in Figure 3.10, and that the sum of the voltages around a closed circuit
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must equal zero, by KVL. Once a convention is established regarding the direction
of current flow around a mesh, simple application of KVL provides the desired
equation. Figure 3.11 illustrates this point.

The number of equations one obtains by this technique is equal to the number
of meshes in the circuit. All branch currents and voltages may subsequently be
obtained from the mesh currents, as will presently be shown. Since meshes are
easily identified in a circuit, this method provides a very efficient and systematic
procedure for the analysis of electrical circuits. The following box outlines the
procedure used in applying the mesh current method to a linear circuit.

FOCUSONMETHODOLOGY
Mesh Current Analysis Method

1. Define each mesh current consistently. We shall always define mesh
currents clockwise, for convenience.

2. Apply KVL around each mesh, expressing each voltage in terms of one
or more mesh currents.

3. Solve the resulting linear system of equations with mesh currents as the
independent variables.

In mesh analysis, it is important to be consistent in choosing the direction
of current flow. To avoid confusion in writing the circuit equations, mesh currents
will be defined exclusively clockwise when we are using this method. To illustrate
the mesh current method, consider the simple two-mesh circuit shown in Figure
3.12. This circuit will be used to generate two equations in the two unknowns,
the mesh currents i; and i,. It is instructive to first consider each mesh by itself.
Beginning with mesh 1, note that the voltages around the mesh have been assigned
in Figure 3.13 according to the direction of the mesh current, i;. Recall that as long
as signs are assigned consistently, an arbitrary direction may be assumed for any
current in a circuit; if the resulting numerical answer for the current is negative,
then the chosen reference direction is opposite to the direction of actual current
flow. Thus, one need not be concerned about the actual direction of current flow in
mesh analysis, once the directions of the mesh currents have been assigned. The
correct solution will result, eventually.

According to the sign convention, then, the voltages v, and v, are defined as
shown in Figure 3.13. Now, it is important to observe that while mesh current i,
is equal to the current flowing through resistor R (and is therefore also the branch
current through R)), it is not equal to the current through R,. The branch current
through R; is the difference between the two mesh currents, i; —i,. Thus, since the
polarity of the voltage v, has already been assigned, according to the convention
discussed in the previous paragraph, it follows that the voltage v, is given by:

vy = (i1 — )R (3.12)
Finally, the complete expression for mesh 1 is
US—ilRl—(il—iz)Rzzo (3.13)

Once the direction of current flow
has been selected, KVL requires
that vi — v, —v3 =0.

+ v o
AAA
AAAs
Ry
+ +
>
Vi () RiZvs
i <
A mesh

Figure 3.11 Use of KVL
in mesh analysis

R, Ry
AAA AAAA
VVVY vy

< <
Q3 3
— =< =<

Figure 3.12 A two-mesh
circuit

Mesh 1: KVL requires that

vs— vy — v, =0, where v, = iR,
vy = (i1 — ip)R;.
R, Rs3
A A
YWV WWv

Vi

+
> >
. S .S
vs C> :D v ::Rz @::R4
= < <

Figure 3.13 Assignment of
currents and voltages around
mesh 1
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Mesh 2: KVL requires that
Va+v3+vs=0
where

V2= (i — iRy,

V3 =DRj3,
vy =1DRy
| R,
A AMA
VW W

7 = e
Vs i JRyZv2 [ 2 Ry va
~ - + -

Figure 3.14 Assignment of
currents and voltages around
mesh 2
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The same line of reasoning applies to the second mesh. Figure 3.14 depicts
the voltage assignment around the second mesh, following the clockwise direction
of mesh current i,. The mesh current i5 is also the branch current through resistors
R3 and R4; however, the current through the resistor that is shared by the two
meshes, R;, is now equal to (i, — i1), and the voltage across this resistor is

v = (i — iR, (3.14)
and the complete expression for mesh 2 is
(i —i)Ry + 2R3 + 2Ry =0 (3.15)

Why is the expression for v, obtained in equation 3.14 different from equa-
tion 3.12? The reason for this apparent discrepancy is that the voltage assignment
for each mesh was dictated by the (clockwise) mesh current. Thus, since the mesh
currents flow through R, in opposing directions, the voltage assignments for v, in
the two meshes will also be opposite. This is perhaps a potential source of confu-
sion in applying the mesh current method; you should be very careful to carry out
the assignment of the voltages around each mesh separately.

Combining the equations for the two meshes, we obtain the following system
of equations:

(R1 + Ry)i1 — Rpin = vg

. . (3.16)
—Ryi;1 + (R + R3+ Ry)in =0

These equations may be solved simultaneously to obtain the desired solution,
namely, the mesh currents, i; and i,. You should verify that knowledge of the
mesh currents permits determination of all the other voltages and currents in the
circuit. The following examples further illustrate some of the details of this method.

Figure 3.15

EXAMPLE 3.5 Mesh Analysis

Problem

Find the mesh currents in the circuit of Figure 3.15.

Solution
Known Quantities: Source voltages; resistor values.
Find: Mesh currents.

Schematics, Diagrams, Circuits, and Given Data: V, =10V;V, =9V; V; =1,
Ri=5Q R =102, R3=5Q; Ry =5 Q.

Assumptions: Assume clockwise mesh currents i; and i;.

Analysis: The circuit of Figure 3.15 will yield two equations in two unknowns, i; and i5.
It is instructive to consider each mesh separately in writing the mesh equations; to this
end, Figure 3.16 depicts the appropriate voltage assignments around the two meshes,
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based on the assumed directions of the mesh currents. From Figure 3.16, we write the
mesh equations:

Vi—Riii—Va— Ry(iy —in) =0
Rz(lz—l])+V2—R312—‘/3—R412:0

Rearranging the linear system of the equation, we obtain

15i; — 10i, =1
—10i; +20i, =8

which can be solved to obtain i; and i,:

ip=05A and i =0.65A

Comments: Note how the voltage v, across resistor R, has different polarity in Figure
3.16, depending on whether we are working in mesh 1 or mesh 2.
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Analysis of mesh 2

Figure 3.16
EXAMPLE 3.6 Mesh Analysis
Problem
Write the mesh current equations for the circuit of Figure 3.17. X ﬁzxA
YVVVY
i3
Solution AleiALAV ‘vﬁ"i"v
Known Quantities: Source voltages; resistor values. Vi L R, V2
. O N /20
Find: Mesh current equations. T h T L F
Schematics, Diagrams, Circuits, and Given Data: V, =12V;V, =6V, Ry =3 Q;
R2=89,R3=6Q,R4=4Q Figure3.17

Assumptions: Assume clockwise mesh currents iy, i, and is.
Analysis: Starting from mesh 1 we apply KVL to obtain
Vi—Ri(i1 —i3) — Ra(iy — i2) = 0.
KVL applied to mesh 2 yields
—Ra(ia—i) = Rs(ia —i3)+ V2 =0
while in mesh 3 we find
—Ry (i3 —i1) — R4iz — R3(i3 — i) = 0.
These equations can be rearranged in standard form to obtain

=3i1 —6i,+(3+6+4i3=0

You may verify that KVL holds around any one of the meshes, as a test to check that the
answer is indeed correct.
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Comments: The solution of the mesh current equations with computer-aided tools
(MathCad) may be found in the electronic files that accompany this book.

5Q 2 Q)
AMA MM
VVVy VWVy

Figure 3.18 Mesh analysis
with current sources

A comparison of this result with the analogous result obtained by the node
voltage method reveals that we are using Ohm’s law in conjunction with KVL
(in contrast with the use of KCL in the node voltage method) to determine the
minimum set of equations required to solve the circuit.

Mesh Analysis with Current Sources

Mesh analysis is particularly effective when applied to circuits containing voltage
sources exclusively; however, it may be applied to mixed circuits, containing both
voltage and current sources, if care is taken in identifying the proper current in
each mesh. The method is illustrated by solving the circuit shown in Figure 3.18.
The first observation in analyzing this circuit is that the presence of the current
source requires that the following relationship hold true:

i1 —ihb=2A 3.17)

If the unknown voltage across the current source is labeled vy, application of KVL
around mesh 1 yields:

10 -5, —v, =0 (3.18)
while KVL around mesh 2 dictates that
v, —2ip —4i, =0 3.19)

Substituting equation 3.19 in equation 3.18, and using equation 3.17, we can then
obtain the system of equations

5i; 4+ 6i, = 10
LT (3.20)
—i1+ir=-2
which we can solve to obtain
i1=2A
. 3.21)
I = 0A

Note also that the voltage across the current source may be found by using either
equation 3.18 or equation 3.19; for example, using equation 3.19,

vy = 6iy =0V (3.22)

The following example further illustrates the solution of this type of circuit.

EXAMPLE 3.7 Mesh Analysis with Current Sources

Problem

Find the mesh currents in the circuit of Figure 3.19.
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Solution
Known Quantities: Source current and voltage; resistor values.
Find: Mesh currents.

Schematics, Diagrams, Circuits, and Given Data: [ =0.5A;V =6V, R, =3 Q;
RzZSQ;R3:6Q;R4:4Q.

Assumptions: Assume clockwise mesh currents iy, i, and i3.

Analysis: Starting from mesh 1, we see immediately that the current source forces the
mesh current to be equal to /:

=1

There is no need to write any further equations around mesh 1, since we already know the
value of the mesh current. Now we turn to meshes 2 and 3 to obtain:
—Ry(i — i) = R3(i —i3) +V =0 mesh 2
—Rl(i3—il)—R4i3—R3(i3—i2) =0 mesh 3

Rearranging the equations and substituting the known value of i;, we obtain a system of
two equations in two unknowns:

14iy — 6i3 = 10
—6iy + 13i3 = 1.5

which can be solved to obtain
i =095A iz =055A
As usual, you should verify that the solution is correct by applying KVL.

Comments: Note that the current source has actually simplified the problem by
constraining a mesh current to a fixed value.

Ry
AAAA
YVYVyY
i3
R, R;
AAA AAAA
YVYVY YVvy
Vv

Figure 3.19
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Check Your Understanding

3.4 Find the unknown voltage, v,, by mesh current analysis in the circuit of Figure 3.20.

6 Q 12Q 3
AAAA AAA AAAA
\AAAL \AAAL \AAAL
5Q +
<> <> <>
0QZ 60, 24V<+> 63|, C" 15V
> P = >
15V -
Figure 3.20 Figure 3.21

3.5 Find the unknown current, I, using mesh current methods in the circuit of Figure
3.21
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3.6 Show that the equations given in Example 3.6 are correct, by applying KCL at each
node.

3.3 NODAL AND MESH ANALYSIS
WITH CONTROLLED SOURCES

The methods just described also apply, with relatively minor modifications, in the
presence of dependent (controlled) sources. Solution methods that allow for the
presence of controlled sources will be particularly useful in the study of transistor
amplifiers in Chapter 8. Recall from the discussion in Section 2.3 that a dependent
source is a source that generates a voltage or current that depends on the value
of another voltage or current in the circuit. When a dependent source is present
in a circuit to be analyzed by node or mesh analysis, one can initially treat it as
an ideal source and write the node or mesh equations accordingly. In addition
to the equation obtained in this fashion, there will also be an equation relating
the dependent source to one of the circuit voltages or currents. This constraint
equation can then be substituted in the set of equations obtained by the techniques
of nodal and mesh analysis, and the equations can subsequently be solved for the
unknowns.

Itis important to remark that once the constraint equation has been substituted
in the initial system of equations, the number of unknowns remains unchanged.
Consider, for example, the circuit of Figure 3.22, which is a simplified model
of a bipolar transistor amplifier (transistors will be introduced in Chapter 8). In
the circuit of Figure 3.22, two nodes are easily recognized, and therefore nodal
analysis is chosen as the preferred method. Applying KCL at node 1, we obtain
the following equation:

1 1
g = —+ — 3.23
s =V (RS + Rb> ( )

KCL applied at the second node yields:

Bip + = =0 (3.24)
Rc

Next, it should be observed that the current i, can be determined by means of a
simple current divider:
1/Rp Rs

iy = i =i ‘ 3.25
"TST/R, £ 1/Rs Ry + Rs (3.25)

Node 1 Node 2
FF—r——— G O
; +

< < =
’ -< -< / <
() is RE 2k, Bi  FRe Vo

Figure 3.22 Circuit with dependent source
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which, when inserted in equation 3.24, yields a system of two equations:

. 1 n 1
is=v | o+ —
s \& &

. Rg %)
71315, - - - =
R,+Rs Rc
which can be used to solve for v; and v,. Note that, in this particular case, the two

equations are independent of each other. The following example illustrates a case
in which the resulting equations are not independent.

(3.26)
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EXAMPLE 3.8 Analysis with Dependent Sources
Problem

Find the node voltages in the circuit of Figure 3.23.

Solution

Known Quantities: Source current; resistor values; dependent voltage source
relationship.

Find: Unknown node voltage v.

Schematics, Diagrams, Circuits, and Given Data: 1 =05 A; Ry, =5Q; R, =2 Q;
R; = 4 Q. Dependent source relationship: v, = 2 X vs.

Assumptions: Assume reference node is at the bottom of the circuit.

Analysis: Applying KCL to node v we find that
Ve — v v — U3
+1— =0
R, R,

Applying KCL to node v; we find

v—uvs v
~_ 3 _0
Ry R
If we substitute the dependent source relationship into the first equation, we obtain a
system of equations in the two unknowns v and v3:

Yo (Yo
)T\ \R TR

Substituting numerical values, we obtain:

0.7v — 09v; = 0.5
—0.5v4+0.75v; =0

Solution of the above equations yields v =5 V; v3 = 3.33 V.

Comments: You will find the solution to the same example computed using MathCad in
the electronic files that accompany this book.

v

L
<
S
ViSR;
S

Figure 3.23
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Remarks on Node Voltage and Mesh Current
Methods

The techniques presented in this section and the two preceding sections find use
more generally than just in the analysis of resistive circuits. These methods should
be viewed as general techniques for the analysis of any linear circuit; they provide
systematic and effective means of obtaining the minimum number of equations
necessary to solve a network problem. Since these methods are based on the fun-
damental laws of circuit analysis, KVL and KCL, they also apply to any electrical
circuit, even circuits containing nonlinear circuit elements, such as those to be
introduced later in this chapter.

You should master both methods as early as possible. Proficiency in these
circuit analysis techniques will greatly simplify the learning process for more
advanced concepts.

Check Your Understanding

3.7 The current source i, is related to the voltage v, in Figure 3.24 by the relation

Ux

iy 3
Find the voltage across the 8-£2 resistor by nodal analysis.

+ Ve - 120 30
> AAAA AAA AAAA
\AJAZ \AAAL VVVY
6Q l—>
12
i Lo < <
S 8Q3Z 603 < Vi 69;:‘11\, 15V p
< < > —
15V

Figure 3.25
Figure 3.24

3.8 Find the unknown current i, in Figure 3.25 using the mesh current method. The
dependent voltage source is related to the current i, through the 12- resistor by v, = 2i1,.

3.4 THE PRINCIPLE OF SUPERPOSITION

This brief section discusses a concept that is frequently called upon in the analysis
of linear circuits. Rather than a precise analysis technique, like the mesh current
and node voltage methods, the principle of superposition is a conceptual aid that
can be very useful in visualizing the behavior of a circuit containing multiple
sources. The principle of superposition applies to any linear system and for a
linear circuit may be stated as follows:

In a linear circuit containing N sources, each branch voltage and current is
the sum of N voltages and currents each of which may be computed by
setting all but one source equal to zero and solving the circuit containing
that single source.
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An elementary illustration of the concept may easily be obtained by simply con-
sidering a circuit with two sources connected in series, as shown in Figure 3.26.

AAAA
YVVY

AAAA
VVVY

VB2 e VB2
R = R + R
Va1 e i Va1 g1 [J:5]

AAAA

VVVY

The net current through
R is the sum of the in-
dividual source currents:

i =g + ig.

Figure 3.26 The principle of superposition

The circuit of Figure 3.26 is more formally analyzed as follows. The current,
1, flowing in the circuit on the left-hand side of Figure 3.26 may be expressed as:

=BT ; 2 % + % = ipi +ip (3.27)
Figure 3.26 also depicts the circuit as being equivalent to the combined effects
of two circuits, each containing a single source. In each of the two subcircuits, a
short circuit has been substituted for the missing battery. This should appear as
a sensible procedure, since a short circuit—by definition—will always “see” zero
voltage across itself, and therefore this procedure is equivalent to “zeroing” the
output of one of the voltage sources.

If, on the other hand, one wished to cancel the effects of a current source,
it would stand to reason that an open circuit could be substituted for the current
source, since an open circuit is by definition a circuit element through which no
current can flow (and which will therefore generate zero current). These basic
principles are used frequently in the analysis of circuits, and are summarized in
Figure 3.27.

The principle of superposition can easily be applied to circuits containing
multiple sources and is sometimes an effective solution technique. More often,

1. In order to set a voltage source equal to zero, we replace it with a short circuit.

R, Ry
AAAA
VVVY

. . <
Vs is S R, s Sk
-

B

A circuit The same circuit with vg=0

2. In order to set a current source equal to zero, we replace it with an open circuit.
Ry R,
AAAA
Wy

Vs is

A circuit The same circuit with ig=0

Figure 3.27 Zeroing voltage and current sources
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however, other methods result in a more efficient solution. Example 3.9 further
illustrates the use of superposition to analyze a simple network. The Check Your
Understanding exercises at the end of the section illustrate the fact that superposi-
tion is often a cumbersome solution method.

EXAMPLE 3.9 Principle of Superposition

Problem

Determine the current i, in the circuit of Figure 3.18 using the principle of superposition.

Solution

Known Quantities: Source voltage and current values. Resistor values.
Find: Unknown current i,.

Given Data Figure 3.18.

Assumptions: Assume reference node is at the bottom of the circuit.

Analysis: Part 1: Zero the current source. Once the current source has been set to zero
(replaced by an open circuit), the resulting circuit is a simple series circuit; the current
flowing in this circuit, i;_y, is the current we seek. Since the total series resistance is
5+2+4 =11, we find thati;_y = 10/11 = 0.909 A.

Part 2: Zero the voltage source. After zeroing of the voltage source by replacing it
with a short circuit, the resulting circuit consists of three parallel branches: On the left we
have a single 5-$2 resistor; in the center we have a —2-A current source (negative because
the source current is shown to flow into the ground node); on the right we have a total
resistance of 2 + 4 = 6 Q. Using the current divider rule, we find that the current flowing
in the right branch, i,_;, is given by:

1

i = 1671(—2) = -0.909 A
5756

And, finally, the unknown current i, is found to be
iy =ip-y +i-1 =0A.
The result is, of course, identical to that obtained by mesh analysis.

Comments: Superposition may appear to be a very efficient tool. However, beginners
may find it preferable to rely on more systematic methods, such as nodal analysis, to solve
circuits. Eventually, experience will suggest the preferred method for any given circuit.

Check Your Understanding

3.9 Find the voltages v, and v, for the circuits of Example 3.4 by superposition.

3.10 Repeat Check Your Understanding Exercise 3.2, using superposition. This ex-
ercise illustrates that superposition is not necessarily a computationally efficient solution
method.



Part I Circuits 89

3.11 Solve Example 3.5, using superposition.
3.12 Solve Example 3.7, using superposition.

3.5 ONE-PORT NETWORKS
AND EQUIVALENT CIRCUITS

You may recall that, in the discussion of ideal sources in Chapter 2, the flow of

energy from a source to a load was described in a very general form, by showing

the connection of two “black boxes” labeled source and load (see Figure 2.10). In

the same figure, two other descriptions were shown: a symbolic one, depicting an

ideal voltage source and an ideal resistor; and a physical representation, in which

the load was represented by a headlight and the source by an automotive battery.
Whatever the form chosen for source-load representation, each block—source or i
load—may be viewed as a two-terminal device, described by an i-v characteristic. * o—— .

. . Lo . . . .o Linear
This general circuit representation is shown in Figure 3.28. This configurationis Vv @ik
called a one-port network and is particularly useful for introducing the notion of - O——
equivalent circuits. Note that the network of Figure 3.28 is completely described
by its i-v characteristic; this point is best illustrated by the next example. Figure 3.28 One-port network

EXAMPLE 3.10 Equivalent Resistance Calculation

Problem

Determine the source (load) current i in the circuit of Figure 3.29 using equivalent
resistance ideas.

i
—_—
O
O
T
> >
< < <
Vs v SR 3 R, :ERg
- -
- o
Source Load
SR 3R, 2R
. . p- p- P>
Figure 3.29 Illustration of 3 > >
equivalent-circuit concept
O

Load circuit

o0—
Solution L
S Reo
Known Quantities: Source voltage, resistor values. h
" o—
Find: Source current. .
Equivalent

load circuit

Given Data: Figures 3.29, 3.30.
Figure 3.30 Equivalent

Assumptions: Assume reference node is at the bottom of the circuit. load resistance concept
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Analysis: Insofar as the source is concerned, the three parallel resistors appear identical
to a single equivalent resistance of value

1
Reo = 1 1
RTRTR

Thus, we can replace the three load resistors with the single equivalent resistor Rgq, as

shown in Figure 3.30, and calculate
. Us

i=——

REQ

Comments: Similarly, insofar as the load is concerned, it would not matter whether the
source consisted, say, of a single 6-V battery or of four 1.5-V batteries connected in series.

For the remainder of this chapter, we shall focus on developing techniques
for computing equivalent representations of linear networks. Such representations
will be useful in deriving some simple—yet general—results for linear circuits, as
well as analyzing simple nonlinear circuits.

Thévenin and Norton Equivalent Circuits

This section discusses one of the most important topics in the analysis of electrical
circuits: the concept of an equivalent circuit. It will be shown that it is always
possible to view even a very complicated circuit in terms of much simpler equiv-
alent source and load circuits, and that the transformations leading to equivalent
circuits are easily managed, with a little practice. In studying node voltage and
mesh current analysis, you may have observed that there is a certain correspon-
dence (called duality) between current sources and voltage sources, on the one
hand, and parallel and series circuits, on the other. This duality appears again very
clearly in the analysis of equivalent circuits: it will shortly be shown that equiva-
lent circuits fall into one of two classes, involving either voltage or current sources
and (respectively) either series or parallel resistors, reflecting this same principle
of duality. The discussion of equivalent circuits begins with the statement of two
very important theorems, summarized in Figures 3.31 and 3.32.

Source Load — V7 v Load

Ol = +0
+

Figure 3.31 Illustration of Thévenin theorem

= +0

Source Load

VVVY

Load —_— iy Ry 3

Ol = +0

(oF]

Figure 3.32 Illustration of Norton theorem
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The Thévenin Theorem

As far as a load is concerned, any network composed of ideal voltage and
current sources, and of linear resistors, may be represented by an
equivalent circuit consisting of an ideal voltage source, vy, in series with
an equivalent resistance, Ry.

The Norton Theorem

As far as a load is concerned, any network composed of ideal voltage and
current sources, and of linear resistors, may be represented by an
equivalent circuit consisting of an ideal current source, iy, in parallel with
an equivalent resistance, Ry .

The first obvious question to arise is, how are these equivalent source voltages, cur-
rents, and resistances computed? The next few sections illustrate the computation
of these equivalent circuit parameters, mostly through examples. A substantial
number of Check Your Understanding exercises are also provided, with the fol-
lowing caution: The only way to master the computation of Thévenin and Norton
equivalent circuits is by patient repetition.

Determination of Norton or Thévenin Equivalent
Resistance

The first step in computing a Thévenin or Norton equivalent circuit consists of
finding the equivalent resistance presented by the circuit at its terminals. This is
done by setting all sources in the circuit equal to zero and computing the effective
resistance between terminals. The voltage and current sources present in the circuit
are set to zero by the same technique used with the principle of superposition:
voltage sources are replaced by short circuits, current sources by open circuits. To
illustrate the procedure, consider the simple circuit of Figure 3.33; the objective
is to compute the equivalent resistance the load R;, “sees” at port a-b.

In order to compute the equivalent resistance, we remove the load resistance
from the circuit and replace the voltage source, vg, by a short circuit. At this
point—seen from the load terminals—the circuit appears as shown in Figure 3.34.
You can see that Ry and R, are in parallel, since they are connected between the
same two nodes. If the total resistance between terminals a and b is denoted by
Ry, its value can be determined as follows:

Rr=R;+ R | R> (3.28)

An alternative way of viewing Ry is depicted in Figure 3.35, where a hy-
pothetical 1-A current source has been connected to the terminals a and b. The
voltage v, appearing across the a-b pair will then be numerically equal to Ry (only
because ig = 1 A!). With the 1-A source current flowing in the circuit, it should
be apparent that the source current encounters R as a resistor in series with the
parallel combination of R; and R, prior to completing the loop.

Vs Ry

AAAA
VVVY

19)

b
Complete circuit

AAAA
YVVYV
%x
4
S¥e} Q

Circuit with load removed
for computation of Ry. The voltage

source is replaced by a short circuit.

Figure 3.33 Computation
of Thévenin resistance
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5 What is the total resistance the
MWW—O a current ig will encounter in flowing
around the circuit?

a

AN
\AAAZ
=
9
AAAA
\AAAZ
=
&

O b R

AMA
W
=
s
ANRA
W

<
RIR,3
2

YVVY

Figure 3.34 Equivalent
resistance seen by the load

Rr=RIR, + R;

Figure 3.35 An alternative
method of determining the
Thévenin resistance

Summarizing the procedure, we can produce a set of simple rules as an aid
in the computation of the Thévenin (or Norton) equivalent resistance for a linear
resistive circuit:

FOCUSONMETHODOLOGY
Computation of Equivalent Resistance of a One-Port Network

1. Remove the load.

2. Zero all independent voltage and current sources.

3. Compute the total resistance between load terminals, with the load
removed. This resistance is equivalent to that which would be

encountered by a current source connected to the circuit in place of the
load.

We note immediately that this procedure yields a result that is independent of the
load. This is a very desirable feature, since once the equivalent resistance has
been identified for a source circuit, the equivalent circuit remains unchanged if we
connect a different load. The following examples further illustrate the procedure.

EXAMPLE 3.11 Thévenin Equivalent Resistance

Problem

Find the Thévenin equivalent resistance seen by the load R, in the circuit of Figure 3.36.

Solution

Known Quantities: Resistor and current source values.
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R3 5 a
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REE 2R, () 1 SRy Ry
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b

Figure 3.36

Find: Thévenin equivalent resistance Ry .

Schematics, Diagrams, Circuits, and Given Data: R, =20<2; R, =20Q; 1 =5 A;
Ry =10Q; R, =202; Rs = 10 Q.

Assumptions: Assume reference node is at the bottom of the circuit.

Analysis: Following the methodology box introduced in the present section, we first set
the current source equal to zero, by replacing it with an open circuit. The resulting circuit
is depicted in Figure 3.37. Looking into terminal a-b we recognize that, starting from the
left (away from the load) and moving to the right (toward the load) the equivalent
resistance is given by the expression

Ry = [((R1]|R2) + R3) ||R4] + Rs

= [((20]]20) + 10) ||20] + 10 = 20

Comments: Note that the reduction of the circuit started at the farthest point away from
the load.

R, Rs a
A AMW—O
< < <
hz gk 2k
O
b
Figure 3.37
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EXAMPLE 3.12 Thévenin Equivalent Resistance

Problem

Compute the Thévenin equivalent resistance seen by the load in the circuit of Figure 3.38.

Rl R3 a
—AAAA AAAA O
YVvy YVYVY ~
v 2R, ()1 2R, 2R
3
o
b
Figure 3.38

Solution
Known Quantities: Resistor values.

Find: Thévenin equivalent resistance Ry .
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Figure 3.39
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Schematics, Diagrams, Circuits, and Given Data: V =5V; R; =2Q; R, =2Q;
Ry=121=1A,R, =2%.

Assumptions: Assume reference node is at the bottom of the circuit.

Analysis: Following the Thévenin equivalent resistance methodology box, we first set
the current source equal to zero, by replacing it with an open circuit, then set the voltage
source equal to zero by replacing it with a short circuit. The resulting circuit is depicted in
Figure 3.39. Looking into terminal a-b we recognize that, starting from the left (away
from the load) and moving to the right (toward the load), the equivalent resistance is given
by the expression

Rr = ((Ri||R2) + R3) || Ry
=@ +DIR2=1

Comments: Note that the reduction of the circuit started at the farthest point away from
the load.

Vr

As afinal note, it should be remarked that the Thévenin and Norton equivalent
resistances are one and the same quantity:

Ry = Ry (3.29)

Therefore, the preceding discussion holds whether we wish to compute a Norton
or a Thévenin equivalent circuit. From here on we shall use the notation Ry
exclusively, for both Thévenin and Norton equivalents. Check Your Understanding
Exercise 3.13 will give you an opportunity to explain why the two equivalent
resistances are one and the same.

Check Your Understanding

3.13 Apply the methods described in this section to show that Ry = Ry in the circuits
of Figure 3.40.

(0]
O=

AAAA
YVV
=
<
=
=
=
AAAA
YVVY
AAAA
A\
w
~
]
AAA
YVVY
W
8
)

YVV
=
A—A
w
=~
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A
VWy
n
<

Figure 3.40

(e]

>0

Figure 3.41

3.14 Find the Thévenin equivalent resistance of the circuit of Figure 3.41 seen by the
load resistor, R; .

3.15 Find the Thévenin equivalent resistance seen by the load resistor, R; , in the circuit
of Figure 3.42.

3.16 For the circuit of Figure 3.43, find the Thévenin equivalent resistance seen by the
load resistor, R; .
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Figure 3.42
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Figure 3.43

3.17 For the circuit of Figure 3.44, find the Thévenin equivalent resistance seen by the
load resistor, R;.

10 Q a
AAAA O
YVVY -
1Q
<> <> <>
210Q 2002 3R,
-< -< <
12V
b
Figure 3.44

Computing the Thévenin Voltage

This section describes the computation of the Thévenin equivalent voltage, vz, for
an arbitrary linear resistive circuit. The Thévenin equivalent voltage is defined as
follows:

The equivalent (Thévenin) source voltage is equal to the open-circuit
voltage present at the load terminals (with the load removed).

This states that in order to compute vy, it is sufficient to remove the load
and to compute the open-circuit voltage at the one-port terminals. Figure 3.45
illustrates that the open-circuit voltage, voc, and the Thévenin voltage, vy, must

One-port
network

Figure 3.45 Equiva-
lence of open-circuit and
Thévenin voltage
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R, R,
=
Vs RZE:
Figure 3.46
R, Ry
—WW—oO
+
<>
Vs 3R, Voc
s
O
Figure 3.47
T+
Yoc
O

Figure 3.48

p

R,
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be the same if the Thévenin theorem is to hold. This is true because in the circuit
consisting of vy and Ry, the voltage voc must equal vy, since no current flows
through R; and therefore the voltage across Ry is zero. Kirchhoff’s voltage law
confirms that

vr = Rr(0) + voc = voc (3.30)

FOCUSONMETHODOLOGY
Computing the Thévenin Voltage

. Remove the load, leaving the load terminals open-circuited.
. Define the open-circuit voltage voc across the open load terminals
. Apply any preferred method (e.g., nodal analysis) to solve for voc.

A W N =

. The Thévenin voltage is vy = voc.

The actual computation of the open-circuit voltage is best illustrated by ex-
amples; there is no substitute for practice in becoming familiar with these compu-
tations. To summarize the main points in the computation of open-circuit voltages,
consider the circuit of Figure 3.33, shown again in Figure 3.46 for convenience. Re-
call that the equivalent resistance of this circuit was given by Ry = Rz + R; || R».
To compute voc, we disconnect the load, as shown in Figure 3.47, and immedi-
ately observe that no current flows through Rj, since there is no closed circuit
connection at that branch. Therefore, voc must be equal to the voltage across R»,
as illustrated in Figure 3.48. Since the only closed circuit is the mesh consisting of
vs, Ry, and R;, the answer we are seeking may be obtained by means of a simple
voltage divider:

Ry

voc = VR =R,
1 2

It is instructive to review the basic concepts outlined in the example by
considering the original circuit and its Thévenin equivalent side by side, as shown
in Figure 3.49. The two circuits of Figure 3.49 are equivalent in the sense that the
current drawn by the load, iy, is the same in both circuits, that current being given
by:

R2 1 _ vr
Ri+R (Ry+R ||R)+R. Rr+RL

ip =vs (3.31)

R, Rs R;+ R IR,
| ir | ir
Y Y
<>
Vs Rz RL vs Ko R
< R, +R,
A circuit Its Thévenin equivalent

Figure 3.49 A circuit and its Thévenin equivalent
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The computation of Thévenin equivalent circuits is further illustrated in the
following examples.
EXAMPLE 3.13 Thévenin Equivalent Voltage (Open-Circuit
Load Voltage)
Problem
Compute the open-circuit voltage, voc, in the circuit of Figure 3.50. v o
R
R, :
< *
Solution 10Q RyZ Vo
1%
Known Quantities: Source voltage, resistor values. o,
Find: Open-circuit voltage, voc. =
Figure 3.50

Schematics, Diagrams, Circuits, and Given Data: V =12V, Ry =1Q; R, =10;

Assumptions: Assume reference node is at the bottom of the circuit.

Analysis: Following the Thévenin voltage methodology box, we first remove the load
and label the open-circuit voltage, voc. Next, we observe that, since v, is equal to the
reference voltage, (i.e., zero), the node voltage v, will be equal, numerically, to the
open-circuit voltage. If we define the other node voltage to be v, nodal analysis will be the
natural technique for arriving at the solution. Figure 3.50 depicts the original circuit ready
for nodal analysis. Applying KCL at the two nodes, we obtain the following two
equations:

12—v v v — U,

- _ =0
1 10 10
vV — U, Va
10 20

In matrix form we can write:

1.2 —0.1 v 12
—-0.1 0.15 w | |0
Solving the above matrix equations yields: v = 10.588 V; v, = 7.059 V.

Comments: Note that the determination of the Thévenin voltage is nothing more than
the careful application of the basic circuit analysis methods presented in earlier sections.
The only difference is that we first need to properly identify and define the open-circuit
load voltage. You will find the solution to the same example computed by MathCad in the
electronic files that accompany this book.

EXAMPLE 3.14 Load Current Calculation by Thévenin
Equivalent Method

Problem

Compute the load current, i, by the Thévenin equivalent method in the circuit of Figure
3.51.



O=

98
Ry L
JONE
\4
Figure 3.51
RE R3Z
Figure 3.52

S¥e]

Chapter 3 Resistive Network Analysis

Solution
Known Quantities: Source voltage, resistor values.
Find: Load current, i.

Schematics, Diagrams, Circuits, and Given Data: V =24V, =3 A; R, =4 Q;

Assumptions: Assume reference node is at the bottom of the circuit.

Analysis: We first compute the Thévenin equivalent resistance. According to the method
proposed earlier, we zero the two sources by shorting the voltage source and opening the
current source. The resulting circuit is shown in Figure 3.52. We can clearly see that

Rr = R|||R, =4|12 =3 Q.

Following the Thévenin voltage methodology box, we first remove the load and label
the open-circuit voltage, voc. The circuit is shown in Figure 3.53. Next, we observe that,
since vy, is equal to the reference voltage (i.e., zero) the node voltage v, will be equal,
numerically, to the open-circuit voltage. In this circuit, a single nodal equation is required
to arrive at the solution:

V-, Uy

I-——=0
R, + R,

Substituting numerical values, we find that v, = voc = vr =27 V.

0% 30
® .
! <o * #l
I() R, <E Voc e 60
1%
Qv
Figure 3.53 Figure 3.54 Thévenin

equivalent

Finally, we assemble the Thévenin equivalent circuit, shown in Figure 3.54, and
reconnect the load resistor. Now the load current can be easily computed to be:

_ vr _ 27 _
T Rr+R, 3+6

Comments: It may appear that the calculation of load current by the Thévenin equivalent
method leads to more complex calculations than, say, node voltage analysis (you might
wish to try solving the same circuit by nodal analysis to verify this). However, there is one
major advantage to equivalent circuit analysis: Should the load change (as is often the
case in many practical engineering situations), the equivalent circuit calculations still
hold, and only the (trivial) last step in the above example needs to be repeated. Thus,
knowing the Thévenin equivalent of a particular circuit can be very useful whenever we
need to perform computations pertaining to any load quantity.

i

Check Your Understanding

3.18 With reference to Figure 3.46, find the load current, i;, by mesh analysis, if
vs=10V,R; = R; =502, R, =100 2, R; = 150 Q.
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3.19 Find the Thévenin equivalent circuit seen by the load resistor, R, for the circuit
of Figure 3.55.

3.20 Find the Thévenin equivalent circuit for the circuit of Figure 3.56.

a: 100 Q ‘ 20 9 2.

= <
0s5A(y sl 50V 40 Q= R,
<

\AAA%
\
>
[
>

20 Q3
<

YWy
_
o
o

AAA

YWy

60 Q

AAAA b
VWV R.Z

\AAAJ

<

15voasa(®) Eae Figure 3.56

-

Figure 3.55

Computing the Norton Current

The computation of the Norton equivalent current is very similar in concept to that
of the Thévenin voltage. The following definition will serve as a starting point:

Definition

The Norton equivalent current is equal to the short-circuit current that
would flow were the load replaced by a short circuit.

An explanation for the definition of the Norton current is easily found by consid-
ering, again, an arbitrary one-port network, as shown in Figure 3.57, where the
one-port network is shown together with its Norton equivalent circuit. One-port ¢ isc

It should be clear that the current, isc, flowing through the short circuit network
replacing the load is exactly the Norton current, iy, since all of the source current
in the circuit of Figure 3.57 must flow through the short circuit. Consider the
circuit of Figure 3.58, shown with a short circuit in place of the load resistance.
Any of the techniques presented in this chapter could be employed to determine
the current igc. In this particular case, mesh analysis is a convenient tool, once it
is recognized that the short-circuit current is a mesh current. Let iy and i, = igc be
the mesh currents in the circuit of Figure 3.58. Then, the following mesh equations
can be derived and solved for the short-circuit current:

(R1 + Ry)i1 — Raisc = vg
—Roi + (Ry + R3)isc =0

< -
Iy SRr=Ry ¢ Isc
=

Figure 3.57 Illustration of
Norton equivalent circuit

Short circuit
replacing the load

An alternative formulation would employ nodal analysis to derive the equation

Vg — U v v
Ry - R, + Rs

leading to
RyR;

v =

v
SRiRs + RoRs + Ri R,
Figure 3.58 Computation
of Norton current
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Recognizing that isc = v/R3, we can determine the Norton current to be:
. v vsRa
1 N=—=
R:  RiR3+RR3+ RiR,
Thus, conceptually, the computation of the Norton current simply requires identify-
ing the appropriate short-circuit current. The following example further illustrates
this idea.
FOCUSONMETHODOLOGY
Computing the Norton Current
1. Replace the load with a short circuit.
2. Define the short circuit current, igc, to be the Norton equivalent current.
3. Apply any preferred method (e.g., nodal analysis) to solve for igc.
4. The Norton current is iy = isc.
EXAMPLE 3.15 Norton Equivalent Circuit
Problem
14 Ry a Determine the Norton current and the Norton equivalent for the circuit of Figure 3.59.
Otins
I 2R, 2R,
b 7 Solution
b
0 Known Quantities: Source voltage and current, resistor values.
Figure 3.59 ) .
Find: Equivalent resistance, Ry. Norton current, iy = isc.
Schematics, Diagrams, Circuits, and GivenData: V =6V; [ =2 A; Ry =6 Q;
Ry=3Q; Ry =2Q.
R Assumptions: Assume reference node is at the bottom of the circuit.
3 a
AAAA
J) W—o Analysis: We first compute the Thévenin equivalent resistance. We zero the two sources
2k, Sk, by shorting the voltage source and opening the current source. The resulting circuit is
T 1 7 shown in Figure 3.60. We can clearly see that R = R(||R, + R; = 6||3+2 =4 Q.
o Next we compute the Norton current. Following the Norton current methodology
b

Figure 3.60

box, we first replace the load with a short circuit, and label the short-circuit current, igc.
The circuit is shown in Figure 3.61 ready for node voltage analysis. Note that we have
identified two node voltages, v; and v,, and that the voltage source requires that

v, — vy = V. The unknown current flowing through the voltage source is labeled 7.
Applying KCL at nodes 1 and 2, we obtain the following set of equations:

I———i= node 1

i————=0 node 2
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To eliminate one of the three unknowns, we substitute v, — V = v; in the first equation:
Uy — \%

1

= —i=0 node 1

and we rewrite the equations, recognizing that the unknowns are i and v,. Note that the
short-circuit current is isc = v,/ R3.

) 1 B 1
(1)’+(E>"2_1+(E)V
1)'+(i+i) =0

(— l R, Rs UV, =

Substituting numerical values we obtain

1 0.1667 [,:| |:3:|

-1 0.8333 v | [0
and can numerically solve for the two unknowns to find thati = 2.5 A and v, =3 V.
Finally, the Norton or short-circuit current is iy = isc = v,/R; = 1.5 A.

Comments: In this example it was not obvious whether nodal analysis, mesh analysis, or
superposition might be the quickest method to arrive at the answer. It would be a very
good exercise to try the other two methods and compare the complexity of the three
solutions. The complete Norton equivalent circuit is shown in Figure 3.62.

O~
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n
>

AAAA

YVVY
~
]

Figure 3.62 Norton
equivalent circuit
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Source Transformations

This section illustrates source transformations, a procedure that may be very
useful in the computation of equivalent circuits, permitting, in some circumstances,
replacement of current sources with voltage sources, and vice versa. The Norton
and Thévenin theorems state that any one-port network can be represented by a
voltage source in series with a resistance, or by a current source in parallel with
a resistance, and that either of these representations is equivalent to the original
circuit, as illustrated in Figure 3.63.

An extension of this result is that any circuit in Thévenin equivalent form
may be replaced by a circuit in Norton equivalent form, provided that we use the
following relationship:

vr = RTiN (3.32)

Thus, the subcircuit to the left of the dashed line in Figure 3.64 may be replaced
by its Norton equivalent, as shown in the figure. Then, the computation of igc



102

R, Rs
AAA AMAA
Wy WW
< .
Vs R isc L
<

|

|

|

; AMA

‘ WW

|

|

> | > .

Vs SR TR Isc
R; >3

|

|

|

|

‘

Figure 3.64 Effect of source
transformation

Chapter 3 Resistive Network Analysis

Ry
—O O
—-oO
One-port , <
network vr in 2 Rr
—oO
—O O
Thévenin equivalent Norton equivalent

Figure 3.63 Equivalence of Thévenin and Norton representations

becomes very straightforward, since the three resistors are in parallel with the
current source and therefore a simple current divider may be used to compute the
short-circuit current. Observe that the short-circuit current is the current flowing
through Rj3; therefore,

1/R;3 Vs vs Ry

isc =iy = — = 3.33)
I/Ri+1/Ry+1/R3 Ry Ri{R3+ RyR3 + RiR;

which is the identical result obtained for the same circuit in the preceding section,
as you may easily verify. This source transformation method can be very useful,
if employed correctly. Figure 3.65 shows how one can recognize subcircuits
amenable to such source transformations. Example 3.16 is a numerical example
illustrating the procedure.

Node a a
a a T
O
R
<> <>
or Vs i SE R or g 2 R
Vs
O
b b l
Node b b
Thévenin subcircuits Norton subcircuits

Figure 3.65 Subcircuits amenable to source transformation

EXAMPLE 3.16 Source Transformations

Problem

Compute the Norton equivalent of the circuit of Fig. 3.66 using source transformations.

Solution
Known Quantities: Source voltages and current, resistor values.

Find: Equivalent resistance, Ry; Norton current, iy = isc.
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Figure 3.66

Schematics, Diagrams, Circuits, and Given Data: V, =50V; 1 =05A; V, =5V,
R, =100 Q; R, =100 2; R; =200 2; R, = 160 .

Assumptions: Assume reference node is at the bottom of the circuit.

Analysis: First, we sketch the circuit again, to take advantage of the source
transformation technique; we emphasize the location of the nodes for this purpose, as
shown in Figure 3.67. Nodes a’ and b’ have been purposely separated from nodes a” and
b" even though these are the same pairs of nodes. We can now replace the branch
consisting of V; and R, which appears between nodes a” and b”, with an equivalent
Norton circuit with Norton current source V;/R; and equivalent resistance R;. Similarly,
the series branch between nodes a’ and b’ is replaced by an equivalent Norton circuit with
Norton current source V,/R; and equivalent resistance R3. The result of these
manipulations is shown in Figure 3.68. The same circuit is now depicted in Figure 3.69
with numerical values substituted for each component. Note how easy it is to visualize the
equivalent resistance: if each current source is replaced by an open circuit, we find:

R7 = R{||R,||R3|| + R4 = 200][100]]100 + 160 = 200 €2

R, a
=
Vi I Sk
b

Figure 3.67

a"” a’ R, a
Vi < V2
R—If 2R 1() R, RT+ R; R,

~—
b" —L b’ b

Figure 3.68
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Figure 3.69

The calculation of the Norton current is similarly straightforward, since it simply involves
summing the currents:

iy=05-0.025-05=-0.025A
Figure 3.70 depicts the complete Norton equivalent circuit connected to the load.

Comments: It is not always possible to reduce a circuit as easily as was shown in this
example by means of source transformations. However, it may be advantageous to use
source transformation as a means of converting parts of a circuit to a different form,
perhaps more naturally suited to a particular solution method (e.g., nodal analysis).

Experimental Determination of Thévenin and Norton
Equivalents

The idea of equivalent circuits as a means of representing complex and sometimes
unknown networks is useful not only analytically, but in practical engineering ap-
plications as well. Itis very useful to have a measure, for example, of the equivalent
internal resistance of an instrument, so as to have an idea of its power requirements
and limitations. Fortunately, Thévenin and Norton equivalent circuits can also be
evaluated experimentally by means of very simple techniques. The basic idea
is that the Thévenin voltage is an open-circuit voltage and the Norton current
is a short-circuit current. It should therefore be possible to conduct appropriate
measurements to determine these quantities. Once vy and iy are known, we can
determine the Thévenin resistance of the circuit being analyzed according to the
relationship

Ry = -~ (3.34)

IN
How are vy and iy measured, then?

Figure 3.71 illustrates the measurement of the open-circuit voltage and short-
circuit current for an arbitrary network connected to any load and also illustrates
that the procedure requires some special attention, because of the nonideal nature
of any practical measuring instrument. The figure clearly illustrates that in the
presence of finite meter resistance, r,,, one must take this quantity into account
in the computation of the short-circuit current and open-circuit voltage; voc and
isc appear between quotation marks in the figure specifically to illustrate that the
measured “open-circuit voltage” and “short-circuit current” are in fact affected by
the internal resistance of the measuring instrument and are not the true quantities.
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Network connected for measurement of open-circuit voltage

Figure 3.71 Measurement of open-circuit voltage
and short-circuit current

You should verify that the following expressions for the true short-circuit
current and open-circuit voltage apply (see the material on nonideal measuring
instruments in Section 2.8):

iv = %1 + r’i
N SC RT

w. Rr
vr = “voc 1+r7

where iy is the ideal Norton current, vy the Thévenin voltage, and Ry the true
Thévenin resistance. If you recall the earlier discussion of the properties of ideal
ammeters and voltmeters, you will recall that for an ideal ammeter, r,, should
approach zero, while in an ideal voltmeter, the internal resistance should approach
an open circuit (infinity); thus, the two expressions just given permit the deter-
mination of the true Thévenin and Norton equivalent sources from an (imperfect)
measurement of the open-circuit voltage and short-circuit current, provided that
the internal meter resistance, r,,, is known. Note also that, in practice, the inter-
nal resistance of voltmeters is sufficiently high to be considered infinite relative
to the equivalent resistance of most practical circuits; on the other hand, it is
impossible to construct an ammeter that has zero internal resistance. If the inter-
nal ammeter resistance is known, however, a reasonably accurate measurement
of short-circuit current may be obtained. The following example illustrates the
point.

(3.35)
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Experimental Determination of Thévenin Equivalent Circuit

Problem:
Determine the Thévenin equivalent of an unknown circuit from
measurements of open-circuit voltage and short-circuit current.

Solution:

Known Quantities— Measurement of short-circuit current and open-circuit

voltage. Internal resistance of measuring instrument.

Find— Equivalent resistance, R7; Thévenin voltage, vy = voc.

Schematics, Diagrams, Circuits, and Given Data— Measured voc = 6.5V,

Measured isc = 3.75 mA; r,, = 15 Q.

Assumptions— The unknown circuit is a linear circuit containing ideal

sources and resistors only.

Analysis— The unknown circuit, shown on the top left in Figure 3.72, is

replaced by its Thévenin equivalent, and is connected to an ammeter for a

measurement of the short-circuit current (Figure 3.72, top right), and then to

a voltmeter for the measurement of the open-circuit voltage (Figure 3.72,

bottom). The open-circuit voltage measurement yields the Thévenin voltage:
Voc = Vr = 6.5V

To determine the equivalent resistance, we observe in the figure depicting

the voltage measurement that, according to the circuit diagram,

v.o_c =Ry +ry
Isc
Thus,
Rr=20C _, —1733-15=1,718Q
Isc

a

—o

Load
terminals

—o
b

An unknown circuit

(0]

b
Network connected for measurement of
short-circuit current (practical ammeter)
Ry a
+

(@ oo QD)

o
O

b
Network connected for measurement of
open-circuit voltage (ideal voltmeter)

Figure 3.72
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Comments— Note how easy the experimental method is, provided
we are careful to account for the internal resistance of
the measuring instruments.

FIND IT

ON THE WEB

One last comment is in order concerning the practical measurement of the
internal resistance of a network. In most cases, it is not advisable to actually short-
circuit a network by inserting a series ammeter as shown in Figure 3.71; permanent
damage to the circuit or to the ammeter may be a consequence. For example,
imagine that you wanted to estimate the internal resistance of an automotive battery;
connecting a laboratory ammeter between the battery terminals would surely result
in immediate loss of the instrument. Most ammeters are not designed to withstand
currents of such magnitude. Thus, the experimenter should pay attention to the
capabilities of the ammeters and voltmeters used in measurements of this type, as
well as to the (approximate) power ratings of any sources present. However, there
are established techniques especially designed to measure large currents.

3.6 MAXIMUM POWER TRANSFER

The reduction of any linear resistive circuit to its Thévenin or Norton equiva-
lent form is a very convenient conceptualization, as far as the computation of
load-related quantities is concerned. One such computation is that of the power
absorbed by the load. The Thévenin and Norton models imply that some of the
power generated by the source will necessarily be dissipated by the internal circuits
within the source. Given this unavoidable power loss, a logical question to ask is,
how much power can be transferred to the load from the source under the most
ideal conditions? Or, alternatively, what is the value of the load resistance that
will absorb maximum power from the source? The answer to these questions is
contained in the maximum power transfer theorem, which is the subject of the
present section.

The model employed in the discussion of power transfer is illustrated in
Figure 3.73, where a practical source is represented by means of its Thévenin
equivalent circuit. The maximum power transfer problem is easily formulated if
we consider that the power absorbed by the load, Py, is given by the expression

P, = i%RL (3.36)
and that the load current is given by the familiar expression

. vr

= 3.37

135 R, + Ry ( )

Combining the two expressions, we can compute the load power as
v2
Pp=—"'——R (3.38)

T R+ R

To find the value of R; that maximizes the expression for P, (assuming that Vy
and Ry are fixed), the simple maximization problem

dPy
— =0 3.39
R, (3.39)

Practical source Ry

Load

AAAA
VVVY
=
<

i

O
O

Source equivalent

Given vy and Ry, what value of R;,
will allow for maximum power
transfer?

Figure 3.73 Power transfer
between source and load
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Source Load

Figure 3.74 Source
loading effects
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must be solved. Computing the derivative, we obtain the following expression:
dP,  vi(Rp+ Rr)* —2v7R.(R. + Ry)

dR. (Ry + Rp)* (340
which leads to the expression

(R + Ry)> —2R. (R, + Rr) =0 (3.41)
It is easy to verify that the solution of this equation is:

R, = Ry (3.42)

Thus, in order to transfer maximum power to a load, the equivalent source and
load resistances must be matched, that is, equal to each other.

This analysis shows that in order to transfer maximum power to a load, given
a fixed equivalent source resistance, the load resistance must match the equivalent
source resistance. What if we reversed the problem statement and required that
the load resistance be fixed? What would then be the value of source resistance
that maximizes the power transfer in this case? The answer to this question can
be easily obtained by solving Check Your Understanding Exercise 3.23.

A problem related to power transfer is that of source loading. This phe-
nomenon, which is illustrated in Figure 3.74, may be explained as follows: when
a practical voltage source is connected to a load, the current that flows from the
source to the load will cause a voltage drop across the internal source resistance,
Ving; @S a consequence, the voltage actually seen by the load will be somewhat lower
than the open-circuit voltage of the source. As stated earlier, the open-circuit volt-
age is equal to the Thévenin voltage. The extent of the internal voltage drop within
the source depends on the amount of current drawn by the load. With reference to
Figure 3.75, this internal drop is equal to i Ry, and therefore the load voltage will
be:

VvV, = vr — lRT (3.43)

It should be apparent that it is desirable to have as small an internal resistance as
possible in a practical voltage source.

b
Amplifier Speaker
T T T T T T T T T T T T T T T T | =TT _\
! Ry a | } ]
i | T —O
i i i | +
i | N
<
i Vr } i IE R} Vi
| ] ! 3 I
I | ! I
i i I | -
| o— | —o0
} b } I

Figure 3.75 A simplified model of an audio system

In the case of a current source, the internal resistance will draw some current
away from the load because of the presence of the internal source resistance; this
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current is denoted by ij, in Figure 3.74. Thus the load will receive only part of
the short-circuit current available from the source (the Norton current):

v
ip =iy — — 3.44
2 (3.44)
It is therefore desirable to have a very large internal resistance in a practical current
source. You may wish to refer back to the discussion of practical sources to verify
that the earlier interpretation of practical sources can be expanded in light of the
more recent discussion of equivalent circuits.

EXAMPLE 3.17 Maximum Power Transfer

Problem

Use the maximum power transfer theorem to determine the increase in power delivered to
a loudspeaker resulting from matching the speaker load resistance to the amplifier
equivalent source resistance.

Solution

Known Quantities: Source equivalent resistance, Rr; unmatched speaker load
resistance, Ry y; matched loudspeaker load resistance, Rym.

Find: Difference between power delivered to loudspeaker with unmatched and matched
loads, and corresponding percent increase.

Schematics, Diagrams, Circuits, and Given Data: Ry = 8 Q; Ry = 16 Q; Ry = 8 Q.

Assumptions: The amplifier can be modeled as a linear resistive circuit, for the purposes
of this analysis.

Analysis: Imagine that we have unknowingly connected an 8-2 amplifier to a 16-Q2
speaker. We can compute the power delivered to the speaker as follows. The load voltage
is found by using the voltage divider rule:

Riy 2
Uy =———"VUr =V
W Rt RT3V
and the load power is then computed to be:
v 4 2
Py =5 = -1 =0.0278v;
Ry 9Rw

Let us now repeat the calculation for the case of a matched 8-€2, speaker resistance, Ry .
Let the new load voltage be vy and the corresponding load power be P y;. Then,

1

UM = ZUr
2

and

2 1 2
Piy= oM — = T _ 0312502
Riv 4 Rim
The increase in load power is therefore

_0.03125 — 0.0278

100 = 12.
0.0278 x 100 >%
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Comments: In practice, an audio amplifier and a speaker are not well represented by the
simple resistive Thévenin equivalent models used in the present example. Circuits that are
appropriate to model amplifiers and loudspeakers are presented in later chapters. The
audiophile can find further information concerning hi-fi circuits in Chapters 7 and 16.

Focus on Computer-Aided Tools: A very nice illustration of the maximum power
transfer theorem based on MathCad may be found in the Web references.

110
FIND IT
ON THE WEB
2
1.5
5
g 1
£
<
0.5
0
-1 05 0 05 1

Volts

Figure 3.76 i-v
characteristic of exponential
resistor

Check Your Understanding

3.21 A practical voltage source has an internal resistance of 1.2 2 and generates a 30-V
output under open-circuit conditions. What is the smallest load resistance we can connect
to the source if we do not wish the load voltage to drop by more than 2 percent with respect
to the source open-circuit voltage?

3.22 A practical current source has an internal resistance of 12 k2 and generates a
200-mA output under short-circuit conditions. What percent drop in load current will be
experienced (with respect to the short-circuit condition) if a 200-€2 load is connected to the
current source?

3.23 Repeat the derivation leading to equation 3.42 for the case where the load resistance
is fixed and the source resistance is variable. That is, differentiate the expression for the
load power, P;, with respect to Ry instead of R;. What is the value of Ry that results in
maximum power transfer to the load?

3.7 NONLINEAR CIRCUIT ELEMENTS

Until now the focus of this chapter has been on linear circuits, containing ideal
voltage and current sources, and linear resistors. In effect, one reason for the sim-
plicity of some of the techniques illustrated in the earlier part of this chapter is the
ability to utilize Ohm’s law as a simple, linear description of the i-v characteristic
of an ideal resistor. In many practical instances, however, the engineer is faced
with elements exhibiting a nonlinear i-v characteristic. This section explores two
methods for analyzing nonlinear circuit elements.

Description of Nonlinear Elements

There are a number of useful cases in which a simple functional relationship exists
between voltage and current in a nonlinear circuit element. For example, Figure
3.76 depicts an element with an exponential i-v characteristic, described by the
following equations:

oav

i:]()e v>0

3.45
== v=<0 ( )

There exists, in fact, a circuit element (the semiconductor diode) that very nearly
satisfies this simple relationship. The difficulty in the i-v relationship of equation
3.45 is that it is not possible, in general, to obtain a closed-form analytical solution,
even for a very simple circuit.
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With the knowledge of equivalent circuits you have just acquired, one ap-
proach to analyzing a circuit containing a nonlinear element might be to treat the
nonlinear element as a load, and to compute the Thévenin equivalent of the re-
maining circuit, as shown in Figure 3.77. Applying KVL, the following equation
may then be obtained:

Ur = RTiX + Uy (3.46)

To obtain the second equation needed to solve for both the unknown voltage, v,,
and the unknown current, i, it is necessary to resort to the i-v description of the
nonlinear element, namely, equation 3.45. If, for the moment, only positive volt-
ages are considered, the circuit is completely described by the following system:

i, = Ipe*™ vy >0
(3.47)
vr = RTix + Uy

The two parts of equation 3.47 represent a system of two equations in two un-
knowns; however, one of these equations is nonlinear. If we solve for the load
voltage and current, for example, by substituting the expression for i, in the linear
equation, we obtain the following expression:

vr = Rplpe®™ + v, (3.48)
or
vy = vy — Rylpe*™™ (3.49)

Equations 3.48 and 3.49 do not have a closed-form solution; that is, they are
transcendental equations. How can v, be found? One possibility is to generate
a solution numerically, by guessing an initial value (e.g., v, = 0) and iterating
until a sufficiently precise solution is found. This solution is explored further in
the homework problems. Another method is based on a graphical analysis of the
circuit and is described in the following section.

Graphical (Load-Line) Analysis of Nonlinear Circuits

The nonlinear system of equations of the previous section may be analyzed in a
different light, by considering the graphical representation of equation 3.46, which
may also be written as follows:

. 1 vr

iy = R Uy + R, (3.50)
We notice first that equation 3.50 describes the behavior of any load, linear or
nonlinear, since we have made no assumptions regarding the nature of the load
voltage and current. Second, it is the equation of a line in the i,-v, plane, with
slope —1/R7 and i, intercept Vr/Ry. This equation is referred to as the load-line
equation; its graphical interpretation is very useful and is shown in Figure 3.78.

The load-line equation is but one of two i-v characteristics we have available,
the other being the nonlinear-device characteristic of equation 3.45. The intersec-
tion of the two curves yields the solution of our nonlinear system of equations.
This result is depicted in Figure 3.79.

Finally, another important point should be emphasized: the linear network
reduction methods introduced in the preceding sections can always be employed to
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Nonlinear element as a load. We wish
to solve for v and i,.

Ry

Nonlinear

vr
element

Figure 3.77 Representation
of nonlinear element in a linear
circuit
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X X

vr vr i-v curve of “exponential resistor”
. . . 1
Ry Load-line equation: i =—— v + i Ry i=1,e™v>0
! Rr % Rr
Solution
. . . 1 vr
Load-line equation: i = — v_+ —
TRy T Ry
vr Ve vr Ve
Figure 3.78 Load line Figure 3.79 Graphical solution equations 3.48 and
3.49

reduce any circuit containing a single nonlinear element to the Thévenin equivalent
form, as illustrated in Figure 3.80. The key is to identify the nonlinear element
and to treat it as a load. Thus, the equivalent-circuit solution methods developed
earlier can be very useful in simplifying problems in which a nonlinear load is
present. Example 3.19 illustrates this point.

—e— v
+ +

Linear v, | Nonlinear vr v, | Nonlinear
network load ’ load

Figure 3.80 Transformation of nonlinear circuit of Thévenin
equivalent

EXAMPLE 3.18 Nonlinear Load Power Dissipation

Problem

A linear generator is connected to a nonlinear load in the configuration of Figure 3.80.
Determine the power dissipated by the load.

Solution

Known Quantities: Generator Thévenin equivalent circuit; load i-v characteristic and
load line.

Find: Power dissipated by load, P,.
Schematics, Diagrams, Circuits, and Given Data: Ry = 30 Q; vy =15 V.
Assumptions: None.

Analysis: We can model the circuit as shown in Figure 3.80. The objective is to
determine the voltage v, and the current i, using graphical methods. The load-line
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equation for the circuit is given by the expression

. 1 vr
I, = —R—Tvx + R—T
or
1 15

TR R0
This equation represents a line in the i,-v, plane, with i, intercept at 0.5 A and v,
intercept at 15 V. In order to determine the operating point of the circuit, we superimpose
the load line on the device i-v characteristic, as shown in Figure 3.81, and determine the
solution by finding the intersection of the load line with the device curve. Inspection of
the graph reveals that the intersection point is given approximately by

i, =0.14 A v, =11V
and therefore the power dissipated by the nonlinear load is
P, =014 x 11 =154 W

It is important to observe that the result obtained in this example is, in essence, a
description of experimental procedures, indicating that the analytical concepts developed
in this chapter also apply to practical measurements.

08 Device i-v

characteristic
4

/7

I, (amps)
=
W
>
;
N

{3 g P ey sy g .

f 20 30
15V

V(volts)

Figure 3.81

CONCLUSION

The objective of this chapter was to provide a practical introduction to the analysis of linear
resistive circuits. The emphasis on examples is important at this stage, since we believe that
familiarity with the basic circuit analysis techniques will greatly ease the task of learning
more advanced ideas in circuits and electronics. In particular, your goal at this point should
be to have mastered four analysis methods, summarized as follows:

1. Node voltage and mesh current analysis. These methods are analogous in concept;
the choice of a preferred method depends on the specific circuit. They are generally
applicable to the circuits we will analyze in this book and are amenable to solution by
matrix methods.
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2. The principle of superposition. This is primarily a conceptual aid that may simplify
the solution of circuits containing multiple sources. It is usually not an efficient

method.

3. Thévenin and Norton equivalents. The notion of equivalent circuits is at the heart of
circuit analysis. Complete mastery of the reduction of linear resistive circuits to
either equivalent form is a must.

4.  Numerical and graphical analysis. These methods apply in the case of nonlinear
circuit elements. The load-line analysis method is intuitively appealing and will be
employed again in this book to analyze electronic devices.

The material covered in this chapter will be essential to the development of more
advanced techniques throughout the remainder of the book.

CHECK YOUR UNDERSTANDING ANSWERS

CYU 3.1 0.2857 A
CYU 3.2 —-18V

CYU 34 5V

CYU 3.5 2A

CYU 3.7 12V

CYU 3.8 1.39 A

CYU 3.14 Rr =2.5kQ
CYU 3.15 Rr =7

CYU 3.16
CYU 3.17
CYU 3.18
CYU 3.19
CYU 3.20
CYU3.21
CYU 3.22
CYU 3.23

Ry = 4.0k
Ry = 7.06
ir = 0.02857 A

Ry =30 2; voc = vy =5V

R =10 Q; voc = vr =0.704 V
58.8 Q2

1.64%

Rs = 0 for maximum power transfer to
the load

HOMEWORK PROBLEMS

Section 1: Node/Mesh Analysis

3.1 In the circuit shown in Figure P3.1, the mesh
currents are:

11=5A 12=3A 13=7A

Determine the branch currents through:
a. R1~ b. Rz. C. Rz

AAAA
VVVY

Figure P3.1

3.2 In the circuit shown in Figure P3.2, the source and
node voltages are:

Vsi =V =110V
Va=103V Vg =—-107V

Determine the voltage across each of the five resistors.

AAAA
VVVY

Rs

Figure P3.2



3.3 Using node voltage analysis in the circuit of Figure
P3.3, find the currents i; and i,.

48

AAAA

YYVY
1A ililes izlEEZS 2A
Figure P3.3

3.4 Using node voltage analysis in the circuit of Figure
P3.4, find the voltage, v, across the 4-siemens

conductance.

28
AAAA
VYVY

3A

M o\

. N

<> <>
2A v 248 338
Figure P3.4

3.5 Using node voltage analysis in the circuit of Figure
P3.5, find the current, i, through the voltage source.

28
AAAA
VYVY
) 3V
NN%% -
- <
24 F4s 1 23S
Figure P3.5

3.6 Using node voltage analysis in the circuit of Figure
P3.6, find the three indicated node voltages.

50 Q
AAAA
Yvy
750 4
Vi V2 V3
MY 6—‘
YW
1
2A 2200Q 250Q 2100Q
Figure P3.6

3.7 Using node voltage analysis in the circuit of Figure
P3.7, find the current, i, drawn from the independent
voltage source.
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12Q , 1/4Q
AAA AAA
VVVY VVVY
pAAL
t > <>
3V 312Q 0.5v Z1/4Q
Figure P3.7

3.8 The circuit shown in Figure P3.8 is a Wheatstone
bridge circuit. Use node voltage analysis to determine
V, and V,,, and thus determine V, — V,,.

Figure P3.8

3.9 In the circuit in Figure P3.9, assume the source
voltage and source current and all resistances are
known.

a. Write the node equations required to determine the
node voltages.

b. Write the matrix solution for each node voltage in
terms of the known parameters.

R,
AAAA
\AAAS
R,
()13 Av‘v‘v"v
+ >
<
Vs : R4:E
Figure P3.9

3.10 For the circuit of Figure P3.10 determine:

Ry

Rs

Figure P3.10
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a. The most efficient way to solve for the voltage
across Rj3. Prove your case.

b. The voltage across Rj.
VSl == Vsz =110V

Ry =500 mQ R, =167 mQ
R; =700 mQ
R, =200 mQ Rs =333 mQ

3.11 In the circuit shown in Figure P3.11, Vg, and R
model a temperature sensor, i.e.,

Vsy = kT k=10 V/°C

Vs =24V R, =R, =12k
R, =3kQ Ry =10k

Ry =24kQ  Vgy = —2.524V

The voltage across Rz, which is given, indicates the
temperature. Determine the temperature.

< <
R= <R
b Rs s
AAA
+ VVVY
m + _
(::)‘@1 = Vis
- RsS
< =
+ ::RA
. =<
2 )Vs2

Figure P3.11

3.12 Using KCL, perform a node analysis on the circuit

shown in Figure P3.12 and determine the voltage

across R,4. Note that one source is a controlled voltage

source!

Vs =5V Ay =170 R, =22kQ
R, =18kQ R;=68kQ R,=220Q

Ve~
R,
+ L R,
Vs Ry N
AvVri

1—AAAA
I—VVWVy

Figure P3.12

3.13 Using mesh current analysis, find the voltage, v,
across the 3-2 resistor in the circuit of Figure P3.13.

AAA AA
\AAAS

=
A
Vv
(98]
)
—
)
A
VWy

Figure P3.13

3.14 Using mesh current analysis, find the current, i,

through the 2-<2 resistor on the right in the circuit of
Figure P3.14.

> >
2v (_) n330 320

Figure P3.14

3.15 The circuit shown in Figure P3.10 is a simplified

DC model of a 3-wire distribution service to residential
and commercial buildings. The two ideal sources, Ry
and Rs, are the Thévenin equivalent circuit of the
distribution system. R; and R, represent 110-V
lighting and utility loads of about 800 W and 300 W
respectively. Rj represents a 220-V heating load of
about 3 kW. The numbers above are not actual values
rated (or nominal) values, that is, the typical values for
which the circuit has been designed. Determine the
actual voltages across the three loads.

Vsi = Ve =110V Ri=R;=13Q
R, =15Q R, =40 Q Ry =16 Q2

3.16 Using mesh current analysis, find the voltage, v,

across the current source in the circuit of Figure P3.16.

>
<o
w
)

1Q
AMA
VWVy

>
>
>
>
>

<
<
<
-

<
<
<

+

2v(® 30 V(DZA

AAAA

>
22Q
<

Figure P3.16



3.17 Using mesh current analysis, find the current, i,
through the voltage source in the circuit of Figure P3.5.

3.18 Using mesh current analysis, find the current, i, in
the circuit of Figure P3.6.

3.19 Using mesh current analysis, find the equivalent
resistance, R = v/, seen by the source of the circuit
in Figure P3.19.

Figure P3.19

3.20 Using mesh current analysis, find the voltage gain,
A, = vy /vy, in the circuit of Figure P3.20.

<

A\AAJ

1Q 1/4 Q

Vi

o=+
+

<> <>
2inQ w1493,
-< <

Figure P3.20

3.21 In the circuit shown in Figure P3.21:

Vi = Ver =450 V
Ri=Rs=025Q
R=8Q R =5Q
Ry =32Q

Determine, using KCL and a node analysis, the voltage
across R;, R,, and R;.

