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HMM-Based Strategies for Enhancement of
Speech Signals Embedded in Nonstationary Noise

Hossein Sameti, Hamid Sheikhzadeh, Li Deng,Senior Member, IEEE,and Robert L. Brennan

Abstract—An improved hidden Markov model-based (HMM-
based) speech enhancement system designed using the minimum
mean square error principle is implemented and compared with
a conventional spectral subtraction system. The improvements
to the system are: 1) incorporation of mixture components in
the HMM for noise in order to handle noise nonstationarity
in a more flexible manner, 2) two efficient methods in the
speech enhancement system design that make the system real-
time implementable, and 3) an adaptation method to the noise
type in order to accommodate a wide variety of noises expected
under the enhancement system’s operating environment. The
results of the experiments designed to evaluate the performance of
the HMM-based speech enhancement systems in comparison with
spectral subtraction are reported. Three types of noise—white
noise, simulated helicopter noise, and multitalker (cocktail party)
noise—were used to corrupt the test speech signals. Both objective
(global SNR) and subjective mean opinion score (MOS) eval-
uations demonstrate consistent superiority of the HMM-based
enhancement systems that incorporate the innovations described
in this paper over the conventional spectral subtraction method.

I. INTRODUCTION

SPEECH communication under noisy conditions is diffi-
cult and fatiguing. Speech sounds such as consonants,

fricatives, and stops are often masked by noise, resulting in
reduction of speech discrimination. The hearing impaired are
at a considerable further disadvantage requiring an increase
of between 2.5 and 12 dB SNR to achieve similar speech
discrimination scores to those of normal hearing [1]. One
characteristic of the design for future-generation hearing aids is
to provide an effective front-end speech enhancement device.
A major challenge in hearing aid design is to devise an
effective speech enhancement strategy with the ability to cope
with low SNR’s (0–15 dB) and with the types of noise
frequently encountered by hearing aid users, including speech
weighted noise, low-frequency noise, and multitalker babble.

The main objective of speech enhancement is to improve
one or more perceptual aspects of speech, such as overall
quality, intelligibility for human or machine recognizers, or
degree of listener fatigue. In the presence of background
noise, the human auditory system is capable of employing
effective mechanisms to reduce the effect of noise on speech
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perception. Although such mechanisms are not well under-
stood at the present state of knowledge to allow the design of
speech enhancement systems based on auditory principles, sev-
eral practical methods for speech enhancement have already
been developed. Digital signal processing (DSP) techniques
for speech enhancement include spectral subtraction [2]–[4],
adaptive filtering [5], [6], and suppression of nonharmonic
frequencies [6]–[8]. Most of these techniques either require
a second microphone to provide the noise reference [5], [9],
[10], or require that the characteristics of noise be relatively
stationary. Nevertheless, none of these requirements can be
met in most of practical applications. Spectral subtraction,
with no need for a second microphone and with the capability
of handling noise nonstationarity to some extent, has been
one of the relatively successful DSP methods. However, one
major problem with this method is the annoying nonstationary
“musical” [11] background noise associated with the enhanced
speech. It also is incapable of coping with rapid variations in
noise characteristics (e.g., simple noise amplitude variations).
The basic advantage of this method is the implementation
simplicity and relatively light computation requirements. We
have developed a real-time spectral subtraction enhancement
system using digital signal processors, which will be briefly
described in this paper.

Enhancement methods that are based on stochastic mod-
els—hidden Markov models (HMM’s)—have overcome the
shortcomings of the DSP techniques by modeling both clean
speech and noise and by accommodating the nonstationarity of
speech and noise with multiple states connected with transition
probabilities of a Markov chain. Using multiple states and mix-
tures in the HMM for noise enables the speech enhancement
system to relax the assumption of noise stationarity. Another
key aspect of our work described in this paper is real-time
implementation of the speech enhancement system. We have
successfully devised methods to reduce the system complexity
and memory requirements. The HMM-based enhancement
system we have implemented has the computational com-
plexity similar to that of the spectral subtraction system. The
HMM-based system is real-time implementable with its speech
enhancement performance being significantly superior to the
spectral subtraction method.

