Composing Security Policieswith Polymer

Lujo Bauer

Carnegie Mellon University
Ibauer@cmu.edu

Abstract

We introduce a language and system that supports definition and
composition of complex run-time security policiesfor Javaapplica
tions. Our policies are comprised of two sorts of methods. Thefirst
is query methods that are called whenever an untrusted application
tries to execute a security-sensitive action. A query method returns
a suggestion indicating how the security-sensitive action should be
handled. The second sort of methods are those that perform state
updates as the policy’s suggestions are followed.

The structure of our policies facilitates composition, as policies
can query other policies for suggestions. In order to give program-
mers control over policy composition, we have designed the system
so that policies, suggestions, and application events are all first-
class objects that a higher-order policy may manipulate. We show
how to use these programming features by developing alibrary of
policy combinators.

Our system is fully implemented, and we have defined aformal
semantics for an idealized subset of the language containing all of
the key features. We demonstrate the effectiveness of our system
by implementing a large-scale security policy for an email client.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tion]: Specialized application languages, D.2.1 [Requirements/
Soecifications]: Languages, D.2.4 [Software/Program \erifica-
tion]: Forma methods; D.3.1 [Formal Definitions and Theory]:
Semantics, syntax; D.2.5 [Testing and Debugging]: Monitors

General Terms Languages, Security

Keywords Program monitors, run-time enforcement, composable
security policies, edit automata, security automata

1. Introduction

Security architects for large software systems face an enormous
challenge: the larger and more complex their system, the more
difficult it is to ensure that it obeys some security policy. Like
any large software problem, the security problem can only be dealt
with by breaking it down into smaller and more manageable pieces.
These smaller-sized problems are easier to understand and reason
about, and their solutions are simpler to implement and verify.
When decomposing the security problem into parts, it is tempt-
ing to scatter access-control checks, resource-monitoring code, and

Permission to make digital or hard copies of al or part of this work for personal or
classroom useis granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or afee.

PLDI’05 June 12-15, 2005, Chicago, Illinois, USA.

Copyright (© 2005 ACM 1-59593-080-9/05/0006. . . $5.00.

Jay Ligatti
Princeton University
jligatti@cs.princeton.edu

David Walker

Princeton University
dpw@cs.princeton.edu

other mechanisms across the many modules that implement these
components. Thisis especially true when the enforcement of some
property involves several low-level components drawn from other-
wise logicaly different parts of the system. For instance, in order
to implement a policy concerning data privacy, it may be neces-
sary to consider the operation of awide variety of system compo-
nents including the file system and the network, as well as printers
and other forms of 1/0O. Unfortunately, a scattered implementation
of apalicy is much more difficult to understand and verify than a
centralized implementation—even finding all the pieces of a dis-
tributed policy can be problematic. Moreover, the distribution of
the security policy and mechanism through a large body of code
can make it more difficult to update a policy in response to security
breaches and vulnerabilities. In the current security climate, where
new viruses can spread across the Internet in minutes, speedy reac-
tion to vulnerabilitiesis critical.

This paper describes Polymer, a new language and system that
helps engineers enforce centralized security policies on untrusted
Javaapplicatons by monitoring and modifying the applications’ be-
havior at run time. Programmersimplement security policies by ex-
tending Polymer’s Policy class, which is given a specid interpre-
tation by the underlying run-time system. Intuitively, each Policy
object contains three main elements: (1) an effect-free decision pro-
cedure that determines how to react to security-sensitive applica-
tion actions (i.e., method calls), (2) security state, which can be
used to keep track of the application’s activity during execution,
and (3) methods to update the policy’s security state.

We call the decision procedure mentioned above a query
method. This method returns one of six suggestions indicating that:
the action is irrelevant to the policy; the action is OK; the action
should be reconsidered after some other code isinserted; the return
value of the action should be replaced by a precomputed value; a
security exception should be thrown instead of executing the action;
or, the application should be halted. These objects arereferred to as
suggestions because there is no guarantee that the policy’s desired
reaction will occur when it is composed with other policies. Also
for this reason, the query method should not have effects. State up-
dates occur in other policy methods, which are invoked only when
apolicy’s suggestion is followed.

In order to further support flexible but modular security pol-
icy programming, we treat al policies, suggestions, and applica-
tion actions as first-class objects. Consequently, it is possible to
define higher-order security policies that query one or more subor-
dinate policies for their suggestions and then combine these sug-
gestions in a semantically meaningful way, returning the overall
result to the system, or other policies higher in the hierarchy. We
facilitate programming with suggestions and application events by
introducing pattern-matching facilities and mechanisms that allow
programmers to summarize a collection of application events as an
abstract action.

We have demonstrated the effectiveness of our design by devel-
oping alibrary of the most useful combinators, including a “con-

junctive” policy that returns the most restrictive suggestion made
by any subpolicy and a “dominates’ policy that tries one policy
first and, if that policy considers the application action irrelevant,
then passes the application event on to the next policy. One of the
major challenges here is developing a strategy that makes combin-
ing policies in the presence of effects semanticaly reasonable. In
addition to our general-purpose policy combinators, we have de-
veloped a collection of application-specific policy combinators and
policy modifiers, including a higher-order policy that dynamically
checks for policy updates to load into the virtual machine and an
audit policy that logs al actions of an untrusted application and all
suggestions made by another policy acting on that application.

To test our language in a redlistic setting, we have written a
large-scale security policy, composed of smaller modular policies,
for email clients that use the JavaMail interfaces. We have exten-
sively tested this policy with the Pooka email client [16] and found
that we can use Polymer to correctly enforce sophisticated security
constraints.

1.1 Related Work

Safelanguage platforms, such asthe Java Virtual Machine (VM) [14]
and Common Language Runtime (CLR) [15], use stack inspection
as the basis of their security monitoring systems. Unfortunately,
while stack inspection can be effective in many situations, it has
some serious drawbacks as well. First, stack inspection is just one
algorithm for implementing access control, and, as explained by
several researchers [9, 18], this agorithm is inherently partial.
More recent systems make decisions based on the entire history of
acomputation and all the code that has had an impact on the current
system state, not just the current control stack [1, 6, 7, 8, 9, 11, 12].
A second important flaw in the stack inspection model is that op-
erations to enable privileges and perform access-control checks are
scattered throughout the system libraries. Consequently, in order to
understand the policy that is being enforced, one must read through
arbitrary amounts of library code.

