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1. INTRODUCTION

Extensible systems, such as web browsers which download and run applet programs,
or operating systems which incorporate drivers for new devices, must ensure that
their extensions behave in a manner consistent with the intentions of the system
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designer and its users. When unacceptable behavior goes unchecked, damage can
result—not only to the system itself but also to connected systems.

Security enforcement mechanisms are employed to prevent unacceptable behav-
ior. Recently, attention has turned to formally characterizing types of enforcement
mechanisms and identifying the classes of security policies they can enforce [Ligatti
et al. 2005a; Schneider 2000; Viswanathan 2000]. This work allows us to assess the
power of different mechanisms, choose mechanisms well suited to particular security
needs, identify kinds of attacks that might still succeed even after a given mech-
anism has been deployed, and derive meaningful completeness results for newly
developed mechanisms.

The abstract model for security policies developed by Schneider [2000] and re-
fined by Viswanathan [2000] characterizes a class of policies meant to capture what
could be effectively enforced through execution monitoring. Execution monitors
are enforcement mechanisms that work by monitoring the computational steps of
untrusted programs and intervening whenever execution is about to violate the
security policy being enforced. Execution monitoring, however, can be viewed as
an instance of the more general technique of program-rewriting, wherein the en-
forcement mechanism transforms untrusted programs before they are executed so
as to render them incapable of violating the security policy to be enforced. No
characterization of the class of security policies enforceable by program-rewriting
has been developed (to our knowledge). Since numerous systems [Deutsch and
Grant 1971; Small 1997; Wahbe et al. 1993; Erlingsson and Schneider 2000; Evans
and Twynman 1999; Erlingsson and Schneider 1999] use program-rewriting in ways
that go beyond what can be modeled as an execution monitor, a characterization
of the class of policies enforceable by program-rewriters would be useful. So we
here extend Schneider’s and Viswanathan’s model to characterize this new class
of policies, the RW-enforceable policies, corresponding to what can be effectively
enforced through program-rewriting.

Execution monitoring can be viewed as an instance of program-rewriting, so one
would expect the class EMorig of policies characterized by Schneider and Viswan-
athan to be a subclass of the RW-enforceable policies. However, we show that
surprisingly this is not the case; there are some policies in EMorig that are not
enforceable by any program-rewriter. Our analysis of these policies shows that
they cannot actually be enforced by an execution monitor either, revealing that
EMorig actually constitutes an upper bound on the class of policies enforceable by
execution monitors instead of an exact bound as was previously thought. We then
show that intersecting EMorig with the RW-enforceable policies yields exactly those
policies that can actually be enforced by an execution monitor, the EM-enforceable
policies.

We proceed as follows. We establish a formal model of security enforcement
in §2. Next, in §3 we use that model to characterize and relate three methods of
security enforcement: static analysis, execution monitoring, and program rewriting.
Using the results of these analyses, §4 exposes and corrects flaws in prior work that
cause Schneider’s and Viswanathan’s class to admit policies not enforceable by
any execution monitor. Related and future work is discussed in §5. Finally, §6
summarizes the results of the prior sections.
ACM Transactions on Programming Languages and Systems, Vol. 28, No. 1, January 2006.



Computability Classes for Enforcement Mechanisms · 3

2. FORMAL MODEL OF SECURITY ENFORCEMENT

2.1 Programs and Executions

An enforcement mechanism prevents unacceptable behavior by untrusted programs.
Fundamental limits on what an enforcement mechanism can prevent arise whenever
that mechanism is built using computational systems no more powerful than the
systems upon which the untrusted programs themselves are based, because the
incompleteness results of Gödel [1931] and Turing [1936] then imply there will be
questions about untrusted programs unanswerable by the enforcement mechanism.

To expose these unanswerable questions, untrusted programs must be represented
using some model of computation. The Turing Machine (TM) [Turing 1936] is an
obvious candidate because it is well understood and because a wide range of security
policies can be encoded as properties of TM’s [Marcus 1989; Harrison et al. 1976].

Recall, a TM has a finite control comprising a set of states and a transition
relation over those states. A computational step occurs whenever a TM moves
from one finite control state to another (possibly the same) finite control state in
accordance with its transition relation.

However, there are two reasons that the traditional definition of a TM, as a
one-tape finite state machine that accepts or rejects finite-length input strings,
is unsuitable for representing untrusted programs. First, it does not model non-
terminating programs well. Operating systems, which are programs intended to
run indefinitely, are not easily characterized in terms of acceptance or rejection of a
finite input. Second, the traditional definition of a TM does not easily distinguish
runtime information that is observable by the outside world (e.g. by an enforcement
mechanism) from runtime information that is not observable because all runtime
information is typically encoded on a single tape. Any realistic model of execution
monitoring must be rich enough to express the monitor’s limited power to access
some but not all information about the untrusted program as it runs.

Therefore, untrusted programs are modeled in this paper by a multitape variant
of a traditional TM (multitape TM’s being equivalent in computational power to
single-tape TM’s [Hopcroft and Ullman 1979, p. 161]) that we term a program
machine (PM). PM’s are deterministic TM’s (i.e. TM’s with deterministic transition
relations) that manipulate three infinite-length tapes:

— An input tape, which contains information initially unavailable to the enforce-
ment mechanism: user input, non-deterministic choice outcomes, and any other
information that only becomes available to the program as its execution progresses.
Non-determinism in an untrusted program is modeled by using the input tape con-
tents, even though PM’s are themselves deterministic. Input tapes may contain any
finite or infinite string over some fixed, finite alphabet Γ; the set of all (finite-length
and infinite-length) input strings is denoted by Γω.

— A work tape, which is initially blank and can be read or written by the PM
without restriction. It models work space provided to the program at runtime and
is not directly available to the enforcement mechanism.

— A write-only trace tape, discussed more thoroughly below, which records
security-relevant behavior by the PM that can be observed by the enforcement
mechanism.
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Separation of a PM’s runtime information into these three tapes allows us to pro-
vide PM’s infinite-length input strings on their input tapes, and allows the model
to distinguish information that is available to the enforcement mechanism from
information that is not.

As a PM runs, it exhibits a sequence of events observable to the enforcement
mechanism by writing encodings of those events on its trace tape. For example, if
“the PM writing a 1 to its work tape” is an event that the enforcement mechanism
will observe, and the encoding of this event is “0001”, then the string “0001” is
automatically written by the PM to its trace tape whenever that PM writes a 1 to
its work tape.

As the example suggests, we assume a fixed universe of all observerable events
E and assume that their encodings do not vary from PM to PM. Assuming a
fixed set E allows our model to distinguish between information observable by
the enforcement mechanism and information that is not observable. It can be
used to specify that some information might never be available to an enforcement
mechanism and that other information, like user inputs or non-deterministic choices,
only becomes available to the enforcement mechanism at a particular point during
execution. The result is a model that distinguishes between two different (but often
conflated) reasons among the many reasons why an enforcement mechanism might
fail to enforce a particular security policy:

— The enforcement mechanism could fail because it lacks the ability to observe
events critical to the enforcement of the policy. In that case, E is inadequate to
enforce the policy no matter which enforcement mechanism is employed.

— The enforcement mechanism could fail because it lacks sufficient computa-
tional power to prevent a policy violation given the available information. In this
case, where one enforcement mechanism fails, another might succeed.

Although we do not fix a specific set E, we will make several assumptions about E
that allow us to model the predictive power of enforcement mechanisms of interest
in this paper. In particular, enforcement mechanisms that seek to prevent security
policy violations before they occur must always have some ability to predict an
untrusted program’s behavior finitely far into the future on any given input. For
example, execution monitors must be able to look ahead at least one computational
step on all possible control flow paths to see if a security-relevent event might
next be exhibited. Without this ability, they have no opportunity to intercept
bad events before they occur. This predictive power is, of course, limited by the
information available to the enforcement mechanism. An enforcement mechanism
cannot necessarily determine which (if any) event will be exhibited next if the
untrusted program is about to read input, but we will assume that it can determine
which event would be exhibited next for any given input symbol the untrusted
program might read. This prediction will be repeatable for a finite number of
iterations to predict the outcome of any given finite sequence of inputs that the
untrusted program might encounter. The following assumptions about E suffice to
model this predictive power.

— E is a countably infinite set, allowing each event to be unambiguously encoded
as a finite sequence of symbols on a PM’s trace tape.
ACM Transactions on Programming Languages and Systems, Vol. 28, No. 1, January 2006.
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— Reading a symbol from the input tape is always an observable event. Thus
for each input symbol s ∈ Γ, there is an event es ∈ E that corresponds to reading
s from the input tape.

— For each PM M , there is an event eM that encodes M , including the finite
control and transition relation of M .1 This corresponds to the assumption that
the enforcement mechanism can access the untrusted program’s text to make finite
predictions about its future behavior. A means for the enforcement mechanism to
use event eM to make these predictions will be given shortly.

A weaker set of assumptions about E that permits enforcement mechanisms access
to less information, but that still captures the predictive power of interesting en-
forcement mechanisms might be possible but is left as future work. Independent
work on this problem [Fong 2004] is discussed in §5.

Following Schneider [2000], program executions are modeled as sequences χ of
events from E. Without loss of generality, we assume that complete executions
are always infinite event sequences. (If an untrusted program’s termination is an
observable event, then it can be modeled by a PM that loops, repeatedly exhibiting
a distinguished event eend , instead of terminating. If program termination is not
observable, E can be augmented with an event eskip that indicates that either the
untrusted program has terminated or that no security-relevant event has taken
place on a particular computational step.) Many of our analyses will involve both
complete executions and their finite prefixes, and we use χ to refer to both infinite
and finite event sequences unless explicitly stated otherwise. Each finite prefix of
an execution encodes the information available to the enforcement mechanism up
to that point in the execution. Define | · | : Eω → (N ∪ {∞}) such that |χ| is the
length of sequence χ if χ is finite, and |χ| is ∞ if χ is infinite. When i ∈ N and
1 ≤ i ≤ |χ| then let χ[i] denote the ith event of χ, let χ[..i] denote the length-i
prefix of χ, and let χ[i + 1..] denote the suffix of χ consisting of all but the first i
events.