The organization of this paper is as follows. In Section II,
a survey of the spectral subtraction and the maximuma
posteriori (MAP), Approximate MAP (AMAP), and improved
minimum mean square error (MMSE) approaches associated
with the HMM-based enhancement system is carried out. In
particular, a complete MMSE system with multiple states and
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mixtures in the HMM’s for both noise and clean speech is
described in detail in Section II-B4. In Section III, a novel
noise-type adaptation method for HMM-based enhancement
systems is described. Two methods we developed in this
study aiming at improving the implementation efficiency of the
HMM-based enhancement system are presented in Section IV.
The results of the experiments comparing various types of
the speech enhancement systems are reported in Section V.
Finally, Section VI contains the conclusions drawn from this
study.

II. SPEECH ENHANCEMENT METHODS

A. Spectral Subtraction

In this conventional method, a frequency-domain Wiener fil-
ter is constructed from the speech and noise spectral estimates
at each time frame, which is then used to obtain the clean
speech estimate. The noisy speech signal is first segmented
into time-limited consecutive frames. Within each short-time
frame, the clean speech , additive noise , and noisy
speech are all assumed to be stationary. Then the spectrum
of the noisy speech

(1)

is obtained as

(2)

where , , and are the power density spectra
of , , and , respectively. A block diagram of the
enhancement system we have implemented based on spectral
subtraction is shown in Fig. 1 (similar to the system of [12]).
In the operation of the system, a fast Fourier transform (FFT)
is performed on each frame of the noisy signal to estimate
the spectrum of the noisy speech. The estimate of the noise
spectrum is updated during periods of nonspeech activity.
An autocorrelation-based voicing and pitch detector is used
for speech detection. When no speech is detected, the signal
is assumed to be noise and the magnitude of noise spectral
estimate, , is updated as

(3)

where is the spectral magnitude of the current frame,
is a decay factor, and is the magnitude of

noise spectral estimate before the update. The estimated noise
spectral magnitude squared is then subtracted from short-
time spectrum magnitude squared of the degraded speech
estimated in frequency domain. Enhanced speech is obtained
by reconstructing speech using the modified magnitude and
the original (noisy) phase

(4)

where is the phase of the degraded speech. In practice
a Wiener filter of the form

(5)

Fig. 1. Spectral subtraction enhancement system block diagram.

is constructed for every frame and the formula in (4) is
calculated by the linear system operation

(6)

This method relies on the critical assumption that noise is
stationary so long as the noise spectrum is not updated.

B. HMM-Based Enhancement Methods

Among stochastic enhancement methods, HMM-based
methods have been most successful. HMM has long been used
for speech modeling with applications to speech recognition
and enhancement. There are significant differences in applying
HMM’s for recognition and enhancement purposes, however.

In speech recognition, a separate model for every speech
unit (feature, phoneme, or word) is trained. This model is to
contain the ordered sequence of stochastic properties for the
utterance corresponding to that speech unit. Therefore it has
to be left-to-right, i.e., transitions from a higher-indexed state
to a lower-indexed state are generally prohibited. For a left-to-
right model, if similar states (corresponding to similar signal
properties) are to happen in different time frames, they have
to be assigned as different states while they contain the same
statistical information. The objective in speech recognition is
to find models with maximal separation so that they give as
different likelihoods for a single testing token as possible. This
requires that the model best preserve the distinctive statistical
properties of the training data.