> R

AAAA

5
AMAA
VVVY

Figure P3.21

3.22 F, and F, in the circuit shown in Figure P3.22 are
fuses. Under normal conditions they are modeled as a
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short circuit. However, if excess current flows through
a fuse, its element melts and the fuse “blows,” i.e., it
becomes an open circuit.

Vsi=Vs; =115V
Ri=R =5Q
R4:R5:200m52

Ry =109

Normally, the voltages across R;, R,, and R; are 106.5
V, —106.5 V, and 213.0 V. If F; now blows, or opens,
determine, using KCL and a node analysis, the new
voltages across Ry, R, and Rj.

R, F,

AAAA
VVVY

Rs F

Figure P3.22

3.23 F) and F, in the circuit shown in Figure P3.22 are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, it “blows” and the fuse becomes an open circuit.

VS] = Vszz 120V
RI=R,=2Q R;=8
R4=R5=250m§2

If F, blows, or opens, determine, using KCL and a
node analysis, the voltages across Ry, Ry, R3, and Fj.

3.24 The circuit shown in Figure P3.24 is a simplified
DC version of an AC three-phase Y-Y electrical
distribution system commonly used to supply
industrial loads, particularly rotating machines.

VSl = Vsz = Vs3 = 170V
RW] - sz = Rw3 == 07 Q

Ri=19Q R,=23Q
R;=11Q
Determine:

a. The number of unknown node voltages and mesh
currents.

b. Node voltages.
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Figure P3.24

3.25 The circuit shown in Figure P3.24 is a simplied DC
version of an AC three-phase Y-Y electrical
distribution system commonly used to supply
industrial loads, particularly rotating machines.

Vsi =V =V =170V
Rwi = Rw2 = Rw3; =0.7Q
R =19Q R, =23Q
R; =11¢Q

A node analysis with KCL and a ground at the terminal
common to the three sources gives the only unknown
node voltage Vy = 28.94 V. If the node voltages in a
circuit are known, all other voltages and currents in the
circuit can be determined. Determine the current
through and voltage across R;.

3.26 The circuit shown in Figure P3.24 is a simplified
DC version of a typical 3-wire, 3-phase AC Y-Y
distribution system. Write the mesh (or loop)
equations and any additional equations required to
determine the current through R, in the circuit shown.

3.27 Determine the branch currents using KVL and loop
analysis in the circuit of Figure P3.24.

Vo =Ves3 =110V V5, =90V
R =79Q R, =R;=37%Q
RW] - sz - Rw3 == 13 Q

3.28 F and F, in the circuit shown in Figure P3.22 are
fuses. Under normal conditions they are modeled as a
short circuit. However, if excess current flows through
a fuse, its element melts and the fuse “blows”; i.e., it
becomes an open circuit.

V312V32=1]5V
RI=R,=5Q
R4:R5:200m§2

Ry=10

Determine, using KVL and a mesh analysis, the
voltages across R;, R,, and R; under normal
conditions, i.e., no blown fuses.

3.29 Using KVL and a mesh analysis only, determine
the voltage across R; in the 2-phase, 3-wire power
distribution system shown in Figure P3.22. R, and R,
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represent the 110-V loads. A light bulb rated at 100 W
and 110 V has a resistance of about 100 2. R3
represents the 220-V loads. A microwave oven rated at
750 W and 220 V has a resistance of about 65 Q. R4
and Rs represent losses in the distribution system
(normally much, much smaller than the values given
below). Fuses are normally connected in the path
containing these resistances to protect against current

overloads.
V51:V52:110V R4:Rs:l39
R, =100 R, =22Q R; =70 Q2

3.30 F and F; in the circuit shown in Figure P3.22 are
fuses. Under normal conditions they are modeled as
short circuits, in which case the voltages across R; and
R, are 106.5 V and that across Rz is 213.0 V. However,
if excess current flows through a fuse, its element melts
and the fuse “blows”; i.e., it becomes an open circuit.

V31=V32=115V R4=R5=200m§2
Ri=R=5Q R;=10Q

If F, “blows” or opens, determine, using KVL and a
mesh analysis, the voltages across R;, R,, and R3 and
across the open fuse.

3.31 F and F; in the circuit shown in Figure P3.22 are
fuses. Under normal conditions they are modeled as
short circuits. Because of the voltage drops across the
distribution losses, modeled here as R, and Rs, the
voltages across R; and R; (the 110-V loads) are
somewhat less than the source voltages and across R3
[the 220-V loads] somewhat less than twice one of the
source voltages. If excess current flows through a fuse,
its element melts and the fuse “blows”; i.e., it becomes
an open circuit.

VS] =V52=115V
Ri=4Q R, =752

Ri=Rs=1Q
Ry=125Q

If F, blows, or opens, determine, using KVL and a
mesh analysis, the voltages across R;, R,, and R; and
across the open fuse.

Section 2: Equivalent Circuits

3.32 Find the Thévenin equivalent circuit as seen by the
3-Q resistor for the circuit of Figure P3.32.

5Q 1Q

<>
36V 34Q 3Q
<

Figure P3.32

3.33 Find the voltage, v, across the 3-L resistor in the
circuit of Figure P3.33 by replacing the remainder of
the circuit with its Thévenin equivalent.
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Figure P3.33

3.34 Find the Thévenin equivalent for the circuit of
Figure P3.34.

<>
10V 4 320

Figure P3.34

3.35 Find the Thévenin equivalent for the circuit of
Figure P3.35.

Figure P3.35

3.36 Find the Norton equivalent of the circuit of Figure
P3.34.

3.37 Find the Norton equivalent of the circuit of Figure
P3.37.

3Q 2Q

v/2

Figure P3.37

3.38 Find the Norton equivalent of the circuit to the left
of the 2-C2 resistor in Figure P3.38.
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1Q 10 3
AAAA AAAA AAAA
YVVY YYVY yvy
<>
2V 303 <>2A 20

Figure P3.38

3.39 Find the Norton equivalent to the left of terminals
a and b of the circuit shown in Figure P3.39.

50
AAA
YVVY
1Q 3
NN%% NN&% Qua
= <
D8V 320
ob

Figure P3.39

3.40 In the circuit shown in Figure P3.40, Vg models the
voltage produced by the generator in a power plant,
and R; models the losses in the generator, distribution
wire, and transformers. The three resistances model
the various loads connected to the system by a
customer. How much does the voltage across the total
load change when the customer connects the third load
R; in parallel with the other two loads?

Ve =110V R, = 19 mQ
R, = R, =930 mQ R; = 100 mQ2
Ry
<> <> <>
:ERI :ERZ :ER3
+ < < <
Vs
Power Customer
plant

Figure P3.40

3.41 In the circuit shown in Figure P3.41, Vg models the
voltage produced by the generator in a power plant,
and R; models the losses in the generator, distribution
wire, and transformers. R, R,, and R; model the
various loads connected by a customer. How much
does the voltage across the total load change when the
customer closes switch S; and connects the third load
R; in parallel with the other two loads?

Vs =450V R, =19mQ
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3
=+

Figure P3.41

3.42 A nonideal voltage source is modeled in Figure
P3.42 as an ideal source in series with a resistance that
models the internal losses; i.e., dissipates the same
power as the internal losses. In the circuit shown in
Figure P3.42, with the load resistor removed so that the
current is zero (i.e., no load), the terminal voltage of
the source is measured and is 20 V. Then, with
R, = 2.7 kR, the terminal voltage is again measured
and is now 18 V. Determine the internal resistance and
the voltage of the ideal source.

M)
=+
=

AMA
WW

=
ks

Nonideal source

Figure P3.42

3.43 The circuit of Figure P3.43 is part of the DC
biasing network in many transistor amplifier stages.
Determining its Thévenin equivalent circuit
considerably simplifies analysis of the amplifier.
Determine the Thévenin equivalent circuit with respect
to the port shown.

< +
fiRl Vee
——o

Figure P3.43

Resistive Network Analysis

3.44 The circuit of Figure P3.44 shows a battery in
parallel with a mechanical generator supplying a load.

V=11V Vo =12V
Rp=0.7Q R;=03Q R, =7¢Q.
Determine:

a. The Thévenin equivalent of the circuit to the right
of the terminal pair or port X-X".

b. The terminal voltage of the battery, i.e., the voltage
between X and X'.

X Y
Ry Rg
<>

SR
+ I +
Vi Ve
X’ Y’

Figure P3.44

3.45 The circuit of Figure P3.45 shows a battery in
parallel with a mechanical generator supplying a load.

V=11V Vo =12V
R =07 R;=03Q R, =72Q
Determine:

a. The Thévenin equivalent of the circuit to the left of
the terminal pair or port Y-Y".

b. The terminal voltage of the battery, i.e., the voltage
between Y and Y'.

X Y
Rp Rg
>

EER L
+ I +
Vs Ve
X’ Y’

Figure P3.45

3.46 Find the Norton equivalent resistance of the circuit
in Figure P3.46 by applying a voltage source v, and
calculating the resulting current i,.

Figure P3.46



3.47 The circuit shown in Figure P3.47 is in the form of
what is known as a differential amplifier. Find an
expression for v, in terms of v; and v, using
Thévenin’s or Norton’s theorem.

—_——
AAAA AAAA
\AAAS \AAAS
2Q 2Q
i f 25Q % ip
W@ o |uro—d O

AA
vy
N
o]

~

)
A

YVYVY

Figure P3.47

3.48 Refer to the circuit of Figure P3.35. Assume the
Thévenin voltage is known to be 2 V, positive at the
bottom terminal. Find the new source voltage.

Section 3: Superposition

3.49 With reference to Figure P3.49, determine the
current through R; due only to the source Vi,.

Ve =110V Voo =90V
R, =560 Q2 R, =3.5kQ
Ry =810 Q
+ >
)3 %ERI
- &

+
¥ <
— ‘/SZ <1R3
>

Figure P3.49

3.50 Determine, using superposition, the voltage across
R in the circuit of Figure P3.50.

IB == 12A RB == 1 Q
R=023Q
Re
()13 EERB REE
- + -
Ve

Figure P3.50
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3.51 Using superposition, determine the voltage across
R, in the circuit of Figure P3.51.

V51:V52:12V
R =R, =R;=1kQ

R,
A
WWy
R,
+ >
a5 <
(_) Vs Ry
> + 3
Vsa

Figure P3.51

3.52 With reference to Figure P3.52, using

superposition, determine the component of the current
through Rj that is due to V.

Vg1 = Vs = 450 V

Rl == 7 Q R2 B 5 Q
R; =10 Ri=Rs=1%
AVAVAVAV
+ L
DV ER
R}Eé
<4 + >
(_)‘/52 EERZ
R
AVAVAVAV
Figure P3.52
3.53

The circuit shown in Figure P3.24 is a simplified
DC version of an AC three-phase electrical distribution
system.

Vsi = Vo=V =170V

RWI - sz == Rw3 == 07 Q

R =19Q R, =23Q

Ry =11Q
To prove how cumbersome and inefficient (although

sometimes necessary) the method is, determine, using
superposition, the current through R;.

Section 4: Maximum Power Transfer
3.54 The equivalent circuit of Figure P3.54 has:
Vig=12V Ry, =8Q

If the conditions for maximum power transfer exist,
determine:
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a. The value of R;.
b. The power developed in R .

c. The efficiency of the circuit, that is, the ratio of
power absorbed by the load to power supplied by
the source.

Figure P3.54

3.55 The equivalent circuit of Figure P3.54 has:

Vim=35V Req = 600 ©

If the conditions for maximum power transfer exist,
determine:

a. The value of R;.
b. The power developed in R.
c. The efficiency of the circuit.

3.56 A nonideal voltage source can be modeled as an
ideal voltage source in series with a resistance
representing the internal losses of the source as shown
in Figure P3.56. A load is connected across the
terminals of the nonideal source.

a. Plot the power dissipated in the load as a function
of the load resistance. What can you conclude from
your plot?

b. Prove, analytically, that your conclusion is valid in
all cases.

Figure P3.56

Section 5: Nonlinear Circuit Elements

3.57 Write the node voltage equations in terms of v; and
v, for the circuit of Figure P3.57. The two nonlinear
resistors are characterized by

iy = 203
i}, = UZ + IOvh

Do not solve the resulting equations.

Resistive Network Analysis

iq R,
V1 — 1 %)
| I | .
+ v, — wh

<
NONETI | QR

Figure P3.57

3.58 We have seen that some devices do not have a linear
current-voltage characteristic for all i and v—that is, R
is not constant for all values of current and voltage.
For many devices, however, we can estimate the
characteristics by piecewise linear approximation. For
a portion of the characteristic curve around an
operating point, the slope of the curve is relatively
constant. The inverse of this slope at the operating
point is defined as “incremental resistance,” Rj.:

_av

AV
inc — dil ~

Al

[Vo.1ol [Vo.1o]

where [V, Iy] is the operating point of the circuit.

a. For the circuit of Figure P3.58, find the operating
point of the element that has the characteristic
curve shown.

b. Find the incremental resistance of the nonlinear
element at the operating point of part a.

c. If Vr were increased to 20 V, find the new
operating point and the new incremental resistance.

Ry
Vr Nonlinear
element
Vr=15V Rr=200Q
I
1=0.0025V 2
Vv

Figure P3.58

3.59 The device in the circuit in Figure P3.59 is a
temperature sensor with the nonlinear i -v
characteristic shown. The remainder of the circuit in



which the device is connected has been reduced to a
Thévenin equivalent circuit with:
VTH = 24 V Req = 192 Q

Determine the current through the nonlinear device.

150 P
?100; .
= ]
£ o 1
S0 =
1 2 3

M

(a) (b)

Figure P3.59

3.60 The device in the circuit in Figure P3.60 is an
induction motor with the nonlinear i-v characteristic
shown. Determine the current through and the voltage
across the nonlinear device.

Vs=450V R=9Q

60 T

STALL

IS
(=}
T

ip (a)——

20

150 300 450

vp (V) —=

(a) (b)
Figure P3.60

3.61 The nonlinear device in the circuit shown in Figure
P3.61 has the i-v characteristic given.
Vs=Vm=15V R = R,q = 60 2

Determine the voltage across and the current through
the nonlinear device.
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(a)

30 T T T T T T T T T

20

ip (ma) —

10

0.5 1.0 1.5

vp (V) —=

(b)
Figure P3.61

3.62 The resistance of the nonlinear device in the circuit
in Figure P3.62 is a nonlinear function of pressure.
The i-v characteristic of the device is shown as a
family of curves for various pressures. Construct the
DC load line. Plot the voltage across the device as a
function of pressure. Determine the current through
the device when P = 30 psig.

VSZVTHZZ.SV R=Req=1259

(@)

1.0 2.0
vp (V) ——

g
=]

(b
Figure P3.62
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3.63 The resistance of the nonlinear device in the 3.64 The nonlinear device in the circuit shown in Figure
circuits shown in Figure P3.63 is a nonlinear function P3.64 has the i-v characteristic:
of pressure. The i-v characteristic of the device is

. . S vp/Vr
shown as a family of curves for various pressures. ip=loe

Construct the DC load line and determine the current I,=107" A Vr =26 mV
through the device when P = 40 kPa. Ve=Viu=15V
VSZVTH=2.5V R=Req=1259 R:Req:6OQ

Determine an expression for the DC load line. Then
use an iterative technique to determine the voltage
across and current through the nonlinear device.

(@)

30 e

Figure P3.64

20

ip (ma) ——

1.0 2.0
vp (V) ——

>
=}

(b)
Figure P3.63



AC Network Analysis

n this chapter we introduce energy-storage elements and the analysis of circuits
excited by sinusoidal voltages and currents. Sinusoidal (or AC) signals con-
stitute the most important class of signals in the analysis of electrica cir-
cuits. The simplest reason is that virtually al of the electric power used in
households and industries comes in the form of sinusoidal voltages and currents.
The chapter isarranged asfollows. First, energy-storage elements are intro-
duced, and time-dependent signal sources and the concepts of average and root-
mean-square (rms) values are discussed. Next, we analyze the circuit equations
that arise when time-dependent signal sources excite circuits containing energy-
storage elements; in the course of this discussion, it will become apparent that
differential equations are needed to describe the dynamic behavior of these cir-
cuits. Theremainder of thechapter isdevoted to the development of circuit analysis
techniquesthat greatly simplify the solution of dynamic circuitsfor the special case
of sinusoidal signal excitation; the more general analysis of these circuits will be
completed in Chapter 5.
By the end of the chapter, you should have mastered a number of concepts
that will be used routinely in the remainder of the book; these are summarized as
follows:

- Definition of thei-v relationship for inductors and capacitors.
+ Computation of rms values for periodic waveforms.

125
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+ Representation of sinusoidal signals by complex phasors.
- Impedance of common circuit elements.
+ AC circuit analysis by Kirchhoff’s laws and equivalent-circuit methods.

4.1 ENERGY-STORAGE (DYNAMIC) CIRCUIT
ELEMENTS

Theideal resistor wasintroduced through Ohm'’slaw in Chapter 2 as auseful ide-
alization of many practical electrical devices. However, in addition to resistance
to the flow of electric current, which is purely a dissipative (i.e., an energy-10ss)
phenomenon, electric devices may also exhibit energy-storage properties, much
in the same way a spring or a flywheel can store mechanical energy. Two distinct
mechanisms for energy storage exist in electric circuits: capacitance and induc-
tance, both of which lead to the storage of energy in an electromagnetic field.
For the purpose of this discussion, it will not be necessary to enter into a detailed
electromagnetic analysis of these devices. Rather, two ideal circuit elements will
be introduced to represent the ideal properties of capacitive and inductive energy
storage: the ideal capacitor and the ideal inductor. It should be stated clearly
that ideal capacitors and inductors do not exist, strictly speaking; however, just
like the ideal resistor, these “ideal” elements are very useful for understanding the
behavior of physical circuits. In practice, any component of an electric circuit will
exhibit some resistance, some inductance, and some capacitance—that is, some
energy dissipation and some energy storage.

The Ideal Capacitor

A physical capacitor is a device that can store energy in the form of a charge
separation when appropriately polarized by an electric field (i.e., avoltage). The
simpl est capacitor configuration consistsof two parallel conducting platesof cross-
sectional area A, separated by air (or another dielectrict material, such as mica

O—
+
d or Teflon). Figure 4.1 depicts atypical configuration and the circuit symbol for a
O—

capacitor.
A The presence of an insulating material between the conducting plates does
not allow for the flow of DC current; thus, a capacitor acts as an open circuit
Parallel-plate capacitor with air in the presence of DC currents. However, if the voltage present at the capacitor

gap d (dr isthe dielectric) terminals changes as a function of time, so will the charge that has accumul ated

at the two capacitor plates, since the degree of polarization is a function of the
applied electric field, which istime-varying. In a capacitor, the charge separation
caused by the polarization of the dielectric is proportional to the external voltage,

_eA
C=a that is, to the applied electric field:

+

B € = permittivity of air 0=CV (4 1)
=8.854x10%2 £
where the parameter C is called the capacitance of the element and is a measure

of the ability of the device to accumulate, or store, charge. The unit of capacitance

Circuit isthe coulomb/volt and is called thefarad (F). The farad is an unpractically large
symbol unit; therefore it is common to use microfarads (1 uF = 10~% F) or picofarads
Figure 4.1 Structure of (1 pF = 1072 F). From equation 4.1 it becomes apparent that if the external

parallel-plate capacitor

1A dielectric material isamaterial that is not an electrical conductor but contains alarge number of
electric dipoles, which become polarized in the presence of an electric field.
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voltage applied to the capacitor plates changes in time, so will the charge that is
internally stored by the capacitor:

q(t) = Cv(1) (4.2)

Thus, although no current can flow through a capacitor if the voltage acrossiit is
constant, atime-varying voltage will cause chargeto vary intime.

The change with time in the stored charge is analogous to a current. You
can easily seethis by recalling the definition of current given in Chapter 2, where
it was stated that

_dq(®)
dt

that is, that electric current corresponds to the time rate of change of charge.
Differentiating equation 4.2, one can obtain arelationship between the current and
voltage in a capacitor:

i(1) (4.3

dv(t)

ity=0=C_ 7

(4.4)

Equation 4.4 isthe defining circuit law for a capacitor. If the differential equation
that defines the i-v relationship for a capacitor is integrated, one can obtain the
following relationship for the voltage across a capacitor:

1 t
ve(t) = E /;DO ic dt’ (45)
Equation 4.5 indicates that the capacitor voltage depends on the past current
through the capacitor, up until the present time, . Of course, one does not usually
have precise information regarding the flow of capacitor current for al past time,
and soitisuseful to definetheinitial voltage (or initial condition) for the capacitor
according to the following, where 1y is an arbitrary initial time:

]

1
Vo=vc(t =1p) = E/ ic dt’ (46)

—00

The capacitor voltage is now given by the expression

t
ve(t) = lf icdt' + Vo t>t 4.7)
C Ji
The significance of theinitial voltage, Vj, is simply that at time 7o some chargeis
stored in the capacitor, giving riseto avoltage, vc (#p), according to therel ationship
Q = CV. Knowledgeof thisinitial condition is sufficient to account for the entire
past history of the capacitor current.

Capacitors connected in seriesand parallel can be combinedtoyield asingle
equivalent capacitance. The rule of thumb, which isillustrated in Figure 4.2, is
the following:

Capacitorsin parallel add. Capacitorsin series combine according to the
same rules used for resistors connected in parallel.
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C1

o———

=C,

AY|

Cs
_r
1,1 .1
[ORERER
Capacitances in series combine
like resistorsin parallel

CEQ =

V|

=C; —=C; —<Cs

CEQ: C1+Cy+ C3
Capacitances in parallel add

Figure 4.2 Combining
capacitors in a circuit
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EXAMPLE 4.1 Calculating Capacitor Current from Voltage
Problem

Calculate the current through a capacitor from knowledge of its terminal voltage.

Solution
Known Quantities: Capacitor terminal voltage; capacitance value.

Find: Capacitor current.

Schematics, Diagrams, Circuits, and Given Data: v(t) = 5((,/1075) Vit>0s;
C = 0.1 uF. Theterminal voltageis plotted in Figure 4.3.

e

<

(@]

\

Al
v (t),V
w

Time, us

Figure 4.3

Assumptions: The capacitor isinitialy discharged: v(r =0) = 0.

Analysis: Using the defining differential relationship for the capacitor, we may obtain
the current by differentiating the voltage:

d’;(t’) = 10*7% (e*’/1°’6> =057° A >0
A plot of the capacitor current is shown in Figure 4.4. Note how the current jumpsto 0.5
A instantaneously as the voltage rises exponentially: The ability of a capacitor’s current to
change instantaneously is an important property of capacitors.

ic(t) =C

Comments: Asthe voltage approaches the constant value 5 V, the capacitor reaches its
maximum charge-storage capability for that voltage (since Q = CV) and no more current
flows through the capacitor. Thetotal charge storedis Q@ = 0.5 x 107 C. Thisisafairly
small amount of charge, but it can produce a substantial amount of current for a brief
period of time. For example, the fully charged capacitor could provide 100 mA of current
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Time, us

Figure 4.4

for aperiod of time equal to 5 us:
,_A0 _05x10°
T At 5x10°
There are many useful applications of this energy-storage property of capacitorsin
practical circuits.

Focus on Computer-Aided Tools: The Matlab™ mfiles used to generate the plots of
Figures 4.3 and 4.4 may be found in the CD-ROM that accompanies this book. VIRTUAL LAB

EXAMPLE 4.2 Calculating Capacitor Voltage from Current
and Initial Conditions

Problem

Calculate the voltage across a capacitor from knowledge of its current and initial state of
charge.

Solution
Known Quantities: Capacitor current; initial capacitor voltage; capacitance value.
Find: Capacitor voltage.

Schematics, Diagrams, Circuits, and Given Data:

0 t<0s
ict)=3 I=10mA 0O0=<r<ls
0 t>1s

ve(t=0)=2V; C = 1,000 pnF.
The capacitor current is plotted in Figure 4.5(a).


http://www.mhhe.com/engcs/electrical/rizzoni/examples.mhtml
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VIRTUAL LAB
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10 12
9 11
8 10
< 7 9
6 > 8
Es =7
<4 = 6
3 5
2 4
1 Kl e e e
0 2
-02 0 02 04 06 08 1 12 -02 0 02 04 06 08 1 12
Time (9) Time(s)
@ (b)
Figure 4.5

Assumptions: The capacitor isinitialy charged such that vc(r = 1o = 0) = 2 V.

Analysis: Using the defining integral relationship for the capacitor, we may obtain the
voltage by integrating the current:

1 t
ve(t) = I / ic()dr'+vc(te) t=1o

o

1t I
—f Idt + Vo= —=t+Vo=10t +2V O0<t<1s
ve® =4 Clo ¢

12v t>1s

Comments: Oncethe current stops, at ¢ = 1 s, the capacitor voltage cannot develop any
further but remains now at the maximum valueitreachedatt = 1s. ve(r =1) = 12 V.
The final value of the capacitor voltage after the current source has stopped charging the
capacitor depends on two factors: (1) theinitial value of the capacitor voltage, and (2) the
history of the capacitor current. Figure 4.5(a) and (b) depicts the two waveforms.

Focus on Computer-Aided Tools: The Matlab™ m-files used to generate the plots of
Figures 4.5(a) and (b) may be found in the CD-ROM that accompanies this book.

FIND IT
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Physical capacitors are rarely constructed of two parallel plates separated
by air, because this configuration yields very low values of capacitance, unlessone
is willing to tolerate very large plate areas. In order to increase the capacitance
(i.e., theahility to storeenergy), physical capacitorsare often made of tightly rolled
sheets of metal film, with a dielectric (paper or Mylar) sandwiched in between.
Table4.lillustratestypical values, materials, maximum voltage ratings, and useful
frequency rangesfor varioustypes of capacitors. Thevoltagerating isparticularly
important, because any insulator will break down if a sufficiently high voltageis
applied acrossiit.

Energy Storage in Capacitors

You may recall that the capacitor was described earlier in this section asan energy-
storage element. An expression for the energy stored in the capacitor, W (¢), may
be derived easily if we recall that energy is the integral of power, and that the


http://www.mhhe.com/engcs/electrical/rizzoni/student/olc/fiotw04.htm
http://www.mhhe.com/engcs/electrical/rizzoni/examples.mhtml
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Table 4.1 Capacitors

Capacitance Maximum voltage  Freguency range
Material range V) (H2)
Mica 1pFto0.1 uF 100-600 10%-10%
Ceramic 10pFto 1 uF 50-1,000 10%-10%
Mylar 0.001 uFto 10 uF  50-500 102108
Paper 1,000 pFto 50 uF  100-105 102108
Electrolytic 0.1 uFto0.2F 3-600 10-10*

instantaneous power in a circuit element is equal to the product of voltage and

current:

We(r) = / Pe(r') dr’

= / ve(tic(t') dt’

d ’
:/Uc(l/)c UdC[(,[)

dt’

(4.8)

1 2
We() = SCugm)

Energy stored in a capacitor (J)

Example 4.3 illustrates the calculation of the energy stored in a capacitor.
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EXAMPLE 4.3 Energy Stored in a Capacitor

Problem

Calculate the energy stored in a capacitor.

Solution

Known Quantities: Capacitor voltage; capacitance value.

Find: Energy stored in capacitor.

Schematics, Diagrams, Circuits, and Given Data:

Analysis:

0 = Cve =105 x 12 = 120 uC

We =

1
2

ve(t=0))=12V;C =10 uF

1
ZCi = 5 X 1075 x 144 = 720 x 107 = 720 puJ
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Capacitive Displacement Transducer and Microphone

As shown in Figure 4.1, the capacitance of a parallel-plate capacitor is given
by the expression

cA
d

where ¢ isthe permittivity of the dielectric material, A the area of each of
the plates, and d their separation. The permittivity of air is

g0 = 8.854 x 1012 F/m, o that two parallel plates of area 1 m?, separated
by adistance of 1 mm, would give rise to a capacitance of 8.854 x 10~3 uF,
avery small value for avery large plate area. Thisrelative inefficiency
makes parallel-plate capacitors impractical for use in electronic circuits. On
the other hand, parallel-plate capacitors find application as motion
transducers, that is, as devices that can measure the motion or displacement
of an abject. In acapacitive motion transducer, the air gap between the
platesis designed to be variable, typically by fixing one plate and connecting
the other to an object in motion. Using the capacitance value just derived for
aparallel-plate capacitor, one can obtain the expression

_ 8854 x 1034

X

C =

C

where C isthe capacitance in pF, A isthe area of the platesin mm?, and x is
the (variable) distance in mm. It isimportant to observe that the changein
capacitance caused by the displacement of one of the platesis nonlinear,
since the capacitance varies as the inverse of the displacement. For small
displacements, however, the capacitance varies approximately in alinear
fashion.

The sensitivity, S, of this motion transducer is defined as the slope of the
change in capacitance per change in displacement, x, according to the
relation

dc 8.854 x 1073A pF
T dx 2x2 mm
Thus, the sensitivity increases for small displacements. This behavior can be
verified by plotting the capacitance as a function of x and noting that as x
approaches zero, the slope of the nonlinear C (x) curve becomes steeper
(thus the greater sensitivity). Figure 4.6 depicts this behavior for a
transducer with area equal to 10 mm?.

S

FIND IT

This simple capacitive displacement transducer actually
finds usein the popular capacitive (or condenser) microphone,
in which the sound pressure waves act to displace one of the ON THE WEB
capacitor plates. The change in capacitance can then be
converted into a change in voltage or current by means of a suitable circuit.
An extension of this concept that permits measurement of differential
pressures is shown in simplified form in Figure 4.7. In thefigure, a
three-terminal variable capacitor is shown to be made up of two fixed
surfaces (typically, spherical depressions ground into glass disks and coated
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Capacitance versus displacement

200
150‘\
gloo\
o \
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Figure 4.6 Response of a capacitive displacement

transducer
Thin deflecting plate d
i C
/leed surfaces db
vs(t)('1
;r\essure inlet C_)
Chc
686
c bd
o—fo——-o =
c b d Bridge configuration
Circuit model

Figure 4.7 Capacitive pressure transducer, and related bridge circuit

with a conducting material) and of a deflecting plate (typically made of
steel) sandwiched between the glass disks. Pressureinlet orifices are
provided, so that the deflecting plate can come into contact with the fluid
whose pressure it is measuring. When the pressure on both sides of the
deflecting plate is the same, the capacitance between terminals b and d, Cy,,
will be equal to that between terminals b and ¢, Cp,. If any pressure
differential exists, the two capacitances will change, with an increase on the
side where the deflecting plate has come closer to the fixed surface and a
corresponding decrease on the other side.

This behavior isideally suited for the application of a bridge circuit,
similar to the Wheatstone bridge circuit illustrated in Example 2.12, and also
shown in Figure 4.7. In the bridge circuit, the output voltage, voy, IS
precisely balanced when the differential pressure across the transducer is
zero, but it will deviate from zero whenever the two capacitances are not
identical because of a pressure differential across the transducer. We shall
analyze the bridge circuit later.

The Ideal Inductor

Theideal inductor is an element that has the ability to store energy in a magnetic
field. Inductorsare typically made by winding a coil of wire around acore, which
can be an insulator or a ferromagnetic material, as shown in Figure 4.8. When a
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current flows through the coil, a magnetic field is established, as you may recall
from early physics experiments with electromagnets.? In an ideal inductor, the
resistance of the wire is zero, so that a constant current through the inductor will
flow freely without causing a voltage drop. In other words, the ideal inductor
actsasa short circuit in the presence of DC currents. If atime-varying voltageis
established across the inductor, a corresponding current will result, according to
the following relationship:

.
() = L% (4.9)

where L is called the inductance of the coil and ismeasured in henrys (H), where
1H=1V-gA (4.10)

Henrys are reasonable units for practical inductors; millihenrys (mH) and mi-
crohenrys («H) are also used.

It is instructive to compare equation 4.9, which defines the behavior of an
ideal inductor, with the expression relating capacitor current and voltage:

de
ic(t) = C—
ic(t) o

We note that the roles of voltage and current are reversed in the two elements, but
that both are described by a differential equation of the same form. This duality
between inductors and capacitors can be exploited to derive the same basic results
for the inductor that we already have for the capacitor simply by replacing the
capacitance parameter, C, with the inductance, L, and voltage with current (and
viceversa) in the equationswe derived for the capacitor. Thus, theinductor current
isfound by integrating the voltage across the inductor:

1 t
(1) = — dr’
=7 [
If the current flowing through the inductor at timer = ¢ is known to be Ip, with

(4.11)

(4.12)

1 [P
Io=ir(t =1) = z/ VL dt’ (413)
then the inductor current can be found according to the equation
l t
ir(t) = Z/ 13 dl‘/‘f‘lo =1 (414)
fo

Series and parallel combinations of inductors behave like resistors, as illustrated
in Figure 4.9, and stated as follows:

Inductorsin series add. Inductorsin parallel combine according to the
same rules used for resistors connected in parallel.

2See also Chapter 15.
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Figure 4.9 Combining inductors in a circuit

135

EXAMPLE 4.4 Calculating Inductor Voltage from Current

Problem

Calculate the voltage across the inductor from knowledge of its current.

Solution
Known Quantities: Inductor current; inductance value.
Find: Inductor voltage.

Schematics, Diagrams, Circuits, and Given Data:

0 t<1lms
01 01
—_ 4+ —t 1<r<5ms
4 4
ip(n=1 01 5<t<9ms
01 01
13x — — —t¢ 9<t<13ms
4 4
0 t > 13ms
L =10H.

The inductor current is plotted in Figure 4.10.

Assumptions: i;(t =0) <O0.

0.1

0.08 1
0.06 | 1
0.04 1

iLt) (mA)

0.02 | 1

0 5 10 15
Time (ms)

Figure 4.10
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Analysis: Using the defining differential relationship for the inductor, we may obtain the
voltage by differentiating the current:

dip (1)
v () =L ’r
Piecewise differentiating the expression for the inductor current, we obtain:

ov t<1lms
0.25V l1<t<5ms

v(t)=4{ 0OV 5<t<9ms
-0.25V 9<r<13ms
ov t>13ms

The inductor voltageis plotted in Figure 4.11.

0.3

02} E
01t E
0

01} 1
02} 1
03} 1
-04
0

v (1) (V)

5 10 15
Time (ms)

Figure 4.11

Comments: Note how the inductor voltage has the ability to change instantaneously!

Focus on Computer-Aided Tools: The Matlab™ m-files used to generate the plots of
Figures 4.10 and 4.11 may be found in the CD-ROM that accompanies this book.

EXAMPLE 4.5 Calculating Inductor Current from Voltage

Problem

Calculate the current through the inductor from knowledge of the terminal voltage and of
theinitial current.

Solution

Known Quantities: Inductor voltage; initial condition (current at ¢+ = 0); inductance
value.

Find: Inductor current.

Schematics, Diagrams, Circuits, and Given Data:

ov t<0s
v(it) =41 —10mV O<t<l1s
ov t>1s

The terminal voltageis plotted in Figure 4.12(a).
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Figure 4.12

Assumptions: i (t =0) = I, =0.
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(b)

Analysis: Using the defining integral relationship for the inductor, we may obtain the

voltage by integrating the current:

1 t
iL(t)=z/ v(t) dt'+ip (to) t>1

o

1"
= f (=10 x 1073y dr'+1o
iL(Z) = L 0

-1A
The inductor current is plotted in Figure 4.12b.

—10-2

0
=——14+0=—A 0<t<l1s
102 + <t =<

Comments: Note how the inductor voltage has the ability to change instantaneously!

Focus on Computer-Aided Tools: The Matlab™ mfiles used to generate the plots of
Figures 4.12(a) and (b) may be found in the CD-ROM that accompanies this book.
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Energy Storage in Inductors

The magnetic energy stored in an ideal i

nductor may be found from a power

calculation by following the same procedure employed for the idea capacitor.

The instantaneous power in the inductor is

dip (1)
dt

Pr(t) =ir(Hvp(t) =i (1)L

given by

dJ1
= [Zui(n} (4.15)

Integrating the power, we obtain the total energy stored in the inductor, as shown

in the following equation:

d 1
W (1) = / Pi(t) dt’ = / - [zug(ﬂ)] dr’ (4.16)
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1
W) = ELif(t) Energy stored in an inductor (J)

Note, onceagain, theduality withtheexpressionfor theenergy storedinacapacitor,
in equation 4.8.

EXAMPLE 4.6 Energy Storage in an Ignition Coil
Problem

Determine the energy stored in an automotive ignition coil.

Solution

Known Quantities: Inductor current initial condition (current at ¢+ = 0); inductance value.
Find: Energy stored in inductor.

Schematics, Diagrams, Circuits, and Given Data: L = 10mH; i, = I = 8 A.

Analysis:

1 1
W, = ELif =35 102 % 64=32x 102 =320mJ
Comments: A more detailed analysis of an automotive ignition coil is presented in

Chapter 5 to accompany the discussion of transient voltages and currents.

Analogy between Electrical and Hydraulic Circuits

A useful analogy can be made between the flow of electrical current through
electrical components and the flow of incompressible fluids (e.g., water, oil)
through hydraulic components. The analogy starts with the observation that
the volume flow rate of afluid in a pipeisanalogousto current flow in a
conductor. Similarly, the pressure drop across the pipe is analogous to the
voltage drop across aresistor. Figure 4.13 depicts this relationship
graphically. Thefluid resistance presented by the pipe to the fluid flow is
analogousto an electrical resistance: The pressure difference between the
two ends of the pipe, (P1 — P»), causesfluid flow, ¢, much like a potential
difference across a resistor forces a current flow:

1
qr = R_f(Pl - p2)

[ 1( )
i=—(—v
R+ 2
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Figure 4.13 Analogy between _
electrical and fluid resistance V2 Py

Figure 4.14 Anaogy between fluid
capacitance and electrical capacitance

The analogy between electrical and hydraulic circuits can aso be
extended to include energy storage effects corresponding to capacitance and
inductance. If the fluid enters a vessel that has some elasticity
(compressihility), energy can be stored in the expansion and contraction of
the vessel walls (if this reminds you of a mechanical spring, you are
absolutely right!). This phenomenon givesrise to afluid capacitance effect
very similar to the electrical capacitance phenomenon we have just
introduced. Energy is stored in the compression and expansion of the gas;
thisform of energy storageis of the potential energy type. Figure 4.14
depicts a so-called gas bag accumul ator, which consists of a two-chamber
arrangement that permits fluid to displace a membrane separating the
incompressible fluid from a compressible fluid (e.g., air). If, for amoment,
we imagine that the reference pressure, p», is zero (think of this asaground
or reference pressure), and that the voltage is the reference or ground
voltage, we can create an analogy between an electrical capacitor and afluid
capacitor (the gas-bag accumulator) as shown in Figure 4.14.

dAp dp1

=C,—— =(C,*Xt=

ar f dt fdt
. CdAv Cdvl
I = = _
dt dt

Thefinal element in the analogy isthe so-called fluid inertance
parameter, which is analogous to inductance in the electrical circuit. Fluid
inertance, as the name suggests, is caused by the inertial properties, i.e., the
mass, of the fluid in motion. Asyou know from physics, a particlein motion
has kinetic energy associated with it; fluid in motion consists of a collection
of particles, and it aso therefore must have kinetic energy storage properties.
If you wish to experience the kinetic energy contained in afluid in motion,
all you have to do is hold afire hose and experience the reaction force
caused by the fluid in motion on your body! Figure 4.15 depicts the analogy
between electrical inductance and fluid inertance. These analogies and the
energy equations are summarized in Table 4.2.

dq
APZPl—Pzzlfd—tf

A Ldi
v=uv1—vy=L—
1— V2 s
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i4>
Vi o— LoV
+ Av —

|
?pz f

Figure 4.15 Anaogy
between fluid inertance and

electrical inertance

Table 4.2 Analogy between electrical and fluid circuits

P1

Electrical element or

Hydraulic or fluid

Property equation analogy

Potential variable Voltage or potential Pressure difference,
difference, v1 — v2 PL— P>

Flow variable Current flow, i Fluid volume flow rate, g ¢

Resistance Resistor, R Fluid resistor, R ¢

Capacitance Capacitor, C Fluid capacitor, C ¢

Inductance Inductor, L Fluid inertor, I

Power dissipation P =i°R Py =q3Ry

Potential energy storage W, = 3Cv? W, =3C,p?

Kinetic energy storage Wy = 3Li? Wi = 31743

Check Your Understanding

4.1 The current waveform shown in Figure 4.16 flows through a 50-mH inductor. Plot

the inductor voltage, v, (¢).

i () (mA)

15
10
5

0 12345678
t (ms)

Figure 4.16

v(t) (V)

Figure 4.17

4.2 Thevoltage waveform of Figure 4.17 appears across a 1,000-uF capacitor. Plot the

capacitor current, ic(1).

4.3 Calculate the energy stored in theinductor (in joules) at t = 3 ms by the waveform
of Exercise 4.1. Assumei(—o0) = 0.

4.4 Perform the calculation of Exercise 4.3 for the capacitor if ve(—oc0) =0 V.
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4.5 Compute and plot the inductor energy (in joules) and power (in watts) for the case
of Exercise 4.1.

4.2 TIME-DEPENDENT SIGNAL SOURCES

In Chapter 2, the general concept of an ideal energy source was introduced. In
the present chapter, it will be useful to specifically consider sources that generate
time-varying voltages and currents and, in particular, sinusoidal sources. Figure
4.18 illustrates the convention that will be employed to denote time-dependent
signal sources.

O
v(t) i® ) v (), i(t){
O

Generalized time-dependent sources Sinusoidal source

Figure 4.18 Time-dependent signal sources

One of the most important classes of time-dependent signalsis that of pe-
riodic signals. These signals appear frequently in practical applications and are
a useful approximation of many physical phenomena. A periodic signal x(¢) isa
signal that satisfies the following equation:

x(t) =x(t +nT) n=123,... (4.17)

where T is the period of x(z). Figure 4.19 illustrates a number of the periodic
waveformsthat are typically encountered in the study of electrical circuits. Wave-
forms such as the sine, triangle, square, pulse, and sawtooth waves are provided
in the form of voltages (or, less frequently, currents) by commercially available
signal (or waveform) generators. Such instruments allow for selection of the
waveform peak amplitude, and of its period.

As stated in the introduction, sinusoidal waveforms constitute by far the
most important class of time-dependent signals. Figure 4.20 depicts the relevant
parameters of asinusoidal waveform. A generalized sinusoid isdefined asfollows:

x(t) = A cos(wt + ¢) (4.18)

where A istheamplitude, » theradian frequency, and ¢ the phase. Figure4.20
summarizes the definitions of A, w, and ¢ for the waveforms

x1(t) = A cos(wt) and x2(t) = A cos(wt + @)

where
1
f = natura frequency = T (cycles/s, or Hz)

o = radian frequency = 2x f (radiang/s) (4.19)

A A
¢ =21 ?t(radians) - 3607[ (degrees)
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The phase shift, ¢, permits the representation of an arbitrary sinusoidal signal.
Thus, the choice of the reference cosine function to represent sinusoidal signals—
arbitrary as it may appear at first—does not restrict the ability to represent all
sinusoids. For example, one can represent a sine wave in terms of a cosine wave
simply by introducing a phase shift of 7 /2 radians:

Asin(wt) = A cos (a)t — %) (4.20)

Although one usually employsthevariable w (in units of radians per second)
to denote sinusoidal frequency, it is common to refer to natural frequency, f, in
units of cycles per second, or hertz (Hz). The reader with sometraining in music
theory knows that a sinusoid represents what in music is called a pure tone; an
A-440, for example, is a tone at a frequency of 440 Hz. It is important to be
aware of the factor of 2z that differentiates radian frequency (in units of rad/s)
from natural frequency (in units of Hz). The distinction between the two units of
frequency—which are otherwise completely equivalent—is whether one chooses
to define frequency in terms of revolutions around atrigonometric circle (in which
case the resulting units are rad/s), or to interpret frequency as a repetition rate
(cycles/second), in which case the units are Hz. The relationship between the two
isthe following:

w=2nf (4.21)

Why Sinusoids?

You should by now have developed a healthy curiosity about why so much atten-
tion is being devoted to sinusoidal signals. Perhaps the simplest explanation is
that the electric power used for industrial and household applications worldwide
is generated and delivered in the form of either 50- or 60-Hz sinusoidal voltages
and currents. Chapter 7 will provide more detail regarding the analysis of electric
power circuits. The more ambitious reader may explore the box “Fourier Analy-
sis’ in Chapter 6 to obtain a more comprehensive explanation of the importance
of sinusoidal signals. It should be remarked that the methods developed in this
section and the subsequent sections apply to many engineering systems, not just to
electrical circuits, and will be encountered again in the study of dynamic-system
modeling and of control systems.

Average and RMS Values

Now that anumber of different signal waveforms have been defined, it isappropri-
ate to define suitable measurements for quantifying the strength of atime-varying
electrical signal. The most common types of measurements are the aver age (or
DC) value of asignal waveform—which corresponds to just measuring the mean
voltage or current over a period of time—and the root-mean-square (or rms)
value, which takes into account the fluctuations of the signal about its average
value. Formally, the operation of computing the average value of asignal corre-
spondstointegrating the signal waveform over some (presumably, suitably chosen)
period of time. We define the time-averaged value of asignal x(¢) as

,
(x@) = % /0 x(t) dt’ (4.22)
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where T isthe period of integration. Figure 4.21 illustrates how this process does, x(®)
in fact, correspond to computing the average amplitude of x(¢) over aperiodof T <x(t)>] _ e -

seconds.

0 T t

Figure 4.21 Averaging a
signal waveform

EXAMPLE 4.7 Average Value of Sinusoidal Waveform

Problem

Compute the average value of the signal x () = 10 cos(100¢).

Solution

Known Quantities: Functional form of the periodic signal x ().

Find: Averagevalueof x (7).

Analysis: Thesigna is periodic with period T = 27 /w = 27 /100, thus we need to

integrate over only one period to compute the average value:

1 T 1 27 /100
(x()) = —/ x() dt = io/ 10 cos(100¢)dt
T 0 2 0

_ 10 (sin(27) — sin(0)) = 0
2

Comments: The average value of asinusoidal signal is zero, independent of its
amplitude and frequency.

The result of Example 4.7 can be generalized to state that
(A cos (wt +¢)) =0 (4.23)

aresult that might be perplexing at first: If any sinusoidal voltage or current has
zero average value, is its average power equal to zero? Clearly, the answer must
be no. Otherwise, it would be impossible to illuminate households and streets and
power industrial machinery with 60-Hz sinusoidal current! There must be another
way, then, of quantifying the strength of an AC signal.

Very conveniently, a useful measure of the voltage of an AC waveform is
the root-mean-square, or rms, value of the signal, x (), defined as follows:

1 T
Xrms = */ x2(¢") dt’ (4.24)
T Jo

Note immediately that if x(¢) is a voltage, the resulting x;ms will also have units
of volts. If you analyze equation 4.24, you can see that, in effect, the rms value
consists of the square root of the average (or mean) of the square of the signal.
Thus, the notation rms indicates exactly the operations performed on x () in order
to obtainitsrmsvalue.



144 Chapter 4 AC Network Analysis

EXAMPLE 4.8 Rms Value of Sinusoidal Waveform

Problem

Compute the rms value of the sinusoidal current i (1) = I cos(wt).

Solution
Known Quantities: Functional form of the periodic signal i (¢).
Find: Rmsvaueof i(r).

Analysis: Applying the definition of rms value in equation 4.24, we compute:

1 T w 21 /w
irms = ?/O P2(t)dt’ = Z./o I? cos? (wt')dt’
w (¥l 1
— et 12 = 20t dr’
\/271 /0 <2 ~+ cos(2wt )) t

= 1124— @ fzn/w 12 cos(2wt)dt’
V2 T )y 2 @

At this point, we recognize that the integral under the square root sign is equal to zero (see
Example 4.7), because we are integrating a sinusoidal waveform over two periods. Hence:

1
irms = ﬁ = 07071

where I isthe peak value of the waveform i (z).

Comments: Thermsvalue of asinusoidal signal is equal to 0.707 times the peak value,
independent of its amplitude and frequency.

The preceding example illustrates how the rms value of a sinusoid is pro-
portional to its peak amplitude. The factor of 0.707 = 1/+/2 is a useful number
to remember, since it applies to any sinusoidal signal. It is not, however, gen-
eraly applicable to signal waveforms other than sinusoids, as the Check Your
Understanding exercises will illustrate.

Check Your Understanding

4.6 Expressthevoltage v(r) = 155.6sin(377t + 60°) in cosine form. You should note
that the radian frequency w = 377 will recur very often, since 377 = 27 60; that is, 377 is
the radian equivalent of the natural frequency of 60 cycles/second, which is the frequency
of the electric power generated in North America.

4.7 Compute the average value of the sawtooth waveform shown in Figure 4.22.
4.8 Compute the average value of the shifted triangle wave shown in Figure 4.23.
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Figure 4.22 Figure 4.23

4.9  Find the rmsvaue of the sawtooth wave of Exercise 4.7.
4.10 Find the rmsvalue of the half cosine wave shown in Figure 4.24.

X (t)
/1‘\
3/\5
T T 3 5
-2 0 2 2 a5

X(t) = cost for %Tswkg

wt (rad)

_ i 3n _
=0 forzscot<2 w=1

Figure 4.24

4.3 SOLUTION OF CIRCUITS CONTAINING
DYNAMIC ELEMENTS

Thefirst two sections of this chapter introduced energy-storage elements and time-
dependent signal sources. The logical next task is to analyze the behavior of
circuits containing such elements. The mgjor difference between the analysis of
the resistive circuits studied in Chapters 2 and 3 and the circuits we will explore
in the remainder of this chapter isthat now the equationsthat result from applying
Kirchhoff’s laws are differential equations, as opposed to the algebraic equations
obtained in solving resistive circuits. Consider, for example, the circuit of Figure
4.25, which consists of the series connection of a voltage source, aresistor, and a
capacitor. Applying KVL around the loop, we may abtain the following equation:

vs(t) = vr(t) + vc (1) (4.25)

Observingthatii = ic, equation 4.25 may be combined with the defining equation
for the capacitor (equation 4.5) to obtain

t

vs(t) = Ric(1) + % / icdt’ (4.26)

Equation 4.26 isanintegral equation, which may be converted to the more familiar
form of a differential equation by differentiating both sides of the equation, and
recalling that

ill.

ic(t) d/) =ic(t) (4.27)

A circuit containing energy-storage
elementsis described by a
differential equation. The
differential equation describing the
series RC circuit shownis

dic . 1 .

da TrRe'cT

_ dVS

dt

+VR —

Figure 4.25 Circuit
containing energy-storage
element

145



146

Chapter 4 AC Network Analysis

to obtain the following differential equation:

dic 1 . 1 dvs
it TRCCT R ar
where the argument (¢) has been dropped for ease of notation.
Observe that in equation 4.28, the independent variable is the series current
flowing inthe circuit, and that thisis not the only equation that describesthe series
RC circuit. If, instead of applying KVL, for example, we had applied KCL at the
node connecting theresistor to the capacitor, wewoul d have obtained thefollowing
relationship:

(4.28)

. Vs — Uc . dUC
iR R ic ” (4.29)
or
dve 1 1
- = 4.30
ar T RCUT RCYS (4.30)

Note the similarity between equations 4.28 and 4.30. The left-hand side of both
equations is identical, except for the independent variable, while the right-hand
side takes a dlightly different form. The solution of either equation is sufficient,
however, to determine all voltages and currents in the circuit.

Forced Response of Circuits Excited by Sinusoidal
Sources

Consider again the circuit of Figure 4.25, where now the external source produces
asinusoidal voltage, described by the expression
vs(t) = V cos(wt) (4.31)

Substituting the expression V cos(wt) in place of the source voltage, vg(?), in
the differential equation obtained earlier (equation 4.30), we obtain the following
differential eguation:

d 1 1
— —vec = — V coswt 4.32
2" T RCY T ke @ (4.32)

Sincetheforcing function is asinusoid, the solution may also be assumed to be of
the same form. An expression for v (¢) isthen the following:

ve(t) = Asinwt + B coswt (4.33)
which is equivalent to
ve(t) = C cos(wt + @) (4.34)

Substituting equation 4.33 in the differential equation for v (¢) and solving for the
coefficients A and B yields the expression

. 1 .
Awcoswt — BwSinwt + — (ASinwt + B coswt)
RC
(4.35)

1
= — V coswt
RC
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andif the coefficients of liketermsare grouped, thefollowing equation is obtained:

A . B V
— _B +(Aw+ — — — = 4.
< a))sma)t ( a) )cosw 0 (4.36)

The coefficients of sinwr and coswt must both be identically zero in order for
equation 4.36 to hold. Thus,

A
2 Bw=0
RC
and (4.37)
BV
A -
®tRc RC

The unknown coefficients, A and B, may now be determined by solving equation
4.37, to obtain:

_ VwRC
1+ @?(RC)?
@*(RC) (4.38)
. 14
1+ w?(RC)?
Thus, the solution for ve (¢) may be written as follows:
VwRC %
{)= —————Snwt + ———————— CoSwt 4.39
ve® = T2 ke N Y T 2RO 5 (4:39)

Thisresponseis plotted in Figure 4.26.

The solution method outlined in the previous paragraphs can become quite
complicated for circuits containing a large number of elements; in particular, one
may need to solve higher-order differential equations if more than one energy-
storage element is present in the circuit. A simpler and preferred method for the
solution of AC circuits will be presented in the next section. This brief section
has provided asimple, but complete, illustration of the key elements of AC circuit
analysis. These can be summarized in the following statement:

In asinusoidally excited linear circuit, all branch voltages and currents are
sinusoids at the same frequency as the excitation signal. The amplitudes of
these voltages and currents are a scaled version of the excitation amplitude,
and the voltages and currents may be shifted in phase with respect to the
excitation signal .

These observations indicate that three parameters uniquely define asinusoid: fre-
guency, amplitude, and phase. But if thisisthe case, isit necessary to carry the
“excessluggage,” that is, the sinusoidal functions? Might it be possible to simply
keep track of the three parameters just mentioned? Fortunately, the answers to
these two questions are no and yes, respectively. The next section will describe
the use of a notation that, with the aid of complex algebra, eliminates the need for
thesinusoidal functions of time, and for theformul ation and sol ution of differential
equations, permitting the use of simpler algebraic methods.

v(®) (V)

- vs(t)

/ N /\ ve (t)

A/AE
gv 3.33\5//Time(ms)

Figure 4.26 Waveforms for
the AC circuit of Figure 4.25

(@)
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Leonhard Euler (1707-1783). Photo
courtesy of Deutsches Museum,
Munich.
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Check Your Understanding

4.11 Show that the solution to either equation 4.28 or equation 4.30 is sufficient to
compute al of the currents and voltagesin the circuit of Figure 4.25.
4.12 Show that the equality

Asinwt + B coswt = C cos(wt + ¢)

holdsif
A=—-Csng
B = Ccos¢
or, conversely, if
c=+A24+B?

—
- ()

4.13 Usetheresult of Exercise 4.12 to compute C and ¢ asfunctionsof V, w, R, and
C in eguation 4.39.

4.4 PHASORS AND IMPEDANCE

In this section, we introduce an efficient notation to make it possible to represent
sinusoidal signals as complex numbers, and to eliminate the need for solving dif-
ferential equations. The student who needs a brief review of complex algebrawill
find a reasonably complete treatment in Appendix A, including solved examples
and Check Your Understanding exercises. For the remainder of the chapter, it will
be assumed that you are familiar with both the rectangular and the polar forms of
complex number coordinates, with the conversion between these two forms, and
with the basic operations of addition, subtraction, multiplication, and division of
complex numbers.

Euler’s Identity

Named after the Swiss mathematician Leonhard Euler (thelast nameispronounced
“Qiler”), Euler’s identity forms the basis of phasor notation. Simply stated, the
identity defines the complex exponential ¢/? as a point in the complex plane,
which may be represented by real and imaginary components:

e/’ = cosh + jsing (4.40)

Figure 4.27 illustrates how the complex exponential may be visualized as a point
(or vector, if referenced to the origin) in the complex plane. Note immediately
that the magnitude of ¢/? is equal to 1:

e/ =1 (4.41)
since

|cosf + jsinf| = v/cos? 6 +sin?6 = 1 (4.42)
and note also that writing Euler’s identity corresponds to equating the polar form
of a complex number to its rectangular form. For example, consider a vector of

length A making an angle 6 with the real axis. The following equation illustrates
the relationship between the rectangular and polar forms:

Ae’? = Acosh + jASNG = AZ0 (4.43)
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In effect, Euler's identity is simply a trigonometric relationship in the complex
plane.

Phasors

To see how complex numbers can be used to represent sinusoidal signals, rewrite
the expression for a generalized sinusoid in light of Euler’s equation:

Acos(wt + ¢) = Re[Ae/ @ 19)] (4.44)
This equality is easily verified by expanding the right-hand side, as follows:
Re[Ae/@*9)] = Re[A cos(wt + ¢) + jASN(wt + ¢)]
= A cos(wt + ¢)

We see, then, that it is possible to express a generalized sinusoid as the real part
of a complex vector whose argument, or angle, is given by (wt + ¢) and whose
length, or magnitude, isequal to the peak amplitude of the sinusoid. The complex
phasor corresponding to the sinusoidal signal A cos(wt + ¢) istherefore defined
to be the complex number Ae/¢:

Ae’? = complex phasor notation for A cos(wr + ¢) = AZ6 (4.45)

It isimportant to explicitly point out that thisisadefinition. Phasor notation arises
from equation 4.44; however, thisexpressionissimplified (for convenience, aswill
be promptly shown) by removing the “real part of” operator (Re) and factoring
out and deleting the term ¢/**. The next equation illustrates the simplification:

Acos(wt + ¢) = Re[Ae/ @] = Re[Ae/?e/*'] (4.46)

The reason for this simplification is simply mathematical convenience, as will
become apparent in the following examples; you will have to remember that the
e/ term that was removed from the complex form of the sinusoid is really still
present, indicating the specific frequency of the sinusoidal signal, . With these
caveats, you should now be prepared to use the newly found phasor to analyze AC
circuits. Thefollowing comments summarize the important points devel oped thus
far in the section.

FOCUSONMETHODOLOGY

1. Any sinusoidal signal may be mathematically represented in one of two

ways: atime-domain form,

v(t) = A cos(wt + ¢)
and afrequency-domain (or phasor) form,

V(jw) = Ae/? = AZ0
Note the jw in the notation V (jw), indicating the ¢/*" dependence of
the phasor. In the remainder of this chapter, bold uppercase quantities
will be employed to indicate phasor voltages or currents.

(Continued)
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(Concluded)

2. A phasor is acomplex number, expressed in polar form, consisting of a
magnitude equal to the peak amplitude of the sinusoidal signal and a
phase angle equal to the phase shift of the sinusoidal signal referenced
to a cosinesignal.

3. When using phasor notation, it isimportant to make a note of the
specific frequency, w, of the sinusoidal signal, since thisis not
explicitly apparent in the phasor expression.

EXAMPLE 4.9 Addition of Two Sinusoidal Sources in Phasor
Notation

Problem

Compute the phasor voltage resulting from the series connection of two sinusoidal voltage
sources (Figure 4.28).

Solution

Known Quantities:
v1(t) = 15 cos(377t + 7 /4) V
va(t) = 15 cos(377t + 7 /12) V
Find: Equivalent phasor voltage vs(1).
Va(t) g Analysis: Write the two voltages in phasor form:
Vi(jw) = 1547 /4V
vi(t) g LS /12 _
Va(jw) = 15¢/ =15/7/12V

Convert the phasor voltages from polar to rectangular form:
Vi(jw) =10.61+ j10.61V
Vy(jw) =14.49 + j3.88
Then
vs(t) .
Vs(jw) = Vi(jo) + Va(jw) = 25.10 + j14.49 = 28.98¢/"/% = 28.98/7/6 V
Now we can convert Vs (jw) to itstime-domain form:

Figure 4.28
vs(t) = 28.98 cos(377t + /6) V.

Comments: Note that we could have obtained the same result by adding the two
sinusoids in the time domain, using trigonometric identities:

v1(t) = 15 cos(377t + w/4) = 15 cos(rwr/4) cos(377t) — 15 sin(rr/4) sin(377t) V
va(t) = 15 cos(377t + 7 /12) = 15 cos(rr/12) cos(377t) — 15 sin(r/12) sin(377t) V.
Combining like terms, we obtain
v1(t) + v2(t) = 15[cos(r/4) + cos(rr/12)] cos(377t) — 15[sin(rr/4) + sin(z/12)] sin(377¢)
= 15(1.673 cos(377t) — 0.966 sin(377t))
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0.966
= 18/ (L6T57 + (09687 x cos| 377 + vt 1525 |

= 15(1.932 cos(377t + 7 /6) = 28.98 cos(377t + 7 /6) V.

The above expression is, of course, identical to the one obtained by using phasor notation,
but it required a greater amount of computation. In general, phasor analysis greatly
simplifies calculations related to sinusoidal voltages and currents.
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It should be apparent by now that phasor notation can be a very efficient
technique to solve AC circuit problems. The following sections will continue
developing this new method to build your confidencein using it.

Superposition of AC Signals

Example 4.9 explored the combined effect of two sinusoidal sources of different
phase and amplitude, but of the same frequency. It is important to realize that
the simple answer obtained there does not apply to the superposition of two (or
more) sinusoidal sources that are not at the same frequency. In this subsection,
the case of two sinusoidal sources oscillating at different frequencies will be used
toillustrate how phasor analysis can deal with this more general case.

The circuit shown in Figure 4.29 depicts a source excited by two current
sources connected in parallel, where

i1(t) = A1 cos(wit)

i2(1) = A coS(wat) (447
Theload current is equal to the sum of the two source currents; that is,

ip (1) =i1(1) +i2(2) (4.48)
or, in phasor form,

l,=1l1+15 (4.49)

At this point, you might be tempted to write I, and |, in a more explicit phasor
form as

|1 = Alejo

. 4.50
|2 = Aze-/o ( )

and to add the two phasors using the familiar techniques of complex algebra. How-
ever, this approach would be incorrect. Whenever asinusoidal signal is expressed
in phasor notation, theterm /" isimplicitly present, where w isthe actual radian
frequency of the signal. In our example, the two frequencies are not the same, as
can be verified by writing the phasor currentsin the form of equation 4.46:

I; = Re[A1e/%/]

o 4.51
I, =Re [Azejoe-]wzt] ( )

Since phasor notation does not explicitly include the e/ factor, this can lead to
serious errorsif you are not careful! The two phasors of equation 4.50 cannot be
added, but must be kept separate; thus, the only unambiguous expression for the
load current in this caseis equation 4.48. In order to complete the analysis of any
circuit with multiple sinusoidal sources at different frequencies using phasors, itis

11(0) I2(t) Load

Figure 4.29 Superposition
of AC currents
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necessary to solvethecircuit separately for each signal and then add theindividual
answers obtained for the different excitation sources. Example 4.10illustratesthe
response of acircuit with two separate AC excitations using AC superposition.

EXAMPLE 4.10 Example of AC Superposition

Problem
+ \133‘52 - Compute the voltages vz, () and vz, (¢) in the circuit of Figure 4.30.
+ Re
i) (D) w®OZR ve(t)
=7 Solution
R, =150Q, R,=50 Q Known Quantities:
Figure 4.30 is(t) = 0.5 cos(27100r) A
vg(t) = 20 cos(2r1,000¢) V
Find: wvg1(f) and vga(2).
Analysis: Since the two sources are at different frequencies, we must compute a separate
solution for each. Consider the current source first, with the voltage source set to zero
+VR(t) _ (short circuit) as shown in Figure 4.31. The circuit thus obtained is a simple current
‘vgv‘v divider. Write the source current in phasor notation:
+ 2 )
i) VRl(t)EE Ry Is(jw) = 0.5¢/° = 0.5/0 A w = 27100/rad/s
-1 Then,
i Vei(ls) =1 Re R;=05/0 S0 150 = 18.75 L0V
Figure 4.31 rills) = SR1+R2 1=V 150 + 50 = lo.
o = 27100 rad/s
Ry 150
Vgo(lg) =lg———R, =050 ————— )50 = 18.75 L0V
r2(ls) SRR 2 (150+50>
o = 27100 rad/s
Next, we consider the voltage source, with the current source set to zero (open circuit), as
+VR(D) _ shown in Figure 4.32. We first write the source voltage in phasor notation:
+ R Vs(jow) = 20e’° =20/0V o = 271,000 rad/s
VRl(tifz R vs(t Then we apply the voltage divider law to obtain
R 150
Vi (Vs) = Vg—— = 20/0 <7> =150V
Figure 4.32 Ri+ R 150 + 50
w = 271,000rad/s
R> 50
Vzo(Vs) = =V =-20/0 ——— ) =-540=54n V
r2(Vs) SR+ R (15o+ 50) d

w = 271,000rad/s

Now we can determine the voltage across each resistor by adding the contributions from
each source and converting the phasor form to time-domain representation:

Ve = Vri(ls) + Ve (Vs)
vp1(t) = 18.75 cos(27100¢) + 15 cos(271,000r) V
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and
Vir2 = Vga(ls) + Vg2 (Vs)
vro(t) = 18.75 cos(2wr100t) + 5 cos(271,000t + ) V.

Comments: Notethat it isimpossible to simplify the final expression any further,
because the two components of each voltage are at different frequencies.

Impedance

We now analyze the i-v relationship of the three ideal circuit elements in light
of the new phasor notation. The result will be a new formulation in which resis-
tors, capacitors, and inductors will be described in the same notation. A direct
consequence of this result will be that the circuit theorems of Chapter 3 will be
extended to AC circuits. In the context of AC circuits, any one of the three ideal
circuit elements defined so far will be described by aparameter called impedance,
which may be viewed as a complex resistance. The impedance concept is equiv-
alent to stating that capacitors and inductors act as frequency-dependent resis-
tors, that is, as resistors whose resistance is a function of the frequency of the
sinusoidal excitation. Figure 4.33 depicts the same circuit represented in con-
ventional form (top) and in phasor-impedance form (bottom); the latter repre-
sentation explicitly shows phasor voltages and currents and treats the circuit el-
ement as a generalized “impedance.” It will presently be shown that each of
the three ideal circuit elements may be represented by one such impedance ele-
ment.
L et the source voltage in the circuit of Figure 4.33 be defined by

vs(t) = Acoswt  or  Vg(jw) = Ae’® = A0 (4.52)

without loss of generality. Then the current i (¢) is defined by the i-v relationship
for each circuit element. Let us examine the frequency-dependent properties of
the resistor, inductor, and capacitor, one at atime.

The Resistor

Ohm’slaw dictates the well-known relationship v = i R. In the case of sinusoidal
sources, then, the current flowing through the resistor of Figure 4.33 may be
expressed as

vs(t)

i ==

= % cos(wt) (4.53)

Converting the voltage v (¢) and the current i (¢) to phasor notation, we obtain the
following expressions:
Vs(jw) = AZ0
. A (4.54)

l(jw) = = /0

Finally, the impedance of the resistor is defined as the ratio of the phasor voltage
across the resistor to the phasor current flowing through it, and the symbol Zy is
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Figure 4.33 The impedance
element
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used to denoteit:

_ Vs(jo) _

Zr(jw) = o) R Impedance of aresistor (4.55)

Equation 4.55 corresponds to Ohm'’s law in phasor form, and the result should be
intuitively appealing: Ohm'’slaw appliesto aresistor independent of the particular
form of the voltages and currents (whether AC or DC, for instance). The ratio
of phasor voltage to phasor current has a very simple form in the case of the
resistor. In general, however, the impedance of an element is a complex function
of frequency, asit must be, sinceit istheratio of two phasor quantities, which are
frequency-dependent. This property will become apparent when the impedances
of the inductor and capacitor are defined.

The Inductor

Recall the defining relationships for the ideal inductor (equations 4.9 and 4.12),
repeated here for convenience:

dip (1)
dt

) 1 ,
ip(t) = Z/UL(I)

Letv, (r) = vs(r) andiy (r) = i(¢) inthecircuit of Figure4.33. Thenthefollowing
expression may be derived for the inductor current:

v (1) =L
(4.56)

i) =i(t) = %/vs(ﬂ) dt’
. 1
ir(t) = 7 / Acoswt’ dt’ (4.57)

A
= — SNwt
oL
Note how a dependence on the radian frequency of the source is clearly present
in the expression for the inductor current. Further, the inductor current is shifted
in phase (by 90°) with respect to the voltage. Thisfact can be seen by writing the
inductor voltage and current in time-domain form:

vs(t) = vy (t) = A coswt
o A T (4.58)
i(t)=ir(t) = oL cos(wt — 5)
It is evident that the current is not just a scaled version of the source voltage, asit
was for the resistor. Its magnitude depends on the frequency, w, and it is shifted
(delayed) in phase by /2 radians, or 90°. Using phasor notation, equation 4.58
becomes

Vs(jw) = AZO

) A (4.59)
[(jow) = Elrr/Z
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Thus, the impedance of the inductor is defined as follows:

. Vs(jo) : Impedance of
Z;(jw) = |ija)) =wl/n/2= joL an[i)nductor

(4.60)

Note that the inductor now appears to behave like a complex frequency-dependent
resistor, and that the magnitude of this complex resistor, wL, isproportiona to the
signal frequency, w. Thus, an inductor will “impede” current flow in proportion
to the sinusoidal frequency of the source signal. Thismeansthat at low signal fre-
guencies, an inductor acts somewhat like a short circuit, while at high frequencies
it tends to behave more as an open circuit.