Our current language and system are directly inspired by ear-
lier theoretical research on automata-theoretic characterizations of
security policies. Schneider [18] developed the notion of security
automata, which are a form of Buchi automata that can recog-
nize safety properties. We generalized thisidea by defining edit au-
tomata [13], which are formal machines that transform a sequence
of program actions viathe operations of sequence truncation, inser-
tion of new actions, or suppression of actions. The current research
may be viewed as an implementation of edit automata with a prac-
tical set of “editing” capabilities and support for composition of
automata.

The design and implementation of Polymer is most closely
related to Evans and Twyman's Naccio [8] and to Erlingsson and
Schneider's POET/Pslang [7]. One of the crucial observations they
make isthat the entire security policy, including the set of security-
relevant program points, should be defined separately from the
main application. Thisarchitecture makesit is easier to understand,
verify, and modify the security policy. The new contributions of our
work include the following.

1. We have designed a new programming methodology that per-
mits policies to be composed in meaningful and productive
ways. A key innovation is the separation of a policy into an
effectless method that generates suggestions (OK, halt, raise
exception, etc.) and is safe to execute at any time, and effect-
ful methods that update security state only under certain condi-
tions.

2. We have written a library of first-class, higher-order policies
and used them to build a large-scale, practical security policy

that enforces a sophisticated set of constraints on untrusted
email clients.

3. We have developed a formal semantics for an idealized ver-
sion of our language that includes all of the key features of our
implementation including first-class policies, suggestions, and
application events. A formal semantics helps nail down corner
cases and provides an unambiguous specification of how secu-
rity policies execute—a crucial feature of any security mech-
anism, but particularly important as our security policies have
imperative effects. We prove our language is type safe, a nec-
essary property for protecting the program monitor from un-
trusted applications.

We also make a number of smaller contributions. For instance,
unlike Naccio and PoET/Pslang, we allow a monitor to replace an
entire invocation of a security-relevant action with a provided re-
turn value via a replace suggestion. Some policies, such as the
IncomingMail policy in Section 3.2, require this capability. In
addition, we faithfully implement the principle of complete me-
diation [17]. In other words, once a policy is put in place, every
security-sensitive method is monitored by the policy every time it
is executed, even if the method is called from another policy com-
ponent. This has a performance cost, but it guarantees that every
policy sees all method callsthat are relevant to its decision. The de-
tails of our language, including its pattern-matching facilities and
our complementary notion of an abstract program action, which
allows grouping of related security functions, also differ from what
appears in previous work.

Our monitor language can be viewed as an aspect-oriented pro-
gramming language (AOPL) in the style of AspectJ[10]. The main
high-level difference between our work and previous AOPLsis that
our “aspects’ (the program monitors) are first-class values and that
we provide mechanisms to allow programmers to explicitly control
the composition of aspects. Several researchers [19, 20] describe
functional, as opposed to object-oriented, AOPLs with first-class
aspect-oriented advice. However, they do not support aspect combi-
nators like the ones we have developed here. In general, composing
aspectsis aknown problem for AOPLSs, and we hope the ideas pre-
sented here will suggest a new design strategy for general-purpose
AOPLs.

2. Polymer System Overview

Similarly to the designs of Naccio and PoET/Pslang, the Polymer
systemiscomposed of two main tools. Thefirstisapolicy compiler
that compiles program monitors defined in the Polymer language
into plain Java and then into Java bytecode. The second tool is a
bytecode rewriter that processes ordinary Java bytecode, inserting
callsto the monitor in all the necessary places. In order to construct
a secure executable using these tools, programmers must perform
the following series of steps.

1. Write the action declaration file, which lists all program meth-
ods that might have an impact on system security.

2. Instrument the system libraries specified in the action decla
ration file. This step may be performed independently of the
specification of the security policy. The libraries must be in-
strumented before the Java Virtua Machine (JVM) starts up
since the default VM security constraints prevent many li-
braries from being modified or reloaded once the VM is run-
ning.

3. Write and compile the security policy. The policy compiler
trandates the Polymer policy into ordinary Java and then in-
vokes a Java compiler to translate it to bytecode. Polymer’'s
policy language is described in Section 3; its formal semantics
appear in Section 5.

Java core classes

OO
O0..00

QO @)

Interpreter of highest-level
policy's suggestions

[
O

f \' Policy
O O

Target application |
[

O O |
O O :

|

Figure 1. A secure Polymer application

4. Start the VM with the modified libraries.

5. Load the target application. During this loading, our specialized
classloader rewritesthe target code in the same way we rewrote
the library code in step 2.

6. Execute the secured application.

Figure 1 shows the end result of the process. The instrumented
target and library code run inside the VM. Whenever this code
is about to invoke a security-sensitive method, control is redirected
through a generic policy manager, which queries the current policy.
The current policy will return asuggestion that isinterpreted by the
policy manager.

3. Polymer Language

In this section, we describe the core features of the Polymer lan-
guage. We begin with the basic concepts and show how to program
simple policies. Then, we demonstrate how to create more com-
plete policies by composing simpler ones.

3.1 Core Concepts

Polymer isbased on three central abstractions: actions, suggestions,
and policies. Policies analyze actions and convey their decisions by
means of suggestions.

Actions Monitors intercept and reason about how to react to
security-sensitive method invocations. Action objects contain all
of the information relevant to such invocations: static information
such as the method signature, and dynamic information like the
calling object and the method’s parameters.

For convenient manipulation of actions, Polymer allowsthem to
be matched against action patterns. An Action object matches an
action pattern when the action’s signature matches the one specified
in the pattern. Patterns can use wildcards: * matches any one
constraint (e.g., any return type or any single parameter type), and
. . matches zero or more parameter types. For example, the pattern

<public void java.io.*.<init>(int, ..)>

matches all public constructorsin all classesin the java.io pack-
age whose first parameter is an int. In place of <init>, which
refers to a constructor, we could have used an identifier that refers
to a particular method.