Executions exhibited by a PM are recorded on the PM’s trace tape. As the PM
runs, a sequence of symbols gets written to the trace tape—one (finite) string of
symbols for each event e ∈ E the PM exhibits. If the PM terminates, then the
encoding of eend or eskip is used to pad the remainder of the (infinite-length) trace
tape. Let χM(σ) denote the execution written to the trace tape when PM M is run
on input tape σ. Let XM denote the set of all possible executions exhibited by a
PM M (viz {χM(σ)|σ ∈ Γω}), and let X−

M denote the set of all non-empty finite
prefixes of XM (viz {χ[..i]|χ ∈ XM , i ≥ 1}).

To provide enforcement mechanisms with the ability to anticipate the possible
exhibition of security-relevant events, we assume that the first event of every execu-
tion exhibited by M is event eM . Thus, we assume that there exists a computable
function 〈〈·〉〉 from executions to PM’s such that 〈〈χM(σ)[..i]〉〉 = M for all i ≥ 1.

Although the existence of a function 〈〈·〉〉 that maps executions to the PM’s that
generated them is a realistic assumption, in so far as enforcement mechanisms
located in the processor or operating system have access to the program, only

1This assumption might appear to give an enforcement mechanism arbitrarily powerful decision-
making ability, but we will see in §3 that the power is still quite limited because unrestricted
access to the program text is tempered by time limits on the use of that information.
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6 · Kevin W. Hamlen et al.

superficial use has been made of this information in actual execution monitor im-
plementations to date. For example, reference monitors in kernels typically do
not perform significant analyses of the text of the untrusted programs they moni-
tor. Instead they use hardware interrupts or other instrumentation techniques that
consider only single program instructions in isolation. Eliminating from our formal
model the assumption that 〈〈·〉〉 exists would require a model in which the compu-
tational details of PM’s are more elaborate, because the model would need to allow
enforcement mechanisms to examine enough of a PM to predict security-relevant
events before they occur but not enough to recover all of the PM’s finite control.
We conjecture that such an elaboration of our model would result in only trivial
changes to the results derived in this paper, but a proper analysis is left to future
work.

To ensure that a trace tape accurately records an execution, the usual operational
semantics of TM’s, which dictates how the finite control of an arbitrary machine
behaves on an arbitrary input, is augmented with a fixed trace mapping (M,σ) 7→
χM(σ) such that the trace tape unambiguously records the execution that results
from running an arbitrary PM M on an arbitrary input σ.

The appendix provides a formal operational semantics for PM’s, an example
event set, and an example trace mapping satisfying the constraints given above.

2.2 Security Policies

A security policy defines a binary partition on the set of all (computable) sets of
executions. Each (computable) set of executions corresponds to a PM, so a security
policy divides the set of all PM’s into those that satisfy the policy and those that
do not. This definition of security policies is broad enough to express most things
usually considered security policies [Schneider 2000], including

— access control policies, which are defined in terms of a program’s behavior on
an arbitrary individual execution for an arbitrary finite period,

— availability policies, which are defined in terms of a program’s behavior on an
arbitrary individual execution over an infinite period, and

— information flow policies, which are defined in terms of the set of all execu-
tions—and not the individual executions in isolation—that a program could possi-
bly exhibit.

Given a security policy P, we write P(M) to denote that M satisfies the policy and
¬P(M) to denote that it does not.

For example, if cells 0 through 511 of the work tape model the boot sector of
a hard disk, and we have defined E such that a PM exhibits event ewrites(i) ∈ E
whenever it writes to cell i of its work tape, then we might be interested in the
security policy Pboot that is satisfied by exactly those PM’s that never write to
any of cells 0 through 511 of the work tape. More formally, Pboot(M) holds if and
only if for all σ ∈ Γω, execution χM(σ) does not contain any of events ewrites(i) for
0 ≤ i < 512.

Security policies are often specified in terms of individual executions they pro-
hibit. Letting P̂ be a predicate over executions, the security policy P induced by P̂
is defined by:

P(M) =def (∀χ : χ ∈ XM : P̂(χ))
ACM Transactions on Programming Languages and Systems, Vol. 28, No. 1, January 2006.
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That is, a PM M satisfies a security policy P if and only if all possible executions
of M satisfy predicate P̂. P̂ is called a detector for P. For example, if we define a
detector P̂boot(χ) to hold exactly when χ does not contain any event ewrites(i) for
0 ≤ i < 512, then policy Pboot (above) is the policy induced by detector P̂boot .

The detector P̂boot can be decided2 for a finite execution prefix χ by verifying that
χ does not contain any of a set of prohibited events, namely ewrites(i) for 0 ≤ i < 512.
Such detectors are often useful, so for any set of events B ⊆ E to be prohibited, we
define3:

P̂B(χ) =def (∀e : e ∈ χ : e 6∈ B)

The policy PB induced by P̂B is satisfied by exactly those PM’s that never exhibit
an event from B. Policy Pboot can then be expressed as P{ewrites(i)|0≤i<512}.

3. MODELING VARIOUS SECURITY ENFORCEMENT MECHANISMS

The framework defined in §2 can be used to model many security enforcement
mechanisms, including static analyses (c.f. [Lindholm and Yellin 1999, Chapter
4.9.1, Passes 1-3; Morrisett et al. 1999; Myers 1999; Nachenberg 1997]), reference
monitors (c.f. [Anderson 1972; Lampson 1971; Lindholm and Yellin 1999, Chap-
ter 4.9.1, Pass 4; Rees and Clinger 1991; Kim et al. 2001]), and program rewrit-
ers (c.f. [Deutsch and Grant 1971; Erlingsson and Schneider 2000; Erlingsson and
Schneider 1999; Evans and Twynman 1999; Small 1997; Wahbe et al. 1993]).

3.1 Static Analysis

Enforcement mechanisms that accept or reject an untrusted program strictly prior
to running the untrusted program are termed static analyses. Here, the enforcement
mechanism must determine whether the untrusted program satisfies the security
policy within a finite period of time.4 Accepted programs are permitted to run
unhindered; rejected programs are not run at all. Examples of static analyses
include static type-checkers for type-safe languages, like that of the Java Virtual
Machine5 [Lindholm and Yellin 1999, Chapter 4.9.1, Passes 1-3] and TAL [Morrisett
et al. 1999]. JFlow [Myers 1999] and others use static analyses to provide guarantees
about other security policies such as information flow. Standard virus scanners
[Nachenberg 1997] also implement static analyses.

Formally, a security policy P is deemed statically enforceable in our model if there
exists a TM MP that takes an encoding of an arbitrary PM M as input and, if
P(M) holds, then MP(M) accepts in finite time; otherwise MP(M) rejects in finite
time. Thus, by definition, statically enforceable security policies are the recursively
decidable properties of TM’s:

2We say a predicate can be decided or is recursively decidable iff there exists an algorithm that,
for any finite-length element, terminates and returns 1 if the element satisfies the predicate, and
terminates and returns 0 otherwise.
3We write e ∈ χ holds if and only if event e is in execution χ; i.e. e ∈ χ =def (∃i : 0 ≤ i : e = χ[i]).
4Some enforcement mechanisms involve simulating the untrusted program and observing its be-
havior for a finite period. Even though this involves running the program, we still consider it a

static analysis as long as it is guaranteed to terminate and yield a yes or no result in finite time.
5The JVM also includes runtime type-checking in addition to static type-checking. The runtime
type-checks would not be considered to be static analyses.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 1, January 2006.
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Theorem 3.1.1. The class of statically enforceable security policies is the class
of recursively decidable properties of programs (also known as class Π0 of the arith-
metic hierarchy).

Proof. Immediate from the definition of static enforceability. Recursively de-
cidable properties are, by definition, those for which there exists a total, computable
procedure that decides them. Machine MP is such a procedure.

Class Π0 is well-studied, so there is a theoretical foundation for statically enforce-
able security policies. Statically enforceable policies include: “M terminates within
100 computational steps,” “M has less than one million states in its finite control,”
and “M writes no output within the first 20 steps of computation.” For example,
since a PM could read at most the first 100 symbols of its input tape within the first
100 computational steps, and since Γ is finite, the first of the above policies could
be decided in finite time for an arbitrary PM by simulating it on every length-100
input string for at most 100 computational steps to see if it terminates. Policies
that are not statically enforceable include, “M eventually terminates,” “M writes
no output when given σ as input,” and “M never terminates.” None of these are
recursively decidable for arbitrary PM’s.

Static analyses can also prevent PM’s from violating security policies that are not
recursively decideable, but only by enforcing policies that are conservative approx-
imations of those policies. For example, a static analysis could prevent PM’s from
violating the policy, “M eventually terminates,” by accepting only PM’s that termi-
nate within 100 computational steps. However, in doing so it would conservatively
reject some PM’s that satisfy the policy—specifically, those PM’s that terminate
after more then 100 computational steps.

3.2 Execution Monitoring

Reference monitors [Anderson 1972; Ware 1979] and other enforcement mechanisms
that operate alongside an untrusted program are termed execution monitors (EM’s)
in [Schneider 2000]. An EM intercepts security-relevant events exhibited as the
untrusted program executes, and the EM intervenes upon seeing an event that
would lead to a violation of the policy being enforced. The intervention might
involve terminating the untrusted program or might involve taking some other
corrective action.6 Examples of EM enforcement mechanisms include access control
list and capability-based implementations of access control matrices [Lampson 1971]
as well as hardware support for memory protection. Runtime linking performed
by the Java Virtual Machine [Lindholm and Yellin 1999, Chapter 4.9.1, Pass 4],
and runtime type-checking such as that employed by dynamically typed languages
like Scheme [Rees and Clinger 1991], are other examples. The MaC system [Kim
et al. 2001] implements EM’s through a combination of runtime event-checking and
program instrumentation.