The Capacitor

An analogous procedure may be followed to derive the equivalent result for a
capacitor. Beginning with the defining relationships for the ideal capacitor,
dvc(t)
dt

icty=C
. (4.61)
ve(t) = E/ic(f/) dr’

withic =i and vc = vg in Figure 4.33, the capacitor current may be expressed
as:
dvc(t)

ic(t) =C
ic(r) dt

= C%(A coswr) (4.62)
= —C(AwSnwt)
= wCA cos(wt + 1/2)
so that, in phasor form,
Vs(jw) = AZ0 “63)
I(jw) = wCALr/2

The impedance of the ideal capacitor, Z¢(jw), istherefore defined as follows:

. Vs(jo) 1
Zc(jow) = Iijja)) = Eé—n/Z
: (4.64)
_—J_ 1 Impedance of
T wC  joC a capacitor

where we have used the fact that 1/j = ¢~/7/2 = —j. Thus, the impedance of a
capacitor is also a frequency-dependent complex quantity, with the impedance of
the capacitor varying as an inverse function of frequency; and so a capacitor acts
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likeashort circuit at high frequencies, whereasit behavesmorelike an open circuit
at low frequencies. Figure 4.34 depicts Z(jw) in the complex plane, alongside
Zr(jo)and Z (jw).

Theimpedance parameter defined in this section is extremely useful in solv-
ing AC circuit analysis problems, because it will make it possible to take ad-
vantage of most of the network theorems devel oped for DC circuits by replacing
resistances with complex-valued impedances. The examplesthat follow illustrate
how branches containing series and parallel elements may be reduced to asingle
equivalent impedance, much in the same way resistive circuits were reduced to
equivalent forms. It is important to emphasize that although the impedance of
simple circuit elements is either purely real (for resistors) or purely imaginary
(for capacitors and inductors), the general definition of impedance for an arbitrary
circuit must allow for the possibility of having both areal and an imaginary part,
since practica circuits are made up of more or less complex interconnections of
different circuit elements. In its most general form, the impedance of a circuit
element is defined as the sum of areal part and an imaginary part:

Z(jo) = R(jw) + jX(jw) (4.65)

where R iscalledthe AC resistanceand X iscalled thereactance. The frequency
dependenceof R and X hasbeenindicated explicitly, sinceitispossiblefor acircuit
to have a frequency-dependent resistance. Note that the reactances of equations
4.60 and 4.64 have units of ohms, and that inductivereactanceisaways positive,
while capacitivereactance is aways negative. The following examplesillustrate
how a complex impedance containing both real and imaginary parts arises in a
circuit.

(o]

R1=50Q
R EE

C1= 470 uF
(o]
o
(o]

Figure 4.35

EXAMPLE 4.11 Impedance of a Practical Capacitor

Problem

A practical capacitor can be modeled by an ideal capacitor in parallel with aresistor
(Figure 4.35). The parallel resistance represents leakage losses in the capacitor and is
usually quite large. Find the impedance of a practical capacitor at the radian frequency
o = 377 rad/s. How will the impedance change if the capacitor is used at a much higher
frequency, say 800 MHz?

Solution
Known Quantities: C; =0.1uF=0.1x10°F, R; = 1MQ.
Find: The equivalent impedance of the parallél circuit, Z;.

Analysis: To determine the equivalent impedance we combine the two impedancesin
paralel:

1 _ Rlﬁ _ Rl
joCi — Ri+ -1 14 joCiRy

JjoCq

Z1=R;
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Substituting numerical values, we find
108 108
Z =377) = =
1@ ) 1+ j377 x 105 x 0.1 x 106 ~ 1+ j37.7

= 2.6516 x 10°/ — 1.5443 Q

The impedance of the capacitor alone at this frequency would be:

Zc,(w=377) = =26.53x 10%/—7/2Q

j377 x 0.1 x 10-6
If the frequency isincreased to 800 MHz, or 16007 x 10° rad/s—a radio frequency in the
AM range—we can recompute the impedance to be:

108
1+ 716007 x 10% x 0.1 x 106 x 108

_ 106
" 1+ j1607 x 108
The impedance of the capacitor alone at this frequency would be:

1
J16007r x 108 x 0.1 x 10~

Comments: Note that the effect of the parallel resistance at the lower frequency
(corresponding to the well-known 60-Hz AC power frequency) is significant: The
effective impedance of the practical capacitor is substantially different from that of the
ideal capacitor. On the other hand, at much higher frequency, the parallel resistance has an
impedance so much larger than that of the capacitor that it effectively acts as an open
circuit, and there is no difference between the ideal and practical capacitor impedances.
This example suggests that the behavior of a circuit element depends very much in the
frequency of the voltages and currentsin the circuit. We should also note that the
inductance of the wires may become significant at high frequencies.

Z1(w = 16007 x 10%) =

= 0.002£—-1.5708

Z¢,(w = 16007 x 10°) = =0.002 L—7/2Q
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EXAMPLE 4.12 Impedance of a Practical Inductor
Problem

A practical inductor can be modeled by an ideal inductor in series with aresistor. Figure
4.36 shows atoroidal (doughnut-shaped) inductor. The series resistance represents the
resistance of the coil wire and isusually small. Find the range of frequencies over which
the impedance of this practical inductor is largely inductive (i.e., due to the inductance in
the circuit). We shall consider the impedance to be inductive if the impedance of the
inductor in the circuit of Figure 4.37 is at least 10 times as large as that of the

resistor.

Solution

Known Quantities: L = 0.098 H; lead length =1, = 2 x 10 cm; n = 250 turns; wireis
30 gauge. Resistance of 30 gauge wire = 0.344 Q/m.

Find: Therange of frequencies over which the practical inductor acts nearly like an ideal
inductor.

Toroid

0.25cm

D 0.5cm

Cross section

Figure 4.36 A practica
inductor
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a Analysis: We first determine the equivalent resistance of the wire used in the practical
inductor using the cross section as an indication of the wire length, /,,, used in the coil:

R 1, =250 x (2 x 0.25+ 2 x 0.5) = 375¢cm
[ = Total length =1,, + 1. = 375+ 20 = 395 cm
: Thetotal resistance is therefore
b R =0.344Q/m x 0.395m = 0.136 Q2
Figure 4.37 Thus, we wish to determine the range of radian frequencies, w, over which the magnitude

of jwL isgreater than 10 x 0.136 Q:
oL > 1.36, orw > 1.36/L = 1.36/0.098 = 1.39 rad/s.
Alternatively, therangeis f = w/2r > 0.22 Hz.

Comments: Note how the resistance of the coil wireisrelatively insignificant. Thisis
true because the inductor is rather large; wire resistance can become significant for very
small inductance values. At high frequencies, a capacitance should be added to the model
because of the effect of the insulator separating the coil wires.

EXAMPLE 4.13 Impedance of a More Complex Circuit

Problem
(o) Find the equivalent impedance of the circuit shown in Figure 4.38.
R1 =100 Q
Solution
LE 10mH
Z8Q Known Quantities: w = 10 rad/s; R, = 100 @; L = 10mH; R, = 50 @, C = 10 uF.
50Q %%Rz c L 10 yF Find: The equivalent impedance of the series-paralld circuit.
Analysis: We determinefirst the parallel impedance of the R,-C circuit, Z,.
o
Ry
Figure 4.38 Z, =R, i = 2 juC = R
joC R, + ;a%c 1+ jwCR,

50 50
1+ j10* x10x 106 x50~ 1+ /5

=192 j9.62

=981/-1.3734 Q
Next, we determine the equivalent impedance, Ze:
Zeg= Ri+ joL + Z; = 100 + j10* x 1072 + 1.92 — j9.62
= 101.92 + j90.38 = 136.2£0.723 2
Is this impedance inductive or capacitive in nature?

Comments: At the frequency used in this example, the circuit has an inductive
impedance, since the reactance is positive (or, aternatively, the phase angleis
positive).
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Capacitive Displacement Transducer

Earlier, we introduced the idea of a capacitive displacement transducer when
we considered a parallel-plate capacitor composed of afixed plate and a
movable plate. The capacitance of this variable capacitor was shown to be a
nonlinear function of the position of the movable plate, x (see Figure 4.6).
In this example, we show that under certain conditions the impedance of the
capacitor varies as alinear function of displacement—that is, the
movable-plate capacitor can serve as alinear transducer.

Recall the expression derived earlier:

8.854 x 10734
C=—""""pF
X
where C isthe capacitance in pF, A isthe area of the platesin mm?, and x is
the (variable) distance in mm. If the capacitor is placed in an AC circuit, its

impedance will be determined by the expression

Ze— 1
joC
s0 that
_ X
Ze = jw8.854A «

Thus, at afixed frequency w, the impedance of the capacitor will vary
linearly with displacement. This property may be exploited in the bridge
circuit of Figure 4.7, where a differential pressure transducer was shown as
being made of two movable-plate capacitors, such that if the capacitance of
oneincreased as a consequence of a pressure differential acrossthe
transducer, the capacitance of the other had to decrease by a corresponding
amount (at least for small displacements). The circuit is shown again in
Figure 4.39, where two resistors have been connected in the bridge along
with the variable capacitors (denoted by C(x)). The bridgeis excited by a
sinusoidal source.

Figure 4.39 Bridge circuit
for capacitive displacement
transducer

Using phasor notation, we can express the output voltage as follows:

: . Z¢)x) R>
Vor(jo) = Vs(jw) < be — >
° Zth(X) + ZC;,C(x) Ri+ Ry
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If the nominal capacitance of each movable-plate capacitor with the
diaphragm in the center position is given by
eA

C=—
d

where d isthe nominal (undisplaced) separation between the diaphragm and
the fixed surfaces of the capacitors (in mm), the capacitors will see a change
in capacitance given by

cA q cA
d—x an Coe = d+x
when a pressure differential exists across the transducer, so that the
impedances of the variable capacitors change according to the displacement:

d—x d+x
Zew = Togesan M Zoe= Sogemia
and we obtain the following expression for the phasor output voltage:
d—+x
jw8.854A R>

—x , _d+x " Ri+R,
Jjw8.854A  jw8.854A

1 X Rz
=V(j T,
s(®) <2+2d Rl—I—Rz)

Cap =

Var(jo) = Vs(jo) | —;

X
=Vs(jo) >
if we choose Ry = R,. Thus, the output voltage will vary as a scaled version
of the input voltage in proportion to the displacement. A typical voy(¢) is
displayed in Figure 4.40 for a0.05-mm “triangular” diaphragm
displacement, with d = 0.5 mm and Vs a 25-Hz sinusoid with 1-V
amplitude.

Displacement input

0O 01 02 03 04 05 06 07 08 09 1
Time

Bridge output voltage

0.05

0 01 02 03 04 05 06 07 08 09 1
Time

Figure 4.40 Displacement input and bridge output voltage
for capacititve displacement transducer
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Admittance

In Chapter 3, it was suggested that the solution of certain circuit analysis prob-
lems was handled more easily in terms of conductances than resistances. In AC
circuit analysis, an analogous quantity may be defined, the reciprocal of complex
impedance. Just as the conductance, G, of aresistive element was defined as the

inverse of the resistance, the admittance of abranch is defined as follows:
1
Y==S 4.66
. (4.66)

Noteimmediately that whenever Z ispurely real—that is, when Z = R+ jO—the
admittance Y is identical to the conductance G. In general, however, Y is the
complex number

Y=G+jB (4.67)

where G iscalled the AC conductance and B iscalled the susceptance; the latter
plays arole analogousto that of reactance in the definition of impedance. Clearly,
G and B arerelated to R and X. However, thisrelationship is not as smple as an
inverse. Let Z = R + jX be an arbitrary impedance. Then, the corresponding
admittanceis

1 1
Z R+jX
In order to express Y in the foom Y = G + jB, we multiply numerator and
denominator by R — j X:

y__ L R-jX_ R-jX

R+jXR—-jX R2+X2
R X
“Rtrx2 'R+ x2

and conclude that

R
= RZ T x2

—-X

P=ferx
Noticein particular that G isnot thereciprocal of R inthe general casel

Thefollowing exampleillustrates the determination of Y for some common
circuits.

(4.68)

(4.69)

G
(4.70)
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EXAMPLE 4.14 Admittance

Problem

Find the equivalent admittance of the two circuits shown in Figure 4.41.

Solution

Known Quantities: o = 27 x 10% rad/s; Ry = 150 Q; L = 16 mH; R, = 100 2,
C =3uk
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Yab4>

@

a0——— 8 ™

Ya ——> s l

AA
A\AA4

bO—M—
(b)
Figure 4.41
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Find: The equivaent admittance of the two circuits.
Analysis: Circuit (8): First, determine the equivalent impedance of the circuit:
Za}, = R]_ + ]a)L

Then compute the inverse of Z,, to obtain the admittance:

1 Ri—joL

" Rit+joL R+ (wl)?

Substituting numerical values gives

_ 1 _ 1

T B0+ j2r x 108~ 50+ j100.5

Circuit (b): First, determine the equivalent impedance of the circuit:
1 R,

joC ~— 1+ joR,C

Ya b

=3968x 107°— j7.976 x 10°° S

Ya b

Zay =R

Then compute the inverse of Z,,, to obtain the admittance:

1+ jwR,C 1
_1tjerkC 1 + joC =0.01+ 0.019S

Y,
b R> R>

Comments: Note that the units of admittance are siemens, that is, the same as the units
of conductance.

Focus on Computer-Aided Tools: You will find the solution to the same example
computed by MathCad in the electronic files that accompany this book.

Check Your Understanding
4.14 Add the sinusoidal voltages v1(z) = A cos(wt + ¢) and va(t) = B cos(wt + 6)
using phasor notation, and then convert back to time-domain form, for:
a A=15V,¢ =10°; B=3.2V,0 =25°.
b. A=50V,¢ = —60°; B =24,0 = 15°.
4.15 Addthesinusoidal currentsii(t) = A cos(wt +¢) andi»(t) = B cos(wt +0) for:
a A=009A,¢p=72°; B=0.12A,0 = 20°.
b. A=082A,¢ =-30°; B=05A,60 = —-36°.
4.16 Compute the equivalent impedance of the circuit of Example 4.13 for v = 1,000
and 100,000 rad/s.
4.17 Compute the equivalent admittance of the circuit of Example 4.13.

4.18 Calculatetheequivalent seriescapacitance of the parallel R,-C circuit of Example
4.13 at the frequency w = 10rad/s.

4.5 AC CIRCUIT ANALYSIS METHODS

This section will illustrate how the use of phasors and impedance facilitates the
solution of AC circuits by making it possible to use the same solution methods
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developedin Chapter 3for DCcircuits. The AC circuit analysisproblem of interest
inthissection consistsof determining the unknown voltage (or currents) inacircuit
containing linear passive circuit elements (R, L, C) and excited by a sinusoidal
source. Figure 4.42 depicts one such circuit, represented in both conventional
time-domain form and phasor-impedance form.

Zr,
W o —
—W—o TF—o0
#ix(t)
velt) (£ c=— RZ Vs(j) (£
D i1(t) i2(t) T ) @

g

ZL
[ ]
L

(@)

A samplecircuit
for AC analysis

(0]

[

The same circuit
in phasor form

Figure 4.42 An AC circuit

Thefirst step in the analysis of an AC circuit is to note the frequency of the
sinusoidal excitation. Next, all sources are converted to phasor form, and each
circuit element to impedance form. This is illustrated in the phasor circuit of
Figure 4.42. At this point, if the excitation frequency, , is known numericaly,
it will be possible to express each impedance in terms of a known amplitude and
phase, and anumerical answer to the problem will befound. It does often happen,
however, that one is interested in a more genera circuit solution, valid for an
arbitrary excitation frequency. In thislatter case, the solution becomes afunction
of w. This point will be developed further in Chapter 6, where the concept of
sinusoidal frequency responseis discussed.

With the problem formulated in phasor notation, the resulting solution will
be in phasor form and will need to be converted to time-domain form. In effect,
the use of phasor notation is but an intermediate step that greatly facilitates the
computation of the final answer. In summary, here is the procedure that will be
followed to solve an AC circuit analysis problem. Example 4.15 illustrates the
various aspects of this method.

FOCUSONMETHODOLOGY
AC Circuit Analysis

1. Identify the sinusoidal source(s) and note the excitation frequency.

2. Convert the source(s) to phasor form.

3. Represent each circuit element by itsimpedance.

4. Solve the resulting phasor circuit, using appropriate network analysis
tools.

5. Convert the (phasor-form) answer to its time-domain equivalent, using
equation 4.46.

163
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EXAMPLE 4.15 Phasor Analysis of AC Circuit
Problem
500 IS Apply the phasor analysis method just described to the circuit of Figure 4.43 to determine
W the source current.
vt) 32000 =< 100F
Solution

vg(t) = 10 cos(100t)
Figure 4.43

Known Quantities: w = 100rad/s; Ry =50 Q; R, =200 , C = 100 uF.
Find: The source current is(t).
Analysis: Definethe voltage v at the top node and use nodal analysis to determine v.

Then observe that

v (1) — v(r)
Ry
Next, we follow the steps outlined in the Methodology Box: “AC Circuit Analysis.”
Step 1: vs(¢) = 10 cos(100¢) V; w = 100 rad/s.
Step 2: Vs(jw) = 100 V.
Step3: Zpy =509, Zry = 200 R, Z¢ = 1/(j100 x 1074) = —j100 Q. The
resulting phasor circuit is shown in Figure 4.44.
Step 4: Next, we solve for the source current using nodal analysis. First wefind V:
Vs—V V
Zrn ZrollZe

\Y 1 1
(e )
Zr1 Zp2llZe  Zra

1 1\t vy 1 1\ Vs
Velo0—ot—) 2=t =] —
ZrollZe  Zra Zr1 40— ;80 50 50

=7.428 £/ —-0.381V

is(t) =

Then we compute | 5:
_Vs-V
Zr

Step 5: Finally, we convert the phasor answer to time domain notation:
i;(t) = 0.083 cos(100r + 0.727) A.

I's = 0.083£0.727 A

21=50 |S
—

Vg=10ei® Z, =200 Z3=—-j100

Figure 4.44

Focus on Computer-Aided Tools: You will find the solution to the same example
computed by MathCad in the electronic files that accompany this book. An EWB solution
VIRTUABLAB is also enclosed.



http://www.mhhe.com/engcs/electrical/rizzoni/examples.mhtml

Part | Circuits 165

EXAMPLE 4.16 AC Circuit Solution for Arbitrary Sinusoidal
Input

Problem

Determine the general solution of Example 4.15 for any sinusoidal source, A cos(wt + ¢).

Solution
Known Quantities: R; =50 Q; R, =200 2, C = 100 uF.
Find: The phasor source current | s (jw).

Analysis: Sincethe radian frequency is arbitrary, it will be impossible to determine a
numerical answer. The answer will be afunction of w. The source in phasor formis
represented by the expression Vs (jw) = AZ¢. Theimpedances will be Z; = 50 Q;
Zr2 =200Q; Zc = —j10%/w Q. Note that the impedance of the capacitor is afunction
of w.
Taking a different approach from Example 4.15, we observe that the source current is
given by the expression
5T Zr+ ZrallZc
The parallel impedance Zz,||Z¢ is given by the expression
Zr2 X Ze 200 x 10%/jw 2 x 108

Z Z = = =
rallZe Zro+ Zc 200+ 10%/jw  10% + jw200

Thus, the total seriesimpedanceis

2x10°  25x10°+ jwl0*
104 4+ jw200 = 10+ jw200
and the phasor source current is

Y, 10* + jw200

_ S = A/ + jow :

ZR1+ZR2||ZC 2.5 x 105+]a)104
Comments: The expression obtained in this example can be evaluated for an arbitrary
sinusoidal excitation, by substituting numerical valuesfor A, ¢, and w in the above
expression. The answer can then be computed as the product of two complex numbers.

As an example, you might wish to substitute the values used in Example 4.15 (A = 10V,
¢ = Orad, = 100 rad/s) to verify that the same answer is obtained.

Zr1+ Zgol|Zc =50+

I's

Focus on Computer-Aided Tools: An EWB file simulating this circuit for an arbitrary
sinusoidal input is enclosed in the accompanying CD-ROM.

VIRTUAL LAB

By now it should be apparent that the laws of network analysisintroduced in
Chapter 3 are also applicable to phasor voltages and currents. This fact suggests
that it may be possible to extend the node and mesh analysis methods devel oped
earlier to circuits contai ning phasor sourcesand impedances, althoughtheresulting
simultaneous compl ex equati ons are difficult to sol ve without the aid of acompulter,
even for relatively simple circuits. On the other hand, it is very useful to extend
the concept of equivalent circuits to the AC case, and to define complex Thévenin
(or Norton) equivalent impedances. The fundamental difference between resistive


http://www.mhhe.com/engcs/electrical/rizzoni/examples.mhtml

166

Zs

Vs(jw) Load

1

1

|

1

I

|
O
iy

i

(a) Equivalent load

Source Z

(b) Equivaent source

Figure 4.45 AC equivalent
circuits

Chapter 4 AC Network Analysis

and AC equivalent circuitsisthat the AC Thévenin (or Norton) equivalent circuits
will be frequency-dependent and complex-valued. In general, then, one may think
of the resistive circuit analysis of Chapter 3 as a special case of AC analysisin
which all impedances arereal.

AC Equivalent Circuits

In Chapter 3, we demonstrated that it was convenient to compute equivalent cir-
cuits, especialy in solving for load-related variables. Figure 4.45 depicts the
two representations analogous to those developed in Chapter 3. Figure 4.45(a)
shows an equivalent |oad, as viewed by the source, while Figure 4.45(b) shows an
equivalent source circuit, from the perspective of the load.

In the case of linear resistive circuits, the equivalent load circuit can always
be expressed by asingleequival ent resistor, whilethe equivalent source circuit may
taketheform of aNorton or aThévenin equivalent. Thissection extendsthese con-
ceptsto AC circuits and demonstrates that the notion of equivalent circuits applies
to phasor sources and impedances as well. The techniques described in this sec-
tion are al analogous to those used for resistive circuits, with resistances replaced
by impedances, and arbitrary sources replaced by phasor sources. The principal
difference between resistive and AC equivalent circuits will be that the latter are
frequency-dependent. Figure 4.46 summarizes the fundamental principlesusedin
computing an AC equivalent circuit. Notethe definite anal ogy betweenimpedance
and resistance elements, and between conductance and admittance elements.

The computation of an equivalent impedance is carried out in the same way
asthat of eguivalent resistance in the case of resistive circuits:

Impedances in series add: Admittancesin parallel add:
Z Z 21+ 72, Y1
A Fo - of o oL 7o
L .
Impedancesin parallel behave like resistorsin parallel:
1 Y2
Z 1 1 Admittances in series behave like conductances in series:

L Zp 1

° °
T=T° - L1
Yl Y2 Yl Y2

Figure 4.46 Rules for impedance and admittance reduction

1. Short-circuit all voltage sources, and open-circuit al current sources.

2. Compute the equivalent impedance between load terminals, with the load
disconnected.

In order to compute the Thévenin or Norton equivalent form, we recogni ze that the
Thévenin equival ent voltage sourceisthe open-circuit voltage at theload terminals
and the Norton equivalent current source is the short-circuit current (the current
with the load replaced by a short circuit). Figure 4.47 illustrates these points by
outlining the steps in the computation of an equivalent circuit. The remainder of
the section will consist of examples aimed at clarifying some of the finer pointsin
the calculation of such equivalent circuits. Note how the initial circuit reduction
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a Vs |:Zz| Voc=Vr
‘ ©

O

|

| =}
| b

| Circuit for the computation of the Thévenin
| equivalent voltage

} Voc=Vr= =2y
oc=VT= 75 7,Vs

b

A phasor circuit
with load Z.

Circuit for the computation of the Norton
Z Ob equivalent current
1
Circuit for the computation of the equivaent T
impedance, Zt lsc=In Vs Z3tZs
Z1 1 . 1 . 1
Zapy=Zr=2Z3+ (21| Z) + 24 Zy Zp I3ty

Figure 4.47 Reduction of AC circuit to equivalent form

proceeds exactly as in the case of a resistive circuit; the details of the complex
algebrarequired in the calculations are explored in the examples.

EXAMPLE 4.17 Solution of AC Circuit by Nodal Analysis

Problem

The electrical characteristics of electric motors (which are described in greater detail in
the last three chapters of this book) can be approximately represented by means of a series
R-L circuit. In this problem we analyze the currents drawn by two different motors
connected to the same AC voltage supply (Figure 4.48).

Solution

Known Quantities: R¢=05Q; R1 =2Q; R, =02Q,L; =0.1H; L, =20 mH. Figure 4.48
vg(t) = 155 cos(377t) V.

Find: The motor load currents, i1(¢) and i»(z).

Analysis: First, we calculate the impedances of the source and of each motor:
Zs=05Q
Zy =2+ j3T7x 01=2+ j37.7=37.75/1.52 Q
Z, =02+ j377x0.02=0.2+ j7.54 =7.54/154Q

The source voltageisVy = 15520 V.



0.5

-1 VS

=)

Motor 1 current

1
o377 02+ 754

------ Source voltage (divided by 10)

0.1

0.09

Motor 2 current
ll
1
[]
! I
|
1
[}
1
|
Il
\
|
N
70
1
1
1
1
L}
AV

0.08

1

(65

4.083£ — 1.439
= 20.44 £ — 1.465.

0.2+ j7.54

154.1/0.079 V

82/ — 0.305
2+ j37.7

82.05 / — 0.305

AC Network Analysis

\Y
Zy
\V
Z

Next, we apply KCL at the top node, with the aim of solving for the node voltage V:
1

i1(t) = 4.083 cos(377t — 1.439) A
io(t) = 20.44 cos(377t — 1.465) A

Figure 4.49 depicts the source voltage (scaled down by afactor of 10) and the two motor

Having computed the phasor node voltage, V, we can now easily determine the phasor
currents.

motor currents, 14 and | 5:
Finally, we can write the time-domain expressions for the currents:

Chapter 4

25
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-10
-15
-20

saedwe ‘s)loA

0.03 0.04 0.05 0.06 0.07
Time, ()

0.02

0.01

25
Figure 4.49 Plot of source voltage and motor currents for Example 4.17
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Comments: Note the phase shift between the source voltage and the two motor currents.
A Matlab-generated computer-aided solution of this problem, including plotting of the
graph of Figure 4.49, may be found in the CD that accompanies this book. An EWB
solution is also included. VIRTUAL LAB

EXAMPLE 4.18 Thévenin Equivalent of AC Circuit

Problem

Compute the Thévenin equivalent of the circuit of Figure 4.50.

Solution

Known Quantities: Z; =5Q; Z, = j20 Q. vg(t) = 110 cos(377t) V.

Find: Thévenin equivalent circuit.

Analysis: First compute the equivalent impedance seen by the (arbitrary) load, Z;. As Vs=11000° ,=5Q Z,=j20Q
illustrated in Fi gyre 4.47, we remove the load, short-ci r_cuit the vqltage_source, ant_j Figure 4.50

compute the equival ent impedance seen by the load; this calculationisillustrated in

Figure 4.51.

Zl X Zz _ 5x ]20
Z,+2Z, 5+ 20
Next, we compute the open-circuit voltage, between terminals a and b:

z 20 20/7/2
_ % o ID 00— 472
Zi+ Z» 5+ 20 20.6./1.326

The complete Thévenin equivalent circuit is shown in Figure 4.52.

471+]1.176 Q

e 106.7 (114. 04° V

Zy = Z1||Z2 =

=471+ j1176 Q

Vr 1100 = 106.7£0.245 V.

a
O
9

I

o O

Figure 4.51 Figure 4.52

Comments: Note that the procedure followed for the computation of the equivalent
circuit is completely analogous to that used in the case of resistive circuits (Section 3.5),
the only difference being in the use of complex impedancesin place of resistances. Thus,
other than the use of complex quantities, thereis no difference between the analysis
leading to DC and AC equivaent circuits.

Check Your Understanding

4.19 Compute the magnitude of the current 15(jw) of Example 4.16 if A = 1 and
¢ =0, for v = 10, 10?, 103, 10*, and 10° rad/s. Can you explain these results intuitively?
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[Hint: Evaluate the impedance of the capacitor relative to that of the two resistors at each
frequency.]

4.20 Find the voltage across the capacitor in Example 4.15.

4.21 Determinethe Norton current in Example 4.17.

CONCLUSION

In this chapter we have introduced concepts and tools useful in the analysis of AC circuits.
The importance of AC circuit analysis cannot be overemphasized, for anumber of reasons.
First, circuits made up of resistors, inductors, and capacitors constitute reasonable models
for more complex devices, such astransformers, electric motors, and electronic amplifiers.
Second, sinusoidal signals are ever present in the analysis of many physical systems, not
just circuits. The skills developed in Chapter 4 will be called upon in the remainder of the
book. In particular, they form the basis of Chapters 5 and 6.

* In addition to elements that dissipate electric power, there are also electric
energy-storage elements. The ideal inductor and capacitor are ideal elements that
represent the energy-storage properties of electric circuits.

+ Sincethei-v relationship for the ideal capacitor and the ideal inductor consists of
adifferential equation, application of the fundamental circuit lawsin the presence
of such dynamic circuit elements|eads to the formulation of differential equations.

+ For the very specia case of sinusoidal sources, the differential equations
describing circuits containing dynamic elements can be converted into algebraic
equations and solved using techniques similar to those employed in Chapter 3 for
resistive circuits.

+ Sinusoidal voltages and currents can be represented by means of complex
phasors, which explicitly indicate the amplitude and phase of the sinusoidal signal
and implicitly denote the sinusoidal frequency dependence.

+ Circuit elements can be represented in terms of their impedance, which may be
conceptualized as a frequency-dependent resistance. Therules of circuit analysis
developed in Chapters 2 and 3 can then be employed to analyze AC circuits by
using impedance el ements as complex resistors. Thus, the only difference
between the analysis of AC and resistive circuits liesin the use of complex
algebrainstead of real algebra

CHECK YOUR UNDERSTANDING ANSWERS
Cyu41 Plot for Check Your Understanding 4.1

—0.02
004

S 006
< 008
01
012
014

Inductor voltage for Exercise 4.1

4 t(s)



Cyu 4.2

Cyu 43
Cyu 44
Cyu 45

CYU 4.6
Cyu 47
Cyu 48
CyuU 49
Cyu 4.10
Cyu 4.13

Cyu 4.14
CyU 4.15
CYU 4.16
Cyu 417
Cyu 4.18
CyuU 419
CYU 4.20
Crvu4.z2l
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Plot for Check Your Understanding Exercise 4.2

Capacitor current for Exercise 4.2

ic(t) (mA)

4
t(s)

w =3ms) =3.9ud

w@ =3ms) =22.22mJ

5.625 x 1076 O0<tr<2ms
0.156 x 10752 — 2.5 x 105t

w(t) =
+10-% 2<t<6ms
0.625 x 1078 t>6ms

(20 x 1073 — 2.5r) x (=0.125)W 2 <t <6ms
p@) =

0 otherwise

v(t) = 155.6 cos(377t — §

(v(t)) = 2.5V
(v(t)) = L5V
2.89V
0.5V
ce__ "V
V1+ (@RC)?

¢ =tan Y (—wRC)

(@) vy + vp = 4.67 cos(wt + 0.3526°); (b) v1 + v, = 60.8 cos(wt — 0.6562°)
(@) i1 + i = 0.19cos(wt + 0.733°); (b) iy + i = 1.32 cos(wt — 0.5637°)

Z(1,000) = 140 — j10; Z(100,000) = 100 + ;999
Yeq = 5.492 x 1073 — j4.871 x 1073

X, =025 C=04F

|ls] = 0.0041 A; 0.0083 A; 0.0194 A; 0.02 A; 0.02 A
7 4240—10381

22¢/9 A
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HOMEWORK PROBLEMS

Section 1: Energy Storage Elements

4.1 Thecurrent through a0.5-H inductor is given by
ip = 2cos(377t + 7 /6). Write the expression for the
voltage across the inductor.

4.2 The voltage across a 100-uF capacitor takes the
following values. Calculate the expression for the
current through the capacitor in each case.

a vc(t) =40cos(20t — /2) V
b. ve(r) = 20sin100¢ V

C. vc(t) = —60sin(80r + 7/6) V
d. ve(r) = 30cos(100f + 7 /4) V

4.3 The current through a 250-mH inductor takes the
following values. Calculate the expression for the
voltage across the inductor in each case.

a i (t) =5sn25t A

b. i;(t) = —10cos50r A

C. iy (t) = 25¢c0s(100t + 7 /3) A
d. i (t) =20sin(10r — 7/12) A

4.4 |Inthecircuit shownin Figure P4.4, let

i(t)=0 for —co <t <0

=t for0<t<1s

=—(t—-2 forls<t<2s

=0 for2s<r<oo
1Q

i) () 2H

Figure P4.4

Find the energy stored in the inductor for all time.

4.5 Inthecircuit shownin Figure P4.5, let

v(t)=0 for —oco <t <0
=2t forO<rtr<1s
=—(2t—4) forls<t<2s
=0 for2s<r < oo

v(t) j) FO1F 320

Figure P4.5
Find the energy stored in the capacitor for all time.

4.6 Find the energy stored in each capacitor and
inductor, under steady-state conditions, in the circuit
shown in Figure P4.6.

1F
| L
[N
2Q 2H
WWy 11
—< 3F
6A<‘) —~2F 340 8Q
b 6Q

Figure P4.6

4.7 Find the energy stored in each capacitor and
inductor, under steady-state conditions, in the circuit
shown in Figure P4.7.

2F
1L
LAY
1H 30
Iy AWV
2H >
1F=< — 12V <30
<>
6Q
Figure P4.7

4.8 Theplot of time-dependent voltage is shown in
Figure P4.8. The waveform is piecewise continuous. If
thisisthe voltage across a capacitor and C = 80 uF,
determine the current through the capacitor. How can
current flow “through” a capacitor?

v(t) (V)

20
10
| |
\ 5 10 15 t(ms)
-10
Figure P4.8

4.9 Theplot of atime-dependent voltage is shown in
Figure P4.8. Thewaveform is piecewise continuous. If
thisisthe voltage across an inductor L = 35 mH,



determine the current through the inductor. Assume
theinitial currentisi; (0) = 0.

4.10 The voltage across an inductor plotted as afunction
of timeis shown in Figure P4.10. If L = 0.75 mH,
determine the current through the inductor at
t =15 pus.

V() (V)

35

| |
5 10 15 t(us)
-19

Figure P4.10

4.11 |f thewaveform shownin Figure P4.11 isthe
voltage across a capacitor plotted as a function of time
with:

vk =20V T =40us C =680nF

determine and plot the waveform for the current
through the capacitor as afunction of time.

- }> | |

| T 2T t

Figure P4.11

4.12 |f the current through a 16 w.h inductor is zero at
t = 0 and the voltage across the inductor (shown in
Figure P4.12) is:

v (f)=0 t<0
= 32 O<t<20us
=12nV t>20us
determine the current through the inductor at
t =30 pus.
V() (nV)
1.2

\ \
20 40 t (us)

Figure P4.12

4.13 Determine and plot as afunction of time the
current through a component if the voltage across it
has the waveform shown in Figure P4.13 and the
component isa:
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a. Resistor R =7 Q.

b.
C.

4.14

Capacitor C = 0.5 uF.
Inductor L = 7 mH.

V() (V)

15 —
10 |-

5

|
5 10

t (ms)

Figure P4.13

If the plots shown in Figure P4.14 are the voltage

across and the current through an ideal capacitor,
determine the capacitance.

4.15

v(t) (V)

/AN
10 t (ms)
Y
i(t) (A) ib»i e
12
s [] =
U 10 t(ms)
1ol

Figure P4.14

If the plots shown in Figure P4.15 are the voltage

across and the current through an ideal inductor,
determine the inductance.

v(t) (V)

2
1 |-
| | |
5 10 15
t (ms)
it) (V)
3 -
2 -
1 |-
| | |
° 10 1t5(ms)

Figure P4.15
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4.16 The voltage across and the current through a
capacitor are shown in Figure 4.16. Determine the
value of the capacitance.

v(®) (V)

15—
10 ie(t) (MA)
5f 15

| |

AC Network Analysis

v(t) (v)

-9

Figure P4.20

4 6 mt(ms)

5 10 t(ms) 5 10 t(ms) 4.21 Find the rms value of the waveform of Figure
Figure P4.16 P4.21.
4.17 The voltage across and the current through a it (A) 10sin?t
capacitor are shown in Figure P4.17. Determine the
value of the capacitance. 10
Ve(V) i(MmA)
7 ’> 3 0 i 2m 3m t(s)
|
5 t 5 t
| (ms) () Figure P4.21

Figure P4.17 ) )
4.22 Find the rms voltage of the waveform of Figure

P4.22.
Section 2: Time-Dependent Waveforms

v(t)

Tnono

0 »F—T t

T

4.18 Findthermsvalueof x(¢) if x(¢) isasinusoid that
isoffset by aDC vaue:

x(t) =2 sin(wt) + 2.5

4.19 For the waveform of Figure P4.19:

i) (A)
10

Figure P4.22
10sin(t)

4.23 Find the rms value of the waveform shown in
Figure P4.23.

it (A)

-10 N\ | |
0<By < =T =T Tr T T JT t
92=T[+91 2 4 4 2 4

Figure P4.19

a. Find the rms current.

b. If 6, is7/2, what isthe rms current of this
waveform?

Figure P4.23

) ] 4.24 Determinethe rms (or effective) value of:
4.20 Find the rmsvalue of the waveform of Figure

P4.20. v(t) = Vpc + vac = 50 + 70.7 cos(377t) V
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4.25 |If the current through and the voltage across a
component in an electrical circuit are:

i(t) = 17 codwt — 5] MA
v(t) = 3.5 coqwr + 1.309] V

where w = 628.3 rad/s, determine:

a. Whether the component is aresistor, capacitor, or
inductor.

b. The value of the component in ohms, farads, or
henrys.

4.26 Describe the sinusoidal waveform shown in Figure
P4.26 using time-dependent and phasor notation.

v (wt) (V)

/\\

T ot (rad)
2
L —170

Figure P4.26

INE1S

4.27 Describe the sinusoidal waveform shown in Figure
P4.27 using time-dependent and phasor notation.

i (ot) (MA)
s8I

_n i
2
I !
TU

wt (rad)

|

1
1
1
1
1
1
H -8
1
1
1

8 ma.

Figure P4.27

4.28 Describe the sinusoidal waveform shown in Figure
P4.28 using time-dependent and phasor notation.

i (ot) (MA)
81

|

—Tt

FNIlS

Tt (rad)

NI

-8

8 ma

Figure P4.28
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4.29 |If the current through and the voltage across an
electrical component are:

i(t) =1, cos(wt + %) v(t) =V, coswt
where:

I,=3mA V,=700mV o =6.283rad/s

a |Isthe component inductive or capacitive?

b. Plot the instantaneous power p(r) asafunction of
wt over therange 0 < wr < 2r.

c. Determine the average power dissipated as heat in
the component.

d. Repeat parts (b) and (c) if the phase angle of the
current is changed to zero degrees.

4.30 Determine the equivalent impedance in the circuit
shown in Figure P4.30:

v,(t) = 7 c0s(3,000f + ) V

R1=23kQ  R,=11kQ
L =190 mH C =55nF
+ Ry Ra
O

Figure P4.30

4.31 Determine the equivalent impedance in the circuit
shown in Figure P4.30:
v, (1) = 636 cos(3,000r + %) V
R, = 3.3kQ Ry, = 22kQ2
L=190H C =6.8nF

4.32 Inthecircuit of Figure P4.32,

i;(t) =1, cos(wt + %)
I, =13 mA o =1,000rad/s
C =05uF

o c

| |—
I

Figure P4.32

a State, using phasor notation, the source current.
b. Determine the impedance of the capacitor.
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¢. Using phasor notation only and showing all work,

determine the voltage across the capacitor,
including its polarity.

4.33 Determineis(?) inthe circuit shown in Figure
P4.33, if:
i1(t) = 141.4 cos(wt + 2.356) mA
i»(t) = 50 sin(wt — 0.927) mA
o = 377rad/s

S )
CDVS []z2 Z,

Figure P4.33

4.34 Determine the current through Z3 in the circuit of
Figure P4.34.
Vi1 = vy = 170 cos(377t) V
Z; =5920122 Q
Z,=23/0%Q
Z3=17/0.192 Q@

T
¥
C Vs Z,

Figure P4.34

.|

—

4.35 Determine the frequency so that the current 7; and
the voltage V, in the circuit of of Figure P4.35 arein

phase.
Z, = 13,000 + jw3 Q2
R=120Q

L=19mH C =220 pF

Figure P4.35

4.36 |Inthecircuit of Figure P4.35, determine the
frequency w, at which|; and V, arein phase.

AC Network Analysis

4.37 Thecaoil resistor in serieswith L models the
internal losses of an inductor in the circuit of Figure
P4.37. Determine the current supplied by the sourceif:

v (1) =V, cos(wt + 0)
vV, =10V w = 6Mrad/s
R.=40Q L=20puH

R, =50 Q
C=125nF

B

Figure P4.37

4.38 Using phasor techniques, solve for the current in
the circuit shown in Figure P4.38.

40

Vg(t) =12 cos 3t V

Figure P4.38

4.39 Using phasor techniques, solve for the voltage, v,
in the circuit shown in Figure P4.39.

it)=10cos2t A 2Q

\AAAS

2H

AAAA

V2 F 22 v(D)

Figure P4.39

4.40 Solvefor |4 inthe circuit shown in Figure P4.40.

i

i1
>5Q —~ —5Q

AAAA
A\

Figure P4.40

4.41 Solvefor V, inthecircuit shown in Figure P4.41.
Assumew = 2.

20 5H

+ V1 -

V =2500V 303V,

Figure P4.41



4.42 Find the current through the resistor in the circuit
shown in Figure P4.42.

¢ ir(t)

is(t)<> 100pF=  3100Q

ig(t) = 1 cos (200rt)

Figure P4.42

4.43 Find vy (¢) for the circuit shown in Figure P4.43.

0
e
100 4 mA X, = 1kQ
Vout
Xc=10kQ

1 ;

Figure P4.43

4.44 For the circuit shown in Figure P4.44, find the
impedance Z, given w = 4 rad/s.

V4H
o—v

Z—— 1/8F 5

A
N
o]
A
\AAA}

(e,
Figure P4.44

4.45 Find the admittance, Y, for the circuit shown in
Figure P4.45, when w = 5rad/s.

3Q

AARA
o WW

Y— 110F = 4/5H§

O
Figure P4.45

Section 4: AC Circuit Analysis

4.46 Using phasor techniques, solve for v in the circuit
shown in Figure P4.46.
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9Q 2H 4H

+
V18 F \

"‘_

4.47 Using phasor techniques, solve for i in the circuit
shown in Figure P4.47.

36 cos (3t —T1U3) V 2H

Figure P4.46

05H 5Q

10Q
6cos2t A ng

]JZFT w

Figure P4.47

4.48 Determine the Thévenin equivalent circuit as seen
by the load shown in Figure P4.48 if

a. vg(t) = 10cos(1,000¢).
b. vg(r) = 10cos(1,000,000¢).

I I
1 i o
| | +
| |
vs(t) i LR Vo
1 1 _
| | 0
Source } Filter } Load
Rs=R_=500Q
L=10mH
C=01pF

Figure P4.48

4.49 Find the Thévenin equivalent of the circuit shown
in Figure P4.49 as seen by the load resistor.

1,000 Q
AAAA +
YVVY

Vin(t) = 12 cos 10t 100 uF =< R Vou(t)

Figure P4.49

4.50 Solvefori(t)inthecircuit of Figure P4.50, using
phasor techniques, if vs(r) = 2cos(2t), Ry = 4 2,
R,=4Q,L=2H,andC =} F.
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Ry C
( ‘ i(t)
vs() L EE Ry

Figure P4.50

4.51 Using mesh current analysis, determine the
currents iy (t) and i»(¢) in the circuit shown in Figure
P4.51.

L=05H

Ry =100 Q

vs(t) =15 cos 1,500t

Figure P4.51

4.52 Using node voltage methods, determine the
voltages vy (#) and v, (¢) in the circuit shown in Figure

P4.52.
wo @ va()
I\ ~
is(t) = 40 cos 100t A Ry 3R L
Rl =10Q
R2 =40Q
C =500 UF
L=02H

Figure P4.52

4.53 Thecircuit shown in Figure P4.53 is a Wheatstone
bridge that will allow you to determine the reactance of
an inductor or a capacitor. The circuit is adjusted by
changing R; and R, until v, iszero.

vs() (2

©

Figure P4.53

a Assuming that the circuit is balanced, that is, that
Ve, = 0, determine X4 in terms of the circuit
elements.

AC Network Analysis

b. If C3=47pF L3 =0.098H, R; =100 ,
R, = 1Q, vg(t) = 24sin(2,000¢), and v,;, = O,
what is the reactance of the unknown circuit
element? Isit a capacitor or an inductor? What is
its value?

¢. What frequency should be avoided by the sourcein
this circuit, and why?

4.54 Compute the Thévenin impedance seen by resistor
R5 in Problem 4.50.

4.55 Compute the Thévenin voltage seen by the
inductance, L, in Problem 4.52.

4.56 Find the Thévenin equivalent circuit as seen from
terminals a-b for the circuit shown in Figure 4.56.

420
a
jsQ
50-30° V
80
b

Figure P4.56

4.57 Compute the Thévenin voltage seen by resistor R,
in Problem 4.50.

4.58 Find the Norton equivalent circuit seen by resistor
R, in Problem 4.50.

4.59 Write the two loop equations required to solve for
the loop currentsin the circuit of Figure P4.59in:

a. Integral-differential form.

b. Phasor form.
Rs J—C L
(T G
Vs Ry R,

Figure P4.59

4.60 Write the node equations required to solve for all
voltages and currentsin the circuit of Figure P4.59.
Assume all impedances and the two source voltages
are known.

4.61 Inthecircuit shownin Figure P4.61:

vy, = 450 coswt V v = 450 coswt V

A solution of the circuit with the ground at node e as
shown gives:
V, = 45020V V, =4404% V
V., =420/ —3.49V
V. = 779.520.098 V
V,, = 230.6£1.875V

Ve = 153.941.2V



If the ground is now moved from node e to node d,

determine V,, and V..

a AAA b
VYVy
Z4
+ >
c =
(_) Vs VAR S
e =
T =
+ i >
- <
Ow 22
Zs
NN%%
d c

Figure P4.61

4.62 DetermineV, inthecircuit of Figure P4.62 if:
v = 4 cos(1,000f + ) V
L=60mH C=125uF
R, =120Q

L
T

Figure P4.62

-u——n——
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4.63 The mesh currents and node voltagesin the circuit

shown in Figure P4.63 are:

i1(t) = 3.127 cos(wt — 0.825) A
ir(t) = 3.914 cos(wt — 1.78) A

i3(t) = 1.900 cos(wt + 0.655) A
v1(7) = 130.0 cos(wt + 0.176) V
vo(t) = 130.0 cos(wt — 0.436) V

where w = 377.0 rad/s. Determine one of the
following L1, C2, R3, OF L3.

AMAA

YVVY
Zy
+
(:)Vg 3'—1 Rs
_ I
I 5
. =
C)vSZ Q =+c, Ls
- |2
Zs
AAAA

YYVV

Figure P4.63
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CHAWPTER

Transient Analysis

51 INTRODUCTION

The aim of this chapter is to explore the solution of circuits that contain resis-
tances, inductances, capacitances, voltage and current sources, and switches. The
response of a circuit to the sudden application of a voltage or current is called
transient response. The most common instance of a transient response in a circuit
occurs when a switch is turned on or off—a rather common event in electrical cir-
cuits. Although there are many possible types of transients that can be introduced
in a circuit, in the present chapter we shall focus exclusively on the transient re-
sponse of circuits in which a switch activates or deactivates a DC source. Further,
we shall restrict our analysis, for the sake of simplicityfitet- andsecond-order
transients, that is to circuits that have only one or two energy storage elements.
The graphs of Figure 5.1 illustrate the result of the sudden appearance of a
voltage across a hypothetical load [a DC voltage in Figure 5.1(a), an AC voltage
in Figure 5.1(b)]. In the figure, the source voltage is turned on at time).2 s.
The voltage waveforms of Figure 5.1 can be subdivided into three regions: a
steady-state region, for 0< ¢ < 0.2 s; atransient region for02 < ¢t < 2's
(approximately); and a new steady-state regionsfor 2 s, where the voltage
reaches a steady DC or AC condition. The objectivérahsient analysis is to
describe the behavior of a voltage or a current during the transition that takes place
between two distinct steady-state conditions.

181
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O T 1
| Complex load !

Figure 5.2 Circuit with
switched DC excitation

Switch
Rs
t= (;)_ Circuit
—\ - containing

RL/RC
combinations

Figure 5.3 A general model
of the transient analysis problem

Chapter 5 Transient Analysis

206
5 /
>04 /
0.2

0O 02 04 06 08 10 12 14 16 18 20

t(9)
(a) Transient DC voltage

Volts
o

J ] |

NI |
A |
_10 02 04 06 0.8U 10 12 1.4U

t(s)
(b) Transient sinusoidal voltage

I
|

16 18 20

Figure 5.1 Examples of transient response

You already know how to analyze circuits in a sinusoidal steady state by
means of phasors. The material presented in the remainder of this chapter will
providethetools necessary to describethetransient response of circuits containing
resistors, inductors, and capacitors. A general example of the type of circuit that
will be discussed in this section is shown in Figure 5.2. The switch indicates
that we turn the battery power on at time ¢+ = 0. Transient behavior may be
expected whenever a source of electrical energy is switched on or off, whether
it be AC or DC. A typical example of the transient response to a switched DC
voltage would be what occurs when the ignition circuits in an automobile are
turned on, so that a 12-V battery is suddenly connected to a large number of
electrical circuits. The degree of complexity in transient analysis depends on
the number of energy-storage elements in the circuit; the analysis can became
quite involved for high-order circuits. In this chapter, we shall analyze only first-
and second-order circuits—that is, circuits containing one or two energy-storage
elements, respectively. Inelectrical engineering practice, wewouldtypically resort
to computer-aided analysis for higher-order circuits.

A convenient starting point in approaching thetransient response of electrical
circuitsisto consider the general model shown in Figure 5.3, where the circuitsin
the box consist of acombination of resistors connected to a single energy-storage
element, either an inductor or a capacitor. Regardless of how many resistors the
circuit contains, it is a first-order circuit. In general, the response of a first-
order circuit to a switched DC source will appear in one of the two forms shown
in Figure 5.4, which represent, in order, a decaying exponential and a rising
exponential waveform. In the next sections, we will systematically analyze these
responses by recognizing that they are exponential in nature and can be computed
very easily once we have the proper form of the differential equation describing
the circuit.



Part | Circuits

Decaying exponential waveform

0.8 \

0.6 \

0.4 \
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£
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Rising exponential waveform
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0

05 1.0 15 20
()

o

Figure 5.4 Decaying and rising exponential
responses

SOLUTION OF CIRCUITS CONTAINING
DYNAMIC ELEMENTS

Themgjor difference between the analysis of theresistive circuits studied in Chap-
ters 2 and 3 and the circuits we will explore in the remainder of this chapter is
that now the equations that result from applying Kirchhoff’s laws are differential
equations, as opposed to the algebrai ¢ equations obtained in solving resistive cir-
cuits. Consider, for example, the circuit of Figure 5.5, which consists of the series
connection of avoltage source, aresistor, and a capacitor. Applying KVL around
the loop, we may obtain the following equation:

52

vs (1) — vR(1) —ve(r) =0 (5.1

Observing that i = i, we may combine equation 5.1 with the defining equation
for the capacitor (equation 4.6) to obtain

t

vs(t) — Ric(t) — % / icdt’' =0 (5.2)

Equation 5.2 isan integral equation, which may be converted to the more familiar
form of a differential equation by differentiating both sides of the equation, and
recalling that

d 1

0 </_Do ic(t/)dt'> =ic(t) (5.3
to obtain the following differential equation:

dic 1 ) 1 dUS

e, =2 5.4

it TRCCT R i 4

where the argument (¢) has been dropped for ease of notation.
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A circuit containing energy-storage
elementsis described by a
differential equation. The
differential equation describing the

series RC circuit shown is
diic + 1 :dls
ST

d  RC

+VR —

Figure 5.5 Circuit
containing energy-storage
element
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Observe that in equation 5.4, the independent variable is the series current
flowing inthe circuit, and that thisis not the only equation that describesthe series
RC circuit. If, instead of applying KVL, for example, we had applied KCL at the
node connecting theresistor to the capacitor, wewoul d have obtained thefollowing
relationship:

. Vs — Uc R dvc
= = = (j4447 5.5
'R R e dt (59
or
dUC 1 1
g = 5.6
ar T RCUT RCYS (56)

Note the similarity between equations 5.4 and 5.6. The left-hand side of both
equations is identical, except for the variable, while the right-hand side takes a
dightly different form. The solution of either equation is sufficient, however, to
determineall voltagesand currentsinthecircuit. Thefollowing exampleillustrates
the derivation of the differential equation for another simple circuit containing an
energy-storage element.

wo ()

VVVY

1

Figure 5.6

EXAMPLE 5.1 Writing the Differential Equation of an RL
Circuit

Problem

Derive the differential equation of the circuit shown in Figure 5.6.

Solution

Known Quantities: R; =10Q; R, =5Q; L =04H.
Find: Thedifferential equationiniy(z).

Assumptions: None.

Analysis: Apply KCL at the top node (nodal analysis) to write the circuit equation. Note
that the top node voltage is the inductor voltage, v, .

igt—ip —igp=0

Next, use the definition of inductor voltage to eliminate the variable v; from the nodal
equation.

Vs L dlL L dlL _
Ry R, dt R, dt o
diL Rle . R2

—_— 1, = Vg
dt L (Ry1+ Ry) L (R1+ Ry)
Substituting numerical values, we obtain the following differential equation:
di
éf+&%q=a%%s
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Comments: Deriving differential equations for dynamic circuits requires the same basic
circuit analysis skills that were developed in Chapter 3. The only difference isthe
introduction of integral or derivative terms originating from the defining relations for
capacitors and inductors.

185

We can generalize the results presented in the preceding pages by observing
that any circuit containing a single energy-storage element can be described by a
differential equation of the form

dx(1)
dx

where x(¢) represents the capacitor voltage in the circuit of Figure 5.5 and the
inductor current in the circuit of Figure 5.6, and where the constants ag and a;
consist of combinations of circuit element parameters. Equation 5.7 is a first-
order ordinary differential equation with constant coefficients. The equationis
said to be of first order because the highest derivative present is of first order; itis
said to be ordinary becausethe derivative that appearsinitisan ordinary derivative
(in contrast to apartial derivative); and the coefficients of the differential equation
are constant in that they depend only on the values of resistors, capacitors, or
inductors in the circuit, and not, for example, on time, voltage, or current.
Consider now a circuit that contains two energy-storage elements, such as
that shown in Figure 5.7. Application of KVL resultsin the following equation:

ay

+ apx(t) = f(t) (5.7)

Ri(t) — Ld;(tt) - %/ it dt' —vg()=0 (5.8

Equation 5.8 is called an integro-differential equation, because it contains both

an integral and a derivative. This eguation can be converted into a differential
equation by differentiating both sides, to obtain:

di(ty — d%@t) 1. dvs(t)
L 1) =
dt dr? C dr
or, equivalently, by observing that the current flowing in the seriescircuit isrelated

to the capacitor voltageby i (1) = Cdv¢/dt, and that equation 5.8 can be rewritten
as:

R (5.9

dvc dz'l)(; (1)

RC—+ LC

dt + dt?

Note that, although different variables appear in the preceding differential equa-

tions, both equations 5.9 and 5.10 can be rearranged to appear in the same general
form, asfollows:

d?x (1) dx(t)
e +ap T + agx(t) = F(1) (5.11)

where the general variable x () represents either the series current of the circuit of
Figure 5.7 or the capacitor voltage. By analogy with equation 5.7, we call equation
5.11 a second-order ordinary differential equation with constant coefficients.
Asthe number of energy-storage elementsin acircuit increases, one can therefore

+ ve(t) = vs(1) (5.10)

az

R L

ROT v
.

@) @ VC(OTC

Figure 5.7 Second-order
circuit
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expect that higher-order differential equationswill result. Computer aids are often
employed to solve differential equations of higher order; some of these software
packages are specifically targeted at the solution of the equations that result from
the analysis of electrical circuits (e.g., Electronics Workbench™).

L
Ry vc(t)
VVVy

i®

V|
]

w0 ()

Figure 5.8 Second-order
circuit of Example 5.2

Ro

EXAMPLE 5.2 Writing the Differential Equation of an RLC
Circuit

Problem

Derive the differential equation of the circuit shown in Figure 5.8.

Solution

Known Quantities: R; = 10kQ; R, =50Q; L =10mH; C = 0.1 uF
Find: Thedifferential equationini,(z).

Assumptions: None.

Analysis: Apply KCL at the top node (nodal analysis) to write the first circuit equation.
Note that the top node voltage is the capacitor voltage, vc.

Vs — Uc dvc .
—C——i,=0

Ry dt '

Now, we need a second equation to complete the description of the circuit, since the circuit
contains two energy storage elements (second-order circuit). We can obtain a second
equation in the capacitor voltage, vc, by applying KVL to the mesh on the right-hand side:

di

L .
ve —L— — Ryi; =0
c dr 2lL
dip .
ve = L— + Ryi;
dt

Next, we can substitute the above expression for v¢ into the first equation, to obtain a
second-order differential equation, shown below.

Vg LdlL Rz_ d dlL . .
—— —— - —=i, —-C—(L—+R —i;=0
i dt( ar + Roiy, iy

Rearranging the equation we can obtain the standard form similar to equation 5.11:
d?iy
dr?
Comments: Note that we could have derived an analogous equation using the capacitor
voltage as an independent variable; either energy storage variable is an acceptable choice.
You might wish to try obtaining a second-order equation in vc as an exercise. In this case,
you would want to substitute an expression for i, in the first equation into the second
equation in vc.

di
RiCL——~ + (RiRoC + L) d—f + (R1+ Ry iy = v

5.3 TRANSIENT RESPONSE
OF FIRST-ORDER CIRCUITS

First-order systemsoccur very frequently in nature; any system that hasthe abil-
ity to store energy in one form and to dissipate the energy stored is a first-order
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system. In electrical circuits, we recognize that any circuit containing a single
energy storage element (inductor or capacitor) and a combination of sources and
resistors (and possibly switches) is a first-order system. In other domains, we
also encounter first-order systems. For example, a mechanical system that has
mass and damping (e.g., friction), but not elasticity, will be afirst-order system.
A fluid system with fluid resistance and fluid capacitance (fluid storage) will also
be of first order; an example of afirst-order fluid system is a storage tank with a
valve. Inthermal systems, we also encounter first-order systems quite frequently:
The ability to store heat (heat capacity) and to dissipate it leads to a first-order
thermal system; heating and cooling of bodies s, at its simplest level, described
by first-order behavior.

In the present section we analyze the transient response of first-order cir-
cuits. Inwhat follows, we shall explain that theinitial condition, the steady-state
solution, and the time constant of the first-order system are the three quantities
that uniquely determine its response.

Natural Response of First-Order Circuits

Figure 5.9 comparesan R L circuit with the general form of the series RC circuit, R
showing the corresponding differential equation. From Figure 5.9, it is clear that A +
equation 5.12 is in the general form of the equation for any first-order circuit:
dx(t (_) vs(t) C == ve(t)
a0 4 ax0) = 10 (512)

where f isthe forcing function and x(¢) represents either vc(¢) or iy (t). The

L dv 1 1 _
constant a = ay/a; isthe inverse of the parameter 7, called the time constant of ~ RCdircuit TC ~ e e V70
thesystem: a = 1/7. R

To gain some insight into the solution of this equation, consider first the YWY

setting the forcing function equal to zero. This solution, in effect, describes the
response of the circuit in the absence of a source and is therefore characteristic of
all RL and RC circuits, regardless of the nature of the excitation. Thus, we are
interested in the solution of the equation

o
00

natural solution, or natural response, of the equation,® which is obtained by )
)vs(t) iL()

o ooodip R, 1. _
RL circuit: — — —iL— —=Vvs=0
dxy(t) 1 _0 513 dt L L
ar o= (513)  Eigure 5.9 Differential
or equations of first-order circuits
dxy(t 1
w0 Lo (5.14)
dt T

wherethe subscript N hasbeen chosen to denotethe natural solution. One can eas-
ily verify by substitution that the general form of the solution of the homogeneous
equation for afirst-order circuit must be exponential in nature, that is, that

xy(1) = Ke ™ = Ke™ /" (5.15)

To evaluate the constant K, we need to know the initial condition. The initial
condition is related to the energy stored in the capacitor or inductor, as will be
further explained shortly. Knowing the value of the capacitor voltage or inductor
current at + = 0 allows for the computation of the constant K, as follows:

xy(it=0=Ke =K =x (5.16)

IMathematicians usually refer to the unforced solution as the homogeneous solution.
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Figure 5.10 Decay through a
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Thus, the natural solution, which depends on the initial condition of the circuit at
t = 0, isgiven by the expression

xy () = xpe "7 (5.17)

where, once again, xy (t) represents either the capacitor voltage or the inductor
current and xq is the initial condition (i.e., the value of the capacitor voltage or
inductor current at r = 0).

Energy Storage in Capacitors and Inductors

Before delving into the complete solution of the differential equation describing
the response of first-order circuits, it will be helpful to review some basic results
pertaining to the response of energy-storage elementsto DC sources. Thisknowl-
edge will later greatly simplify the complete solution of the differential equation
describing a circuit. Consider, first, a capacitor, which accumulates charge ac-
cording to the relationship Q = CV. The charge accumulated in the capacitor
leads to the storage of energy according to the following eguation:

1 2
We = ZCva (1)

2
To understand the role of stored energy, consider, as an illustration, the simple
circuit of Figure 5.10, where a capacitor is shown to have been connected to a
battery, Vg, for along time. The capacitor voltageistherefore equal to the battery
voltage: vc () = Vg. The charge stored in the capacitor (and the corresponding
energy) can be directly determined using equation 5.18. Suppose, next, that at
t = 0 the capacitor is disconnected from the battery and connected to a resistor,
as shown by the action of the switchesin Figure 5.10. The resulting circuit would
be governed by the RC differential equation described earlier, subject to theinitial
condition vc(t = 0) = V. Thus, according to the results of the preceding
section, the capacitor voltagewoul d decay exponentially according tothefollowing
equation:

(5.18)

—t/RC

ve(t) = Vpe (519)

Physically, this exponential decay signifies that the energy stored in the capacitor
at + = O isdissipated by the resistor at arate determined by the time constant of
the circuit, t = RC. Intuitively, the existence of a closed circuit path allows for
the flow of a current, thus draining the capacitor of its charge. All of the energy
initially stored in the capacitor is eventually dissipated by the resistor.

A very analogous reasoning process explains the behavior of an inductor.
Recall that an inductor stores energy according to the expression

1,

W, = > Li%(1)
Thus, inaninductor, energy storageisassociated with theflow of acurrent (notethe
dual relationship between i; and vc). Consider the circuit of Figure 5.11, which
is similar to that of Figure 5.10 except that the battery has been replaced with a
current source and the capacitor with an inductor. For ¢ < 0, the source current,
I, flows through the inductor, and energy is thus stored; at + = 0, the inductor
current is equal to Ig. At this point, the current source is disconnected by means
of the left-hand switch and aresistor is simultaneously connected to the inductor,

(5.20)
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to form a closed circuit.? The inductor current will now continue to flow through
the resistor, which dissipates the energy stored in the inductor. By the reasoning
in the preceding discussion, the inductor current will decay exponentially:

i (t) = Ige 'R/ (5.21)

That is, the inductor current will decay exponentially from its initial condition,
with atime constant t = L/R. Example 5.3 further illustrates the significance of
the time constant in afirst-order circuit.

EXAMPLE 5.3 First-Order Systems and Time Constants

Problem

Create atableillustrating the exponential decay of avoltage or current in afirst-order
circuit versus the number of time constants.

Solution

Known Quantities: Exponential decay equation.

Find: Amplitude of voltage or current, x(¢), att =0, 7, 27, 3, 4, 5.

Assumptions: Theinitia conditionat = 0isx(0) = X,.

Analysis: We know that the exponential decay of x(¢) is governed by the equation:
x(@) = Xge 7

Thus, we can create the following table for theratio x (1) / Xo = e /*,n =0,1,2,..., a
each value of t:

x(1)
% n
1 0 1
03679 1 08
01353 2 \
00498 3 ,206
0.0183 4 X 04
00067 5 02 \
: S
0 "~

0 1 2 3 4 5

Figure 5.12 depicts the five points on the exponential decay curve. Time constants

. ) Figure 5.12 First-order
Comments: Note that after three time constants, x has decayed to approximately 5 exponential decay and time

percent of theinitia value, and after five time constants to less than 1 percent. constants

2Note that in theory an ideal current source cannot be connected in series with a switch. For the
purpose of this hypothetical illustration, imagine that upon opening the right-hand-side switch, the
current source is instantaneously connected to another load, not shown.
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EXAMPLE 5.4 Charging a Camera Flash—Time Constants
Problem
A capacitor is used to store energy in a cameraflash light. The camera operates on a 6-V
battery. Determine the time required for the energy stored to reach 90 percent of the
maximum. Compute thistimein seconds, and as a multiple of the time constant. The

t=0 equivalent circuit is shown in Figure 5.13.
R
gl
VB = Solution

Figure 5.13 Equivalent
circuit of camera flash charging
circuit

Known Quantities: Battery voltage; capacitor and resistor values.
Find: Timerequired to reach 90 percent of the total energy storage.

Schematics, Diagrams, Circuits, and Given Data: Vz = 6V; C = 1,000 uF;
R =1ke.

Assumptions: Charging startsat + = 0, when the flash switch isturned on. The
capacitor is completely discharged at the start.

Analysis: First, we compute the total energy that can be stored in the capacitor:
Egqa = 2C12 =31CV2=18x102 J

Thus, 90 percent of the total energy will be reached when
Eia = 0.9 x 18 x 1072 = 16.2 x 102 J. This corresponds to a voltage calculated from

3C12 =162x 102

2x162x 103
vC=,/%=5.692 Vv

Next, we determine the time constant of thecircuit: T = RC = 1072 x 10° = 15, and we
observe that the capacitor will charge exponentially according to the expression

Ve =6(l—e”/f) =6(l—e")

To compute the time required to reach 90 percent of the energy, we must therefore solve
for ¢ inthe equation

Ve-ome = 5.692 = 6 (1 — ™)
0949=1—¢"
0.051=¢""
t =—log, (0.051) =297 s
The result corresponds to a charging time of approximately 3 time constants.

Comments: This example demonstrates the physical connection between the time
constant of afirst-order circuit and a practical device. If you wish to practice some of the
calculations related to time constants, you might calculate the number of time constants
required to reach 95 percent and 99 percent of the total energy stored in a capacitor.
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Forced and Complete Response of First-Order
Circuits

In the preceding section, the natural response of a first-order circuit was found
by setting the forcing function equal to zero and considering the energy initially
stored in the circuit as the driving force. The forced response, xr(¢), of the
inhomogeneous equation

0 4 v = 10 (5.22)
t T

is defined as the response to a particular forcing function f(¢), without regard for
theinitial conditions.® Thus, theforced response dependsexclusively onthe nature
of the forcing function. The distinction between natural and forced response is
particularly useful becauseit clarifiesthe nature of the transient response of afirst-
order circuit: the voltages and currentsin the circuit are due to the superposition
of two effects, the presence of stored energy (which can either decay, or further
accumulate if a source is present) and the action of external sources (forcing
functions). The natural response considers only the former, while the forced
response describesthe latter. The sum of these two responses forms the complete
response of the circuit:

x(t) = xn(t) + xp (1) (5.23)

Theforced response depends, in general, on theform of theforcing function, f(z).
For the purpose of the present discussion, it will beassumed that f (¢) isaconstant,
applied at t = O, that is, that

f@y=F 1>=0 (5.24)

(Notethat thisis equivalent to turning a switch on or off.) In this case, the differ-
ential equation describing the circuit may be written as follows:

d
dxr _ X o ,.g (5.25)
dt T

For the case of a DC forcing function, the form of the forced solution is also a
constant. Substituting x(¢) = X = constant in the inhomogeneous differential
equation, we obtain

0=-2L4F (5.26)
or
XF =1F

Thus, the complete solution of the original differential equation subject to initial
condition x(r = 0) = xo and to aDC forcing function F for ¢ > Ois

x(t) = xy(t) + xp (1) (5.27)
or

x(t)=Ke "+ tF

SMathematicians call this solution the particular solution.

191
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wherethe constant K can be determined from theinitial condition x(t = 0) = xq:

xo=K+1F

5.28
K:XQ—‘L’F ( )

Electrical engineers often classify this response as the sum of a transient
response and asteady-stateresponse, rather than asum of anatural response and
aforced response. The transient response is the response of the circuit following
the switching action before the exponential decay terms have died out; that is,
the transient response is the sum of the natural and forced responses during the
transient readjustment period we have just described. The steady-state response
is the response of the circuit after all of the exponential terms have died out.
Equation 5.27 could therefore be rewritten as

x(t) = xr(t) + xs5 (5.29)
where
xr(t) = (xo — tF)e"/" (5.30)

and in the case of aDC excitation, F,
Xss(1) =TF = xoo

Note that the transient responseis not equal to the natural response, but it includes
part of the forced response. The representation in equations 5.30 is particularly
convenient, because it allows for solution of the differential equation that results
from describing the circuit by inspection. The key to solving first-order circuits
subject to DC transients by inspection isin considering two separate circuits: the
circuit prior to the switching action, to determine the initial condition, xo; and
the circuit following the switching action, to determine the time constant of the
circuit, T, and the steady-state (final) condition, x,,. Having determined these
three values, you can write the solution directly in the form of equation 5.29, and
you can then evaluate it using theinitial condition to determine the constant K.

