Journal of Machine Learning Research 9 (2008) 937-965 Submitted 8/07; Revised 2/08; Published 5/08

Accelerated Neural Evolution through
Cooper atively Coevolved Synapses

Faustino Gomez TINO@IDSIA.CH
Jirgen Schmidhuber* JUERGEN@IDSIA.CH
Dalle Molle Institute for Artificial Intelligence (IDSIA)

Galleria 2, Manno (Lugano), Switzerland

Risto Miikkulainen RISTO@CS.UTEXAS.EDU
Department of Computer Sciences
University of Texas, Austin, TX 78712 USA

Editor: Melanie Mitchell

Abstract

Many complex control problems require sophisticated solutions that are not amenable to traditional
controller design. Not only is it difficult to model real world systems, but often it is unclear what
kind of behavior is required to solve the task. Reinforcement learning (RL) approaches have made
progress by using direct interaction with the task environment, but have so far not scaled well to
large state spaces and environments that are not fully observable. In recent years, neuroevolution,
the artificial evolution of neural networks, has had remarkable success in tasks that exhibit these
two properties. In this paper, we compare a neuroevolution method called Cooperative Synapse
Neuroevolution (CoSyNE), that uses cooperative coevolution at the level of individual synaptic
weights, to a broad range of reinforcement learning algorithms on very difficult versions of the
pole balancing problem that involve large (continuous) state spaces and hidden state. CoSyNE is
shown to be significantly more efficient and powerful than the other methods on these tasks.
Keywords: coevolution, recurrent neural networks, non-linear control, genetic algorithms, exper-
imental comparison

1. Introduction

In many decision making processes such as manufacturing, aircraft control, and robotics researchers
are faced with the problem of controlling systems that are highly complex and unstable. A controller
or agent must be built that observes the state of the system, or environment, and outputs a control
signal that affects future states of the environment in some desirable way.

The problem with designing or programming such controllers by direct engineering methods
is twofold: (1) The environment is often non-linear and noisy so that it is impossible to obtain
the kind of accurate and tractable mathematical model required by these methods. (2) The task is
complex enough that there is very little a priori knowledge of what constitutes a reasonable, much
less optimal, control strategy.

These two problems have compelled researchers to explore methods based on Dynamic Pro-
gramming, for example Reinforcement Learning (RL; Sutton and Barto, 1998). Instead of trying to
pre-program a response to every likely situation, an agent learns the utility of being in each state

x. Also at Technische Universitdt Miinchen Boltzmannstr. 3, 85748 Garching, Miinchen, Germany.

(©2008 Faustino Gomez, Juiirgen Schmidhuber and Risto Miikkulainen.

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

(i.e., a value-function) from a reward signal it receives while interacting directly with the environ-
ment. In principle, RL methods can solve these problems: they do not require a mathematical model
(i.e., the state transition probabilities) of the environment and can solve many problems where ex-
amples of correct behavior are not available. However, in practice, they have not scaled well to large
state spaces or tasks where the state of the environment is not fully observable to the agent. This is a
serious problem because the real world is continuous (i.e., there are an infinite number of states) and
artificial agents, like natural organisms, are necessarily constrained in their ability to fully perceive
their environment.

More recently, methods for evolving artificial neural networks or neuroevolution have shown
promising results on continuous, partially observable tasks (Gomez, 2003; Nolfi and Parisi, 1995;
Yamauchi and Beer, 1994). Our previous method, Enforced SubPopulations, is a particularly ef-
fective neuroevolution algorithm that has been a applied successfully to many domains (Perez-
Bergquist, 2001; Lubberts and Miikkulainen, 2001; Greer et al., 2002; Whiteson et al., 2003; Bryant
and Miikkulainen, 2003; Gomez et al., 2001; Grasemann and Miikkulainen, 2005), including the
real world reinforcement learning task of finless rocket control (Gomez and Miikkulainen, 2003).
The goal of this paper is to present a new algorithm that builds on ESP called Cooperative Synapse
Neuroevolution (CoSyNE), and compare it to a wide range of other learning systems in a setting
that is both challenging and practical. To this end, we have chosen a set of pole balancing tasks
ranging from the trivial to versions that are extremely difficult for some of todays most advanced
methods.