Action patterns appear in two places. First, the action declara-
tion fileis a set of action patterns. During the instrumentation pro-
cess, every action that matches an action pattern in the action dec-
laration file is instrumented. Second, policies use action patterns
in aswitch statements to determine which security-sensitive ac-
tion they are dealing with. aswitch statementsare similar to Java's
switch statements, as the following example shows.

aswitch(a) {
case <void System.exit(int status)>: E;

If Action a represents an invocation of System.exit, this
statement evaluates expression E with the variable status bound
to the value of the method’s single parameter.

Suggestions Whenever the untrusted application attemptsto exe-
cute a security-relevant action, the monitor suggests away to han-
dle this action (which we often call atrigger action becauseit trig-
gers the monitor into making such a suggestion).

The monitor’s decision about a particular trigger action is con-
veyed using a Sug object. Polymer supplies a subclass of Sug for
each type of suggestion mentioned in Section 1:

e An IrrSug suggests that the trigger action execute uncondi-
tionally because the policy does not reason about it.

e An 0OKSug suggests that the trigger action execute even though
the action is of interest to the policy.

e An InsSug suggests that making a fina decision about the
target action be deferred until after some auxiliary code is
executed and its effects are eval uated.

e A ReplSug suggests replacing the trigger action, which com-
putes some return value, with a return value supplied by the
policy. The policy may use InsSugs to compute the suggested
return value.

e An ExnSug suggests that the trigger action not be allowed to
execute, but also that the target be allowed to continue running.
Whenever following an ExnSug, Polymer notifies the target
that its attempt at invoking the trigger action has been denied
by throwing a SecurityException that the target can catch
before continuing execution.

e A HaltSug suggests that the trigger action not be allowed to
execute and that the target be halted.

Breaking down the possible interventions of monitorsinto these
categories provides great flexibility. In addition, this breakdown,
which was refined by experience with writing security policies
in Polymer, simplifies our job tremendously when it comes to
controlling monitor effects and building combinators that compose
monitorsin sensible ways (see Section 3.3).

Policies Programmers encode a run-time monitor in Polymer by
extending the base Policy class (Figure 2). A new policy must pro-
vide an implementation of the query method and may optionally
override the accept and result methods.

e query anayzes atrigger action and returns a suggestion indi-
cating how to deal with it.

e accept is called to indicate to a policy that its suggestion is
about to be followed. This gives the policy a chance to perform
any bookkeeping needed before the the suggestion is carried
out.

e result gives the policy access to the return value produced by
following its InsSug or 0KSug. The three argumentsto result
arethe original suggestion the policy returned, the return value
of the trigger action or inserted action (null if the return type
was void and an Exception value if the action completed
abnormally), and a flag indicating whether the action completed
abnormally.

The accept method is called before following any suggestion
except an IrrSug; the result method isonly called after follow-
ing an 0KSug or InsSug. After result is called with the result
of an InsSug, the policy is queried again with the origina trig-

public abstract class Policy {
public abstract Sug query(Action a);
public void accept(Sug s) { };
public void result(Sug s, Object result,
boolean wasExnThn) { };

Figure 2. The parent class of all policies

public class Trivial extends Policy {
public Sug query(Action a)
{ return new IrrSug(this); }

Figure 3. Policy that allows all actions

ger action (in response to which the policy had just suggested an
InsSug). Thus, InsSugsalow apolicy to delay making adecision
about atrigger action until after executing another action.

A policy interface consisting of query, accept, and result
methods is fundamental to the design of Polymer. We can compose
policies by writing policy combinators that query other policies
and combine their suggestions. In combining suggestions, a com-
binator may choose not to follow the suggestions of some of the
queried policies. Thus, query methods must not assume that their
suggestions will be followed and should be free of effects such as
state updates and /O operations.

3.2 SimplePolicies

To give a feel for how to write Polymer policies, we define sev-
eral simple examples in this section; in Sections 3.3 and 4.2 we
will build more powerful policies by composing the basic policies
presented here using a collection of policy combinators.

We begin by considering the most permissive policy possible:
one that allows everything. The Polymer code for this policy is
shown in Figure 3. Because the query method of Trivial aways
returns an IrrSug, it allowsall trigger actions to execute uncondi-
tionally. To enable convenient processing of suggestions, every Sug
constructor has at least one argument, the Policy making the Sug.

For our second example, we consider a more useful pol-
icy that disallows executing external code, such as OS system
cals, via java.lang.Runtime.exec(..) methods. This pol-
icy, shown in Figure 4, smply halts the target when it calls
java.lang.Runtime.exec. The accept method notifiesthe user
of the security violation. Notice that this notification does not ap-
pear in the query method because it is an effectful computation;
the notification should not occur if the policy’s suggestion is not
followed.

In practice, there can be many methods that correspond to a
single action that apolicy considers security relevant. For example,
apolicy that logs incoming email may need to observe all actions
that can open a message. It can be cumbersome and redundant to
have to enumerate all these methods in a policy, so Polymer makes
it possible to group them into abstract actions.

Abstract actions allow a policy to reason about security-relevant
actions at a different level of granularity than is offered by the Java
core API. They permit policies to focus on regulating particul ar be-
haviors, say, opening email, rather than forcing them to individually
regulate each of the actions that cause this behavior. This makes
it easier to write more concise, modular policies. Abstract actions
also make it possible to write platform-independent policies. For
example, the set of actions that fetch email may not be the same

public class DisSysCalls extends Policy {
public Sug query(Action a) {
aswitch(a) {
case <* java.lang.Runtime.exec(..)>:
return new HaltSug(this, a);
}

return new IrrSug(this);

}

public void accept(Sug s) {
System.out.println("Illegal method called: " +
s.getTrigger());

Figure 4. Policy that disallows Runtime . exec methods

public class GetMail extends AbsAction {
public boolean matches(Action a) {
aswitch(a) {
case <Message IMAPFolder.getMessage(int)> :
case <void IMAPFolder.fetch(Messagel[], *)> :

return true;
return false;

public static Object convertResult(Action a,
Object res) {
aswitch(a) {

case <Message IMAPFolder.getMessage(int)> :
return new Message[] {(Message)res};

case <void IMAPFolder.fetch(Message[] ma, *)> :
return ma;

default:
return res;

Figure 5. Abbreviated abstract action for receiving email mes-
sages; the abstract action’s signature isMessage[] GetMail()

on every system, but as long as the implementation of the abstract
GetMail action is adjusted accordingly, the same policy for regu-
lating email access can be used everywhere.