To summarize, thetransient behavior of acircuit can be characterized inthree
stages. Prior to the switching action, the circuit is in a steady-state condition (the
initial condition, determined by xg). For a period of time following the switching
action, the circuit sees atransient readjustment, which is the sum of the effects of
the natural response and of the forced response. Finaly, after asuitably long time
(which depends on the time constant of the system), the natural response decaysto
zero(i.e., theterme™/* — Q0ast — oo) and the new steady-state condition of the
circuit is equal to the forced response: ast — oo, x(t) — xp(t). You may recall
that thisis exactly the sequence of events described in theintroductory paragraphs
of Section 5.3. Analysis of the circuit differential equation has formalized our
understanding of the transient behavior of acircuit.

Continuity of Capacitor Voltages and Inductor
Currents

As has already been stated, the primary variables employed in the analysis of
circuits containing energy-storage elements are capacitor voltages and inductor
currents. This choice stems from the fact that the energy-storage process in ca-
pacitors and inductorsis closely related to these respective variables. The amount
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of charge stored in a capacitor is directly related to the voltage present across the
capacitor, while the energy stored in an inductor is related to the current flowing
through it. A fundamental property of inductor currents and capacitor voltages
makes it easy to identify the initial condition and final value for the differential
equation describing a circuit: capacitor voltages and inductor currents cannot
change instantaneously. An instantaneous change in either of these variables
would require an infinite amount of power. Since power equals energy per unit
time, it follows that atruly instantaneous change in energy (i.e., afinite changein
energy in zero time) would reguire infinite power.

Another approach to illustrating the same principle is as follows. Consider
the defining equation for the capacitor:

dvc (1)
dt

and assume that the capacitor voltage, vc(¢), can change instantaneously, say,
from 0 to V vaolts, as shown in Figure 5.14. The value of dvc/dt att = 0 is
simply the slope of the voltage, vc(¢), at ¢+ = 0. Since the dopeisinfinite at that
point, because of the instantaneous transition, it would require an infinite amount
of current for the voltage across a capacitor to change instantaneously. But this
is equivalent to requiring an infinite amount of power, since power is the product
of voltage and current. A similar argument holds if we assume a*“step” changein
inductor current from, say, 0to I amperes: an infinite voltage would berequired to
cause an instantaneous change in inductor current. This simple fact is extremely
useful in determining the response of acircuit. Itsimmediate consegquence is that
the value of an inductor current or a capacitor voltage just prior to the closing (or
opening) of a switch is equal to the value just after the switch has been closed (or
opened). Formally,

ictt)y=C

ve(0%) = ve(07) (5.31)

ir(07) =i (07) (5.32)

wherethenotation 0" signifies“just after t = 0" and 0~ means*just beforet = 0.

ve(t)

\Y
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t=0

t

Figure 5.14 Abrupt change

in capacitor voltage

EXAMPLE 5.5 Continuity of Inductor Current

Problem

Find theinitial condition and final value of the inductor current in the circuit of Figure
5.15.

Solution

Known Quantities: Source current, ; inductor and resistor values.
Find: Inductor currentatt = 0" and ast — oo.

Schematics, Diagrams, Circuits, and Given Data: Iy = 10 mA.

Assumptions: The current source has been connected to the circuit for avery long time.

2y
AAA
YVVy

Figure 5.15
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R o,

iL®

10 mA

Figure 5.16
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Analysis: At = 0, since the current source has been connected to the circuit for avery
long time, the inductor acts as a short circuit, and i, (0~) = Is. Since al the current flows
through the inductor, the voltage across the resistor must be zero. At t = 0%, the switch
opens and we can state that

i (0Y) =i, (07) =1

because of the continuity of inductor current.

Thecircuit for ¢+ > 0is shown in Figure 5.16, where the presence of the current
i, (0%) denotes theinitial condition for the circuit. A qualitative sketch of the current asa
function of timeis also shown in Figure 5.16, indicating that the inductor current
eventually becomes zero ast — oo.

Comments: Note that the direction of the current in the circuit of Figure 5.16 is dictated
by the initial condition, since the inductor current cannot change instantaneously. Thus,
the current will flow counterclockwise, and the voltage across the resistor will therefore
have the polarity shown in the figure.

Complete Solution of First-Order Circuits

Inthissection, weillustrate the application of the principles put forth in the preced-
ing sections by presenting a number of examples. The first example summarizes
the complete solution of asimple RC circuit.

[ty
— 12—\N ve(t) =
i) _

Figure 5.17

- C
ve(0) =5V

EXAMPLE 5.6 Complete Solution of First-Order Circuit

Problem

Determine an expression for the capacitor voltage in the circuit of Figure 5.17.

Solution

Known Quantities: Initial capacitor voltage; battery voltage, resistor and capacitor
values.

Find: Capacitor voltage as a function of time, vc (¢), for all ¢.

Schematics, Diagrams, Circuits, and Given Data: vc(f =07) =5V; R = 1kQ;
C =470 uF;, Vy =12 V.

Assumptions: None.

Analysis: Wefirst observe that the capacitor had previously been charged to an initial
voltage of 5 V. Thus,

ve(®) =5V t<0
At ¢t = 0the switch closes, and the circuit is described by the following differential
equation, obtained by application of KVL:
dvc(t)
dt
dvc(t) 1

1
—vc(t) = —V, t>0
ar T ReUCW = Re Ve =

Vg — RC

—ve(t) =0 t>0
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In the above equation we recognize the following variables, with reference to equation
5.22:

1
X =vc T =RC f(t):R—CVB t>0s

The natural response of the circuit is therefore of the form:
xn(®) =ven () = Ke™/" = Ke™'/RC t>0s,

while the forced responseis of the form:
xp(t) =vept) =1f(t) =Vp t>0s.

Thus, the complete response of the circuit is given by the expression
x(t) = ve(t) = ven(t) + vep(t) = Ke /RC + vy t>0s

Now that we have the complete response, we can apply the initial condition to determine
the value of the constant K. Attimer = 0O,

ve(0) =5=Ke YRC Ly,
K=5-12=-7V
We can finally write the complete response with numerical values:
ve(t) = =774 + 12V > 0s
=vcT () + vess(t)
=12(1— %)+ 5794V t>0s
= vcr(t) + ven (?)

The compl ete response described by the above equations is shown graphically in Figure
5.18 (a) and (b).

15 I I I 15 I I I
-- VC(t()) I -- VC(t()t)
10 =T -- - ver () [l 10 L ven()
-1 — \ess(t) PR g — \ee(t)
“ A7 LA
5¢£ 5K 1 A
2 2 ) .
S0 S0 Toopmee
5 5
-10 -10
002040608 112141618 2 002040608 112141618 2
Time, (s) Time, (s)
@ (b)

Figure 5.18 (a) Complete, transient, and steady-state responses of the circuit of
Figure 5.17. (b) Complete, natural, and forced responses of the circuit of Figure 5.17.

Comments: Note how in Figure 5.18(a) the steady-state response vcss(7) issimply
equal to the battery voltage, while the transient response, vcr (1), risesfrom -7V to 0V
exponentially. In Figure 5.18(b), on the other hand, we can see that the energy initially
stored in the capacitor decays to zero viaits natural response, vcy (¢), while the external
forcing function causes the capacitor voltage to eventually rise exponentially to 12 V, as
shown in the forced response, V¢ (¢). The example just completed, though based on a
very simple circuit, illustrates all the steps required to complete the solution of a
first-order circuit. The methodology applied in the example is summarized in a box, next.

195
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Focus on Computer-Aided Tools: An electronic file generated using Matlab to create
the graphs of Figure 5.18 may be found in the accompanying CD-ROM. An EWB
solution is a so enclosed.
VIRTUAL LAB
FOCUSONMETHODOLOGY
Solution of First-Order Circuits
1. Determinetheinitial condition of the energy storage element.
2. Writethe differential equation for the circuit for ¢ > 0.
3. Determine the time constant of the circuit for ¢ > 0.
4. Write the complete solution as the sum of the natural and forced
responses.
5. Apply theinitial condition to the complete solution, to determine the
constant K.
EXAMPLE 5.7 Starting Transient of DC Motor
Problem
An approximate circuit representation of a DC motor consists of series RL circuit, shown
t=0 in Figure 5.19. Apply the first-order circuit solution methodology just described to this
approximate DC motor equivalent circuit to determine the transient current.
+ R
VB E +
-T ) L Qv Solution
I _
Known Quantities: Initial motor current; battery voltage, resistor and inductor values.
Figure 5.19

Find: Inductor current asafunction of time, i, (¢), for al .

Schematics, Diagrams, Circuits, and Given Data: i;(t =0") =0A; R =4Q;
L=0.1H;Vz=50V.

Assumptions: None.
Analysis: At = 0the switch closes, and the circuit is described by the following
differential equation, obtained by application of KVL:
di
vy — Ri, — L0

dt
dir(t) R. 1
;l + i =7Vs  1>0

In the above equation we recognize the following variables, with reference to equation
5.22:

=0 t>0

] L f@® 1V t>0
= T = — = — >
X iy R L B

The natural response of the circuit is therefore of the form:

xn() =in(@) = Ke /T = Ke R/E t>0
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while the forced response is of the form:

V
xp(t) = ipp(t) = Tf (1) = ?B > 0.

Thus, the complete response of the circuit is given by the expression

1
x(f)=iL(t)=iLN(f)+iLF(l)=K€_R1/L+EVB t>0

Now that we have the complete response, we can apply the initial condition to determine
the value of the constant K. Attimet =0,

1
lL(O) =0= K€70+ EVB
1

K=—-=V
RE

We can finally write the complete response with numerical values:

14
i) = ?3(1— ) t>0

= 12.5(1 — ¢7/00%) >0

The compl ete response described by the above equations is shown graphically in Figure
5.20.

Comments: Notethat in practiceit isnot agood ideato place a switch in series with an
inductor. Asthe switch opens, the inductor current is forced to change instantaneously,
with the result that di; /dt, and therefore v, (1) approaches infinity. The large voltage
transient resulting from this inductive kick can damage circuit components. A practical
solution to this problem, the free-wheeling diode, is presented in Section 11.5.

Focus on Computer-Aided Tools: An electronic file generated using Matlab to create
the graph of Figure 5.20 may be found in the accompanying CD-ROM.

Circuits
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Figure 5.20 Complete
response of the circuit of Fig. 5.19

In the preceding examples we have seen how to systematically determine
the solution of first-order circuits. The solution methodology was applied to two
simple cases, but it appliesin general to any first-order circuit, providing that one
is careful to identify a Thévenin (or Norton) equivalent circuit, determined with
respect to the energy storage element (i.e., treating the energy storage element as
theload). Thusthe equivalent circuit methodology for resistive circuits presented
in Chapter 3 applies to transient circuits as well. Figure 5.21 depicts the general
appearance of a first-order circuit once the resistive part of the circuit has been
reduced to Thévenin eguivalent form.

An important comment must be made before demonstrating the equivalent
circuit approach to more complex circuit topologies. Sincethe circuitsthat arethe
subject of the present discussion usually contain a switch, one must be careful to
determine the equivalent circuits before and after the switch changes position. In
other words, it ispossiblethat the equivalent circuit seen by theload before activat-
ing the switch is different from the circuit seen after the switch changes position.

To illustrate the procedure, consider the RC circuit of Figure 5.22. The
objective is to determine the capacitor voltage for all time. The switch closes at
t = 0. Fort < 0, werecognizethat the capacitor has been connected to the battery
V, through resistor R,. This circuit is already in Thévenin equivalent form, and
we know that the capacitor must have charged to the battery voltage, V>, provided

Rr i
AIM_’*
L Energy
Vr () storage
T element

¢

Figure 5.21 Equivaent-
circuit representation of
first-order circuits
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Figure 5.22 A more involved RC circuit

that the switch has been closed for a sufficient time (we shall assume so). Thus:
ve(t) = Vo t<0
Ve(0) = V2

After the switch closes, the circuit on the left-hand side of Figure 5.22 must be
accounted for. Figure 5.23 depicts the new arrangement, in which we have moved
the capacitor to the far right-hand side, in preparation for the evaluation of the
equivalent circuit. Using the Thévenin-to-Norton sourcetransformation technique
(introduced in Chapter 3), we next obtain the circuit at the top of Figure 5.24,
which can be easily reduced by adding the two current sources and computing the
equivalent parallel resistance of Ry, Ry, and R3. The last step illustrated in the
figureisthe conversionto Théveninform. Figure 5.25 depictsthefinal appearance
of the equivalent circuit for ¢ > 0.

(5.33)

s
VL
71
(@)

V, — — Vs

'
Rl R2 i
.

Figure 5.23 The circuit of Figure
6.45forr >0

Now we areready to writethedifferential equation for the equivalent circuit:

lil)(j 1 1
— + ve =—=Vr t>0
dt Ry C RrC (ES.E§4)

T =RsC ve(0) =V,

The complete solution is then computed following the usua procedure, as shown
below.

ve(t) = Ke T+ 1f (1)
ve(0) = Ke® + vy
K=vc0)—Vyr =V,—Vrp
ve(t) = (Vo= Vp)e /8¢ 1 vy
The method illlustrated above is now applied to two examples.

(5.35)
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EXAMPLE 5.8 Turn-Off Transient of DC Motor

Problem

Determine the motor voltage for al time in the simplified electric motor circuit model
shown in Figure 5.26. The motor isrepresented by the series R L circuit in the shaded box.

Solution
Known Quantities: Battery voltage, resistor, and inductor values.
Find: The voltage across the motor as a function of time.

Schematics, Diagrams, Circuits, and Given Data: Rz =2 Q; Ry =209; R,, = 0.8,
L =3H; Vz; =100 V.

Assumptions: The switch has been closed for along time.

Analysis: With the switch closed for along time, the inductor in the circuit of Figure
5.26 behaves like a short circuit. The current through the motor can then be calculated by
the current divider rule in the modified circuit of Figure 5.27, where the inductor has been
replaced with a short circuit and the Thévenin circuit on the left has been replaced by its
Norton equivalent:

1

o R, Vg 08 100

""_1+1+11TB_1 1+17_34'72A
Ry R, Ry 220" 08

This current istheinitial condition for the inductor current: i; (0) = 34.72 A. Sincethe
motor inductance is effectively a short circuit, the motor voltage for r < Oisequal to

V() =iuRy =278 V t<0

When the switch opens and the motor voltage supply is turned off, the motor sees only the
shunt (parallel) resistance R;, as depicted in Figure 5.28. Remember now that the inductor
current cannot change instantaneously; thus, the motor (inductor) current, i,,, must
continue to flow in the same direction. Since al that isleft isaseries RL circuit, with
resistance R = R, + R,, = 20.8 , the inductor current will decay exponentially with
timeconstantr = L/R = 0.1442 s

i@ =in() =i (0)e™"/T =347¢70¥2 150

The motor voltage is then computed by adding the voltage drop across the motor
resistance and inductance:

. dig (1)
m () = Rm t L———=
Uy (1) ir(t) + 7
34.7
— 0.8 x 34.7¢1/01442 | 3 9 Y _ij0.1442 0
e o\ To1am )¢ >

=—694.1¢7"/%* ;>0
The motor voltage is plotted in Figure 5.29.

Comments: Notice how the motor voltage rapidly changes from the steady-state value of
27.8V for r < 0to alarge negative value due to the turn-off transient. Thisinductive kick
istypical of RL circuits, and results from the fact that, although the inductor current
cannot change instantaneously, the inductor voltage can and does, asit is proportional to
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Figure 5.29 Motor voltage transient response

the derivative of i;. Thisexampleisbased on asimplified representation of an electric
motor, but illustrates effectively the need for special starting and stopping circuitsin
electric motors. Some of these ideas are explored in Chapters 11 (“ Power Electronics’),
17 (“Introduction to Electric Machines”) and 18 (“ Special-Purpose Electric Machines”).

Focus on Computer-Aided Tools: The Matlab mfile containing the numerica analysis
and plotting commands for this example may be found in the CD that accompanies this
book. An EWB solution is also enclosed.

Coaxial Cable Pulse Response FIND 1T
Problem:

A problem of great practical importance is the transmission
of pulses along cables. Short voltage pulses are used to
represent the two-level binary signals that are characteristic of digital
computers; it is often necessary to transmit such voltage pulses over long
distances through coaxial cables, which are characterized by afinite
resistance per unit length and by a certain capacitance per unit length,
usually expressed in pF/m. A simplified model of along coaxial cableis
shown in Figure 5.30. If a10-m cable has a capacitance of 1,000 pF/m and a
series resistance of 0.2 ©2/m, what will the output of the pulse look like after
traveling the length of the cable?

Solution:

Known Quantities— Cable length, resistance, and capacitance; voltage pulse
amplitude and time duration.

Find— The cable voltage as a function of time.

Schematics, Diagrams, Circuits, and Given Data— r; = 0.2 Q/m;

R; = 150 Q; ¢ = 1,000 pF/m; [ = 10 m; pulse duration = 1 us.
Assumptions— The short voltage pulse is applied to the cableat t = 0.
Assume zero initial conditions.

Analysis— The voltage pulse can be modeled by a 5-V battery connected to
aswitch; the switch will then closeat t = O and open againatr = 1 us. The
solution strategy will therefore proceed as follows. First, we determine the
initial condition; next, we solve the transient problem for 7 > 0; finally, we
compute the value of the capacitor voltage at r = 1 us—that is, when the
switch opens again—and solve a different transient problem. Intuitively, we

ON THE WEB



http://www.mhhe.com/engcs/electrical/rizzoni/student/olc/fiotw05.htm
http://www.mhhe.com/engcs/electrical/rizzoni/examples.mhtml

Part | Circuits

201

5V
(% 7] i
{= ) + “Oon” time
Vs ) JT— Inner RRZ Vi
Outer shield conductor
(grounded) 1l t=0 t=1ps
= - Pulse
t=0
Ry
I% AWV
. +
C=< RE VL

AAAA

5V T _—
Circuit model for a section
of coaxial cable

Figure 5.30 Pulse transmission in a coaxial cable

know the equivalent capacitor will charge for 1 s, and the voltage will
reach acertain value. Thisvalue will be theinitial condition for the
capacitor voltage when the switch is opened; the capacitor voltage will then
decay to zero, since the voltage source has been disconnected. Note that the
circuit will be characterized by two different time constants during the two
transient stages of the problem. Theinitial condition for this problemis
zero, assuming that the switch has been open for along time.

The differential equation for 0 < ¢ < 1 usis obtained by computing the
Thévenin equivalent circuit relative to the capacitor when the switch is
closed:

Ry
Vp=——-YV, R7 = R1||R = R;sC O<t<1lus
= R R, P T 1l Re T T <t<lp
Aswe have already seen, the differential equation is given by the expression
dvc 1 1
- = V. O<t<1lus
at TRCCT R CT sh=tu

and the solution is of the form
ve(t) = Ke /™ 4+ tf(t) = Ke /™ 4+ Vy
ve(0) = Ke® + vy
K =vc(0)—Vyr =-Vr
ve(t) = —Vpe RC 4 Vi =V (1— e7/R1C) O<r<1pus

We can assign numerical values to the solution by calculating the effective
resistance and capacitance of the cable;

Ri=rx1=02x10=2Q C=cxlI

= 1,000 x 10 = 10,000 pF
150
Rr =2||150 = 1.97 =—Vz =4
T 1150 9 Vr 10 Vs 93V
Ton= R7C =1974x 10°s
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so that
ve(r) = 4.93 (1 - e*f/19-74xl°’9) O<t<1us

At the time when the switch opens again, ¢ = 1 us, the capacitor voltage can
befoundto be ve(t = 1 us) = 4.93 V.

When the switch opens again, the capacitor will discharge through the
load resistor, R, ; this dischargeis described by the natural response of the
circuit consisting of C and R; and is governed by the following values:
ve(t =1 us) =493V, 18 = R, C = 1.5 us. We can directly write the
natural solution asfollows:

ve(t) = ve(t = 1 x 1078) x ¢~ 1x107/on
=493 x e*(l‘flx10_6)/1.5><10_6 t> 1/'LS

Figure 5.31 shows a plot of the solution for ¢+ > 0, along with the voltage
pulse.

5
4
a
S 3
>
2
1 E—
0
0 0.2 0.4 0.6 0.8 1

Time (10-59)
Figure 5.31 Coaxial cable pulse response

Comments— Note that the voltage response shown in Figure 5.31 rapidly
reaches the desired value, near 5 valts, thanks to the very short charging time
constant, 7on. On the other hand, the discharging time constant, 7y, IS
significantly slower. Asthe length of the cableisincreased, however, tq,
will increase, to the point that the voltage pulse may not rise sufficiently
close to the desired 5-V value in the desired time. While the numbers used
in this example are somewhat unrealistic, you should remember that cable
length limitations may exist in some applications because of the cable
intrinsic capacitance and resistance.

Focus on Computer-Aided Tools— The Matlab m-file containing the
numerical analysis and plotting com-

mands for this example may be found in the CD that accompanies this book.
An EWB solution is aso enclosed.

Check Your Understanding

5.1 Writethedifferential equation for the circuit shown in Figure 5.32.
5.2 Writethe differential equation for the circuit shown in Figure 5.33.
5.3 Writethe differential equation for the circuit shown in Figure 5.34.
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5.4 ltisinstructive to repeat the analysis of Example 5.5 for a capacitive circuit. For
the circuit shown in Figure 5.35, compute the quantities v-(0™) and i, (0"), and sketch the
response of the circuit, that is, v (¢), if the switch opensat r = 0.

20 t>0 Ry Rs
—'\NW—Q;C O—“WW WW
iR¢ + +
= 1v 403w T:C =1V R3I CTvwO
Figure 5.35 Figure 5.36
t=9 200 Q
10mA () 3 1kQ =< 0.0LpF 21k
Figure 5.37

5.5 Thecircuit of Figure 5.36 has a switch that can be used to connect and disconnect
abattery. The switch has been open for avery long time. At ¢ = 0, the switch closes, and
then at t = 50 ms, the switch opensagain. Assumethat R; = R, = 1,000 2, R; = 500,
and C = 25 uF.

a. Determine the capacitor voltage as a function of time.
b. Plot the capacitor voltage from s = 0to s = 100 ms.

5.6 If the 10-mA current source is switched on at ¢+ = 0 in the circuit of Figure 5.37,
how long will it take for the capacitor to charge to 90 percent of its fina voltage?

5.7 Find the time constant for the circuit shown in Figure 5.38.

5.8 Repeat the calculations of Example 5.9 if the load resistance is 1,000 Q. What is
the effect of this change?

54 TRANSIENT RESPONSE OF
SECOND-ORDER CIRCUITS

In many practical applications, understanding the behavior of first- and second-
order systemsisoftenall thatisneeded to describetheresponse of aphysical system

50 Q 0.1H
AAA
YVVY
(_) Vs 31000
Figure 5.38
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circuits

Rr
—\W—e

is() +

v ve® = C w(t)% L

wc(t) . wL(t)

(D

L 4
Figure 5.40 Paradle case
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to external excitation. In this section, we discuss the solution of the second-order
differential equationsthat characterize second-order circuits.

Deriving the Differential Equations for Second-Order
Circuits

A simple way of introducing second-order circuits consists of replacing the box
labeled “Circuit containing RL/RC combinations’ in Figure 5.3 with a combi-
nation of two energy-storage elements, as shown in Figure 5.39. Note that two
different cases are considered, depending on whether the energy-storage elements
are connected in seriesor in parallel.

Consider the parallel case first, which has been redrawn in Figure 5.40 for
clarity. Practice and experiencewill eventually suggest the best method for writing
thecircuit equations. At thispoint, themost sensibleprocedure consistsof applying
the basic circuit lawsto the circuit of Figure 5.40. Start with KVL around the | eft-
hand |oop:

vr (1) — Rris(t) —vc () =0 (5.36)
Then apply KCL to the top node, to obtain

is(t) —ic(t) —ip(1) =0 (5.37)
Further, KVL applied to the right-hand loop yields
ve(t) = v (1) (5.38)

It should be apparent that we have all the equationswe need (in fact, more). Using
the defining relationshipsfor capacitor and inductor, we can express equation 5.37
as

vr (1) — ve (1) dve . =
7RT —CW—ZL(Z)—O (539)
and equation 5.38 becomes
digp
ve(t) = LI (5.40)

Substituting equation 5.40 in equation 5.39, we can obtain a differential circuit
equation in terms of the variable i; (r):

1 L diy d?iy

—vp(t) — ——==LC—5 +i.(t 5.41

R vr (1) Ry di 12 +i.(2) (5.41)
or

d?i; 1 dig 1. vr (1)

il o4, = 5.42
a? "R ar TIc"t T RLC (5.42)

The solution to this differential equation (which depends, as in the case of
first-order circuits, ontheinitial conditionsand on theforcing function) completely
determinesthe behavior of thecircuit. By now, two questionsshould have appeared
in your mind:

1. Why isthe differential equation expressed in terms of i, (z)? (Why not
ve(t)?)
2. Why did we not use equation 5.36 in deriving equation 5.42?
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Inresponseto thefirst question, it isinstructiveto note that, knowing iy (¢), we can
certainly derive any one of the voltages and currentsin the circuit. For example,

p

vet) = v (1) = L% (5.43)
dt

o) = c e = Lo (5.44)

e =" = dr? '

To answer the second question, note that equation 5.42 is not the only form the
differential circuit equation can take. By using eguation 5.36 in conjunction with
equation 5.37, one could obtain the following equation:

vr (1) = Rylic(t) + i (1)] + ve (1) (5.45)

Upon differentiating both sides of the equation and appropriately substituting from
equation 5.39, the following second-order differential equation in vc would be
obtained:

dzvc+ 1 dvc+ 1 1 dvor@)
a’ve dve = L o _
dr2 " R;C dt | LC € RyC dt

Notethat theleft-hand side of the equationisidentical to equation 5.42, except that
ve has been substituted for i, . The right-hand side, however, differs substantially
from equation 5.42, because the forcing function isthe derivative of the equivalent
voltage.

Since al of the desired circuit variables may be obtained either asafunction
of iy orasafunctionof vc, thechoiceof the preferred differential equation depends
on the specific circuit application, and we conclude that there is no unique method
to arrive at thefinal equation. Asacasein point, consider the two circuits depicted
inFigure5.41. If theobjectiveof the analysiswereto determinethe output voltage,
vout, thenfor thecircuit in Figure 5.41(a), onewould chooseto writethe differential
equationinuc, sinceve = voyt- INthecaseof Figure5.41(b), however, theinductor
current would be a better choice, since vout = Rriout-

(5.46)

Natural Response of Second-Order Circuits

From the previous discussion, we can derive a general form for the governing
equation of a second-order circuit:

d?x (1) N dx(t)
a
dt? Y
Itisnow appropriateto derive ageneral form for the solution. The sameclassifica
tion used for first-order circuitsis also valid for second-order circuits. Therefore,

the complete solution of the second-order equation is the sum of the natural and
forced responses:

ar + apx(t) = f(t) (5.47)

x()=  xn@ 4+ xp(@) (5.48)

Natura response  Forced response
where the natural response is the solution of the homogeneous equation without
regard for the forcing function (i.e., with f () = 0) and the forced responseisthe
solution of the forced equation with no consideration of the effects of the initial
conditions. Oncethe general form of the complete responseisfound, the unknown

AAA
YVVy

—_—

fout (1)

Ow ez Ru

(b)

Figure 5.41 Two
second-order circuits

Vout

+

Vout
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constants are evaluated subject to the initial conditions, and the solution can then
be divided into transient and steady-state parts, with

x()= xr() + xs5(0) (5.49)
Transient part  Steady-state part

The aim of this section is to determine the natural response, which satisfies
the homogeneous equation:

d?xy (1) dxy(t)
172 +b T +cxy(@) =0 (5.50)
where b = ay/a, and ¢ = ag/a;. Just asin the case of first-order circuits, xy (r)
takes on an exponential form:

xy(t) = Ke* (5.51)
Thisiseasily verifiable by direct substitution in the differential equation:
s?Ke' + bsKe +cKe'' =0 (5.52)

and since it is possible to divide both sides by Ke*!, the natural response of the
differential equationis, in effect, determined by the solution of the quadratic equa-
tion

s2+bs+c=0 (5.53)

This polynomial in the variable s is called the characteristic polynomial of the
differential equation. Thus, the natural response, xy (¢), is of the form

xy (1) = K1e®' 4+ Koe™ (5.549)

where the exponents s; and s, are found by applying the quadratic formulato the
characteristic polynomial:
b 1
=——+ Vb2 -4 5.55

512 >E5 (5.55)
The exponential solution in terms of the exponents s; , can take different forms
depending onwhether therootsof the quadratic equation arereal or complex. Asan
example, consider the parallel circuit of Figure 5.40, and the governing differential
equation, 5.42. The natura response for i, (¢) in this case is the solution of the
following equation:

d%i; (1) 1 di ()
dt? RC dt

where R = Ry in Figure 5.40. The solution of equation 5.56 is determined by
solving the quadratic equation

1
+ i) =0 (5.56)

1 1
2
; — — =0 5.57
S+ 25t I (5.57)
Theroots are

1 1 1\2 4
S12=—5-~ * () - — (5.58)
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where
1 1 1\2 4
- _ =) - = 5.59a
1="%rc T2 (R > LC (5:5%)
1 1 1\> 4
o _a () & 5.59b
2= 72rC 2 (RC) LC (559b)

The key to interpreting this solution is to analyze the term under the sguare root
sign; we can readily identify three cases:

« Casel:
1\%> 4
— ) > — (5.60)
RC LC
s1 and s, arereal and distinct roots; s; = «; and s, = ap.
« Casell:
1\?> 4
() _ 4 (5.61)
RC LC
s1 and s, arereal, repeated roots: s; = 52 = «.
« Caselll:
1\> 4
() < — (5.62)
RC LC

s1, §2 are complex conjugate roots: s; = s3 = o + jB.

It should be remarked that a specia case of the solution (5.62) arises when the
value of R isidentically zero. Thisisknown asthe resonance condition; we shall
return to it later in this section. For each of these three cases, as we shall see, the
solution of the differential equation takes a different form. The remainder of this
section will explore the three different cases that can arise.
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EXAMPLE 5.9 Natural Response of Second-Order Circuit

Problem

Find the natural response of i, (¢) in the circuit of Figure 5.42.

Solution
Known Quantities: Resistor, capacitor, inductor values.
Find: Theinductor current as a function of time.

Schematics, Diagrams, Circuits, and Given Data: R; = 8KkQ; R, = 8kQ; C = 10 uF;
L =1H.

Assumptions: None.

Analysis: To determine the natural response of the circuit, we set the arbitrary voltage
source equal to zero by replacing it with a short circuit. Next, we observe that the two

Ry
+
Vs R
Figure 5.42
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resistors can be replaced by asingleresistor, R = R;|| R, and that we now are faced with
aparallel RLC circuit. Applying KCL at the top node, we write:

Ve dUC .
—+C— =0
R + di + iy
We recognize that the top node voltageis also equal to the inductor voltage, and that
diy
= = Li
Ve VL dl‘

Next, we substitute the expression for v¢ in the first equation to obtain

di 1 di, 1
el R S o
a2 TRC ar Tt

The characteristic equation corresponding to this differential equation is:

PR
RC™ ' LC
with roots
1 il 1\> 4
S12=—555 T 5 >~ 7~
12 2RC ~ 2\ \ RC LC
=125+ j316

Finaly, the natural responseis of theform
iL@) = K1t + Kpe

= K "125H/3100 | g ,(~125-3161

The constants K; and K in the above expression can be determined once the complete
solution is known, that is, once the forced response to the source vs(¢) isfound. The
constants K; and K, will have to be complex conjugates to assure that the solutionis real.
Although the previous example dealt with a specific circuit, one can extend the result
by stating that the natural response of any second-order system can be described by one of
the following three expressions:
* Casel. Redl, distinct roots: s = a1, 52 = as.
xy (1) = K™ + Kye*? (5.63)
* Casell. Real, repeated roots. s; = s, = «.
xn(t) = Kie*" + Kote™ (5.64)
* Case lll. Complex conjugateroots: s; = o + jB,s2 = o — jB.
xn(t) = K1e@tP! 4 Kpe@=iPt (5.65)

The solution of the homogeneous second-order differential equation will now be
discussed for each of the three cases.

Overdamped Solution

The case of rea and distinct roots yields the so-called overdamped solution,
which consists of a sum of real exponentials. An overdamped system naturally
decaysto zero in the absence of aforcing function, according to the expression

XN (I) = Kle_alr + Kze_“z’ (566)
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where a1 and «, are now assumed to be positive constants. Note that «; and o,
are the reciprocals of two time constants:
1 1
1= — T = — (567)
o1 o2
so that the behavior of an overdamped system may be portrayed, for example, as
inFigure5.43 (K1 = K, = 1, a1 = 5, and o, = 2 in thefigure).

2
15 N
\ XN ()
1 \\
o~ t
~L_e*
. ~~~~ \
05 e, o h_—-.
e n—n-—m‘
ol T

Figure 5.43 Response of overdamped second-order circuit

Critically Damped Solution

When the roots are real and repeated, the natural solution is said to be critically
damped, and is of the form

xn(t) = Kie ™ 4+ Kote™ (5.68)

Thefirst term, K1e~*, isthe familiar exponential decay term. Theterm Kyre™*,
on the other hand, has a behavior that differs from a decaying exponential: for
small ¢, the function ¢ grows faster than e~*" decays, so that the function initially
increases, reachesamaximum at r = 1/«, and finally decaysto zero. Figure 5.44
depictsthe critically damped solutionfor K1 = K, = 1, ¢ = 5.

0.8 N
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NN ()
04 SN
02 gt \\.\
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Figure 5.44 Response of critically damped second-order circuit

Underdamped Solution

A dlightly more involved form of the natural response of a second-order circuit
occurs when the roots of the characteristic polynomia form a complex conjugate
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pair, thet is, s; = s3. In this case, the solution is said to be underdamped. The
solution for xy (¢), then, is of the form

xy (1) = K1e®' + Koe™ (5.69)
or
xn (1) = K1e® /P! 4 Kope® e /P! (5.70)

wheres; = o + j8 and s, = o — jB. What is the significance of the complex
exponential in the case of underdamped natural response? Recall Euler’s identity,
which was introduced in Chapter 4:

e/’ = cosf + jsing (5.72)

If we assume for the moment that K; = K, = K, then the natural response takes
the form
xn (1) = Ke* (/P! + eI
(5.72)
= Ke* (2cospt)

Thus, in the case of complex roots, the natural response of a second-order circuit
can have oscillatory behavior! The function 2K ¢*' cos 8t isadamped sinusoid;
it isdepicted in Figure 5.45 for « = —5, 8 = 50, and K = 0.5. Note that K; and
K, will be complex conjugates; nonetheless, the underdamped response will still
display damped sinusoidal oscillations.
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Figure 5.45 Response of underdamped second-order circuit

As a final note, we return to the specia situation in Case Ill when R is
identically zero. We defined this earlier asthe resonance condition. The resonant
solution is not characterized by an exponential decay (damping), and gives rise
to a pure sinusoidal waveform, oscillating at the natural frequency, . Resonant
circuitsfind application in filter s, which are presented in Chapter 6. We shall not
discuss this case any longer in the present chapter.

Forced and Complete Response of Second-Order
Circuits

Onceweobtainthenatural responseusing thetechniquesdescribedinthepreceding
section, wemay find theforced response using the same method empl oyed for first-
order circuits. Once again, we shall limit our analysis to a switched DC forcing



Part | Circuits

function, for the sake of simplicity (the form of the forced response when the
forcing function is a switched sinusoid is explored in the homework problems).
The form of the forced differential equationis

d2x(t)  dx(t)
b
dt? dt

where F isaconstant. Therefore we assume asolution of theformxz (1) = Xr =
constant, and we substitute in the forced equation to find that

+cx(t) =F (5.73)

a

Xp=— (5.74)
C

Finally, in order to compute the compl ete solution, we sum the natural and forced

responses, to obtain

, F
x(t) = xy(t) + xp(t) = K1 + Kpe'? + — (5.75)
c

For a second-order differential equation, we need two initial conditions to
solvefor the constants K1 and K,. Thesearethevauesof x(¢) at t+ = 0 and of the
derivative of x(¢), dx/dt, at t = 0. To complete the solution, we therefore need
to solve the two equations

F
x(t=0=xg=Ki+ Ko+ — (5.76)
C
and
dx .
E(l =0) = x0 = 51K1 + 52K> (577)

To summarize, we must follow the steps in the accompanying methodology box
to obtain the compl ete sol ution of a second-order circuit excited by aswitched DC
source.

FOCUSONMETHODOLOGY
Solution of Second-Order Circuits

1. Write the differential equation for the circuit.

2. Find the roots of the characteristic polynomial, and determine the
natural response.

3. Find the forced response.

Write the complete solution as the sum of natural and forced responses.

5. Determine theinitial conditions for inductor currents and capacitor
voltages.

6. Apply theinitia conditions to the complete solution to determine the
constants K1 and K.

s

Although these steps are straightforward, the successful application of this
technique will require some practice, especially the determination of the initia
conditions and the computation of the constants. Thereisno substitute for practice
in gaining familiarity with these techniques! The following examples should be
of help inillustrating the methods just described.
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EXAMPLE 5.10 Complete Response of Overdamped
Second-Order Circuit
Problem
=0 vy Determine the complete response of the circuit of Figure 5.46.
- R
o— ——wW—
c TwMb)-

TV

.
VSW ()

R=5000Q L=1H C=1pF
Vs=25V

Figure 5.46

Solution
Known Quantities: Resistor, capacitor, inductor values; source voltage.
Find: The capacitor voltage as a function of time.

Schematics, Diagrams, Circuits, and Given Data: R =5kQ; C =1uF; L = 1H;
V, =25V.

Assumptions: The capacitor has been charged (through a separate circuit, not shown)
prior to the switch closing, such that v-(0) = 5 V.

Analysis:
1. Apply KVL to determine the circuit differential equation:
Vs —ve(t) —vr() —vp(t) =0

1/ di
Vs——/ idi —iR—1L% =0
CJ dt
d% Rdi 1. 1dvs
et i =
dr2  Ldt LC L dt
We note that the above equations that we have chosen the series (inductor) current as
the variable in the differential equation; we also observe that the DC forcing function
is zero, because the capacitor acts as an open circuit in the steady state, and the
current will therefore be zeroast — oo.

=0 t>0

2. We determine the characteristic polynomial by substituting s for d/dt:
R 1
2
— — =0
s+ i3 s+ LC

__L LR\ 4
2= Tor T oy \L LC

= —2,500 + +/(5,000° — 4 x 10°

51 =—208.7;, s,=-4,7913

These areredl, distinct roots, therefore we have an overdamped circuit with natural
response given by equation 5.63:

lN(t) — K167208.7t + K2674.791.3t

3. Theforced responseis zero, as stated earlier, because of the behavior of the capacitor
ast — oo: F =0.
4. The complete solution is therefore equal to the natural response:

i(t)y=iy@®) = Kle*208'7’ + Kze*4‘791'3’

5. Theinitial conditions for the energy storage elements are v (0™) = 5V;
ir(0") =0A.
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6. To evaluate the coefficients K; and K, we consider the initial conditions i, (0™) and
dip (0M)/dr. Thefirst of theseisgiven by i; (07) = 0O, as stated above. Thus,
i(07) = 0= K1e° + Kpe®
Kl + KZ = O
Ki=—K;
To use the second initial condition, we observe that
dig
dt
and we note that the inductor voltage can change instantaneously; i.e.,
v, (07) # v, (07). To determine v, (0™) we need to apply KVL onceagainat r = 0:
Vs —vc(07) — vg(0") — v, (0T) =0
vr(0") =i(0HR =0
ve(0t) =5
Therefore

ﬂ +y +_E +
5,00 = =07 = rv.(07)

v (0M) = Vg —ve(0Y) —vg(0") =25-5-0=20V
and we conclude that

di 1

—(@O0" = =y, (0 =20

dt( ) LUL( )
Now we can obtain a second eguation in K; and K5,

%(0*) =20 = —208.7K1¢° — 4.791.3K5¢°

and since
Ki=-K>
20 = 208.7K, — 4.791.3K,
K; =436 x 103

K; =—-4.36 x 103
Finally, the complete solution is:

i(t) =436 x 10% 2P — 436 x 10 %~ *"¥ A
To compute the desired quantity, that is, vc (¢), we can now simply integrate the
result above, remembering that the capacitor initial voltage was equal to 5 V:

ve(t) = if i(t)dt + vc(0)
CJo

1 [ '

= / i(t)dt = 10° ( / (4.36 x 10737287 — 436 x 10 3¢ *+794¥) dt)
0 0

10 x436x 107 _anr
(—208.7)

10° x 4.36 x 1073
(—4,791.3)

= —20.9¢7" 1+ 209+ 0.9¢*™¥ —09 >0
=20 — 20.96_208'7l + 0.98_4'791'31
ve(t) = 25— 20.9¢ 7287 1 0,9¢7471¥ v
The capacitor voltage is plotted in Figure 5.47.

_1]

[ T3 _ 1]



214 Chapter 5 Transient Analysis

30

25
20

[2]
=
(=]

>10 /

0
0 0.005 0.01 0015 0.02 0.025 0.03
Time(s)

Figure 5.47 Overdamped circuit capacitor
voltage response

Focus on Computer-Aided Tools: The Matlab m-file containing the numerical analysis
and plotting commands for this example may be found in the CD that accompanies this
book. An EWB circuit simulation is also included in the CD.

VIRTUAL LAB

EXAMPLE 5.11 Complete Response of Critically Damped
Second-Order Circuit

Problem
.)v( Determine the complete response of v(¢) in the circuit of Figure 5.48.
t=0
Tle LR L
NCESIECENNCE N0 Solution
_ Is
Known Quantities: Resistor, capacitor, inductor values.

L=2H C=24F Find: The capacitor voltage as afunction of time.

R=500Q Is=5A Schematics, Diagrams, Circuits, and Given Data: Is =5A; R =500 Q; C = 2 uF;
Figure 5.48 L=2H.
Assumptions: The capacitor voltage and inductor current are equal to zero at
t=0"%.
Analysis:

1. Apply KCL to determine the circuit differential equation:

Is —ip(t) —ig(t) —ic(t) =0

o) dv(t)
IS——/ V()i = =5 = C— = =0

d%v + L 1 dv + 1 1 dIS 0 f20
_— _— = >
dr2 ' RC dt T~ cCcdr

We note that the DC forcing function is zero, because the inductor acts as a short
circuit in the steady state, and the voltage across the inductor (and therefore across
the pardllel circuit) will be zeroast — oo.
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2. We determine the characteristic polynomial by substituting s for d/dt:

1
= 500+ E‘/(l’ 000) — 106

51 = —500 s = —500

These are real, repeated roots, therefore we have a critically damped circuit with
natural response given by equation 5.64:

un (1) = Kie™® 4 Kpte ™™

3. Theforced response is zero, as stated earlier, because of the behavior of the inductor
ast — oo F =0.

4. The complete solution is therefore equal to the natural response:
v(t) = vy (t) = K1 + Kpre™

5. Theinitial conditions for the energy storage elements are: v (0") = 0V;
ir(0Y) =0A.

6. To evaluate the coefficients K1 and K», we consider the initial conditions v (01) and
dvc(0%)/dt. Thefirst of theseisgiven by v (0") = 0, as stated above. Thus,

v(0") = 0= K1¢° + K, x 0e°
K, =0
To use the second initial condition, we observe that

dvc(0") 1.
= — 0+
di Clc( )

and we note that the capacitor current can change instantaneously; i.e.,
ic(07) #ic(0%). Todetermineic(0") we need to apply KCL onceagainat t = 0':
Is — i (07) —ig(0%) —ic(0") =0

dv
Voot =
dt( )

iL(0) =0; ir(0h) =92 =0;
Therefore

ic0"y=I;-0-0-0=5A
and we conclude that

%(Oﬂ = %ic(OJr) =5
Now we can obtain a second eguation in K; and K5,

d
ic(t) = cdit’ = C[K1(—500) e + K¢~ + K, (—500) te~>]

ic(0%) = C [K1(—500) € + K2¢° + K (—500) (0) ¢°]
5= C[K1(—500) + K>]

5
K, == =25x 10°
C
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Finally, the complete solution is:
v(t) = 2.5 x 10%e™ v
A plot of the voltage response of this critically damped circuit is shown in Figure

5.49.
) Critically damped circuit voltage response
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Figure 5.49

Focus on Computer-Aided Tools: The Matlab m-file containing the numerical analysis
and plotting commands for this example may be found in the CD that accompanies this
book.

— 12V O R<=Viod
iL®

Figure 5.50

EXAMPLE 5.12 Complete Response of Underdamped
Second-Order Circuit

Problem

Determine the complete response of the circuit of Figure 5.50.

Solution

Known Quantities: Source voltage, resistor, capacitor, inductor values.

Find: Theload voltage as a function of time.

Schematics, Diagrams, Circuits, and Given Data: R = 10Q; C = 10 uF; L = 5mH.

Assumptions: No energy is stored in the capacitor and inductor before the switch closes;
i.e,vc(07)=0V;i (07)=0A.

Analysis: Sincetheload voltage is given by the expression vieq = Riy (¢), we shall solve
for the inductor current.
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. Apply KVL to determine the circuit differential equation:
Vg — v (t) —ve(t) —vg(t) =0

dip, 1 (!
VB_LdTL_E miLdr—iLR:o
d%, Rdip 1. 1dV,

dhe R 2, 24 g 4s0
w2 T et T T a ~

. We determine the characteristic polynomial by substituting s for d/dt:

5? +§S + =
L LC
L, 1/(R 2 4
S12=—7-% £ ¢ - - —
2= "or T2V \L LC
= —1,000 + j4359

These are complex conjugate roots, therefore we have an underdamped circuit with
natural response given by equation 5.65:

in(t) = Kle(—1,000+j4,359)t + Kze(—l,OOO—j4,359)t
. Theforced responseis zero, as stated earlier, because of the behavior of the capacitor
ast — oo: F =0.

. The complete solution is therefore equal to the natural response:

i) =iy () = Kle(—l,000+j4,359)t + Kze(—l,OOO—j4,359)t

. Theinitial conditionsfor the energy storage elements are v (0) = 0V;

i, (0Y) = 0A.

. To evaluate the coefficients K; and K», we consider theinitial conditionsi; (0™) and
di; (0M)/dt. Thefirst of theseisgiven by i; (07) = 0, as stated above. Thus,

i(0") = 0= K1e® + Kze°
Ki+K,=0
Ki=—K,
To use the second initial condition, we observe that
di
e
and we note that the inductor voltage can change instantaneoudly; i.e.,
v, (07) # v, (07). To determine v, (0™) we need to apply KVL onceagainat r = 0:
Vs —vc(07) —vg(07) — v, (07) =0
vr(0") =i, (0HR=0; vc(0")=0
Therefore

0 = 70,0

UL(O+):VS—O—0:12 V
and

dﬁ(oﬂ _ u@)
dt L
Now we can obtain a second eguation in K; and K5,

= 2,400

i
d—i(O*) = (—1,000 + j4, 359)K1¢° — (—1, 000 — j4, 359) K,e°
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and since
K1 =—-K>
2,400 = K; [(—1,000 + j4,359) — (—1,000 — j4,359)]
2,400
17 j8 718
K, = —K; = j0.2753

= —j0.2753

Notethat K; and K, are complex conjugates. Finally, the complete solutioniis:
VLoad(t) = Rip (1) = 10 (— j0.2753¢!~H000+/4391 1 ;0. 2753(~1.000-/4.359r)

— 2.753671,00@ (_jej4,359t + j€7j4’359t)

= 5.506¢ % sin(4,359r) V
The output voltage of the circuit is plotted in Figure 5.51.

Volts
o [ N W N

\ %4

N~
/

2
0 0.002 0004 0.006 0.008 0.01
Time(s)

Figure 5.51 Underdamped circuit voltage
response

Focus on Computer-Aided Tools: The Matlab m-file containing the numerica analysis
and plotting commands for this example may be found in the CD that accompanies this
book. An EWB simulation is aso enclosed.

VIRTUAL LAB

EXAMPLE 5.13 Transient Response of Automotive Ignition
Circuit

Problem

The circuit shown in Figure 5.52 isa simplified but realistic representation of an
automotive ignition system. The circuit includes an automotive battery, atransformer®
FIND IT (ignition cail), a capacitor (known as condenser in old-fashioned automotive parlance)
and a switch. The switch isusually an electronic switch (e.g., atransistor—see
Chapter 9), and can betreated as an ideal switch. The circuit on the |eft represents the
ON THE WEB ignition circuit immediately after the electronic switch has closed, following a spark
discharge. Thus, one can assume that no energy is stored in the inductor prior to the
switch closing, say at r = 0. Furthermore, no energy is stored in the capacitor, as the short

4Transformers are discussed more formally in Chapters 7 amd 17; the operation of the transformer in
an ignition coil will be explained ad hoc in this example.
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+
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1

Figure 5.52

circuit (closed switch) across it would have dissipated any charge in the capacitor. The
primary winding of the ignition coil (Ieft-hand-side inductor) isthen given a suitable
length of time to build up stored energy, and then the switch opens, say at r = At, leading
to arapid voltage buildup across the secondary winding of the coil (right-hand-side
inductor). The voltage rises to a very high value because of two effects: the inductive
voltage kick described in Examples 5.3 and 5.8, and the voltage multiplying effect of the
transformer. The result isavery short high-voltage transient (reaching thousands of
volts), which causes a spark to be generated across the spark plug.

Solution
Known Quantities: Battery voltage, resistor, capacitor, inductor values.

Find: Theignition coil current, i (¢), and the open circuit voltage across the spark plug,
voc(?).

Schematics, Diagrams, Circuits, and Given Data: Vz =12V; Rp =2Q; C =
10 uF; L, =5mH.

Assumptions: The switch has been open for along time, and closesat r = 0. The switch
opensagainatt = At.

Analysis: With no energy stored in either the inductor or the capacitor, the action of
closing the switch will create a closed circuit comprising the battery, Vg, the coil primary
inductance, L p, and the coil primary resistance, Rp. Theinductor current will therefore
rise exponentially to afinal value equal to V/Rp, as described in the following equation:

V V, -
i) = R73 (1-e")= -£ (1—e Rty = 6(1— e~/25x10 3) O<t <At
P

We know from Example 5.4 that the energy storage element will acquire approximately 90
percent of its energy in 3 time constants; let's assume that the switch remains closed for 5
time constants; i.e.,, At = 12.5ms. Thus, at r = At, theinductor current will be equal to

iL(At) = % (1-e®)=6(1-¢°) =59% A
P

that is, the current reaches 99 percent of itsfinal valuein 5 time constants.

Now, when the switch opensat r = Az, we are faced with aseries RLC circuit
similar to that of Example 5.13. The inductor current at thistimeis5.96 A, and the
capacitor voltageis zero, because a short circuit (the closed switch) had been placed across
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the capacitor. The differential equation describing the circuit for ¢ > Ar is given below.
Vg — v (t) —vr(t) —vc() =0

di ‘
Ve— LY i R—= | i,di=0

di .
d%; Rdig 1 1dVg

St =" =0  1>At
a2 "L dar et T L ar ~

Next, we solve for the roots of the characteristic polynomial:
1

2 Ry
S —S — =
L ' LC

2R 2 L LC

These are complex conjugate roots, therefore we have an underdamped circuit with
natural response given by equation 5.65. By analogy with Example 5.13, the complete
solution is given by:

iL ([) — iLN(t) — Kle(—200+j4.468)(t7At) + K26(72007j4,468)(t—At) t> At

L 1//R\* a4
S1p=—oe £ = (7) — — = _—200+ j4,468

Theinitial conditions for the energy storage elements are: ve(Ar™) =0V;
ir(At™) =5.96 A. Thus,

i (Att) =596 = K1¢° + Kae
K1+ K, =5.96
K; =5.96— K,
To use the second initial condition, we observe that

di; 1
—(AtT) = —v (At
T (ArT) L, v (A1)

and we note that the inductor voltage can change instantaneously; i.e., v (07) # v, (07).
To determine v, (0™) we need to apply KVL onceagainat t = 0*:

Vi — ve(AtT) —vg(AtT) — v (AtT) =0

vr(AtY) =i  (AtT)R =5.96 x 2 =11.92

ve(AtH) =0
Therefore

v (At =V —11.92=12-1192=008 V

and

v (Art) 008
L, ~ 5x10°3

Now we can obtain a second equation in K; and K>,

=16

dip,
—(Ath) =
27 A1)

%L(Az*) = (—200+ j4, 468)K1e° + (—200 — j4, 468) K ,e°
and since
K1 =596— K,
16 = (—200 + j4, 468) (5.96 — K3) + (—200 — j4, 468)K»
= —1192 + j26, 629 — (—200+ j4, 468) K, + (—200 — j4, 468)K
= —1192 + j26, 629 — j8.936K,

K> (1208 — j26,629) = 2.98 + j0.1352

~ ~j8,936
K1 =5.96— K, =2.98— j0.1352
Note, again, that K; and K, are complex conjugates, as suggested earlier.
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Finally, the complete solution is:
ir(t) = (2.98 — j0.1352)¢"20+/4469(=AD
+(2.98 + j0.1352)¢(~20-/44B=AD ¢ 5 At

— .98 200 —An) (61'4,468(th1) + e—j4,468(r7m))

—j0.13526_200(’_A’) (g/4~458<’—Af) _ e—_i4,468(t—Az))

= 2 x 2.98¢7200=A1 c05(4,468(1 — A1)

—2 x 0.1352¢ 200~ gin(4, 468(t — At)) A
The coil primary current is plotted in Figure 5.53.

4 /

A/

8
aé_o n’\nV\l\A A\
<

-6
0 0005 001 0.015 0.02 0025 003 0.035 0.04
Time(s)

Figure 5.53 Ignition circuit primary current response

To compute the primary voltage, we simply differentiate the inductor current and
multiply by L p; to determine the secondary voltage, which is that applied to the spark
plug, we simply remark that a 1:100 transformer steps up the voltage by afactor of 100, so
that the secondary voltage is 100 times larger than the primary voltage. Thus, the
expression for the secondary voltageis:

di d
Veperk plug = 100 x LP% =05x = [(2x 2.98¢ ™ cos(4,468)

— 2 x 0.1352¢ 2 sin(4, 468t)]
= 0.5 x [—200 x 5.96 x ¢~2 cos(4,468¢) — 4,468 x 5.96

x e~ sin(4,4681)]
— 0.5 x [—200 x 0.1352 x =2 sin(4,468¢)

+4,468 x 0.1352 x ¢ 2% cos(4,468¢)]

where we have “reset” timeto r = O for simplicity. We are actually interested in the value
of thisvoltage at t = 0, since thisiswhat will generate the spark; evaluating the above
expression at + = 0, we obtain:

Vepark plug(? = 0) = 0.5 x [—200 x 5.96] — 0.5 x [4,468 x 0.1352]

Vspark plug(t = 0) = =596 — 302 = —-898 V

One can clearly seethat the result of the switching is avery large (negative) voltage spike,
capable of generating a spark across the plug gap. A plot of the secondary voltage starting
at the time when the switch is opened is shown in Figure 5.54, showing that
approximately 0.3 ms after the switching transient, the secondary voltage reaches
approximately —12,500 volts! Thisvalueistypica of the voltages required to generate a
spark across an automotive spark plug.

FIND IT

ON THE WEB

221
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Figure 5.54 Secondary ignition voltage
response

Focus on Computer-Aided Tools: The Matlab m-file containing the numerical analysis
and plotting commands for this example may be found in the CD that accompanies this
MG book. An EWB simulation is also enclosed.

Check Your Understanding

5.9 Derive the differential equation for the series circuit of Figure 5.39(b). Show that
one can write the equation either as
dzl)c RT dUc 1 1
— +t—=vc=-=vr(@®)

a2 "L @ T Ic LC
or as

dZiL RT dlL 1 . 1dUT(Z)

az "L dr TLCtT L ar
5.10 Determine the roots of the characteristic equation of the series RLC circuit of
Figure5.39(b) withR =100, C = 10 uF and L = 1 H.
5.11 Fortheseries RLC circuit of Figure 5.39(b), with L = 1 H and C = 10 uF, find
the ranges of values of R for which the circuit response is overdamped and underdamped,
respectively.

CHECK YOUR UNDERSTANDING ANSWERS

dvc 1 1
YUS5.1 — + —vc = —
CYU5S dt + RC Ve RC Vg
dv 1 1
YU 5.2 —+—v=—i
CYU5 ’r + RCU= ¢
di; R R
YU 5. — + —ip = —i
CYUSL.3 dt + I 155 I lg
CYus4 vc(07) =8V andizx(0t) =2A
CYU55 ve =7.5—75e7/°0%5V, 0 <t < 0.05S; vec = 6.485¢(~009/005y 1 > 0055
CYU5.6 toowe = 12.5 us
CYU5.7 545 us
CYuss8 The output pulse has a higher peak.
CYU5.9 —50+ j312.25

CYU5.10 Overdamped: R > 632.46 ; underdamped: R < 632.46 Q2
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HOMEWORK PROBLEMS

Section 1: First-Order Transients

5.1 Just beforethe switch is opened at + = 0, the current
through the inductor is 1.70 mA in the direction shown
in Figure P5.1. Did steady-state conditions exist just
before the switch was opened?

L=09mH Ve =12V
R, =6kQ R, =6k
R; = 3kQ
t=0
Ro
e AW
+ "—# +
Vs R L RsZ\ks
Figure P5.1

5.2 Att < 0,thecircuit shownin Figure P5.2 isat
steady state. The switch ischanged asshownat ¢ = 0.

Vs1 =35V Vg = 130V
C=11uF R, =17kQ
R, =7kQ R; = 23kQ

Determine at + = 0" theinitial current through R3 just
after the switch is changed.

Figure P5.2

5.3 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.3. Assume steady-state conditionsfor r < O.

Vi =12V
R = 0.68KQ

C =05uF
R, = 1.8kQ

Figure P5.3

5.4 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.3. Assume steady-state conditionsfor 1 < 0.

Vi=12V
Ry =400 mQ

C = 150 uF
R, = 2.2k

5.5 Just before the switch isopened at r = 0in Figure
P5.1, the current through the inductor is 1.70 mA in
the direction shown. Determine the voltage across R;
just after the switch is opened.

Vg=12V L =09mH
Ri=6KkQ  R,=6kQ
Rz = 3kQ

5.6 Determine the voltage across the inductor just before
and just after the switch is changed in Figure P5.6.
Assume steady-state conditions exist for ¢t < 0.

Vs =12V
Ry =22k

R, =07
L =100mH

Figure P5.6

5.7 Steady-state conditions exist in the circuit shownin
FigureP5.7 at t < 0. The switchisclosed at t = 0.

Vi=12V Ry = 0.68KS2
Ry = 2.2k Ry = 1.8k
C =047 uF

Determine the current through the capacitor at ¢ = 07,
just after the switch is closed.
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iot) Re

Cj|: Rs
Figure P5.7

5.8 At > 0,thecircuit shownin Figure P5.2 isat
steady state. The switch ischanged asshownatt = 0.

Vs1 =35V Vo = 130V
C =11 uF R =17kQ
Ry = 7kQ Rs = 23kQ

Determine the time constant of the circuit for ¢ > 0.

5.9 Atr < 0,thecircuit showninFigure P5.9 isat
steady state. The switch is changed asshown at ¢+ = 0.

Vs1 =13V Vs =13V
L =170mH R1=27Q
R, =4.3kQ R3 =29k

Determine the time constant of the circuit for # > 0.

O

t=0
Ry Rs
+ L
Vo1 =

Ry
Vs2
¥

Figure P5.9

5.10 Steady-state conditions exist in the circuit shownin
Figure P5.7 for ¢ < 0. The switchisclosedat t = 0.

R, =680Q Ry, = 2.2kQ
R3; =18kQ

Determine the time constant of the circuit for ¢ > 0.

5.11 Just before the switch isopened at + = 0in Figure
P5.1, the current through the inductor is1.70 mA in
the direction shown.

Vs=12V L =09mH
Ri=6kQ  R,=6kQ
Rs = 3k

Determine the time constant of the circuit for # > 0.

Transient Analysis

5.12 Determinevc(¢) fort > 0. The voltage across the
capacitor in Figure P5.12 just before the switch is
changed is given below.

ve(07) = -7V I, =17mA C =0.55uF
Ri=T7k® R» = 33kQ
t=0
Ry
+
o R

Figure P5.12

5.13 Determineig,(r) for ¢ > 0in Figure P5.9.

VSj_ - 23V VSZ =20V
L =23mH R1=07Q
R, =13Q Rs = 330k

5.14 Assume DC steady-state conditions exist in the
circuit shown in Figure P5.14 for ¢+ < 0. The switch is
changed at r = 0 as shown.

Vo =17V Voo =11V

Ry = 14k R, = 13k

Rz = 14k C =70nF
Determine:

a v@) forr > 0.

b. Thetime required, after the switch is operated, for
V (1) to change by 98 percent of itstotal changein
voltage.

Figure P5.14

5.15 Thedcircuit of Figure P5.15 isasimple model of an
automotive ignition system. The switch models the
“points’ that switch electrical power to the cylinder
when the fuel-air mixture is compressed. R isthe
resistance between the electrodes (i.e., the “gap”) of
the spark plug.

Ve =12V
R =17kQ

Rs =0.37Q



Determine the value of L and R; so that the voltage
across the spark plug gap just after the switch is
changed is 23 kV and so that this voltage will change
exponentially with atime constant ¢ = 13 ms.

t=0
O
Re +
+ R R§VR
v -
<L

Figure P5.15

5.16 Theinductor L inthecircuit shown in Figure P5.16
isthe coil of arelay. When the current through the coil
isequal to or greater than +2 mA the relay functions.
Assume steady-state conditionsat ¢+ < 0. If:

Vs =12V

L =109mH R; =3.1kQ

determine R, so that the relay functionsat + = 2.3 s.

Figure P5.16

5.17 Determine the current through the capacitor just
before and just after the switch is closed in Figure
P5.17. Assume steady-state conditionsfor ¢ < 0.

t=0

Figure P5.17

5.18 Determine the voltage across the inductor just
before and just after the switch is changed in Figure
P5.18. Assume steady-state conditions exist for ¢ < 0.

Vs =12V
R1 =33kQ

Ry =0.24Q
L =100 mH
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Figure P5.18

5.19 Steady-state conditions exist in the circuit shownin
Figure P5.7 for r < 0. The switchisclosedat 1 = 0.

Ri=4MQ R, =80MQ
R =6MQ

Determine the time constant of the circuit for # > 0.

5.20 Just before the switchis opened at t = 0in Figure
P5.1, the current through the inductor is 1.70 mA in
the direction shown.

Vs =12V L =100 mH
Ri=400Q R, =400Q
R3 = 600 Q

Determine the time constant of the circuit for # > 0.

5.21 For thecircuit shown in Figure P5.21, assume that
switch S is always open and that switch S, closes at
t =0.
a. Find the capacitor voltage, vc(¢), at r = O™
b. Find the time constant, z, for r > 0.
¢. Find an expression for v (r) and sketch the

function.
d. Find vc(¢) for each of the following values of ¢:

0, 7, 21, 57, 107.

R>
S 10 S
C+ AWV XC
Ry
5Q
4¢c LG Rs :; Ry :;
e =4 T4F 30 603 () 4A
20V

Figure P5.21

5.22 For the circuit shown in Figure P5.21, assume that
switch S; isaways open; switch S, has been closed for
along time, and opens at ¢ = 0.

a. Find the capacitor voltage, vc (¢), at r = O™

b. Find the time constant, z, for r > O.

¢. Find an expression for v (r) and sketch the
function.

d. Find vc(¢) for each of the following values of ¢:
0, 7, 21, 57, 10r.
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5.283 For thecircuit of Figure P5.21, assume that switch
S, isaways open, and that switch S; has been closed
foralongtimeand opensatr = 0. Att =1, = 3r,
switch S; closes again.

a. Find the capacitor voltage, v (1), at r = Ot
b. Find an expression for v (¢) for t > 0 and sketch
the function.

5.24 Assume both switches S; and S, in Figure P5.21

closeatt = 0.

a. Find the capacitor voltage, vc(¢), at r = 0.

b. Find the time constant, z, for r > O.

¢. Find an expression for vc(¢) and sketch the
function.

d. Find vc(¢) for each of the following values of ¢:
0, 7, 27, 57, 107.

5.25 Assume both switches S; and S, in Figure P5.21
have been closed for along time and switch S, opens
ar=0".

a. Find the capacitor voltage, v (¢), at r = 0.

b. Find an expression for v (¢) and sketch the
function.

¢. Find v¢(¢) for each of the following values of ¢:
0, , 2t, 57, 10r.

5.26 For the circuit of Figure P5.26, determine the time
constants T and ' before and after the switch opens,
respectively. Ry = 4k, Ry = 2k<2,

Ry = R3 =6k, and C = 1 uF.

R
JAASA x‘ O
\AAAZ il 7
< < <
Vsl R]_:i —~cC Rz:i R3:i
D = e

Figure P5.26

5.27 For thecircuit of Figure P5.27, find the initial
current through the inductor, the final current through
the inductor, and the expression for i, (¢) forr > 0.

Figure P5.27

5.28 Att = 0, the switchin the circuit of Figure P5.28
opens. At ¢ = 10 s, the switch closes.

Transient Analysis

a. What isthetime constant for 0 < ¢+ < 10s?
b. What isthe time constant for ¢+ > 10 s?

AAA

\AAAZ
=
o]

Figure P5.28

5.29 Thecircuit of Figure P5.29 includes amodel of a
voltage-controlled switch. When the voltage across the
capacitor reaches 7 V, the switch is closed. When the
capacitor voltage reaches 0.5 V, the switch opens.
Assume that the capacitor voltageisinitialy Ve = 0.5
V and that the switch has just opened.

a. Sketch the capacitor voltage versus time, showing
explicitly the periods when the switch is open and
when the switch is closed.

b. What isthe period of the voltage waveform across
the 10-<2 resistor?

Voltage
controlled
switch

10 kQ ;;(

+
10V VeZ< 15pF 10Q

Figure P5.29

5.30 Att = 0,theswitchinthecircuit of Figure P5.30
closes. Assumethati; (0) =O0A.Fort >0,

a Findi; (7).
b. Find v, (7).

To .

t=0 i gLy v, (1)

< —
sa(}) Ziwoka

Lo

L1=1H Lp=5H
Figure P5.30
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5.31 Inthecircuit shown in Figure P5.31:

Vs1 =15V Vso =9V
Rs1 =130 Q2 Rs2 =290 Q@
Ry =11kQ R, =700 Q
L=17mH C =0.35uF

Assume that DC steady-state conditions exist for

t < 0. Determine the voltage across the capacitor and
the current through the inductor and Rs, ast
approaches infinity.

Figure P5.31

5.32 Inthecircuit shown in Figure P5.31:

Vsi = 12V Vso = 12V
Rs1 =509 Rs; =509
Ri=22kQ  R,=600Q
L=78mH  C=68uF

Assumethat DC steady-state conditions exist at ¢ < 0.
Determine the voltage across the capacitor and the
current through the inductor as ¢t approaches infinity.
Remember to specify the polarity of the voltage and
the direction of the current that you assume for your
solution.

5.33 If the switch in the circuit shown in Figure P5.33 is
closed at ¢+ = 0 and:

‘/S = ]:70 \/ 1?5 = 7 kS2
R1=23kQ Ry =TkQ
L=30mH C =130 uF

determine, after the circuit has returned to a steady
state, the current through the inductor and the voltage
across the capacitor and R;.

Figure P5.33

5.34 |If the switchin the circuit shown in Figure P5.34 is
closed at + = 0 and:

Ve =12V C =130 uF
R, =23k Ry =T7kQ
L =30mH
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Determine the current through the inductor and the
voltage across the capacitor and across R; after the
circuit has returned to a steady state.

JAl

Figure P5.34

5.35 |If the switch in the circuit shown in Figure P5.35 is
closed at r = 0 and:

Vs =12V C =05uF
R, =31kQ R, =22kQ
L=09mH

Determine the current through the inductor and the
voltage across the capacitor after the circuit has

returned to a steady state.
‘4;t= 0 —AAMA
VVVY
L Ry
+ >
Vs cH Rz

Figure P5.35

5.36 Att < 0, thecircuit shownin Figure P5.36 isat
steady state and the voltage across the capacitor is
+7 V. The switch is changed as shown at t = 0 and:

Vs =12V C = 3300 ;F
Ri=91kQ  R,=43kQ
Ry=43kQ L=16mH

Determine theinitial voltage across R, just after the
switch is changed.

Rs

Figure P5.36

5.37 Inthecircuit shown in Figure P5.37, assume that
DC steady-state conditions exist for ¢+ < 0. Determine
at + = O™, just after the switch is opened, the current
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through and voltage across the inductor and the
capacitor and the current through Rs,.

Vg1 =15V Vg =9V
Rg; =130Q Rg, =290 Q
R =11kQ R, =700 Q
L=17mH  C=035uF
t=0
p
R CJ— Re
. ogRE L],
51 Voo

Figure P5.37

5.38 Inthecircuit shown in Figure P5.37:

Vi = 12V Vo = 12V
Rs1 =50 Rs, =50 Q
Ri=22kQ  R,=600Q
L=78mH  C=68uF

Assume that DC steady-state conditions exist for

t < 0. Determine the voltage across the capacitor and
the current through the inductor as ¢ approaches
infinity. Remember to specify the polarity of the
voltage and the direction of the current that you
assume for your solution.

5.39 Assume the switch in the circuit of Figure P5.39
has been closed for avery long time. It is suddenly
opened at + = 0, and thenreclosed at t = 5s.
Determine an expression for the inductor current for
t>0.

4F
| L
|RY

6V 320 5H

Figure P5.39

5.40 Assumethecircuit of Figure P5.40 initially stores
no energy. The switchisclosed at + = 0, and then
reopened at + = 50 us. Determine an expression for
the capacitor voltage for t > 0.