The paper is organized as follows: in Section 2, we discuss the general neuroevolution paradigm.
In Section 3, the underlying approach used by CoSyNE, cooperative coevolution is described. In
Section 4, the CoSyNE algorithm is presented. Section 5 presents our experiments comparing
CoSyNE with value function, policy search, and other evolutionary methods. Sections 6 and 7
provide some discussion of our overall results, and conclusions.

2. Neuroevolution

The basic idea of Neuroevolution (NE; Yao, 1999) is to search the space of neural network policies
directly using a genetic algorithm. In contrast to ontogenetic learning involving a single agent that
learns incrementally (i.e., value-based RL), NE uses a population of solutions. The individual solu-
tions are not modified during evaluation; instead, adaptation arises through repeatedly recombining
the population’s most fit individuals in a kind of collective or phylogenetic learning. The population
gradually improves as a whole until a sufficiently fit individual is found.

In NE, neural network specifications are encoded in string representations or chromosomes (see
Figure 1). A chromosome can encode any relevant network parameter including synaptic weight
values, number of processing units, connectivity (topology), learning rate, etc. These network geno-
types are then evolved in a sequence of generations. Each generation each genotype is mapped to
its network phenotype (i.e., the actual network), and then evaluated in the problem environment
and awarded a fitness score that quantifies its performance in some desirable way. After this eval-
uation phase, genotypes are selected from the population according to fitness through a variety of
possible schemes (e.g., fitness proportional, linear ranking, tournament selection, etc.), and then
mated through crossover and possibly mutated to form new genotypes that usually replace the least
fit members of the population. This cycle repeats until a sufficiently fit network is found, or some
other stopping criteria is met.

938

COOPERATIVE SYNAPSE NEUROEVOLUTION

Wiy |
'\"././ ’\’ 'y, ’\‘\ >
am ®

Environment

action

observation

Neural Network

Figure 1: Neuroevolution. Each chromosome is transformed into a neural network phenotype and
evaluated on the task. The agent receives input from the environment (observation) and
propagates it through its neural network to compute an output signal (action) that affects
the environment. At the end of the evaluation, the network is assigned a fitness according
to its performance. The networks that perform well on the task are mated to generate new
networks.

NE approaches differ primarily in how they encode neural network specifications into genetic
strings. Direct encoding schemes represent the parameters explicitly on the chromosome as binary
or real numbers that are mapped directly to the phenotype (Belew et al., 1991; Jefferson et al., 1991;
Moriarty, 1997; Gomez, 2003; Stanley and Miikkulainen, 2002). Indirect encodings operate at a
higher level of abstraction. Some simply provide a coarse description such as delineating a neuron’s
receptive field (Mandischer, 1993) or connective density (Harp et al., 1989), while others are more
algorithmic, providing growth rules in the form of graph generating grammars (Kitano, 1990; Voigt
et al., 1993; Gruau et al., 1996b). These schemes have the advantage that very large networks can
be represented without requiring large chromosomes. Our CoSyNE method is a direct encoding
method that does not evolve topology.

By searching the space of policies directly, NE can be applied to reinforcement learning prob-
lems without using a value function—neural network controllers map observations from the envi-
ronment directly to actions. This mapping is potentially powerful: neural networks are universal
function approximators that can generalize and tolerate noise. Networks with feedback connections
(i.e., recurrent networks) can maintain internal state extracted from a history of inputs, allowing
them to solve partially observable tasks. By evolving these networks instead of training them,
NE avoids the problem of vanishing error gradients that affect recurrent network learning algo-
rithms (Hochreiter et al., 2001). For NE to work, the environment need not satisfy any particular
constraints—it can be continuous and partially observable. All that concerns a NE system is that
the network representations be large enough to solve the task and that there is an effective way to
evaluate the relative quality of candidate solutions.

939

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

Algorithm 1: Cooperative Coevolution (n, m)
1 Initialize {Py,...,Py}

2 repeat
3 repeat
4 for j=1tondo // construct complete solution
5 Xij = Select(P;)
6 X <= Xij // add subgenotype to complete solution
7 end
8 Evaluate(x)
9 until enough solutions evaluated
10 fori=1tondo / each subpopulation reproduces independently
11 Recombine(P;)
12 end

13 until solution is found

3. Cooperative Coevolution

In natural ecosystems, organisms of one species compete and/or cooperate with many other different
species in their struggle for resources and survival. The fitness of each individual changes over time
because it is coupled to that of other individuals inhabiting the environment. As species evolve
they specialize and co-adapt their survival strategies to those of other species. This phenomenon of
coevolution has been used to encourage complex behaviors in GAs.

