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HMM-Based Strategies for Enhancement of
Speech Signals Embedded in Nonstationary Noise

Hossein Sameti, Hamid Sheikhzadeh, Li DeBgnior Member, IEEE,and Robert L. Brennan

Abstract—An improved hidden Markov model-based (HMM-  perception. Although such mechanisms are not well under-
based) speech enhancement system designed using the minimungtood at the present state of knowledge to allow the design of
mean square error principle is implemented and compared with speech enhancement systems based on auditory principles, sev-

a conventional spectral subtraction system. The improvements .
to the system are: 1) incorporation of mixture components in eral practical methods for speech enhancement have already

the HMM for noise in order to handle noise nonstationarity been developed. Digital signal processing (DSP) techniques
in a more flexible manner, 2) two efficient methods in the for speech enhancement include spectral subtraction [2]—[4],
speech enhancement system design that make the system _rea|adaptive filtering [5], [6], and suppression of nonharmonic

time implementable, and 3) an adaptation method to the noise frequencies [6][8]. Most of these techniques either require

type in order to accommodate a wide variety of noises expected . . .
under the enhancement system’s operating environment. The & S&€cond microphone to provide the noise reference [5], [9],

results of the experiments designed to evaluate the performance of [10], or require that the characteristics of noise be relatively
the HMM-based speech enhancement systems in comparison withstationary. Nevertheless, none of these requirements can be
spectral suFttragtir?r}' afet reported. Tgreeltt')tlpleks ‘zf nc:(i;se_l—whit)e met in most of practical applications. Spectral subtraction,
noise, simuilate elicopter noise, and multitalker (Cocktall par . . . e
noise—were used to co?rupt the test speech signals. Both o%jetéiveW'th no neEd fqr a second .mlcrc_)phone and with the capability
(global SNR) and subjective mean opinion score (MOS) eval- of handling noise nonstationarity to some extent, has been
uations demonstrate consistent superiority of the HMM-based one of the relatively successful DSP methods. However, one
enhancement systems that incorporate the innovations described major problem with this method is the annoying nonstationary
in this paper over the conventional spectral subtraction method. «y,sical” [11] background noise associated with the enhanced
speech. It also is incapable of coping with rapid variations in
l. INTRODUCTION noise characteristics (e.g., simple noise amplitude variations).

EECH communication under noisy conditions is diffilhe basic advantage of this method is the implementation

ult and fatiguing. Speech sounds such as consonasig)plicity and relatively light computation requirements. We

fricatives, and stops are often masked by noise, resultinghave developed a real-time spectral subtraction enhancement
reduction of speech discrimination. The hearing impaired ag¥stem using digital signal processors, which will be briefly
at a considerable further disadvantage requiring an increg&scribed in this paper.
of between 2.5 and 12 dB SNR to achieve similar speechEnhancement methods that are based on stochastic mod-
discrimination scores to those of normal hearing [1]. OrRls—hidden Markov models (HMM's)—have overcome the
characteristic of the design for future-generation hearing aidssigortcomings of the DSP techniques by modeling both clean
to provide an effective front-end speech enhancement deviggeech and noise and by accommodating the nonstationarity of
A major challenge in hearing aid design is to devise apeech and noise with multiple states connected with transition
effective speech enhancement strategy with the ability to copebabilities of a Markov chain. Using multiple states and mix-
with low SNR’'s (0-15 dB) and with the types of noisdures in the HMM for noise enables the speech enhancement
frequently encountered by hearing aid users, including speeistem to relax the assumption of noise stationarity. Another
weighted noise, low-frequency noise, and multitalker babblé&ey aspect of our work described in this paper is real-time

The main objective of speech enhancement is to improireplementation of the speech enhancement system. We have
one or more perceptual aspects of speech, such as ovesaticessfully devised methods to reduce the system complexity
quality, intelligibility for human or machine recognizers, oand memory requirements. The HMM-based enhancement
degree of listener fatigue. In the presence of backgroumgstem we have implemented has the computational com-
noise, the human auditory system is capable of employiptexity similar to that of the spectral subtraction system. The
effective mechanisms to reduce the effect of noise on spedt¢bM-based system is real-time implementable with its speech
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mixtures in the HMM'’s for both noise and clean speech is Wiener 1
described in detail in Section II-B4. In Section Ill, a novelz, FFT \7 Filtering [ FFT [~ 7%

noise-type adaptation method for HMM-based enhancement

systems is described. Two methods we developed in this Signal and . t .
study aiming at improving the implementation efficiency of the Ds;zee:h |~ Noise || Wiener Filter
HMM-based enhancement system are presented in Section IV. erecton || spectral Caleulation
The results of the experiments comparing various types of Estimates

the speech enhancement systems are reported in Section V.
Finally, Section VI contains the conclusions drawn from this
study.