400 Q 10mH

0V 0.01 pF ,‘\

Figure P5.40

Transient Analysis

5.41 Assumethecircuit of Figure P5.41 initialy stores
no energy. Switch S; isopen, and S; is closed. Switch
Sy isclosed at r = 0, and switch S, is opened at
t = 5s. Determine an expression for the capacitor
voltagefor ¢ > 0.

4F
I L
LAY
t=0
30
O AVAVAVA
S
6V 320 5H
3 t=5s
S

Figure P5.41

5.42 Assumethat the circuit shown in Figure P5.42 is
underdamped and that the circuit initially has no
energy stored. It has been observed that, after the
switchisclosed at + = O, the capacitor voltage reaches
an initial peak value of 70V whent = 57/3 us, a
second peak value of 53.2 V when ¢ = 5 ps, and
eventually approaches a steady-state value of 50 V. If
C = 1.6 nF, what arethe valuesof R and L?

V -

Figure P5.42

5.43 Given theinformation provided in Problem 5.42,
explain how to modify the circuit so that the first two
peaks occur at 57 pusand 157 us. Assumethat C
cannot be changed.

5.44 Findi fort > 0inthecircuit of Figure P5.44 if
i(0)=4Aandv(0) =6V.

2H

12F =]V 4Q

Figure P5.44

5.45 Findvfort > Ointhecircuit of Figure P5.45 if the
circuitisin steady stateat r = 0~.



12v

Figure P5.45

5.46 Findi fort > 0inthecircuit of Figure P5.46 if the
circuitisin steady stateatr = 0~

2Q 1H 1H

40V

IYYYY
YWy
N
e}
w
e}

Figure P5.46

5.47 Findi fort > Ointhecircuit of Figure P5.47 if the
circuitisin steady stateatr = 0~.

40V 3Q

Figure P5.47

5.48 Findv for r > Ointhecircuit of Figure P5.48 if the
circuitisin steady stateatr = 0.
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%
s
=0

<
20A 302 W6F X  UBF RV

Figure P5.48

5.49 Thecircuit of Figure P5.49 isin steady state at
t=0".Findvfort > 0if Lis(a) 24H, (b)3H,and
(c)4H.

20 3Q
t=0 +
0V VI2F =< v gL

Figure P5.49

5.50 Findvfort > Ointhecircuit of Figure P5.50 if the
circuitisin steady stateat r = 0~.

2Q t=0 3Q
+ v -
12V 0.8H 4V

V4F
T

Figure P5.50
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CHAWPTER

Frequency Response
and System Concepts

hapter 4 introduced the notions of energy-storage elements and dynamic

circuit equations and developed appropriate tools (complex algebra and

phasors) for the solution of AC circuits. In Chapter 5, we explored the

solution of first- and second-order circuits subject to switching transients.
The aim of the present chapter isto exploit AC circuit analysis methods to study
the frequency response of electric circuits.

It is common, in engineering problems, to encounter phenomena that are
frequency-dependent. For example, structuresvibrate at acharacteristic frequency
when excited by wind forces (some high-rise buildings experience perceptible
oscillation!). The propeller on a ship excites the shaft at a vibration frequency
related to the engine’ sspeed of rotation and to the number of bladesonthepropeller.
An internal combustion engine is excited periodically by the combustion events
in theindividual cylinder, at afrequency determined by thefiring of the cylinders.
Wind blowing across a pipe excites aresonant vibration that is perceived as sound
(wind instruments operate on this principle). Electrical circuits are no different
from other dynamic systems in this respect, and a large body of knowledge has
been developed for understanding the frequency response of electrical circuits,
mostly based on the ideas behind phasors and impedance. These ideas, and the
concept of filtering, will be explored in this chapter.

The ideas developed in this chapter will aso be applied, by anaogy, to
the analysis of other physical systems (e.g., mechanical systems), to illustrate the
generality of the concepts. By the end of the chapter, you should be able to:
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- Compute the frequency response function for an arbitrary circuit.

- Use knowledge of the frequency response to determine the output of a
circuit.

+ Recognize the analogy between electrical circuits and other dynamic
systems.

6.1 SINUSOIDAL FREQUENCY RESPONSE

The sinusoidal frequency response (or, ssimply, frequency response) of acircuit
provides a measure of how the circuit responds to sinusoidal inputs of arbitrary
frequency. In other words, given theinput signal amplitude, phase, and frequency,
knowledge of the frequency response of a circuit permits the computation of the
output signal. The box “Fourier Analysis’ provides further explanation of the
importance of sinusoidal signals. Suppose, for example, that you wanted to de-
termine how the load voltage or current varied in response to different excitation
signal frequencies in the circuit of Figure 6.1. An analogy could be made, for
example, with how a speaker (the load) responds to the audio signal generated
by a CD player (the source) when an amplifier (the circuit) is placed between the
two. Inthe circuit of Figure 6.1, the signal source circuitry is represented by its
Thévenin equivalent. Recall that theimpedance Z presented by the source to the
remainder of the circuit isafunction of the frequency of the source signal (Section
4.4). For the purpose of illustration, the amplifier circuit is represented by the
idealized connection of two impedances, Z; and Z,, and the load is represented
by an additional impedance, Z,;. What, then, is the frequency response of this
circuit? Thefollowing isafairly general definition:

The frequency response of acircuit isameasure of the variation of a
load-related voltage or current as a function of the frequency of the
excitation signal.

22
=

:

N
L~ 1
~Q--—m-mm--—- -
]

|

|

|

vs@® | v

CD Player [—-| Amplifier |——| Speakers !

! _
(Source) (Circuit) (Load) o

A physical system ‘A circuit model

Figure 6.1 A circuit model

Ln reality, the circuitry in a hi-fi stereo system is far more complex than the circuits that will be
discussed in this chapter and in the homework problems. However, from the standpoint of intuition
and everyday experience, the audio analogy provides a useful example; it allows you to build a quick
feeling for the idea of frequency response. Practically everyone has an intuitive idea of bass, mid
range, and treble as coarsely defined frequency regionsin the audio spectrum. The material
presented in the next few sections should give you a more rigorous understanding of these concepts.
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According to this definition, frequency response could be defined in a variety of
ways. For example, we might be interested in determining how the load voltage
varies as a function of the source voltage. Then, analysis of the circuit of Figure
6.1 might proceed as follows.

To expressthe frequency response of acircuit interms of variation in output
voltage as afunction of source voltage, we use the general formula

Vi(jow)
Vs(jo)

One method that allows for representation of the load voltage as a function of the
source voltage (thisis, in effect, what the frequency response of a circuit implies)
isto describe the source and attached circuit by means of the Thévenin equivalent
circuit. (Thisis not the only useful technique; the node voltage or mesh current
equations for the circuit could also be employed.) Figure 6.2 depicts the origina
circuit of Figure 6.1 with the load removed, ready for the computation of the
Thévenin equivalent.

Hy(jo) =

(6.1)
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Figure 6.2 Thévenin equivalent source circuit

Zr=(Zs+t Z) | 22

Fourier Analysis

In this brief introduction to Fourier theory, we shall
explain in an intuitive manner how it is possible to
represent many signals by means of the superposition
of various sinusoidal signals of different amplitude,
phase, and frequency. Any periodicfinite-energy sig-
nal may be expressed by means of an infinite sum of
sinusoids, asillustrated in the following paragraphs.

Consider aperiodicwaveform, x(¢). ItsFourier
series representation is defined below by the infinite
summation of sinusoids at the frequencies nwyp (in-
teger multiples of the fundamental frequency, wo),
with amplitudes A,, and phases ¢,,.

x(t) = x(t + Tp) To = period (6.2
> 2mnt

X([) = Z An COS< + ¢/1) (63)
n=0 TO

One could also writetheterm 2 n/ Ty as nwg, where
wo = — = 271 fo (6.4)

is the fundamental (radian) frequency and the fre-
quencies 2wq, 3wg, 4wo, and so on, arecalled itshar-
monics.

The notion that a signal may be represented by
sinusoidal componentsis particularly useful, and not
only in the study of electrical circuits—in the sense
that we need only understand the response of a cir-
cuit to an arbitrary sinusoidal excitation in order to
be able to infer the circuit’s response to more com-
plex signals. In fact, the frequently employed sinu-
soidal frequency response discussed in this chapter
is afunction that enables us to explain how a circuit
would respond to asignal made up of asuperposition

(continued)
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of sinusoidal components at various frequencies.
These sinusoidal components form the spectrum of
the signal, that is, its frequency composition; the am-
plitude and phase of each of the sinusoids contribute
to the overall “character” of the signal, in the same
sense as the timbre of a musical instrument is made
up of the different harmonicsthat are generated when
a note is played (the timbre is what differentiates,
for example, aviolafrom acello or aviolin). An ex-
ample of the amplitude spectrum of a*“square-wave”
signal is shown in Figure 6.3. In order to further
illustrate how the superposition of sinusoids can give
riseto asignal that at first might appear substantially
different from asinusoid, the evolution of asinewave

Interactive Experiments

To Time

Square wave

Figure 6.3 Amplitude spectrum of square wave

into asquarewaveisdisplayed in Figure 6.4, asmore
Fourier components are added. The first picture rep-
resents the fundamental component, that is, the sinu-
soid that has the same frequency as the square wave.
Then one harmonic at atime is added, up to the fifth
nonzero component (the ninth frequency component;
see Figure 6.3), illustrating how, little by little, the
rounded peaks of the sinusoid transform into the flat
top of the square wave!

Although thisbook will not deal with the math-
ematical aspects of Fourier series, it isimportant to
recoghize that this analysis tool provides excellent
motivation for the study of sinusoidal signals, and of
the sinusoidal frequency response of electric circuits.

Interactive Experiments

Jean Baptiste Joseph Fourier (1768-1830), French mathemati-
cian and physicist who formulated the Fourier series. Photo
courtesy of Deutsches Museum, Munich.

10H

05H

Amplitude of
Fourier coefficient

4 6 81012141618202224

Harmonic
Fourier spectrum of square wave

(continued)
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(concluded)

Fundamental frequency

\./\/ ”

Two frequency components

Three frequency components

Five frequency components

Figure 6.4 Evolution of asquare wave from its Fourier components

\/W\/ e

Four frequency components

Next, an expression for the load voltage, V., may be found by connecting
the load to the Thévenin equivalent source circuit and by computing the result of a
simple voltage divider, asillustrated in Figure 6.5 and by the following equation:

Zy
V= —2% v,
Zi+ Zr
B Zr Z> v
T, L It Zs+ itz (6.5)
"2+ Zi+ 7,

VANA)
Zi(Zs+Z1+ 2Zo)+ (Zs+ Z1)Z»

Vs

Figure 6.5 Complete
equivalent circuit
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Thus, the frequency response of the circuit, as defined in equation 6.4, is given by
the expression

VL . . ZL ZZ

— (jw) = Hy(jw) = 6.6

v, VO = ) = Y 7o) + (Zs + 207 (60
The expression for Hy (jw) is therefore known if the impedances of the circuit
elements are known. Note that Hy (jw) is a complex quantity (dimensionless,
because it is the ratio of two voltages), and that it therefore follows that

V, (jw) isaphase-shifted and amplitude-scaled version of Vs (jw).
If the phasor source voltage and the frequency response of the circuit are known,
the phasor load voltage can be computed as follows:

Vi(jw)=Hy(jo) - Vs(jo) (6.7)

VLeM’" — |Hv|ej¢H . VSEM)S (6.8)
or

VLej¢L = |Hy |VS€J'(¢H+¢3) (6.9)
where

VL = [Hy| - Vs
and

éL = bu + ¢s (6.10)
Thus, the effect of inserting a linear circuit between a source and a load is best
understood by considering that, at any given frequency, », the load voltage is a
sinusoid at the same frequency as the source voltage, with amplitude given by
V., = |Hy|- Vg and phaseequal to ¢, = ¢y + ¢, where| Hy | isthe magnitude of
the frequency response and ¢ its phase angle. Both |Hy | and ¢ are functions
of frequency.
EXAMPLE 6.1 Computing the Frequency Response

of a Circuit Using Equivalent Circuit Ideas
Problem
Ry Compute the frequency response Hy (jw) for the circuit of Figure 6.6.

Figure 6.6

Solution
Known Quantities: Ry = 1kQ; C =10 uF;, R, = 10 k2.
Find: Thefrequency response Hy (jw) = V. (jw)/Vs(jw).

Assumptions: None.
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Analysis: To solve this problem we use an equivalent circuit approach. Recognizing that
R; istheload resistance, we determine the equivalent circuit representation of the circuit
to the left of the load, using the techniques perfected in Chapters 3 and 4. The Thévenin
equivalent circuit is shown in Figure 6.7. Using the voltage divider rule and the equivalent
circuit shown in the figure, we obtain the following expression

Z, Z 7,
V, = AV Vg = HyV
e Zrvz T iz Zi+2z, VTS
+Z
Z1+ 275
and
VL ZLZZ
—(jw) = Hy(jw) =
v U = e = T + 7
The impedances of the circuit elementsare: Z; = 10° Q; Z, = ﬁ Q: 7, =10* Q.
The resulting frequency response can be calculated to be:
10*
j -5 100
Hy(jw) = jo x 10 = .
o (10 L L1 110+ jo
jo x 1075 jow x 1073
100 100
= - — = /— arctan (i>
TP + o2’ @) V1107 + o2 110

Comments: The use of equivalent circuit ideas is often helpful in deriving frequency
response functions, because it naturally forces us to identify source and load quantities.
However, it is certainly not the only method of solution. For example, nodal analysis
would have yielded the same results just as easily, by recognizing that the top node voltage
isequal to the load voltage, and by solving directly for V, asafunction of Vg, without
going through the intermediate step of computing the Thévenin equivalent source circuit.

Focus on Computer-Aided Tools: A computer-generated solution of this problem may
be found in the CD-ROM that accompanies this book.

Figure 6.7
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The importance and usefulness of the frequency response concept liesinits
ability to summarize the response of a circuit in a single function of frequency,
H (jw), which can predict the load voltage or current at any frequency, given the
input. Notethat the frequency response of acircuit can be defined in four different
ways.

_Vi(jw) (o)
Hy(jw) Vs(o) H;(jw) = 15w 61
V() | '
Hy(jo) |L((J¢Z)>) V() = Vi((J] ‘;))

If Hy(jw) and H;(jw) are known, one can directly derive the other two expres-
sions:
Vi(jo) (o)

=7
sGo) LY G

Hz(jow) = =Z(jo)H(jo) (6.12)
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o) 1 V(o) 1
Vs(jo)  Zr(jo) Vs(jo)  Zp(jo)
With these definitions in hand, it is now possible to introduce one of the

central concepts of electrical circuit analysis: filters. The concept of filtering an
electrical signal will be discussed in the next section.

Hy (jw) Hy(jo) (6.13)

Dsiozr

llL(Jw)

+

RSVL(jw)

Figure 6.8

VIRTUAL LAB

EXAMPLE 6.2 Computing the Frequency Response
of a Circuit

Problem

Compute the frequency response H, (jw) for the circuit of Figure 6.8.

Solution

Known Quantities: R; = 1kQ; L =2mH; R; = 4kQ.
Find: Thefrequency response H; (jw) = V. (jw)/l s(jw).
Assumptions: None.

Analysis: To determine expressions for the load voltage, we recognize that the |oad
current can be obtained simply by using a current divider between the two branches
connected to the current source, and that the load voltage is simply the product of the load
current times R .

Using the current divider rule, we obtain the following expression for | :

1

and
IR, R,
IS - RL . wlL

\ .
K(IG)) =Hz(jo) =

Substituting numerical values, we obtain:

4 x 103 B 0.8 x 10°
2x 103w 1+ j0.4x 10-6
144+ ><103 w +7J X )

Comments: You should verify that the untis of the expression for H,(jw) areindeed
ohms, as they should be from the definition of H.

Hz(jo) =

Focus on Computer-Aided Tools: A computer-generated solution of this problem may
be found in the CD-ROM that accompanies this book.

6.2 FILTERS

There are many practical, everyday applications that involve filters of one kind or
another. Just to mention two, filtration systems are used to eliminate impurities
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from drinking water, and sunglasses are used to filter out eye-damaging ultraviol et
radiation and to reduce the intensity of sunlight reaching the eyes. An analogous
concept applies to electrical circuits: it is possible to attenuate (i.e., reduce in
amplitude) or altogether eliminate signals of unwanted frequencies, such as those
that may be caused by electrical noise or other forms of interference. This section
will be devoted to the analysis of electrical filters.

Low-Pass Filters

Figure 6.9 depicts asimple RC filter and denotesits input and output voltages by
V; and V,. The frequency response for the filter may be obtained by considering
the function

\\j—j (jw) (6.14)

and noting that the output voltage may be expressed as a function of the input
voltage by means of avoltage divider, as follows:

H(jw) =

. . 1/joC . 1
v, =V, v, S — 6.15
(jo) o e Gl TwRC (6.15)
Thus, the frequency response of the RC filter is
V, . 1
— = 6.16
v, Y = T jwcr (616

An immediate observation upon studying this frequency response is that if
the signal frequency, w, is zero, the value of the frequency response function is
1. That is, the filter is passing al of the input. Why? To answer this question,
we note that at w = 0, the impedance of the capacitor, 1/jC, becomes infinite.
Thus, the capacitor acts as an open circuit, and the output voltage equal s the input:

Vo(jo=0)=Vi(jo=0) (6.17)

Sinceasignal at sinusoidal frequency equal to zeroisaDC signal, thisfilter circuit
does not in any way affect DC voltages and currents. Asthe signal frequency in-
creases, the magnitude of the frequency response decreases, since the denominator
increases with w. More precisely, equations 6.18 to 6.21 describe the magnitude
and phase of the frequency response of the RC filter:

. V(} .
HU® =,V = T jacr
1 e/”
= 11 (@CR)Z ¢/ ¥n(@CR/D (6.18)

1

J1+ (wCR)?2

. o—J acten(@CR)

or
H(jw) = |H(jw)le/?"V” (6.19)
with
1

H(jw)| = =
H{je) V1+ (@CR? 1+ (w/wp)?

(6.20)

RC low-passfilter. The circuit
preserves lower frequencies while
attenuating the frequencies above
the cutoff frequency, wo = I/RC.
The voltages V; and V, are the
filter input and output voltages,
respectively.

+ O_MM’TOJr
Vi C Vo

[P B,

Figure 6.9 A simple RC
filter
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and
¢ (jw) = —arctan(wC R) = —arctan (w> (6.21)
o
with
1

The simplest way to envision the effect of thefilter isto think of the phasor voltage
V; = V;e/? scaled by afactor of | H| and shifted by aphase angle ¢ by thefilter
at each frequency, so that the resultant output is given by the phasor V,e/%., with

V,=1H|-V,
Po = Pu + ¢

and where |H| and ¢y are functions of frequency. The frequency wyg is called the
cutoff frequency of thefilter and, aswill presently be shown, gives an indication
of the filtering characteristics of the circuit.

It is customary to represent H (jw) in two separate plots, representing |H |
and ¢y asfunctionsof w. TheseareshowninFigure6.10in normalized form—that
is, with |H| and ¢ plotted versusw/wg, corresponding to acutoff frequency wg =
1rad/s. Note that, in the plot, the frequency axis has been scaled logarithmically.
This is a common practice in electrical engineering, because it allows viewing a

(6.23)

Magnitude response of RC low-pass filter

1
\\
N
0.8
Q
B 0.6 \
g \
E 04 \
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0.2 N
™
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1072 10t 100 10t 10? 108 10*
Radian frequency (logarithmic scale)
Phase response of RC low-pass filter
0 —
™N
N
-20
8 \
B 40
©
% —60
T
\
-80 5
102 101 10° 10t 102 108 104

Radian frequency (logarithmic scale)

Figure 6.10 Magnitude and phase response plots for RC filter
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very broad range of frequencies on the same plot without excessively compressing
the low-frequency end of the plot. The frequency response plots of Figure 6.10
are commonly employed to describe the frequency response of acircuit, sincethey
can provide a clear idea at a glance of the effect of afilter on an excitation signal.
For example, the RC filter of Figure 6.9 has the property of “passing” signals
at low frequencies (w <« 1/RC) and of filtering out signals at high frequencies
(w > 1/RC). Thistype of filter is called alow-passfilter. The cutoff frequency
o = 1/RC has a special significance in that it represents—approximately—the
point where thefilter beginsto filter out the higher-frequency signals. Thevalue of
H (jw) at the cutoff frequency is 1/+/2 = 0.707. Note how the cutoff frequency
depends exclusively on the values of R and C. Therefore, one can adjust the
filter response as desired simply by selecting appropriate values for C and R, and
therefore choose the desired filtering characteristics.

Interactive Experiments

EXAMPLE 6.3 Frequency Response of RC Filter
Problem

Compute the response of the RC filter of Figure 6.9 to sinusoidal inputs at the frequencies
of 60 and 10,000 Hz.

Solution

Known Quantities: R = 1kQ; C = 0.47 uF; v;(t) =5 cos(wt) V.
Find: The output voltage, v,(¢), at each frequency.

Assumptions: None.

Analysis: In this problem, we know the input signal voltage and the frequency response
of the circuit (equation 6.18), and we need to find the output voltage at two different
frequencies. If we represent the voltages in phasor form, we can use the frequency
response to calculate the desired quantities:

v,
v, V@) = Hvjo) = 37— e g

1
Vo(jo) = Hy (jo)V;(jw) = mvi(jw)

If we recognize that the cutoff frequency of thefilter iswg = 1/RC = 2,128 rad/s, we can
write the expression for the frequency response in the form of equations 6.20 and 6.21:

. 1 . 1 ) 1)
Hy(jo) = BT |Hy (jo)| = ————= ¢n(jw) = —arctan (—)
1+— 1 <a)>2 @o
wo + ;O

Next, we recognize that at « = 120 rad/s, theratio w/we = 0.177, and at w = 20,0007,
w/wo = 29.5. Thus we compute the output voltage at each frequency as follows:

1
V(0= 2760) = ——V/,(w = 2760) = 0.985 x 5/—0.175 V
(@=2760) = 35177 Vi@ = 2760 x
1
V,(w = 2710,000) = — V(e = 2710,000) = 0.0345 x 5/—1.537 \/
1+ j29.5
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And finally write the time-domain response for each frequency:
v, (1) = 4.923 cos(2wr 60t — 0.175) V at w = 2760rad/s
v, (1) = 0.169 cos(27 10,000t — 1.537) V at w = 2710,000 rad/s

The magnitude and phase responses of thefilter are plotted in Figure 6.11. 1t should be
evident from these plots that only the low-frequency components of the signal are passed
by thefilter. Thislow-pass filter would pass only the bass range of the audio spectrum.

Magnitude response of RC filter of Example 6.3

1 ]
o \
®
g \
5
Z 05
B \
< \\
0 [~
10° 10t 102 103 10* 10° 106
Radian frequency, rad/s (logarithmic scale)
Phase response of RC filter of Example 6.3
0
N~~~~
N \
B 50 \
a N\
\
N\
N\
N
-100
100 10t 102 108 10* 10° 106

Radian frequency, rad/s (logarithmic scale)

Figure 6.11 Response of RC filter of Example 6.3

Comments: Can you think of avery quick, approximate way of obtaining the answer to
this problem from the magnitude and phase plots of Figure 6.11? Try to multiply the input
voltage amplitude by the magnitude response at each frequency, and determine the phase
shift at each frequency. Your answer should be pretty close to the one computed

analyticaly.

Focus on Computer-Aided Tools: A computer-generated solution of this problem
generated by MathCad may be found in the CD-ROM that accompanies this book.

EXAMPLE 6.4 Frequency Response of RC Low-Pass Filter
in a More Realistic Circuit

Problem
Compute the response of the RC filter in the circuit of Figure 6.12.
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Vs(io) (B)

<> .
= RZ [Vi(iw)

)|
]
(@}

Source Filter Load

Figure 6.12 RC filter inserted in a circuit

Solution

Known Quantities: Rg =50; R; =200 Q2; R, =500 ; C =10 uF
Find: The output voltage, v,(¢), a each frequency.

Assumptions: None.

Analysis: Thecircuit shown in this problem is amore realistic representation of a
filtering problem, in that we have inserted the RC filter circuit between source and load
circuits (where the source and load are simply represented in equivalent form). To
determine the response of the circuit, we compute the Thévenin equival ent representation
of the circuit with respect to the load, asshownin Figure 6.13. Let R’ = Rg + R

and

, 1 Ry
Z' =Rill——== -
joC 14 joCR;

Then the circuit response may be computed as follows:

R
V.o z 1+ jwCR
Voo = g = s
Rs+Ri+——"
SR R o
R,
R. R.+ R

R.+ Rs + Ri+ joCR,(Rs + R1) _ 1+ jwCRL|R’
The above expression can be written as follows:

R,
Hijoy= —Rt®R K 0667
14+ joCRIR" 14 joCReq 14 ;2

600

Comments: Note the similarity and difference between the above expression and
equation 6.16: The numerator is different than 1, because of the voltage divider effect
resulting from the source and load resistances, and the cutoff frequency is given by the
expression

1
" CReo

@o

Figure 6.13 Equivalent-
circuit representation of Figure
6.12
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Wheatstone Bridge Filter

FIND IT

The Wheatstone bridge circuit of Examples 2.10 and Focus on
Measurements: Wheatstone Bridgein Chapter 2 isused in a
number of instrumentation applications, including the
measurement of force (see Example 2.13, describing the strain gauge
bridge). Figure 6.14 depicts the appearance of the bridge circuit. When
undesired noise and interference are present in a measurement, it is often
appropriate to use alow-pass filter to reduce the effect of the noise. The
capacitor that is connected to the output terminals of the bridge in Figure
6.14 congtitutes an effective and simple low-pass filter, in conjunction with
the bridge resistance. Assume that the average resistance of each leg of the
bridgeis 350 2 (a standard value for strain gauges) and that we desire to
measure a sinusoidal force at afrequency of 30 Hz. From prior
measurements, it has been determined that a filter with a cutoff frequency of
300 Hz is sufficient to reduce the effects of noise. Choose a capacitor that
matches this filtering requirement.

ON THE WEB

Filter capacitor

[ /
AV R<
n0|se ]:

Va1, V1(®) € == Vou

V(@) R:3

d
Vout=Va—Vp

YVVY
AAAA
vy
ey
3
.

Q

YVvy

Wheatstone bridge
equivalent circuit

Figure 6.14 Wheatstone bridge with equivalent circuit and
simple capacitive filter

Solution:

By evaluating the Thévenin equivalent circuit for the Wheatstone bridge,
calculating the desired value for the filter capacitor becomes relatively
simple, asillustrated at the bottom of Figure 6.14. The Thévenin resistance
for the bridge circuit may be computed by short-circuiting the two voltage
sources and removing the capacitor placed across the load terminals:

Rr = Ri || R2+ Rs || Ra = 350 || 350 + 350 || 350 = 350 Q2

Since the required cutoff frequency is 300 Hz, the capacitor value can be
computed from the expression

1
wp = =27 x 300
R C
or
1 1

C

Rrwo 350 x 27 x 300 "
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The frequency response of the bridge circuit is of the same form as equation
6.16:
Vou . 1
(jo)= 77"
Vr 1+ jwCRy
This response can be evaluated at the frequency of 30 Hz to verify that the
attenuation and phase shift at the desired signal frequency are minimal:

Vout . . 1
v, e = e X ) = s 30 % 151 x 1076 x 350

= 0.9951/-5.7°

Figure 6.15 depicts the appearance of a 30-Hz sinusoidal signal before and
after the addition of the capacitor to the circuit.

10 Noisy sinusoidal voltage

& i & }

AAAAAAAAAA]
W

0 0.08 0.16 0.24 0.32
(s

Filtered noisy sinusoidal voltage

MAANANAANN
NAVAVAVAVAVAAVAVAY;

0.08 0.16 0.24 0.32
t©

Volts
o

Figure 6.15 Unfiltered and filtered bridge output

Focus on Computer-Aided Tools— An EWB simulation of this circuit may
be found in the accompanying CD-ROM.

245

Much more complex low-pass filters than the smple RC combinations
shown so far can be designed by using appropriate combinations of various circuit
elements. The synthesis of such advanced filter networks is beyond the scope of
this book; however, we shall discuss the practical implementation of some com-
monly used filtersin Chapters 12 and 15, in connection with the discussion of the
operational amplifier. The next two sections extend the basic ideas introduced in
the preceding pagesto high- and band-passfilters—that is, tofiltersthat emphasize
the higher frequencies or a band of frequencies, respectively.

High-Pass Filters

Just as you can construct a simple filter that preserves low frequencies and atten-
uates higher frequencies, you can easily construct a high-pass filter that passes
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RC high-pass filter. The circuit
preserves higher frequencies while
attenuating the frequencies below
the cutoff frequency, wo = /RC.

C
+ 0 )} o+

Vo

VVVY

Vi RS

Figure 6.16 High-pass filter

1
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mainly those frequencies above a certain cutoff frequency. The analysis of asim-
ple high-pass filter can be conducted by analogy with the preceding discussion
of the low-pass filter. Consider the circuit shown in Figure 6.16. The frequency
response for the high-pass filter,

. V, .
H(jw) = v(]w)

may be obtained by noting that
JowCR

R
V,(jo) =V(jo) ————— = V;(jo) —————— 6.24
(o) (o) T 1jeC (Jw)lJr JoCR (6.24)
Thus, the frequency response of the filter is.
V, . joCR
— = 6.25
v, Y = 1 e (6.25)
which can be expressed in magnitude-and-phase form by
. V, . jowCR wCReI™
H(jo) = —(jo) = : = :
V; 14+ jwCR /1 + (wC R)2e] actan(@CR/1) (6.26)
_ wCR . o) (90 —actan(@CR)) .
V1+ (wCR)?
or
H(jo) = |H|e/*
with

wCR

Y1+ (@CR)? (6.27)

¢ (jow) = 90° — arctan(wCR)

H(jw) =

You can verify by inspection that the amplitude response of the high-pass filter
will bezero at w = 0 and will asymptotically approach 1 as w approachesinfinity,
whilethe phase shiftis90° at w = 0andtendsto zeroforincreasing w. Amplitude-
and-phase response curves for the high-passfilter are shownin Figure 6.17. These
plots have been normalized to have the filter cutoff frequency wg = 1 rad/s. Note
that, once again, it is possible to define a cutoff frequency at wp = 1/RC in the
same way as was done for the low-pass filter.

A ~u
0.8 / 80 N
Q . f [ § 60 )
j g \
T o4 ; 40 \
g g \
0.2 & 2 X
0 L 0 ™
102 10t 100 10t 102 108 104 102 101 100 10t 102 108 104
Radian frequency (logarithmic scale) Radian frequency (logarithmic scale)

Figure 6.17 Frequency response of a high-pass filter
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EXAMPLE 6.5 Frequency Response of RC High-Pass Filter
Problem

Compute the response of the RC filter in the circuit of Figure 6.16. Evaluate the response
of thefilter at w = 27 x 100 and 27 x 10,000 rad/s.

Solution

Known Quantities: R = 200 2; C = 0.199 uF.
Find: The frequency response, Hy (jw).
Assumptions: None.

Analysis: Wefirst recognize that the cutoff frequency of the high-passfilter is
wo = 1/RC = 21 x 4,000 rad/s. Next, we write the frequency response asin equation

6.25:
w
. V, . joCR wo 4 o)
H = — = = /| = —arctan| —
i) =grUe) = 7= eR e [2 <w0)]
1+ (2)
o
We can now evaluate the response at the two frequencies:
100
100
Hy(w = 21 x 100) = ——200 ___, [5 — arctan <—>} = 0.025/1.546
100\2 L2 4000
1 -
+ (o)
10,000
10,000
Hy(w = 27 x 10,000) = wé[z—arctan< )]
10.000\2 L2 4000
1 ,
+< 4000 )
= 0.929/0.38
The frequency response plots are shown in Figure 6.18.
1
08 /1 80 ™
' / g N
g 06 / B &0 \
= o
2 04 g
< / \
02 . T 2
0 .--// 0 \\.
10t 102 10° 10 105 106 107 10t 102 108 104 10 106
Radian frequency (logarithmic scal€e) Radian frequency (logarithmic scale)

Figure 6.18 Response of high-pass filter of Example 6.5
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Comments: The effect of this high-passfilter isto preserve the amplitude of the input
signal at frequencies substantially greater than wg, while signals at frequencies below wq
would be strongly attenuated. With wy = 27 x 4,000 (i.e., 4,000 Hz), thisfilter would
pass only the treble range of the audio frequency spectrum.

RLC band-passfilter. The circuit
preserves frequencies within a
band.

+ Hcl_rm\_l_ ro +

Vi R:E Vo

<

Figure 6.19 RLC band-pass
filter

Band-Pass Filters

Building on the principles devel oped in the preceding sections, we can also con-
struct a circuit that acts as a band-pass filter, passing mainly those frequencies
withinacertainfrequency range. Theanalysisof asimple second-order band-pass
filter (i.e., afilter with two energy-storage elements) can be conducted by anal ogy
with the preceding discussions of the low-pass and high-pass filters. Consider the
circuit shown in Figure 6.19, and the related frequency response function for the
filter

. V, .
H(jow) = V(Jw)

Noting that
Vo(jw) =V(jow) K
o\Jw) = V;(jw) - - ;
R+1/jwC + joL
fjw +jo (6.28)
. jowCR
=Vi(jo) 7 —
+ joCR + (jw)?LC
we may write the frequency response of the filter as
Vo . jCl)CR
—2 = 6.29
Vv, Y = T 0CR + Ga)?LC (6:29)
Equation 6.29 can often be factored into the following form:
Vo . jAw
- (o) = — : 6.30
Vi ' T Gojor + Djwjor + 1) (630

where w; and w, are the two frequencies that determine the pass-band (or band-
width) of thefilter—that is, the frequency range over which thefilter “ passes’ the
input signal—and A is a constant that results from the factoring. An immediate
observation we can makeisthat if the signal frequency, w, is zero, the response of
the filter is equal to zero, since at w = 0 the impedance of the capacitor, 1/jwC,
becomesinfinite. Thus, the capacitor actsasan open circuit, and the output voltage
equals zero. Further, we note that thefilter output in response to an input signal at
sinusoidal frequency approaching infinity isagain equal to zero. Thisresult can be
verified by considering that as w approachesinfinity, the impedance of the induc-
tor becomes infinite, that is, an open circuit. Thus, the filter cannot pass signals
at very high frequencies. In an intermediate band of frequencies, the band-pass
filter circuit will provide a variable attenuation of the input signal, dependent on
the frequency of the excitation. This may be verified by taking a closer ook at
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equation 6.30:
. Vn . jAa)
H(jw) = (jo) = — -
Vi (jo/o1+D(jo/w: + 1)
Awe’
B w 2 w 2
- it Jj arctan(w/wy) ,j arctan(w/ws,)

INCIRC]

Equation 6.31 is of the form H(jw) = |H|e/?#, with

. ej[QO“—arctan(w/wl)farclan(w/wg)]

|H(jo)| = (6.32)

and

w1 w2

¢Mm»=%maMm<ﬁ)_mm(ﬁ)

The magnitude and phase plots for the frequency response of the band-pass filter
of Figure 6.19 are shown in Figure 6.20. These plots have been normalized to
have the filter pass-band centered at the frequency w = 1 rad/s.

The frequency response plots of Figure 6.20 suggest that, in some sense,
the band-pass filter acts as a combination of a high-pass and alow-passfilter. As
illustrated in the previous cases, it should be evident that one can adjust the filter
response as desired simply by selecting appropriate valuesfor L, C, and R.

The expression for the frequency response of asecond-order band-passfilter
(equation 6.29) can also be rearranged to illustrate two important features of this
circuit: the quality factor, Q, and the resonant frequency, wg. Let

1 R

wo = \/ﬁ and Q = a)oCR = a)oL (633)

Then we can write
w w
owCR =wgCR— = Q0—
wo wQ

and rearrange equation 6.29 as follows:

)
JjO—
o wo

Yo (e

Vo jw) =

Vi . 2

Cw>+jQw+l
o

wo

(6.34)

In equation 6.34, the resonant frequency, wg, corresponds to the center frequency
of the filter, while Q, the quality factor, indicates the sharpness of the resonance,
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Band-pass filter amplitude response
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Figure 6.20 Freguency response of RLC band-pass filter

that is, how narrow or wide the shape of the pass-band of the filter is. The width
of the pass-band is also referred to as the bandwidth, and it can easily be shown
that the bandwidth of the filter is given by the expression

“o
0
Thus, a high-Q filter has a narrow bandwidth, while a low-Q filter has a large
bandwidth and istherefore less selective. The quality factor of afilter providesan

immediate indication of the nature of the filter. The following examplesillustrate
the significance of these parametersin the response of various RLC filters.

B= (6.35)

VIRTUAL LAB

Multisim

EXAMPLE 6.6 Frequency Response of Band-Pass Filter

Problem

Compute the frequency response of the band-pass filter of Figure 6.19 for two sets of
component values.

Solution
Known Quantities:

(@ R=1kQ;C=10uF, L =5mH.
(b) R=10Q; C =10 uF; L =5mH.

Find: The frequency response, Hy (jw).
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Assumptions: None.

Analysis: We write the frequency response of the band-pass filter asin equation 6.29:

Vo i joCR
Voo =
VA 1+ jwCR + (jw)2LC

oCR b4 oCR
= : ‘2 iz ere
\/(l—szC) + (WCR)? @

We can now evaluate the response for two different values of the seriesresistance. The
frequency response plots for case a (large series resistance) are shown in Figure 6.21.
Those for case b (small seriesresistance) are shown in Figure 6.22. Let us calculate some
quantities for each case. Since L and C are the same in both cases, the resonant frequency
of the two circuits will be the same:

1
~LC
On the other hand, the quality factor, Q, will be substantially different:

Hy(jo) =

= 4.47 x 10° rad/s

wo =

0, = woCR ~ 0.45 casea
0p = woCR ~ 45 case b
From these values of Q we can calculate the approximate bandwidth of the two filters:

@o

B, = =~ 10,000 rad/s casea

a

B,,:ﬂ~100rad/s case b
b

The frequency response plotsin Figures 6.21 and 6.22 confirm these observations.

Broad-band filter amplitude response
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Figure 6.21 Frequency response of broad-band band-pass filter of
Example 6.6
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Narrow-band filter amplitude response
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Figure 6.22 Freguency response of narrow-band band-pass filter of
Example 6.6

Comments: |t should be apparent that, while at the higher and lower frequencies most of
the amplitude of the input signal is filtered from the output, at the mid-band frequency
(4,500 rad/s) most of the input signal amplitude passes through the filter. The first
band-pass filter analyzed in this example would “pass’ the mid-band range of the audio
spectrum, while the second would pass only a very narrow band of frequencies around the
center frequency of 4,500 rad/s. Such narrow-band filters find application in tuning
circuits, such as those employed in conventional AM radios (although at frequencies
much higher than that of the present example). In atuning circuit, a narrow-band filter is
used to tune in afrequency associated with the carrier of aradio station (for example, for
astation found at a setting of “AM 820,” the carrier wave transmitted by the radio station
isat afrequency of 820 kHz). By using a variable capacitor, it ispossibleto tunein a
range of carrier frequencies and therefore select the preferred station. Other circuits are
then used to decode the actual speech or music signal modulated on the carrier wave;
some of these will be discussed in Chapter 8.

FIND IT

AC Line Interference Filter

Problem:
One application of narrow-band filtersisin rejecting interference ErErETER
dueto AC line power. Any undesired 60-Hz signal originating in the AC line
power can cause serious interference in sensitive instruments. In medical
instruments such as the electrocar diogr aph, 60-Hz notch filters are often
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provided to reduce the effect of thisinterference? on cardiac measurements.
Figure 6.23 depictsacircuit in which the effect of 60-Hz noiseis represented
by way of a60-Hz sinusoidal generator connected in series with a signal
source (V), representing the desired signal. In this example we design a
60-Hz narrow-band (or notch) filter to remove the unwanted 60-Hz noise.

60 Hz notch filter
L

ol

@ VeoHz Cc +
v -

Figure 6.23 60-Hz notch
filter

Solution:

Known Quantities— Rg = 50 2.

Find— Appropriate values of L and C for the notch filter.

Assumptions— None.

Analysis— To determine the appropriate capacitor and inductor values, we
write the expression for the notch filter impedance:

joL
iwC joL
Zy=ZiZc = / = T
. 1 1-w?LC
joL + —
joC

Note that when »?LC = 1, the impedance of the circuit isinfinite! The
frequency

is the resonant frequency of the LC circuit. If this resonant frequency were

selected to be equal to 60 Hz, then the series circuit would show an infinite

impedance to 60-Hz currents, and would therefore block the interference

signal, while passing most of the other frequency components. We thus

select values of L and C that result in wg = 27 x 60. Let L = 100 mH. Then
C = 1 = 70.36 uF

2
wpL

The frequency response of the complete circuit is given below:
Vo(jo) R Ry

Vi(jw) ~ Rs+RL+Zj joL
R R P ——
sHRLT T ore

Hy(jow) =

and is plotted in Figure 6.24.

2See Example 13.3 and Section 15.2 for further information on electrocardiograms and line
noise, respectively.
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Notch filter amplitude response
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Figure 6.24 Freguency response of 60-Hz notch filter
Comments— It would be instructive for you to calcul ate the response of the

notch filter at frequenciesin the immediate neighborhood of 60 Hz, to verify
the attenuation effect of the notch filter.

Seismic Transducer FIND IT

This exampleillustrates the application of the frequency response
ideato apractical displacement transducer. The frequency re-
sponse of a seismic displacement transducer isanalyzed, and it
is shown that there is an analogy between the equations describing the
mechanical transducer and those that describe a second-order electrical
circuit.

The configuration of the transducer is shown in Figure 6.25. The
transducer is housed in a caserigidly affixed to the surface of a body whose
motion is to be measured. Thus, the case will experience the same
displacement as the body, x;. Inside the case, asmall mass, M, restson a
spring characterized by stiffness K, placed in parallel with adamper, B. The
wiper arm of a potentiometer is connected to the floating mass, M; the
potentiometer is attached to the transducer case, so that the voltage V,, is
proportional to the relative displacement of the mass with respect to the
case, x,.

ON THE WEB
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Resistive displacement
transducer (potentiometer)
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Figure 6.25 Seismic displacement transducer

The equation of motion for the mass-spring-damper system may be
obtained by summing al the forces acting on the mass M:

dx, d%xy <d2x; d2x0>
=M ===

Kx,+B— =M
Yo dt dr? dr2 dr?

where we have noted that the motion of the massis equal to the difference
between the motion of the case and the motion of the mass relative to the
caseitself; that is,

Xy = Xi — X

If we assume that the motion of the massis sinusoidal, we may use phasor
analysisto obtain the frequency response of the transducer by defining the
phasor quantities

Xi(jo) =X’ and  X,(jo) =|X,|e/”

The assumption of a sinusoidal motion may be justified in light of the
discussion of Fourier analysisin Section 6.1. If we then recall (from Chapter
4) that taking the derivative of a phasor correspondsto multiplying the phasor
by jw, we can rewrite the second-order differential equation as follows:

M(jw)* X, + B(jo)Xo + KX, = M(jw)?X;
(—w?M + jwB + K)X, = —w?’MX;
and we can write an expression for the frequency response:
X, (jw) , —w?M
i = H{jo) = —
i(jw) —w*M + joB + K
The frequency response of the transducer is plotted in Figure 6.26 for the

component values M = 0.005 kg and K = 1,000 N/m and for three values
of B:

B =10N-9m (dotted line)
B =2N-gm (dashed line)

and
B =1N-9m (solid line)

The transducer clearly displays a high-pass response, indicating that for a
sufficiently high input signal frequency, the measured displacement
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Figure 6.26 Frequency response of seismic transducer

(proportional to the voltage V,) is equal to the input displacement, x;, which
isthe desired quantity. Note how sensitive the frequency response of the
transducer isto changesin damping: as B changesfrom 2 to 1, asharp
resonant peak appears around the frequency w = 316 rad/s (approximately
50 Hz). As B increases to avalue of 10, the amplitude response curve shifts
to theright. Thus, thistransducer, with the preferred damping given by

B = 2, would be capable of correctly measuring displacements at
frequencies above a minimum value, about 1,000 rad/s (or 159 Hz). The
choice of B = 2 asthe preferred design may be explained by observing that,
ideally, we would like to obtain a constant amplitude response at all
frequencies. The magnitude response that most closely approximates the
ideal case in Figure 6.26 correspondsto B = 2. This concept is commonly
applied to avariety of vibration measurements.

We now illustrate how a second-order electrical circuit
will exhibit the same type of response as the seismic transducer.
Consider the circuit shown in Figure 6.27. The frequency response for the
circuit may be obtained by using the principles developed in the preceding
sections:

ON THE WEB

Vu(. ) JoL (JoL)(jwC)

—_— w) = =

V; 7 T RY¥1/jwC + joL ~ joCR+ 1+ (joL)(joC)
—w?L

- —w?L + joR+1/C

Comparing this expression with the frequency response of the seismic
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R C
+
vi(t) L % Vo(t)
E o-

Figure 6.27 Electrica
circuit analog of the seismic

transducer
transducer,
Xo(jw) . —w?M
Xi(jw) —w*M + joB+ K

we find that there is a definite resemblance between the two. In fact, itis
possible to draw an analogy between input and output motions and input and
output voltages. Note also that the mass, M, plays arole analogous to that of
theinductance, L. The damper, B, actsin analogy with the resistor, R; and
the spring, K, is analogous to the inverse of the capacitance, C. This
analogy between the mechanical system and the electrical circuit derives
simply from the fact that the equations describing the two systems have the
same form. Engineers often use such anal ogies to construct electrical
models, or analogs, of physical systems. For example, to study the behavior
of alarge mechanical system, it might be easier and less costly to start by
modeling the mechanical system with an inexpensive electrical circuit and
testing the model, rather than the full-scale mechanical system.

Decibel (dB) or Bode Plots

Frequency response plots are often displayed in the form of logarithmic plots,
where the horizontal axis represents frequency on alogarithmic scale (to base 10)
and the vertical axis representsthe amplitude of the frequency response, in units of
decibels (dB). InadB plot, theratio |Voy/Vinl iSgiven in units of decibels (dB),
where

‘ Vout

in

\%
= 20logy, VOUt

(6.36)
dB in
and thisis plotted as afunction of frequency on alog,, scale. Note that the use of
decibelsimpliesthat oneis measuring aratio. Decibel plots are usualy displayed
on semilogarithmic paper, with decibels on the linear axis and frequency on the
logarithmic axis.

Bode plots are named after Hendrik W. Bode, a research mathematician
who is among the pioneers in modern electrical network analysis and feedback
amplifier design.

L et usexaminethe appearance of dB plotsfor typical low-passand high-pass
filter circuits. From Figure 6.28, we can see that both plots have a very simple
appearance: either the low-frequency part of the plot (for alow-pass filter) or the
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dB plot of low-pass filter amplitude response
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Figure 6.28 dB magnitude plots of low- and
high-pass filters

high-frequency part (for the high-pass filter) is well approximated by aflat line,
indicating that for some range of frequencies, the filter has a constant amplitude
response, equal to 1. Further, the filter cutoff frequency, wo, appears quite clearly
as the approximate frequency where the filter response startsto fall. The response
of the circuit decreases (or increases) with a constant slope with respect to w (on
alogarithmic scale). For the high-pass and |ow-pass filters described earlier, this
slope is equal to +20 dB/decade (— for the low-pass filter, 4 for the high-pass),
where adecade is arange of frequencies f; to f» such that

f2

= 10 (6.37)

What kind of decreasein gain is —20 dB/decade? The expression

|H(jw)|lgs = —20dB (6.38)
means that

~20 = 20l0gyy | H (jo)]
or (6.39)
|H(jw)| = 0.1

That is, the gain decreases by a factor of 10 for every increase in frequency by
a factor of 10. You see how natural these units are. Further, if wg is known,
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aplot of |H(jw)|gs Versus w (on alogarithmic scale) may be readily sketched
using the asymptotic approximations of two straight lines, one of slope zero and
the other with slope equal to —20 dB/decade, and with intersection at wg. The
homework problems and exercises provide a good number of practical examples
of thistechnique.

Check Your Understanding
6.1 Deriveanexpressionfor H;(jw) = %(ja)) for the circuit of Figure 6.1.

6.2 Usethe method of node voltages to derive Hy (jw) for the circuit of Figure 6.1.
6.3 Usethe method of mesh currentsto derive Hy (jw) for the circuit of Figure 6.1.

6.4 Connect thefilter of Example 6.3to a1-V sinusoidal sourcewith internal resistance
of 50 @ to form a circuit similar to that of Figure 6.12. Determine the circuit cutoff
frequency, wp.

6.5 Determine the cutoff frequency for each of the four “prototype” filters shown in
Figure 6.29. Which are high-pass and which are low-pass?

R R
I C L
o T o) o o)
@ (b)
C L
o I} 0 o—mm—1—0
o o) o o)
(© (d)
Figure 6.29

6.6 Show that it is possible to obtain a high-pass filter response simply by substituting
an inductor for the capacitor in the circuit of Figure 6.9. Derive the frequency response for
the circuit.

6.7 Determine the cutoff frequency for the high-pass RC filter shown in Figure 6.30.
[Hint: First find the frequency response in the form jwa/(1 + jwb), where a and b are
congtantsrelated to R;, R, and C;, and then solve numerically.] Sketch the amplitude and
frequency responses.

6.8 A simple RC low-pass filter is constructed using a 10-u.F capacitor and a 2.2-k2
resistor. Over what range of frequencies will the output of the filter be within 1 percent of
the input signal amplitude (i.e., when will V, > 0.99V)?

6.9 Computethefrequency at which the phase shift introduced by the circuit of Example
6.3 isequal to —10°.

6.10 Computethefrequency at which the output of the circuit of Example 6.3 is atten-
uated by 10 percent (i.e., V;, = 0.9Vg).

6.11 Computethefrequency at which the output of the circuit of Example 6.6 is atten-
uated by 10 percent (i.e., V. = 0.9Vy).

259
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6.12 Compute the frequency at which the phase shift introduced by the circuit of Ex-
ample 6.6 isequal to 20°.
6.13 Compute the frequencies w; and w, for the band-pass filter of Example 6.7 (with

R = 1k€) for equating the magnitude of the band-pass filter frequency response to 1/+/2
(thiswill result in a quadratic equation in w, which can be solved for the two frequencies).

6.3 COMPLEX FREQUENCY
AND THE LAPLACE TRANSFORM

The transient analysis methods illustrated in the preceding chapter for first- and
second-order circuits can becomerather cumbersomewhen applied to higher-order
circuits. Moreover, solving the differential equations directly does not reveal the
strong connection that exists between the transient response and the frequency
response of acircuit. The aim of this section is to introduce an alternate solution
method based on the notions of complex frequency and of the L aplacetransform.
The concepts presented in thissection will demonstratethat the frequency response
of linear circuitsisbut aspecial case of the general transient response of thecircuit,
when analyzed by means of Laplace methods. In addition, the use of the Laplace
transform method allowstheintroduction of systemsconcepts, such aspoles, zeros,
and transfer functions, that cannot be otherwise recognized.

Complex Frequency

In Chapter 4, we considered circuits with sinusoidal excitations such as

v(t) = Acos(wt + ¢) (6.40)
which we also wrote in the equivalent phasor form

V(jw) = Ae’? = AL (6.41)
The two expressions just given are related by

v(t) = Re(Vel™") (6.42)

As was shown in Chapter 4, phasor notation is extremely useful in solving AC
steady-state circuits, in which the voltages and currents are steady-state sinusoids
of the form of equation 6.40. We now consider a different class of waveforms,
useful in the transient analysis of circuits, namely, damped sinusoids. The most
genera form of adamped sinusoid is

v(t) = Ae”' cos(wt + ¢) (6.43)

As one can see, adamped sinusoid is a sinusoid multiplied by areal exponential,
e°!'. Theconstant o isrea andisusually zero or negativein most practical circuits.
Figures 6.31(a) and (b) depict the case of a damped sinusoid with negative o and
with positive o, respectively. Note that the case o = 0 corresponds exactly to
a sinusoidal waveform. The definition of phasor voltages and currents given in
Chapter 4 can easily be extended to account for the case of damped sinusoidal
waveforms by defining anew variable, s, called the complex frequency:

s=0+jo (6.44)
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You may wish to compare this expression with the term « & j8 in equation 5.65.
Notethat the special cases = 0 correspondstos = jw, thatis, thefamiliar steady-
state sinusoidal (phasor) case. We shall now refer to the complex variable V (s)
as the complex frequency domain representation of v(z). It should be observed
that from the viewpoint of circuit analysis, the use of the Laplace transform is
analogous to phasor analysis; that is, substituting the variable s wherever jo was
used is the only step required to describe a circuit using the new notation.

Check Your Understanding
6.14 Find the complex frequencies that are associated with

56_4t

COoS 2wt

. sin(wt + 26)

4e~2 gin(3t — 50°)

. e~ (2 + cosdt)

6.15 Finds and V(s) if v(z) isgiven by

52—2t

. 5e~? cos(4t + 10°)
c. 4cos(2t — 20°)

6.16 Findv()if
as=-2,V=2/0r

. s =j2,V=12/-30

c. s=-4+4j3,V=6£10

@ © Q0 T

o

o

All the conceptsand rulesused in AC network analysis (see Chapter 4), such
as impedance, admittance, KVL, KCL, and Thévenin's and Norton's theorems,
carry over to the damped sinusoid case exactly. Inthe complex frequency domain,
the current |1 (s) and voltage V (s) are related by the expression

V(s) = Z(s)I(s) (6.45)
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where Z(s) isthe familiar impedance, with s replacing jw. We may obtain Z(s)
from Z(jw) by simply replacing jw by s. For aresistance, R, the impedanceis
Zr(s) = R (6.46)
For an inductance, L, the impedanceis
Zi(s) =sL (6.47)
For a capacitance, C, itis

1
Ze(s) = (6.48)

Impedances in series or parallel are combined in exactly the same way as in the
AC steady-state case, since we only replace jw by s.

EXAMPLE 6.7 Complex Frequency Notation

Problem

Use complex impedance ideas to determine the response of a series RL circuit to adamped
exponential voltage.

Solution
Known Quantities: Source voltage, resistor, inductor values.
Find: Thetime-domain expression for the series current, i, (¢).

Schematics, Diagrams, Circuits, and Given Data: v,(f) = 10e~% cos(5t) V; R = 4 Q;
L=2H.

Assumptions: None.

Analysis: Theinput voltage phasor can be represented by the expression
V(s) =100V

The impedance seen by the voltage sourceis
Z(s)=R+sL=4+2s

Thus, the series current is:

\Y, 10 10 10
Z(s) 4425 442(-2+4j5 10
Finaly, the time-domain expression for the current is:

i (1) =e % cos(5t —/2) A

I(s)

Comments: The phasor analysis method illustrated here is completely analogous to the
method introduced in Chapter 4, with the complex frequency jw (steady-state sinusoidal
frequency) related by s (damped sinusoidal frequency).
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Just as frequency response functions H (jw) were defined in this chapter, it
is possible to define atransfer function, H (s). This can be aratio of a voltage
to acurrent, aratio of avoltage to a voltage, aratio of a current to a current, or a
ratio of acurrent to avoltage. The transfer function H (s) isafunction of network
elements and their interconnections. Using the transfer function and knowing the
input (voltage or current) to a circuit, we can find an expression for the output
either in the complex frequency domain or in the time domain. As an example,
supposeV; (s) and V, (s) aretheinput and output voltagesto acircuit, respectively,
in complex frequency notation. Then

_ V()
~ Vi(s)

from which we can obtain the output in the complex frequency domain by com-
puting

H(s) (6.49)

Vo(s) = H(s)Vi(s) (6.50)

If V;(s) isaknown damped sinusoid, we can then proceed to determine v, (r) by
means of the method illustrated earlier in this section.

Check Your Understanding

6.17 Giventhetransfer function H (s) = 3(s + 2)/(s?>+ 25 + 3) and theinput V; (s) =
4,0, find the forced response v, (¢) if

a s=-1
b.s=-1+j1
c.s=-2+j1

6.18 Giventhetransfer function H (s) = 2(s +4)/(s? 4+ 4s + 5) and theinput V; (s) =
6/30°, find the forced response v, (¢) if

as=-4+j1
b s=-24j2

The Laplace Transform

The Laplace transform, named after the French mathematician and astronomer
Pierre Simon de Laplace, is defined by

LLF0] = F(s) = /0 Fe e (651)

Thefunction F (s) isthe Laplacetransform of f () andisafunction of the complex
frequency, s = o + jw, considered earlier in this section. Note that the function
f () isdefined only for r > 0. Thisdefinition of the Laplace transform appliesto
what is known as the one-sided or unilateral Laplace transform, since f(¢) is
evaluated only for positive . In order to conveniently express arbitrary functions
only for positivetime, weintroduce aspecial function called theunit step function,
u(t), defined by the expression
0 r<O

W=11 o (6.52)
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EXAMPLE 6.8 Computing a Laplace Transform

Problem

Find the Laplace transform of f(¢) = e “u(r).

Solution

Known Quantities: Function to be Laplace-transformed.

Find: F(s) = L{f(@®)}.

Schematics, Diagrams, Circuits, and Given Data: f(t) = e~ “u(t).
Assumptions: None.

Analysis: From equation 6.51:
F(s) = / e~ — / et gy — T —(s+ay _
0 0 s+a 0 s+a

Comments: Table6.1 containsalist of common Laplace transform pairs.

EXAMPLE 6.9 Computing a Laplace Transform

Problem

Find the Laplace transform of f () = cos(wt)u(t).

Solution

Known Quantities: Function to be Laplace-transformed.

Find: F(s) = L{f()}.

Schematics, Diagrams, Circuits, and Given Data: f(¢) = cos(wt)u(t).
Assumptions: None.

Analysis: Using equation 6.51 and applying Euler’'sidentity to cos(wt) gives:

F(s) = / } (e-f“” + e_-f“”) e Sldt = }[ (e(_“'j‘”)’ + e(_s_j‘”)’) dt
o 2 2 Jo

o0 oo
— 1 e—(s+jw)l + 1 e—(x—ja))l
-+ jow o -5 —jw 0
_ 1 1 _ s
T st jo  —s—jo  s24o?

Comments: Table 6.1 containsalist of common Laplace transform pairs.
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Check Your Understandin 9 Ta_ble 6.1 Laplace transform
6.19 Find the Laplace transform of the following functions: pairs

a u(t) f(t) F(s)
b. sin(wt)u(r)

C. tu(t)

8(t) (unitimpulse) 1

6.20 Find the Laplace transform of the following functions: u(t) (unit step) 1
a e “sinwt u(r) $
b. e coswt u(t) e~ u(r) i
N a
. w
sinwr u(r) Tra?
From what has been said so far about the Laplace transform, it is obvious cosawru(t) s
that we may compile alengthy table of functions and their Laplace transforms by et 52+ w?
repeated application of equation 6.51 for various functions of time, f(r). Then, ,-a gp ., u(t) w
we could obtain a wide variety of inverse transforms by matching entries in the (s +a)? + 0?
table. Table 6.1 lists some of the more common Laplace transform pairs. The .- coser u(r) %
computation of theinver se L aplacetransform isin general rather complex if one s+a)+e
wishesto consider arbitrary functions of s. In many practical cases, however, itis  u) iz
N

possible to use combinations of known transform pairsto obtain the desired result.

EXAMPLE 6.10 Computing an Inverse Laplace Transform
Problem

Find the inverse Laplace transform of

Py =— 22
S_s+3 s2+4 5

Solution
Known Quantities: Function to be inverse Laplace-transformed.
Find: f(t) = L7YF(s)}.

Schematics, Diagrams, Circuits, and Given Data:

L4
s+3 s2+4

4
F(s) = + 3 = Fi(s) + Fo(s) + F3(s)

Assumptions: None.

Analysis: Using Table 6.1, we can individually inverse-transform each of the elements of
F(s):

fiy =271 (H%) =2e"%y(1)
2 .
L) =271 (m> = 2sin(2t)u(t)

fa(t) = 4Lt (%) = 4u(r)
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Thus
F@) = fu®) + fo0) + fa(t) = (267> + 2 sin(2t) + 4) u(1).

EXAMPLE 6.11 Computing an Inverse Laplace Transform

Problem
Find the inverse Laplace transform of

2s+5
F(s)= — =12
() s2+55+6

Solution

Known Quantities: Function to be inverse Laplace-transformed.
Find: f(t) = L™YF(s))}.

Assumptions: None.

Analysis: A direct entry for the function cannot be found in Table 6.1. In such cases, one
must compute a partial fraction expansion of the function F(s), and then individually
transform each term in the expansion. A partial fraction expansion isthe inverse operation
of obtaining acommon denominator, and isillustrated below.

2s+5 A " B
s24+55+6 s+2 s+3

To obtain the constants A and B, we multiply the above expression by each of the
denominator terms:

F(s) =

_ (s+2B
(S-I—Z)F(s)_A-I—is_i_3

_(s+3A
(S+3)F(S)—ﬁ+3

From the above two expressions, we can compute A and B as follows:

25+5
A= DF(§)|ymp = —— =1
(s +2)F(s)|s=—2 s13
2545
B=(G+3)F($)|=—s3= m =1
Finaly,
2 1 1
F(s) = s+ 5

2+55+6 s+2+s+3
and using Table 6.1, we compute

O =(*+e*)u@)
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Check Your Understanding

6.21 Findtheinverse Laplace transform of each of the following functions:

a F(s)=

s24+55+6
s—1
b. F(s) = )
3s
)
d F(s) = 1

(s +2(s+1)?

Transfer Functions, Poles, and Zeros

It should be clear that the Laplace transform can be quite a convenient tool for
analyzing the transient response of acircuit. The Laplace variable, s, is an exten-
sion of the steady-state frequency response variable jw aready encountered inthis
chapter. Thus, it is possibleto describe the input-output behavior of acircuit using
Laplace transform ideas in the same way in which we used frequency response
ideas earlier. Now, we can define voltages and currents in the complex frequency
domain as V(s) and | (s), and denote impedances by the notation Z(s), where s
replaces the familiar jw. We define an extension of the frequency response of a
circuit, called the transfer function, asthe ratio of any input variable to any output
variable, i.e.:
Vo, (s) lo(s)

vie & HRO=9

As an example, consider the circuit of Figure 6.32. We can analyze it using a

Hy(s) =

(6.53)

method anal ogous to phasor analysis by defining impedances
Zi=Ry Zc= % Zy,=sL Zy=Ry 659 O

Then, we can use mesh analysis methods to determine that 1
1(5) = Vi(s) Ze (6.55)

(Zo+Z)Zc+ (ZL+Z2) 21+ Z1Zc
or, upon simplifying and substituting the rel ationships of equation 6.54,

lo(s) 1
Vi(s)  Ri1LCs2+4 (RiR;C + L)s + R1+ R,

If we were interested in the relationship between the input voltages and, say, the

H(s) =

(6.56)

capacitor voltage, we could similarly calculate Figure 6.32 A dircuit and
its Laplace transform domain
V(s sL+ R uivalent
Hy(s) = 28 _ 2 657

Vi(s)  RiLCs2+ (RiR:C + L)s + R1 + R>
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Note that a transfer function consists of aratio of polynomials; thisratio can also
be expressed in factored form, leading to the discovery of additional important
propertiesof thecircuit. Let us, for the sake of simplicity, choose numerical values
for the components of the circuit of Figure 6.32. For example, let R; = 0.5 Q,
C = ‘—11 F L = 05H, and R, = 2 Q. Then we can substitute these values into
equation 6.57 to obtain

Hi(s) =

0.55 +2 < s+4 > (658)

0.0625s2 + 0.3755s + 25 \s2+ 65 + 40
Equation 6.58 can be factored into products of first-order terms as follows:

s+4
s — 3.0000 + ;j5.5678)(s — 3.0000 — j5.5678)]

Hi(s) =8 [ (6.59)
whereit is apparent that the response of the circuit has very special characteristics
for three values of s: s = —4; s = 4+3.0000 + j5.5678; and s = +3.0000 —
j5.5678. Inthefirst case, at the complex frequency s = —4, the numerator of the
transfer function becomes zero, and the response of the circuit is zero, regardless
of how large the input voltage is. We call this particular value of s a zero of the
transfer function. Inthelatter two cases, for s = +3.0000+ j5.5678, the response
of the circuit becomes infinite, and we refer to these values of s as poles of the
transfer function.

Itiscustomary to represent the response of electric circuitsin terms of poles
and zeros, since knowledge of the location of these poles and zeros is equivalent
to knowing the transfer function and provides complete information regarding the
response of the circuit. Further, if the poles and zeros of the transfer function of a
circuit are plotted in the complex plane, it is possible to visualize the response of
the circuit very effectively. Figure 6.33 depicts the pole—zero plot of the circuit of
Figure 6.32; in plots of thistypeit is customary to denote zeros by asmall circle,
and polesby an “ x.”

6 X
4
8 2
>
g o o
&
£ -2
-4
5 X
-10 -5 0 5
Real part

Figure 6.33 Zero—pole plot for the circuit of Fig-
ure 6.32

The poles of atransfer function have a special significance, in that they are
equa to the roots of the natural response of the system. They are also called the
natural frequencies of the circuit. Example 6.13 illustrates this point.
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EXAMPLE 6.12 Poles of a Second-Order Circuit
Problem

Determine the poles of the circuit of Example 5.11.

Solution

Known Quantities: Values of resistor, inductor, and capacitor.
Find: Poles of the circuit.

Assumptions: None.

Analysis: Thedifferential equation describing the circuit of Example 5.11 was found to
be
d2i+Rdi+ 1 o
a2 " Ldi T LC'
with characteristic equation given by
R 1
2
_ — =0
ST Ie
Now, let us determine the transfer function of the circuit, say V, (s)/Vs(s). Applying the
voltage divider rule, we can write

Vi(s) sL 52
Vsis) 1 R 1

J— R L 2 —_ N
sC+ +s s+Ls+LC

The denominator of this function, which determines the poles of the circuit, isidentical to
the characteristic equation of the circuit: The poles of the transfer function are identical to
the roots of the characteristic equation!

__L LR\ 4
2=Tr T 2y\1) T Lc
Comments: Describing a circuit by means of its transfer function is completely
equivalent to representing it by means of its differential equation. However, it is often

much easier to derive atransfer function by basic circuit analysis than it isto obtain the
differential equation of acircuit.

CONCLUSION

* In many practical applicationsit isimportant to analyze the frequency response of
acircuit, that is, the response of the circuit to sinusoidal signals of different
frequencies. This can be accomplished quite effectively by means of the phasor
analysis methods developed in Chapter 4, where the radian frequency, w, isnow a
variable. The frequency response of acircuit is then defined asthe ratio of an
output phasor quantity (voltage or current) to an input phasor quantity (voltage or
current), as afunction of frequency.

* One of the primary applications of frequency analysisisin the study of electrical
filters, that is, circuits that can selectively attenuate signals in certain frequency
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regions. Filters can be designed, using standard resistors, inductors, and
capacitors, to have one of four types of characteristics: low-pass, high-pass,
band-pass, and band-reject. Such filters find widespread application in many
practical engineering applications that involve signal conditioning. Filterswill be
studied in more depth in Chapters 12 and 15.

* Although the analysis of electrical circuits by means of phasors—that is,

steady-state sinusoidal voltages and currents—is quite useful in many
applications, there are situations where these methods are not appropriate. In
particular, when acircuit (or another system) is subjected to an abrupt change in
input voltage or current, different analysis methods must be employed to
determine the transient response of the circuit. In this chapter, we have studied
the analysis methods that are required to determine the transient response of first-
and second-order circuits (that is, circuits containing one or two energy-storage
elements, respectively). One method involves identifying the differential equation
that describes the circuit during the transient period and recognizing important
parameters, such as the time constant of afirst-order circuit and the damping ratio
and natural frequency of a second-order circuit. A second method exploits the
idea of complex frequency and the Laplace transform.

CHECK YOUR UNDERSTANDING ANSWERS

Z;
CYyu6.1 H(jo) = ———
1(jo) 7.+ Z,
Ccyue6.4 wo = 2,026.3rad/s
1 R .
CYU 6.5 @ wo = RC (low); (b) wp = I (high;

(©) e = s (high); (@ w0 = 7 (low)

CYU 6.6 H(jow) = — 2R
VIt @L/RE
¢ (jw) = 90° + arctan _R#L

CYU 6.7 wo = 35.46 rad/s
CyU 6.8 0<w=<6.48radls
CYU6.9 w = 375.17 rad/s
CYU 6.10 w = 1,030.49 rad/s
Cyue6.11 w = 51,878 rad/s
CYue6.12 w = 69,032 rad/s
CYU 6.13 wy = 99.95 rad/s; w, = 200.1 krad/s
Cyue6.14 a —4;b. +j2w;c. £jw;d. -2+ j3;e. —3and -3+ j4
CYU 6.15 a —2,5/0°;b. =2+ j4,5/10°; c. j2,4/-20°
CYU 6.16 a 2¢%:b. 12cos(2t — 30°); c. e~ cos(3t + 10°)
CYU6.17 a 6e~': b, 124/2¢ cos(r + 45°); c. 6e~% cos(t + 135°)
CYu 6.18 a 3¢~% cos(t + 165°); b. 8+/2¢~% cos(2r — 105°)
CYU 6.19 alp_2 .ot

s s24+w? T 52
CYU 6.20 L (s+a)

a ‘b
(s +a)? + w? (s +a)? + w?
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(e +te™" — e u(t)
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(3e® — 3 u@); c. f(1) = (cost — cos2nu(t); d. f(1) =

HOMEWORK PROBLEMS

Section 1: Frequency Response

6.1

a. Determine the frequency response
Vor(jw)/Vin(jw) for the circuit of Figure P6.1.

b. Plot the magnitude and phase of the circuit for
frequencies between 1 and 100 rad/s on graph
paper, with alinear scale for frequency.

c. Repeat part b, using semilog paper. (Placethe
frequency on the logarithmic axis.)

d. Plot the magnitude response on semilog paper with

magnitudein dB.