Most coevolutionary problem solving systems have concentrated on competition between species
(Darwen, 1996; Pollack et al., 1996; Paredis, 1994; Miller and CIiff, 1994; Rosin, 1997). These
methods rely on establishing an “arms race” where each species produces stronger and stronger
strategies for the others to defeat. This is a natural approach for problems such as game-playing
where often an optimal opponent is not available.

A very different kind of coevolutionary model emphasizes cooperation. Cooperative coevolu-
tion is motivated, in part, by the recognition that the complexity of difficult problems can be re-
duced through modularization (e.g., the human brain; Grady, 1993). In cooperative coevolutionary
algorithms the species represent solution components. Each individual forms a part of a complete
solution but need not represent anything meaningful on its own. The components are evolved by
measuring their contribution to complete solutions and recombining those that are most beneficial
to solving the task.

Algorithm 1 outlines the basic operation of a generic cooperative coevolutionary algorithm.
The first parameter n specifies the number of species (components) that will be coevolved. Each
species has its own subpopulation P;,i = 1..n, containing m subgenotypes, xjj € P;, j = 1..m which
are initialized with random values (line 1). Assuming complete solutions of fixed size, n determines
the granularity at which the coevolutionary search is conducted.

Next, some number of complete solutions are constructed and evaluated (lines 3-9). A complete
solution x is formed by combining one subgenotype, selected according to some policy, from each of
the subpopulations. Usually, the string representations of each subgenotype are simply concatenated
in a predefined order to form a single chromosome. Each x is evaluated in the problem environment
and a fitness score is assigned to each constituent subgenotype. Since the number of evaluations per

940

COOPERATIVE SYNAPSE NEUROEVOLUTION

1k V10))20V VSO))40k V50)
Generation

Figure 2: Convergence speed for varying numbers of species. Each row shows a PCA projection
of 128-dimensional chromosomes at different generations during an evolutionary run op-
timizing a very simple multi-modal test function. All three runs start with the same set
of complete solution (see first column). In row 1, the solutions are not coevolved be-
cause each genotype is a complete solution. In row 2, 8 species are coevolved (i.e., have
to be combined to form a the complete solutions shown in the plots), and in row 3, 64
species are coevolved. The more species there are to cooperate, the longer it takes for the
evolution to converge.

generation can exceed m, subgenotypes can participate in more that one evaluation per generation.
Therefore, the fitness score of each x;; at the end of a generation is some function of the raw fitness
scores accumulated over multiple evaluations, and is considered a subjective measure because it is
coupled with that of its collaborators, in contrast to an objective measure that only depends on the
individual itself (Wiegand, 2003). The exact number of evaluations per subgenotype depends on the
collaboration scheme employed by a particular algorithm. One common approach, for example, is
simply to evaluate each subgenotype in n trials, and then take the average or best fitness.

Once enough evaluations have been performed, each subpopulation is recombined to form new
subgenotypes, as in a normal GA.

Early work in this area was done by Holland and Reitman (1978) in Classifier Systems. A
population of rules was evolved by assigning a fitness to each rule based on how well it interacted
with other rules. This approach has been used in learning neural network classifiers, in coevolution
of cascade correlation networks, and in coevolution of radial basis functions (Eriksson and Olsson,
1997; Horn et al., 1994; Paredis, 1995; Whitehead and Choate, 1995). More recently, Husbands and
Mill (1991) and Potter and De Jong (1995) developed a method called Cooperative Coevolutionary
GA (CCGA) in which each of the species is evolved independently in its own population. As
in Classifier Systems, individuals in CCGA are rewarded for making favorable contributions to
complete solutions, but members of different populations (species) are not allowed to mate. A

941

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

............