The modeling problem in speech enhancement is rather
different. The objective is to average out the noise signal and
extract the general spectral characteristics of speech regardless
of the phoneme, word, or sentence pronounced. This is done to
distinguish speech from noise and not to distinguish different
units of speech. Thus the structure of the speech model
for enhancement should be different from that for speech
recognition. First, we wish to accommodate all the speech
characteristics in a single, compact model. Second, the model
is not supposed to capture distinctive properties of speech
within different utterances; rather, it is to capture the global
characteristics of speech. Third, the temporal order of the
states in the model need not be constrained since there is a
single, global model for speech and different state sequences
for the same state ensemble can represent distinct utterances.
As a result, the speech model for enhancement is structured
to be ergodic; i.e., there are no constraints on the transition
probabilities of the HMM. This also makes the model less
redundant since each distinct spectral shape of speech or noise
needs to be represented only once in the model.
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1) Training HMM’s for Clean Speech and for Noise:The
HMM’s employed throughout this work for clean speech and
for noise are ergodic mixture autoregressive hidden Markov
models (AR-HMM’s) [13]. These HMM’s enable us to para-
metrically model the speech and noise spectral shapes. The
output probability density function (pdf) of each mixture of
the HMM’s is assumed to be Gaussian AR. The likelihood of
a training data sequence given the HMM (for clean speech or
for noise) parameters is written in terms of the transition prob-
abilities, mixture weights, and conditional output pdf [14]. For
implementation efficiency, the output pdf is approximated by
the sum of the products of the data and model autocorrelation
coefficients [13].

The model parameter set for an HMM with states and
mixtures is defined as where
is the set of initial state probabilities, is the
set of state transition probabilities, is the set of
mixture weights, and with being the AR
parameter set of a zero-mean th order Gaussian AR output
process corresponding to state and mixture pair

, ,
being the variance (AR gain) for and

. Given a -dimensional training data sequence
, a maximum likelihood (ML) estimate of

the parameter set is obtained and maximized through the
Baum reestimation algorithm [13]. Alternately, the segmental
K-means algorithm can be used to maximize the parameter set
along the dominant state and mixture sequence.

Since the Baum and the segmental K-means algorithms
optimize their objective functions locally, it is important
to devise a good initial model. Vector quantization using
Itakura–Saito distortion measure [15] (LPC-VQ [16]) is used
in our system to estimate the initial model parameters. The
generalized Lloyd algorithm (GLA) [17] is used to design
the VQ codebook. To obtain the initial estimate for
parameters, the training data sequence is encoded according
to the designed codebook., , and are then obtained by
estimating the frequency functions associated with them.

Merhav and Ephraim have shown [18] that if the vector size
is sufficiently large, the Baum algorithm, the segmental-

means algorithm, and the LPC-VQ will generate similar model
estimates. Further, as , the asymptotic performances
of the three methods will be the same.

2) MAP Enhancement Method:For MAP estimation of the
clean speech signal [14], the estimation-maximization (EM)
algorithm [19] is employed in constructing our speech en-
hancement system. Let denote the iteration index (initially
set to zero). First, the weight sequence

(7)

is evaluated for all possible states, mixtures , and
time frames using the forward-backward algorithm [20].

is the conditional probability of being in state
and choosing mixture at time frame given an estimate

of the clean speech

(8)

Associated with each state and mixture pair , there is a
set of AR (LPC) coefficients that can be used in combination
with the noise AR process to form a Wiener filter .
A new estimate of the clean speech is calculated by filtering
the noisy speech through a weighted sum of the Wiener filters,
the weights being for each time frame. This
estimate of clean speech is then used to find a probability
sequence , thus supplying a new sequence of
Wiener filters and another estimate of the clean speech. This
iterative process continues until a preset convergence criterion
is reached. In the first iteration, noisy speech is used as
an estimate of the clean speech. For each time frame,,
enhancement is done efficiently in frequency domain using
[14]:

(9)

where and denote the clean signal and the noisy signal,
respectively, and subscript indicates the frequency domain
components. A speech enhancement system which we devel-
oped based on the above MAP algorithm is shown in Fig. 2.