Fig. 1. Spectral subtraction enhancement system block diagram.

is constructed for every frame and the formula in (4) is

Il. SPEECH ENHANCEMENT METHODS calculated by the linear system operation

Y(w)=HWw)Z(w). (6)
A. Spectral Subtraction @) (@)2()
In this conventional method, a frequency-domain Wiener fiFhis method relies on the critical assumption that noise is
ter is constructed from the speech and noise spectral estim&f@tionary so long as the noise spectrum is not updated.
at each time frame, which is then used to obtain the clean
speech estimate. The noisy speech signal is first segmergedHMM-Based Enhancement Methods

into time-limited consecutive frames. Within each short-time Among stochastic enhancement methods, HMM-based
frame,hzthe clear|1| speeqj(é), at()jdmve' nmsev_i_tg, anr:j NOISY " methods have been most successful. HMM has long been used
s?eﬁc (t.) are a ashsume to be stationary. Then the spectryg) speech modeling with applications to speech recognition
of the noisy speec and enhancement. There are significant differences in applying
2(t) =y(t) +v(t) (1) HMM'’s for recognlthn and enhancement purposes, however.
In speech recognition, a separate model for every speech
unit (feature, phoneme, or word) is trained. This model is to
Z(w) =Y(w)+V(w) (2)  contain the ordered sequence of stochastic properties for the
. utterance corresponding to that speech unit. Therefore it has
therteZ(wt), Y(“é)’ ?nd Viw) ?reltheApslwekr g_ensny spfe;:;rato be left-to-right, i.e., transitions from a higher-indexed state
0 ;‘( )y y(t), f‘” 1;( ): resr;ec lve yll 0? ; Lagra(;n OT €45 a lower-indexed state are generally prohibited. For a left-to-
enhancement system we have implemented based on Speﬁtéﬁ model, if similar states (corresponding to similar signal
subtraction is shown in Fig. 1 (similar to the system of [12] operties) are to happen in different time frames, they have

In the operation of the system, a fast Fourier transform (FF be assigned as different states while they contain the same

Iti perforrtned orf1 t?]aCh frame of t: eTrrl]msy :"gni"l t?c ﬁ]s“maé?atistical information. The objective in speech recognition is
€ spectrum ot the noisy speech. The estimale ol e NOREe;,y models with maximal separation so that they give as

spectrum is updated during periods of nonspeech aCt'V'Q‘l erent likelihoods for a single testing token as possible. This

An autocorrelation-based voicing and pitch detector is USE qluires that the model best preserve the distinctive statistical

for speechddtetegtlon._Whendntc;] speech .;sddetefcted_, the si berties of the training data.
IS assumed to be noise an € magnitude of noise spectrap, modeling problem in speech enhancement is rather

estimate,|V(w)|, is updated as different. The objective is to average out the noise signal and
IV (w)]? = T | Vora(@))? + (1 = T)| Z(w)]? (3) extract the general spectral characteristics of speec_h regardless
of the phoneme, word, or sentence pronounced. This is done to
where|Z(w)| is the spectral magnitude of the current framegistinguish speech from noise and not to distinguish different
I, is a decay factor, andV,(w)|? is the magnitude of units of speech. Thus the structure of the speech model
noise spectral estimate before the update. The estimated néiseenhancement should be different from that for speech
spectral magnitude squared is then subtracted from shdgeognition. First, we wish to accommodate all the speech
time spectrum magnitude squared of the degraded speebhracteristics in a single, compact model. Second, the model
estimated in frequency domain. Enhanced speech is obtaifgediot supposed to capture distinctive properties of speech
by reconstructing speech using the modified magnitude awithin different utterances; rather, it is to capture the global

is obtained as

the original (noisy) phase characteristics of speech. Third, the temporal order of the
o 7 2N1/2 O () states in the model need not be constrained since there is a
Y(w)=[1Z(w)|” = [V(&)]T]/ e’ (4)  single, global model for speech and different state sequences

where® is the oh f the dearaded h.In or tifor the same state ensemble can represent distinct utterances.
V(\a/ien Zr((;:)”)t ‘:’ feﬂ? aml‘sfrr? € degraded speech. In praclizg 5 result, the speech model for enhancement is structured
a wiener fifter ot the 1o to be ergodic; i.e., there are no constraints on the transition
ZUN2 — 1T ()2 1/2 probabilities of the HMM. This also makes the model less
_ ([ [ZW)F — [V(w)| : - :
Hw) = 22 (5) redundant since each distinct spectral shape of speech or noise
“ needs to be represented only once in the model.
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1) Training HMM's for Clean Speech and for Nois&he Associated with each state and mixture p@ir ), there is a
HMM'’s employed throughout this work for clean speech anset of AR (LPC) coefficients that can be used in combination
for noise are ergodic mixture autoregressive hidden Markewith the noise AR process to form a Wiener filtéf, ;(6).
models (AR-HMM'’s) [13]. These HMM'’s enable us to paraA new estimate of the clean speech is calculated by filtering
metrically model the speech and noise spectral shapes. The noisy speech through a weighted sum of the Wiener filters,
output probability density function (pdf) of each mixture othe weights beingy (53, v|y(k)) for each time frame. This
the HMM's is assumed to be Gaussian AR. The likelihood @fstimate of clean speech is then used to find a probability
a training data sequence given the HMM (for clean speechs®quenceg(s, v|y(k)), thus supplying a new sequence of
for noise) parameters is written in terms of the transition probviener filters and another estimate of the clean speech. This
abilities, mixture weights, and conditional output pdf [14]. Foiterative process continues until a preset convergence criterion
implementation efficiency, the output pdf is approximated kg reached. In the first iteration, noisy speech is used as
the sum of the products of the data and model autocorrelatian estimate of the clean speech. For each time frame,
coefficients [13]. enhancement is done efficiently in frequency domain using

