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Abstract
In natural scenes, objects and patterns can appear at a wide
variety of distances from the viewer. For the same visual
pattern viewed at different distances, both the image and
our perception of the pattern change over distance. We call
the change of the image over distance as image scaling, and
the change of our perception over distance as information
scaling. While image scaling can be accounted for by the
state space theory, information scaling has not been math-
ematically studied in computer vision. In this paper, we
prove two information scaling laws: 1) the entropy rate of
the image changes over distance, and 2) the entropy of the
posterior distribution of the pattern also changes over dis-
tance. These two information scaling laws have deep impli-
cations in computer vision: they call for different models of
the same visual pattern at different distances, as well as a
model transition mechanism for switching models over dif-
ferent distance/scale regimes.

1 Introduction

Figure 1: Leaves at different distances lead to different per-
ceptions, from individual structures to foliage texture to flat
region.

Visual patterns and objects in natural scenes appear at
a wide variety of distances from the viewer, and the same
pattern may lead to different perceptions when viewed at

different distances. See Figure 1 for an example, where the
leaves nearby can be perceived as individual structures, but
the leaves at a distance only give us an impression of foliage
texture, and the leaves of the trees on the mountain afar re-
sult in a more or less flat region in the image. Similarly,
when we look at a person at a far distance, we can only rec-
ognize his or her face. When we move closer, we start to see
the eyes, nose, and mouth. When we move still closer, we
begin to notice facial marks such as wrinkles, etc. There-
fore, the same visual pattern or object needs to be described
by different models at different distances or scales.

When we study what happens if the viewer changes dis-
tance from a visual pattern, it is important to distinguish
between the change of the image and the change of our per-
ception. The former can be called image scaling, and the
latter can be called information scaling. From a human vi-
sion perspective, image scaling occurs in retina, whereas in-
formation scaling occurs in visual cortex. While image scal-
ing can be accounted for by the scale space theory[4][15],
to the best of our knowledge, there has not been any math-
ematical theory for information scaling, even though some
theories do take the issue of scaling into account, such as
multi-resolution analysis[7], fractals[10], feature statistics
of natural images[5][16][11][17].

In this paper, we prove two information scaling laws: 1)
the complexity scaling law (Theorems 1&2) – the entropy
rate of the image changes over distance, and 2) the percep-
tibility scaling law (Theorem 4) – the entropy of the poste-
rior distribution of the pattern also changes over distance.
These two information scaling laws have deep implications
in computer vision: they call for different models of the
same visual pattern viewed at different distances, as well
as a model transition mechanism for switching models over
different distance/scale regimes.

2 Complexity Scaling Law
Let I be the image of a pattern observed at a certain dis-
tance, and let’s assume that I follows a probability distribu-
tion p(I). There are two interpretations of p(I).

1. p(I) is the result of the generative process that pro-
duces the images of the visual pattern.
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2. p(I) corresponds to the coding or compression scheme
to approximate the Komolgorov algorithmic complex-
ity of an observed image Iobs.

Let’s assume that I is defined on a lattice Λ. Let |Λ| be the
size or the number of pixels of Λ.

Definition 1: Image complexity, denoted by H(I),
is defined as the entropy of p(I), i.e., H(p(I)) =
−
∑

I p(I) log p(I). The complexity rate (or complexity per
pixel) of the image is defined asH(I)/|Λ|.

When we move away from a pattern, the change of im-
age of the pattern involves both local smoothing and down-
sampling. Let’s first study the effect of down-sampling. To
simplify the situation, we assume that we down-sample I by
a factor of 2 along both vertical and horizontal axes. Then
there are four down-sampled versions, and let’s denote them
by I(k)

− , k = 1, 2, 3, 4, each defined on a down-sampled lat-
ticeΛ−, with |Λ−| = |Λ|/4. See Figure 2 for an illustration.

Figure 2: The four down-sampled versions of the original
image.

Theorem 1: 1) The complexity of I(k)
− is smaller than the

complexity of I ,H(I(k)
− ) ≤ H(I), k = 1, ..., 4, andH(I)−

H(I
(k)
− ) = H(I|I

(k)
− ), where H(I|I(k)

− ) is the conditional
entropy of p(I|I(k)

− ).
2)The complexity rate of I(k)

− is larger than the complex-
ity rate of I ,
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where M() denotes mutual information among the four
down-sampled versions.
Proof: 1) p(I|I(k)

− ) = p(I)/p(I
(k)
− ) since I(k)

− is fully de-
termined by I . Thus

H(I)−H(I
(k)
− ) = EI

[

− log
p(I)

p(I
(k)
− )

]

= EI [− log p(I|I
(k)
− )] = H(I|I

(k)
− ) ≥ 0.