)

)

WY

o9

v

N
[- — - p— - p— - g— -
'
'
\

Neural Network

Figure 3: The CoSyNE method for neuroevolution. On the left, the figure shows and example
population consisting of six subpopulations, P;..Ps, each containing m weight values. To
create a network, first the weights at a given index in each subpopulation are collected
into a chromosome X, then the weights are mapped to their corresponding synapses in a
predefined network architecture with six connections, shown at right.

particularly powerful idea is to combine cooperative coevolution with neuroevolution so that the
benefits of evolving neural networks can be enhanced further through improved search efficiency.

Much of the motivation for using the cooperative coevolutionary approach is based on the in-
tuition that many problems may be decomposable into weakly coupled low-dimensional subspaces
that can be searched semi-independently by separate species (Wiegand et al., 2001; Jansen and Wie-
gand, 2003, 2004; Panait et al., 2006). Our experience shows that there may be another, complemen-
tary, explanation as to why cooperative coevolution in many cases outperforms single-population
algorithms. Figure 2 compares the convergence behavior of the same initial population of complete
solutions using different number of species: 1, 8, and 64. Each point represents a 128-dimensional
chromosome projected onto 2-D using Principal Component Analysis. The chromosomes are coe-
volved to optimize a continuous multi-modal test function® with 128 randomly distributed maxima
that represent valid solutions. As the number of species increases, the selection of subgenotypes for
reproduction becomes less greedy, causing the search points that are evaluated each generation to
converge more slowly, providing more paths toward better solutions (not shown). In a normal evolu-
tionary algorithm, a subgenotype suffers the fate of the complete solution to which it is attached. If
the complete solution performs with high fitness, the subgenotype is retained in the population, even
if it is not ultimately beneficial to the search; if it is less fit then this potentially useful component (if
combined with other subgenotypes in the population) is lost. This diversity sustaining mechanism
is exploited fully in the CoSyNE algorithm, introduced next.

1. The URL is http://www.cs.uwyo.edu/"wspears/multi.kennedy.html.

942

COOPERATIVE SYNAPSE NEUROEVOLUTION

Algorithm 2: CoSyNE (n,m,¥)
1 Initialize 2 = {Py,...,Pn}

2 repeat

3 for j=1tomdo

4 Xj < (X1j,...,%nj) /I form complete solution

5 Evaluate(x;,)

6 end

7 O < Recombine(?P)

8 fori=1tondo

9 Sort(P,)

10 fork=1tol do // replace least fit weights with
1 Xim—k < Oik /I weights from offspring nets

12 end

13 for j=1tomdo
14 prob(xi;) <= F(,i,j) //assign probability to each weight
15 if rand() < prob(xjj) then
16 mark(xij) // mark weight for permutation probabilistically
17 end

18 end

19 PermuteMarked(P;) // see Figure 4

20 end
21 until solution is found

4. Cooper ative Synapse Neur oevolution (CoSyNE)

Previous Cooperative Coevolution NE methods decomposed networks at the neuron level (Mori-
arty, 1997; Potter and De Jong, 1995; Gomez, 2003). This is a natural approach dictated by pheno-
typic structure: networks consist of multiple processing units that function in parallel. In contrast,
CoSyNE evolves at the lowest possible level of granularity, the level of the individual synaptic
weight. For each network connection, there is a separate subpopulation consisting of real valued
weights. Like neuron-level methods such as ESP, networks are constructed by selecting one member
from each subpopulation and plugging them into a predefined network topology.

Algorithm 2 describes the CoSyNE algorithm in pseudocode. First (line 1), a population 2 con-
sisting of n subpopulations P;,i = 1..n, is created, where n is the number of synaptic weights in the
networks to be evolved, determined by a user-specified network architecture W. Each subpopulation
is initialized to contain m real numbers, xjj = #;j € B, j = 1..m, chosen from a uniform probability
distribution in the interval [—a, a]. The population is thereby represented by an n x m matrix.

CoSyNE then loops through a sequence of generations until a sufficiently good network is
found (lines 2-21). Each generation starts by constructing a complete network chromosome X =
(X1j,X2j, - - -, Xnj) from each row in ¢. The m resulting chromosomes are transformed into networks
by assigning their weights to their corresponding synapses, in W (line 4; see Figure 3).

After all of the networks have been evaluated (line 5) and assigned a fitness, the top quarter
with the highest fitness (i.e., the parents) are recombined (line 7) using crossover and mutation.
Recombination produces a pool of offspring O consisting of | new network chromosomes ok, where

943

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

n &pr?pulmions

Hin N I o A R
)2 Am A afiul s
;7 Hi ...ji#.......
m W mEE B
W e W & CemE .