0.1H
O—Wj—o
+ +
<>
Vin(t) 100kQ £ Vout(t)
o o
Figure P6.1

6.2 Repeat Problem 6.1 for the circuit of Figure P6.2.

1,000 Q
AA
VWv

+ +

Vin(t) 1,000Q 3 100 pF =< Vou(t)

o
Figure P6.2

6.3 Repeat Problem 6.1 for the circuit of Figure P6.3.

1,000 Q 500 Q
<> %%%% ﬂN%% <)
+ +

Vin(t) 21,000Q 100 pF =% Voul®)
o o

Figure P6.3

6.4 Assumein acertain frequency range that the ratio of
output amplitude to input amplitude is proportional to

1/w?. What isthe slope of the Bode plot in this
frequency range, expressed in dB per decade?

6.5 Assume that the output amplitude of acircuit

depends on frequency according to:

Aw

VB + Cw?

Find:

a. The break frequency.

b. The dope of the Bode plot (in dB per decade)
above the break frequency.

¢. The dlope of the Bode plot below the break
frequency.

d. The high-frequency limit of V.

The function of aloudspeaker crossover network is
to channel frequencies higher than a given crossover
frequency, f., into the high-frequency speaker
(tweeter) and frequencies below f. into the
low-frequency speaker (woofer). Figure P6.6 shows an
approximate equivalent circuit where the amplifier is
represented as a voltage source with zero internal
resistance and each speaker acts as an 8 Q2 resistance.
If the crossover frequency is chosen to be 1200 Hz,
evaluate C and L. Hint: The break frequency would be
areasonable value to set as the crossover frequency.

C L
10 vrmsC)
Ry Ry
R1= R2= 8Q

Figure P6.6

6.7 Consider the circuit shown in Figure P6.7.

Determine the resonance frequency and the bandwidth
for the circuit.

U4H

Vs =20 18 F

AAAA

_____9 F_____

Figure P6.7
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6.8 Repeat Problem 6.7 for the circuit of Figure P6.8.

90 2H 4H

Vs 2H

Figure P6.8

,‘\ U18F
6.9

a. What is the equivalent impedance, Z,;,, of thefilter
of Figure P6.9?

b. At what frequency does the magnitude of the
impedance go to infinity?

a

C |
Zapy —> L C

C T

b

L=10pH C=0.1pF

Figure P6.9
6.10 Inthecircuit shown in Figure P6.10:
a. Determine how the driving point impedance

V,‘ j
2uer= I«<(;;U))

behaves at extremely high or low frequencies.

b. Find an expression for the driving point impedance.

¢. Show that this expression can be manipulated into
the form:

Z(jo)=Z,(1 £ jf ()

where
Z,=R flw)= L
wRC
C =05uF R =2k
d. Determine the cutoff frequency @ = w. at which
flw) =1.

e. Determine the magnitude and angle of Z () at
o = 100 rad/s, 1 krad/s, and 10 krad/s.

f. Predict (without computing it) the magnitude and
angleof Z(jw) at w = 10 rad/s and 100 krad/s.
Construct the Bode plot for the magnitude of the
impedance [in dB!] as afunction of the log of the

frequency.
li(jo)
+ C
Vi(jo) 3R

Figure P6.10
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6.11 Inthecircuit shownin Figure P6.11:
a. Determine how the driving point impedance:
V,' j
Z(jw) = 2
li(jo)

behaves at extremely high or low frequencies.
b. Find an expression for the driving point impedance.

c. Show that this expression can be manipulated into
the form:

Z(jw) = Z,(1+ jf(w))
where

Z,=R f(w)=%

R =2k

d. Determine the frequency w = w, a which
f(wr) =1

e. Determine the magnitude and angle of Z(w) at
® = 100 krad/s, 1 Mrad/s, and 10 Mrad/s.

f. Predict (without computing it) the magnitude and
angleof Z(jw) a w = 10k rad/sand 100 M rad/s.
Construct the Bode plot for the magnitude of the
impedance [in dB] as a function of the log of the
frequency.

L=2mH

IM

Figure P6.11

6.12 Inthecircuit shownin Figure P6.12, if:

L=190mH R; =23k
C =55nF R, = 1.1kQ

a. Determine how the driving point or input
impedance behaves at extremely high or low

frequencies.
b. Find an expression for the driving point impedance
in the form:
. 1+ jfile] }
Z(jo) =Z, [7
! 1+ jfilel
Zy=Rit+ -
o — NI\l RzC
szlLC - Rl - R2
A == R RC + L]
Folw) = w?’LC —1
2= T CR,

c. Determinethe four cutoff frequencies at which
fi(w) =+1or—-1land fo(w) = +1lor —1.
d. Determine the resonant frequency of the circuit.
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e. Plot the magnitude of the impedance (in dB) asa Determine:
function of the log of the frequency, i.e., aBode a How the voltage transfer function:
lot.
P e = Voli®)
Y V)
'i(i’) behaves at extremes of high and low frequencies.
+ 'R b. An expression for the voltage transfer function and
) Re show that it can be manipulated into the form:
Vi(jo) C= H
L . o

— Hu( (,()) = T i~

- / 1+ jf()

Figure P6.12 where

R R1R
. . - - . Hg _ 72 f(w) _ w Iy ZC
6.13 Determine an expression for the circuit of Figure Ri+ Rz Ri+ Rz

P6.13(a) for the equivalent |mpedar!ce in standard c. The cutoff frequency at which f () = 1 and the
form. Choose the Bode plot from Figure P6.13(b) that value of H, in dB.
best describes the behavior of the impedance asa d. The value of the voltage transfer function at the
function of frequency and describe how (asimple cutoff frequency and at o = 25 rad/s, 250 rad/s
one-line statement with no analysisis sufficient) you 25 krads. and 250 krad/s. ' '

would obtain the resonant and cutoff frequencies and
the magnitude of the impedance where it is constant
over some frequency range. Label the Bode plot to
indicate which feature you are discussing.

e. How the magnitude (in dB) and the angle of the
transfer function behave at low frequencies, the
cutoff frequency, and high frequencies.

o (o) R, o)
(o, MW
Re + +
C= . =
L Vi(jo)  CFRZ W(jo)
2q O 5 5
(€) Figure P6.14

[Zeglen |Zeglen 6.15 Thecircuit shown in Figure P6.15 is not afilter but

illustrates the undesirabl e effects of capacitances (and
sometimes inductances) in acircuit. Thecircuitisa

simple model of an amplifier state. Capacitors are
/ __/_\w often necessary for the proper operation of such

circuits, or they may be unwanted but inherent in one
of the circuit components. At high or low frequencies
these capacitors adversely affect the proper operation
[Zegla |Zeglan of the circuit. Theinput impedance is used to
demonstrate. Determine;

/ a. Anexpression, in the form:
\ Vi(jo) 7 <1+jf1(w)>
\

Zi(jo) = — =2, -
m % /= TG 1+ jf()
for the input impedance. Note the output current
(b) =0.
Figure P6.13 b. The cutoff frequencies at which f(w) = 1 and
fz(a)) =1if:
Ry = 13kQ R, =5.6kQ
6.14 Inthecircuit of Figure P6.14: C =05uF gn =35mS
R, =13k R, =19k c. Thelimiting value of Z; as w increases toward

C =0.5182 uF infinity. As w decreases toward zero.
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d. TheBode plot for the input impedance.

liw)

PO — 1
Vi(jo) b
B ? R1§E>Vbe ()ngbe
1
+
o Rz[ Vo(jw)

Figure P6.15

6.16 Thecircuit shownin Figure P6.16 isavery
simplified model of atransistor amplifier stage. The
capacitance C isan interna effect of the transistor. It
causes the transfer function:

. V,(jow)
1o =4 o)
where
R = 100 kQ R, = 750 Q
C=0125nF g, =75mS

to decrease at high frequencies as shown in the Bode
plot. Determine:

a. Thetwo cutoff frequencies.

b. The magnitude of the transfer function at very low

and very high frequencies.

It
o
e 1r

c
. + +
MU9) RiZVee gVhe RZVo(jo)
[Hv(jo)ln

Bode Plot
Figure P6.16

6.17 Thecircuit shownin Figure P6.17 isa
second-order filter because it has two reactive
components (L and C). A complete solution will not
be attempted. However, determine:

a. The behavior of the voltage transfer function or
gain at extremely high and low frequencies.

b. The output voltage V, if the input voltage has a

Frequency Response and System Concepts

frequency where:
Vi=7074%V R1=22kQ
R, =38kQ  X.=5kQ X, =1.25kQ
¢. The output voltage if the frequency of the input
voltage doubles so that:
Xc=25kQ X, =25kQ
d. The output voltage if the frequency of the input
voltage again doubles so that:
Xc =1.25kQ X, =5kQ

e. Thepossibletype of filter this might be, considering
how the output voltage changes with frequency.

+ RZ

Vi(jo)

1

Figure P6.17

6.18 Arethefilters shown in Figure P6.18 low-pass,
high-pass, band-pass, or band-stop (notch) filters?

Figure P6.18



|
1

O=

Vi(jo) RS Vo(jw)

o

(d)

Figure P6.18

6.19 Determineif each of the circuits shown in Figure
P6.19 is alow-pass, high-pass, band-pass, or band-stop
(notch) filter.

L1 L,
Rs +
C R yo(jw)
Vi(jo)
(€Y
i
C
Rs +
Ly La RS Vy(jw)
Vi(jw) -
(b)
f f
Rs 1 2 .
L R2V(jo)
Vi(jw) -

Figure P6.19
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TT L.
l I

Figure P6.19

6.20 Inthecircuit shown in Figure P6.20, determine:
a. Thevoltage transfer function in the form

Ho ey = Veliel _
Viljol 14 jf(w)
b. The gain or insertion loss in the pass-band in dB if
Ri=R,=16Q C=047uF

c¢. The cutoff frequency.

d. TheBode plat, i.e., asemilog plot where the
magnitude [in dB!] of the transfer functionis
plotted on alinear scale as afunction of frequency

onalog scale.
li(w) logw)
o—W——F—"0
+ R C +
Vi(jw) RS Vo(j)
o o)

Figure P6.20

6.21 Thecircuit shown in Figure P6.21 is a high-pass

filter in which
R =100Q R; =100
=50Q C =80nF
Determine:

a. The magnitude of the voltage transfer function, i.e.,
the gain or insertion loss, at very low and at very
high frequencies.

b. The two cutoff frequencies.

Figure P6.21
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6.22 Determine, for the filter circuit shownin Figure
P6.22:
a. If thisisalow-pass, high-pass, band-pass, or
band-stop filter.
b. The magnitude (in dB!) of the voltage transfer
function gain (or gain or insertion loss) in the

pass-band if:
L=11mH C =047nF
Ry =22kQ R, =3.8kQ

+ Rl

Vi(jo)

1

Figure P6.22

6.23 Inthefilter circuit shown in Figure P6.23:

R.=400Q L=1mH
C=05nF

Determine the magnitude, in dB, of the voltage transfer
function or gain at:

a. Very high and very low frequencies.
b. The resonant frequency.
c. What type of filter isthis?

Figure P6.23

6.24 Inthefilter circuit shown in Figure P6.23:

C=05nF

Determine the magnitude, in dB, of the voltage transfer
function or gain at:

a. High frequencies.

b. Low frequencies.

c. The resonant frequency.
d. What type of filter isthis?

Frequency Response and System Concepts

6.25 Inthefilter circuit shown in Figure P6.25:

Rs=5kQ  C=56nF
R, =5kQ L =9uH

Determine:
a. An expression for the voltage transfer function:

V,(jw)
Vi(jw)
b. The resonant frequency.
The cutoff frequencies.

d. The magnitude of the voltage transfer function
(gain) at the two cutoff frequencies and the
resonant frequency.

e. The bandwidth and Q.

f. The magnitude of the voltage transfer function at
high, resonant, and low frequencies without using
the expression above.

H,(jo) =

o

AA
YYVY

o
* Rs

| LL
Vi(jo) CI LY R2W%(jo)

1

Figure P6.25

6.26 Inthefilter circuit shown in Figure P6.25:

Rs =5kQ C =05nF
R, =5kQ L=1mH

Determine:
a. An expression for the voltage transfer function:

V(o)
~ Vi(jo)
b. The resonant frequency.
The cutoff frequencies.

d. The magnitude of the voltage transfer function
(gain) at the two cutoff frequencies and the
resonant frequency.

e. The bandwidth and Q.

f. The magnitude of the voltage transfer function at
high, resonant, and low frequencies without using
the expression above.

H,(jw)

o

6.27 Inthefilter circuit shown in Figure P6.27:

Rg = 500 R, =5kQ
R. = 4Kk L=1mH
C =5pF

Determine the magnitude, in dB, of the voltage transfer



function or gain at:

V(o)

AU =V e

a. High frequencies.

b. Low frequencies.

¢. The resonant frequency.
d. What type of filter isthis?

L
Figure P6.27
6.28 Inthefilter circuit shown in Figure P6.28, derive

the equation for the voltage transfer function in
standard form. Then, if

C =5pF L=1mH

determine the:
a. Magnitude, in dB, of the voltage transfer function

or gain at:

. Vo(jw)
H(jow) = 7
at high and low freduencies and at the resonant
frequency.

b. Resonant and cutoff frequencies.

Figure P6.28

6.29 Inthefilter circuit shown in Figure P6.28, derive
the equation for the voltage transfer function in
standard form. Then, if

R, =500 Q R; =5kQ
w, = 12.1278 Mrad/s C =68 nF
L=01uH

determine the cutoff frequencies, bandwidth, and Q.
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6.30 Inthefilter circuit shown in Figure P6.28, derive
the equation for the voltage transfer function in
standard form. Then, if

R, =44kQ R, = 6009
C =08nF L=2uH

w, = 25Mrad/s

determine the cutoff frequencies, bandwidth, and Q.

6.31 Inthebandstop (notch) filter shown in Figure

P6.31:
L=04mH R, =100 Q
C=1pF R, =R; =38kQ
Determine:

a. Anexpression for the voltage transfer function or
gainin the form:

_ Vo) _ 1+ jfi@)
Vi(jo) — 1+ jf2w)

b. The magnitude of the voltage transfer function or
gain at high and low frequencies and at the resonant
frequency.

c. The resonant frequency.

d. Thefour cutoff frequencies.

H,(jw)

i

Figure P6.31

6.32 Inthefilter circuit shown in Figure P6.25:

Rs =5k C=5nF
R, =5kQ L=2mH

Determine:
a. An expression for the voltage transfer function:
Hy (o) = I
Vi(jw)
b. The resonant frequency.
The cutoff frequencies.
d. The magnitude of the voltage transfer function

(gain) at the two cutoff frequencies and the
resonant frequency.

e. The bandwidth and Q.
f. The magnitude of the voltage transfer function at

high, resonant, and low frequencies without using
the expression above.

o

6.33 Inthefilter circuit shown in Figure P6.28, derive
the equation for the voltage transfer functionin
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standard form. Then, if

R, =500 Q R; = 1kQ
w, = 12.1278 Mrad/s C =470nF
L=01uH

determine the cutoff frequencies, bandwidth, and Q.
6.34 Inthefilter circuit shown in Figure P6.28, derive
the equation for the voltage transfer function in

standard form. Then, if
R, =22kQ R; =600 Q2
C=2nF L=2uH

w, = 25Mrad/s

determine the cutoff frequencies, bandwidth, and Q.

6.35 A 60 Hz notch filter was discussed in Focus on
Measurements. AC Line Interference Filter. If the
inductor has a0.2-2 series resistance, and the
capacitor has a 10-M 2 parallel resistance,

a. What is the impedance of the nonideal notch filter
at 60 Hz?

b. How much of the 60-Hz interference signal will
appear at Vv ?

6.36 Itisvery common to seeinterference caused by the
power lines, at afrequency of 60 Hz. This problem
outlines the design of a notch filter, shown in Figure
P6.36, to reject a band of frequencies around 60 Hz.

a. Write the impedance function for the filter of
Figure P6.36 (the resistor r, representstheinternal
resistance of a practical inductor).

b. For what value of C will the center frequency of the
filter equal 60 Hz if L = 100 mH and r;, = 5 Q7

¢. Would the “sharpness,” or selectivity, of thefilter
increase or decrease if r; were to increase?

d. Assumethat thefilter is used to eliminate the 60-Hz
noise from asignal generator with output frequency
of 1 kHz. Evaluate the frequency response
V. (jw)/Vin(jw) a both frequencies if:

v, (¢) = sin(271,000¢) V r, =50 Q
v, (1) = 3sin(2760r) R; =300

andif L and C areasin part b.

e. Plot the magnitude frequency response
Vi(jw)/Vin(jw)| indB versuslog(jw), and
indicate the value of |V, (jw)/Vin(jw)|ge a the
frequencies 60 Hz and 1,000 Hz on your plot.

. L

o—1 Ziilter

Figure P6.36
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6.37 Thecircuit of Figure P6.37 is representative of an
amplifier—speaker connection. The crossover circuit
(filter) isalow-passfilter that is connected to awoofer.
The filter's topography is known asa s network.

a. Find the frequency response V, (jw)/Vs(jw).

b. |fC1:C2=C, Rs =R, = 600 2, and
1/+/LC = R/L = 1/RC = 2,000r, plot
V,(jw)/Vs(jw)| indB versus frequency
(logarithmic scale) in the range 100 Hz <

f < 10,000 Hz.
ok | ©
A ! !
Amplifier |
i i @ Woofer
! | Spesker
]
I I +
ve(t) = CZT RE ol
| L1
i Crossover i
filter

Figure P6.37

6.38 Ther filter of the circuit of Figure P6.38 isa
high-pass filter that may be used to pass signalsto the
tweeter portion of a speaker.

a. Find the frequency response V, (jw)/Vs(jw).

b. fLy=L,=L,Rs= R, =600, and
1/+/LC = R/L = 1/RC = 2,000r, plot
V,(jw)/Vs(jw)| indB versus frequency
(logarithmic scale) in the range 100 Hz <

f < 10,000 Hz.
Rs
v 2
0 L LY [RE w0
o
tfilter section

Figure P6.38

6.39 Thecircuit of Figure P6.39 is representative of an
amplifier—speaker connection (see the left side of
Figure P6.39). The crossover circuit (filter) isa
high-pass filter that is connected to atweeter. The
filter's topography isknown asaT network.

a. Find the frequency response V, (jw)/Vs(jw).



b. |fC1=C2=C, R, = Ry = 600 2, and
1/+/LC = R/L = 1/RC = 2,000, plot
V,(jw)/Vs(jw)| in dB versus frequency
(logarithmic scale) in the range 100 Hz
< f < 10,000 Hz.

o ©~—— Twester
[T
Amplifier
@ Woofer
Speaker
! G Ca !
Ry | L I | o
| \ ) ! +
I I
ve(t) | L | RCE volt)
I I
i i °
| Crossover |
filter

Figure P6.39

Part | Circuits 279

6.40 TheT filter of thecircuit of Figure P6.40isa
low-pass filter that may be used to pass signalsto the
woofer portion of a speaker.

a Find the frequency response V, (jw)/Vs(jo).

b. fLy=L,=L,Rs= R, =600¢, and
1/~/LC = R/L = 1/RC = 2,000r, plot
V,(jw)/Vs(jw)| indB versus frequency
(logarithmic scale) in the range 100 Hz <

f < 10,000 Hz.
Rs Ly Ly
’ 1Lk o}
l i
vg(t) Czl\ R gE Vvo(t)
0

Figure P6.40
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CHAWPTER

AC Power

he aim of this chapter is to introduce the student to simple AC power

calculations, and to the generation and distribution of electric power. The

chapter builds on the material developed in Chapter 4—namely, phasors

and complex impedance—and paves the way for the material on electric
machines in Chapters 16, 17, and 18.

The chapter starts with the definition of AC average and complex power and
illustrates the computation of the power absorbed by a complex load; special atten-
tion is paid to the calculation of the power factor, and to power factor correction.
The next subject is a brief discussion of ideal transformers and of maximum power
transfer. This is followed by an introduction to three-phase power. The chapter
ends with a discussion of electric power generation and distribution.

Upon completing this chapter, you should have mastered the following basic
concepts:

- Calculation of real and reactive power for a complex load.

« Operation of ideal transformers.

- Impedance matching and maximum power transfer.

+ Basic notions of residential circuit wiring, including grounding and safety.
- Configuration of electric power distribution networks.
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lt)

0Q

AC circuit
V(t) =V cos(wt — Oy)
i(t) =1 cos(wt —6)

| =1ei?

_‘<

el(9)

AC circuit
in phasor form

Figure 7.1 Circuit for
illustration of AC power

Chapter 7 AC Power

7.1 POWER IN AC CIRCUITS

The objective of this section is to introduce the notion of AC power. As already
mentioned in Chapter 4, 50- or 60-Hz AC power constitutes the most common form
of electric power; in this section, the phasor notation developed in Chapter 4 will
be employed to analyze the power absorbed by both resistive and complex loads.

Instantaneous and Average Power

From Chapter 4, you already know that when a linear electric circuit is excited by
a sinusoidal source, all voltages and currents in the circuit are also sinusoids of
the same frequency as that of the excitation source. Figure 7.1 depicts the general
form of a linear AC circuit. The most general expressions for the voltage and
current delivered to an arbitrary load are as follows:

v(t) = V coSwt — Oy)

i (7.2)

i(r) = I codwt — 6;)

whereV and [ are the peak amplitudes of the sinusoidal voltage and current,
respectively, and)y and 6, are their phase angles. Two such waveforms are
plotted in Figure 7.2, with unit amplitude and with phase angles= = /6 and

0; = /3. From here on, let us assume that the reference phase angle of the
voltage source}y, is zero, and le; = 6.

Voltage waveforms for unity amplitude,
zero deg. voltage phase angle and 60 deg. current phase angle

o N\ —yoe]|
o \\ [ \\ \ //

/ \

| [/
AT INARYA
5 ol FIC TV [ AN
§ o2\ \ ] VIV LT T AL
s A \\/I \

s AT/ \
IRV \ \/ / \
WA \/

-1
0 0.01 002 003 004 005 0.06 007 008 0.09 01
Time ()

Figure 7.2 Current and voltage waveforms for illustration of
AC power

Since the instantaneous power dissipated by a circuit element is given by
the product of the instantaneous voltage and current, it is possible to obtain a
general expression for the power dissipated by an AC circuit element:

p(1) =v(0)i()

(7.2)
= VI cos(wt) cos(wt — )
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Equation 7.2 can be further simplified with the aid of trigonometric identities to
yield

p(t) = % cos(6) + % cos(2wt — ) (7.3)

where 6 is the difference in phase between voltage and current. Equation 7.3
illustrateshow theinstantaneous power dissipated by an AC circuit elementisequal
to the sum of an average component, 2V I cos(d), plus a sinusoidal component,
%VI cos(2wt — ), oscillating at a frequency double that of the origina source
frequency.

Theinstantaneous and average power are plotted in Figure 7.3 for the signals
of Figure7.2. Theaveragepower corresponding to thevoltageand current signals
of equation 7.1 can be obtained by integrating the instantaneous power over one
cycleof thesinusoidal signal. Let T = 27 /w represent one cycle of the sinusoidal
signals. Then the average power, P, iSgiven by theintegral of the instantaneous
power, p(t), over one cycle:

1 T
P, = ) dt
5 T/O p(t) di

(7.9
= 1/T Vlcos(e)dtJr 1/T Vlcos(z t —0)dt
T/ 2 T), 2 @
VI
Py = > cos(h) Average power (7.5

since the second integral is equal to zero and cos(#) is a constant.

1I nstantaneous and average power

— Instantaneous power
0.8 — Average power

0.6
004
So2
0

ETATRTRTRY
—0.4

0.02 0.04 0.06 0.08 0.1
Time (s)

Figure 7.3 Instantaneous and
average power dissipation
corresponding to the signals plotted
in Figure 7.2.

As shown in Figure 7.1, the same analysis carried out in equations 7.1 to
7.3 can a'so be repeated using phasor analysis. In phasor notation, the current and
voltage of egquation 7.1 are given by

V(jw) = Vel©
[(jw) = Te™/?

Note further that the impedance of the circuit element shown in Figure 7.1 is
defined by the phasor voltage and current of equation 7.6 to be

(7.6)

v . .
Z= 76_1(9) = |Z|e/% (7.7)
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and therefore that the phase angle of the impedance is
0, =6 (7.8)

The expression for the average power obtained in equation 7.4 can therefore aso
be represented using phasor notation, as follows:

2

1V 1
Py = —— c0sO = —I%|Z| cosf 7.9
¥ =507 5 |Z| (7.9

AC Power Notation

It has already been noted that AC power systems operate at a fixed frequency; in
North America, this frequency is 60 cycles per second (Hz), corresponding to a
radian frequency

w =21 - 60 =377 radls AC power frequency (7.10)

In Europe and most other parts of the world, AC power isgenerated at afrequency
of 50 Hz (thisisthe reason why some appliances will not operate under one of the
two systems).

It will therefore be understood that for the remainder of this chapter the
radian frequency, w, isfixed at 377 rad/s.

With knowledge of the radian frequency of all voltagesand currents, it will always
be possible to compute the exact magnitude and phase of any impedance in a
circuit.

A second point concerning notation isrelated to the factor % in equation 7.9.
It is customary in AC power analysis to employ the rms value of the AC voltages
and currents in the circuit (see Section 4.2). Use of the rms value eliminates the
factor % in power expressions and leads to considerable simplification. Thus, the
following expressions will be used in this chapter:

1%4 -
Vrms == 72 = V (711)
1 -
Irms = 72 = 1 (712)
1v? V2
Py = —— c0sf = — cosH 7.13
Y21z 1Z| (7.13

1 8 -
= é12|Z|cose = I?%|Z| cos® = VI cost
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Figure 7.4 illustrates the so-called impedance triangle, which provides a
convenient graphical interpretation of impedance as avector in the complex plane.
From the figure, it is simple to verify that Vs G)

Pl

R =|Z|cosé (7.14) X

X =|Z|sin® (7.15)

Finally, the amplitudes of phasor voltages and currents will be denoted z/
throughout this chapter by means of the rms amplitude. We therefore introduce a X
slight modification in the phasor notation of Chapter 4 by defining the following R
rms phasor quantities:

Figure 7.4 Impedance
V= Vimse!? = Vel = ‘749‘/ (7.16) triangle

and
I = Irmsejgl =Te% = il@/ (7.17)

In other words,

throughout the remainder of this chapter the symbols V and i will denote
the rms value of avoltage or a current, and the symbolsV and | will denote
rms phasor voltages and currents.

Alsorecall theuse of thesymbol £ to represent the complex exponential. Thus, the
sinusoidal waveform corresponding to the phasor current | = 1./6, corresponds
to the time-domain waveform

i(t) = /21 cos(wt + 6;) (7.18)
and the sinusoidal form of the phasor voltageV = V /6y is
v(t) = ~/2V cos(wt + 6y) (7.19)

EXAMPLE 7.1 Computing Average and Instantaneous AC
Power

Problem

Compute the average and instantaneous power dissipated by the load of Figure 7.5.

(w =377 rad/s) \=
Solution it)

v(t) = 14.14 sin (wt) )

Known Quantities: Source voltage and frequency, load resistance and inductance values.

Find: Pa and p(¢) for the RL load. Figure 7.5

Schematics, Diagrams, Circuits, and Given Data: v(t) = 14.14 sin(377t) V; R = 4 Q;
L =8mH.

Assumptions: Usermsvaluesfor al phasor quantities in the problem.
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Analysis: First, we define the phasors and impedances at the frequency of interest in the
problem, w = 377 rad/s:

V =10/ (—%) Z=R+ joL =4+ j3=5/(0.644)

T
v 10/ (— 5)
Z  5/(0.644)
The average power can be computed from the phasor quantities:

Pa = Vi cos(d) = 10 x 2 x cos(0.644) = 16 W

= 2/(-2.215)

The instantaneous power is given by the expression:
p(t) = v(t) x i(t) = v/2 x 10 sin(377t) x /2 x 2 cos(377t — 2.215) W

The instantaneous voltage and current waveforms and the instantaneous and average
power are plotted in Figure 7.6.

Voltage and current waveforms for Example 7.1
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Figure 7.6

Comments: Please pay attention to the use of rmsvaluesin thisexample: Itisvery
important to remember that we have defined phasors to have rms amplitude in power
calculation. Thisisastandard procedurein electrical engineering practice.

Note that the instantaneous power can be negative for brief periods of time, even
though the average power is positive.

EXAMPLE 7.2 Computing Average AC Power

Problem

Compute the average power dissipated by the load of Figure 7.7.
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Solution

Known Quantities: Source voltage, internal resistance and frequency, load resistance
and inductance values.

Find: Py for the RC load.

Schematics, Diagrams, Circuits, and Given Data: \75 =11040; Ry =2 Q; R, =
16 2; C = 100 uF.

Assumptions: Usermsvaluesfor all phasor quantitiesin the problem.

Analysis: First, we compute the load impedance at the frequency of interest in the
problem, w = 377 rad/s:

= 13.74£(—-0.543) Q

1 R, 16
Z; = R| - = - = -
joC 14 jwCR, 1+ j0.6032
Next, we compute the load voltage, using the voltage divider rule:
N Z, - 13.7/(—0.543)
VL == VS ==
2+ 13.7/(—0.543)

= 110£(0) = 97.6£(—0.067) V
Rs+ 7,

Knowing the load voltage, we can compute the average power according to:
VL2 . 97.62
VA T 137

or, aternatively, we can compute the load current and cal cul ate average power according
to the equation below:

Py

cos(—0.543) = 595 W

Y]
I, = =% =7.1/(0.476) A
Zr

P = |111%1Z| cos(6) = 7.1% x 13.7 x cos(—0.543) = 595 W

Comments: Please observethat it is very important to determine load current and/or
voltage before proceeding to the computation of power; theinternal source resistancein
this problem causes the source and load voltages to be different.

Focus on Computer-Aided Tools: A file containing the computer-generated solution to
this problem may be found in the CD-ROM that accompanies this book.

w=377rad/s
Figure 7.7
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EXAMPLE 7.3 Computing Average AC Power

Problem

Compute the average power dissipated by the load of Figure 7.8.

Solution

Known Quantities: Source voltage, internal resistance and frequency, load resistance,
capacitance and inductance values.

Find: P, for the complex load.

Schematics, Diagrams, Circuits, and Given Data: \73, =110/0V;R=10Q; L =
0.05H; C =470 uF.

Assumptions: Usermsvaluesfor all phasor quantitiesin the problem.

(0]

Its complex form

Figure 7.8
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Figure 7.9
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-j7.180Q
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Analysis: First, we compute the load impedance at the frequency of interest in the
problem, w = 377 rad/s:

(R+ joL)
joC

1
Zr=R+ jol)|——F =
1

JOC Ry jol+ ——

joC

R+ joL

= RHJoh 116 718

—w?LC + jwCR

=7.27/(-141) Q

Note that the equivalent load impedance consists of a capacitive load at this frequency, as
shown in Figure 7.9. Knowing that the load voltage is equal to the source voltage, we can
compute the average power according to:

V|2 1102
_ Vil 08(6) = =— cos(—1.41) = 266 W

P, C =
¥z 7.27

Focus on Computer-Aided Tools: A file containing the computer-generated solution to
this problem may be found in the CD-ROM that accompanies this book.

it)

(e]

(: 155.6 cos (377t)

O
O

4Q

1,000 uF

T

Figure 7.10

Power Factor

Thephase angle of theload impedance playsavery important rolein the absorption
of power by aload impedance. Asillustrated in equation 7.13 and in the preceding
examples, the average power dissipated by an AC load is dependent on the cosine
of the angle of the impedance. To recognize the importance of this factor in AC
power computations, the term cos(9) isreferred to asthe power factor (pf). Note
that the power factor is equal to O for a purely inductive or capacitive load and
equal to 1 for apurely resistive load; in every other case,

O<pf<1 (7.20)
Two equivalent expressions for the power factor are given in the following:

av

P
pf = cos(@) = 57 Power factor (7.21)

where V and I are the rms values of the load voltage and current.

Check Your Understanding

7.1 Show that the equalitiesin equation 7.9 hold when phasor notation is used.

7.2 Consider the circuit shown in Figure 7.10. Find the load impedance of the circuit,
and compute the average power dissipated by the load.

7.3 Usethe expression P, = 2|Z| cosé to compute the average power dissipated by
the load of Example 7.2.

7.4 Compute the power dissipated by the internal source resistance in Example 7.2.

7.5 Compute the power factor for an inductive load with L = 100mH and R = 0.4 Q.
Assume w = 377 rad/s.
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7.2 Complex Power

The expression for the instantaneous power given in equation 7.3 may be further
expanded to provide further insight into AC power. Using trigonometricidentities,
we obtain the following expressions:

V2 o
p(t) = ﬁ[cos@ + cosé cos(2wt) + Sind sin(2wt)]
= I?|Z|[cos8 + cosH cos(2wt) + siné sin(2wt)] (7.22)

= I?|Z| cosO (1 + cos(2wt)) + I%|Z| sin6 sin(2wr)

Recalling the geometric interpretation of the impedance Z of Figure 7.4, you may
recognize that

|Z| cost = R
and (7.23)

|Z|sing = X
arethe resistive and reactive components of the load impedance, respectively. On
the basis of thisfact, it becomes possible to write the instantaneous power as:

p(t) = I:ZR(l + cos(2wt)) + 1~2~X sin(2wr) (7.2
= I%R + I?R cos(2wt) + I%X sin(2wt)

The physical interpretation of this expression for the instantaneous power should
beintuitively appealing at thispoint. Asequation 7.23 suggests, theinstantaneous
power dissipated by a complex load consists of the following three components:

1. Anaverage component, which is constant; thisis called the average power

and is denoted by the symbol Py
Pa = I°R (7.25)
where R = Re (2).

2. A time-varying (sinusoidal) component with zero average value that is
contributed by the power fluctuations in the resistive component of the load
and isdenoted by pg(1):

pr(t) = I?R cos2wt

(7.26)
= P, COS2wt

3. Atime-varying (sinusoidal) component with zero average value, due to the
power fluctuation in the reactive component of the load and denoted by
px(1):

px(t) = +1%X sin(2wt)

= Qsin2wt (7.27)

where X = Im (Z) and Q iscaled the reactive power. Note that since
reactive elements can only store energy and not dissipate it, there is no net
average power absorbed by X.

Since Py, correspondsto the power absorbed by theload resistance, itisalso called
the real power, measured in units of watts (W). On the other hand, Q takes the

289
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Table 7.1 Real and
reactive power

Reactive
Real power, Pav power, Q

VI cos(6) visin )
I?R ’x
S
8, Q
Pay

IS|= VP22 +Q2=V 1
Pa =VI cos 0
Q=Visin®

Figure 7.11 The complex
power triangle

Chapter 7 AC Power

name of reactive power, since it is associated with the load reactance. Table 7.1
shows the general methods of calculating P and Q.

Theunitsof Q arevolt-amperesreactive, or VAR. Note that Q represents
an exchange of energy between the source and the reactive part of the load; thus,
no net power is gained or lost in the process, since the average reactive power is
zero. Ingenerd, it is desirable to minimize the reactive power in aload. Example
7.5 will explain the reason for this statement.

The computation of AC power is greatly smplified by defining a fictitious
but very useful quantity called the complex power, S:

§=Vi*  Complex power (7.28)

where the asterisk denotes the complex conjugate (see Appendix A). You may
easily verify that this definition leads to the convenient expression

S=VIcosH + jVIsing = I’R + jI?X = I°Z

or (7.29)

S:Pa/+jQ

The complex power S may be interpreted graphically as a vector in the complex
plane, as shown in Figure 7.11.

The magnitude of S, |S|, is measured in units of volt-amperes (VA) and
is called apparent power, because this is the quantity one would compute by
measuring the rms load voltage and currents without regard for the phase angle of
the load. Note that the right triangle of Figure 7.11 is similar to the right triangle
of Figure 7.4, since 0 isthe load impedance angle. The complex power may also
be expressed by the product of the square of the rms current through the load and
the complex load impedance:

S=1%7
or (7.30)
I’R+ jI?X = I°Z

or, equivalently, by the ratio of the square of the rms voltage across the load to the
complex conjugate of the load impedance:

72
Tz

The power triangle and complex power greatly simplify load power calcu-
lations, asillustrated in the following examples.

S (7.31)

EXAMPLE 7.4 Complex Power Calculations

Problem

Use the definition of complex power to calculate real and reactive power for the load of
Figure7.12.
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Solution
Known Quantities: Source, load voltage and current.
Find: S = Py + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data: v(¢) = 100 cos(wt + 0.262) V;
i(t) = 2 cos(wt — 0.262) A.

Assumptions: Usermsvaluesfor al phasor quantitiesin the problem.

Analysis: First, we convert the voltage and current into phasor quantities:
- 100 - 2
V =—/(0.262) V | = —/(-0.262) A
V2 V2

Next, we compute real and reactive power using the definitions of equation 7.13:

- 200
Py = V||| cos®) = - co0s(0.524) = 86.6 W

. 200
Q= IV|I| sn®) = - sin(0.524) = 50 VAR

Now we apply the definition of complex power (equation 7.28) to repeat the same

calculation:
- 100 2
S=VI*="—=/(0.262) x —/ — (—0.262) = 100/(0.524
7 ( ) 7 ( ) ( )

=86.6+ j50 W
Therefore
P, =86.6 W 0 =50VAR

Comments: Note how the definition of complex power yields both quantities at one
time.

Focus on Computer-Aided Tools: A file containing the computer-generated solution to
this problem may be found in the CD-ROM that accompanies this book.

291

«@ [

Figure 7.12

EXAMPLE 7.5 Real and Reactive Power Calculations

Problem

Use the definition of complex power to calculate real and reactive power for the load of
Figure 7.13.

Solution
Known Quantities: Source voltage and resistance; load impedance.
Find: S = Py + jQ for the complex load.

Schematics, Diagrams, Circuits, and Given Data: \75 =110/0V; Ry =2 Q;
R; =5Q; C =2,000 uF.

Assumptions: Usermsvaluesfor al phasor quantities in the problem.

Figure 7.13
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Analysis: Define the load impedance:
1
Z; =R, +—— =5- 1326 =5.173/(—0.259) Q
joC
Next, compute the load voltage and current:
~ Z, - 5—;1.326
V= s = -
Rs+Z, 7— j1.326

x 110 = 79.94(-0.072) V

- V.  79.9/(-0.072)
I, = L =27 =% _ 1544,(0.187) A
L=z 5/(—0.259) ( )

Finally, we compute the complex power, as defined in equation 7.28:
S =V} =79.9/(-0.072) x 15.44/(—0.187) = 1, 233/(—0.259)
=1,192 — j316 W
Therefore
Py =1192W Q0 = —-316 VAR
Comments: |Isthe reactive power capacitive or inductive?

Focus on Computer-Aided Tools: A file containing the computer-generated solution to
this problem may be found in the CD-ROM that accompanies this book.

Although the reactive power does not contribute to any average power dis-
sipationin theload, it may have an adverse effect on power consumption, because
it increases the overall rms current flowing in the circuit. Recall from Example
7.2 that the presence of any source resistance (typically, the resistance of the line
wiresin AC power circuits) will cause aloss of power; the power loss due to this
line resistance is unrecoverable and constitutes a net loss for the electric com-
pany, since the user never receives this power. The following example illustrates
guantitatively the effect of such linelossesin an AC circuit.

EXAMPLE 7.6 Real Power Transfer for Complex Loads

Problem

Use the definition of complex power to calculate real and reactive power for the load of
Figure 7.14. Repeat the calculation when the inductor is removed from the load, and

— MM—O- ¥ compare the real power transfer between source and load for the two cases.
N\ RL<> . v
(: Vs EE JXL% v Solution
‘—» o _ Known Quantities: Source voltage and resistance; load impedance.
L Find:
Figure 7.14 1. S, = Pa, + jQ, for the complex load.

2. S, = Pay + jQ, for thered load.
3. Compare Py,/ Ps for the two cases.
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Schematics, Diagrams, Circuits, and Given Data: Vg = 1104(0) V; Rs = 4 ;
R.=10Q: jX, = j6 Q.

Assumptions: Usermsvaluesfor al phasor quantitiesin the problem.
Analysis:

1. Theinductor is part of the load. Define the load impedance.

10 x j6
Z, =Ry joL = ~— =5.145/(1.03) Q
L Lljo 10+ 6 (1.03)
Next, compute the load voltage and current:
~ V4 ~ 5.145/(1.03
V, = L V= (1.03) x 110 = 70.94(0.444) V
Rs+ 7, 4+ 5.145/(1.03)

_ V. 70.9(0.444)
"~ Z, 5.145/(1.03)
Finally, we compute the complex power, as defined in equation 7.28:

= 13.84(—-0.586) A

I

S, =V, 1% =70.9/(0.444) x 13.8/(0.586) = 978/(1.03)

=503+ j839W
Therefore
Py, =503 W 0. = +839 VAR

2. Theinductor is removed from the load (Figure 7.15). Define the load
impedance:
Z, =R, =10
Next, compute the load voltage and current:
- Z, ~ 10

vV, = V, = 110 = 78.6£(0) V
LT Rs+ 2z, ST 410" ©
-V, 78640
I, =Lt =—""""_786/(0)A
L=z, 10 ©

Finally, we compute the complex power, as defined in equation 7.28:

S, =V, 1% =786/(0) x 7.86/(0) = 617/(0) = 617 W

Therefore
Pap = 617 W 0, =0VAR

3. Compute the percent power transfer in each case. To compute the power transfer we
must first compute the power delivered by the source in each case, S5 = Vsl For
Case 1

Vs Vg 110
Zoa Rs+Z, 4+5.145/(1.03)

Ig= = 13.84(—0.586) A
Ssa = Vst =110 x 13.8/ — (—0.586) = 1,264 4 j838W = Ps, + j Os,
and the percent real power transfer is:

P, 503
100 - — 39.8%
* P, 1264 0

Figure 7.15
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For Case 2:

- Vs \Y 110
fg=—> = —~ " _78/(0)A
5T Zwoa Rs+ R, 4+10 ©

Ssp = Vslt =110 x 7.86 = 864+ jOW = Pg, + j Qg
and the percent real power transfer is:

P, 617
100 x —2 = =0 — 71.4%
* Py, _ 864 °

Comments: You can seethat if it were possible to eliminate the reactive part of the
impedance, the percentage of real power transferred from the source to the load would be
significantly increased! A procedure that accomplishes this goal, called power factor
correction, is discussed next.

Focus on Computer-Aided Tools: A file containing the computer-generated solution to
this problem may be found in the CD-ROM that accompanies this book.

Power Factor, Revisited

The power factor, defined earlier as the cosine of the angle of the load impedance,
plays a very important role in AC power. A power factor close to unity signifies
an efficient transfer of energy from the AC source to the load, while asmall power
factor corresponds to inefficient use of energy, as illustrated in Example 7.6. It
should be apparent that if aload requires a fixed amount of real power, P, the
source will be providing the smallest amount of current when the power factor is
the greatest, that is, when cosé = 1. If the power factor is less than unity, some
additional current will be drawn from the source, lowering the efficiency of power
transfer from the source to the load. However, it will be shown shortly that it is
possible to correct the power factor of aload by adding an appropriate reactive
component to the load itself.

Since the reactive power, Q, is related to the reactive part of the load, its
sign depends on whether the load reactance is inductive or capacitive. This leads
to the following important statement:

If the load has an inductive reactance, then 6 is positive and the current
lags (or follows) the voltage. Thus, when 6 and Q are positive, the
corresponding power factor is termed lagging. Conversely, a capacitive
load will have a negative Q, and hence a negative 6. This correspondsto a
leading power factor, meaning that the load current leads the load voltage.

Table 7.2 illustrates the concept and summarizes all of the important points so far.
In the table, the phasor voltage V has a zero phase angle and the current phasor is
referenced to the phase of V.

The following examples illustrate the computation of complex power for a
simple circuit.



Table 7.2 Important facts related to complex power

Part |

Circuits

Resistive load Capacitive load Inductiveload
Ohm's law \7L = ZLTL \7L = ZLTL \7|_ = ZLTL
Complex
impedance Z =R Z =R —jX. Z =R +jX
Phase angle 0=0 0<6 0>6
Imj Imp
|
Complex 6=0 _
plane (Y 6V
sketch ‘ Re ‘ Re
The current isin phase The current “leads’ The current “lags’
Explanation with the voltage. the voltage. the voltage.
Power factor Unity Leading, <1 Lagging, <1
Reactive power 0 Negative Positive
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EXAMPLE 7.7 Complex Power and Power Triangle

Problem

Find the reactive and real power for the load of Figure 7.16. Draw the associated power

triangle.

JXe

&

Figure 7.16

Complex load

Solution

Known Quantities: Source voltage; load impedance.

Find: S = Py + jQ for the complex |oad.

Schematics, Diagrams, Circuits, and Given Data: Vg = 60Z(0) V; R = 3 Q;
jXr =j9Q; jXc=—j59Q.
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Note: S=Pr+jQc+jQL

Figure 7.17
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Assumptions: Usermsvaluesfor al phasor quantitiesin the problem.
Analysis: First, we compute the load current:

V. 60(0) 60(0)
=L = = = 12/(—0.644) A
Z, 34 j9—j5 5/(0.644) (-0.644)

Next, we compute the complex power, as defined in equation 7.28:
S = \7J’Z = 604£(0) x 12/(0.644) = 720£(0.644) = 432 + j576 W

I

Therefore
Py =432 W Q0 =576 VAR

If we observe that the total reactive power must be the sum of the reactive powersin each
of the elements, we can write Q = Q¢ + Q, and compute each of the two quantities as
follows:

Qc = [112 x Xc = (144)(~5) = —~720 VAR
01 = 1.2 x X, = (144)(9) = 1,296 VAR
and
0 =0+ 0c =576 VAR
Comments: The power triangle corresponding to this circuit is drawn in Figure 7.17.

The vector diagram shows how the complex power, S, results from the vector addition of
the three components, P, Q¢, and Q; .

The distinction between leading and lagging power factors made in Ta-
ble 7.2 is important, because it corresponds to opposite signs of the reactive
power: Q is positive if the load is inductive (6 > 0) and the power factor is
lagging; Q is negative if the load is capacitive and the power factor is lead-
ing (@ < 0). It is therefore possible to improve the power factor of a load
according to a procedure called power factor correction—that is, by placing
a suitable reactance in parallel with the load so that the reactive power com-
ponent generated by the additional reactance is of opposite sign to the origi-
nal load reactive power. Most often the need is to improve the power factor
of an inductive load, because many common industrial loads consist of elec-
tric motors, which are predominantly inductive loads. This improvement may
be accomplished by placing a capacitance in parallel with the load. The fol-
lowing example illustrates a typical power factor correction for an industrial
load.

EXAMPLE 7.8 Power Factor Correction

Problem

Calculate the complex power for the circuit of Figure 7.18 and correct the power factor to
unity by connecting a parallel reactance to the load.
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Solution
Known Quantities: Source voltage; load impedance.
Find:

1. S = Py + jQ for the complex load.
2. Value of parallel reactance required for power factor correction resulting in pf = 1.

Schematics, Diagrams, Circuits, and Given Data: Vs =117/(0) V; R, = 50 ;
jX; = j86.7 Q.

Assumptions: Usermsvaluesfor all phasor quantitiesin the problem.
Analysis:
1. First, we compute the load impedance:
Z, =R+ jX, =50+ j86.7=100£(1.047) Q
Next, we compute the |oad current:

Y 117/(0 117/(0
[, === .( ) _ ©__ 1.17/(—1.047) A
Z, 50+ j86.6 100/(1.047)

and the complex power, as defined in equation 7.28:

§ =V, =117/(0) x 1.17/(1.047) = 137/(1.047) = 68.4 + j118.5W
Therefore

Py = 68.4W 0 = 1185VAR

The power triangle corresponding to this circuit is drawn in Figure 7.19. The vector
diagram shows how the complex power, S, results from the vector addition of the two
components, P and Q; . To eliminate the reactive power due to the inductance, we
will need to add an equal and opposite reactive power component, — Q, , as described
below.

2. To compute the reactance needed for the power factor correction, we observe that we
need to contribute a negative reactive power equal to —118.5 VAR. Thisrequires a
negative reactance, and therefore a capacitor with O = —118.5 VAR. The reactance
of such a capacitor is given by the expression:

VLR 1172

Xe= 0, = s ~ 1Y
and, since
1
- _a)Xc
we have
C=- 1 = = =23.1uF

wXe | 377 x (—115)

Comments: The power factor correction isillustrated in Figure 7.20. You can see that it
is possible to eliminate the reactive part of the impedance, thus significantly increasing the
percentage of real power transferred from the source to the load. Power factor correction
isavery common procedure in electrical power systems.

7
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Figure 7.18
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&, Q=119VAR
60°
P=684W Re
Figure 7.19
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% Im
Ty
50Q
Vs (3> v CT QL=119VAR
i86.7Q S=
_ 68.4 VA
P= Re
Parallel 68.4W
capacitor Qc=-119VAR
for power factor
correction
Figure 7.20 Power factor correction
L ]
VIRTUAL LAB Focus on Computer-Aided Tools: A file containing the computer-generated solution to
Multisim this problem may be found in the CD-ROM that accompanies this book.
EXAMPLE 7.9 Can a Series Capacitor Be Used for Power
Factor Correction?
Problem
The circuit of Figure 7.21 proposes the use of a series capacitor to perform power factor
Is iXc correction. Show why thisis not afeasible alternative to the parallel capacitor approach
= demonstrated in Example 7.8.
R
Vs Soluti
X olution
Known Quantities: Source voltage; load impedance.
Figure 7.21 Find: Load (source) current.

Schematics, Diagrams, Circuits, and Given Data: \75 =117/0) V; R; =50 ;
jX; = j86.7Q; jXc =—j86.7 Q.

Assumptions: Usermsvaluesfor all phasor quantitiesin the problem.

Analysis: To determine the feasibility of the approach, we compute the load current and
voltage, to observe any differences between the circuit of Figure 7.21 and that of Figure
7.20. First, we compute the load impedance:

Z; =R+ jX; —jXc =50+ j86.7— j86.7=50Q
Next, we compute the load (source) current:
Vv, 1172(0)
Tz, 50
Comments: Notethat atwofold increase in the series current results from the addition of
the series capacitor. Thiswould result in adoubling of the power required by the
generator, with respect to the solution found in Example 7.8. Further, in practice the

parallel connection is much easier to accomplish, since a parallel element can be added
externally, without the need for breaking the circuit.

=234A

ILZIS
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The Wattmeter FIND IT

Theinstrument used to measure power is called awattmeter. The
external part of awattmeter consists of four connections and a
metering mechanism that displays the amount of real power dissipated by a
circuit. The external and internal appearance of awattmeter are depicted in
Figure 7.22. Inside the wattmeter are two coils: a current-sensing coil, and a
voltage-sensing coil. In this example, we assume for simplicity that the
impedance of the current-sensing cail, Z,, is zero and the impedance of the
voltage-sensing coil, Zy, isinfinite. In practice, thiswill not necessarily be
true; some correction mechanism will be required to account for the
impedance of the sensing coils.

L/

|
QCurrent(_) ? — ?

ON THE WEB

o+ P L
+
Voltage LV
o — -_—
External connections Wattmeter coils (inside)
Figure 7.22

A wattmeter should be connected as shown in Figure 7.23, to provide
both current and voltage measurements. We see that the current-sensing coil
is placed in series with the load and the voltage-sensing coil is placed in
parallel with the load. In this manner, the wattmeter is seeing the current
through and the voltage across the load. Remember that the power
dissipated by acircuit element is related to these two quantities. The
wattmeter, then, is constructed to provide areadout of the product of the rms
values of the load current and the voltage, which isthe real power absorbed
by theload: P = Re(S) = Re(VI*).

AAA
\AAAS

\75(~> L,V E’E

Figure 7.23
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1. For thecircuit shown in Figure 7.24, show the connections of the
wattmeter, and find the power dissipated by the load.

2. Show the connections that will determine the power dissipated by R».
What should the meter read?

Source } Load
1

vg(t) = 156 cos(377t)
R;=10Q

R,=5Q

L=20mH

Figure 7.24

Solution:

1. To measure the power dissipated by the load, we must know the current
through and the voltage across the entire load circuit. This means that
the wattmeter must be connected as shown in Figure 7.25. The
wattmeter should read:

156 *
o 1 =2/0
P = Re(Vsi*) = Re (iGzo) N —
NG Ri+ R+ joL

_ Rel 11000 (12020
15+ j7.54

110/0 \* 1102
Rel120/07 (020 V| - ge( 1%
e{ (16.7940.466) } e<16.794—o.466>

— Re (720.67./0.466)

= 643.88 W

Figure 7.25
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2. To measure the power dissipated by R, alone, we must measure the
current through R, and the voltage across R, alone. The connection is
shown in Figure 7.26. The meter will read

b _ 2R 110 2 c 1102 c
27\ (122 + 7549172 152 4 7.542

=215W

Figure 7.26

How Hall-Effect Current Transducers Work?

In 1879, E. H. Hall noticed that if a conducting material isplaced in a
magnetic field perpendicular to a current flow, a voltage perpendicular to
both the initial current flow and the magnetic field is developed. This
voltage is called the Hall voltage and is directly proportional to both the
strength of the magnetic field and the current. It results from the deflection
of the moving charge carriers from their normal path by the magnetic field
and its resulting transverse electric field.

To illustrate the physicsinvolved, consider a confined stream of free
particles each having a charge e and an initial velocity u,. A magnetic field
in the Z direction will produce a deflection in the y direction. Therefore, a
chargeimbalance is created; thisresultsin an electric field E,. This electric
field, the Hall field, will build up until the force it exerts on a charged
particle counterbalances the force resulting from the magnetic field. Now

subsequent particles of the same charge and velocity are no longer deflected.

A steady state exists. Figure 7.27 depicts this effect.

The Hall effect occursin any conductor. In most conductors the Hall
voltage is very small and is difficult to measure. Dr. Warren E. Bulman,
working with others, devel oped semiconductor compounds in the early
1950s that made the Hall effect practical for measuring magnetic fields.

The choice of materials for the active Hall element of most Hall probes
isindium arsenide (InAs). This semiconductor compound is manufactured
from highly refined elemental arsenic and indium. From an ingot of the
semiconductor compound, thin slices are taken. These dlices are then diced

1Courtesy Ohio Semitronics, Inc., Columbus, Ohio.
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Ey InAs
SO Hall element
N )
W7o Conducting
> pattern
Electric
current Substrate

Figure 7.27 Hall effect

Figure 7.28 Hall-effect
probe

by an ultrasonic cutter into small, rectangular chips. These chips of indium
arsenide are then placed on a thin ceramic substrate and soldered to a
conducting pattern on the substrate, as shown in Figure 7.28.

Once made, the Hall probeis normally coated with epoxy to protect the
semiconductor compound and other components.

To use the probe, an electric current is passed through the length of the
InAs chip, as shown in Figure 7.29. Note that the contact areas for passing
current through the Hall element are made larger than the ones for detecting
the Hall voltage. Typically, current on the order of 10~ A is passed through
the Hall element. Thisis known asthe control current. Care must be taken
when using aHall probe never to put the control current through the output.
Because the solder contacts for the voltage sensing are very small, the
control current can melt these solder joints. This may destroy or damage the
Hall probe.

Note small contact

for voltage sensing
Current . Volt| meter
Source
Hall| probe

Figure 7.29 Hall-effect probe circuit

A wire carrying a current will have a closed magnetic field around it, as
depicted in Figures 7.30 and 7.31. If aHall probeis placed perpendicular to
the magnetic flux lines around a current-carrying conductor, then the Hall
probe will have a voltage output proportional to that magnetic field and the
control current through the Hall probe. Since the magnetic field is directly
proportional to the current, I, the output of the Hall probeis directly




Part | Circuits

303

Magnetic field around a
current-carrying cable

| [>>Ruxline

N T !

Compass

Current out of page

Right hand
rule: thumb
indicates
T | current; fingers
the flux lines

Figure 7.30

Figure 7.31 Right-hand
rule

proportional to the current, 1, and to the control current. We have a current
transduce.

Unfortunately, this method will provide adeguate output only if the
current being measured, 7, is of the order of 10* amperes. Also, the strength
of the magnetic field is proportional to the inverse of the distance from the
center of the conductor. FIND IT

A practical current transducer (Figure 7.32) can be made
by using a magnetic field concentrator with a Hall probe placed
inagap. Typicaly, alaminated iron core with very low magnetic ENREENEE
retention is utilized. This arrangement makes a simple but very effective
current transducer.

Unfortunately, aHall probe is temperature-sensitive. Hence, the voltage
output of the current transducer as described will be dependent upon the

Concentrator i
h
EESI=
Hall probe A/
placed in gap

( i iVoItmeter

Figure 7.32



http://www.mhhe.com/engcs/electrical/rizzoni/student/olc/fiotw07.htm

Chapter 7 AC Power

control current, I, the current through the window, 1, and the EIINIDEI]

temperature, 7. To correct for this, a thermistor—resistor network
is used to maintain temperature influence to a minimum for the
operating range of the transducer. By careful selection of the
thermistor and resistor used, temperature influence in the range of —40°C to
+65°C can be mostly eliminated.

ON THE WEB

The measurement and correction of the power factor for the load are an
extremely important aspect of any engineering application inindustry that requires
the use of substantial quantities of electric power. In particular, industrial plants,
construction sites, heavy machinery, and other heavy users of electric power must
be aware of the power factor their loads present to the el ectric utility company. As
was already observed, alow power factor resultsin greater current draw from the
electric utility, and in greater line losses. Thus, computations related to the power
factor of complex loads are of great practical utility to any practicing engineer. To
provide you with deeper insight into calculations related to power factor, a few
more advanced examples are given in the remainder of the section.

ON Power Factor

MEASUREMENTS | A capacitor is being used to correct the power factor to unity. The circuit is
"E_' shown in Figure 7.33. The capacitor value is varied, and measurements of

the total current are taken. Explain how it is possible to “zeroin” on the

capacitance val ue necessary to bring the power factor to unity just by

monitoring the current i 5.

1
1

[%2]
-

. *"'-‘I ) Vs 2¢ [RLload
oAl O e [

Figure 7.33
Solution:
The current through the load is
- VO Vs
I, = = R — joL
LT Rt oL - Rtetl2 R I8
VsR . szL

TR te22 TRt w212
The current through the capacitor is
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The source current to be measured is
~ ~ -~ VSR . ~ Vsa)L
ls =1 lc = ———— VewC — —>——
s=ltle R2+a)2L2+J( . R2+a)2L2)

The magnitude of the source current is

~ 2 ~ 2
I~ _ VsR + ‘7 C Vs(x)L
5 R? 4+ 0?22 s R2 4+ w?L2
We know that when the load is a pure resistance, the current and voltage
arein phase, the power factor is 1, and al the power delivered by the source
is dissipated by the load as real power. This corresponds to equating the

imaginary part of the expression for the source current to zero, or,
equivalently, to the following expression:

VSwL

—R2 n szZ = Vsa)C

in the expression for I5. Thus, the magnitude of the source current is
actually a minimum when the power factor is unity! It istherefore possible
to “tune” aload to aunity pf by observingthe readout of the ammeter while
changing the value of capacitor and selecting the capacitor value that
corresponds to the lowest source current value.

VIRTUAL LAB

EXAMPLE 7.10 Power Factor Correction

Problem

A capacitor is used to correct the power factor of the load of Figure 7.34. Determine the
reactive power when the capacitor is not in the circuit, and compute the required value of -
capacitance for perfect pf correction. L

O—I
—~

Solution Vs

)|
A

=5
|

=07

Known Quantities: Source voltage; load power and power factor.

Find:
Figure 7.34
1. Q when the capacitor is not in the circuit.
2. Value of capacitor required for power factor correction resulting in pf = 1.
Schematics, Diagrams, Circuits, and Given Data: Vg = 480/(0); P = 10° W;
pf = 0.7 lagging.
Assumptions: Usermsvaluesfor all phasor quantitiesin the problem.

Analysis:

1. With reference to the power triangle of Figure 7.11, we can compute the reactive
power of the load from knowledge of the real power and of the power factor, as
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shown below:
5
L N 7 IR 2V
cos(®) pf 0.7
Since the power factor is lagging, we know that the reactive power is positive (see
Table 7.2), and we can calculate Q as shown below:
Q = |§] sin(®) 0 = arccos(pf) = 0.795

Q = 1.429 x 10° x sin(0.795) = 102 kVAR

S|

2. To compute the reactance needed for the power factor correction, we observe that we
need to contribute a negative reactive power equal to —102 kVAR. Thisrequires a
negative reactance, and therefore a capacitor with Q. = —102 kVAR. The reactance
of such acapacitor is given by the expression:

V.2 (480)?
©7T 0 T —102 x 108
and, since
1
C=-—
a)XC
we have
1 1
C=-— = = 1,175 uF.

wXe | 377 x —2.258

Comments: Notethat it is not necessary to know the load impedance to perform power
factor correction; it is sufficient to know the apparent power and the power factor.

Focus on Computer-Aided Tools: A file containing the computer-generated solution to
this problem may be found in the CD-ROM that accompanies this book.

EXAMPLE 7.11 Power Factor Correction

Problem

A second load is added to the circuit of Figure 7.34, as shown in Figure 7.35. Determine
the required value of capacitance for perfect pf correction after the second load is added.

Draw the phasor diagram showing the relationship between the two load currents and the
capacitor current.

i
1

I's I
— —
|Cl L I i|~2
v 1 100 kW 50 kW
S T pf =0.7 pf =0.95
Figure 7.35

Solution

Known Quantities: Source voltage; load power and power factor.
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Find:
1. Power factor correction capacitor
2. Phasor diagram

Schematics, Diagrams, Circuits, and Given Data: Vs = 4804(0) V; P, = 10° W;
pf; = 0.7 lagging; P, = 5 x 10* W; pf, = 0.95 leading.

Assumptions: Usermsvaluesfor al phasor quantities in the problem.
Analysis:

1. Wefirst compute the two load currents, using the relationships given in equations
7.28 and 7.29:

P = |V||I%] cos(6y);

- Py
| = =—————:
[Vs| cos(61)
= £ (arccos(pf,)) = Lé (arccos(0.7))
LT Vslpf, V)T 480 x 0.7 '
= 298/(0.795) A
and, similarly
= Pe £ — (arccos(pf,)) = ﬂz — (arccos(0.95))
27 Vslpf, P'2)) = 280 % 0.95 ’

= 3604(—0.318) A

where we have selected the positive value of arccos (pf;) because pf, islagging, and
the negative value of arccos (pf,) because pf; isleading. Now we compute the
reactive power at each load:

P P 10°

[S1] = — = = _—— =1429 x 10° VA
pf, cos6,) 0.7
P P 5 x 10

12l = — = = 2% _ 1634 % 10' VA

of, ~ cos6s) 095
and from these values we can calculate Q as shown below:
01 = |81] sin(6,) 61 = arccos(pf,) = 0.795
01 = 1.429 x 10° x sin(0.795) = 102 kVAR
0, =8| sin(B;) 6, = —arccos(pf,) = —0.318
0, = 5.263 x 10* x sin(—0.318) = —16.43kVAR

where, once again, 0, is positive because pf; islagging, 6 is negative because pf; is
leading (see Table 7.2).

The total reactive power istherefore 0 = Q3 + Q, = 85.6 kKVAR.

To compute the reactance needed for the power factor correction, we observe
that we need to contribute a negative reactive power equal to —85.6 kVAR. This
requires a negative reactance, and therefore a capacitor with Q- = —85.6 kVAR.
The reactance of such a capacitor is given by the expression:

V5|2 (480)2
7 0c  —-856x10°
and, since
1
C=-—

307
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we have
1 1

c= - — 9853 uF
wXe | 377 x (—2.692) H

2. To draw the phasor diagram, we need only to compute the capacitor current, since we
have already computed the other two:

Y/
o = - =178.3/(L571) A
Zc

Thetotal currentisis =1, + 1, + ¢ = 312.5/0° A. The phasor diagram

Figure 7.36 corresponding to these three currents is shown in Figure 7.36.
Focus on Computer-Aided Tools: A file containing the computer-generated solution to
this problem may be found in the CD-ROM that accompanies this book.
Check Your Understanding
7.6 Compute the power factor for the load of Example 7.6 with and without the induc-
tance in the circuit.
7.7 Show that one can also express the instantaneous power for an arbitrary complex
load Z = |Z |£0 as y
p(t) = I?|Z| cosO + 1% Z| cos(2wt + 6)
T 7.8 Determine the power factor for the load in the circuit of Figure 7.37, and state

“Q

=]

Figure 7.37

whether it isleading or lagging for the following conditions:
a. vs(t) = 540cos(wt + 15°) V i(t) = 2cos(wt + 47°) A
b. vg(t) = 155¢c0s8(wt — 15°) V i(t) = 2cos(wt — 22°) A
7.9 Determine whether the load is capacitive or inductive for the circuit of Figure 7.37
if
pf = 0.87 (leading)
. pf = 0.42 (leading)
. vs(t) = 42 cos(wt) i(t) = 4.2sn(wt)
. vg(t) = 10.4cos(wt — 12°) i(t) = 0.4cos(wt — 12°)

7.10 Provethat the power factor isindeed 1 after the addition of the parallel capacitor
in Example 7.8.

o o0 T

7.11 Compute the magnitude of the current drawn from the source after the power
factor correction in the circuit of Example 7.8.

7.3 TRANSFORMERS

AC circuitsarevery commonly connected to each other by meansof transformers.
A transformer is a device that couples two AC circuits magnetically rather than
through any direct conductive connection and permits a “transformation” of the
voltage and current between one circuit and the other (for example, by matching
a high-voltage, low-current AC output to a circuit requiring a low-voltage, high-
current source). Transformers play amajor role in electric power engineering and
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areanecessary part of the el ectric power distribution network. Theobjectiveof this
section isto introduce the ideal transformer and the concepts of impedance reflec-
tion and impedance matching. The physical operations of practical transformers,
and more advanced models, will be discussed in Chapter 16.

The Ideal Transformer

Theideal transformer consists of two coils that are coupled to each other by some
magnetic medium. There is no electrical connection between the coils. The coil
ontheinput sideistermed the primary, and that on the output side the secondary.
The primary coil iswound so that it hasn turns, while the secondary hasn turns.
We definetheturnsratio N as

N="2 (7.32)

ni

Figure 7.38 illustrates the convention by which voltages and currents are usually
assigned at atransformer. The dotsin Figure 7.38 are related to the polarity of the
coil voltage: coil terminals marked with a dot have the same polarity.

Since an ideal inductor actsasashort circuit in the presence of DC currents,
transformers do not perform any useful function when the primary voltageis DC.
However, when atime-varying current flowsin the primary winding, acorrespond-
ing time-varying voltage is generated in the secondary because of the magnetic
coupling between the two coils. This behavior is due to Faraday’s law, as will be
explained in Chapter 16. The relationship between primary and secondary current
in an ideal transformer is very simply stated asfollows:

V, = NV,
(7.33)

-1
=

P

Z|

An ideal transformer multiplies a sinusoidal input voltage by a factor of N
and divides a sinusoidal input current by afactor of N.

If N is greater than 1, the output voltage is greater than the input voltage and
the transformer is called a step-up transformer. If N is less than 1, then the
transformer is called a step-down transfor mer, since V, is now smaller than V5.
Anideal transformer can be used in either direction (i.e., either of its coils may be
viewed as the input side or primary). Finally, atransformer with N = liscalled
an isolation transformer and may perform a very useful function if one needs
to electrically isolate two circuits from each other; note that any DC currents
at the primary will not appear at the secondary coil. An important property of
ideal transformers is conservation of power; one can easily verify that an ideal
transformer conserves power, since

=Vo =5, (7.34)

That is, the power on the primary side equals that on the secondary.

I1 ni:np 2
1N
+ .o +
Vi
Primary Secondary

Figure 7.38 ldead
transformer
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transformer
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In many practical circuits, the secondary is tapped at two different points,
giving rise to two separate output circuits, as shown in Figure 7.39. The most
common configuration is the center-tapped transformer, which splits the sec-
ondary voltage into two equal voltages. The most common occurrence of this
type of transformer isfound at the entry of a power lineinto a household, where a
high-voltage primary (see Figure 7.64) is transformed to 240 V, and split into two
120-V lines. Thus, V; and V3 in Figure 7.39 are both 120-V lines, and a 240-V
line (V, + V3) isalso available.

EXAMPLE 7.12 Ideal Transformer Turns Ratio

Problem

We require atransformer to deliver 500 mA at 24 V from a 120-V rmsline source. How
many turns are required in the secondary? What is the primary current?

Solution

Known Quantities: Primary and secondary voltages,; secondary current. Number of
turnsin the primary coil.

Find: n, and |~1.

Schematics, Diagrams, Circuits, and Given Data: Vi=120V; V, =24V; I, =
500 mA; n; = 3,000 turns.

Assumptions: Usermsvaluesfor all phasor quantitiesin the problem.

Analysis: Using equation 7.33 we compute the number of turnsin the secondary coil as
follows:
Vs Vo

Vi 24
— = =n;—= = 3,000 x —— = 600 turns
moon 2T 120

Knowing the number of turns, we can now compute the primary current, also from
equation 7.33:

ny - 600
ny 2 3,000
Comments: Note that since the transformer does not affect the phase of the voltages and
currents, we could solve the problem using simply the rms amplitudes.