3) Approximate MAP Method:Approximate MAP (AMAP)
enhancement system [14], a block diagram of which is shown
in Fig. 3, is a simplified approximation of the MAP algorithm.
For AMAP, a single state and mixture pair is assumed to
dominate the sequence at each time frame, thus constraining
the filter weights to be one for only one state and mixture pair
and zero for the others. Given an estimate of the clean speech
signal, the estimation of the most likely sequence of states
and mixtures is carried out by applying the Viterbi algorithm
using the path metric

for

for (10)

where , , and and are
the state and mixture at time frame, respectively. At each, a
frame of noisy speech, , is enhanced using the Wiener filter
corresponding to the most probable state and mixture pair.

Both MAP and AMAP enhancement algorithms are iterative
since they use the enhanced speech as an estimate of the clean
speech theoretically required by the formulations. Neither of
these methods is capable of handling nonstationary noise due
to the calculation of the filter weights being based on the clean
signal information only and ignores noise variations.

4) Improved MMSE Enhancement Method:Finally, an im-
proved minimum mean square error enhancement system,
based on the algorithm first described in [21], has been
developed in this study. In this MMSE system, a multiple state
and mixture noise model was employed to accommodate non-
stationarity in noise. Fig. 4 shows a simplified block diagram
of the system. The MMSE enhancement system is designed
to optimize the function

(11)
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Fig. 2. MAP enhancement block diagram.

where is a function on , denotes conditional

expectation, and is the noisy speech data
from time zero up to time. The forward algorithm for a single
state and mixture noise model [20] is extended in this study to
multiple state and mixture noise model. Let and denote
the state and mixture of noise at time frame. Let and
denote the number of states and mixtures of the noise HMM.

can be calculated from

(12)

where

(13)

is the posterior probability of speech stateand mixture ,
and noise state and mixture at time given the noisy
signal . In (13)

(14)

(15)

Fig. 3. AMAP enhancement block diagram.

for , where

(16)

is the conditional pdf of the noisy signal given that the
clean signal is in state with mixture component and the
noise frame corresponds to stateand mixture [superscript

in (16) denotes matrix transposition]. In (16),
is the covariance matrix of the Gaussian

output process associated with stateand mixture of speech
AR-HMM, is the variance of the innovation process
of the AR source, and is a lower triangular
Toeplitz matrix in which the first elements of the first
column constitute the coefficients of the AR process, .
Similarly, is the covariance matrix of the Gaussian output
process associated with stateand mixture of noise AR-
HMM. Note that for Gaussian HMM’s representing speech
and noise, the noisy process is also a Gaussian process.

Equation (12) shows that the MMSE estimator of
given is a weighted sum of the individual MMSE estimators
of the output processes generated by the clean speech’s HMM,
where the weights are the probabilities that the individual
estimators are the correct ones for the given noisy signal. The
conditional expectation in (12) is given by

(17)
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Fig. 4. MMSE enhancement block diagram.

where denotes the conditional pdf
of the clean signal given state with mixture component

at time , and the noisy signal . The exact evalua-
tion of (17) for nonlinear function is not trivial. For

where is the th
component of the discrete Fourier transform (DFT) of, (17)
is derived to be the conventional Wiener filter. For some other
functions such as

(18)

(19)

(20)

where (17) has also been evaluated [21].
Using the system shown in Fig. 4, no iterations are neces-

sary for the MMSE enhancement. This shows the superiority of
MMSE system and its higher capability for noise cancelling in
comparison with the MAP enhancement system, which needs
to iterate many times to achieve an acceptable result. The more
significant superiority of the MMSE system over the MAP
system, however, is its ability to deal with nonstationary noise
due to its inherent capability to calculate filter weights given
the noisy signal instead of an estimate of the clean signal. In
this work we chose the function to be the DFT of for
implementation simplicity.

Equations (12)–(16) indicate that computation of is
very costly in terms of computational complexity. For each
frame , a large number of filter weights has to be calculated
using expensive calculation of (15) and (16). This makes
the enhancement procedure very time consuming and far
from real-time implementable. To solve this problem, we
devised two methods by which the computational load dropped
considerably. These methods will be described in Section IV.