Figure 5 shows an abstract action for fetching email messages.
The matches method of an abstract action returns true when a
provided concrete action isone of the abstract action’s constituents.
The method has access to the concrete action’s run-time parameters
and can use thisinformation in making its decision. All constituent
concrete actions may not have the same parameter and return types,
so one of the abstract action’s tasks is to export a consistent inter-
faceto policies. Thisisaccomplished via convertParameter and
convertResult methods. The convertResult method in Fig-
ure 5 allows the GetMail abstract action to export a return type of
Message [], even though one of its constituents has a void return
type.

Naccio [8] implements an aternative notion, called platformin-
terfaces, that supports asimilar sort of separation between concrete
and abstract actions. It appears that our design is slightly more gen-
eral, as our abstract actions allow programmers to define many-
many relationships, rather than many-one relationships, between

public class IncomingMail extends Policy {

public Sug query(Action a) {
aswitch(a) {
case <abs * examples.mail.GetMail()>:
return new OKSug(this, a);
case <* MimeMessage.getSubject()>:
case <* IMAPMessage.getSubject()>:
String subj = spamifySubject(a.getCaller());
return new ReplSug(this, a, subj);
case <done>:
if (1isClosed(logFile))
return new InsSug(this, a, new Action(
logFile, "java.io.PrintStream.close()"));

}

return new IrrSug(this, a);
}
public void result(Sug sugg, Object res,
boolean wasExnThn) {
if (!sugg.is0K() || wasExnThn) return;
log(GetMail.convertResult (sugg.getTrigger(), result));

Figure 6. Abbreviated policy that logs all incoming email and
prepends the string “SPAM:” to subject lines on messages flagged
by a spam filter

concrete and abstract actions. In addition, our abstract actions are
first-class objects that may be passed to and from procedures, and
we support the convenience of general-purpose pattern matching.

The example policy in Figure 6 logs al incoming email and
prepends the string “SPAM:” to subject lines of messages flagged
by a spam filter. To log incoming mail, the policy first tests whether
the trigger action matches the GetMail abstract action (from Fig-
ure 5), using the keyword abs in an action pattern to indicate that
GetMail isabstract. Since query methods should not have effects,
the policy returns an 0KSug for each GetMail action; the policy
logs the fetched messages in the result method. Polymer triggers
a done action when the application terminates; the policy takes
advantage of this feature to insert an action that closes the mes-
sage log. If the InsSug recommending that the log be closed is
accepted, the policy will be queried again with a done action after
the inserted action has been executed. In the second query, the log
filewill already be closed, so the policy will return an IrrSug. The
policy aso intercepts calls to getSubject in order to mark email
as spam. Instead of allowing the original call to execute, the policy
fetches the origina subject, prepends “SPAM:” if necessary, and
returns the result viaaReplSug.

Sometimes, a policy requires notifying the target that exe-
cuting its trigger action would be a security violation. When no
suitable return value can indicate this condition to the target, the
policy may make an ExnSug rather than a ReplSug. For exam-
ple, an email Attachments policy that prevents executable files
from being created may, rather than by halting the target outright,
signa policy violations by making ExnSugs. These will cause
SecurityExceptions to be raised, which can be caught by the
application and dealt with in an application-specific manner.

3.3 Policy Combinators

Polymer supports policy modularity and code reuse by alowing
policies to be combined with and modified by other policies. In
Polymer, a policy is afirst-class Java object, so it may serve as an
argument to or be returned by other policies. We call a policy pa
rameterized by other policies a policy combinator. When referring

to acomplex policy with many policy parts, we call the policy parts
subpolicies and the complex policy a superpolicy. We have written
alibrary of common combinators; however, security policy archi-
tects are always free to develop new combinators to suit their own
specific needs. We use each of the following kinds of combinators
in the email policy described in Section 4.2.

Conjunctive combinator It is often useful to restrict an applica-
tion's behavior by applying several policies at once and, for any
particular trigger action, enforcing the most restrictive one. For ex-
ample, a policy that disallows access to files can be used in com-
bination with a policy that disallows access to the network; the re-
sulting policy disallows access to both files and the network. In
the general case, the policies being conjoined may reason about
overlapping sets of actions. When this is the case, we must con-
sider what to do when the two subpolicies suggest different courses
of action. In addition, we must define the order in which effectful
computations are performed.

Our conjunctive combinator composes exactly two policies; we
can generalize this to any number of subpolicies. Our combinator
operates as follows.

o |f either subpolicy suggests insertions, so does the combinator,
with any insertions by the left (first) conjunct occurring prior
to insertions by the right conjunct. Following the principle of
complete mediation, the monitor will recursively examine these
inserted actions if they are security-relevant.

If neither subpolicy suggests insertions, the conjunctive com-
binator computes and returns the least upper bound of the two
suggestions, as described by the following lattice, which orders
suggestions in terms of increasing semantic impact.

Replace(vy)
4 Replace(v,) k
? Replace(vs) 7

For instance, IrrSug has less impact than 0KSug since an
IrrSug indicates the current method is allowed but irrelevant
to the policy whereas 0KSug says it is alowed, but relevant
and updates of security state may be needed. ReplSugs have
more impact than 0KSugs since they change the semantics of
the application. ReplSugs containing different replacements
are considered inequivalent; consequently, the “ conjunction” of
two ReplSugsis considered to be an ExnSug.