6Schneider [2000] assumes the only intervention action available to an EM is termination of the

untrusted program. Since we are concerned here with a characterization of what policies an EM
can enforce, it becomes sensible to consider a larger set of interventions.

ACM Transactions on Programming Languages and Systems, Vol. 28, No. 1, January 2006.
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Schneider [2000] observes that for every EM-enforceable security policy P there
will exist a detector P̂ such that

P(M) ≡ (∀χ : χ ∈ XM : P̂(χ)) (EM1)

P̂(χ) =⇒ (∀i : 1 ≤ i < |χ| : P̂(χ[..i])) (EM2)

¬P̂(χ) =⇒ (∃i : 1 ≤ i : ¬P̂(χ[..i])) (EM3)

and thus the EM-enforceable policies are a subset of the safety properties7.
Viswanathan [2000] observes that P̂ must also be computable (something left

implicit in [Schneider 2000]), giving rise to a fourth restriction:

P̂(χ) is recursively decidable whenever χ is finite. (EM4)

We refer to the class of security policies given by EM1 – EM4 as the class EMorig .
A security policy P in EMorig can then be enforced by deciding P̂ at each compu-
tational step. Specifically, as soon as the next exhibited event, if permitted, would
yield an execution prefix that violates P̂, the EM intervenes to prohibit the event.

EM4 is critical because it rules out detectors that are arbitrarily powerful and
thus not available to any real EM implementation. For example, the policy that a
PM must eventually halt—a liveness property that no EM can enforce [Lamport
1977; Schneider 2000]—satisfies EM1 – EM3 but not EM4.

In §4.1 we show that real EM’s are limited by additional constraints. However,
class EMorig constitutes a useful upper bound on the set of policies enforceable by
execution monitors. Viswanathan [2000] shows that EMorig is equivalent to the co-
recursively enumerable (coRE) properties, also known as class Π1 of the arithmetic
hierarchy. A security policy P is coRE when there exists a TM MP that takes an
arbitrary PM M as input and rejects it in finite time if ¬P(M) holds; otherwise
MP(M) loops forever. The equivalence of EMorig to the coRE properties will be
used throughout the remainder of the paper. Since Viswanathan’s model differs
substantially from ours, we reprove this result for our model.

Theorem 3.2.1. The class given by EM1 – EM4 is the class of co-recursively
enumerable (coRE) properties of programs (also known as the Π1 class of the arith-
metic hierarchy).

Proof. First we show that every policy satisfying EM1 – EM4 is coRE. Let a
policy P satisfying EM1 – EM4 be given. Security policy P is, by definition, coRE
if there exists a TM MP that takes an arbitrary PM M as input and loops forever
if P(M) holds but otherwise halts in finite time. To prove that P is coRE, we
construct such an MP .

By EM1, P(M) ≡ (∀χ : χ ∈ XM : P̂(χ)) for some P̂ satisfying EM2 – EM4. EM4
guarantees that a TM can decide P̂(χ) for finite χ. We can therefore construct MP ,
as follows: When given M as input, MP begins to iterate through every finite prefix
χ of executions in XM . For each, it decides P̂(χ). If it finds a χ such that ¬P̂(χ)
holds, it halts. (This is possible because EM4 guarantees that P̂(χ) is recursively
decidable.) Otherwise it continues iterating indefinitely.

7A safety property is a property that stipulates some “bad thing” does not happen during execu-
tion [Lamport 1977].
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If P(M) holds, then by EM1, there is no χ ∈ XM such that ¬P̂(χ) holds. Thus,
by EM2, there is no i such that ¬P̂(χ[..i]) holds. Therefore MP will loop forever.
But if P(M) does not hold, then by EM1 and EM3 there is some χ and some i
such that ¬P̂(χ[..i]) holds. Therefore MP will eventually terminate. Thus, MP is
a witness to the fact that policy P is coRE.

Second, we show that every coRE security policy satisfies EM1 – EM4. Let a
security policy P that is coRE be given. That is, assume there exists a TM MP
such that if P(M) holds then MP(M) runs forever; otherwise MP(M) halts in finite
time. We wish to show that there exists some P̂ satisfying EM1 – EM4. Define
P̂(χ) to be true iff MP(〈〈χ〉〉) does not halt in |χ| steps or less. If χ is infinite, then
P̂(χ) is true iff MP(〈〈χ〉〉) never halts.
P̂ satisfies EM2 because if MP(〈〈χ〉〉) does halt in |χ| steps or less, then it will

also halt in j steps or less whenever j ≥ |χ|. P̂ satisfies EM3 because if MP(〈〈χ〉〉)
ever halts, it will halt after some finite number of steps. P̂ satisfies EM4 because
whenever χ is of finite length, MP(〈〈χ〉〉) can be simulated for |χ| steps in finite
time. Finally, P̂ satisfies EM1 because all and only those PM’s 〈〈χ〉〉 that do not
satisfy P cause MP to halt in time |χ| for some (sufficiently long) χ.

Since the coRE properties are a proper superset of the recursively decidable
properties [Papadimitriou 1995, p. 63], every statically enforceable policy is triv-
ially enforceable by an EM—the static analysis would be performed by the EM
immediately after the PM exhibits its first event (i.e., immediately after the pro-
gram is loaded). Statically enforceable policies are guaranteed to be computable in
a finite period of time, so the EM will always be able to perform this check in finite
time and terminate the untrusted PM if the check fails.

Even though the power of the EM approach is strictly greater than that of the
static approach, this does not mean that the EM approach is to be universally
preferred over the static approach. Depending on the policy to be enforced, either
approach might be preferable to the other for engineering reasons. For example,
static enforcement mechanisms predict policy violations before a program is run
and therefore do not slow the program, whereas EM’s usually slow execution due
to their added runtime checks. Also, an EM might signal security policy viola-
tions arbitrarily late into an execution and only on some executions, whereas a
static analysis reveals prior to execution whether that program could violate the
policy. Thus, recovering from policy violations discovered by an EM can be more
difficult than recovering from those discovered by a static analysis. In particu-
lar, an EM might need to roll back a partially completed computation, whereas
a static analysis always discovers the violation before computation begins. Al-
ternatively, some policies, though enforceable by a static analysis, are simpler to
enforce with an EM, reducing the risk of implementation errors in the enforcement
mechanism. Moreover, the comparison of static enforcement to EM-enforcement
given in Theorem 3.2.1 assumes that both are being given the same information
(because in our model an EM can examine the untrusted program via event eM ).
If a static analysis is provided one representation of the program (e.g., source code)
and an EM is provided another in which some of the information has been erased
(e.g., object code), then each might well be able to enforce policies that the other
cannot.
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coRE
(EMorig)

Decidable
(Static)

Fig. 1. The relationship of the static to the coRE policies.

Theorem 3.2.1 also suggests that there are policies enforceable by EM’s that are
not statically enforceable, since Π0 ⊂ Π1. Policy Pboot given in §2.2 is an example.
More generally, assuring that a PM will never exhibit some prohibited event is
equivalent to solving the Halting Problem, which is known to be undecidable and
therefore is not statically enforceable. EM’s enforce such “undecidable” security
policies by waiting until a prohibited event is about to occur, and then signaling
the violation.

The relationship of the static policies to class EMorig is depicted in Figure 1.

3.3 Program Rewriting and RW≈-Enforceable Policies

An alternative to static analysis or execution monitoring is program rewriting. A
program-rewriter modifies, in finite time, untrusted programs prior to their execu-
tion. Use of program rewriting for enforcing security policies dates back at least
to 1969 [Deutsch and Grant 1971]. More recently, we find program rewriting being
employed in software-based fault-isolation (SFI) [Small 1997; Wahbe et al. 1993] as
a way of implementing memory-safety policies, and in PSLang/PoET [Erlingsson
and Schneider 2000] and Naccio [Evans and Twynman 1999] for enforcing security
policies in Java. Program-rewriters can also be seen as a generalization of execution
monitoring, since they can be used to implement an EM as an in-lined reference
monitor (IRM) whereby an EM is embedded into the untrusted program [Erlings-
son and Schneider 1999]. The approach is appealing, powerful, and quite practical,
so understanding what policies it can enforce is a worthwhile goal.

Implicit in program rewriting is some notion of program equivalence that con-
strains the program transformations a program rewriter performs. Executions of
the program that results from program rewriting must have some correspondence
to executions of the original. We specify this correspondence in terms of an equiv-
alence relation ≈ over PM’s. Since there are many notions of PM-equivalence that
might be suitable, we leave the definition open, defining relation ≈ in terms of an
unspecified equivalence relation ≈χ on executions:

M1 ≈ M2 =def

(
∀σ : σ ∈ Γω : χM1(σ) ≈χ χM2(σ)

)
(PGEQ)
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Given a PM-equivalence relation, we define a policy P to be RW≈-enforceable if
there exists a total, computable rewriter function R : PM → PM such that for all
PM’s M ,

P(R(M)) (RW1)
P(M) =⇒ M ≈ R(M) (RW2)

Thus, for a security policy P to be considered RW≈-enforceable, there must exist a
way to transform a PM so that the result is guaranteed to satisfy P (RW1) and if
the original PM already satisfied P, then the transformed PM is equivalent (but not
necessarily identical) to the old (RW2). It is important to note that RW1 precludes
a program-rewriter from producing as output any PM that does not satisfy the
policy. As we shall see in §4, this requirement leads to a subtle but important
distinction between the class of RW≈-enforceable policies and EMorig .