III. N OISE ADAPTATION ALGORITHM

In general, there are a large number of diversified types
of noise, with very time-varying spectral characteristics, in
the environment in which speech enhancement systems are
intended to be deployed (e.g., the system as a front-end
of advanced digital hearing aid). It is always an advantage
for the enhancement system to havea priori knowledge
about the noise nature. Enhancement methods which make

assumptions about the noise type are deficient in terms of
functionality under various corrupting noise types. The HMM-
based enhancement systems are inherently relying on the
type of training data for noise. Expectedly, such a system
can handle only the type of noise that has been used for
training noise HMM. Therefore, data from various noise types
should be used for training the noise HMM. This creates
the problem of a large model size for the noise HMM,
making the search space expand linearly with the number
of noise types with computation cost growing drastically.
Furthermore, the unwanted large search space deteriorates the
system performance by introducing more sources of error in
the MMSE forward algorithm.

A novel noise adaptation algorithm is devised in this work
1) to enable the system to handle arbitrary types of corrupting
noise and 2) to avoid up-growth in computation complexity
and preserve the real-time implementation capability of the
system. This algorithm, with the block diagram shown in
Fig. 5, carries out noise-model selection and adaptation of the
variances (LPC gains) of the Gaussian AR processes associ-
ated with the noise HMM’s. During intervals of nonspeech
activity, a Viterbi algorithm is performed on noise data using
different noise models. By scaling the gain term in every
HMM mixture by a single factor and performing the Viterbi
scoring, the model gain is coarsely optimized. The noise
HMM generating the best score is selected and a fine scaling
adjustment is carried out to adapt to the noise level using the
Viterbi algorithm again. This procedure has been motivated
by our earlier work [22] and is based on the assumption
that noise training sequences with similar characteristics but
varying levels result in AR-HMM’s differing only in the AR
gains (not in spectral shapes). In order to avoid confusing
unvoiced speech (mainly fricatives) with nonspeech segments
contaminated with noise, only segments more than 100 ms
long are used for noise model updating. Since generally no
fricative or other unvoiced phoneme lasts longer than 100 ms,
the system will not mistake speech with pure noise intervals.

The MMSE enhancement system does not require noise
model updating as often as the spectral subtraction method,
since it can handle noise nonstationarity within a specific
noise type due to use of the multiple state and mixture noise
model. Noise model update here is only to switch to the model
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Fig. 5. Block diagram of the noise adaptation method.

representing a new noise type if required. Selection of different
spectra and gains within a specific type of noise is carried out
by the forward algorithm for each speech frame. A corrupting
noise with continuously variable power can easily be handled
by the MMSE method without the requirement to update the
noise model type; in contrast, spectral subtraction method fails
to follow the continuous noise power variations. This method
of noise model selection can successfully cope with noise
level variations as well as different noise types as long as
the corrupting noise has been modeled during the training
process. Further, the method keeps the noise model sufficiently
compact so that excessive computation cost in enhancement is
avoided. Assume that a three-state and three-mixture HMM
is required to model each noise type, and assume that five
noise types are to be dealt with. Without the noise adaptation
algorithm, 45 possible output distributions have to be searched
to select a noise pdf. Using the noise adaptation algorithm, this
search space is reduced to only nine output distributions at a
time. The only extra computation is due to the selection of the
appropriate noise model once every few seconds during the
nonspeech activity.

IV. EFFICIENT IMPLEMENTATION OF THE

MMSE ENHANCEMENT ALGORITHM

With a real-time implementable system as an objective,
the MMSE enhancement algorithm is to be efficiently im-
plemented for reducing the computation requirement of the
system to that comparable to the conventional DSP method.
For this, the following methods have been devised in imple-
menting our speech enhancement system.

A. Double Pruning the MMSE Forward Calculation

Calculation of MMSE forward probability and filter weights
which constitutes a major computational load, is carried out
according to (13). For speech and noise HMM’s of sizes

and , these equations call for calculation of
filter weights and the same number of pdf

values for each time frame. Since the majority of these
weights are negligible due to their extremely small values
(orders as little as 10 ), an efficient pruning method was
devised and implemented to reduce the computation cost, as
well as the memory requirement, of the system.