Irrelevant OK Exception Halt

Note that a sequence of insertions made by one conjunct may
affect the second conjunct. In fact, this is quite likely if the sec-
ond conjunct considerstheinserted actions security-relevant. Inthis
case, the second conjunct may make a different suggestion regard-
ing how to handle an action before the insertions than it does after.
For example, in theinitial state the action might have been OK, but
after the intervening insertions the second conjunct might suggest
that the application be halted.

An abbreviated version of the conjunctive combinator is shown
in Figure 7. The calls to SugUtils.getNewSug in the query
method simply create new suggestions with the same type as the
first parameter in these calls. Notice that the suggestion returned
by the combinator includes the suggestions on which the com-
binator based its decision. This design makes it possible for the
combinator's accept and result methods to notify the appro-
priate subpolicies that their suggestions have been accepted and
followed.

Precedence combinators We have found the conjunctive policy
to be the most common combinator. However, it is useful on oc-
casion to have a combinator that gives precedence to one subpol-
icy over another. One example is the TryWith combinator, which

public class Conjunction extends Policy {
private Policy pl, p2;
public Conjunction(Policy pl, Policy p2) {
this.pl = pl; this.p2 = p2;

public Sug query(Action a) {
Sug si=pl.query(a), s2=p2.query(a);
if(sl.isInsertion()) return SugUtils.getNewSug(
s1, this, a, new Sugl[l{s1});
if(s2.isInsertion()) return SugUtils.getNewSug(
s2, this, a, new Sugl[l{s2});
if(s1.isHalt() && s2.isHalt())
return SugUtils.getNewSug(sl, this, a,
new Sugl]{s1,s2});
if(s1.isHalt()) return SugUtils.getNewSug(
s1, this, a, new Sugl[l{s1});

}
public void accept(Sug sug) {
//notify subpolicies whose suggestions were accepted
Sugl[] sa = sug.getSuggestions();
for(int i = 0; i < sa.length; i++) {
sa[i] .getSuggestingPolicy() .accept(salil);

Figure 7. Conjunctive policy combinator

queries itsfirst subpolicy, and if that subpolicy returns an IrrSug,
OKSug, or InsSug, it makes the same suggestion. Otherwise, the
combinator defers judgment to the second subpolicy. The email
policy described in Section 4.2 uses the TryWith combinator to
join apolicy that allows only HTTP connections with a policy that
alows only POP and IMAP connections; the resulting policy a-
lows exactly those kinds of connections and no others.

A similar sort of combinator is the Dominates combinator,
which aways follows the suggestion of the first conjunct if that
conjunct considers thetrigger action security-relevant; otherwise, it
follows the suggestion of the second conjunct. Note that if two sub-
policies never consider the same action security-rel evant, compos-
ing them with aDominates combinator is equivalent to compos-
ing them with a Conjunction combinator, except the Dominates
combinator is in general more efficient because it need not always
query both subpolicies. In our email policy we use Dominates to
construct a policy that both restricts the kinds of network connec-
tions that may be established and prevents executable files from
being created. Since these two subpolicies regulate digoint set of
actions, composing them with the Con junction combinator would
have needlessly caused the second subpolicy to be queried even
when the trigger action was regulated by the first subpolicy, and
therefore clearly not of interest to the second.

Selectors Selectors are combinators that choose to enforce ex-
actly one of their subpolicies. The IsClientSigned selector of
Section 4.2, for example, enforces a weaker policy on the target
application if the target is cryptographically signed; otherwise, the
selector enforces a stronger policy.

Policy modifiers Policy modifiers are higher-order policies that
enforce a single policy while also performing some other actions.
Suppose, for example, that we want to log the actions of a target
application and the suggestions made by a policy acting on that
target. Rather than modifying the existing policy, we can accom-
plish this by wrapping the policy in an Audit unary superpolicy.
When queried, Audit blindly suggests whatever the original pol-

icy’s query method suggests. Audit’s accept and result meth-
ods perform logging operations before invoking the accept and
result methods of the original policy.

Another example of a policy modifier is our AutoUpdate Su-
perpolicy. This policy checks a remote site once per day to deter-
mine if a new policy patch is available. If so, it makes a secure
connection to the remote site, downloads the updated policy, and
dynamically loads the policy into the VM as its new subpolicy.
Policies of this sort, which determine how to update other policies
at run time, are useful because they allow new security constraints
to be placed on target applications dynamically, as vulnerabilities
are discovered. Note however that because library classes (such as
java.lang.0Object) cannot in general bereloaded whilethe VM
is running, policies loaded dynamically should consider security-
relevant only actions appearing in the static action declaration file.
For this reason, we encourage security programmers to be reason-
ably conservative when writing action declaration files for dynam-
ically updateable policies.

A third useful sort of policy modifier is a Filter that blocks
apolicy from seeing certain actions. In some circumstances, self-
monitoring policies can cause loops that will prevent the target
program from continuing (for example, a policy might react to an
action by inserting that same action, which the policy will then see
and react to in the same way again). It iseasy towriteaFilter to
prevent such loops. More generally, Filters allow the superpolicy
to determine whether an action is relevant to the subpolicy.

4. Empirical Evaluation

Experience implementing and using Polymer has been instrumental
in confirming and refining our design.

4.1 Implementation

The principal requirement for enforcing the run-time policies we
are interested in is that the flow of control of a running program
passes to a monitor immediately before and after executing a
security-relevant method. The kind of pre- and post-invocation
control-flow maodifications to bytecode that we use to implement
Polymer can be done by tools like AspectJ [10]. Accordingly, we
considered using AspectJ to insert into bytecode hooks that would
trigger our monitor as needed. However, we wanted to retain pre-
cise control over how and where rewriting occurs to be able to
make decisions in the best interests of security, which is not the
primary focus of aspect-oriented languages like AspectJ. Instead,
we used the Apache BCEL API [3] to develop our own bytecode
rewriting tool.

Custom class loaders have often been used to modify bytecode
before executing it [2, 4]; we usethistechnique also. Sincelibraries
used internally by the VM cannot be rewritten by a custom class
loader, we rewrite those libraries before starting the VM and the
target application.