2)

4
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H(I
(k)
− )−H(I) = E

[

log
p(I)

∏

k p(I
(k)
− )

]

= M(I
(k)
− , k = 1, ..., 4) ≥ 0. QED

This theorem tells us that if we down-sample an image,
the complexity of the image will decrease, but the complex-
ity rate will increase. In other words, inequality (1) tells us
that the image looks more random. This can be easily un-
derstood from real life experience. For instance, for the leaf
pattern in Figure 1, when we move farther away from the
leaves, we lose information, so the complexity is decreas-
ing. But we see more leaves within unit area of visual field,
so the complexity rate is increasing.

One can also understand this result from the perspective
of Komolgorov complexity. The shortest algorithmic cod-
ing length of I must be greater than or equal to the shortest
coding length of any of the I(k)

− , but must be smaller than or
equal to the sum of the shortest coding lengths of the four
I
(k)
− .

Now let’s study the effect of local averaging. Let I be
the original image, and let J be the image obtained by con-
volving the image I with a localized smoothing kernel k,
i.e., J = I ∗ k.

Theorem 2: As the lattice Λ→ Z2,

1

|Λ|
H(J)−

1

|Λ|
H(I)→

∫

log |k̂(ω)|dω, (2)

where the right hand side is smaller than or equal to 0.
Here k̂ is the Fourier transform of the kernel k, ω ∈
[−π/2, π/2]× [−π/2, π/2] is the spatial frequency.

Proof: In the Fourier domain, we have Ĵ(ω) = Î(ω)k̂(ω),
where Ĵ and Î are Fourier transforms of J and I respec-
tively. For finite rectangular lattice Λ, the spatial frequency
ω takes values in a finite grid. Since the Fourier transform
is orthogonal, we have H(I) = H(Î), and H(J) = H(Ĵ).
Thus

1

|Λ|
H(J) =

1

|Λ|
H(I) +

1

|Λ|

∑

ω

log |k̂(ω)|. (3)

As Λ→ Z2, the second term on the right hand side goes to
∫

log |k̂(ω)|dω.
A smoothing kernel k is a probability distribution func-

tion, k̂ is the so-called characteristic function of k, and
k̂(ω) =

∑

x k(x)e
−iωx = Ek[e

−iωx], with x ∼ k(x).
So |k̂(ω)|2 = |Ek[e

−iωx]|2 ≤ Ek[|e
−iωx|2] = 1. Thus,

∫

log |k̂(ω)|dω ≤ 0. QED
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Equation (2) shows that when we smooth an image, the
complexity rate will decrease, i.e., we smooth out some ran-
domness. If the image is large, then the decrease in com-
plexity rate approaches a constant.

The complexity scaling law is a combination of Theorem
1 and Theorem 2. Let J = I ∗ k, and let J− be the down-
sampled version of J by a factor of 2 on both axes. Then,
J− can be considered a down-scaled version of I , that is,
the image of the underlying visual pattern changes from I
to J− if the distance between the viewer and the visual pat-
tern doubles. For large lattice size, we have the complexity
scaling law:

1

4

1

|Λ−|

4
∑

k=1

H(J
(k)
− )−

1

|Λ|
H(I)

− [
1

|Λ|
M(J

(k)
− , k = 1, 2, 3, 4) +

∫

log |k̂(ω)|dω]→ 0.

If the mutual information per pixel is greater than
−
∫

log |k̂(ω)|dω, we observe an increase in complexity
rate. Otherwise, the complexity rate decreases.

Figure 3: Linear bases/filters of different scales and orien-
tations.

Next, we will demonstrate the complexity scaling law
with some experiments. We use three indicators for the en-
tropy of an image:

1) The entropy of the histogram of the intensity gradients
(along horizontal direction). This is a very rough indicator,
but it appears consistent with the following two indicators.

2) The coding length per pixel of the image using JPEG
2000. This method codes the image using wavelet bases.