Equation (15) can be rewritten in the following recursive
form:

(21)

where is calculated from (16). For pruning, values are
first normalized by their maximum value. [This does not affect
the filter weights since the forward probabilities appear both
in the numerator and denominator in (13).] Then all the
values less than an empirically determined certain threshold
are deleted and (21) is calculated only for the remaining

’s. A second pruning is performed for and only the
significant values of are used to calculate (21). This
double pruning method allows the computation cost of the
enhancement process to be independent of the size of the
speech and noise HMM’s, since the number of saved filter
weights does not directly depend on the model size. Without
this pruning, however, the computation cost would increase
proportionally with the speech and noise model sizes.

B. Approximating the pdf of Noisy Speech

Calculation of (16) is very costly because of the
matrix inversion ( in our system) of the covariance
matrix and multiplication of matrices with dimensions as
large as (for , computation cost is of order

). Since the summation of two AR processes
is not necessarily an AR process, the assumption of structured
covariance matrix for noisy speech (in order for

to be decomposable into Toeplitz matrices comprised of
AR coefficients of process [23]) is generally invalid. To
avoid the expensive calculation, an approximation method was
devised for the inversion of the noisy covariance matrix. For
any process , the covariance matrix can be written in the
form [24]

(22)

where and are upper triangular and diagonal
matrices, respectively, of the forms

...
...

...
. . .

...
(23)

diag (24)

where is the th coefficient of the th order linear
predictor for the process , is the th autocorrelation
coefficient of the process , and is the squared prediction
error for the th order linear predictor. The exponent term in
(16) needs

(25)
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to be calculated. From (22) we can write

(26)

so

(27)

where . Thus, the inversion of the
matrix is avoided but the problem of multiplying large matrices
still remains to be resolved. Note that with

being a diagonal matrix, so is found by calculating
the product of diagonal elements of the matrix. To resolve
the second computation problem, instead of calculating,
approximated is calculated by considering the process
as an AR process of a higher order than the orders of either of
the two processes and (the clean signal and noise). For
an AR process of order, for we have

(28)

(29)

Therefore, will be a Toeplitz matrix after th row in (30),
shown at the bottom of the page. can be separated into
two parts; the first part comprising of the firstrows and the
second part of the other rows. Multiplication of the first

rows is done easily due to the small value ofcompared
to ( and in our system). The second part
of the matrix has a circular structure, and for implementation
efficiency the output pdf can be approximated by the sum of
the products of the autocorrelation coefficients of the data and
of the model AR parameters [14] as follows.

For a zero-meanth-order Gaussian AR output process with

the AR parameter set of ,
and gain and observation with vector size

, if then the output pdf can be approximated by

(31)

where is defined as

(32)

The terms and are simply autocorrelation se-
quences defined as

(33)

(34)

Using the above method, generation of covariance matrices
of clean speech, , and of noise, , separately for calcu-
lating is avoided. Instead, the autocorrelation coefficients
of the clean speech and noise processes are calculated from
their AR coefficients. Assuming additivity and independence
of the noise and original speech signal, their autocorrelation
coefficients are added for the autocorrelation coefficients of the
noisy speech to be obtained. Levinson–Durbin [24] recursion
is performed on the calculated autocorrelation coefficients to
find the AR coefficients of the noisy process,, and the error
prediction terms, . The matrix can then be calculated.
However, the dominant part in calculating [from (27)] is
the part due to the lower (circulant) segment of since

. Moreover, this part of calculation is further simplified
by approximating with as shown in (32). Hereby, the
computation cost for calculating the noisy process pdf (16) is
drastically reduced from the order of to the order of .