The model parameter set for an HMM wilif states and. [14]:
mixtures is defined as\, = (7, a, ¢, h) wherew = {ng}
is the set of initial state probabilities; = {a.s} is the ML B
set of state transition probabilities,= {c. )5} is the set of ~ ¥to(k+1)= DD wB A lEDH Oz (9)
mixture weights, andv = {h. 3} with k.5 being the AR p=lr=1
parameter set of a zero-meafth order Gaussian AR output
process corresponding to state and mixture Q&iry), i g =

2

-1

wherey and > denote the clean signal and the noisy signal,
5 respectively, and subscript indicates the frequency domain
{h_vly@(o)’ hvlr@(_l)’ T hvlr@(Ny)’ oSt hagp(0) = 1, o5 components. A speech enhancement system which we devel-
being the variance (AR gain) fow, § = 1,---, M and gneq hased on the above MAP algorithm is shown in Fig. 2.
v=1,---, L. Given aK—d.|menS|pna.I training data sequence 3y approximate MAP Method\pproximate MAP (AMAP)
y={w}, » € R, a maximum likelihood (ML) estimate of gnhancement system [14], a block diagram of which is shown
the parameter se, is obtained and maximized through they, ig 3 is a simplified approximation of the MAP algorithm.
Baum reestlma_\tlon algorithm [13]. Alter_na_tely, the segmentgl,, AMAP, a single state and mixture pair is assumed to
K-means algorithm can be used to maximize the parameter §ghinate the sequence at each time frame, thus constraining
along the dominant state and mixture sequence. _the filter weights to be one for only one state and mixture pair
Since the Baum a_nd the s_egmenta| K-means algorithmgy zero for the others. Given an estimate of the clean speech
optimize their objective functions locally, it is importantgigna|, the estimation of the most likely sequence of states

to devise a good initial model. Vector quantization usingnq mixtures is carried out by applying the Viterbi algorithm
Itakura—Saito distortion measure [15] (LPC-VQ [16]) is Usegsing the path metric

in our system to estimate the initial model parameters. The

generalized Lloyd algorithm (GLA) [17] is used to design In 75 +1n c)g +1In b(yo(k)|mo = v, s0 = )

the VQ codebook. To obtain the initial estimate far, a, ¢) for ¢t = 0,

parameters, the training data sequence is encoded according . .

to the designed codebook, a, and ¢ are then obtained by In Gog +1n eqy5 +1n by (R)lme =, 50 = )

estimating the frequency functions associated with them. for1 <t<T (10)
Merhav and Ephraim have shown [18] that if the vector size _ _

K is sufficiently large, the Baum algorithm, the segme#tal wherea, f=1,.--, M, y=1,.-, L, ands, andm, are

means algorithm, and the LPC-VQ will generate similar modgfe state and mixture attime framerespectively. At each a

estimates. Further, a& — oo, the asymptotic performances rame of noisy speechy, is enhanced using the W|ener f||t_er
. corresponding to the most probable state and mixture pair.
of the three methods will be the same.

i L Both MAP and AMAP enhancement algorithms are iterative
clezaznlvlsAZeEEhgin%ZTarz] Mtitgoed;tci)r;'e\:ltipc\;-ﬁgzritifz:tigmg ince they use the enhanced speech as an estimate of the clean
' SP !9 i . eech theoretically required by the formulations. Neither of
algorithm [19] is employed in constructing our speech en: . . . .
! L2 oo these methods is capable of handling nonstationary noise due
hancement system. Lét denote the iteration index (initially : : . .
. : to the calculation of the filter weights being based on the clean
set to zero). First, the weight sequence . ; . . . L
signal information only and ignores noise variations.
A 4) Improved MMSE Enhancement Methoeinally, an im-
9(B, yly(k)) = 1@ (B, Yy(k), t=0,---. Tt (7)  proved minimum mean square error enhancement system,
] _ ] based on the algorithm first described in [21], has been
is evaluated for all possible state$, mixtures v, and geyeloped in this study. In this MMSE system, a multiple state
time framest using the forward-backward algorithm [20].5nq mixture noise model was employed to accommodate non-
q:(8, vly(k)) is the conditional probability of being in stategiationarity in noise. Fig. 4 shows a simplified block diagram
£ and choosing mixtures at time framet given an estimate ¢ the system. The MMSE enhancement system is designed
of the clean speech(k) to optimize the function