Further discussion of the implementation, including design de-
cisions and performance, can be found in a prior technical re-
port [5].

Performance It is instructive to examine the performance costs
of enforcing policies using Polymer. We did not concentrate on
making our implementation as efficient as possible, so there is
much room for improvement here. However, the performance of
our implementation does shed some light on the costs of run-time
policy enforcement.

Our system impacts target applications in two phases: before
and during loading, when the application and the class libraries are
instrumented by the bytecode rewriter; and during execution. The
total time to instrument every method in al of the standard Java
library packages (i.e., the 28742 methods in the 3948 classes in the

AutoUpdate

Dominates

ConfirmAndAllowOnlyHTTP. AllowOnlyMIME

@ IntToCheckMem

IsClientSigned

» Dominates

TryWith @

OutgoingMail QueryCalls
IncomingMail

Figure 8. Email policy hierarchy

java and javax packages of Sun’s Java APl v.1.4.0) was 107 s, or
3.7 ms per instrumented method.! This cost is reasonable because
library instrumentation only needs to be performed once (rather
than every time atarget application is executed). The average time
to load non-library classesinto the VM with our specialized class
loader, but without instrumenting any methods, was 12 ms, twice
as long as the VM’s default class loader required. The cost of
transferring control to and from a Polymer policy while executing a
target is very low (approximately 0.62 ms); the run-time overhead
isdominated by the computations actually performed by the policy.
Hence the cost of monitoring a program with Polymer is almost
entirely dependent on the complexity of the security policy.

4.2 Case Study: Securing Email Clients

To test the usefulness of Polymer in practice, we have written a
large-scale policy to secure untrusted email clients that use the
JavaMail API. The entire policy, presented in Figure 8, is approx-
imately 1800 lines of Polymer code. We have extensively tested
the protections enforced by the policy on an email client called
Pooka[16], without having to inspect or modify any of the approx-
imately 50K lines of Pooka source code. The run-time cost of en-
forcing the complex constraints specified by our policy is difficult
to measure because the performance of the email client depends
largely on interactions with the user; however, our experience indi-
cates that the overhead is rarely noticesble.

The component policiesin Figure 8 each enforce a modular set
of constraints. The Trivial and Attachments policies were de-
scribed in Section 3.2; the Conjunction, TryWith, Dominates,
Audit, and AutoUpdate superpolicies were described in Sec-
tion 3.3. Theleft branch of the policy hierarchy (shaded in Figure 8)
describes a generic policy that we include in all of our high-level
Polymer policies. This branch of policies ensures that atarget can-
not use class loading, reflection, or system calls maliciously and
alerts the user when the memory available to the virtual machine
is nearly exhausted. The nonshaded branch of the policy hierarchy
describes policies specifically designed for securing an email client
and enforces constraints as follows.

1 The tests were performed on a Dell PowerEdge 2650 with dual Intel Xeon
2.2 GHz CPUs and 1 GB of RAM, running RedHat Linux 9.0. The times
represent real time at low average load. We performed each test multiple
times in sets of 100. The results shown are the average for the set with the
lowest average, after removing outliers.

IsClientSigned testswhether theemail clientiscryptograph-
icaly signed. If it is, we run Trivial but continue to log
security-relevant actions and allow dynamic policy updates. If
the client is not signed, we run amore restrictive policy.

ConfirmAndAllowOnlyHTTP pops up awindow seeking con-
firmation before allowing HTTP connections, and disallows all
other types of network connections.

AllowOnlyMIME alows only standard email socket connec-
tions (POP and IMAP).

QueryCalls isapolicy modifier that allows security-sensitive
actions invoked in the query method of its subpolicy to exe-
cute unconditionally. QueryCalls OKSs these actions without
reguerying the subpolicy in order to prevent infinite loops that
can occur when the subpolicy invokes actions that it also moni-
tors. The implementation of QueryCalls inspects the dynamic
call stack to determine whether a trigger action was invoked in
the subpolicy’s query method.

OutgoingMail logs all mail being sent, pops up a window
confirming the recipients of messages (to prevent a mali-
cious client from quietly sending mail on the user’s behalf),
backs up every outgoing message by sending a BCC to poly-
demo@cs.princeton.edu, and automatically appends contact in-
formation to textual messages.

IncomingMail was shown in an abbreviated form in Figure 6.
In addition to logging incoming mail and prepending “SPAM:”
to the subject lines of email that fails a spam filter, this policy
truncates long subject lines and displays a warning when a
message containing an attachment is opened.

5. Formal Semantics

In this section, we give a semantics to the core features of our lan-
guage. The main purpose of the semantics is to communicate the
central workings of our language in a precise and unambiguous
manner. We have chosen to give the semantics in the context of
a lambda calculus because lambda calculi are inherently simpler
to specify than class-based languages such as Java? More impor-
tantly, the central elements of our policy language do not depend
upon Java-specific features such as classes, methods and inheri-
tance. We could just as easily haveimplemented policiesfor afunc-
tional language such as ML or a type-safe imperative language.

2 Even the lightest-weight specification of Java such as Featherweight Java
is substantially more complex than the simply-typed lambda calculus.

types : _

7 u==DBool | (7)| T Ref |71 — 72 | Poly | Sug | Act | Res
programs :

P = (F,M, epol, €app)

monitored functions :

F = funf(z:71):m2{e}

memories :

M:=-|Ml:v

values : -

v u=true | false | (v) | I | Az:7.e | pol(Vquery, Vacc Ures) |
irrs | oks | inss(v) | repls(v) | exns | halts | act(f, v) |

result (v:T)

expressions : _,

e z=v|z]|(e)|e;er|refe|le]ei:=es|eres|
POl(€query, €acc; €res) | inss(e) | repls(e) | act(f,) |
invk e | result(e:7) | case e; of (p = ez | - = e3) |
try e1 with e | raise exn | abort

patterns : -

p u=x|true|false | (P) | pol(x1,x2,x3) | irrs | oks |
inss(p) | repls(p) | exns | halts | act(f, p) | result(p:7)

Figure 9. Formal syntax

Type safety protects the program monitor’s state and code from the
untrusted application.