V. SPEECH ENHANCEMENT EXPERIMENTS

A. Speech Enhancement System Overview

The speech data used in the speech enhancement experi-
ments reported in this section were selected from the sentences
in the TIMIT data base. One hundred sentences spoken by
13 different speakers with a sampling rate of 16 kHz were
used for training the clean speech model. One frame of
speech covers 256 speech samples (equivalent to 16 ms). No
interframe overlap was used in training the speech model. In
all the experiments, the speech model consisted of five states
and five mixtures. The sentences used for enhancement tests
were selected such that there were no common sentences or
speakers between the enhancement and training sets. A 50%
overlap between adjacent frames was used in the enhancement
procedure.

A block diagram of the implemented MMSE enhancement
system is shown in Fig. 6. Each frame of noisy speech

...
...

...
...

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

(30)
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Fig. 6. Block diagram of the MMSE enhancement system.

is first preprocessed, having its AR coefficients extracted.
The components inside the dashed lines in Fig. 6 implement
the noise-model adaptation method described in detail in
Section III. Briefly, the noisy signal during long periods of
nonspeech activity are first fed into a Viterbi-like forward
algorithm. Then, the likelihood for each pretrained noise HMM
is calculated and compared with likelihoods for the other
noise HMM’s and the model associated with the highest
likelihood determines the selected noise model. Using the
selected noise HMM parameters and the clean speech model,
the preprocessed noisy speech is input to the MMSE forward
algorithm [specified in (13)], which generates the weights for
the Wiener filters.

In the meantime, all Wiener filters for each combination of
the state and mixture pairs in the speech and noise models
are calculated. A single weighted filter is constructed for
each frame of noisy speech using the calculated filter weights
and the pretrained Wiener filters. The filtering of the noisy
signal is carried out using the weighted filter. This generates
the spectral magnitude of the enhanced speech signal. Using
this magnitude and the noisy speech’s phase information, an
inverse FFT is performed to obtain the time-domain enhanced
speech via the standard overlap-and-add method [25].

In speech enhancement experiments, three different types
of noise were used: white noise, simulated helicopter noise
(obtained by modulating the white noise with a 5-Hz sinusoidal
waveform), and multitalker lowpass noise that was recorded
in a lively cocktail party environment. Since the MAP and
AMAP algorithms cannot cope with nonstationary noise, they
were used only for the sentences corrupted with white noise.
Spectral subtraction and the MMSE methods can handle noise
nonstationarity, hence their performances on all three types
of noise were compared. For the MMSE enhancement, the
noise HMM’s we have implemented contained three states
and three mixtures. The noise models containing five states
and five mixtures have also been used in a few tests and we
found that they did not result in notable improvements over
the three states and three mixtures noise models.

Fig. 7. Comparison of MAP, MMSE, and spectral subtraction systems for
white noise corrupted speech signals.

B. Results Using Objective Evaluation

A global measure of signal-to-noise ratio (SNR) was used as
the objective evaluation criterion throughout this work, which
is calculated by

SNR (35)

where is the frame-length, is the clean speech signal,
and the enhanced speech signal. In our tests, input SNR’s
varied from 0 to 20 dB. Spectral subtraction and several
types of HMM-based systems were implemented for enhance-
ment. Figs. 7–9 show the output SNR’s of these enhancement
systems averaged over ten different test sentences corrupted
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Fig. 8. Comparison of MMSE and spectral subtraction systems for helicopter
noise corrupted speech signals.

Fig. 9. Comparison of MMSE and spectral subtraction systems for mul-
titalker noise.

by the white noise, helicopter noise, and multitalker noise,
respectively.