Equivalence relation ≈χ in PM-equivalence is defined independently of any se-
curity policy, but the choice of any particular ≈χ places an implicit constraint on
which detectors can be considered in any of our analyses of policies enforceable by
detectors. In particular, it is sensible to consider only those detectors P̂ that satisfy

(∀χ1, χ2 : χ1, χ2 ∈ Eω : χ1 ≈χ χ2 =⇒ P̂(χ1) ≡ P̂(χ2))

Such a detector will be said to be consistent with ≈χ since it never classifies one
execution as acceptable and another as unacceptable when the two are equivalent
according to ≈χ. Program rewriters presume equivalent executions are interchange-
able, which obviously isn’t the case if one execution is acceptable and the other is
not. Thus, detectors that are not consistent with ≈χ are not compatible with the
model. In an analysis of any particular enforcement mechanism involving detectors,
≈χ should be defined in such a way that all detectors supported by the mechanism
are consistent with ≈χ, and are therefore covered by the analysis.

The class of RW≈-enforceable policies includes virtually all statically enforceable
policies.8 This is because given a statically enforceable policy P, a rewriter function
exists that can decide P directly—that rewriter function returns unchanged any PM
that satisfies the policy and returns some safe PM (such as a PM that outputs an
error message and terminates) in place of any PM that does not satisfy the policy.
This is shown formally below.

Theorem 3.3.1. Every satisfiable, statically enforceable policy is RW≈-enforce-
able.

Proof. Let a policy P be given that is both satisfiable and statically enforceable.
Since P is satisfiable, there exists a program M1 such that P(M1) holds. Define a
total function R : TM → TM by

R(M) =def

{
M if P(M) holds
M1 if ¬P(M) holds

.

R is total because it assigns a TM to every M , and it is computable because P
is statically enforceable and therefore, by Theorem 3.1.1, recursively decidable. R

8The one statically enforceable policy not included is the policy that causes all PM’s to be rejected,
because there would be no PM for R to return.
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satisfies RW1 because its range is restricted to programs that satisfy P. Finally, R
satisfies RW2 because whenever P(M) holds, R(M) = M . Thus M ≈ R(M) holds
because M ≈ M holds by the reflexivity of equivalence relations. We conclude that
P is RW≈-enforceable.

Theorems 3.2.1 and 3.3.1 together imply that the intersection of class EMorig with
the RW≈-enforceable policies includes all satisfiable, statically enforceable policies.

The policies in EMorig that are RW≈-enforceable policies also include policies
that are not statically enforceable, but only for certain notions of PM-equivalence.
Program-rewriting is only an interesting method of enforcing security policies when
PM-equivalence is a relation that cannot be decided directly. For example, if PM-
equivalence is defined syntactically (i.e., two PM’s are equivalent if and only if they
are structurally identical) then any modification to the untrusted PM produces an
inequivalent PM, so RW2 cannot hold. The following theorem shows that if PM-
equivalence is a recursively decidable relation, then every RW≈-enforceable policy
that is induced by some detector is statically enforceable. Hence, there is no need
to use program rewriting if PM-equivalence is so restrictive.

Theorem 3.3.2. Assume that PM-equivalence relation ≈ is recursively decid-
able, and let P̂ be a detector consistent with ≈χ. If the policy P induced by P̂ is
RW≈-enforceable then P is statically enforceable.

Proof. Exhibit a finite procedure for deciding P, thereby establishing that P
is statically enforceable by Theorem 3.1.1.

Given M an arbitrary PM, P(M) can be decided as follows. Start by computing
R(M), where R is the program rewriter given by the RW≈-enforceability of P.
Next, determine if M ≈ R(M) which is possible because ≈ is recursively decidable,
by assumption. If M 6≈ R(M) then RW2 implies that ¬P(M) holds. Otherwise, if
M ≈ R(M) then P(M) holds by the following line of reasoning:

P(R(M)) (RW1)

(∀χ : χ ∈ XR(M) : P̂(χ)) (P̂ induces P) (1)
(∀σ : σ ∈ Γω : χM(σ) ≈χ χR(M)(σ)) (because M ≈ R(M))

(∀σ : σ ∈ Γω : P̂(χM(σ)) ≡ P̂(χR(M)(σ))) (consistency) (2)

(∀σ : σ ∈ Γω : P̂(χM(σ))) (by 1 and 2) (3)
P(M) (by 3)

Thus, P(M) has been decided in finite time and we conclude by Theorem 3.1.1
that P is statically enforceable.

In real program rewriting enforcement mechanisms, program equivalence is usu-
ally defined in terms of execution. For instance, two programs are defined to be
behaviorally equivalent if and only if, for every input, both programs produce the
same output; in a Turing Machine framework, two TM’s are defined to be language-
equivalent if and only if they accept the same language. Both notions of equivalence
are known to be Π2-hard, and other such behavioral notions of equivalence tend to
be equally or more difficult. Therefore we assume PM-equivalence is not recursively
decidable and not coRE in order for the analysis that follows to have relevance in
real program rewriting implementations.
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If PM-equivalence is not recursively decidable, then there exist policies that are
RW≈-enforceable but not statically enforceable. Pboot of §2.2, is an example. A
rewriting function can enforce Pboot by taking a PM M as input and returning a
new PM M ′ that is exactly like M except just before every computational step of
M , M ′ simulates M for one step into the future on every possible input symbol to
see if M will exhibit any prohibited event {ei|0 ≤ i < 512}. If any prohibited event
is exhibited, then M ′ is terminated immediately; otherwise the next computational
step is performed.

If PM-equivalence is not coRE, then program rewriting can be used to enforce
policies that are not coRE, and therefore not enforceable by any EM.

Theorem 3.3.3. There exist non-coRE PM-equivalence relations ≈ and policies
that are RW≈-enforceable but not coRE.

Proof. Define ≈TM
χ by χ1 ≈TM

χ χ2 ⇐⇒
(
(eend ∈ χ1) ⇔ (eend ∈ χ2)

)
and define

≈TM according to definition PGEQ. That is, two PM’s M1 and M2 are equivalent
iff they both halt on the same set of input strings. Relation ≈TM defines language-
equivalence for Turing Machines, which is known to be Π2-complete and therefore
not coRE. Define MU to be the universal PM that accepts as input an encoding of
an arbitrary PM M and a string σ, whereupon MU simulates M(σ), halting if M(σ)
halts and looping otherwise. Define policy PU (M) =def (M ≈TM MU ). Observe that
policy PU is RW≈TM -enforceable because we can define R(M) =def MU . Rewriting
function R satisfies RW1 because PU (MU ) holds, and it satisfies RW2 because if
PU (M) holds then M ≈TM MU by construction. We next prove that PU is Π2-
complete, and therefore not coRE.

A TM with an oracle that computes the ≈TM relation can trivially compute
PU . We now prove the reverse reduction: A TM with an oracle that computes
PU can compute the ≈TM relation. Define OU to be an oracle that, when queried
with M , returns true if PU (M) holds and false otherwise. Define TM MEQ by
MEQ(M1,M2) =def OU (M3) where M3 is defined by

M3(M,σ) =def

{
M1(σ) if M = M2

M(σ) otherwise

That is, MEQ treats its input tape as an encoding of a pair of PM’s M1 and M2,
and builds a new PM M3 that is exactly like the universal PM MU except that it
simulates M1 when it receives M2 as input instead of simulating M2. PM MEQ

then queries oracle OU with M3. Observe that MEQ ≈TM MU iff M1 ≈TM M2.
Thus, MEQ(M1,M2) holds iff M1 ≈TM M2.

The proof of Theorem 3.3.3 gives a simple but practically uninteresting exam-
ple of an RW≈-enforceable policy that is not coRE. Examples of non-coRE, RW≈-
enforceable policies having practical significance do exist. Here is one.

The Secret File Policy: Consider a filesystem that stores a file whose exis-
tence should be kept secret from untrusted programs. Suppose untrusted pro-
grams have an operation for retrieving a listing of the directory that contains
the secret file. System administrators wish to enforce a policy that prevents
the existence of the secret file from being leaked to untrusted programs. So,
an untrusted PM satisfies the “secret file policy” if and only if the behavior of
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the PM is identical to what its behavior would be if the secret file were not
stored in the directory.

The policy in this example is not in coRE because deciding whether an arbitrary
PM has equivalent behavior on two arbitrary inputs is as hard as deciding whether
two arbitrary PM’s are equivalent on all inputs. And recall that PM-equivalence
(≈) is not coRE. Thus an EM cannot enforce this policy.9 However, this policy
can be enforced by program rewriting, because a rewriting function never needs
to explicitly decide if the policy has been violated in order to enforce the policy.
In particular, a rewriter function can make modifications that do not change the
behavior of programs that satisfy the policy, but do make safe those programs that
don’t satisfy the policy. For the example above, program rewriting could change
the untrusted program so that any attempt to retrieve the contents listing of the
directory containing the secret file yields an abbreviated listing that excludes the
secret file. If the original program would have ignored the existence of the file, then
its behavior is unchanged. But if it would have reacted to the secret file, then it no
longer does.

The power of program rewriters is not limitless, however; there exist policies that
no program rewriter can enforce. One example of such a policy is given in the proof
of the following theorem.

Theorem 3.3.4. There exist non-coRE PM-equivalence relations ≈ and policies
that are not RW≈-enforceable.

Proof. Define policy PNE (M) =def

(
∃σ : σ ∈ Γω : M(σ) halts

)
and define ≈TM

as in the proof of Theorem 3.3.3 (i.e. ≈TM is defined to be language-equivalence for
TM’s). Observe that policy PNE is RE but not recursively decidable. We show
that if PNE were RW≈TM -enforceable, then it would be recursively decidable—a
contradiction.