3) Code the image (the whitened version where the high
frequencies are enhanced, see [12]) by the following model:
I =

∑

i ciBi+ ε, where ci are the coefficients, and Bi form
an overcomplete system of localized, oriented, and elon-
gated bases such as Difference of Offset Gaussian (DOOG)
bases [6](or Gabor bases). See Figure 3 for an illustration of
such linear bases. We count the number of bases per pixel
needed to explain 70% of the intensity variance. We use the
matching pursuit algorithm [8] to select bases.

Figure 4: The figure above displays the original image
of ivy wall and its down-scaled versions. The plot below
shows the change of complexity rate (three indicators) over
the cascade order of down-scaling.

We did an experiment on an image of ivy wall in Fig-
ure 4. For this image, we keep down-scaling it by a factor
of 2 × 2. Then we plot the entropy rate of the image over
the cascade order of down-scaling. Clearly, there is an up-
ward trend in complexity rate within the range of the plot,
indicating that the image is getting more random (Here the
measures of the three indicators of the image complexity
are normalized by linear transforms so that they can be dis-
played together in one plot). This upward trend continues
persistently until the ivy wall is extremely far away from
the viewer. Then the local averaging effect will smooth out
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a) b)

c) d)

Figure 5: From sparse coding to feature statistics. a) Ob-
served near-distance image. b) Reconstructed by sparse
coding with 1,000 bases. c) Observed far-distance image.
d) “Reconstructed” by matching feature statistics.

Figure 6: A scale invariant image and the change of com-
plexity rate over cascade order of down-scaling.

the randomness, so that the complexity rate will start to de-
crease.

This phenomenon has interesting implication in sparsity
principle. Sparsity has been a cherished principle in math-
ematics. It has also been proposed by Olshausen and Field
[12] as a principle employed by the primitive visual cortex
or V1. They used this principle to learn a set of linear bases
that resemble the properties of simple V1 cells. In Figure
4, at near distance, the complexity rate is very low, so spar-
sity principle applies, and we observe individual structures.
But as the viewer moves farther from the underlying pattern,
or if we down-scale the image, the complexity rate of the
image will increase, so that there may not exist any sparse
deterministic representation of the image, and the sparsity
principle is violated. As a result, the visual system may
only interpret the image by some summaries that cannot de-
termine the image deterministically, and these summaries
are feature statistics, and we perceive collective textures in-
stead of individual structures. This may explain the percep-
tual transition from structures to textures, or from sparse
coding to feature statistics. See Guo, Zhu, Wu (2003) [2]
for more details, where they call the model regime where
sparse coding applies as sketchable regime, and the model
regime where we need to use feature statistics as the non-
sketchable regime.

Figure 5 displays an example of the transition from
sparse coding to feature statistics. a) and c) are images of
ivy-wall at near-distance and far-distance respectively. b) is
reconstructed near-distance image using sparse coding rep-
resentation with 1,000 bases selected by the matching pur-
suit algorithm. d) is statistically reconstructed far-distance
image using feature statistics representation by matching
histograms of filter responses.

In the second experiment, Figure 6 displays a picture of
natural scene, where objects appear at various distances, re-
sulting in a wide variety of scales. If we repeat the first
experiment on this picture, we see that the complexity rate
does not change much as we down-scale the image. This
suggests that the image is scale invariant. See [16][11][17]
for more discussions.

In the third experiment, Figure 7 shows a sequence of
images of trees taken in Los Angeles area. At the close dis-
tance, the image is dominated by one tree in the visual field.
At the far distance, we see the forest on the mountain. Fig-
ure 8 plots the three complexity indicators of these images
ordered by the distance or scale.

When the objects in the visual field are of near distances
or large scales, and each object has smooth surface, the mu-
tual information we discussed above can be quite large. As
a result, if we down-scale the image, we will observe an in-
crease in complexity rate. When the objects in the visual
field are of far distances or small scales, the mutual infor-
mation can be rather small. If we down-scale the image, we
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will observe a decrease in complexity rate.
In the fourth experiment, we study the coding of a se-

quence of brick wall images (whitened version) using the
linear additive model I =

∑

i ciBi + ε, where {Bi} is a
set of overcomplete bases. In our experiment, we use two
sets of bases. One set consists of Difference of Offset Gaus-
sian (DOOG) bases as we discussed before (see Figure 3).
The other set consists of primitives learned from the image.
The primitives learned from the brick wall image (left) in
Figure 9 are shown in Figure 10. In Figure 9 we plot the
mean squared error versus the number of bases for each im-
age under the two vocabularies of bases. For the brick wall
image taken at a close distance, the primitives are more ef-
ficient. But for the brick wall image taken at a far distance,
the DOOG bases win over the primitives. Clearly, there are
different distance/complexity regimes where different gen-
erative models are needed for the same type of pattern. We
shall study the issue of model transition over distance in fu-
ture work.