@ (B, vMy(k)) = P(si = B, my = ~[y(k)). (8) 9() = E{g(wo)lz0} (11)
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Fig. 2. MAP enhancement block diagram.

where g(-) is a function onR%, E{-]-} denotes conditional Noisy Speech Enhanced Speech

expectation, and 2 {#0, "+, #:} is the noisy speech data = _ ] Sequence of Wiener Filters A
from time zero up to timeé. The forward algorithm for a single ! Y
state and mixture noise model [20] is extended in this study to
multiple state and mixture noise model. et and p, denote
the state and mixture of noise at time framd.et N and P
denote the number of states and mixtures of the noise HMM.
g{y) can be calculated from

Viterbi Encoder

Fig. 3. AMAP enhancement block diagram.

for ¢t > 0, where

M L N
. : —Li(2 + Zp ) e b
9(y) = a(B, v, & 8|z)E b(~ _exp {54 s + Zpin) 2
82:1; ;::1 ; (2t)s¢, my, e, pt) (27T)K/2[det(2mt|st + Eptlnt)]l/Q
: {9 yt)|2t, ss=Bm=vy,m=§p = 5} (12) (16)

is the conditional pdf of the noisy signal given that the
clean signal is in state, with mixture componenin, and the
noise frame corresponds to stateand mixturep, [superscript
Tr in (16) denotes matrix transposition]. In (18,5 =

where

@(B, 7, & 8128) 2 Plsi = B, me =7, ne = &, pr = 6|28)

t
= —— lj\f(ﬁl’)% & & 7)) (13) o2 5(AL A, 5)" is the covariance matrix of the Gaussian
: (3 5 o output process associated with statand mixturey of speech
P UCERED AR-HMM, o2, is the variance of the innovation process

B=1v=1g=16=1 . .
St of the AR source, andi, g is a K x K lower triangular

Toeplitz matrix in which the firstV, 4 1 elements of the first
column constitute the coefficients of the AR procésg(-).
Similarly, X, is the covariance matrix of the Gaussian output
process associated with stafeand mixture$ of noise AR-
HMM. Note that for Gaussian HMM’s representing speech

is the posterior probability of speech stateand mixture~,
and noise stat€ and mixtured at time ¢ given the noisy
signal 2§. In (13)

Fo(B, 7, &, 8, 20) and noise, the noisy proces§ is also a Gaussian process.
2 T3 Cyg * Te - Csleb(20]8, v, &, 0) (14) Equation (12) shows that the MMSE estimator gffy, )
Fi(B, v, & 6, 24) givenz{ is a weighted sum of the individual MMSE estimators
A of the output processes generated by the clean speech’s HMM,
= Z Z Z Z where the weights are the probabilities that the individual
{sg7 " 5:=8) (m i me=y} {ng ™" me=¢} (P s pe=6) estimators are the correct ones for the given noisy signal. The
t conditional expectation in (12) is given by
: H Us,._15;  Cm|s.On._1n. " Cp_|n,
=0 E{g(y)|2t, st, me, nt, Pt}

b Z|Sry My Ny Pr
(2| rr) (15) I/g(yt)pAyAv(yﬂzt, Sty M, Mg, pr) dyy  (17)
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Fig. 4. MMSE enhancement block diagram.