As evident from Figs. 7–9, the HMM-based systems always
outperform the spectral subtraction system. For the white noise
case, the HMM-based systems have an advantage of at least
2.5 dB SNR over the spectral subtraction system, and since the
noise is stationary, the performances of the MMSE and MAP
systems are similar to each other. For the two nonstationary-
noise cases (Figs. 8 and 9), while the MMSE system results
in almost linear input–output relation with respect to the SNR
values, the spectral subtraction system tends to saturate in
output SNR at high input SNR’s and falls behind the MMSE
system by at least 2.5 dB even at low input SNR’s. The spectral
subtraction system fails to handle noise nonstationarity that is
as simple as the simulated, highly regular helicopter noise. In
fact, for input SNR’s of greater that about 10 dB, the spectral
subtraction method deteriorates the signal such that the output

TABLE I
FIVE-POINT ADJECTIVAL SCALES FOR QUALITY AND IMPAIRMENT,

AND ASSOCIATED SCORES (AFTER JAYANT AND NOLL)

SNR is lower than the input SNR. These results are consistent
with the results of subjective evaluations presented in the next
section. In these cases, listeners prefer the unprocessed noisy
sentence over the enhanced one using the spectral subtraction
method.

C. Results Using Subjective Evaluation

For the spectral subtraction system, we found that the
process of dynamic reduction of spectral energy always in-
troduces an audible artifact, a “musical”-like signal-dependent
interference. Since the spectral subtraction algorithm raises the
SNR without knowledge about speech characteristics, low-
amplitude speech signals such as stops tend to be lost at
input SNR’s below 5 dB. This reduces effectiveness of the
algorithm in enhancing speech intelligibility. Under low input
SNR conditions, the problem of musical noise bothered the
listeners extensively. Although the SNR’s were improved in
these cases, some listeners could not tolerate the musical noise.
For the higher input SNR tests (10 dB and more), the noise
reduction was not carried out efficiently and the musical noise
was also generated although not as strong as the low input SNR
cases. In all cases, some listeners preferred the nonprocessed
signal over the enhanced one.

On the other hand, since the HMM-based systems use
speech information already embedded in the trained model,
their output intelligibility should be always better than the
spectral subtraction method at a cost of higher system im-
plementation complexity. This ought to be particularly true
for the MMSE enhancement strategy, since it is capable of
coping with noise nonstationarities. The SNR results presented
in Section V-B have indirectly reflected this fact.

To test the above inferences, mean opinion score (MOS)
comparative evaluations were conducted for the MMSE sys-
tem and the spectral subtraction system. Both of the systems
were scored by five native English speakers using the scoring
criterion established in Table I.

Fig. 10 shows the MOS results averaged over ten test
sentences contaminated by the three types of noise (denoted
by W for white noise, H for simulated helicopter noise, and
M for multitalker noise), each at 0, 5, and 10 dB input SNR
levels. The results show that the MMSE system consistently
outperforms the spectral subtraction system by one score on
average. In general, the MOS results are consistent strongly
with the SNR objective evaluations reported in Section
V-B.
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Fig. 10. MOS results for MMSE and spectral subtraction systems averaged
over ten sentences evaluated by five listeners. W: white noise. H: helicopter
noise. M: multitalker noise.

VI. CONCLUSION

The principal contribution of this study is its demonstration
that the use of general statistical characteristics of speech,
as partially captured by the HMM trained from a large
corpus of clean speech data, is beneficial in improving the
performance of speech enhancement systems. The HMM-
based MMSE speech enhancement system is shown to be
consistently superior in performance to the spectral subtrac-
tion based system in handling noise nonstationarity. This
superiority is demonstrated by both subjective and objective
evaluations for three different types of noise and for the SNR
values ranging from 0 to 20 dB.

The second contribution of this study is its development
of the novel noise-model adaptation method that is highly
efficient in reducing the noise-model size and in reducing
the noise-model training time. This makes the HMM-based
MMSE speech enhancement system capable of handling a
wide variety of noise types, as well as handling a wide vari-
ation in the noise power. The noise-model adaptation method
also results in a considerable reduction of computational cost
associated with processing noisy speech data.

On the Sun Sparc2 workstation in which all our speech
enhancement algorithms were developed, the several opti-
mization methods employed in our system implementation
that have been described in this paper currently yield an
execution speed of about 0.1 times the real-time speed of
speech utterances for the most successful HMM-based MMSE
algorithm. Therefore, the algorithm is fully capable of being
implemented in real-time using DSP processors.
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