3 Perceptibility Scaling Law
The purpose of vision is to make inference about the outside
world that generates the image. Now, let’s study the issue
of information scaling in an inferential framework in the
context of generative modeling.

Let W describe the outside world that produces the im-
age I . Let’s assume that both W and I are properly dis-
cretized, and that W is detailed enough to produce I , i.e.,
I = g(W ), where the many to one function g() can be
thought of as a graphics process. For natural patterns such
as foliage and grass, W is typically very complex, including
detailed descriptions of all the leaves and strands of grass.
Such visual complexity is a defining characteristic of natu-
ral scenes and is a key factor for visual realism in graphics
and paintings.

Suppose our prior knowledge about W can be repre-
sented by a prior distribution p(W ). Again, we can ei-
ther interpret p(W ) as result of the stochastic process that
gives rise to W , or frequencies of an ensemble of scenes, or
a scheme of coding W to approximate Komolgorov com-
plexity. Given W ∼ p(W ), and I = g(W ), we have
the marginal distribution of I: p(I) =

∑

W :g(W )=I p(W ).

The posterior distribution of W given I is p(W |I) =
p(W, I)/p(I) = p(W )/p(I) when I = g(W ). p(W, I) =
p(W ) because I is fully determined by W . This posterior
distribution defines our perception of W based on I , and is
an inversion of the graphics equation I = g(W ).

Definition 2: Scene complexity, denoted by H(W ), is de-
fined asH(p(W )) = −

∑

W p(W ) log p(W ).

Definition 3: Imperceptibility, denoted by H(W |I), is de-
fined asH(p(W |I)) = −

∑

W p(W ) log p(W |I).

Theorem 3: Let W ∼ p(W ), and I = g(W ), then

H(W |I) = H(W )−H(I). (4)

That is, imperceptibility = scene complexity - image com-
plexity.

Proof: p(W |I) = p(W )/p(I), by taking log on both sides,
and then taking expectation, Theorem 2 follows. QED

One may interpret equation (4) from the perspective of
inverting the graphics equation I = g(W ). The scene com-
plexityH(W ) counts the number of the unknowns (in terms
of bits), and the image complexityH(I) counts the number
of equations. The imperceptibility H(W |I) then tells us
the degrees of freedom that are left undetermined from this
equation. Thus the imperceptibility H(W |I) gives a gen-
eral definition of “ill-posedness” of the inversion problem.

For an image I , its down-scaled version I− can be ob-
tained by local smoothing and down-sampling, and the pro-
cess can be represented by a many to one reduction function
R(), such that I− = R(I). Then we have the following per-
ceptibility scaling law.

Theorem 4: For W ∼ p(W ), I = g(W ), if I− = R(I)
with R() being any many to one reduction function, then

H(W |I−) ≥ H(W |I). (5)

That is, imperceptibility becomes larger with down-scaling.

Proof: H(W |I−) = H(W )−H(I−),H(W |I) = H(W )−
H(I), and H(I) − H(I−) = H(I|I−). So H(W |I−) −
H(W |I) = H(I|I−) ≥ 0. QED

Inequality (5) tells us that if we get farther from the
scene W , it will become less perceptible, and if H(W |I−)
is above a threshold, then our perception may experience a
transition. We can only perceive some aspect of W , i.e.,
W− = ρ(W ), for some many to one reduction ρ(), such
that H(W−|I−) remains small. It is possible to find such a
W−, because of the following theorem.

Theorem 5: For W ∼ p(W ), I = g(W ), and I− = R(I),
W− = ρ(W ), we have

1) H(W−|I−) ≤ H(W |I−).

2) p(I−|W−) =

∑

W :ρ(W )=W
−

;R(g(W ))=I
−

p(W )
∑

W :ρ(W )=W
−

p(W )
.

Proof: 1) p(W |I−)/p(W−|I−) = p(W |W−, I−), thus

H(W |I−) −H(W−|I−) = H(W |W−, I−) ≥ 0. 2)
p(I−|W−) = p(I−,W−)/p(W−). QED

Result 2) tells us that although W defines I determin-
istically via I = g(W ), W− may only define I− statisti-
cally via a probability distribution p(I−|W−). While W
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Figure 7: Natural images taken at different distances from the trees.

represents sparse structures, W− may only represent collec-
tive textures. Figure 11 illustrates the image and the world
which are described at two scales. W is not perceptible
from I−. While I is a deterministic function of W , W−

may define I− statistically.