Figure 9 describes the main syntactic elements of the calculus.
The language is simply-typed with types for booleans, n-ary tuples,
references, and functions. Our additions include simple base types
for policies (Poly), suggestions (Sug), actions (Act), which are
suspended function applications, and results of those suspended
function applications (Res).

Programs as a whole are 4-tuples consisting of a collection of
functions that may be monitored, a memory that maps memory |o-
cations to values, and two expressions. The first expression repre-
sents the security policy; the second expression represents the un-
trusted application. Execution of a program begins by reducing the
policy expression to a policy value. It continues by executing the
application expression in the presence of the policy.

Monitored functions (fun f(z:71):72{e}) are syntactically sep-
arated from ordinary functions (\z:7.€).*> Moreover, we treat mon-
itored function names f as a syntacticaly separate class of vari-
ables from ordinary variables z. Monitored function names may
only appear wrapped up as actions as in act(f,). These actions
are suspended computations that must be explicitly invoked with
the command invk e. Invoking an action causes the function in
question to be executed and its result wrapped in aresult construc-
tor result(e:7). The elimination forms for results and most other
objects discussed above is handled through a generic case expres-
sion and pattern matching facility. The class of patterns p includes
variable patterns = as well as patterns for matching constructors.
Ordinary, unmonitored functions are executed via the usual func-
tion application command (e; e2).

To create a policy, one applies the policy constructor pol to a
query function (equery), Which produces suggestions, and security
state update functions that execute before (eacc) and after (eres)
the monitored method. Each suggestion (irrs, oks, inss, repls,
exns, and halts) also has its own constructor. For instance, the
repls constructor takes a result object as an argument and the
inss suggestion takes an action to execute as an argument. Each
suggestion will be given a unique interpretation in the operational
semantics.

3 Asusual, we treat expressions that differ only in the names of their bound
variables asidentical. We often writelet z = ¢ in e for (Az:7.e2)eq.

S; C' F equery : Act — Sug

S; C F eacc : (Act, Sug) — () S;C F eres : Res — ()
S; Cr pOI(equery7 €acc, eres) : POly

S;C Firrs : Sug S; C' F oks : Sug

S;C ke Act
S; C F inss(e) : Sug

S;C F e: Res
S; C + repls(e) : Sug

S; C F exns : Sug S; C F halts : Sug

Clfy=nn—m S;Cke:mn
S; C +act(f,e) : Act

S;CFe:Act
S;C Finvk e : Res

S;Chke:T
S; C F result(e:7) : Res

S;Ckter:7 Chtp:(r;C")
S:C,C'Fey:T S;Cltes:T

S;Ctcaseerof (p=ex|-=e3):T

F (ﬁ7 M7 epol,eapp) - T

FE:C CFM:S
S; C' I epor = Poly S;CF eapp 1 T

[(ﬁ, M, epol, €app) : T

Figure 10. Static semantics (selected rules)

Static Semantics Figure 10 presents selected rules from the static
semantics for the language. The main judgment, which types ex-
pressions, has the form S;C F e : 7 where S maps reference
locations to their types and C' maps variables to types. Whenever
we add a new binding x:7 to the context, we implicitly alpha-vary
x to ensure it does not clash with other variables in the context. A
secondary judgment C' + p : (7;C") is used to check that a pat-
tern p will match objects with type 7 and binds variables with types
givenby C’.

We have worked hard to make the static semantics a simple but
faithful model of the implementation. In particular, notice that all
actions share the same type (Act) regardless of the type of object
they return when invoked. Dynamically, the result of invoking an
actionisavalue wrapped up asaresult with type Res. Caseanalysis
isused to safely extract the proper value. This choice allows policy
objects to process and react to arbitrary actions. To determine the
precise nature of any action and give it a more refined type, the
policy will use pattern matching. We have a similar design for
action results and replacement values.

The judgement for overal program states has the form +
(F, M, epol, eapp) : T Where 7 is the type of the application code
eapp- Thisjudgment relies on two additional judgments (definitions
not shown) which give typesto alibrary of monitored functi onsF'
and types to locations in memory M.

(F7 M7 epol,eapp) = (F7 M,ve;)olve,app)

(F, M, Triv, e) =5 (M', €)
(ﬁa M, Ele], €app) — (ﬁa M', E[€'], eapp)
where Triv = pol(Az:Act.irrs, Az:(Act, Sug).(), Az:Res.())

(F_:a Ma ’Upol,e) 3 (Mlvel)
(F_:v Mvvpf)lvE[e]) = (F_:v M/va‘)lvE[e/])

(F7 M7 UPOI?eaPP) B (M/7eflpp)

(ﬁ, M, vpol, (Ax:T.€)v) =5 (M, e[v/x])

F,cF F = funf(x:m):m2{e}
(ﬁ7 M7 UPOI? ind aCt(f7 U)) *)ﬁ (M7 Wra‘p(vpoh Fi7 ’U))

where Wrap(pol(vquery, Vace, Vres), funf(x:m):me{e},v) =
let s = vquery (act(f,v)) in
case s of
irrs = let x = v in result(e:m2)
| oks = Vacc(act(f,v), s);
let z = v in let 7 = result(e:72) in vres 75 T
| repls(r) = vacc(act(f,v),s); r
|exns = wvacc(act(f, v), s); raise exn
|inss(a) = vacc(act(f,v),s); vres(invk a); invk act(f,v)
|- = abort

Figure 11. Dynamic semantics (selected rules)

Dynamic Semantics To explain execution of monitored pro-
grams, we use a context-based semantics. Thefirst step isto define
aset of evaluation contexts E, which mark where a beta-reduction
can occur. Our contexts specify aleft-to-right, call-by-value evalu-
ation order. (We omit the definition to conserve space.)