}’llil:}’lziz i1= x 500 = 100 mA

EXAMPLE 7.13 Center-Tapped Transformer

Problem

A center-tapped power transformer has a primary voltage of 4,800 V and two 120-V
secondaries (see Figure 7.39). Three loads (all resistive, i.e., with unity power factor) are
connected to the transformer. Thefirst load, Ry, is connected across the 240-V line (the
two outside taps in Figure 7.39). The second and third loads, R, and R3, are connected
across each of the 120-V lines. Compute the current in the primary if the power absorbed
by the three loads is known.
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Solution

Known Quantities: Primary and secondary voltages; load power ratings.

Find: fprima.y

§chematics, Diagrams, Circuits, and Given Data: \71 =4800V; ‘72 =120V,
V3 =120V. P, = 5,000W; P, = 1,000 W; P; = 1,500 W.

Assumptions: Usermsvaluesfor al phasor quantitiesin the problem.

Analysis: Since we have no information about the number of windings, nor about the
secondary current, we cannot solve this problem using equation 7.33. An alternative
approach isto apply conservation of power (equation 7.34). Since the loads al have unity
power factor, the voltages and currents will all be in phase, and we can use the rms
amplitudesin our calculations:

|Sprimafy| = |Ssecondary|
or

Vprimary X iprimary = Psconday = P1+ P>+ Pa.

Thus,
4,800 X Iprimary = 5,000 + 1,000 + 1,500 = 7,500 W
. 7,500 W
primary - m == 15625A

311

Impedance Reflection and Power Transfer

As stated in the preceding paragraphs, transformers are commonly used to couple
one AC circuit to another. A very common and rather general situation is that de-
picted in Figure 7.40, where an AC source, represented by its Thévenin equivalent,
is connected to an equivalent load impedance by means of atransformer.

It should be apparent that expressing the circuit in phasor form does not
alter the basic properties of the ideal transformer, as illustrated in the following
equation:

Vi=—  1;=Nl

N B} (7.35)

Vo=NVi Ip=—

These expressions are very useful in determining the equivalent impedance seen
by the source and by the load, on opposite sides of the transformer. At the primary
connection, the equivalent impedance seen by the source must equal the ratio of
Vitolq:
Y%
7 =t (7.36)
I1
which can be written as:
_Vo/N 1V,

7 = = __° 7.37
Ni,  N?1J, (7.3

Figure 7.40 Operation
of an ideal transformer
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But theratio VV,/I» is by definition the load impedance, Z, . Thus,
1
= 32t

That is, the AC source “sees’ the load impedance reduced by a factor of 1/N?2.
Theload impedance al so sees an equivalent source. The open-circuit voltage
is given by the expression

A (7.39)

Voc = NV1 = NV (7.39)

since there is no voltage drop across the source impedance in the circuit of Figure
7.40. The short-circuit current is given by the expression

lc= == (7.40)

Y NV
7' ==X = 75 _ N2z (7.41)

T s 1

Zs N

Thusthe load seesthe source impedance multiplied by afactor of N2. Figure 7.41
illustrates thisimpedance reflection across a transformer. It is very important to
note that an ideal transformer changes the magnitude of the load impedance seen
by the source by afactor of 1/N2. This property naturally leads to the discussion
of power transfer, which we consider next.

ZL

7
N2zg=2"
o
L b
ZL
Reflected load Reflected source
impedance circuit impedance circuit

Figure 7.41 Impedance reflection across a transformer

Recall that in DC circuits, given afixed equivalent source, maximum power
is transferred to a resistive load when the latter is equal to the internal resistance
of the source; achieving an analogous maximum power transfer condition in an
AC circuit is referred to as impedance matching. Consider the general form of
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an AC circuit, shown in Figure 7.42, and assume that the source impedance, Zs,
isgiven by

Zs=Rs+ jXs (7.42)

The problem of interest is often that of selecting the load resistance and reactance
that will maximize the real (average) power absorbed by the load. Note that the
requirement isto maximizethereal power absorbed by theload. Thus, the problem
can be restated by expressing the real load power in terms of the impedance of the
source and load. Thereal power absorbed by theload is

P, = V.1, cosd = Re(V.I}) (7.43)
where
R AL (749
and
- ‘ V*
Thus, the complex load power is given by
\ / \ /% /2
Sp=Vali = Zf:V;L (Zs stn* " zs ISZLPZL (749
and the average (real) power by
.- V2
P, =Re(V.I}) = Re <|ZS+SZL|2> Re(Z,)
— ‘752 Re (Z1) (7.47)
(Rs + R1)?+ (X5 + X1)?
VER:

" (Rs+ RL)Z+ (X5 + X1)2

Theexpressionfor P, ismaximized by selecting appropriatevaluesof R, and X ;
it can be shown that the average power isgreatest when R, = Rgand X; = — X,
that is, when the load impedance is equal to the complex conjugate of the source
impedance, as shown in the following equation:

Z; = Z#;v ie., R; = Ry X, = —Xg (748)

When the load impedance is equal to the complex conjugate of the source
impedance, the load and source impedances are matched and maximum
power is transferred to the load.

In many cases, it may not be possible to select a matched load impedance,
becauseof physical limitationsin the sel ection of appropriate components. Inthese
situations, it is possible to use the impedance refl ection properties of atransformer
to maximize the transfer of AC power to the load. The circuit of Figure 7.43
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Zs

+
\75 T) ZL \7L

1

Vs=VsO 6
Figure 7.42 The maximum

power transfer problem in AC
circuits

Zs

Equivalent circuit referred
to transformer primary

Figure 7.43 Maximum
power transfer in an AC circuit
with a transformer
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illustrates how the reflected load impedance, as seen by the source, is equal to
Z; /N?, so that maximum power transfer occurs when
Zr .
N2~ s
R, = N2R; (7.49)
X = —N2Xjg
EXAMPLE 7.14 Maximum Power Transfer Through
a Transformer
Problem
Find the transformer turns ratio and load reactance that results in maximum power transfer
in the circuit of Figure 7.44.
S .
LN Solution
Ls R Known Quantities: Source voltage, frequency and impedance; load resistance.
Rs Find: Transformer turnsratio and load reactance.
Schematics, Diagrams, Circuits, and Given Data: Vs = 240/(0) V; Rs = 10 @;
Vs X Ls=0.1H; R, =400 Q; w = 377 rad/s.
Assumptions: Usermsvaluesfor al phasor quantitiesin the problem.
Figure 7.44

Analysis: For maximum power transfer, we requirethat R, = N?R; (equation 7.48).
Thus,

R 400

2 L

— — 2 —40 N =+/40=6.325
Ry _ 10 Va0

Further, to cancel the reactive power we requirethat X, = —N2Xg, i.e,
Xs=wx01=377

and
X, =—40x 37.7= —1,508

Thus, the load reactance should be a capacitor with value

1 1
Ce e~ _1764F
X.o  (—1,508) x 377 H

Check Your Understanding
7.12 If thetransformer shown in Figure 7.45 isideal, find the turns ratio, N, that will
ensure maximum power transfer to the load. Assumethat Zs = 1,800 2 and Z; = 8 Q.

7.13 If thecircuit of Exercise 7.12 has Z; = (2 + j10) € and the turns ratio of the
transformer is N = 5.4, what should Z be in order to have maximum power transfer?
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O

Zs +
vs(t) g 2 o

>
L] L] -
O
1:N
Figure 7.45

7.4 THREE-PHASE POWER

The material presented so far in this chapter has dealt exclusively with single-
phase AC power, that is, with single sinusoidal sources. In fact, most of the AC
power used today is generated and distributed asthree-phase power, by means of
an arrangement in which three sinusoidal voltages are generated out of phase with
each other. The primary reason is efficiency: The weight of the conductors and
other components in a three-phase system is much lower than in a single-phase
system delivering the same amount of power. Further, while the power produced
by a single-phase system has a pulsating nature (recall the results of Section 7.1),
a three-phase system can deliver a steady, constant supply of power. For exam-
ple, later in this section it will be shown that a three-phase generator producing
three balanced voltages—that is, voltages of equal amplitude and frequency dis-
placed in phase by 120°—has the property of delivering constant instantaneous
power.

Another important advantage of three-phase power is that, as will be ex-
plained in Chapter 17, three-phase motors have a nonzero starting torque, unlike
their single-phase counterpart. The changeto three-phase AC power systemsfrom
the early DC system proposed by Edison was therefore due to a number of rea-
sons: the efficiency resulting from transforming voltages up and down to minimize
transmission losses over long distances; the ability to deliver constant power (an
ability not shared by single- and two-phase AC systems); a more efficient use of
conductors; and the ability to provide starting torque for industrial motors.

To begin the discussion of three-phase power, consider athree-phase source
connected in the wye (or Y) configuration, as shown in Figure 7.46. Each of the
three voltagesis 120° out of phase with the others, so that, using phasor notation,

Figure 7.46 Baanced three-phase AC circuit
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Figure 7.47 Positive, or
abc, sequence for balanced
three-phase voltages

—m e

Figure 7.48 Baanced

three-phase AC circuit (redrawn)
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we may write:

Van = ‘Zm 20°

Vi = Viu Z—120° (7.50)

Vo = Vip /—240° = V., /120°

where the quantities Vns Vo, and V., are rms values and are equal to each other.
To simplify the notation, it will be assumed from here on that

(7.51)

Chapter 17 will discusshow three-phase AC el ectric generatorsmay be constructed
to provide such balanced voltages. In the circuit of Figure 7.46, the resistive loads
are also wye-connected and balanced (i.e., equal). The three AC sources are all
connected together at a node called the neutral node, denoted by n. The voltages
Van, Vi, and V., are called the phase voltages and form a balanced set in the
sense that

\7an + \7hn + \7<'n =0 (752)
Thislast statement iseasily verified by sketching the phasor diagram. Thesequence
of phasor voltages shown in Figure 7.47 is usually referred to as the positive (or
abc) sequence.

Consider now the “lines’ connecting each source to the load and observe
that it is possible to also define line voltages (also called line-to-line voltages) by
considering the voltages between the lines aa’ and bb’, aa’ and cc’, and bb" and
cc’. Since the line voltage, say, between aa’ and bb’ is given by

\7ab = \7an + \7nb = \7cm - \717;1 (753)

the line voltages may be computed relative to the phase voltages as follows:
Vap = VL0 — V/=120° = /3V /30°
Ve = VZ£—120° — V £120° = v/3V £/ —90°
Veo = V2120° — V0P = V/3V £150°

(7.54)

It can be seen, then, that the magnitude of the line voltages is equal to /3 times
the magnitude of the phase voltages. It isinstructive, at least once, to point out
that the circuit of Figure 7.46 can be redrawn to have the appearance of the circuit
of Figure 7.48.

One of theimportant features of abalanced three-phase system isthat it does
not require afourth wire (the neutral connection), sincethe current I, isidentically
zero (for balanced load Z, = Z, = Z. = Z). This can be shown by applying
KCL at the neutral node n:

|~/l = (ra + i‘b + rr)

(7.55)

1 - - ~
— V(m V n Vcn
Z( + Vi +Ver)

=0
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Another, more important characteristic of a balanced three-phase power
system may be illustrated by simplifying the circuits of Figures 7.46 and 7.48
by replacing the balanced |oad impedances with three equal resistances, R. With
this simplified configuration, one can show that the total power delivered to the
balanced load by the three-phase generator is constant. This is an extremely
important result, for avery practical reason: delivering power in asmooth fashion
(as opposed to the pulsating nature of single-phase power) reduces the wear and
stress on the generating equipment. Although we have not yet discussed the
nature of the machines used to generate power, a useful analogy here isthat of a
single-cylinder engine versus a perfectly balanced V-8 engine. To show that the
total power delivered by the three sources to a balanced resistive load is constant,
consider the instantaneous power delivered by each source:

V2
pa(t) = ?(1 + cos2wt)

2
py(t) = %[1 + cos(2wt — 120°)] (7.56)

V2
pe(t) = ?[1 + cos(2wt + 120°)]
The total instantaneous load power isthen given by the sum of the three contribu-
tions:
p(t) = pa(t) + pp(t) + pe(t)
3 (72 (72
= % + %[cosZwt + cos(Rwt — 120°)
+ cos(2wt + 120°)]

72
= —— = aconstant!
R

(7.57)

You may wish to verify that the sum of the trigonometric termsinside the brackets
isidentically zero.

It is also possible to connect the three AC sources in a three-phase system
in a so-caled delta (or A) connection, although in practice this configuration is
rarely used. Figure 7.49 depicts a set of three delta-connected generators.
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A delta-connected
three-phase generator
with line voltages
Vabr Voo, Vea

Figure 7.49 Delta-connected
generators

EXAMPLE 7.15 Per-Phase Solution of Balanced Wye-Wye
Circuit

Problem

Compute the power delivered to the load by the three-phase generator in the circuit shown
in Figure 7.50.

Solution
Known Quantities: Source voltage, line resistance, |oad impedance.

Find: Power delivered to theload, P, .

Figure 7.50
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n n'

Figure 7.51 One phase of
the three-phase circuit
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= 480£(0) V;

Schematics, Diagrams, Circuits, and Given Data: Vg,
=24 j4=4.47/(1.107) @,

Vi, = 4804(—21/3) V; V., = 4804 (27/3) V; Z,
Rline =2 Q; Rneutral =10 Q.

Assumptions: Usermsvaluesfor all phasor quantitiesin the problem.

Analysis: Sincethe circuit is balanced, we can use per-phase analysis, and the current
through the neutral lineis zero, i.e.,, V,,_,» = 0. The resulting per-phase circuit isshownin
Figure 7.51. Using phase a for the calculations, we look for the quantity

P, =II’R,
where
- v, 48020 48020
M= = ’ - ’ = =84.85A
Zy+ Rine| |2+ j4+2| |5.66/(%)

and P, = (84.85)? x 2 = 14.4 kW. Since the circuit is balanced, the results for phases b
and ¢ areidentical, and we have:

P, =3P, =43.2kW

Comments: Note that, since the circuit is balanced, there is zero voltage across neutrals.
Thisfact is shown explicitly in Figure 7.51, where n and n’ are connected to each other
directly. Per-phase analysis for balanced circuits turn three-phase power calculations into
avery simple exercise.

Balanced Wye Loads

In the previous section we performed some power computations for a purely re-
sistive balanced wye load. We shall now generalize those results for an arbitrary
balanced complex load. Consider again the circuit of Figure 7.46, where now the
balanced load consists of the three complex impedances

Zo=12p=72.=27,=|Z,|/0 (7.58)

From the diagram of Figure 7.46, it can be verified that each impedance sees the
corresponding phase voltage across itself; thus, since the currents I, I, and I,
have the same rms value, I, the phase angles of the currents will differ by +120°.
It is therefore possible to compute the power for each phase by considering the
phase voltage (equal to the load voltage) for each impedance, and the associated
line current. Let us denote the complex power for each phase by S:

S=V.I* (7.59)
S0 that
S=P+j0Q
(7.60)

= VIcosf + jVIsing

where V and I denote, once again, the rms values of each phase voltage and line
current. Consequently, the total real power delivered to the balanced wye load
is 3P, and the total reactive power is 3Q. Thus, the total complex power, Sr, is
given by

Sr=Pr+jQr =3P+ 30

=/(3P)2 + (30)2/6

(7.61)
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and the apparent power is

IS7| = 3\/(VI)2 cos?6 + (VI)2sin® 6
=3VI

and the total real and reactive power may be expressed in terms of the apparent
power:

Pr = |S7| coséo

(7.62)
QOr = |S7|sinf

Balanced Delta Loads

In addition to a wye connection, it is also possible to connect a balanced load in
the delta configuration. A wye-connected generator and a delta-connected load
are shown in Figure 7.52.

Figure 7.52 Balanced wye generators with balanced delta load

It should be noted immediately that now the corresponding line voltage (not
phase voltage) appears across each impedance. For example, the voltage across
Z.o iSV,. Thus, the threeload currents are given by the following expressions:

= Va3V Z(r/6)

Zx  1ZalZ6

e = Ve — M (7.63)
Za |Za1£0

i _ Ve _ V3VZ(57/6)

T Za |ZalZe

To understand the rel ationship between delta-connected and wye-connected
loads, it is reasonable to ask the question, For what value of Z, would a delta-
connected load draw the same amount of current as a wye-connected load with
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impedance Z, for agiven source voltage? Thisis equivalent to asking what value
of Z » would maketheline currentsthe samein both circuits (compare Figure 7.48
with Figure 7.52).

The line current drawn, say, in phase a by awye-connected load is

%

an — Ll
z |Z,]
while that drawn by the delta-connected load is

(rcln))' = —0 (764)

(Ia)A = Iab - Ica

Vab \7(,'(1

T Za  Za

= i(\7an - \7bn - \7('n + \7an) (7 65)
Za )

1 ~ ~ ~
(zvun - Vbn - Vcn)
Za

N, 3V
= =—/-0
Z |Z Al

One can readily verify that the two currents (I,)» and (1,,), will be equal if
the magnitude of the delta-connected impedance is 3 times larger than Z,:

Za =32, (7.66)

This result also implies that a delta load will necessarily draw 3 times as much
current (and therefore absorb 3 times as much power) as awye load with the same
branch impedance.

EXAMPLE 7.16 Parallel Wye-Delta Load Circuit

Problem

Compute the power delivered to the wye-deltaload by the three-phase generator in the
circuit shown in Figure 7.53.

Va _
([ & e 4
U Yvvy Zy
n (o b e b N
U \AAAJ Zy
\7c R @
(S gie ¢ Z
U Yvvy Yy
Rneutral
AAAA

VVVY

Figure 7.53 AC circuit with delta and wye loads
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Solution
Known Quantities: Source voltage, line resistance, |oad impedance.
Find: Power delivered to theload, P, .

Schematics, Diagrams, Circuits, and Given Data: Vo = 480/(0) V;
Vy, =4804(=2n/3) V; V., = 480£(2n/3) V; Z, = 2+ j4 = 4.47/(1.107) 2;
Zn=5—j2=54/(—-0.381) 2; Riine = 2 2; Rneura = 10 Q.

Assumptions: Usermsvaluesfor all phasor quantitiesin the problem.

Analysis: Wefirst convert the balanced deltaload to an equivalent wye load, according
to equation 7.66. Figure 7.54 illustrates the effect of this conversion.

z
Zpny = ?A = 1.667 — j0.667 = 1.84(—0.381) Q.

Since the circuit is balanced, we can use per-phase analysis, and the current through the
neutral lineis zero, i.e., V,_,» = 0. The resulting per-phase circuit is shown in Figure
7.55. Using phase a for the calculations, we look for the quantity

P, =II’R,
where

Zy X ZA,),

——— =1.62—- j0.018 = 1.62/(-0.011)
Zy + ZA—y

Zy=ZyllZp-y =

and the load current is given by:

V,
ZL + Rline

[ = =1326 A

B 48020
"~ |1.62+j0.018 42

and P, = (132.6)% x Re(Z;) = 28.5 kW. Since the circuit is balanced, the results for
phase b and ¢ are identical, and we have:

P, =3P, =855kW

a'

T
E n —  — n

1
-

Z

Figure 7.54 Conversion of delta load to equivalent wye load

b

Comments: Note that per-phase analysis for balanced circuits turns three-phase power
calculationsinto avery simple exercise.

Figure 7.55 Per-phase
circuit
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Focus on Computer-Aided Tools: A computer-generated solution of this example may
be found in the accompanying CD-ROM.

322
Hot
+
Ve
- Neutral
VR
+
Hot
Vw=000° (Neutral)

Vg=12000°  (Hot)
Vg =1200180° (Hot)
or VR=-Vg

Figure 7.56 Line voltage
convention for residential
circuits

Check Your Understanding

7.14 Find the power lost in the linesin the circuit of Example 7.15.

7.15 Draw the phasor diagram and power triangle for a single phase and compute the
power delivered to the balanced load of Example 7.15 if the lines have zero resistance and
Z; =1+ j3Q.

7.16 Show that the voltage across each branch of the balanced wye load in Exercise
7.15 is equal to the corresponding phase voltage (e.g., the voltage across Z,, is V,,).

7.17 Provethat the sum of the instantaneous powers apsprbed by the three branchesin
abalanced wye-connected load is constant and equal to 3V I cosé.

7.18 Derive an expression for the rms line current of a delta load in terms of the rms
line current for a wye load with the same branch impedances (i.e., Z, = Z,) and same
source voltage. Assume Zg = 0.

7.19 The equivalent wye load of Example 7.16 is connected in a delta configuration.
Compute the line currents.

7.5 RESIDENTIAL WIRING; GROUNDING
AND SAFETY

Common residential electric power service consists of a three-wire AC system
supplied by the local power company. The three wires originate from a utility
pole and consist of a neutral wire, which is connected to earth ground, and two
“hot” wires. Each of the hot lines supplies 120 V rms to the residential circuits;
the two lines are 180° out of phase, for reasons that will become apparent during
the course of this discussion. The phasor line voltages, shown in Figure 7.56, are
usually referred to by means of a subscript convention derived from the color of
the insulation on the different wires: W for white (neutral), B for black (hot), and
R for red (hot). This convention is adhered to uniformly.
The voltages across the hot lines are given by:

Vg —Vr=Vgr =V — (=Vp) =2V = 240/0° (7.67)

Thus, the voltage between the hot wires is actually 240 V rms. Appliances such
as electric stoves, air conditioners, and heaters are powered by the 240-V rms
arrangement. On the other hand, lighting and all of the el ectric outletsin the house
used for small appliances are powered by asingle 120-V rmsline.

Theuseof 240-V rmsservicefor appliancesthat require asubstantial amount
of power to operateisdictated by power transfer considerations. Consider the two
circuitsshown in Figure 7.57. In delivering the necessary power to aload, alower
line loss will be incurred with the 240-V rms wiring, since the power loss in the
lines (the | ?R loss, asit is commonly referred to) is directly related to the current
required by the load. In an effort to minimize line losses, the size of the wiresis
increased for the lower-voltage case. Thistypically reducesthewire resistance by
afactor of 2. In the top circuit, assuming Rs/2 = 0.01 2, the current required
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by the 10-kW load is approximately 83.3 A, while in the bottom circuit, with
Rs = 0.02 @, it is approximately half as much (41.7 A). (You should be able to
verify that the approximate 72R |osses are 69.4 W in the top circuit and 34.7 W
in the bottom circuit.) Limiting the 72R losses isimportant from the viewpoint of
efficiency, besides reducing the amount of heat generated in the wiring for safety
considerations. Figure 7.58 shows some typical wiring configurations for ahome.
Note that several circuits are wired and fused separately.

W
] [6eee e
i = Earth ground
]
20A L V(\Bl Kitchen
— (120 V circuit)
r\J B
15A VC\;/_ Bedroom
— 120V circuit
r\J B
20A — Washing machine,
N B — Dryer (120 V circuit)
20A N
A W or G Electric stove
A, (240 V circuit)
20A GFCI L |
v, 00 R
1A - W Outdoor
T = W G lighting

Figure 7.58 A typical residential wiring arrangement

Today, most homes have three wire connectionsto their outlets. The outlets
appear as sketched in Figure 7.59. Then why are both the ground and neutral
connections needed in an outlet? The answer to this question is safety: the ground
connection isused to connect the chassis of the applianceto earth ground. Without
this provision, the appliance chassis could be at any potential with respect to
ground, possibly even at the hot wire's potential if a segment of the hot wire
were to lose some insulation and come in contact with the inside of the chassis!
Poorly grounded appliances can thusbeasignificant hazard. Figure7.60illustrates
schematically how, even though the chassis is intended to be insulated from the
electric circuit, an unintended connection (represented by the dashed line) may
occur, for example, because of corrosion or a loose mechanical connection. A
path to ground might be provided by the body of a person touching the chassis
with ahand. In the figure, such an undesired ground loop current is indicated by
I;. Inthis case, the ground current I; would flow directly through the body to
ground and could be harmful.

Figure 7.57 Linelossesin
120-VAC and 240-VAC circuits

Neutral Hot
(White (Black
wire) wire)

Ground (Green or bare wire)

Figure 7.59 A three-wire
outlet
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Severe burns

Respiratory paraysis
Ventricular fibrillation

0.1} Severe shock

Extreme breathing
difficulties

Amperes

Cannot let go

001 Painful

Mild sensation

Threshold of
perception

0.001

Figure 7.61 Physiologica
effects of electric currents
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B .
+O Chassis
1 [l
1 I
----- AW ===
120V Load
W { |1 o +
-© Unknown
potential
G
(o] O
B .
+0O Chassis
1 [l
1 I
| ----- AWy ===
120V Load
w | | }
-0
G
C —_

Z Earth ground

Figure 7.60 Unintended connection

In some casesthe danger posed by such undesired ground loops can be great,
leading to death by electric shock. Figure 7.61 describes the effects of electric
currents on an average male when the point of contact is dry skin. Particularly
hazardous conditions are liable to occur whenever the natural resistance to current
flow provided by the skin breaks down, as would happen in the presence of water.
The ground fault circuit interrupter, labeled GFCI in Figure 7.58, is a special
safety circuit used primarily with outdoor circuits and in bathrooms, where the
risk of death by electric shock is greatest. Its application is best described by an
example.

Consider the case of an outdoor pool surrounded by a metal fence, which
usesan existing light polefor apost, asshowninFigure 7.62. Thelight poleandthe
metal fence can be considered asforming achassis. If the fence were not properly
grounded all the way around the pool and if the light fixture were poorly insulated
from the pole, a path to ground could easily be created by an unaware swimmer
reaching, say, for the metal gate. A GFCI provides protection from potentially
lethal ground loops, such as this one, by sensing both the hot-wire (B) and the
neutral (W) currents. If the difference between the hot-wire current, Iz, and the
neutral current, Iy, is more than afew milliamperes, then the GFCI disconnects
the circuit nearly instantaneously. Any significant difference between the hot
and neutral (return-path) currents means that a second path to ground has been
created (by the unfortunate swimmer, in this example) and a potentially dangerous
condition hasarisen. Figure7.63illustratestheidea. GFClsaretypically resettable
circuit breakers, so that one does not need to replace a fuse every time the GFCI
circuit is enabled.
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rnng S
= /ﬂ — s
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Figure 7.62 Outdoor pool

1 1
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+ O——ro- T Mo
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Figure 7.63 Use of a GFCI in a potentially hazardous setting

Check Your Understanding

7.20 Use the circuit of Figure 7.57 to show that the 72R losses will be higher for a
120-V service appliance than a 240-V service appliance if both have the same power usage
rating.

7.6 GENERATION AND DISTRIBUTION
OF AC POWER

We now conclude the discussion of power systems with abrief description of the
various elements of a power system. Electric power originates from a variety of
sources; in Chapter 17, electric generators will be introduced as a means of pro-
ducing electric power from a variety of energy-conversion processes. In general,
electric power may be obtained from hydroelectric, thermoelectric, geothermal,
wind, solar, and nuclear sources. The choice of a given source is typically dic-
tated by the power requirement for the given application, and by economic and
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environmental factors. In this section, the structure of an AC power network, from
the power-generating station to the residential circuits discussed in the previous
section, is briefly outlined.

A typical generator will produce electric power at 18 kV, as shown in the
diagram of Figure 7.64. To minimize losses along the conductors, the output of
the generatorsis processed through a step-up transformer to achieve line voltages
of hundreds of kilovolts (345 kV, in Figure 7.64). Without thistransformation, the
majority of the power generated would be lost in the transmission linesthat carry
the electric current from the power station.

18 kV
D AN
= j / 3 @step-down
transformer
sskv 140 kV
Generator
Generating plant
46 kV
< 3 @ step-down
((( transformer
3 @ step-down 4,800 V 3 ¢ step-down
< transformer tr_an&sforn;ler to
-stati industrial or
(sub-station) \\\)/m\/\@/ commercia
| | | | | | customer

VNV N
4,800V

Center-tap
transformer

120/240 Volt
= Three-wire service

Figure 7.64 Structure of an AC power distribution network

Thelocal electric company operates a power-generating plant that is capable
of supplying several hundred megavolt-amperes (MVA) on a three-phase basis.
For this reason, the power company uses a three-phase step-up transformer at the
generation plant toincreasethelinevoltageto around 345kV. Onecanimmediately
see that at the rated power of the generator (in MVA) there will be a significant
reduction of current beyond the step-up transformer.

Beyond the generation plant, an electric power network distributes energy to
several substations. Thisnetwork isusually referred to asthe power grid. At the
substations, the voltage is stepped down to alower level (10 to 150 kV, typically).
Some very large loads (for example, an industrial plant) may be served directly
from the power grid, although most loads are supplied by individual substationsin
the power grid. At thelocal substations (one of which you may have seen in your
own neighborhood), thevoltageisstepped down further by athree-phase step-down
transformer to 4,800 V. These substations distribute the energy to residential and
industrial customers. To further reduce the line voltage to levels that are safe for
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residential use, step-down transformers are mounted on utility poles. These drop
the voltage to the 120/240-V three-wire single-phase residential service discussed
in the previous section. Industrial and commercial customers receive 460- and/or
208-V three-phase service.

CONCLUSION

This chapter introduced the essential elements|eading to the analysisof AC power systems.
Single-phase AC power, ideal transformers, and three-phase power were discussed. A brief
review of residential circuit wiring and safety, and a description of an electric distribution
network, were also given to underscore the importance of these conceptsin electric power.

* The power dissipated by aload in an AC circuit consists of the sum of an average
and afluctuating component. In practice, the average power is the quantity of
interest.

+ AC power can best be analyzed with the aid of complex notation. Complex power
is defined as the product of the phasor load voltage and the complex conjugate of
the phasor load current. Complex power consists of the sum of areal component
(the average, or real, power) and an imaginary component (reactive power). Real
power corresponds to the electric power for which auser isbilled by a utility
company; reactive power corresponds to energy storage and cannot be directly
used.

+ Although reactive power is of no practical use, it does cause an undesirable
increase in the current that must be generated by the electric company, resulting in
additional line losses. Thus, it is customary to try to reduce reactive power. A
measure of the presence of reactive power at aload is the power factor, equal to
the cosine of the angle of the load impedance. By adding a suitable reactance to
theload, it is possible to attain power factors close to ideal (unity). This
procedure is called power factor correction.

* Electric power is most commonly generated in three-phase form, for reasons of
efficiency. Three-phase power entails the generation of three 120° out-of-phase
AC voltages of equal amplitude, so that the instantaneous power is actually
constant. Three-phase sources and |oads can be configured in either wye or delta
configurations; of these, the wye form is more common. The calculation of
currents, voltages, and power in three-phase circuitsis greatly ssmplified if one
uses per-phase calculations.

CHECK YOUR UNDERSTANDING ANSWERS

CYU7.2 Z =48¢778% Q. p,, =2,103.4W
CYUu 73 See Example 7.2.

cyu74 101.46 W

CYU75 pf = c0s89.36° = 0.0105

CYU 7.6 0.514 lagging, 1

CYu 7.8 (a) 0.848, leading; (b) 0.9925, lagging
Cyu 7.9 (a) capacitive; (b) capacitive; (c) inductive; (d) neither (resistive)
Ccyur71 0.584 A

CYyu7.12 N = 0.0667

CYu 7.13 Zs = 0.0686 — j0.3429 @
Cyu7.14 Pioss = 43.2 kKW

CYyuU 7.15 V, =480/0°V; 1, = 151.8/-71.6° A; St = 69.12 W +;207.4 x 10° VA
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CYU7.18 Iy =3I,
CYU7.19 l, = 189/0° A; |, = 189/—120° A: |, = 189./120° A
CYU 7.20

Lossesfor a120-V circuit are approximately double the losses for a240-V circuit of the same power rating.

HOMEWORK PROBLEMS

Section 1:
Basic AC Power Calculations

7.1 The heating element in a soldering iron has a
resistance of 391 Q. Find the average power dissipated
in the soldering iron if it is connected to a voltage
source of 117 V rms.

7.2 The heating element in an electric heater has a
resistance of 10 Q. Find the power dissipated in the
heater when it is connected to a voltage source of
240V rms.

7.3 A current sourcei(¢) is connected to a 100-2
resistor. Find the average power delivered to the
resistor, giventhat i (¢7) is:

a 4cosl100r A

b. 4cos(100r — 0.873) A

C. 4co0s100r — 3cos(100r — 0.873) A
d. 4c0s100r — 3 A

7.4 Find the rmsvalue of each of the following periodic
currents:

a cos377t + cos377t
c0S2t + sin2t

cos377t + 1

cos2t + cos(2t + 3 /4)
C0S2t 4 cos3t

o 2 0 T

7.5 A current of 10 A rms flows when a single-phase
circuit is placed across a 220-V rms source. The
current lags the voltage by /3 rad. Find the power
dissipated by the circuit and the power factor.

7.6 A single-phasecircuit is placed across a 120-V rms,
60-Hz source, with an ammeter, avoltmeter, and a
wattmeter connected. The instruments indicate 12 A,
120V, and 800 W, respectively. Find

a. The power factor.
b. The phase angle.
¢. Theimpedance.
d. Theresistance.

7.7 The nameplate on a single-phase induction machine
reads 2 horsepower (output), 110 V rms, 60 Hz, and
24 A rms. Find the power factor of the machineif the

efficiency at rated output is 80 percent. [Note: 1
horsepower = 0.746 kKW.]

7.8 Given the waveform of avoltage source shownin
Figure P7.8, find:

a. the average and rms values of the voltage.

b. the average power supplied to a 10-$2 resistor
connected across the voltage source.

Vs(t)

V)

i I
0 lj14\5|6t(s)
-3

Figure P7.8

Section 2: Complex Power

7.9 For thefollowing numerical values, determine the
average power, P, the reactive power, Q, and the
complex power, S, of the circuit shown in Figure P7.9.
Note: phasor quantities are rms.

a. vg(t) = 650cos(377t) V

ir (t) = 20cos(377t — 0.175) A
b. Vg = 4600V

I, =14.14/—7/4 A

I, =86/—15A
d. Vg =208/—7/6V
I, =23/-11A

206 [z]

Figure P7.9

7.10 For thecircuit of Figure P7.9, determine the power
factor for the load and state whether it is leading or
lagging for the following conditions:



a vs(r) = 540cos(wt + 7/12) V
i (t) = 20cos(wt + 0.82) A
b. vs(r) = 155cos(wt — 7 /12) V
i (t) = 20cos(wt — 0.384) A
C. vg(t) = 208 cos(wt) V
ir(t) = 1.7sin(wt + 3.054) A
d Z, =48+ j16) Q

7.11 For thecircuit of Figure P7.9, determine whether

the load is capacitive or inductive for the circuit shown

if

a pf = 0.87 (leading)

b. pf = 0.42 (leading)

C. vs(t) = 42cos(wt)
i (1) = 4.2sn(wt)

d. vs(¢) = 10.4cos(wt — 7 /15)
ir(t) = 0.4cos(wt — 7 /15)

7.12 Findthereal and reactive power supplied by the
source in the circuit shown in Figure P7.12.

2H  118F

vg(t) =10 cos 3t V Q

Figure P7.12

7.13 For thecircuit shown in Figure P7.13, find the real
and reactive power supplied by each source. The

sourcesareV,; = 36/—x/3V and V,, =
24,0.644 V.

6o 120

80
Ve ( {) JGQ% %\752

Figure P7.13

7.14 Theload Z, inthecircuit of Figure P7.14 consists
of a25-Q resistor in parallel with a 100-,F capacitor.
Assume w = 377 rad/s. Calculate

a The apparent power delivered to the load.
b. The apparent power supplied by the source.
¢. The power factor of the load.
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(:) Vs=23000° [z ] Load

Figure P7.14

7.15 Cadlculate the apparent power, real power, and
reactive power for the circuit shown in Figure P7.15.
Draw the power triangle.

R=20Q

T

(’:) Vs=50V

—jXc=-j346Q

Figure P7.15

7.16 A single-phase motor draws 220 W at a power
factor of 80 percent (lagging) when connected across a
200-V, 60-Hz source. A capacitor is connected in
parallel with the load to give a unity power factor, as
shown in Figure P7.16. Find the required capacitance.

n
11
O

Figure P7.16

7.17 Suppose that the electricity in your home has gone
out and the power company will not be able to have
you hooked up again for several days. The freezer in
the basement contains several hundred dollars' worth
of food that you cannot afford to let spoil. You have
a so been experiencing very hot, humid weather and
would like to keep one room air-conditioned with a
window air conditioner, as well as run the refrigerator
in your kitchen. When the appliances are on, they
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draw the following currents (all values are rms):

Air conditioner: 96 A @120V
pf = 0.90 (lagging)

Freezer: 42A @120V
pf = 0.87 (lagging)

¢. The power factor angle and the power factor.

V,=7/0873V  [,=13/—-0.349A

7.22 Determine C so that the plant power factor of
Figure P7.22 iscorrectedto 1; i.e., I, isminimized and

Refrigerator: 35A@120V in phase with V,.
pf = 0.80 (lagging) v, (1) = 450 cos(wt) V w = 377rad/s
In the worst-case scenario, how much power must an Z=7+jl1Q

emergency generator supply? Zs = 3+ j0.11mQ

7.18 Theload on asingle-phase three-wire systemin a
home is generally not balanced. For the system shown T

in Figure P7.18, let Vy = 115/0 Vs and L — |
V5 = 11520 V ms. Determine: 3 Ze | 3 |
a. Thetota average power delivered to the connected i el s |

loads: Z;1, Z;2,and Z ;3. 3 o °T W 3
b. Thetotal average power lostinthelines: Z,, Z,», i % i ]

and Z,. i 3 i i
c. The average power supplied by each source. ——— I———

Power Plant
plant
Zgava&m Figure P7.22
7.23 Determine C so that the plant power factor of
%, G) < Figure P7.22 is corrected to 1 (or the power factor
= 3 217600 angleto zero) so that I, is minimized and in phase with
Z,=2Q L v
AW $23=200 ?
v, () = 450 cos(wt) V w = 377rad/s
VSZ(? 2 z,=%00 Z=7/0175Q
AW 7.24 Without the capacitor connected into the circuit of
Zp=01Q Figure P7.22,
Figure P7.18 V,=450/0V 1, =17/—-0.175A
f =60Hz C = 17.40 uF

7.19 A large consumer of electricity requires 10 KW of

power at 230 Vs & apf angle of /3 rad lagging. The
transmission line between the electric utility and the
consumer has aresistance of 0.1 Q. If the consumer
can increase the pf from 0.5 to 0.9 lagging, determine
the change in transmission line losses and load current.

7.20 A 1000-W electric motor is connected to a source

of 120 Vs, 60 Hz, and the result is alagging pf of 0.8.
To correct the pf to 0.95 lagging, a capacitor is placed
in parallel with the motor. Calculate the current drawn
from the source with and without the capacitor
connected. Determine the value of the capacitor
required to make the correction.

7.21 |If the voltage and current given below are supplied

by a source to acircuit or load, determine:

a. The power supplied by the source which is
dissipated as heat or work in the circuit (load).

b. The power stored in reactive componentsin the
circuit (load).

The value of C isthat which will correct the power
factor angle to zero, i.e., reduces |, to aminimum

valuein phase with V,. Determine the reduction of
current which resulted from connecting the capacitor
into the circuit.

7.25 Without the capacitor connected into the circuit:

v,(t) = 170 coswt V
i;(t) = 130 cos(wt — 0.192) A
f=60Hz C=387uF
Thevalue of C given isthat which will correct the

power factor angle to zero, i.e., reducesi, toa

minimum value in phase with V,,. Determine by how
much the current supplied to the plant is reduced by
connecting the capacitor.

7.26 Determine the time-averaged total power, the real

power dissipated, and the reactive power stored in each



of the impedances in the circuit shown in Figure P7.26
if:

V1 = 1700V
Vo =170V L (w/2) V
o = 377rad/s

Z1=0.7/(n/6) @
Z, = 15/0.105Q
Z3=03+j0.4Q

Ow zl
O [J-

Figure P7.26

]

7.27 |If the voltage and current supplied to acircuit or
load by a source are:

V, = 170£ — 0.157° V I, =1320.28° A

Determine:

a. The power supplied by the source which is
dissipated as heat or work in the circuit (load).

b. The power stored in reactive componentsin the
circuit (load).

¢. The power factor angle and power factor.

Section 3: Transformers

7.28 A center-tap transformer has the schematic
representation shown in Figure P7.28. The
primary-side voltage is stepped down to a
secondary-side voltage, Ve, by aratio of n : 1. Onthe
secondary side, Veees = Verer = $Vse
a If Vyim = 120/32° V and n = 9, find Ve, Ve,

and \79802.
b. What must n beif Vyyim = 20820.175 V and we
desire |V | tobe 8.7 V?

Figure P7.28

7.29 For the circuit shown in Figure P7.29, find:
a. Thetotal resistance seen by the voltage source.
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b. Thevoltage gain v/ vg.

¢. Thevalueto which the 16-2 load resistance should
be changed so it will absorb maximum power from
the given source.

<
<>

Figure P7.29

7.30 Anideal transformer israted to deliver 400 kVA at

460 V to a customer as shown in Figure P7.30.

a. How much current can the transformer supply to
the customer?

b. If the customer’sload is purely resistive (i.e., if
pf = 1), what is the maximum power that the
customer can receive?

c. If the customer’s power factor is 0.8 (lagging),
what is the maximum usable power the customer
can receive?

d. What isthe maximum power if the pf is0.7
(lagging)?

e. If the customer requires 300 kW to operate, what is
the minimum power factor with the given size
transformer?

(o}

o

z
|::| Customer’s
load

Customer

(o}

o

I

Ideal transformer

Figure P7.30

7.31 For theidea transformer shown in Figure P7.31,
find v, (¢) if vs(¢) iIS294 CcOS3771.

e

2250 Vo)

<
<

O

Figure P7.31

7.32 |If thetransformer shown in Figure P7.32 isideal,
find theturnsratio N = 1/n that will provide
maximum power transfer to the load.
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+
IR V()
0

Rs=1800Q R_=8Q

Figure P7.32

7.33 Assumethe 8-Q resistor isthe load in the circuit

shown in Figure P7.33. Assume aturnsratio of 1 : n.
What value of n will result in the load resistor
absorbing maximum power from the source?

3Q

= 8Q

A
| 1+
\&
AAAA
\J

4Q

Figure P7.33

7.34 |f we knew that the transformer shown in Figure

P7.34 was to deliver 50 A at 110 V rmswith acertain
resistive load, what rms phasor voltage source, Vg,
would provide this voltage and current?

Figure P7.34

7.35 A method for determining the equivalent circuit of

atransformer consists of two tests: the open-circuit test
and the short-circuit test. The open-circuit test, shown
in Figure P7.35(a), is usually done by applying rated
voltage to the primary side of the transformer while

leaving the secondary side open. The current into the
primary side is measured, as is the power dissipated.

(A (w)y— o
“® |

O
@
®-@ o
+ L] L]
%@ |
(b)
Iw Lw
O— WW—TT O+
~ L] o
VL
rC%E Lc % ‘ ‘ % Vsecondary
(e, O—

©
Figure P7.35

The short-circuit test, shown in Figure P7.35(b),
is performed by increasing the primary voltage until
rated current is going into the transformer while the
secondary sideis short-circuited. The current into the
transformer, the applied voltage, and the power
dissipated are measured.

The equivalent circuit of atransformer is shown
in Figure P7.35(c), wherer,, and L, represent the
winding resistance and inductance, respectively, and r,.
and L. represent the losses in the core of the
transformer and the inductance of the core. The ideal
transformer is also included in the model.

With the open-circuit test, we may assume that
1, =15 = 0. Then al of the current that is measured
is directed through the parallel combination of r. and
L.. Wedso assumethat |r.||jwL.| is much greater
thanr, + joL,. Using these assumptions and the
open-circuit test data, we can find the resistance r. and
theinductance L.. _

In the short-circuit test, we assume that V secondary
is zero, so that the voltage on the primary side of the
ideal transformer is also zero, causing no current flow
through the r. — L. parallel combination. Using this
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assumption with the short-circuit test data, we are able Vwo
to find the resistance r,, and inductance L,,,.
Using the following test data, find the equivalent
circuit of the transformer: 120rpmn/3
Open-circuit test:  V =241V
I =095A
P=32W
Short-circuittest: V =5V
[ =525A
P=26W

Both tests were made at w = 377 rad/s. Figure P7.39

7.36 Using the methods of Problem 7.35 and the

following data, find the equivalent circit of the 7.40 For the three-phase circuit shown in Figure P7.40,

transformer tested: find the currents rw, TB, TR, and TN .
Open-circuit test:  Vp = 4,600V -
loc=07A Vr=11000V
P =200W _
Short-circuittest; P =50W V= 110021/3 V
Vp =52V
Thetransformer is a 460-kVA transformer, and the Vg = 1100411/3 V
tests are performed at 60 Hz.
Section 4: Three-Phase Power

Figure P7.40
7.37 The magnitude of the phase voltage of abalanced

three-phase wye system is 100 V. Express each phase 7.41 For thecircuit shown in Figure P7.41, find the
and line voltage in both polar and rectangular currentsig, Iy, 15, and i y.
coordinates.

7.38 The phase currentsin afour-wire wye-connected

Vr=2200 0
load are as follows: R

- - N Iw
l.. =10£0,1,, =12/57/6,1,., = 8/2.88 Viy= 220(21/3 00—

Determine the current in the neutral wire.

Ts

7.39  For the circuit shown in Figure P7.39, we see that Vo= 220041/3 00—
each voltage source has a phase difference of 27/3in TN
relation to the others. I:r\
a FindVgw, Vs, and Vg, where 1

Viw =Vr = Vw,Vws =Vwy — Vg, and .
\73R — \73 _\7R. Figure P7.41

b. Repeat part a, using the calculations
\7RW = \7R\/§4 - 7T/6

7.42 |Inthecircuit of Figure P7.42:
vy, = 170 cos(wt) V

Vs = Vw/34—1/6 v,2 = 170 cos(wt + 27/3) V
Vg = Vp/3/—7/6 vy,3 = 170 cos(wt — 27 /3) V
¢. Compare the results of part awith the results of f =60Hz Z; =05220° @

part b. Z,=035/0°Q  Z3=17/-90°Q
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Determine the current through Z; using:
a. Loop/mesh analysis.

b. Node analysis.

¢. Superposition.

Figure P7.42

7.43 Determine the current through R in the circuit of
Figure P7.43:

v, = 170cos(wt) V

vy = 170cos(wt — 27/3) V

vz = 170cos(wt + 2 /3) V

f =400 Hz R=100Q
C =047 uF L =100 mH

Figure P7.43

7.44 Thethree sourcesin the circuit of Figure P7.44 are
connected in wye configuration and the loads in a delta
configuration. Determine the current through each
impedance.

vs1 = 170 cos(wt) V
v;2 = 170 cos(wt + 27/3) V
v,3 = 170cos(wt — 27 /3) V

f =60Hz
Zo=T/m/29

Z, =309
Z3=0-j11Q

Figure P7.44

7.45 |f we model each winding of athree-phase motor
like the circuit shown in Figure P7.45(a) and connect
the windings as shown in Figure P7.45(b), we have the
three-phase circuit shown in Figure P7.45(c). The
motor can be constructed so that R, = R, = Rz and
L, = L, = L3, asistheusua case. If we connect the
motor as shown in Figure P7.45(c), find the currents
Tx: 1w, 15, and Ty, assuming that the resistances are
40 Q each and each inductanceis 5 mH. The frequency
of each of the sourcesis 60 Hz.

Vi Vs, V3
Ry R, Rs
1st 2nd 3rd
winding winding winding
L1 Lo L3
@
\71 \72 \73
Ry Ry Rs
L1 Lo Ls
(b)
- Ve, Tr
——
+
4160 —30°
4160 210° .
4160 90°
+ Ve, Ts

]
i

Figure P7.45

©

7.46 With reference to the motor of Problem 7.44,

a. How much power (in watts) is delivered to the
motor?

b. What is the motor’s power factor?

¢. Why isit common inindustria practice not to
connect the ground lead to motors of this type?

7.47 Find the apparent power and the real power
delivered to theload in the Y-A circuit shown in Figure
P7.47. What is the power factor? Assume rms values.

Figure P7.47
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7.48 The electric power company is concerned with the 7.49 A balanced, three-phase Y-connected source with
loading of itstransformers. Sinceit is responsibleto a 230-V s line voltages has a balanced Y-connected
large number of customers, it must be certain that it load of 3+ j4 2 per phase. For the case that the lines
can supply the demands of all customers. The power have zero impedance, find all three line currents and
company’s transformers will deliver rated kVA to the the total real power absorbed by the load.
secondary load. However, if the demand were to 7.50 Thecircuit shown in Figure P7.50 isa Y-A-Y
increase to a point where grester than rated current connected three-phase circuit. The primaries of the
were required, the secondary voltage would have to transformers are wye-connected, the secondaries are
drop below rated value. Also, the current would delta-connected, and the Ipad is wye-connected. Find

increase, and with it the 72 R losses (due to winding
resistance), possibly causing the transformer to
overheat. Unreasonable current demand could be
caused, for example, by excessively low power factors
at the load.

The customer, on the other hand, is not greatly
concerned with an inefficient power factor, provided
that sufficient power reachesthe load. To make the
customer more aware of power factor considerations,
the power company may install a penalty on the
customer’s bill. A typical penalty-power factor chart is
shown in Table 7.3. Power factors below 0.7 are not
permitted. A 25 percent penalty will be applied to any
billing after two consecutive monthsin which the

customer’s power factor has remained below 0.7. 4600273V o —

thecurrents i gp, Twp, Igph 14,15, and .

Table 7.3 H Tc

—_—
Power factor Penalty IdeaalSf
= transformer$
0.850 and higher ~ None Figure P7.50
0.8t00.849 1%
0.75t0 0.799 2%

7.51 For thecircuit shown iin Figure P7.51, find the
0.7t00.749 3% currents ', I'g, Ic, and Iy}, and the real power
dissipated by the load.

Courtesy of Detroit Edison.

The Y-Y circuit shown in Figure P7.48 is -
representative of athree-phase motor load. Assume

A
rms values. 22000V 40Q 20Q
a. Find the total power supplied to the motor. j10Q

b. Find the power converted to mechanical energy if —-j5Q
the motor is 80 percent efficient.
c¢. Find the power factor. - i5Q
d. Does the company risk facing a power factor 5
penalty on its next bill if &l the motorsin the 11073 V] 200
factory are similar to this one?

Tc
—

1100 —2n/3V

o
N

—o
-t

Figure P7.51

Figure P7.48
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CHAWPTER

Semiconductors and Diodes

his chapter introduces semiconductor-based electronic devices, and in so
doing, it providesatransition between thefundamental sof electrical circuit
analysis and the study of electronic circuits. Although the theme of this
chapter may seem somewhat different from the circuit analysis of the first
seven chapters, the analysis of electrical circuitsisstill at the core of the material.
For example, the operation of diodes will be explained in part using linear circuit
models containing resistors and voltage and current sources. In fact, the primary
emphasisin thisand the next two chapterswill betheuse of linear circuit modelsfor
understanding and analyzing the behavior of more complex nonlinear electronic
devices; weshow how it ispossibleto construct model s of deviceshaving nonlinear
i-v characteristics by means of linear circuits. The alternative to this approach
would be to conduct an in-depth study of the physics of each class of device:
diodes, bipolar transistors, field-effect devices, and other types of semiconductors.
Such an approach is neither practical nor fruitful from the viewpoint of this book,
since it would entail lengthy explanations and require a significant background in
semiconductor physics. Thus, theapproach herewill befirstto provideaqualitative
understanding of the physics of each family of devices, and then to describe the
devicesin terms of their i-v characteristics and simple circuit models, illustrating
their analysis and applications.
Thechapter startswith adiscussion of semiconductorsand of the pr junction
and the semiconductor diode. The second part of this chapter is devoted to a study
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Figure 8.1 Lattice structure
of silicon, with four valence
electrons
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tofill hole
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The net effect isahole
moving to the right

A vacancy (or hole) is created
whenever afree electron leaves
the structure.

This“hole” can move around
thelatticeif other electrons
replace the free electron.

Figure 8.2 Free electrons
and “holes” in the lattice
structure

Chapter 8 Semiconductors and Diodes

of diodecircuit models, and numerouspractical applications. By theend of Chapter
8, you should have accomplished the following objectives:

+ A qualitative understanding of electrical conduction in semiconductor
materials.

+ The ability to explain the i-v characteristic of a semiconductor diode (or
of a pn junction).

- The ahility to use the ideal, offset, and piecewise linear diode modelsin
simple circuits.

- The ahility to analyze diode rectifier, peak limiter, peak detector, and
regulator circuits and the behavior of LEDs and photocells.

8.1 ELECTRICAL CONDUCTION IN
SEMICONDUCTOR DEVICES

Thissection briefly introduces the mechanism of conduction in aclass of materials
called semiconductors. Semiconductorsare material sconsisting of elementsfrom
group IV of the periodic table and having electrical properties falling somewhere
between those of conducting and of insulating materials. Asan example, consider
the conductivity of three common materials. Copper, a good conductor, has a
conductivity of 0.59 x 108 S/cm; glass, a common insulator, may range between
10716 and 102 S/cm; while silicon, a semiconductor, has a conductivity that
varies from 1078 to 10~ S/cm. You see, then, that the name semiconductor isan
appropriate one.

A conducting material ischaracterized by alarge number of conduction-band
electrons, which have a very weak bond with the basic structure of the material.
Thus, an electric field easily imparts energy to the outer electrons in a conductor
and enables the flow of electric current. In a semiconductor, on the other hand,
one needs to consider the lattice structure of the material, which in this case is
characterized by covalent bonding. Figure 8.1 depicts the lattice arrangement
for silicon (Si), one of the more common semiconductors. At sufficiently high
temperatures, thermal energy causes the atoms in the lattice to vibrate; when
sufficient kinetic energy ispresent, some of the valence electrons break their bonds
with the lattice structure and become available as conduction electrons. These
free electrons enable current flow in the semiconductor. It should be noted that
in a conductor valence electrons have a very loose bond with the nucleus and are
therefore available for conduction to a much greater extent than valence electrons
in a semiconductor. One important aspect of this type of conduction is that the
number of charge carriers depends on the amount of thermal energy present in the
structure. Thus, many semiconductor properties are a function of temperature.

The free valence electrons are not the only mechanism of conduction in a
semiconductor, however. Whenever a free electron leaves the lattice structure, it
creates a corresponding positive charge within the lattice. Figure 8.2 depicts the
situation in which a covalent bond is missing because of the departure of a free
electron from the structure. The vacancy caused by the departure of afree electron
iscalled ahole. Note that whenever aholeis present, we have, in effect, apositive
charge. The positive charges also contribute to the conduction process, in the
sense that if a valence-band electron “jumps’ to fill a neighboring hole, thereby
neutralizing a positive charge, it correspondingly creates a new hole at a different
location. Thus, the effect is equivalent to that of a positive charge moving to the
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right, in the sketch of Figure 8.2. This phenomenon becomes relevant when an
external electric field is applied to the material. It isimportant to point out here
that the mobility—that is, the ease with which charge carriers move across the
lattice—differs greatly for the two types of carriers. Free electrons can move far
more easily around the lattice than holes. To appreciate this, consider the fact that
afree electron has already broken the covalent bond, whereas for a hole to travel
through the structure, an electron must overcome the covalent bond each time the
hole jJumps to a new position.

According to thisrelatively simplified view of semiconductor materials, we
can envision a semiconductor as having two types of charge carriers—holes and
free electrons—which travel in opposite directions when the semiconductor is
subjected to an external electric field, giving rise to a net flow of current in the
direction of the electric field. Figure 8.3 illustrates the concept.

An additional phenomenon, called recombination, reduces the number of
charge carriers in a semiconductor. Occasionally, a free electron traveling in the
immediate neighborhood of a hole will recombine with the hole, to form a cova
lent bond. Whenever this phenomenon takes place, two charge carriers are lost.
However, in spite of recombination, the net balance is such that a number of free
electrons always exist at a given temperature. These electrons are therefore avail-
ablefor conduction. The number of free electrons available for agiven materia is
caled theintrinsic concentration, n;. For example, at room temperature, silicon
has

n; = 1.5 x 10 electrons/m® (8.1)

Note that there must be an equivalent number of holes present as well.

Semiconductor technology rarely employs pure, or intrinsic, semiconduc-
tors. To control the number of charge carriers in a semiconductor, the process of
dopingisusually employed. Doping consistsof addingimpuritiestothecrystalline
structure of the semiconductor. The amount of these impuritiesis controlled, and
theimpurities can be of one of two types. If the dopant is an element from thefifth
column of the periodic table (e.g., arsenic), the end result is that wherever anim-
purity is present, an additional free electronisavailablefor conduction. Figure 8.4
illustrates the concept. The elements providing the impurities are called donors
in the case of group V elements, since they “donate” an additional free electron
to the lattice structure. An equivalent situation arises when group 11l elements
(e.g., indium) are used to dope silicon. In this case, however, an additional holeis
created by the doping element, which is called an acceptor, sinceit acceptsafree
electron from the structure and generates a hole in doing so.

Semiconductors doped with donor elements conduct current predominantly
by means of free electronsand aretherefore called n-type semiconductors. When
an acceptor element is used as the dopant, holes constitute the most common
carrier, and the resulting semiconductor is said to be a p-type semiconductor.
Doping usually takes place at such levels that the concentration of carriers due to
the dopant is significantly greater than the intrinsic concentration of the original
semiconductor. If n isthetotal number of free electrons and p that of holes, then
in an n-type doped semiconductor, we have

n>>n; (8.2)
and

p < pi (8.3)
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Thus, free electrons are the majority carriersin an n-type material, while holes
aretheminority carriers. Ina p-type material, the mgjority and minority carriers
are reversed.

Doping is a standard practice for a number of reasons. Among these are
the ability to control the concentration of charge carriers, and the increase in the
conductivity of the material that results from doping.

8.2 THE pn JUNCTION
AND THE SEMICONDUCTOR DIODE

A simple section of semiconductor material does not in and of itself possess prop-
ertiesthat makeit useful for the construction of electronic circuits. However, when
asection of p-type material and a section of n-type material are brought in contact
to form a pn junction, a number of interesting properties arise. The pn junction
forms the basis of the semiconductor diode, awidely used circuit element.

Figure 8.5 depicts an idealized pn junction, where on the p side, we seea
dominance of positive chargecarriers, or holes, and onthen side, thefreeelectrons
dominate. Now, in the neighborhood of the junction, in asmall section called the
depletion region, the mobile charge carriers (holes and free electrons) come into
contact with each other and recombine, thus leaving virtually no charge carriers
at the junction. What is left in the depletion region, in the absence of the charge
carriers, is the lattice structure of the n-type material on the right, and of the p-
type material on the left. But the n-type material, deprived of the free electrons,
which have recombined with holes in the neighborhood of the junction, is now
positively ionized. Similarly, the p-type material at the junction is negatively
ionized, because holes have been lost to recombination. The net effect is that,
while most of the material (p- or n-type) is charge-neutral because the lattice
structure and the charge carriers neutralize each other (on average), the depletion
region sees a separation of charge, giving riseto an electric field pointing from the
n side to the p side. The charge separation therefore causes a contact potential
to exist at the junction. This potential is typically on the order of a few tenths of
avolt and depends on the material (about 0.6 to 0.7 V for silicon). The contact
potential is also called the offset voltage, V.

The p-side depletion region is negatively The n-side depletion region is positively
ionized because its holes have recombined ionized because its free electrons have
with free electrons from the n-side recombined with holes from the p-side
Depletion !
region 3

OLO A OLO
%0 e

Figure 8.5 A pn junction

In effect, then, if one wereto connect the two terminals of the pn junction to
each other, to form a closed circuit, two currents would be present. First, asmall
current, called rever se saturation current, I, exists because of the presence of
the contact potential and the associated electric field. In addition, it also happens
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that holes and free electrons with sufficient thermal energy can cross the junction.
Thiscurrent acrossthejunction flows opposite to the reverse saturation current and
is called diffusion current, I,. Of course, if a hole from the p side entersthe n
side, itisquitelikely that it will quickly recombine with one of the n-type carriers
on then side. Oneway to explain diffusion current isto visualize the diffusion of
agasin aroom: gas molecules naturally tend to diffuse from aregion of higher
concentration to one of lower concentration. Similarly, the p-type material—for
example—has a much greater concentration of holes than the n-type material.
Thus, some holes will tend to diffuse into the n-type material across the junction,
although only those that have sufficient (thermal) energy to do so will succeed.
Figure 8.6 illustrates this process.

Thephenomenaof drift and diffusion hel p explain how a pn junction behaves
whenit isconnected to an external energy source. Consider thediagramsof Figure
8.7, where a battery has been connected to a pn junction in the rever se-biased
direction (Figure 8.7(a)), and in the forward-biased direction (Figure 8.7(b)).
We assume that some suitable form of contact between the battery wires and the
semiconductor material can be established (thisis called an ohmic contact). The
effect of areverse biasisto increase the contact potential at the junction. Now, the
majority carriers trying to diffuse across the junction need to overcome a greater
barrier (alarger potential) and awider depletion region. Thus, the diffusion current
becomesnegligible. Theonly current that flowsunder reversebiasisthevery small
reverse saturation current, so that the diode current, i, (defined in thefigure), is

ip=—1Io (8.4)

Whenthe pn junctionisforward-biased, the contact potential acrossthejunctionis
lowered (notethat V actsin oppositiontothecontact potential). Now, thediffusion
of magjority carriersis aided by the external voltage source; in fact, the diffusion
current increases as a function of the applied voltage, according to equation 8.5

Id = [oeqv[’/kr (85)

where v, isthe voltage across the pn junction, k = 1.381 x 10-2% JK is Boltz-
mann’sconstant, ¢ the chargeof oneelectron, and T’ thetemperature of the material
in kelvins (K). The quantity kT /g is constant at a given temperature and is ap-
proximately equal to 25 mV at room temperature. The net diode current under
forward biasis given by equation 8.6

ip=1I;— Ip= Ip(e??/*T — 1) Diode equation (8.6)

which isknown asthe diode equation. Figure 8.8 depicts the diodei-v character-
istic described by the diode equation for afairly typical silicon diode for positive
diode voltages. Since the reverse saturation current, Iy, is typicaly very small
(107%to 10~%5 A), equation 8.7:

ip = Ioe?"?/*T (8.7)

isagood approximation if the diode voltage, vp, is greater than afew tenths of a
volt.

The ability of the pn junction to essentially conduct current in only one
direction—that is, to conduct only when the junction is forward-biased—makes it
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The arrow in the circuit symbol for
the diode indicates the direction of
current flow when the diode is
forward-biased.
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Figure 8.9 Semiconductor
diode circuit symbol
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Figure 8.8 Semiconductor diode i-v characteristic

valuable in circuit applications. A device having asingle pn junction and ohmic
contacts at its terminals, as described in the preceding paragraphs, is called a
semiconductor diode, or simply diode. Aswill be shown later in this chapter, it
finds use in many practical circuits. The circuit symbol for the diodeis shownin
Figure 8.9, along with a sketch of the pn junction.

Figure8.10 summarizesthebehavior of the semiconductor diode by meansof
itsi-v characteristic; it will become apparent later that thisi-v characteristic plays
an important role in constructing circuit models for the diode. Note that a third
region appearsin thediodei-v curvethat hasnot been discussed yet. Therever se-
breakdown region to the far left of the curve represents the behavior of the diode
when a sufficiently high reverse bias is applied. Under such alarge reverse bias
(greater inmagnitudethan thevoltage Vz, aquantity that will be explained shortly),
the diode conducts current again, this time in the reverse direction. To explain
the mechanism of reverse conduction, one needs to visualize the phenomenon
of avalanche breakdown. When a very large negative bias is applied to the pn
junction, sufficient energy is imparted to charge carriers that reverse current can
flow, well beyond the normal reverse saturation current. Inaddition, because of the
large electric field, electrons are energized to such levels that if they collide with
other charge carriers at a lower energy level, some of their energy is transferred
to the carriers with lower energy, and these can now contribute to the reverse
conduction process, aswell. This processis called impact ionization. Now, these
new carriers may aso have enough energy to energize other low-energy electrons
by impact ionization, so that once a sufficiently high reverse biasis provided, this
process of conduction takes place very much like an avalanche: a single electron
can ionize severa others.

The phenomenon of Zener breakdown is related to avalanche breakdown.
It is usually achieved by means of heavily doped regions in the neighborhood
of the metal-semiconductor junction (the ohmic contact). The high density of
charge carriers provides the means for a substantial reverse breakdown current
to be sustained, at a nearly constant reverse hias, the Zener voltage, V;. This
phenomenon is very useful in applications where one would like to hold some
load voltage constant—for example, in voltage regulators, which are discussed
in alater section.

To summarize the behavior of the semiconductor diode, it is useful to refer
to the sketch of Figure 8.10, observing that when the voltage acrossthe diode, vp,
is greater than the offset voltage, V,,, the diode is said to be forward-biased and
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Figure 8.10 i-v characteristic of semiconductor diode

acts nearly as ashort circuit, readily conducting current. When vy, is between V,,
and the Zener breakdown voltage, —V, the diode acts very much like an open
circuit, conducting a small reverse current, Ip, of the order of only nanoamperes
(nA). Finally, if the voltage vp is more negative than the Zener voltage, — V7, the
diode conducts again, thistime in the reverse direction.

8.3 CIRCUIT MODELS
FOR THE SEMICONDUCTOR DIODE

From the viewpoint of auser of electronic circuits (as opposed to adesigner), itis
often sufficient to characterizeadeviceintermsof itsi-v characteristic, using either
load-line analysisor appropriate circuit model sto determine the operating currents
and voltages. This section showshow itispossibleto usethei-v characteristics of
the semiconductor diode to construct simpleyet useful circuit models. Depending
on the desired level of detall, it is possible to construct large-signal models of
the diode, which describe the gross behavior of the device in the presence of
relatively large voltages and currents; or small-signal models, which are capable
of describing the behavior of thediodeinfiner detail and, in particular, theresponse
of the diode to small changesin the average diode voltage and current. From the
user’sstandpoint, thesecircuit model sgreatly simplify theanalysisof diodecircuits
and make it possible to effectively analyze relatively “difficult” circuits simply by
using thefamiliar circuit analysistools of Chapter 3. Thefirst two major divisions
of this section will describe different diode models and the assumptions under
which they are obtained, to provide the knowledge you will need to select and use
the appropriate model for a given application.

Large-Signal Diode Models

| deal Diode M odel

Our first large-signal model treats the diode as a simple on-off device (much like
acheck valvein hydraulic circuits—see box, “Hydraulic Check Valves’).
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Hydraulic Check Valves

To understand the operation of the semiconductor
diode intuitively, we make reference to a very com-
mon hydraulic device that finds applica-
tion whenever one wishes to restrict the
flow of afluid to a single direction, and
prevent (check) reverse flow. Hydraulic
check valves perform thistask in anum-
ber of ways. Weillustrate afew examplesin thisbox.
Figure 1 depicts a swing check valve. In this
design, flow from left to right is permitted, as the
greater fluid pressure on the right side of the valve
forces the swing “door” to open. If flow were to
reverse, thereversal of fluid pressure (greater pressure
on the right) would cause the swing door to shut.
Figure 2 depicts a flapper check valve. The
principle is similar to that described above for
the swing check valve. In Figure 2, fluid flow is

FIND IT
—-1d

ON THE WEB

Figure 1

permitted from left to right, and not in the reverse
direction. The response of the valve of Figure 2 is
faster (duetothe shorter travel distance of theflapper)
than that of Figure 1.

You will find the analysis of the diode circuits
inthis chapter much easier to understand intuitively if
you visualizethe behavior of the diodeto besimilar to
that of the check valves shown here, with the pressure
difference across the valve orifice being analogous
to the voltage across the diode, and the fluid flow
rate being anal ogous to the current through the diode.
Figure 3 depicts the diode circuit symbol. Current
flows only from left to right whenever the voltage
acrossthediodeispositive, and no current flowswhen
the diode voltage is reversed. The circuit element of
Figure 3 is functionally analogous to the two check
valves of Figures 1 and 2.

Figure 2

+\p —

Figure 3

Figure8.11 illustrates how, on alarge scale, thei-v characteristic of atypical
diode may be approximated by an open circuit when vp < 0and by ashort circuit
whenvp > 0(recall thei-v curvesof theideal short and open circuits presentedin
Chapter 2). The analysis of acircuit containing a diode may be greatly simplified
by using the short-circuit—open-circuit model. From here on, thisdiode model will
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beknown astheideal diodemodel. In spiteof itssimplicity, theideal diode model
(indicated by the symbol shown in Figure 8.11) can be very useful in analyzing
diode circuits.

In the remainder of the chapter, ideal diodes will always be represented by
thefilled (black) triangle symbol shown in Figure 8.11.

Consider thecircuit shown in Figure 8.12, which containsa 1.5-V battery, an
ideal diode, and a 1-kS2 resistor. A technique will now be developed to determine
whether the diode is conducting or not, with the aid of the ideal diode model.

Assume first that the diode is conducting (or, equivalently, that vy, > 0).
This enables us to substitute a short circuit in place of the diode, as shown in
Figure 8.13, since the diode is now represented by a short circuit, vp = 0. Thisis
consistent with theinitial assumption (i.e., diode“on”), sincethediodeisassumed
to conduct for vp > 0 and since vp = 0 does not contradict the assumption.
The series current in the circuit (and through the diode) isip = 1.5/1,000 = 1.5
mA. To summarize, the assumption that the diode is on in the circuit of Figure
8.13 allows us to assume a positive (clockwise) current in the circuit. Since the
direction of the current and the diode voltage are consistent with the assumption
that thediodeison (vp > 0, ip > 0), it must be concluded that the diodeisindeed
conducting.

+ VWp -

_N_

. EEle
Ip

Figure 8.12 Circuit
containing ideal diode

+

15V —

Figure 8.13 Circuit of
Figure 8.12, assuming that
the ideal diode conducts

Suppose, now, that the diode had been assumed to be off. In this case, the
diode would be represented by an open circuit, asshown in Figure 8.14. Applying
KVL tothecircuit of Figure 8.14 reveal sthat the voltage v, must equal the battery
voltage, or vp = 1.5V, since the diode is assumed to be an open circuit and no
current flows through the circuit. Equation 8.8 must then apply.