Figure 8: The change of the complexity rate of the images
over distance in Figure 7.

For patterns like hair, fur, sands and soil, the physical
W , which includes all individual strands of hairs or individ-
ual grains of sands, is perhaps never fully perceptible. This
is also true with water, fire, smoke, and clothes, for which
the fluid dynamics or mechanics models of W consists of a
large number of particles. In that case, we are always in the
(W−, I−) regime, and the physics model is not relevant to
vision.

What is the implication of the perceptibility scaling law
in generative modeling? Let Id be the image of a visual
pattern at distance d. If we model Id by a single generative
model W ∼ p(W ), and Id | W ∼ pd(Id | W ), then the
imperceptibility H(W |Id) is increasing as d increases, and
if it is above a certain threshold, the imperceptibility will be
too large for the generative model to be useful. In that case,
we need to use a set of generative modelsWd ∼ p(Wd), and
Id | Wd ∼ pd(Id | Wd), and for different distance regime,
we may need different Wd.

Interestingly, the inferential concept of perceptibility
also arises from the representation and coding perspective,
even if we do not assume an objective W . That is, we only
assume I ∼ p(I), and W is an augmented variable purely
for the purpose of coding I , via a model W ∼ f(W ) and
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Figure 9: The figures above display brick wall images taken at different distances. The plots below show the change of mean
square error over the number of bases under two different vocabularies: one consists of DOOG bases, and the other consists
of primitives learned from images.

[I|W ] ∼ f(I|W ). In this model, the marginal distribu-
tion I is f(I) =

∑

W f(W )f(I|W ), and the posterior dis-
tribution f(W |I) = f(W )f(I|W )/f(I). In this coding
scheme, for an image I , we first estimate W by a sample
from the posterior distribution f(W |I), then we code W by
f(W ) with coding length − log f(W ). After that, we code
I by f(I|W ) with coding length − log f(I|W ). So the av-
erage coding length is

−Ep
[

Ef(W |I)(log f(W ) + log f(I|W ))
]

.

Theorem 6: The average coding length is

Ep[H(f(W |I)] + D(p||f) +H(p). (6)

That is, coding redundancy = imperceptibility + error.
Here H(f(W |I)) = −

∑

W f(W |I) log f(W |I), and
D(p||f) is the Kullback-Leibler distance.

Proof: The theorem follows from

Ep
{

Ef(W |I)[log f(W ) + log f(I|W )]− log p(I)
}

= Ep
{

Ef(W |I)[log f(W ) + log f(I|W )− log f(I)]
}

− Ep[log p(I)− log f(I)]. QED

Equation (6) tells us that we not only want the error to be
small, we also want W to be perceptible, in the sense that
Ep[H(f(W |I)] is small.

As another example of imperceptibility, let’s go back
to the sparse coding model using linear bases, with I =
∑

i ciBi + N(0, σ2), and c = {ci} ∼ p(c) (see, e.g., Pece
[13]). We suspect that if H(c) is large, then the impercep-
tibility H(c|I) should also be large. However, we have not

established any general result on this issue. If the result is
true, then it has interesting implication. That is, if the image
has a high complexity rate, then we may not want to pursue
a sparse coding model of the above form, because even the
sparsest representation may need a lot of bases, i.e.,H(c) is
large, thenH(c|I) can also be large, so there is a lot of am-
biguities as to how to code I using the linear bases. If this
is the case, we may switch to the model based on feature
statistics.

Figure 10: The primitives learned from the brick wall im-
age (left) in Figure 9.

4 Future Work
In this paper, we established the complexity scaling law and
the perceptibility scale law. The two information scaling
laws imply that we need to use different models for the same
visual pattern viewed at different distance/scale regimes.

In the future work, we shall study concrete models for
visual patterns at different distances, and study the forms of
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Figure 11: Illustration of down-scaling and imperceptibil-
ity.

the models at different distance/scale regimes, the underly-
ing vocabularies of different models, and the criterion for
model switching over distance. In the context of concrete
models and patterns, we shall be able to compute complex-
ity rate and imperceptibility for different models, and the
comparison between different models will lead to a mecha-
nism for model switching.
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