Expecting a contradiction, assume that PNE is RW≈TM -enforceable. Then there
exists a rewriting function R satisfying RW1 and RW2. Use R to decide PNE in
the following way: Let an arbitrary PM M be given. To decide if PNE (M) holds,
construct a new PM M ′ that treats its input tape as a positive integer i followed
by a string σ. (For example, if the input alphabet Γ = {0, 1}, then iσ might be
encoded as 1i0σ. Thus, every possible input string represents some valid encoding
of an integer-string pair, and every integer-string pair has some valid encoding.)
Upon receiving iσ as input, PM M ′ simulates M(σ) for i steps and halts if M(σ)
halts in that time; otherwise M ′ loops. Next, compute R(M ′). Since R satisfies
RW1, there exists a string on which R(M ′) halts. Simulate R(M ′) on each possible
input string for larger and larger numbers of steps until such a string jσ′ is found.
Next, simulate M(σ′) for j steps. We claim that PNE (M) holds iff M(σ′) halts in
j steps. If M(σ′) halts in j steps, then obviously PNE (M) holds. If M(σ′) does
not halt in j steps, then M ′(jσ′) loops by construction. Since M ′(jσ′) loops but

9 Moreover, an EM cannot enforce this policy by parallel simulation of the untrusted PM on two
different inputs, one that includes the secret file and one that does not. This is because an EM

must detect policy violations in finite time on each computational step of the untrusted program,
but executions can be equivalent even if they are not equivalent step-for-step. Thus, a parallel
simulation might require the EM to pause for an unlimited length of time on some step.
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R(M ′)(jσ′) halts, it follows that R(M ′) 6≈TM M ′. By RW2, PNE (M) therefore does
not hold.

Thus, we have used R to decide PNE for arbitrary M , contradicting the fact that
PNE is not recursively decidable. We conclude that no such R exists, and therefore
PNE is not RW≈TM -enforceable.

The ability to enforce policies without explicitly deciding them makes the RW≈-
enforceable policies extremely interesting. A characterization of this class in terms
of known classes from computational complexity theory would be a useful result, but
might not exist. The following negative result shows that, unlike static enforcement
and EMorig , no class of the arithmetic hierarchy is equivalent to the class of RW≈-
enforceable policies.

Theorem 3.3.5. There exist non-coRE PM-equivalence relations ≈ such that
the class of RW≈-enforceable policies is not equivalent to any class of the arithmetic
hierarchy.

Proof. The proof of Theorem 3.3.3 showed that the Π2-hard policy PU is
RW≈TM -enforceable. Theorem 3.3.4 showed that the RE policy PNE is not RW≈TM -
enforceable. Since Π2 is a superclass of RE, there is no class of the arithmetic
hierarchy that includes PU but not PNE . We conclude that the class of RW≈TM -
enforceable policies is not equivalent to any class of the arithmetic hierarchy.

4. EXECUTION MONITORS AS PROGRAM REWRITERS

Since EM’s can be implemented by program-rewriters as in-lined reference monitors
[Erlingsson and Schneider 2000], one might expect EMorig to be a subclass of the
RW≈-enforceable policies. However, in this section we show that there are policies
in EMorig that are not RW≈-enforceable. In section §4.1 we identify some of these
policies and argue that they cannot actually be enforced by EM’s either. Thus,
EMorig is a superclass of the class of policies that EM’s can enforce. In §4.2 we
then show how the definition of RW≈-enforceable policies presented in §3.3 can be
leveraged to obtain a precise characterization of the EM-enforceable policies.

4.1 EM-enforceable Policies

When an EM detects an impending policy violation, it must intervene and prevent
that violation. Such an intervention could be modeled as an infinite series of events
that gets appended to a PM’s execution in lieu of whatever suffix the PM would
otherwise have exhibited. Without assuming that any particular set of interventions
are available to an EM, let I be the set of possible interventions. Then the policy PI ,
that disallows all those interventions, is not enforceable by an EM. If an untrusted
program attempts to exhibit some event sequence in I, an EM can only intervene
by exhibiting some other event sequence in I, which would in itself violate policy
PI .10 Nevertheless, PI is a member of EMorig as long as I satisfies EM1 – EM4.

10 In the extreme case that EM’s are assumed to be arbitrarily powerful in their interventions,
this argument proves only that EM’s cannot enforce the unsatisfiable policy. (If I = Eω , then

PI is the policy that rejects all PM’s.) A failure to enforce the unsatisfiable policy might be an

uninteresting limitation, but even in this extreme case, EM’s have another significant limitation,
to be discussed shortly.
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For example, [Schneider 2000] presumes that an EM intervenes only by terminat-
ing the PM. Define eend to be an event that corresponds to termination of the PM.
The policy P{eend}, which demands that no PM may terminate, is not enforceable
by such an EM even though it satisfies the definition of EMorig . In addition, more
complex policies involving eend , such as the policy that demands that every PM
must exhibit event e1 before it terminates (i.e. before it exhibits event eend) are
also unenforceable by such an EM, even though they too are members of EMorig .
The power of an EM is thus limited by the set of interventions available to it, in
addition to the limitations described by the definition of EMorig .

The power of an EM is also limited by its ability to intervene at an appropriate
time in response to a policy violation. To illustrate, consider a trusted service that
allocates a resource to untrusted programs. When an untrusted program uses the
resource, it exhibits event euse . Once the service has allocated the resource to an
untrusted program, the service cannot prevent the untrusted program from using
the resource. That is, the service cannot revoke access to the resource or halt the
untrusted program to prevent subsequent usage. However, untrusted programs can
assert that they will no longer use the resource by exhibiting event erel , after which
the service can allocate the resource to another untrusted program.

To avoid two untrusted programs having simultaneous access to the resource, we
wish to enforce the policy that the assertions denoted by erel are always valid. That
is, we wish to require that, whenever an untrusted program exhibits event erel , no
possible extension of that execution will subsequently exhibit euse . This would, for
example, ensure that no untrusted program retains a reference to the resource that
it could use after exhibiting erel . Formally, we define

P̂RU1 (χ) =def

(
erel 6∈ χ ∨ (∀χ′ : χχ′ ∈ X〈〈χ〉〉 : euse 6∈ χ′)

)
and we wish to enforce the policy PRU induced by P̂RU1 . Enforcing this policy
would allow the enforcement mechanism to suppress event erel when the untrusted
program might continue to use the resource, and thereby prevent the service from
unsafely allocating the resource to another untrusted program.

One would expect that policy PRU is not EM-enforceable because detector P̂RU1

is undecideable. Determining, for an arbitrary execution of an arbitrary PM,
whether there exists some extension of that execution for that PM that exhibits
event euse , is equivalent to solving the Halting Problem. However, policy PRU is
a member of EMorig because the definition of EMorig demands only that there ex-
ists a detector satisfying EM1 – EM4 that induces the policy, and there is another
detector that does so:

P̂RU2 (χ) =def

(
∀i : i ≥ 1 : (erel 6∈ χ[..i] ∨ euse 6∈ χ[i + 1..])

)
Detector P̂RU2 rejects executions that have an euse subsequent to an erel . This
detector induces the same policy PRU because any PM that has an execution that
violates detector P̂RU1 will also have a (possibly different) execution that violates
detector P̂RU2 . Inversely, every PM that has only executions that satisfy P̂RU1 will
also have only executions that satisfy P̂RU2 . Thus P̂RU1 and P̂RU2 cause the same
set of PM’s to be accepted or rejected even though they are violated by different
executions of those PM’s that are rejected.
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However, if an EM were to use detector P̂RU2 to enforce policy PRU , it would not
be able to prevent two untrusted programs from simultaneously using the resource.
An EM using detector P̂RU2 would only discover that an execution should be re-
jected when the untrusted program attempts to exhibit euse after having exhibited
erel in the past. At that point the service might have already allocated the resource
to another untrusted program and would not be able to revoke the resource from
either program. Detector P̂RU2 is therefore violated at a time too late to permit
the enforcement mechanism to guarantee that all executions satisfy detector P̂RU1 .
Violations of P̂RU1 are detected by the EM but cannot be corrected.

In conclusion, an EM can “enforce” policy PRU in a way that honors detector
P̂RU2 , but not in a way that honors detector P̂RU1 . The definition of EMorig is
insufficient to distinguish between a policy induced by P̂RU1 and one induced by
P̂RU2 because it places no demands upon the set of executions that results from
the composite behavior of the EM executing alongside the untrusted program. The
result should be a set of executions that all satisfy the original detector, but EM1 –
EM4 can be satisfied even when there is no EM implementation that can accomplish
this.

The power of an EM derives from the collection of detectors it offers policy-
writers. A small collection of detectors might be stretched to “enforce” all coRE
policies according to the terms of EMorig , but in doing this, some of those policies
will be “enforced” in ways that permit bad events to occur, which could be unac-
ceptable to those wishing to actually prevent those bad events. Proofs that argue
that some real enforcement mechanism is capable of enforcing all policies in EMorig

are thus misleading. For example, the MaC system was shown to be capable of
enforcing all coRE policies [Viswanathan 2000], but policies like PRU cannot be
enforced by MaC in such a way as to signal the violations specified by P̂RU1 before
the violation has already occurred.

In §4.2 we show that the intersection of class EMorig with the RW≈-enforceable
policies constitutes a more suitable characterization of the EM-enforceable policies
than class EMorig alone. This is because RW1 and RW2 impose constraints upon
an EM’s ability to intervene. For example, in a setting where EM’s can intervene
by suppressing events that would otherwise be exhibited by an untrusted PM, one
might model such interventions by an event esupp(e′) that is exhibited whenever an
EM suppresses event e′. If EM’s cannot suppress euse events, one might wish to
enforce policy P ′

RU defined by

P ′
RU (M) =def PRU (M) ∧

(
∀σ : σ ∈ Γω : (esupp(euse) 6∈ χM(σ))

)
By RW1, policy P ′

RU is only RW≈-enforceable if there exists a rewriting function
that produces PM’s that both satisfy policy PRU and that never suppress any euse

events. Such a constraint on allowable interventions is not expressible using axioms
EM1 – EM4 alone because those axioms do not regard the new set of executions
that results from an EM’s intervention upon an untrusted PM.