We specify execution through a pair of judgments, one for top-
level evaluation and onefor basic reductions as shown in Figure 11.
The top-level judgment reveals that the policy expression is first
reduced to a value, and then execution of the untrusted applica-
tion code begins. Execution of many of the constructs is relatively
straightforward. One exception isexecution of function application.
For ordinary functions, we use the usual capture-avoiding substitu-
tion. Monitored functions, on the other hand, may only be executed
if they are wrapped up as actions and then invoked using the invk
command. The invk command applies the query method to dis-
cover the suggestion the current policy makes and then interprets
the suggestion. Notice, for instance, that to respond to the irrele-
vant suggestion (irrs), the application simply proceeds to execute
the body of the security-relevant action. To respond to the OK sug-
gestion (oks), the application first calls the policy’s accept method,
then executes the security-relevant action before calling the pol-
icy’s result method, and finally returns the result of executing the
security-relevant action.

Language Properties To check that our language is well-defined,
we have proven a standard type-safety result in terms of Preserva-
tion and Progress lemmas. Due to space considerations, we have
omitted the proofs.

Theorem 1
If= (F, M, epol, €app) : T
and(F7 M7 eP017eﬂPP) = (F7 M/7e;olve/app)

thent (F', M, e,01; €app) & T

Theorem 2 -

If = (F, M, epol, €app) : T then either (F', M, epol, €app) IS fin-
ished (i.e, eapp iSavalue or epol OF eapp IS E[abort], Or epo1 OF
eapp 1S E[raise exn] where E # E'[try E" with e]), or there ex-
istsaconfiguration (F, M’ , €., €hpp) Suchthat (F, M, epol, €app)
= (ﬁa M,7 e;)ola eflpp)'

Observations The semantics gives insight into some of the sub-
tler elements of our implementation, which are important both to
system users and to us as implementers.

For example, one might want to consider what happens if a
program monitor raises but does not catch an exception (such as a
null pointer exception). Tracing through the operational semantics,
one can see that the exception will percolate from the monitor
into the application itself. If this behavior is undesired, a security
programmer can create a top-level superpolicy that catches all
exceptions raised by the other policies and deals with them as the
programmer sees fit.

As another example, analysis of the operational semantics
shows a corner case in which we are unable to fully obey the prin-
ciple of complete mediation. During the first stage of execution,
while the policy itself is evaluated, monitored functions are only
protected by a trivial policy that accepts al actions because the
actual policy wewant to enforceis the one being initialized. Policy
writers need to be aware of this unavoidable behavior in order to
implement policies correctly.

6. Summary

We have developed a programming methodology for writing
general-purpose security policies. The design is radicaly differ-
ent from existing policy-specification languages in its division of
policies into effectless methods that make suggestions regarding
how to handle trigger actions and effectful methods that are called
when the policy’s suggestions are followed. This design alows
general security policies to be composed in meaningful and pro-
ductive ways. We have implemented our design and shown a sound
formal semantics for it. We also demonstrated the practicality of
the language by building a sophisticated security policy for email
clients from simple, modular, and reuseable policies.

Acknowledgments

We are grateful to Greg Morrisett and the anonymous reviewers for
supplying valuable feedback on earlier versions of this paper. This
research was supported in part by ARDA grant no. NBCHC030106,
by National Science Foundation grants no. CCR-0238328 and
CCR-0306313, by the Army Research Office through grant no.
DAAD19-02-1-0389, and by a Sloan Fellowship.

References

[1] M. Abadi and C. Fournet. Access control based on execution history.
In 10th Annual Network and Distributed System Security Symposium,
2003.

[2] O.Agesen, S.N. Freund, and J. C. Mitchell. Adding type parameteri-
zation to the Javalanguage. In Object Oriented Programing: Systems,
Languages, and Applications (OOPSLA), Oct. 1997.

[3] Apache Software Foundation. Byte Code Engineering Library, 2003.
http://jakarta.apache.org/bcel/.

[4] L. Bauer, A. W. Appel, and E. W. Felten. Mechanisms for secure
modular programming in Java. Software—Practice and Experience,
33(5):461-480, 2003.

[5] L. Bauer, J. Ligatti, and D. Walker. A language and system for
composing security policies. Technical Report TR-699-04, Princeton
University, Jan. 2004.

[6] T. Colcombet and P. Fradet. Enforcing trace properties by program
transformation. In Twenty-Seventh ACM Symposium on Principles
of Programming Languages, pages 54-66, Boston, Jan. 2000. ACM
Press.

[7] . Erlingsson and F. B. Schneider. IRM enforcement of Java stack
inspection. In |EEE Symposium on Security and Privacy, Oakland,
CA, May 2000.

[8] D. Evans and A. Twyman. Flexible policy-directed code safety. In
|EEE Security and Privacy, Oakland, CA, May 1999.

[9] C. Fournet and A. Gordon. Stack inspection: Theory and variants.
In Twenty-Ninth ACM Symposium on Principles of Programming
Languages, Jan. 2002.

[10] G. Kiczales, E. Hilsdae, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An overview of Aspect]. In European Conference
on Object-oriented Programming. Springer-Verlag, 2001.

[12] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, |. Lee, and
0. Sokolsky. Formally specified monitoring of temporal properties.
In European Conference on Real-time Systems, York, UK, June 1999.

[12] 1. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Run-

time assurance based on formal specifications. In International
Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas, NV, June 1999.

[13] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement
mechanisms for run-time security policies. International Journal of
Information Security, 4(1-2):2-16, Feb. 2005.

[24] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

[15] E. Meijer and J. Gough. A technical overview of the Common
Language Infrastructure. http://research.microsoft.com/
“emeijer/Papers/CLR.pdf.

[16] A. Petersen. Pooka: A Java email client, 2003. http://www.
suberic.net/pooka/.

[17] J. H. Sdltzer and M. D. Schroeder. The protection of information in
computer systems. In IEEE 63, 9, pages 1278-1308, Sept. 1975.

[18] F. B. Schneider. Enforceable security policies. ACM Transactions on
Information and Systems Security, 3(1):30-50, Feb. 2000.

[19] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-
order languages. In Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development, pages 158-167, 2003.

[20] D. Walker, S. Zdancewic, and J. Ligatti. A theory of aspects. In ACM
International Conference on Functional Programming, Uppsaa,
Sweden, Aug. 2003.