wherepy  a, (v¢| 2, s¢, me, 4, pr) denotes the conditional pdf assumptions about the noise type are deficient in terms of
of the clean signal;; given states, with mixture component functionality under various corrupting noise types. The HMM-
m, at time ¢, and the noisy signak;. The exact evalua- based enhancement systems are inherently relying on the
tion of (17) for nonlinear functiorg(-) is not trivial. For type of training data for noise. Expectedly, such a system
g(y) 2 {Yi(k), k=0, -, K — 1} whereY;(k) is thekth can handle only the type of noise that has been used for
component of the discrete Fourier transform (DFT)gf(17) training noise HMM. Therefore, data from various noise types
is derived to be the conventional Wiener filter. For some othehould be used for training the noise HMM. This creates
functions such as the problem of a large model size for the noise HMM,
A making the search space expand linearly with the number
92(ye) = {IVe(k)], k=0, -, K —1} (18)  of noise types with computation cost growing drastically.
as () 2 Yy k=0,---, K -1} (19) Furthermore, the unwanted large search space deteriorates the
922 A (log [Ys(B)|, k=0, ---, K — 1} (20) tsgstﬁ/ln'\]/lg;rf%rrr\r/\g?geag);rlir:rt:r?l(.jucmg more sources of error in
where (17) has also been evaluated [21]. A novel noise adaptation algorithm is devised in this work
Using the system shown in Fig. 4, no iterations are necek-to enable the system to handle arbitrary types of corrupting
sary for the MMSE enhancement. This shows the superiority mbise and 2) to avoid up-growth in computation complexity
MMSE system and its higher capability for noise cancelling iand preserve the real-time implementation capability of the
comparison with the MAP enhancement system, which neesisstem. This algorithm, with the block diagram shown in
to iterate many times to achieve an acceptable result. The mbig. 5, carries out noise-model selection and adaptation of the
significant superiority of the MMSE system over the MARariances (LPC gains) of the Gaussian AR processes associ-
system, however, is its ability to deal with nonstationary noisgted with the noise HMM’s. During intervals of nonspeech
due to its inherent capability to calculate filter weights giveactivity, a Viterbi algorithm is performed on noise data using
the noisy signal instead of an estimate of the clean signal. different noise models. By scaling the gain term in every
this work we chose the functiog(y;) to be the DFT ofy; for  HMM mixture by a single factor and performing the Viterbi
implementation simplicity. scoring, the model gain is coarsely optimized. The noise
Equations (12)—(16) indicate that computationgéf:) is HMM generating the best score is selected and a fine scaling
very costly in terms of computational complexity. For eachdjustment is carried out to adapt to the noise level using the
frame¢, a large number of filter weights has to be calculategiterpi algorithm again. This procedure has been motivated
using expensive calculation of (15) and (16). This makes, our earlier work [22] and is based on the assumption
the enhancement procedure very time consuming and fggt noise training sequences with similar characteristics but
from real-time implementable. To solve this problem, Wgarying levels result in AR-HMM’s differing only in the AR
devised two methods by which the computational load droppgdins (not in spectral shapes). In order to avoid confusing
considerably. These methods will be described in Section ¥,y 0iced speech (mainly fricatives) with nonspeech segments
contaminated with noise, only segments more than 100 ms
ll. N OISE ADAPTATION ALGORITHM long are used for noise model updating. Since generally no
In general, there are a large number of diversified typé&décative or other unvoiced phoneme lasts longer than 100 ms,
of noise, with very time-varying spectral characteristics, ithe system will not mistake speech with pure noise intervals.
the environment in which speech enhancement systems aréhe MMSE enhancement system does not require noise
intended to be deployed (e.g., the system as a front-emddel updating as often as the spectral subtraction method,
of advanced digital hearing aid). It is always an advantagince it can handle noise nonstationarity within a specific
for the enhancement system to hamepriori knowledge noise type due to use of the multiple state and mixture noise
about the noise nature. Enhancement methods which makedel. Noise model update here is only to switch to the model
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NOISE Equation (15) can be rewritten in the following recursive
MODEL form:
1
* GAIN Ft(ﬁv Y 57 67 Z(t))
[ SCALING
. M L N r
/ / ! ! t—1
NOISE ¥ NOISE MODEL INDEX ~ — Z Z Z Z BB, v, 8,8, 2 7) app-age
MODEL }|—o VITERBI - LIKELIHOOD and GAIN SCALE B'=1~'=1¢=1686=1
N ALGORITHM MAXIMIZATION ol Cole - b(z|B, v, &, 6) (21)
i
NOISY SPEECH PAUSE whereb(-) is calculated from (16). For pruningg-) values are
DETECTION first normalized by their maximum value. [This does not affect
the filter weights since the forward probabilities appear both
Fig. 5. Block diagram of the noise adaptation method. in the numerator and denominator in (13).] Then all i€

values less than an empirically determined certain threshold

. . . : : . are deleted and (21) is calculated only for the remaining
representing a new noise type if required. Selection of differe y's. A second pruning is performed fdf,_, and only the
:)S. t—1

spectra and gains W_|th|n a specific type of noise is CarrIEd.osnénificant values ofF,_, are used to calculate (21). This
by the forward algorithm for each speech frame. A corruptin . .
. . . . ; uble pruning method allows the computation cost of the
noise with continuously variable power can easily be handle . )
; . énhancement process to be independent of the size of the
by the MMSE method without the requirement to update the . S i
eech and noise HMM'’s, since the number of saved filter

noise model type;_ n contra;t, spectral su_btr_actlon m_ethod 1E"ﬁr%eights does not directly depend on the model size. Without
to follow the continuous noise power variations. This methq

) . . -this pruning, however, the computation cost would increase
of noise model selection can successfully cope with noise . : . :
level variations as well as different noise types as long ggopomonally with the speech and noise model sizes.

the corrupting noise has been modeled during the training o )

process. Further, the method keeps the noise model sufficieftlyAPProximating the pdf of Noisy Speech

compact so that excessive computation cost in enhancement iSalculation of (16) is very costly because of the x K
avoided. Assume that a three-state and three-mixture HMMatrix inversion & = 256 in our system) of the covariance

is required to model each noise type, and assume that fivatrix and multiplication of matrices with dimensions as
noise types are to be dealt with. Without the noise adaptatifsitge asK (for K = 256, computation cost is of order
algorithm, 45 possible output distributions have to be searchg® = 1.6 x 107). Since the summation of two AR processes
to select a noise pdf. Using the noise adaptation algorithm, thésnot necessarily an AR process, the assumption of structured
search space is reduced to only nine output distributions at@variance matrix for noisy speech (in order ¥y, = .5+

time. The only extra computation is due to the selection of the; . to be decomposable into Toeplitz matrices comprised of
appropriate noise model once every few seconds during #R coefficients of process; [23]) is generally invalid. To
nonspeech activity. avoid the expensive calculation, an approximation method was
devised for the inversion of the noisy covariance matrix. For
any process;, the covariance matrix can be written in the