1.5 = vp + 1,000ip = vp (8.8)

But the result vp = 1.5V is contrary to the initial assumption (i.e, vp < 0).
Thus, assuming that the diode is off leads to an inconsistent answer. Clearly, the
assumption must be incorrect, and therefore the diode must be conducting.

This method can be very useful in more involved circuits, where it is not
guite so obvious whether a diode is seeing a positive or a negative bias. The
method is particularly effective in these cases, since one can make an educated
guess whether the diode is on or off and solve the resulting circuit to verify the
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correctness of theinitial assumption. Some solved examples are perhaps the best
way to illustrate the concept.
FOCUSONMETHODOLOGY
Determining the Conduction State of an Ideal Diode

1. Assume a diode conduction state (on or off).

2. Substitute ideal circuit model into circuit (short circuit if on, open
circuit if off)

3. Solvefor diode current and voltage using linear circuit analysis
techniques.

4. If the solution is consistent with the assumption, then the initial
assumption was correct; if not, the diode conduction state is opposite to
that initially assumed. For example, if the diode has been assumed to
be off but the diode voltage computed after replacing the diode with an
open circuit isaforward bias, then it must be true that the actual state
of the diodeison.

EXAMPLE 8.1 Determining the Conduction State of an Ideal
Diode
Problem
+Vo - Determine whether the ideal diode of Figure 8.15 is conducting.
Ry Rs
E§R2 + Solution
Vs = :I Ve Known Quantities: Vs =12V; Vp =11V, Ri =5Q; R, =10Q; R3 =10 Q.
Find: The conduction state of the diode.
= Assumptions: Usetheideal diode mode!.
Figure 8.15
Analysis: Assumeinitially that the ideal diode does not conduct and replace it with an
open circuit, as shown in Figure 8.16. The voltage across R, can then be computed using
vy +Vo —y, the voltage divider rule:

Figure 8.16

R Ve 10
T Ri+R 0 5+10
Applying KVL to the right-hand-side mesh (and observing that no current flowsin the
circuit since the diode is assumed off), we obtain:

12=8V

V1

U1=UD+VB Oer=8—1l=—3V

The result indicates that the diode is reverse-biased, and confirms the initial assumption.
Thus, the diode is not conducting.

Asfurther illustration, let us make the opposite assumption, and assume that the
diode conducts. In this case, we should replace the diode with a short circuit, as shown in
Figure 8.17. Theresulting circuit is solved by nodal analysis, noting that v; = v, since the
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diode is assumed to act as a short circuit.
Vs—v1 v vi—Vs

Ri R, R3

VS VB _ V1 (%0 U1
Ri Ry R R, Rs

2 1_(1 1 1
5 10 \5 10 10"

v1 =25(24+11) =875V

Since v; = vy < Vi = 11V, we must conclude that current is flowing in the reverse
direction (from V; to node v,/v;) through the diode. This observation isinconsistent with
theinitial assumption, sinceif the diode were conducting, we can see current flow only in
the forward direction. Thus, the initial assumption was incorrect, and we must conclude
that the diode is not conducting.

Comments: The formulation of diode problemsillustrated in this example is based on
making an initial assumption. The assumption resultsin replacing the ideal diode with
either a short or an open circuit. Once this step is completed, the resulting circuit isa
linear circuit and can be solved by known methods to verify the consistency of theinitial
assumption.

Focus on Computer-Aided Solution: Thecircuit of Figure 8.15 is simulated by
Electronics Workbench™ in the CD that accompanies the book. Try changing the values
of resistorsin the simulation circuit to seeif it is possible to cause the diode to conduct
(Hint: Use avery large valuefor R;). Note that the computer simulation employs an ideal
diode model, but could also use a physically correct model of the diode (that of equation
8.6) (click on the diode symbol to see the list of options).
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EXAMPLE 8.2 Determining the Conduction State of an Ideal
Diode

Problem

Determine whether theideal diode of Figure 8.18 is conducting.

Solution

Known Quantities: Vg =12V; Vg =11V; Ry =5Q; R, =4 Q.

Find: The conduction state of the diode.

Assumptions: Usetheideal diode model.

Analysis: Assumeinitialy that the ideal diode does not conduct and replace it with an
open circuit, as shown in Figure 8.19. The current flowing in the resulting series circuit
(shown in Figure 8.19) is:

._VS_VB_]-A

"“RitR 9
The voltage at node v; is:
12 — v v — 11
5 4
vy = 1144V

Figure 8.18
5Q v 4Q
+ i=19A +
12V— + —11V
Figure 8.19
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The result indicates that the diode is strongly reverse-biased, sincevp, = 0—v; = —11.44
V, and confirms the initial assumption. Thus, the diode is not conducting.

Focus on Computer-Aided Solution: Thecircuit of Figure 8.18 is simulated by
Electronics Workbench™ in the CD that accompanies the book. Try changing the values
of resistorsin the simulation circuit to seeif it is possible to cause the diode to conduct.

FIND IT
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Figure 8.20

Oneof theimportant applications of the semiconductor diodeisrectification
of AC signals, that is, the ability to convert an AC signal with zero average (DC)
vaueto asigna with anonzero DC value. The application of the semiconductor
diode asarectifier isvery useful in obtaining DC voltage suppliesfrom the readily
available AC line voltage. Here, we illustrate the basic principle of rectification,
using an ideal diode—for simplicity, and also because the large-signal model is
appropriate when the diode is used in applicationsinvolving large AC voltage and
current levels.

Consider thecircuit of Figure8.20, wherean AC source, v; = 155.56 sinwt,
is connected to a load by means of a series ideal diode. From the analysis of
Example 8.1, it should be apparent that the diode will conduct only during the
positive half-cycle of the sinusoidal voltage—that is, that the condition v, > 0
will be satisfied only when the AC source voltageispositive—and that it will act as
an open circuit during the negative half-cycle of the sinusoid (vp < 0). Thus, the
appearance of the load voltage will be as shown in Figure 8.21, with the negative
portion of the sinusoidal waveform cut off. The rectified waveform clearly has a
nonzero DC (average) voltage, whereas the average input waveform voltage was
zero. When the diode is conducting, or v, > 0, the unknowns v; and ip can be
found by using the following equations:

Vi

= when v; >0 (8.9)
R,

ip
and
v, = i[)RL (810)

The load voltage, v, , and the input voltage, v;, are sketched in Figure 8.21. From
equation 8.10, it is obvious that the current waveform has the same shape as the
load voltage. The average value of the load voltage is obtained by integrating the
load voltage over one period and dividing by the period:

155.56
T

Vioad, DC = % / " 155.568inwr df = — 4952V (8.12)
0

The circuit of Figure 8.20 is called a half-wave rectifier, since it preserves only

half of the waveform. Thisisnot usualy avery efficient way of rectifying an AC

signal, since half the energy inthe AC signal isnot recovered. It will beshownina

later section that it ispossibleto recover al so the negative half of the AC waveform

by means of a full-wave rectifier.

Offset Diode Model

While theideal diode model is useful in approximating the large-scale character-
istics of aphysical diode, it does not account for the presence of an offset voltage,
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whichisan unavoidable component in semiconductor diodes (recall thediscussion
of the contact potential in Section 8.2). The offset diodemodel consistsof anideal
diode in series with a battery of strength egqual to the offset voltage (we shall use
the value V,, = 0.6 V for silicon diodes, unless otherwise indicated). The effect
of the battery is to shift the characteristic of the ideal diode to the right on the
voltage axis, as shown in Figure 8.22. Thismodel isabetter approximation of the
large-signal behavior of a semiconductor diode than the ideal diode model.

According to the offset diode model, the diode of Figure 8.22 actsasan open
circuit for vp < 0.6 V, and it behaves like a 0.6-V battery for vp > 0.6 V. The
equations describing the offset diode model are as follows:

vp > 06V
vp < 0.6V

Diode — 0.6-V battery
) o (8.12)
Diode — Open circuit

The diode offset model may be represented by anideal diode in series with a 0.6-
V ideal battery, as shown in Figure 8.23. Use of the offset diode model is best
described by means of examples.
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EXAMPLE 8.3 Using the Offset Diode Model in a Half-Wave
Rectifier

Problem

Compute and plot the rectified |oad voltage, v, in the circuit of Figure 8.24.

Solution
Known Quantities: vs(f) = 3 cos(wt); V,, = 0.6 V.
Find: An analytical expression for the load voltage.

Assumptions: Usethe offset diode model.



350

Circuit with offset diode model

Figure 8.24

(b) Diode on

Figure 8.25

VIRTUAL LAB

Chapter 8 Semiconductors and Diodes

Analysis: We start by replacing the diode with the offset diode model, as shown in the
lower half of Figure 8.24. Now we can use the method developed earlier for ideal diode
analysis, that is, we can focus on determining whether the voltage v, across the ided
diodeis positive (diode on) or negative (diode off).

Assumefirst that the diode is off. The resulting circuit is shown in Figure 8.25(a).
Since no current flows in the circuit, we obtain the following expression for vp:

VUp = US—0.6

To be consistent with the assumption that the diode is off, we require that v, be negative,
which in turns corresponds to

vy <06V Diode off condition

With the diode off, the current in the circuit is zero, and the load voltage is also zero. If
the source voltage is greater than 0.6 V, the diode conducts, and the current flowing in the
circuit and resulting load voltage are given by the expressions:

. Vg — 0.6 .

1 R UR 1 Vs
We summarize these results as follows:

v =0 forvg < 0.6V

VR = Vs — 0.6 for Vg > 0.6V

The resulting waveform is plotted with vg in Figure 8.26.

-3 | | eaae®” | I I ..'-. .
0 0.005 0.01 0.015 0.02 0.025 0.03
Time

Figure 8.26 Source voltage (dotted curve) and rectified
voltage (solid curve) for the circuit of Figure 8.24.

Comments: Note that use of the offset diode model leads to problems that are very
similar to ideal diode problems, with the addition of a voltage source in the circuit.

Also observe that the load voltage waveform is shifted downward by an amount
equal to the offset voltage, V,,. The shift isvisible in the case of this example because V,,
isasubstantial fraction of the source voltage. If the source voltage had peak values of tens
or hundreds of volts, such a shift would be negligible, and an ideal diode model would
serve just aswell.

Focus on Computer-Aided Solution: The half-wave rectifier of Figure 8.20 is simulated
using Electronics Workbench™ in the CD that accompanies the book. The circuit is
simulated by using an ideal diode model. Replace the ideal diode with any of the other
available options (physical diodes), and observe any differencesin the result (Hint: The
differences will be more dramatic for small peak source voltage values, say 5 volts).
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EXAMPLE 8.4 Using the Offset Diode Model

Problem

Use the offset diode model to determine the value of v, for which diode D; first conducts

in the circuit of Figure 8.27. D;
o—AMWW—
R |+
v Ve == RV,
Solution ! = ? ’_D
o

Known Quantities: Vp =2V; Ry = 1kQ; R, =500 Q; V, = 0.6 V.
) i Figure 8.27
Find: Thelowest value of v, for which diode D; conducts.

Assumptions: Usethe offset diode model.

Analysis: We start by replacing the diode with the offset diode model, as shown in
Figure 8.28. Based on our experience with previous examples, we can state immediately
that if vy is negative, the diode will certainly be off. To determine the point at which the
diode turns on as v, isincreased, we write the circuit equation assuming that the diodeis
off. If you were conducting alaboratory experiment, you might monitor v, and
progressively increase it until the diode conducts; the equation below is an analytical
version of this experiment. With the diode off, no current flows through R,, and

vi=vp1+V,+ Vs
According to this equation
vpr = vy — 2.6
and the condition required for the diode to conduct is:

vy > 26V Diode on condition

i+ Vp1— -96\_/3
+ 1kQ | Dy i

it + | +
vi 2V == 50003 Vo
o
Figure 8.28

Comments: Once again, the offset diode model permits using the same analysis method
that was developed for the ideal diode model.

Small-Signal Diode Models

As one examines the diode i-v characteristic more closely, it becomes apparent
that the short-circuit approximation is not adequate to represent the small-signal
behavior of the diode. The term small-signal behavior usually signifies the re-
sponse of the diode to small time-varying signalsthat may be superimposed on the
average diode current and voltage. Figure 8.8 depicts a close-up view of asilicon
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diode i-v curve. From thisfigure, it should be apparent that the short-circuit ap-
proximationisnot very accurate when adiode’ sbehavior isviewed on an expanded
scale. To afirst-order approximation, however, the i-v characteristic resembles
that of aresistor (i.e., islinear) for voltages greater than the offset voltage. Thus,
it may be reasonable to model the diode as a resistor (instead of a short circuit)
once it is conducting, to account for the slope of itsi-v curve. In the following
discussion, the method of load-line analysis (which was introduced in Chapter 3)
will be exploited to determine the small-signal resistance of a diode.

Consider thecircuit of Figure8.29, whichrepresentsthe Thévenin equival ent
circuit of an arbitrary linear resistive circuit connected to adiode. Equations 8.13
and 8.14 describe the operation of the circuit:

vr =ipRr +vp (8.13)
arises from application of KVL, and

ip = Ip(e%/*T — 1) (8.14)
isthe diode equation (8.6).

Although we have two equations in two unknowns, these cannot be solved
analytically, since one of the equations contains vp in exponentia form. Asdis-
cussed in Chapter 3, two methods exist for the solution of transcendental equations
of thistype: graphical and numerical. Inthe present case, only the graphical solu-
tion shall be considered. The graphical solution is best understood if we associate
acurvein theip-vp plane with each of the two preceding equations. The diode
equation gives rise to the familiar curve of Figure 8.8. The load-line equation,
obtained by KVL, isthe equation of alinewith slope —1/ R and ordinateintercept
given by Vr/Rr.

ip= —iv[) + iVT Load line equation (8.15)
Rt Ry

Thesuperposition of thesetwo curvesgivesrisetotheplot of Figure8.30, wherethe
solution to the two equationsis graphically found to be the pair of values (1p, Vp).
Theintersection of the two curvesis called the quiescent (oper ating) point, or Q
point. Thevoltage v, = Vy and thecurrent i, = I are the actual diode voltage
and current when the diode is connected as in the circuit of Figure 8.29. Note
that this method is also useful for circuits containing alarger number of elements,
provided that we can represent these circuits by their Thévenin equivalents, with
the diode appearing as the load.

Rr

Figure 8.29 Diode circuit
for illustration of load-line
anaysis

Figure 8.30 Graphica
solution of equations 8.13 and
8.14
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FOCUSONMETHODOLOGY
Deter mining the Operating Point of a Diode

1. Reduce the circuit to a Thévenin or Norton equivalent circuit with the
diode as the |oad.

2. Write the load line equation (8.15).

3. Solve numerically two simultaneous equations in two unknowns (the
load line equations and the diode equation) for the diode current and
voltage.

Or

4. Solve graphically by finding the intersection of the diode curve (e.g.,
from a data sheet) with the load line curve. The intersection of the two
curves is the diode operating point.

FOCUSONMETHODOLOGY
Using Device Data Sheets

One of the most important design tools available to engineers is the device data sheet. In this
box we illustrate the use of a device data sheet for the 1IN400X diode. Thisis a general-purpose
rectifier diode, designed to conduct average currents in the 1.0-A range. Excerpts from the data
sheet are shown below, with some words of explanation. The complete data sheets can be found
in the accompanying CD-ROM.

1N4001 — 1IN4007
Features

« Low forward voltage drop.
« High surge current
capability.

DO-41
Color Band Denotes Cathode

1.0 Ampere General Purpose Rectifiers

ABSOLUTE MAXIMUM RATINGS:

This table summarizes the limitations of the device. For example, in the first column one can
find the maximum allowable average current (1 A), and the maximum surge current, that is the
maximum short-time burst current the diode can sustain without being destroyed. Also mentioned
arethe power rating and operating temperatures. Notethat in the entry for the total device power
dissipation, der ating information isalso given. Derating impliesthat the device power dissipation
will change as afunction of temperature, in this case at the rate of 20 mW/°C. For example, if we
expect to operate the diode at a temperature of 100°C, we would calculate a derated power of:

P =25W — (75°C x 0.02mW/°C) = 1.0W
Thus, the diode operated at a higher temperature can dissipate only 1 W.

(Continued)
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Symbol | Parameter Value Units

Io Average Rectified Current 1.0 A
.375" lead length @ T4 = 75°C

i1 (surge) Peak Forward Surge Current
8.3 mssingle half-sine-wave 30 A
Superimposed on rated load (JEDEC method)

Pp Total Device Dissipation 25 W
Derate above 25°C 20 mwW/°C

Rgja Thermal Resistance, Junction to Ambient 50 °C/W

Tysq Storage Temperature Range —55t0+175 | °C

Ty Operating Junction Temperature —55t0+150 | °C

*These ratings are limiting val ues above which the serviceability of any semiconductor device may be impaired.

ELECTRICAL CHARACTERISTICS:

Thesection onelectrical characteristics summarizes someof theimportant voltage and current specifications
of the diode. For example, the maximum DC reverse voltageislisted for each diode in the IN400X family.
Similarly, you will find information on the maximum forward voltage, reverse current, and typical junction

capacitance.

Electrical Characteristics

T = 25°C unless otherwise noted

Parameter Device Units
4001 | 4002 | 4003 | 4004 | 4005 | 4006 | 4007
Peak Repetitive Reverse Voltage 50 100 200 400 600 800 1000 | V
Maximum RMS Voltage 35 70 140 280 420 560 700 \%
DC Reverse Voltage (Rated V) 50 100 200 400 600 800 1000 | V
Maximum Reverse Current
@rated Vg Ty = 25° 5.0 A
T4 = 100° 500 uA
Maximum Forward Voltage @ 1.0 A 11 \%
Maximum Full Load Reverse Current, 30 A
Full Cycle Ty = T75°
Typical Junction Capacitance 15 pF
Vr =40V, f = 1.0MHz

TYPICAL CHARACTERISTIC CURVES:

Device data sheets alwaysinclude characteristic curvesthat may be useful to adesigner. Inthisexample, we
includetheforward-current derating curve, in which the maximum forward current isderated asafunction of
temperature. Toillustratethiscurve, we point out that at atemperature of 100°C the maximum diode current
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(Concluded)

isaround 0.65 A (down from 1 A). A second curve is related to the diode forward current versus forward
voltage (note that this curve was obtained for a very particular type of input, consisting of a pulse of width
equal to 300 us and 2 percent duty cycle.

Forward Current Derating Curve Forward Characteristics
1.6 20
14 N 12 =
<12 <
s = 2
@ 1 N g 1
S o8l SinglePhase N\ 3 04 7
S gl Haf WavesoHZ N T 02 /
8 “°I' Resistiveor g o1 / T,=25°C
5 0.4 Inductive Load 5 / Pulse width = 500 pS
L ) 2|-375" 9.0 mm Lead = 2% Duty Cycle
oL tepaths AN v -
0 20 40 60 80 100 120 140 160 180 0.6 0.8 1 12 14
Ambient Temperature (°C) Forward Voltage (V)

EXAMPLE 8.5 Using Load Line Analysis and Diode Curves
to Determine the Operating Point of a Diode

Problem

Determine the operating point of the 1IN941 diode in the circuit of Figure 8.31 and
compute the total power output of the 12-V battery.

Ry Rs
AAAA AAAA
\AAAS \AAAJ H
o
- < +
V= R D1 Vb
— > V0
AAAA
YVVy
Figure 8.31

Solution

Known Quantities: Vg =12V; R; =50%; R, =10Q; R3 =20; R4, =20 Q.

Find: The diode operating voltage and current and the power supplied by the battery.
Assumptions: Usethediode nonlinear model, as described by itsi-v curve (Figure 8.32).

Analysis: We first compute the Thévenin equivalent representation of the circuit of
Figure 8.31 to reduce it to prepare the circuit for load-line analysis (see Figures 8.29 and
8.30).

Ry = R1+ Rz + (R3]|Rq) = 20+ 20 + (10]|50) = 48.33 £;

R 10
2 _yo=_12=2V

Vp=—2%
T Ri+R 60
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Figure 8.32 1N914 diode i-v curve

The equivalent circuit is shown in Figure 8.33. Next we plot the load line (see Figure
8.30), with y intercept Vr /Ry = 41 mA, and with x intercept V; = 2 V; the diode curve
and load line are shown in Figure 8.34. The intersection of the two curves s the quiescent
(Q) or operating point of the diode, which is given by thevalues vV, = 0.67V, I, = 27.5
mA.

/

________________ X/Q point

/ Load line

/

0.2 0.4 0.6 0.8 1.0 12 1.4 16 18 2.0
Diode voltage, V

Figure 8.34 Superposition of load line and diode i-v curve

To determine the battery power output, we observe that the power supplied by the
battery is P = 12 x Iy and that I isequal to current through R;. Upon further
inspection, we see that the battery current must, by KCL, be equal to the sum of the
currents through R, and through the diode. We already know the current through the
diode, I,. To determine the current through R, we observe that the voltage across R; is
equal to the sum of the voltages across Rz, R4 and D;:

Vio=Io(Rs+ Ra) + Vo = 0.021 x 40+ 1= 1.84V

and therefore the current through R; is Iz, = Vz2/R, = 0.184 A.
Finaly,

Pg =12 x Ip =12 x (0.021 4+ 0.184) = 12 x 0.205 = 2.46 W
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Comments: Graphical solutions are not the only means of solving the nonlinear
equations that result from using a nonlinear model for adiode. The same equations could
be solved numerically by using a nonlinear equation solver. The code in Electronics
Workbench™ accomplishes exactly this task.

Piecewise Linear Diode Model

The graphical solution of diode circuits can be somewhat tedious, and its accuracy
islimited by the resolution of the graph; it does, however, provide insight into the
piecewiselinear diode model. In the piecewise linear model, the diodeistreated
asanopen circuit in its off state, and as alinear resistor in serieswith V,, in theon
state. Figure 8.35illustrates the graphical appearance of thismodel. Notethat the

5
1

Diode off
straight line that approximates the “on” part of the diode characteristicistangent % I circuit model
to the Q point. Thus, in the neighborhood of the Q point, the diode does act asa R I rD%
linear small-signal resistance, with slope given by 1/rp, where 1 I WI

o Diode on

1 dip circuit model
— = (8.16)
r'p 81}1) (I9.Vo) B i

0 L ! I |

That is, it acts as alinear resistance whose i-v characteristic is the tangent to the 0 i Vs b
diode curve at the operating point. The tangent is extended to meet the voltage  Figure 8.35 Piecewise linear
axis, thus defining the intersection as the diode offset voltage. Thus, rather than  diode model

represent thediodeby ashort circuitinitsforward-biased state, wetreat it asalinear

resistor, with resistance rp. The piecewise linear model offers the convenience

of alinear representation once the state of the diode is established, and of a more

accurate model than either theideal or the offset diode model. This model isvery

useful inillustrating the performance of diodesin real-world applications.

EXAMPLE 8.6 Computing the Incremental (Small-Signal)
Resistance of a Diode

Problem

Determine the incremental resistance of a diode using the diode equation.

Solution

Known Quantities: o =107 A; kT/q = 0.025V (at T = 300K); I, = 50 mA.

Find: The diode small signal resistance, rp.

Assumptions: Use the approximate diode equation (equation 8.7).

Analysis: The approximate diode equation relates diode voltage and current according to:
ip = Ioe™/*"

From the above expression we can compute the incremental resistance using equation
8.16:

1 _ dip _ 9l £7Vo/kT
'p 8vD A kT
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To calculate the numerical value of the above expression, we must first compute the
quiescent diode voltage corresponding to the quiescent current 7, = 50 mA:

kT 1
Vo = —log, £ =0.731V
q Io

Substituting the numerical value of V,, in the expression for r, we obtain:

—14
% = %eo-m/am =2S or rp =05Q
Comments: It isimportant to understand that, while one can calculate the linearized
incremental resistance of adiode at an operating point, this does not mean that the diode
can betreated ssimply as aresistor. The linearized small-signal resistance of the diode is
used in the piecewise linear diode model to account for the fact that there is a dependence
between diode voltage and current (i.e., the diode i-v curveis not exactly avertical line
for voltages above the offset voltage—see Figure 8.35).

Vs @

\AAJ

Figure 8.36

EXAMPLE 8.7 Using the Piecewise Linear Diode Model

Problem

Determine the load voltage in the rectifier of Figure 8.36 using a piecewise linear
approximation.

Solution

Known Quantities: vg(t) = 10 cos(wt); V, =0.6V;rp =05Q; Ry =1Q;

Find: Theload voltage, v; .
Assumptions: Usethe piecewise linear diode model (Figure 8.35).

Analysis: We replace the diode in the circuit of Figure 8.36 with the piecewise linear
model, as shown in Figure 8.37. Next, we determine the conduction condition for the
ideal diode by applying KVL to the circuit of Figure 8.37:

vs=v1+v2+vp+0.6+v,
vp =vg— v — vy — 0.6 -1,

We use the above equation as was done in Example 8.4—that is, to determine the source
voltage value for which the diode first conducts. Observe first that the diode will be off for

Figure 8.37
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negative values of vg. With the diode off, that is, an open circuit, the voltages vy, v,, and
v, arezero and

vp = vy — 0.6
Thus, the condition for the ideal diode to conduct (vp > 0) corresponds to:
vs > 0.6V Diode on condition

Once the diode conducts, we replace the ideal diode with a short circuit, and compute the
load voltage using the voltage divider rule. The resulting load equations are:

vy =0 vy <06V
Ry

- RS =+ rp + RL
The source and |load voltage are plotted in Figure 8.38(a).

3

(vs — V,) =817 cos(wt) —052  vg > 0.6V

. A ’
1 | | SNLe

|
0 0005 001 0015 002 0025 003

v (V)
O P N WA O O N ® ©

t(s) /

-108-6-4-20 2 4 6 810

Vs (V)
@ (b)

Figure 8.38 (a) Source voltage and rectified load voltage; (b) Voltage transfer characteristic

It isinstructive to compute the transfer characteristic of the diode circuit by
generating a plot of v; versus vg. Thisis done with reference to the equation for v, given
above; theresult is plotted in Figure 8.38(b).

Comments: The methods developed in this example will be very useful in analyzing
some practical diode circuitsin the next section.

Focus on Computer-Aided Tools: The Matlab™ code used to generate the plot of
Figure 8.38(b) may be found in the CD-ROM that accompanies this book.

VIRTUAL LAB
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Check Your Understanding

8.1 Repeat Example 8.2, assuming that the diode is conducting, and show that this
assumption leads to an inconsistent result.

8.2 Compute the DC value of the rectified waveform for the circuit of Figure 8.20 for
v; = 52coswt V.
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8.3 Useload-line analysisto determine the operating point (Q point) of the diodein the
circuit of Figure 8.39. The diode has the characteristic curve shown in Figure 8.32.

8.4 Compute the incrementa resistance of the diode of Example 8.6 if the current
through the diode is 250 mA.

8.5 Consider ahdf-waverectifier similar to that of Figure 8.20, with v; (1) = 18cos (1),
and a4-Q2 load resistor. Sketch the output waveform if the piecewise linear diode model is
used to describe the operation of the diode, with V, = 0.6 V and rp = 1 Q. What isthe
peak value of the rectifier waveform?

8.6 Determine which of the diodes in the circuit of Figure 8.40 conducts. Each diode
has an offset voltage of 0.6 V.

D1 1pg D2 gg 100 D1
Vi
< D, Vou
54V 318Q 5V v, 100
_L 100Q
Figure 8.40 Figure 8.41

8.7 Determine which of the diodes in Figure 8.41 conducts for the following voltages
(an) (a)v1:O,v2:0; (b)l)1:5, v, = 5; (C)l)]_:o, v, = 5; (d)l)1:5,1)2:0.
Treat the diodes asideal.

8.4 PRACTICAL DIODE CIRCUITS

This section illustrates some of the applications of diodesto practical engineering
circuits. The nonlinear behavior of diodes, especially the rectification property,
makes these devices valuable in a number of applications. In this section, more
advanced rectifier circuits (the full-wave rectifier and the bridge rectifier) will
be explored, as well aslimiter and peak detector circuits. These circuits will be
analyzed by making use of the circuit models devel oped in the preceding sections;
as stated earlier, these models are more than adequate to devel op an understanding
of the operation of diode circuits.

In addition to the operation of diodes as rectifiers and limiters, there is
another useful class of applicationsthat takes advantage of the reverse-breakdown
characteristic of the semiconductor diode discussed in the opening section. The
phenomenon of Zener breakdown is exploited in a class of devices called Zener
diodes, which enjoy the property of asharp reverse-bias breakdown with relatively
constant breskdown voltage. These devices are used as voltage regulators, that
is, to provide a nearly constant output (DC) voltage from a voltage source whose
output might ordinarily fluctuate substantially (for example, arectified sinusoid).

The Full-Wave Rectifier

The half-wave rectifier discussed earlier is one simple method of converting AC
energy to DC energy. The need for converting one form of electrical energy into
the other arises frequently in practice. The most readily available form of electric
power is AC (the standard 110- or 220-V rms AC line power), but one frequently
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needsaDC power supply, for applicationsranging from the control of certaintypes
of electric motors to the operation of eectronic circuits such as those discussed
in Chapters 8 through 14. You will have noticed that most consumer electronic
circuits, from CD players to persona computers, require AC-DC power adapters.

The half-wave rectifier, however, is not a very efficient AC-DC conversion
circuit, because it fails to utilize half the energy available in the AC waveform,
by not conducting current during the negative half-cycle of the AC waveform.
The full-wave rectifier shown in Figure 8.42 offers a substantial improvement in
efficiency over the half-wave rectifier. The first section of the full-wave rectifier
circuit includes an AC source and a center-tapped transformer (see Chapter 7)
with 1:2N turns ratio. The purpose of the transformer is to obtain the desired
voltage amplitude prior to rectification. Thus, if the peak amplitude of the AC
source voltage is vg, the amplitude of the voltage across each half of the output
side of thetransformer will be Nvg; this scheme permits scaling the source voltage
up or down (depending on whether N is greater or less than 1), according to the
specific requirements of the application. In addition to scaling the source voltage,
the transformer also isolates the rectifier circuit from the AC source voltage, since
thereisnodirect electrical connection betweentheinput and output of atransformer
(see Chapter 16).

In the analysis of the full-wave rectifier, the diodes will be treated as ideal,
sinceinmost casesthe sourcevoltageisthe AC linevoltage (110V rms, 60 Hz) and
therefore the offset voltage is negligible in comparison. The key to the operation
of the full-wave rectifier isto note that during the positive half-cycle of vg, the top
diode is forward-biased while the bottom diode is reverse-biased; therefore, the
load current during the positive half-cycleis

ip=i1=— v3>0 (8.17)

while during the negative half-cycle, the bottom diode conducts and the top diode
is off, and the load current is given by
—Nuvg
Ry

ip =i = vg <0 (8.18)
Notethat thedirection of i, isalwayspositive, because of the manner of connecting
the diodes (when the top diodeis off, i, isforced to flow from + to — across Ry).

The source voltage, the load voltage, and the currents i; and i, are shown
in Figure 8.43 for a load resistance R;, = 1 Q and N = 1. The full-wave

Figure 8.42 Full-wave

rectifier

i .
1 IL

10 10 :

vs (V)
o

i1(A)
ol

Il Il Il | Il
-10 0.005 0.01 0.015 0.02 0.025 0.03 0 0.005 0.01 0.015
t () t(s)

|
0.02

|
0.025 0.03

v (V)
o

i2(A)
o

W / N\

/ \

| | | |
0 0005 001 0015 002 0025 003 0 0.005 001 0015
t(s) t(s)

Figure 8.43 Full-wave rectifier current and voltage waveforms (R, = 1 Q)
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Bridge rectifier

ao0——
ACin
b o—

IC
Rectifier

Corresponding |C package

Figure 8.44 Full-wave
bridge rectifier

During the positive half-cycle of

vs(t), D1 and D3 are forward-biased

and i = vs(t)/R_ (ideal diodes).

During the negative half-cycle of
Vs(t), D2 and D4 are forward-biased
and i = vs(t)/R_ (ideal diodes).

Figure 8.45 Operation of
bridge rectifier
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rectifier resultsin atwofold improvement in efficiency over the half-wave rectifier
introduced earlier.

The Bridge Rectifier

Another rectifier circuit commonly available “ off the shelf” asasingleintegrated
circuit package! is the bridge rectifier, which employs four diodes in a bridge
configuration, similar to the Whesatstone bridge aready explored in Chapter 2.
Figure 8.44 depictsthe bridge rectifier, along with the associated integrated circuit
(IC) package.

Theanalysisof the bridgerectifier issimpleto understand by visualizing the
operation of the rectifier for the two half-cycles of the AC waveform separately.
The key is that, asillustrated in Figure 8.45, diodes D, and D3 conduct during
the positive half-cycle, while diodes D, and D, conduct during the negative half-
cycle. Because of the structure of the bridge, the flow of current through the load
resistor is in the same direction (from ¢ to d) during both halves of the cycle;
hence, the full-wave rectification of the waveform. The original and rectified
waveforms are shown in Figure 8.46(a) for the case of idea diodes and a 30-
V peak AC source. Figure 8.46(b) depicts the rectified waveform if we assume
diodeswith a0.6-V offset voltage. Notethat the waveform of Figure 8.46(b) isnot
apurerectified sinusoid any longer: The effect of the offset voltage is to shift the
waveform downward by twice the offset voltage. Thisis most easily understood
by considering that the load seen by the source during either half-cycle consists of
two diodes in series with the load resistor.

Although the conventional and bridge full-wave rectifier circuits effectively
convert AC signalsthat have zero average, or DC, valueto asignal with anonzero
average voltage, either rectifier’s output is still an oscillating waveform. Rather
than provide a smooth, constant voltage, the full-wave rectifier generates a se-
guence of sinusoidal pulses at a frequency double that of the original AC signal.
Theripple—that is, the fluctuation about the mean voltage that is characteristic of
theserectifier circuits—isundesirableif onedesiresatrue DC supply. A smpleyet
effective means of eliminating most of theripple (i.e., AC component) associated
with the output of arectifier isto take advantage of the energy-storage properties
of capacitors to filter out the ripple component of the load voltage. A low-pass
filter that preserves the DC component of the rectified voltage while filtering out
components at frequencies at or above twice the AC signal frequency would be
an appropriate choice to remove the ripple component from the rectified voltage.
In most practical applications of rectifier circuits, the signal waveform to be rec-
tified is the 60-Hz, 110-V rms line voltage. The ripple frequency is, therefore,
fripple = 120 Hz, or wyipge = 27 - 120 rad/s. A low-pass filter is required for
which

wo K Wripple (8.19)
For example, the filter could be characterized by
wo = 2 - 2rad/s

A simple low-pass filter circuit similar to those studied in Chapter 6 that accom-
plishes thistask is shown in Figure 8.47.

1Anintegrated circuit is a collection of electronic devices interconnected on asingle silicon chip.
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Figure 8.46 (@) Unrectified source voltage; (b) Rectified load voltage (ideal diodes); (c) Rectified load voltage (ideal and
offset diodes)
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Figure 8.47 Bridge rectifier with filter circuit

Diode Thermometer

Problem:

Aninteresting application of adiode, based on the diode equation, is an
electronic thermometer. The concept is based on the empirical observation
that if the current through a diode is nearly constant, the offset voltageis
nearly alinear function of temperature, as shown in Figure 8.48(a).

1. Show that ip inthe circuit of Figure 8.48(b) is nearly constant in the
face of variationsin the diode voltage, vp. This can be done by
computing the percent changein ip for agiven percent changein vp.
Assume that v changes by 10 percent, from 0.6 to 0.66 V.

2. Onthebasis of the graph of Figure 8.48(a), write an equation for
vp(T°) of theform

vp=aT°+ 8
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Figure 8.48
Solution:

1. With reference to the circuit of Figure 8.48(a), the current ip is
15 — Up

ip = mA
D 10

For
vp = 0.8V(0°),ip =142mA vp =0.7V(50°),ip = 1.43mA
vp = 0.6V (100°),ip = 1.44 mA
The percent change in v over the full scale of the thermometer
(assuming the midrange temperature of 50° to be the reference value) is:

0.1V

Avp% = =+ x 100 = £14.3%
0.7V

The corresponding percent changeinip is.

) 0.01 mA
Thus, ip is nearly constant over the range of operation of the diode

thermometer.

2. The diode voltage versus temperature equation can be extracted from
the graph of Figure 8.48(a):
(0.8-0.6) V
TY=-————-T+08V =-002T +0.8V
vp(T) (0— 100)°C + +

Comments—The graph of Figure 8.48(a) was obtained experimentally by
calibrating acommercial diode in both hot water and an ice bath. The circuit
of Figure 8.48(b) is rather simple, and one could fairly easily FlND v
design a better constant-current source; however, this example
illustrates than an inexpensive diode can serve quite well asthe
sensing element in an electronic thermometer. ONNLEWEE

DC Power Supplies, Zener Diodes, and Voltage
Regulation

The principa application of rectifier circuits is in the conversion of AC to DC
power. A circuit that accomplishes this conversion is usualy called a DC power
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supply. In power supply applications, transformers are employed to obtain an
AC voltage that is reasonably close to the desired DC supply voltage. DC power
supplies are very useful in practice: Many familiar electrical and electronic appli-
ances (e.g., radios, persona computers, TVs) require DC power to operate. For
most applications, it is desirable that the DC supply be as steady and ripple-free
as possible. To ensure that the DC voltage generated by a DC supply is constant,
DC supplies contain voltage regulators, that is, devices that can hold a DC load
voltage relatively constant in spite of possible fluctuationsin the DC supply. This
section describes the fundamental s of voltage regul ators.

A typical DC power supply is made up of the components shown in Figure
8.49. Inthefigure, atransformer isshown connecting the AC sourceto therectifier
circuit to permit scaling of the AC voltage to the desired level. For example, one
might wish to step the 110-V rms line voltage down to 24 V rms by means of
a transformer prior to rectification and filtering, to eventually obtain a 12-VDC
regulated supply (regulated here means that the output voltage is a DC voltage
that is constant and independent of load and supply variations). Following the
step-down transformer are a bridge rectifier, afilter capacitor, a voltage regulator,
and, finally, the load.

e +
recifie | va® 7= [Regulaior] Voc [Toad]
1T
Filter

transformer

Figure 8.49 DC power supply

The most common device employed in voltage regulation schemes is the
Zener diode. Zener diodes function on the basis of the reverse portion of thei-v
characteristic of the diode discussed in Section 8.2. Figure 8.10 in Section 8.2
illustrates the general characteristic of adiode, with forward offset voltage V,, and
reverse Zener voltage V. Note how steep the i-v characteristic is at the Zener
breakdown voltage, indicating that in the Zener breakdown region the diode can
hold a very nearly constant voltage for a large range of currents. This property
makesit possible to use the Zener diode as a voltage regulator.

The operation of the Zener diode may be analyzed by considering three
modes of operation:

1. Forvp >V, thedevice acts as a conventional forward-biased diode (Figure
8.50).

2. ForVz <wvp <V, thediodeis reverse-biased but Zener breakdown has not
taken place yet. Thus, it acts as an open circuit.

3. Forvp < V, Zener breakdown occurs and the device holds a nearly
constant voltage, —V; (Figure 8.51).

The combined effect of forward and reverse bias may be lumped into a single
model with the aid of ideal diodes, as shown in Figure 8.52.

Toillustrate the operation of a Zener diode as a voltage regulator, consider
the circuit of Figure 8.53(a), where the unregulated DC source, Vs, isregulated to
the value of the Zener voltage V. Note how the diode must be connected “ upside

Figure 8.50 Zener diode
model for forward bias

Figure 8.51 Zener diode
model for reverse bias

365
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"Forward" "Reverse"

branch . branch
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Complete model Circuit
for Zener diode symbol

Figure 8.52 Complete model for Zener diode
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Figure 8.53 (a) A Zener diode voltage regulator; (b) Simplified circuit for Zener regulator

OI

down” to obtain a positive regulated voltage. Note also that if vg is greater than
V,, it follows that the Zener diode isin its reverse-breakdown mode. Thus, one
need not worry whether the diode is conducting or not in simple voltage regulator
problems, provided that the unregulated supply voltageis guaranteed to stay above
V7 (aproblem arises, however, if the unregulated supply can drop bel ow the Zener
voltage). Assuming that the resistance r; is negligible with respect to Ry and Ry,
we replace the Zener diode with the simplified circuit model of Figure 8.53(b),
consisting of a battery of strength v, (the effects of the nonzero Zener resistance
are explored in the examples and homework problems).

Three simple observations are sufficient to explain the operation of this

voltage regulator:

1. Theload voltage must equal V, aslong asthe Zener diodeisin the

reverse-breakdown mode. Then,
Vz

i, =
Ry

(8.20)

2. Theload current (which should be constant if the load voltageisto be
regulated to sustain V) isthe difference between the unregulated supply

current, ig, and the diode current, i z:

ip =lis—iz

(8.21)

This second point explains intuitively how a Zener diode operates. Any
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current in excess of that required to keep the load at the constant voltage V;
is“dumped” to ground through the diode. Thus, the Zener diode actsas a
sink to the undesired source current.

3. The source current is given by

-V
ig = USR z (8.22)
N

Intheideal case, the operation of a Zener voltage regulator can be explained very
simply on the basis of this model. The examples and exercises will illustrate the
effects of the practical limitations that arise in the design of a practical voltage
regulator; the general principles will be discussed in the following paragraphs.
The Zener diode is usually rated in terms of its maximum allowable power
dissipation. The power dissipated by the diode, Pz, may be computed from

P, =iV, (8.23)

Thus, one needs to worry about the possibility that i, will become too large.
This may occur either if the supply current is very large (perhaps because of an
unexpected upward fluctuation of the unregulated supply), or if theload issuddenly
removed and all of the supply current sinks through the diode. The latter case, of
an open-circuit load, is an important design consideration.

Another significant limitation occurs when the load resistance is small, thus
requiring large amounts of current from the unregulated supply. In this case, the
Zener diodeishardly taxed at all intermsof power dissipation, but the unregul ated
supply may not be able to provide the current required to sustain the load voltage.
In this case, regulation fails to take place. Thus, in practice, the range of load
resistances for which load voltage regulation may be attained is constrained to a
finite interval:

Rpmin = Rp < Rpmax (8.24)

where Ry ma iStypically limited by the Zener diode power dissipation and Ry min
by the maximum supply current. Thefollowing examplesillustrate these concepts.
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EXAMPLE 8.8 Determining the Power Rating of a Zener Diode
Problem

We wish to design aregulator similar to the one depicted in Figure 8.53(a). Determine the
minimum acceptable power rating of the Zener diode.

Solution

Known Quantities: vg =24V;V, =12V; Ry =50 Q; R; = 250 Q.

Find: The maximum power dissipated by the Zener diode under worst-case conditions.
Assumptions: Usethe piecewise linear Zener diode model (Fig. 8.52) withr, = 0.

Analysis: When the regulator operates according to the intended design specifications,
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i.e., with a250-2 load, the source and load currents may be computed as follows:

. Vs — VZ 12
- =22 _024A
's Ry 50
Vv, 12
= -2 = —= —0.048A
=R, T 250

Thus, the Zener current would be;
iz=is—i,=0192A
corresponding to a nominal power dissipation
P; =izV; =0.192 x 12 = 2.304 W
However, if the load were accidentally (or intentionally) disconnected from the circuit, all
of the load current would be diverted to flow through the Zener diode. Thus, the

worst-case Zener current is actually equal to the source current, since the Zener diode

would sink all of the source current for an open-circuit load:
. . Vs — VZ 12
lzmax = Ls Rs 50

Therefore the maximum power dissipation that the Zener diode must sustain is:

PZmax == iZmaxVZ - 288W

Comments: A safe design would exceed the value of P, ma computed above. For
example, one might select a 3-W Zener diode.

Figure 8.54

EXAMPLE 8.9 Calculation of Allowed Load Resistances
for a Given Zener Regulator

Problem

Calculate the allowable range of load resistances for the Zener regulator of Figure 8.54
such that the diode power rating is not exceeded.

Solution
Known Quantities: V¢ =50V;V, =14V, P, =5W.

Find: The smallest and largest values of R; for which load voltage regulationto 14 V is
achieved, and which do not cause the diode power rating to be exceeded.

Assumptions: Usethe piecewise linear Zener diode model (Fig. 8.52) withr; = 0.

Analysis:

1. Determining the minimum acceptable load resistance. To determine the minimum
acceptable load, we observe that the regulator can at most supply the load with the
amount of current that can be provided by the source. Thus, the minimum theoretical
resistance can be computed by assuming that all the source current goes to the load,
and that the load voltage is regulated at the nominal value:

Vz ' 14

" = VoV, = 3% - 11.7 Q

30 30

Rimin =
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If the load required any more current, the source would not be able to supply it. Note
that for this value of the load, the Zener diode dissipates zero power, because the
Zener current is zero.

2. Determining the maximum acceptable load resistance. The second constraint we
need to invoke is the power rating of the diode. For the stated 5-W rating, the
maximum Zener current is:

. Pz 5

1 = — = —

mET Y, T 14

Since the source can generate

. Vg — V. 50-14
Ismax = S30 Z = ) =12A

the load must not require any lessthan 1.2 — 0.357 = 0.843 A; if it required any less
current (i.e., if the resistance were too large), the Zener diode would be forced to sink
more current than its power rating permits. From this requirement we can compute
the maximum allowable load resistance:
Vz 14
iS max iZ max 0.843

Finally, the range of allowable load resistanceis11.7 2 < R, < 16.6 Q.

=0.357 A

R min = =166Q

Comments: Note that this regulator cannot operate with an open-circuit |oad!

EXAMPLE 8.10 Effect of Nonzero Zener Resistance
in a Regulator

Problem

Calculate the amplitude of the ripple present in the output voltage of the regulator of
Figure 8.55. The unregulated supply voltage is depicted in Figure 8.56.

W Velt)
YVVY
+
Vs + Vripple VZ EE RL v
Figure 8.55 .
Figure 8.56
Solution

Known Quantities: vs = 14 V; vjjgpe = 100mMV; V; =8V, r; =10Q; Ry =50 Q;
R, =150 Q.

Find: Amplitude of ripple component in load voltage.

Assumptions: Usethe piecewise linear Zener diode model (Fig. 8.52).
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Analysis: To analyze the circuit, we consider the DC and AC equivalent circuits of
Figure 8.57 separately.

1. DC equivalent circuit. The DC equivalent circuit reveals that the load voltage
consists of two contributions; that due to the unregulated DC supply and that due to
the Zener diode (V). Applying superposition and the voltage divider rule, we obtain:

rzIRy ) ( RslIR. )
Vi=Vg| ——— |+ V| ————————— | =221+6.32=853V
t S(rz||RL+Rs “\ RslIR, + Rs

2. AC equivalent circuit. The AC equivalent circuit allows usto compute the AC
component of the load voltage as follows:

rzlIRg

= Vi ———— | =0.016V
o = Peete (ranL T Rs)

that is, 16 mV of rippleis present in the load voltage, or approximately one-sixth the

source ripple.

Comments: Note that the DC load voltage is affected by the unregulated source voltage;
if the unregulated supply were to fluctuate significantly, the regulated voltage would a so
change. Thus, one of the effects of the Zener resistance isto cause imperfect regulation. If
the Zener resistance is significantly smaller than both Rg and R, its effects would not be
as pronounced (see Check Your Understanding Exercise 8.10).

Limiter circuit

Figure 8.58 Two-sided doide
clipper

Check Your Understanding

8.8 Showthat the DC voltageoutput of thefull-waverectifier of Figure8.42iS2N vg max /7 .

8.9 Compute the peak voltage output of the bridge rectifier of Figure 8.44, assuming
diodes with 0.6-V offset voltage and a 110-V rms AC supply.

8.10 Computetheactua DC load voltage and the percentage of the ripple reaching the
load (relative to theinitial 100-mV ripple) for the circuit of Example 8.10if r; =1 Q.

Signhal-Processing Applications

Among the numerous applications of diodes, there are a number of interesting
signal-conditioning or signal-processing applicationsthat are made possible by the
nonlinear nature of the device. We explorethree such applications here: thediode
limiter, or clipper; the diode clamp; and the peak detector. Other applications
are left for the homework problems.

The Diode Clipper (Limiter)

The diode clipper is a relatively simple diode circuit that is often employed to
protect loads against excessive voltages. The objective of the clipper circuit isto
keep the load voltage within arange—say, — Vimax < v (t) < Vmax—S0 that the
maximum allowable load voltage (or power) is never exceeded. The circuit of
Figure 8.58 accomplishes this goal.

The circuit of Figure 8.58 is most easily analyzed by first considering just

the branch containing D;1. This corresponds to clipping only the positive peak
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voltages; the analysis of the negative voltage limiter is left as a drill exercise.
The circuit containing the D; branch is sketched in Figure 8.59; note that we
have exchanged the location of the D, branch and that of the load branch for
convenience. Further, the circuit is reduced to Thévenin equivalent form. Having
reduced the circuit to a simpler form, we can now analyze its operation for two
distinct cases: theideal diode and the piecewise linear diode.

1. Ideal diode model For the idea diode case, we see immediately that
D4 conducts if

Ry
rs+ Ry,

Us(t) > Vinax (8.25)

and that if this condition occurs, then (D being a short circuit) the load voltage,
vz, becomes equal to Vina. The equivalent circuit for the“on” condition is shown
in Figure 8.60.

R
rs+ R

R

Limiter circuit for

Vs(t) = Vimax Limiter circuit for

vs(t) < Vinax

rs+ R

s

vg(t)
Figure 8.60 Equivalent circuit Figure 8.61 Equivalent circuit for the
for the one-sided limiter (diode on) one-sided limiter (doide off)

If, on the other hand, the source voltage is such that

Ry
rs+ Ry,

vs (1) < Vimax (8.26)

then D, isan open circuit and the load voltage is simply

Ry
VS+RL

v (1) = vs (1) (8.27)
The equivalent circuit for this case is depicted in Figure 8.61.

The analysis for the negative branch of the circuit of Figure 8.58 can be
conducted by analogy with the preceding derivation, resulting in the waveform
for the two-sided clipper shown in Figure 8.62. Note how the load voltage is
drastically “clipped” by the limiter in the waveform of Figure 8.62. In redlity,
such hard clipping does not occur, because the actual diode characteristic does not
have the sharp on-off breakpoint the ideal diode model implies. One can develop
a reasonabl e representation of the operation of a physical diode limiter by using
the piecewise linear model.

2. Piecewise linear diode model To avoid unnecessary complexity in
the analysis, assume that Vi is much greater than the diode offset voltage, and
thereforeassumethat V,, ~ 0. Wedo, however, consider thefinite diode resistance
rp. Thecircuit of Figure 8.59 till applies, and thus the determination of the diode

371

Figure 8.59 Circuit model
for the diode clipper
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The effect of finite diode resistance
on the limiter circuit.

Figure 8.63 Circuit model
for the diode clipper (piecewise
linear diode model)
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Figure 8.62 Two-sided (ideal diode) clipper input and
output voltages

on-off state is still based on whether [R; /(rs + R;)]vs(¢) is greater or less than
Vmax- When D, is open, the load voltage is still given by

Ry
1"5‘+RL

When D1 is conducting, however, the corresponding circuit is as shown in Figure
8.63.

The primary effect the diode resistance has on the load waveform is that
some of the source voltage will reach the load even when the diode is conducting.
Thisismost easily verified by applying superposition; it can be readily shown that
the load voltage is nhow composed of two parts, one due to the voltage Vi, and
one proportional to vg(z):

v (1) = vs(1) (8.28)

R | rs rp || RL
v (t) = ———————Vimx + ———————vs (1) 8.29
T Rl ™ rs+ O | R (8:29)
It may easily be verified that asrp — 0, the expression for v (¢) isthe same as
for the ideal diode case. The effect of the diode resistance on the limiter circuit
is depicted in Figure 8.64. Note how the clipping has a softer, more rounded
appearance.

AR \\
i \ \

RN N

0O 01 02 03 04 05 06 07 08 09 1
t(9)

Figure 8.64 Voltages for the diode clipper (piecewise
linear diode model)

The Diode Peak Detector

Another common application of semiconductor diodes, the peak detector, is very
similar in appearance to the half-wave rectifier with capacitive filtering described
inan earlier section. One of its more classic applicationsisin the demodul ation of



Part 11 Electronics

amplitude-modulated (AM) signals. We study thiscircuit in thefollowing, “ Focus

on Measurements’ box.
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Peak Detector Circuit for Capacitive Displacement
Transducer

In Chapter 4, a capacitive displacement transducer was introduced in Focus
on Measurements: Capacitive Displacement Transducer and Microphone. It
took the form of a parallel-plate capacitor composed of afixed plate and a
movable plate. The capacitance of this variable capacitor was shown to be a
function of displacement, that is, it was shown that a movable-plate capacitor
can serve as alinear transducer. Recall the expression derived in Chapter 4

8.854 x 10-3A
c="""2= 0
X

where C isthe capacitance in pF, A isthe area of the platesin mm?, and x is
the (variable) distance in mm. If the capacitor is placed in an AC circuit, its
impedance will be determined by the expression

Zc =
¢ ]a)C
X
ZC

~ jw8.854 x 1034

Thus, at afixed frequency w, the impedance of the capacitor will vary
linearly with displacement. This property may be exploited in the bridge cir-
cuit of Figure 8.65, where a differential-pressure transducer is shown made
of two movable-plate capacitors. If the capacitance of one of these capacitors
increases as a consequence of a pressure difference across the transducer, the
capacitance of the other must decrease by a corresponding amount, at least
for small displacements (you may wish to refer to Example 4.4 for a picture
of thistransducer). The bridgeis excited by a sinusoidal source.

Figure 8.65 Bridge circuit
for displacement transducer

Using phasor notation, in Chapter 4 we showed that the output voltage
of the bridge circuit is given by

Vou(jo) = vm‘m%
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provided that R; = R». Thus, the output voltage will vary as a scaled
version of the input voltage in proportion to the displacement. A typical
vout(2) isdisplayed in Figure 8.66 for a 0.05-mm “triangle” diaphragm
displacement, with d = 0.5 mm and Vs a’50-Hz sinusoid with 1-V
amplitude. Clearly, although the output voltage is a function of the
displacement, x, it isnot in a convenient form, since the displacement is
proportional to the amplitude of the sinusoidal peaks.
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Figure 8.66 Displacement and bridge output voltage
waveforms

The diode peak detector isacircuit capable of tracking the sinusoidal
peaks without exhibiting the oscillations of the bridge output voltage. The
peak detector operates by rectifying and filtering the bridge output in a
manner similar to that of the circuit of Figure 8.47. Theideal peak detector
circuit is shown in Figure 8.67, and the response of a practical peak detector
isshown in Figure 8.68. Its operation is based on the rectification property
of the diode, coupled with the filtering effect of the shunt capacitor, which
acts as alow-pass filter.

_A_O +
|
I
:C } Vi
i
I
I o -
Peak ! Peak-
detector detector
circuit output
voltage

Figure 8.67 Peak detector
circuit




Part I Electronics

375

0.05

0.04

0.03

Volts

0.02

ol [T

0 01 02 03 04 05 06 07 08 09 1
t(s)
Rectified bridge output voltage

0.05

004 A
W,

nhnn' UU" M| N
000 Al Wy,
I\NMVV VV\/\
0.01 n,d‘. A0 ]
0L

0 01 02 03 04 05 06 07 08 09 1
t(s)
Peak-detected bridge output voltage

—

Volts

Figure 8.68 Rectified and peak-detected bridge output voltage
waveforms

The Diode Clamp

Another circuit that finds common application is the diode clamp, which permits
“clamping” a waveform to a fixed DC value. Figure 8.69 depicts two different
types of clamp circuits.

The operation of the simple clamp circuit is based on the notion that the
diode will conduct current only in the forward direction, and that therefore the
capacitor will charge during the positive half-cycle of vg(¢) but will not discharge
during the negative half-cycle. Thus, the capacitor will eventually charge up to the
peak voltage of vs(r), Vpeak. The DC voltage across the capacitor has the effect
of shifting the source waveform down by Vpea, SO that, after the initial transient
period, the output voltage is

Vout (1) = vs () — Vpeak (8.30)

and the positive peaks of vg(¢) are now clamped at 0 V. For eguation 8.30 to be
accurate, it isimportant that the RC time constant be greater than the period, T,
of vg(2):

RC>T (8.31)

Figure 8.70 depicts the behavior of the diode clamp for a sinusoidal input wave-
form, where the dashed line is the source voltage and the solid line represents the
clamped voltage.

The clamp circuit can also work with the diode in the reverse direction; the
capacitor will charge to — Vpeac With the output voltage given by

Vout (1) = Vs (t) + Vpeak (8.32)

Figure 8.69 Diode clamp
circuits
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Figure 8.70 Ided diode clamp input and output
voltages

Now the output voltage has its negative peaks clamped to zero, since the entire
waveform is shifted upward by Vpex volts. Note that in either case, the diode
clamp has the effect of introducing a DC component in a waveform that does not
originally have one. It is also possible to shift the input waveform by a voltage
different from Ve by connecting abattery, Vpc, in serieswith thediode, provided
that

VDC < Vpeak (833)

The resulting circuit is called a biased diode clamp; it is discussed in Example
8.11.

VIRTUAL LAB

EXAMPLE 8.11 Biased Diode Clamp

Problem
Design a biased diode clamp to shift the DC level of the signal vg(7) up by 3 V.

Solution

Known Quantities: vg(t) =5 cos(wt).

Find: Thevalue of Vpc inthecircuit in the lower half of Figure 8.69.
Assumptions: Usetheideal diode model.

Analysis: With reference to the circuit in the lower half of Figure 8.69, we observe that
once the capacitor has charged to Vpex — Vie, the output voltage will be given by:

Vout = Vs — Vpeak + Ve

Since Vpc must be smaller than Ve (otherwise the diode would never conduct!), this
circuit would never permit raising the DC level of vy. To resolve this problem, we must
invert both the diode and the battery, as shown in the circuit of Figure 8.71. Now the
output voltage is given by:

Vout = Vs + Vpeak — Vbc

To have aDC level of 3V, we choose Vpc = 2 V. Theresulting waveforms are shown in
Figure 8.72.

Focus on Computer-Aided Tools: A simulation of the circuit of Figure 8.71 generated
by Electronics Workbench™ may be found in the accompanying CD-ROM.
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Figure 8.72

Photodiodes

Another property of semiconductor materials that finds common application in
measurement systems is their response to light energy. In appropriately fabri-
cated diodes, called photodiodes, when light reaches the depletion region of a pn
junction, photons cause hole-electron pairs to be generated by a process called
photo-ionization. This effect can be achieved by using a surface material that is
transparent to light. As a consequence, the reverse saturation current depends on
thelight intensity (i.e., on the number of incident photons), in addition to the other
factors mentioned earlier, in Section 8.2. In a photodiode, the reverse current
is given by —(Io + I,,), where I, is the additional current generated by photo-
ionization. Theresult isdepicted in the family of curves of Figure 8.73, wherethe
diode characteristic is shifted downward by an amount related to the additional
current generated by photo-ionization. Figure 8.73 depicts the appearance of the
i-v characteristic of a photodiode for various values of I,,, wherethei-v curveis
shifted to lower values for progressively larger values of 7,,. Thecircuit symbol is
depicted in Figure 8.74.
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L1 : diode operation ; L, : solar cell ; L3 : photosensor

Figure 8.73 Photodiode i-v curves

Also displayed in Figure 8.73 are three load lines, which depict the three
modes of operation of a photodiode. Curve L1 represents normal diode operation,
under forward bias. Note that the operating point of the device is in the positive
i, positive v (first) quadrant of the i-v plane; thus, the diode dissipates positive
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Figure 8.74 Photodiode
circuit symbol
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Figure 8.75 Light-
emitting diode (LED) circuit
symbol
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power in this mode, and istherefore a passive device, aswe already know. On the
other hand, load line L, represents operation of the photodiode as asolar cell; in
this mode, the operating point isin the negative i, positive v, or fourth, quadrant,
and therefore the power dissipated by the diode is negative. In other words, the
photodiode is generating power by converting light energy to electrical energy.
Note further that the load line intersects the voltage axis at zero, meaning that no
supply voltage is required to bias the photodiode in the solar-cell mode. Finaly,
load line L3 represents the operation of the diode asalight sensor: when the diode
is reverse-hiased, the current flowing through the diode is determined by the light
intensity; thus, the diode current changes in response to changes in the incident
light intensity.

The operation of the photodiode can also be reversed by forward-biasing the
diode and causing asignificant level of recombination to take placein the depletion
region. Some of the energy released is converted to light energy by emission of
photons. Thus, a diode operating in this mode emits light when forward-biased.
Photodiodesusedinthisway arecalled light-emitting diodes(L EDs); they exhibit
aforward (offset) voltage of 1to 2 volts. The circuit symbol for the LED isshown
in Figure 8.75.

Gallium arsenide (GaAs) is one of the more popular substrates for creating
LEDs; gallium phosphide (GaP) and the alloy GaAs; _xPx are aso quite common.
Table 8.1 lists combinations of materials and dopants used for common LEDs and
the colorsthey emit. The dopants are used to create the necessary pn junction.

Table 8.1 LED materials and wavelengths

Material Dopant  Wavelength Color
GaAs Zn 900 nm Infrared
GaAs Si 910-1,020 nm  Infrared
GaP N 570 nm Green
GaP N 590 nm Yellow
GaP Zn, O 700 nm Red
GaAso6Po.a 650 nm Red
GaAsp3sPoes N 632 nm Orange
GaAsp15Poss N 589 nm Yellow

The construction of a typical LED is shown in Figure 8.76, along with
the schematic representation for an LED. A shallow prn junction is created with
electrical contacts made to both p and n regions. As much of the upper surface
of the p materia is uncovered as possible, so that light can leave the device
unimpeded. It isimportant to note that, actually, only arelatively small fraction
of the emitted light leaves the device; the majority stays inside the semiconductor.
A photon that stays inside the device will eventually collide with an electron in
the valence band, and the collision will force the electron into the conduction
band, emitting an electron-hole pair and absorbing the photon. To minimize the
probability that a photon will be absorbed beforeit has an opportunity to leave the
LED, the depth of the p-doped region is left very thin. Also, it is advantageous
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Figure 8.76 Light-emitting diode (LED)

to have most of the recombinations that emit photons occur as close to the surface
of the diode as possible. Thisis made possible by various doping schemes, but
even so, of al of the carriers going through the diode, only a small fraction emit
photons that are able to |leave the semiconductor.

A simple LED drive circuit is shown in Figure 8.77. From the standpoint of
circuit analysis, LED characteristics are very similar to those of the silicon diode,
except that the offset voltage is usually quite abit larger. Typical valuesof V,, can
be in the range of 1.2 to 2 volts, and operating currents can range from 20 mA
to 100 mA. Manufacturers usually specify an LED’s characteristics by giving the
rated operating-point current and voltage.
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EXAMPLE 8.12 Analysis of Light-Emitting Diode

Problem

For the circuit of Figure 8.77, determine: (1) the LED power consumption; (2) the
resistance Ry; (3) the power required by the voltage source.

Solution

Known Quantities: Diode operating point: Vigp = 1.7V, ILgp = 40 mA; Vg = 5V.
Find: Pep; Rs; Ps.

Assumptions: Usetheideal diode model.

Analysis:

1. The power consumption of the LED is determined directly from the specification of
the operating point:

Plep = Viep X I ep = 68 mW

2. To determine the required value of R; to achieve the desired operating point, we
apply KVL around the circuit of Figure 8.77:

Vs = ILepRs + Viep

Vs — Viep 5-17
Ry = = =825Q
§ ILED 40 x 1073

RS ll LED
Vs — VLED

iLED

Vy VLED

Figure 8.77 LED drive
circuit and i-v characteristic
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3. To satisfy the power requirement of the circuit, the battery must be able to supply 40
mA to the diode. Thus,

PS=VS><I|_ED=200mW

Comments: A more practical LED biasing circuit may be found in Chapter 9 (Example
9.7).

Opto-Isolators

One of the common applications of photodiodes and LEDs is the
opto-coupler, or opto-isolator. Thisdevice, whichis usually enclosed in a
sealed package, uses the light-to-current and current-to-light conversion
property of photodiodes and LEDsto provide signal connection between
two circuits without any need for electrical connections. Figure 8.78 depicts
the circuit symbol for the opto-isolator.

Figure 8.78 Opto-isolator

Because diodes are nonlinear devices, the opto-isolator is not used in
transmitting analog signals: the sighals would be distorted because of the
nonlinear diode i-v characteristic. However, opto-isolators find a very
important application when on-off signals need to be transmitted from
high-power machinery to delicate computer control circuitry. The optical
interface ensures that potentially damaging large currents cannot reach
delicate instrumentation and computer circuits.

Check Your Understanding

8.11 Repeat the analysis of the diode clipper of Figure 8.58 for the branch containing
D.

8.12 For the one-sided diode clipper of Figure 8.59, find the percentage of the source
voltage that reachesthe load if R, = 150 @, r¢ = 50 2, and rp = 5 Q. Assume that the
diode is conducting, and use the circuit model of Figure 8.63.

8.13 How would the diode clipper output waveform change if we used the offset diode
model instead of the piecewise linear model in the analysis? [Hint: Compare Figures 8.26
and 8.38(3).]

CONCLUSION

+ Semiconductor materials have conductive properties that fall between those of
conductors and insulators. These properties make such materials useful in the
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construction of many electronic devices that exhibit nonlinear i-v characteristics.
Of these devices, the diode is one of the most commonly employed.

* The semiconductor diode acts like a one-way current valve, permitting the flow of
current only when biased in the forward direction. Although the behavior of the
diode is described by an exponential equation, it is possible to approximate the
operation of the diode by means of simple circuit models. The simplest model
treats the diode as either a short circuit or an open circuit (the on-off, or ideal,
model). Theidea model can be extended to include an offset voltage (usually 0.2
to 0.7 V), which represents the contact potential at the diode junction. A dlightly
more realistic model, the piecewise linear diode model, accounts for the effects of
the diode forward resistance. With the aid of these circuit modelsit becomes
possible to analyze diode circuits using the DC and AC circuit analysis techniques
developed in earlier chapters.

+ One of the most important properties of the semiconductor diode is that of
rectification, which permits the conversion of AC voltages and currentsto DC
voltages and currents. Diode rectifiers can be of the half-wave type, or they can be
full-wave. Full-wave rectifiers can be constructed in a conventional two-diode
configuration, or in a bridge configuration. Diode rectifiers are an essential part of
DC power supplies and are usually employed in conjunction with filter capacitors
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to obtain arelatively smooth DC voltage waveform. In addition to rectification
and smoothing, it is also necessary to regulate the output of a DC power supply;
Zener diodes accomplish this task by holding a constant voltage when
reverse-biased above the Zener voltage.

* In addition to power supply applications, diodes find use in many
signal-processing and signal-conditioning circuits. Of these, the diode limiter,
peak detector, and clamp have been explored in the chapter. Further, since
semiconductor material properties are also affected by light intensity, certain
types of diodes, known as photodiodes, find application as light detectors, solar
cells, or light-emitting diodes.

CHECK YOUR UNDERSTANDING ANSWERS

Cyu8.1 16.55V

cyusz2 Vo =0.65V; I, =37 mA

CYU 83 01Q

cyu 84 13.92V

Cyu 85 Both diodes conduct.

CyU 8.6 (a) Neither conducts. (b) Both conduct. (c) Only D, conducts. (d) Only D; conducts.
Ccyu 8.7 154.36 V

Ccyu 8.8 8.06 V; 2%

CYU 89 8.8%

HOMEWORK PROBLEMS

Section 1: Semiconductors electronic charge. Therefore the charge neutrality equation
(CNE) is:
8.1 Inasemiconductor materia, the net chargeis zero. Po+Nj —n,—N; =0

This requires the density of positive chargesto be

where

equal to the density of negative charges. Both charge

carriers (free electrons and holes) and ionized dopant

n, = Equilibrium negative carrier density

atoms have a charge equal to the magnitude of one p., = Equilibrium positive carrier density
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N, = lonized acceptor density
N; = lonized donor density

The carrier product equation (CPE) statesthat as a
semiconductor is doped the product of the charge
carrier densities remains constant:

n,p, = Constant

For intrinsic siliconat 7 = 300 K:
Constant = n,,p;, = n2, = p?,

1\2 1
= (1.5 x 10167> =225 x 10327
m m

The semiconductor material isn- or p-type depending
on whether donor or acceptor doping is greater.
Almost al dopant atoms are ionized at room
temperature. If intrinsic silicon is doped:

1

Ny~ N = 1017@ N;=0

Determine:
a. If thisisann- or p-type extrinsic semiconductor.

b. Which are the major and which the minority charge
carriers.

c. The density of majority and minority carriers.

8.2 |fintrinsic silicon is doped:

B 1 1
N,~ N, = 1017ﬁ Ny~ Nj =5x 1018ﬁ

Determine:
a. If thisisann- or p-type extrinsic semiconductor.

b. Which are the mgjority and which the minority
charge carriers.

¢. Thedensity of majority and minority carriers.

8.3 Describe the microscopic structure of semiconductor
materials. What are the three most commonly used
semiconductor materials?

8.4 Describe the thermal production of charge carriersin
a semiconductor and how this process limits the
operation of a semiconductor device.

8.5 Describe the properties of donor and acceptor dopant
atoms and how they affect the densities of charge
carriersin a semiconductor material.

8.6 Physically describe the behavior of the charge
carriers and ionized dopant atomsin the vicinity of a
semiconductor pn junction that causes the potential
(energy) barrier that tends to prevent charge carriers
from crossing the junction.

Section 2: Diode Circuit Models

8.7 Find voltage v, inthecircuit of Figure P8.7, where
D isanidea diode. Usevauesof vg < and > 0.

Semicondu