Characterizing the EM-enforceable policies as the intersection of class EMorig

with the RW≈-enforceable policies therefore allows us to express policies that re-
gard the whole system rather than just the the part of the system that does not
include the EM. That is, it allows us to reify the EM into the computation and
consider policies that regard this new composite computation rather than just the
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computation defined by the untrusted PM’s behavior in isolation. A enforcement
mechanism can only be said to “enforce” a policy if it neither allows any untrusted
PM to violate the policy, nor itself violates the policy in the course of “enforcing”
it.

This approach also allows us to confirm the intuition that if a policy is EM-
enforceable, it should also be enforceable by an in-lined reference monitor. That is,
it should be possible to take an EM that enforces the policy and compose it with an
untrusted program in such a way that this rewriting process satisfies RW1 and RW2.
Axioms RW1 and RW2 require that the computation exhibited by the rewritten
PM must satisfy the policy. That is, the composite computation consisting of the
original PM’s behavior modified by the EM’s interventions must satisfy the policy
to be enforced.

4.2 Benevolent Enforcement of Execution Policies

To account for the additional restrictions upon EM’s described in §4.1, it will be
useful to identify those detectors for which there is some means to enforce the poli-
cies they induce without producing executions that violate the detector. Formally,
we define a detector P̂ to be benevolent if there exists a decision procedure MP̂ for
finite executions such that for all PM’s M :

¬
(
∀χ : χ ∈ XM : P̂(χ)

)
=⇒

(
∀χ : χ ∈ X−

M : (¬P̂(χ) ⇒ MP̂(χ) rejects)
)

(B1)(
∀χ : χ ∈ XM : P̂(χ)

)
=⇒

(
∀χ : χ ∈ X−

M : (MP̂(χ) accepts)
)

(B2)

A detector that satisfies B1 and B2 can be implemented in such a way that bad
events are detected before they occur. In particular, B1 stipulates that an EM
implementing detector P̂ rejects all unsafe execution prefixes of an unsafe PM but
also permits it to reject unsafe executions early (e.g., if it is able to anticipate
a future violation). B1 even allows the EM to conservatively reject some good
executions, when a PM does not satisfy the policy. But in order to prevent the EM
from being too aggressive in signaling violations, B2 prevents any violation from
being signaled when the policy is satisfied.

Detector P̂RU2 of §4.1 is an example of a benevolent detector. The decision
procedure MP̂RU2

(χ) would simply scan χ and would reject iff euse was seen after erel .
However, detector P̂RU1 of §4.1 is an example of a detector that is not benevolent.
It is not possible to discover in finite time whether there exists some extension of
execution χ that includes event euse (or, conservatively, whether any execution of
〈〈χ〉〉 has an euse after an erel). Therefore no suitable decision procedure MP̂RU1

satisfying B1 and B2 exists.
Benevolent detectors can be implemented so as to prevent all policy violations

without hindering policy-satisfying programs. In the next theorem, we prove that
if a policy is both coRE and RW≈-enforceable for some equivalence relation ≈ that
permits the sorts of program transformations that are typically performed by in-
lined reference monitors, then every detector that induces that policy (and that is
also consistent with ≈ and satisfies EM2) is benevolent. That is, no matter which
detector might be desired for enforcing such a policy, there is a way to implement
that detector so that all policy violations are prevented but all executions of policy-
satisfying programs are permitted. Thus, the class of policies that are both coRE
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and RW≈-enforceable constitutes a good characterization of the policies that are
actually enforceable by an EM. Such policies can be enforced by an EM that is
implemented as an in-lined reference monitor, whereas other coRE policies cannot
be so implemented (because they are not RW≈-enforceable).

We prove this result by first defining a suitable equivalence relation ≈IRM. We
then prove that any detector that is consistent with ≈IRM

χ , that satisfies EM2, and
that induces a policy that is both RW≈IRM -enforceable and coRE, is benevolent. Let
≈IRM

χ be an equivalence relation over executions such that

χ1 ≈IRM
χ χ2 is recursively decidable11 whenever χ1 and χ2 are both finite. (EQ1)

χ1 ≈IRM
χ χ2 =⇒ (∀i∃j : χ1[..i] ≈IRM

χ χ2[..j]) (EQ2)

and let ≈IRM be the equivalence relation over programs defined by relation ≈IRM
χ

using formula PGEQ.
EQ1 states that although deciding whether two PM’s are equivalent might be

very difficult in general, an IRM can at least determine whether two individual
finite-length execution prefixes are equivalent. EQ2 states that equivalent execu-
tions have equivalent prefixes where those prefixes might not be equivalent step for
step, reflecting the reality that certain program transformations add computation
steps. For example, an IRM is obtained by inserting checks into an untrusted pro-
gram and, therefore, when the augmented program executes a security check, the
behavior of the augmented program momentarily deviates from the original pro-
gram’s. However, assuming the check passes, the augmented program will return
to a state that can be considered equivalent to whatever state the original program
would have reached.

Theorem 4.2.1. Let a detector P̂ satisfying EM2 be given, and assume that P̂
is consistent with ≈IRM

χ . If the policy P induced by P̂ is RW≈IRM-enforceable and
satisfies EM1 – EM4, then P̂ is benevolent.

Proof. Define a decision procedure MP̂ for P̂ and show that it satisfies B1 and
B2. We define MP̂ as follows: When MP̂ receives a finite execution prefix χ as input,
it iterates through each i ≥ 1 and for each i, determines if χ ≈IRM

χ χR(〈〈χ〉〉)(σ)[..i],
where R is the rewriter given by the RW≈IRM -enforceability of P and σ is the string
of input symbols recorded in the trace tape as being read during χ. Both of these
executions are finite, so by EQ1 this can be determined in finite time. If the two
executions are equivalent, then MP̂ halts with acceptance. Otherwise MP̂ simulates
MP(〈〈χ〉〉) for i steps, where MP is a TM that halts if and only if its input represents
a PM that violates P. Such a TM is guaranteed to exist because P satisfies EM1 –
EM4 and is therefore coRE by Theorem 3.2.1. If MP(〈〈χ〉〉) halts in i steps, then
MP̂ halts with rejection. Otherwise MP̂ continues with iteration i + 1.

First, we prove that MP̂ always halts. Suppose ¬P(〈〈χ〉〉) holds. Then MP will
eventually reach a sufficiently large i that MP(〈〈χ〉〉) will halt, and thus MP̂ will halt.

11This assumption can be relaxed to say that χ1 ≈IRM
χ χ2 is recursively enumerable (RE) without

affecting any of our results. However, since assuming a recursively decidable relation simplifies

several of the proofs, and since we cannot think of a program-equivalence relation of practical
interest in which execution-equivalence would not be recursively decidable, we make the stronger
assumption of decidability for the sake of expository simplicity.
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Suppose instead that P(〈〈χ〉〉) holds. Then by RW2, 〈〈χ〉〉 ≈IRM R(〈〈χ〉〉). Applying
the definition of ≈IRM, we see that χ〈〈χ〉〉(σ) ≈IRM

χ χR(〈〈χ〉〉)(σ). Recalling that χ is a
finite prefix of χ〈〈χ〉〉(σ), observe that EQ2 implies that there exists a (sufficiently
large) i such that χ ≈IRM

χ χR(〈〈χ〉〉)(σ)[..i]. Thus MP̂ will halt.
Now observe that the only time MP̂ halts with rejection, ¬P(〈〈χ〉〉) holds. To-

gether with the fact that MP̂ always halts, this establishes that MP̂ satisfies B1.
Finally, we prove that if MP̂ halts with acceptance, then P̂(χ) holds. If MP̂ halts

with acceptance, then χ ≈IRM
χ χR(〈〈χ〉〉)(σ)[..i] for some i ≥ 1. By RW1, P(R(〈〈χ〉〉))

holds. Hence P̂(χR(〈〈χ〉〉)(σ)) holds because P(R(M)) ≡ (∀χ′ : χ′ ∈ XR(〈〈χ〉〉) : P̂(χ′))
by assumption, and therefore P̂(χR(〈〈χ〉〉)(σ)[..i]) holds by EM2. Since P̂ is consistent
with ≈IRM

χ by assumption, we conclude that P̂(χ) holds. This proves that MP̂
satisfies B2.

The existence of policies in EMorig that are not RW≈-enforceable can now be
shown by demonstrating that there exist coRE policies with detectors that satisfy
EM2 but that are not benevolent. By Theorem 4.2.1, no such policy can be both
coRE and RW≈IRM -enforceable.

Theorem 4.2.2. There exist detectors P̂ and equivalence relations ≈IRM
χ such

that P̂ is consistent with ≈IRM
χ , P̂ satisfies EM2 and EM3, the induced policy defined

by P(M) =def (∀χ : χ ∈ XM : P̂(χ)) satisfies EM1 – EM4, and yet P̂ is not
benevolent.

Proof. Define P{eend} as in §4.1 and define P̂NT (χ) =def P{eend}(〈〈χ〉〉). That is,
an execution satisfies P̂NT if and only if it comes from a program that never halts
on any input. Define ≈IRM

χ to be the identity relation over executions, and observe
that P̂NT is consistent with ≈IRM

χ . Detector P̂NT satisfies EM2 because for every
program M , either all prefixes of all of that program’s executions satisfy P̂NT or
none of them do. P̂NT satisfies EM3 because if an execution falsifies P̂NT , then
every finite prefix of that execution falsifies it as well.