IV. EFFICIENT IMPLEMENTATION OF THE
form [24]

MMSE ENHANCEMENT ALGORITHM

With a real-time implementable system as an objective, »It=copPic? (22)
the MMSE enhancement algorithm is to be efficiently im- '
plemented for reducing the computation requirement of thghereC and P are upper triangular and diagor@ + 1) x
system to that comparable to the conventional DSP metheg 1 1) matrices, respectively, of the forms
For this, the following methods have been devised in imple-

menting our speech enhancement system. 1 (1) a22) -+ arx(K)
0 1 ag(l) CLK(K—].)
A. Double Pruning the MMSE Forward Calculation C= : : : : (23)
Calculation of MMSE forward probability and filter weights 0 0 0 “e 1
which constitutes a major computational load, is carried out P =diagr..(0), Ey, E, -+, Ex) (24)

according to (13). For speech and noise HMM's of sizes

M x L and N x P, these equations call for calculation ofwhere a;(j) is the ith coefficient of thejth order linear
M x L x N x P filter weights and the same number of pdpredictor for the process;, r..(¢) is theith autocorrelation
values for each time frame. Since the majority of these coefficient of the process,, and E; is the squared prediction
weights are negligible due to their extremely small valuasrror for theith order linear predictor. The exponent term in
(orders as little as T@°), an efficient pruning method was(16) needs

devised and implemented to reduce the computation cost, as

well as the memory requirement, of the system. D= Z;‘F”E;lzt (25)
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to be calculated. From (22) we can write The termsr,(m) and R,(sm) are simply autocorrelation se-
T - /2 pety1/2 T guences defined as
D =z"CP"C "z = [ "C(P7) /7(P70) /207 ] K—m-1
(26) re(m)y =Y z(n)zu(n+m) (33)
SO n=01
N . p—m—
D= U] = Ve V=) @) Rylm) =" Y aplma(ntm). (34)
n=0

whereU = (P~1)Y/2CT", Thus, the inversion of th& x K ) , ] ]
matrix is avoided but the problem of multiplying large matrices USing the above method, generation of covariance matrices
still remains to be resolved. Note thit(3., ) = det(P) with  Of clean speect.,,, and of noise,,, separately for calcu-

P being a diagonal matrix, siet(., ) is found by calculating lating 3., is avoided. Instead, the autocorrelation coefficients
the product of diagonal el’ementsﬁof the matfix To resolve ©f the clean speech and noise processes are calculated from

the second computation problem, instead of calculatihg their AR coefficients. Assuming additivity and independence
approximated(/ is calculated by considering the process of the noise and original speech signal, their autocorrelation
as an AR process of a higher order than the orders of eitherc@efficients are added for the autocorrelation coefficients of the
the two processeg, andv; (the clean signal and noise). Fooisy speech to be obtained. Levinson-Durbin [24] recursion

an AR process of ordes, for j > p we have is performed on the calculated autocorrelation coefficients to

find the AR coefficients of the noisy process, and the error

W Jap(@) i=1,2,---,p prediction terms,E;. The matrixU can then be calculated.
(1) =1 g i>p (28)  However, the dominant part in calculating [from (27)] is
E;=E,. (29) the part due to the lower (circulant) segment [f since

K > p. Moreover, this part of calculation is further simplified

Therefore,U/ will be a Toeplitz matrix aftepth row in (30), Dy approximatingD with « as shown in (32). Hereby, the
shown at the bottom of the pag&. can be separated intoComputation cost for calculating the noisy process pdf (16) is
two parts; the first part comprising of the figstows and the drastically reduced from the order &f° to the order ofK x p.
second part of the othét — p rows. Multiplication of the first

p rows is done easily due to the small valuegotompared V. SPEECH ENHANCEMENT EXPERIMENTS

to K (p = 14 and K = 256 in our system). The second part

of the matrix has a circular structure, and for implementatich Speech Enhancement System Overview

efficiency the output pdf can be approximated by the sum of The speech data used in the speech enhancement experi-
the products of the autocorrelation coefficients of the data apfénts reported in this section were selected from the sentences

of the model AR parameters [14] as follows. _in the TIMIT data base. One hundred sentences spoken by
For a zero-meapth-order Ggussu:m AR output process with 3 different speakers with a sampling rate of 16 kHz were
the AR parameter set of, = {a,(0), a,(1), ---, ap(p)}, used for training the clean speech model. One frame of

a,(0) = 1 and gaino? and observatior, with vector size speech covers 256 speech samples (equivalent to 16 ms). No
K, if K > pthen the output pdf can be approximated by interframe overlap was used in training the speech model. In
) all the experiments, the speech model consisted of five states
b _ exp{—a/(20°)} 31) and five mixtures. The sentences used for enhancement tests
(#) = 2YK/2 (31)
(2m0?) were selected such that there were no common sentences or
speakers between the enhancement and training sets. A 50%

where o is defined as overlap between adjacent frames was used in the enhancement

N P procedure.
a = r(0)R,(0) + 2 Z re(m)Ry(m). (32) A block diagram of the implemented MMSE enhancement
m=1 system is shown in Fig. 6. Each frame of noisy speech
7.-(0 0 0 0 0 0 0
a(l) E;YP o 0 0 0 0
a(2)  ax(1) E;YP 0 0 0 0
U= |ayp) - a,(1)  E;MP 0 0 0 (30)
0 ayp) ap(l)  E,YP 0 0
0 0 .
0 0 0 ap(p) ap(1) E;?P 0
L o 0 0 0 ap(p) -+ ap(1)  E, 7
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Fig. 6. Block diagram of the MMSE enhancement system.

is first preprocessed, having its AR coefficients extracted. 24 . . . , ; . . . .
The components inside the dashed lines in Fig. 6 implement b

. . . . - +  ______MMSE pd
the noise-model adaptation method described in detail in? S
Section lll. Briefly, the noisy signal during long periods of L, --- SPEGTRAL SUBTRACTION o
nonspeech activity are first fed into a Viterbi-like forward _ . MAP '

algorithm. Then, the likelihood for each pretrained noise HMMS 18
is calculated and compared with likelihoods for the other§1 |
noise HMM’'s and the model associated with the highest
likelihood determines the selected noise model. Using thg 1
selected noise HMM parameters and the clean speech modél,
the preprocessed noisy speech is input to the MMSE forward [
algorithm [specified in (13)], which generates the weights for 4o
the Wiener filters.

In the meantime, all Wiener filters for each combination of 8} e
the state and mixture pairs in the speech and noise models | -~ ", ) ) ) )
are calculated. A single weighted filter is constructed for © 2 4 & & SNR(aB) ¢ ® %
each frame of noisy speech using the calculated filter weights
and the pretrained Wiener filters. The filtering of the ”Oisgﬁ-' 7. Comparison of MAP, MMSE, and spectral subtraction systems for

. . . . . . . ite noise corrupted speech signals.
signal is carried out using the weighted filter. This generates
the spectral magnitude of the enhanced speech signal. Using
this magnitude and the noisy speech’s phase information, gn

inverse FFT is performed to obtain the time-domain enhanced ) . )
speech via the standard overlap-and-add method [25]. A global measure of signal-to-noise ratio (SNR) was used as

In speech enhancement experiments, three different tyﬁgg objective evaluation criterion throughout this work, which
of noise were used: white noise, simulated helicopter noi?ec"’“cu""lted by
(obtained by modulating the white noise with a 5-Hz sinusoidal

Results Using Objective Evaluation

waveform), and multitalker lowpass noise that was recorded ZyQ (n)

in a lively cocktail party environment. Since the MAP and —

AMAP algorithms cannot cope with nonstationary noise, they SNR= 10 log — = (35)
were used only for the sentences corrupted with white noise. Z [y(n) — §(n)]?

Spectral subtraction and the MMSE methods can handle noise
nonstationarity, hence their performances on all three types
of noise were compared. For the MMSE enhancement, tivaere K is the frame-lengthy(n) is the clean speech signal,
noise HMM's we have implemented contained three statead(n) the enhanced speech signal. In our tests, input SNR'’s
and three mixtures. The noise models containing five stategried from 0 to 20 dB. Spectral subtraction and several
and five mixtures have also been used in a few tests and types of HMM-based systems were implemented for enhance-
found that they did not result in notable improvements ovenent. Figs. 7-9 show the output SNR’s of these enhancement
the three states and three mixtures noise models. systems averaged over ten different test sentences corrupted

n=1
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24 v T T T T T T T T TABLE |
FivE-POINT ADJECTIVAL SCALES FOR QUALITY AND |MPAIRMENT,
AND ASSOCIATED SCORES (AFTER JAYANT AND NOLL)

MMSE

N
N

- - - SPECTRAL SUBTRACTION

n
(=]

R Score Impairment

5 (Excellent) Imperceptible

4 {Good) {Just) Perceptible but not Annoying
3 (Fair) (Perceptible and) Slightly Annoying
2 {Poor) Annoying (but not Objectionable)
1 (Bad) Very Annoying (Objectionable)

-
@

-
=)
T

-
S
T

-
n
T

OUTPUT SNR (dB)

=
(=]

em o m L L * SNR is lower than the input SNR. These results are consistent
6 =" 1 with the results of subjective evaluations presented in the next

. . . . A ‘ ) . . section. In these cases, listeners prefer the unprocessed noisy
0 2 4 6 8 1o 12 14 16 18 2  sentence over the enhanced one using the spectral subtraction
INPUT SNR (dB) methOd.