Define PNT to be the policy induced by P̂NT . Observe that PNT ≡ P{eend} by
the following line of reasoning:

PNT (M) ≡ (∀χ : χ ∈ XM : P̂NT (χ))

≡ (∀χ : χ ∈ XM : P{eend}(〈〈χ〉〉)) (by def of P̂NT above)
≡ (∀χ : χ ∈ XM : P{eend}(M)) (because χ ∈ XM )
≡ P{eend}(M) (by def of P{eend} in §4.1)

By construction, P{eend} satisfies EM1 – EM4; therefore PNT satisfies EM1 – EM4.
However, P̂NT is not benevolent. If it were, then the following would be a finite

procedure for deciding the halting problem: For arbitrary M , decide if M ever
halts on any input by computing MP̂NT

(χM(σ)[..1]), where MP̂NT
is the decision

procedure predicted to exist by the benevolence of P̂NT , and σ is any fixed string.
Since χM(σ)[..1] is finite, MP̂NT

is guaranteed to accept or reject it in finite time. If
M never halts on any input, then by B2, MP̂NT

will accept. Otherwise if M does
halt on some input, then ¬P̂NT (χM(σ)[..1]) holds and therefore by B1, MP̂NT

will
reject.
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PNE (§3.3)

coRE
(EMorig)
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the secret file policy
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Pboot (§2.2)
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enforceableM terminates within 100

computational steps (§3.1)

Decidable
(Static)

the unsatisfiable
policy

Fig. 2. Classes of security policies and some policies that lie within them.

To summarize, the relationship of the statically enforceable policies, class EMorig

(the coRE policies), and the policies enforceable by program rewriting (the RW≈-
enforceable policies) is shown in Figure 2. The statically enforceable policies are
a subset of the coRE policies and, with the exception of the unsatisfiable policy, a
subset of the RW≈-enforceable policies. The shaded region indicates those policies
that are both coRE and RW≈-enforceable. These are the policies that we charac-
terize as EM-enforceable. There exist coRE policies outside this intersection, but
all such policies are induced by some non-benevolent detector. Thus, using an EM
to “enforce” any of these policies would result in program behavior that might con-
tinue to exhibit events that the policy was intended to prohibit. There are also
RW≈-enforceable policies outside this intersection. These are policies that cannot
be enforced by an EM but that can be enforced by a program rewriter that does
not limit its rewriting to producing in-lined reference monitors.

Figure 2 also shows where various specific policies given throughout this paper
lie within the taxonomy of policy classes. The policy “M terminates within 100
computational steps” given in §3.1 is an example of a policy that can be enforced
by static analysis, execution monitoring, or program rewriting. Policy Pboot , intro-
duced in §2.2, is not enforceable by static analysis, but can be enforced by an EM
or by a program rewriter. The secret file policy described in §3.3 is an example of a
policy that cannot be enforced by any EM but that can be enforced by a program
rewriter. Finally, policy PI is one of the policies given in §4.1 that satisfies the
definition of EMorig but that cannot be enforced by any real EM in a way that
prevents bad events from occurring on the system.

5. RELATED AND FUTURE WORK

Edit Automata. In contrast to program-rewriters, edit automata [Ligatti et al.
2005a] modify executions rather than modifying programs. Cast in the framework
of this paper, an edit automaton can intervene at each computational step by
inhibiting any event a PM writes to its trace tape and/or writing additional events
to the trace tape.
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Like program-rewriters, the behavior of an edit automaton is constrained by an
equivalence relation over executions. If a PM would have exhibited an execution
that satisfied the detector that the edit automaton was to enforce, then any events
suppressed or inserted by the edit automaton must result in a final execution that is
equivalent to the one that the PM would have exhibited without those suppressions
or insertions. But if the PM would have exhibited an execution that falsified the
detector, then the edit automaton must suppress or insert events to produce an
execution that satisfies the detector. Thus, similar to program-rewriters, edit au-
tomata must preserve the semantics of “good” executions whilst preventing “bad”
executions.

To date, edit automata have been defined and analyzed only for a model in which
all executions are assumed to be finite. In such a model, they can enforce any
(computable) security policy by suppressing all events until the complete execution
is observed, and then replaying or discarding the entire sequence to accept or reject
it [Ligatti et al. 2005a]. The same result holds true of all enforcement mechanisms in
our model. If an enforcement mechanism can assume that all executions are finite,
it can enumerate them all for any given PM and accept or reject the PM based on
the resulting set of possible executions. The interesting computational problems in
our model thus hinge upon the fact that complete executions are infinite.

Extending the definition of edit automata to include acceptance or rejection of
infinite-length executions is the subject of ongoing research [Ligatti et al. 2005b].
We conjecture that because edit automata could be implemented by program-
rewriters, they are probably capable of enforcing a subset of the class of RW-
enforceable policies.

Shallow History Automata. Fong [2004] investigates the power of execution mon-
itors that are limited by the information that they can recall but that have no re-
strictions on their computational power. For example, shallow history automata can
recall the set of events exhibited so far but not the exact order or number of events
exhibited. These and other recall-limited EM’s are modeled as automata bound by
constraints EM1 – EM3 as well as by recollection constraints. On each computa-
tional step they observe any security-relevant event about to be exhibited and either
(i) accept, allowing the event to be exhibited and continuing the execution, or (ii)
reject, preventing the event from being exhibited and terminating execution. As
they decide whether to accept or reject, their recollection constraints render them
unable to distinguish between certain finite execution prefixes previously observed.
Thus they are weaker than the security automata defined in [Schneider 2000], which
are constrained only by EM1 – EM3.

For each different recollection constraint imposed on one of these automata, the
automaton can enforce a different subclass of the class of policies defined by EM1 –
EM3. The set of all possible such constraints gives rise to a lattice of these subclasses
[Fong 2004]. At the top of the lattice is the subclass equal to the entire class of
policies given by EM1 – EM3, corresponding to the automaton that can distinguish
between every pair of execution prefixes. At the bottom of the lattice is the subclass
consisting of all policies of the form PB for some set B of events as defined in §2.2—
that is, policies that prohibit any of a set of “bad” events from being exhibited.
Enforcing such a policy does not require the automaton to recall any history of past
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events that it observed.
The model proposed in [Fong 2004] is incomparable to that presented in this

paper because it places no computational constraints on enforcement mechanisms
and assumes that all executions are finite. However, if it could be extended to
incorporate computational constraints and infinite executions, then this could be
used to assess the power of execution monitors that have incomplete access to the
event sequences they monitor, such as execution monitors that ignore some of the
text of untrusted programs or that cannot observe all non-deterministic choices
made by untrusted programs.

Proof--Carrying Code and Certifying Compilers. Proof--Carrying Code (PCC)
[Necula 1997; Necula and Lee 1996] and Certifying Compilers [Morrisett et al. 1999;
Necula and Lee 1998] are emerging technologies for reducing the trusted computing
base needed to enforce security policies. They make it easier for code consumers to
enforce security policies by requiring code producers to add proof information to
the code that they produce. It is thought easier to write trusted code for verifying
proofs than to write trusted code for constructing proofs. PCC is therefore not a
single kind of security enforcement mechanism, but rather a framework for reducing
and perhaps relocating the trusted computing base. The reader may wonder what
policies can be enforced in a PCC framework—that is, the reader may wonder
how these technologies fit into the taxonomy of security policies presented in the
previous sections. The model and analyses presented in this paper can be used to
explore that question, as we now show.

In a PCC framework, code transmitted to an untrusting code consumer is paired
with a proof that the code satisfies whatever policy is being demanded by the
code consumer. The code consumer checks that the proof is valid, that the proof
concerns the object code, and that the proof establishes the desired policy, all in
finite time. Once the code-proof pair has been checked, the code can safely be run
without restriction by the code consumer.

The class of policies enforceable by PCC depends on what is the domain of all
programs. For the code consumer, the domain of programs is the set of all object
code-proof pairs that it might receive. The set of enforceable security policies over
this domain are those properties of code-proof pairs that can be decided in finite
time. This is the set of recursively decidable (Σ0 = Π0) properties of object code-
proof pairs, or the statically enforceable policies. (Observe that some policies that
are not recursively decidable for code alone are decidable for code-proof pairs. The
proof provides extra information that reduces the computational expense of the
decision procedure.)

Alternatively, a theorem prover in a PCC framework might consider the domain
of programs to be the set of all object programs. The enforceable policies over
this domain are those policies such that for all programs that satisfy the policy,
there exists a proof that serves as a witness that the program satisfies the policy.
For any proof logic characterizeable by some finite axiomization, this is the set
of recursively enumerable (Σ1) properties of that logic. (If an arbitrary program
satisfies the policy, this can be discovered in finite time by enumerating all proofs to
find a matching one. But if the program doesn’t satisfy the policy, the enumeration
process will continue indefinitely without finding a suitable proof.)
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In practice, code-proof pairs are usually generated together by some automated
procedure. For example, certifying compilers [Morrisett et al. 1999; Necula and
Lee 1998] accept a source program and emit not only object code but also a proof
that the object code satisfies some policy. If an arbitrary source program satisfies
the policy to be enforced, then the certifying compiler must (i) compile it to object
code in a way that faithfully preserves its behavior and (ii) generate a matching
proof. If the source program doesn’t satisfy the policy, then the compiler must
either reject the program (which can be thought of as compiling it to the null
program) or compile it to some program that does satisfy the policy, possibly by
inserting runtime checks that cause the program to change behaviors when some
policy violation would otherwise have occurred. These are precisely conditions
RW1 and RW2 from the definition of the RW -enforceable policies. Thus, if one
considers the domain of programs to be the set of all source code programs received
by a certifying compiler or other automated code-proof pair generator, then the set
of enforceable policies are the RW -enforceable policies.