Fig. 8. Comparison of MMSE and spectral subtraction systems for helicopter
noise corrupted speech signals.

C. Results Using Subjective Evaluation

For the spectral subtraction system, we found that the
process of dynamic reduction of spectral energy always in-
troduces an audible artifact, a “musical’-like signal-dependent
- - - SPECTRAL SUBTRACTION . interference. Since the spectral subtraction algorithm raises the
SNR without knowledge about speech characteristics, low-
amplitude speech signals such as stops tend to be lost at
4 input SNR’s below 5 dB. This reduces effectiveness of the
_x algorithm in enhancing speech intelligibility. Under low input
SNR conditions, the problem of musical noise bothered the
. listeners extensively. Although the SNR’s were improved in
these cases, some listeners could not tolerate the musical noise.
For the higher input SNR tests (10 dB and more), the noise
1 reduction was not carried out efficiently and the musical noise
was also generated although not as strong as the low input SNR

cases. In all cases, some listeners preferred the nonprocessed
2 Py " 5 s 10 12 14 16 18 20 Signal over the enhanced one.
INPUT SNR (dB) On the other hand, since the HMM-based systems use
Fig. 9. Comparison of MMSE and spectral subtraction systems for mtﬁpe_eCh informatiqn_ a_ll_ready embedded in the trained model,
titalker noise. their output intelligibility should be always better than the
spectral subtraction method at a cost of higher system im-
plementation complexity. This ought to be particularly true
by the white noise, helicopter noise, and multitalker noiségr the MMSE enhancement strategy, since it is capable of
respectively. coping with noise nonstationarities. The SNR results presented

As evident from Figs. 7-9, the HMM-based systems always Section V-B have indirectly reflected this fact.
outperform the spectral subtraction system. For the white noiseTo test the above inferences, mean opinion score (MOS)
case, the HMM-based systems have an advantage of at leashparative evaluations were conducted for the MMSE sys-
2.5 dB SNR over the spectral subtraction system, and since tem and the spectral subtraction system. Both of the systems
noise is stationary, the performances of the MMSE and MARere scored by five native English speakers using the scoring
systems are similar to each other. For the two nonstationacyiterion established in Table I.
noise cases (Figs. 8 and 9), while the MMSE system resultsFig. 10 shows the MOS results averaged over ten test
in almost linear input—output relation with respect to the SNBentences contaminated by the three types of noise (denoted
values, the spectral subtraction system tends to saturatebynW for white noise, H for simulated helicopter noise, and
output SNR at high input SNR’s and falls behind the MMSE for multitalker noise), each at 0, 5, and 10 dB input SNR
system by at least 2.5 dB even at low input SNR’s. The specttalels. The results show that the MMSE system consistently
subtraction system fails to handle noise nonstationarity thatastperforms the spectral subtraction system by one score on
as simple as the simulated, highly regular helicopter noise.dmerage. In general, the MOS results are consistent strongly
fact, for input SNR’s of greater that about 10 dB, the spectralith the SNR objective evaluations reported in Section
subtraction method deteriorates the signal such that the outjguiB.

22 T T T T T T T T

MMSE

- - - - - n
[=] N = (=] =] [=]
T T T

OUTPUT SNR (dB)

@®
T
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Fig. 10. MOS results for MMSE and spectral subtraction systems averaged
over ten sentences evaluated by five listeners. W: white noise. H: helicopfeg]
noise. M: multitalker noise.

VI. CONCLUSION [11]

The principal contribution of this study is its demonstration
that the use of general statistical characteristics of speech,
as partially captured by the HMM trained from a largd!?l
corpus of clean speech data, is beneficial in improving the
performance of speech enhancement systems. The HMM-
based MMSE speech enhancement system is shown to h
consistently superior in performance to the spectral subtrac-
tion based system in handling noise nonstationarity. Thi
superiority is demonstrated by both subjective and objective
evaluations for three different types of noise and for the SNR
values ranging from 0 to 20 dB. [15]

The second contribution of this study is its development
of the novel noise-model adaptation method that is highlys]
efficient in reducing the noise-model size and in reduciggn
the noise-model training time. This makes the HMM-bas
MMSE speech enhancement system capable of handling a
wide variety of noise types, as well as handling a wide vanité!
ation in the noise power. The noise-model adaptation method
also results in a considerable reduction of computational cd$3
associated with processing noisy speech data.

On the Sun Sparc2 workstation in which all our speec
enhancement algorithms were developed, the several opti-
mization methods employed in our system implementatid%ll
that have been described in this paper currently yield ]
execution speed of about 0.1 times the real-time speed of
speech utterances for the most successful HMM-based MMSE
algorithm. Therefore, the algorithm is fully capable of being3]
implemented in real-time using DSP processors.

20]
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