Future Work. The practicality of an enforcement mechanism depends on what
resources it consumes. This paper explored the effects of finitely bounding the space
and time available to various classes of enforcement mechanisms. However, to be
considered practical, real enforcement mechanisms must operate in polynomial or
even constant space and time. So an obvious extension to the theory presented
here is to investigate (i) the set of policies enforceable by program rewriting when
the time and space available to the rewriter is polynomial or constant in the size
of the untrusted program and (ii) rewriter functions that produce programs whose
size and running time expands by no more than a polynomial or constant in the
size and running time of the original untrusted program.

The results of this paper might also be applied to real enforcement mechanisms.
SFI [Wahbe et al. 1993], MiSFIT [Small 1997], SASI/PoET/PSLang [Erlingsson and
Schneider 2000; Erlingsson and Schneider 1999], and Naccio [Evans and Twynman
1999] implement program rewriting but typically assume extremely complex (and
mostly unstated) definitions of program equivalence. These equivalence relations
would have to be carefully formalized in order to characterize precisely the set of
policies that these embodiments of program rewriting actually enforce.

Finally, the class of RW-enforceable policies outside of the coRE policies remains
largely unexplored. To investigate this additional power, program rewriting mech-
anisms must be developed. These would need to accept policy specifications that
are not limited to the monitoring-style specifications so easily described by a detec-
tor. Consequently, there are interesting questions about how to design a suitably
powerful yet usable policy specification language for such a system. For example,
various meta-level architectures like Aspect Oriented Programming [Kiczales et al.
1997] have been suggested as general frameworks for enforcing a variety of security
policies [Robben et al. 1999], but it is not clear what class of security policies they
can enforce.

6. SUMMARY

Our taxonomy of enforceable security policies is depicted in Figure 2. We have
connected this taxonomy to the arithmetic hierarchy of computational complexity
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theory by observing that the statically enforceable policies are the recursively decid-
able properties and that class EMorig is the coRE properties. We also showed that
the RW-enforceable policies are not equivalent to any class of the arithmetic hierar-
chy. The shaded region in Figure 2 is argued to be a more accurate characterization
of the EM-enforceable policies than EMorig .

Execution monitors implemented as in-lined reference monitors can enforce poli-
cies that lie in the intersection of the coRE policies with the RW-enforceable poli-
cies. The policies within this intersection are enforceable benevolently—that is,
“bad” events are blocked before they occur. But coRE policies that lie outside this
intersection might not be benevolently enforceable. In addition, we showed that
program rewriting is an extremely powerful technique in its own right, which can
be used to enforce policies beyond those enforceable by execution monitors.

APPENDIX

There are many equivalent ways to formalize TM’s. We define them as 4-tuples:

M = (Q, δ, q0, B)

— Q is a finite set of states.

— δ is the TM’s transition relation. (Since our TM’s are deterministic, δ is a
total function.) For each state in Q and each symbol that could be read from the
work tape, δ dictates whether the PM halts (H), reads a symbol from the input
tape and continues, or continues without reading a symbol from the input tape. If
the TM continues without reading an input symbol, then δ specifies the new TM
state, the symbol written to the work tape, and whether the work tape head moves
left (−1) or right (1). Otherwise if an input symbol is read, it specifies all of the
above (the new TM state, the symbol written to the work tape, and whether the
work tape header moves left or right) for each possible input symbol seen. Thus δ
has type12

δ : Q× Γ →
(
{H}]
(Q× Γ× {−1, 1})]
(Γ → (Q× Γ× {−1, 1}))

)
— q0 ∈ Q is the initial state of the TM.

— B ∈ Γ is the blank symbol to which all cells of the work tape are initialized.

The computation state of a TM is defined as a 5-tuple:

〈q, σ, i, κ, k〉

where q ∈ Q is the current finite control state; σ, κ ∈ Γω are the contents of the
input and work tapes; and i, k ≥ 1 are the positions of the input and work tape
heads. Take TM M to be (Q, δ, q0, B). When M is provided input σ, it begins
in computation state 〈q0, σ, 1, Bω, 1〉. The TM computation state then changes

12Set operator ] denotes disjoint union.
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according to the following small-step operational semantics:

〈q, σ, i, κ, k〉 −→TM 〈q, σ, i, κ, k〉
if δ(q, κ[k]) = H.

〈q, σ, i, κ, k〉 −→TM 〈q′, σ, i, κ[..k − 1] s κ[k + 1..], max{1, k + d}〉
if δ(q, κ[k]) = (q′, s, d).

〈q, σ, i, κ, k〉 −→TM 〈q′, σ, i + 1, κ[..k − 1] s κ[k + 1..], max{1, k + d}〉
if δ(q, κ[k])(σ[i]) = (q′, s, d).

PM’s are defined exactly as TM’s except that they carry additional information
corresponding to the trace tape. The computation state of a PM is defined as a
triple: 〈

〈q, σ, i, κ, k〉, τ, n
〉

where 〈q, σ, i, κ, k〉 is the computation state of a TM, τ ∈ Γ∗ is the contents of the
trace tape up to the trace tape head, and n ≥ 0 is a computational step counter.
Initially, PM M = (Q, δ, q0, B) when provided input σ begins in computation state
〈S, ε, 0〉 where S is the initial computation state of TM M for input σ and ε denotes
the empty sequence. The PM computation state then changes according to the
following operational semantics:

〈S, τ, n〉 −→PM 〈S′, τ T (M,σ, n + 1), n + 1〉

where S →TM S′ and T : TM × Γω × N → Γ∗ is a trace mapping satisfying the
constraints on trace mappings given in §2.1. (A concrete example is given below.)

We illustrate by giving a concrete example of a PM. This requires first specifying
a Turing Machine and then giving a suitable trace mapping. Let Γ0 be {0, 1,#}.
Next define event set E0 by

E0 =def {es|s ∈ Γ0} ] {eskip , eend} ] {eM |M ∈ PM }.

E0 is a countable set, so there exists an unambiguous encoding of events from E0 as
finite sequences of symbols from Γ0. Choose such an encoding and let dee denote the
encoding of event e ∈ E0. To avoid ambiguities in representing event sequences,
choose the encoding so that for all e ∈ E0, string dee consists only of symbols
in {0, 1} followed by a #. This ensures that there exists a computable function
b·c : Γω → Eω such that for all i ≥ 0 and for all χ ∈ Ei,

⌊
de0e · · · deie

⌋
= e0 . . . ei.

Finally, for all M ∈ TM , σ ∈ Γω, and n ≥ 0, define trace mapping T0 by

T0(M,σ, 0) =def deMe.
T0((Q, q0, δ, B), σ, n + 1) =def deσ[i]e if 〈q0, σ, 1, Bω, 1〉 −→n

TM 〈q, σ, i, κ, k〉, and

δ(q, κ[k]) ∈
(
Γ → (Q× Γ× {−1, 1})

)
.

T0((Q, q0, δ, B), σ, n + 1) =def deende if 〈q0, σ, 1, Bω, 1〉 −→n
TM 〈q, σ, i, κ, k〉, and

δ(q, κ[k]) = H.

T0(M,σ, n + 1) =def deskipe otherwise.

So, this trace mapping causes every PM M to write deMe to its trace tape before its
first computational step, write dese whenever it reads symbol s from its input tape,
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We write s 7→ s′, d (where s, s′ ∈ Γ and d ∈ {−1, 1}) by an arrow

from state q ∈ Q to q′ ∈ Q when reading s in state q causes the PM

to write s′ to its work tape, move the work tape header in direction

d (i.e. left (−1) or right (1)), and transition to state q′.

Minc =def

`
{q0, q1, q2}, δinc , q0, #

´
where for all s ∈ Γ0,

δinc(q0, s) =def

`
0 7→ (q1, 1, 1);

1 7→ (q0, 0, 1);

# 7→ (q2, 1, 1)
´

δinc(q1, s) =def

`
0 7→ (q1, 0, 1);

1 7→ (q1, 1, 1);

# 7→ (q2, #, 1)
´

δinc(q2, s) =def H

Fig. 3. A PM for adding one.

write deskipe whenever it does not read an input symbol on a given computational
step, and pad the remainder of the trace tape with deende if it halts.

For all M ∈ PM and σ ∈ Γω, event sequence χM(σ) can be defined as

χM(σ) =def bτc

where τ is the limit as n →∞ of〈
〈q0, σ, 1, Bω, 1〉, ε, 0

〉
−→n

TM

〈
〈q, σ, i, κ, k〉, τ, n

〉
and M = (Q, δ, q0, B). Therefore an enforcement mechanism could determine the
sequence of events exhibited by a PM by observing the PM’s trace tape.

Figure 3 shows a program to increment binary numbers by 1, formalized as a
PM along the lines we just discussed. The PM shown there treats its input as
a two’s-complement binary number (least-order bit first), and writes that number
incremented by one to its work tape. As the PM executes, it also writes the sequence
of symbols dictated by trace mapping T0 to its trace tape. So if the PM in Figure 3
were provided string 1101 as input, it would write 0011 to its work tape and write
deMinc

ede1ede1ede0ede1ede#e to its trace tape, followed by deende repeated through
the remainder of the tape. A different PM M0 that never reads its input would
write to its trace tape deM0e, then deskipe for each computational step it takes, and
finally deende repeated through the remainder of the tape.

We have given only one of many equivalent ways to formalize our program ma-
chines. Extra work tapes, multiple tape heads, multidimensional tapes, and two-
way motion of the input tape head all yield computational models of equivalent
power to the one we give. All of these models can simulate the operations found
on typical computer systems, including arithmetic, stack-based control flow, and
stack- and heap-based memory management. PM’s can also simulate other PM’s,
which means they can perform the equivalent of runtime code generation. Program
machines are thus an extremely flexible model of computation that can be used to
simulate real computer architectures.
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