Figure 4: Probabilistic permutations. On the left is the set of subpopulations before permutation.
The colored boxes are denote those genotypes that have been marked for permutation
based on Equation 1. As the individuals are sorted by fitness within each subpopulation,
notice that the less fit individuals have a higher probability of being permuted. On the
right, the marked individuals have been permuted among themselves with each subpopu-
lation. All unmarked genotypes remain part of the same complete solution.

Ok = Ok € O5,i=1.n,k =1..1, and O; is the offspring subpopulation corresponding to P;. The
subpopulations are then sorted by fitness (line 9), and the weights from the new networks are added
to P by replacing the least fit weights in their corresponding subpopulation (i.e., the P with the same
index i; lines 10-11).

At this point the algorithm functions as a conventional neuroevolution system that evolves com-
plete network chromosomes. In order to coevolve the synaptic weights, the subpopulations are
permuted so that each weight forms part of a potentially different network in the next generation.
Permutation is performed probabilistically. First, weights are marked randomly according to prob-
abilities assigned by a user-defined function F() (lines 14-17). Then the marked weights are per-
muted amongst themselves (see Figure 4). The function F() can be anything from as simple as
prob(x;;) = 1.0, Vi, j, in which case all weights are permuted, or more sophisticated:

(1)

where f(xij) is the fitness of subgenotype (weight) x;;, and f jmi” and f jmax are, respectively, the fitness
of the least and most fit individuals in subpopulation i. In this case, the probability of disrupting the
network x; is inversely proportional to its relative fitness, so that weight combinations that receive
high fitness are more likely to be preserved, while those with low fitness are more likely to be
disrupted and their constituents used to search for new complete solutions. In the experiments below,
the simpler function that permutes all weights, except for the newly inserted offspring weights, was
found to work well.

The basic CoSyNE framework does not specify how the weights are grouped in the complete
solution chromosomes (i.e., which entry in the chromosome corresponds to which synapse) or which

944

COOPERATIVE SYNAPSE NEUROEVOLUTION

Figure 5: The double pole balancing system. Both poles must be balanced simultaneously by
applying a continuous force to the cart. The system becomes more difficult to control as
the poles assume similar lengths and if the velocities are not provided to the controller.
The figure is a snapshot of a 3D real-time simulation.

genetic operators are used. In the implementation used in this paper, the weights of each neuron are
grouped together (i.e., form a substring) and are separated into adjacent input, output, and recurrent
weight segments, and the neuron substrings are concatenated together in a fixed order. For the
genetic operators, we use multi-point crossover where 1-point crossover is applied to each neuron
segment of the chromosome to generate two offspring, and mutation where each weight in 2 has a
probability of being perturbed by Cauchy distributed noise with zero mean a = 0.3.

5. Experiments

We compared CoSyNE to a broad range of learning algorithms on a sequence of increasingly dif-
ficult versions of the pole balancing task. This scheme allows us to compare methods at different
levels of task complexity, exposing the strengths and limitations of each method with respect to
specific challenges introduced by each succeeding task.

5.1 The Pole Balancing Problem

The basic pole balancing or inverted pendulum system consists of a pole hinged to a wheeled cart
on a finite stretch of track. The objective is to apply a force to the cart at regular intervals such that
the pole is balanced indefinitely and the cart stays within the track boundaries. This task has been a
popular artificial learning testbed for over 30 years (Michie and Chambers, 1968; Anderson, 1989;
Jang, 1992; Lin and Mitchell, 1992; Whitley et al., 1993) because it requires solving the temporal
credit assignment problem, and is a good surrogate for a more general class of unstable control
problems such as bipedal robot walking, and rocket guidance.

This long history notwithstanding, it turns out that the basic pole balancing problem can be
solved easily by random search. To make it challenging for artificial learners, a variety of extensions
to the basic pole-balancing task have been suggested. (Wieland, 1991) presented several variations
that can be grouped into two categories: (1) modifications to the mechanical system itself, such as

945

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

adding a second pole either next to or on top of the other, and (2) restricting the amount of state
information that is given to the controller; for example, only providing the cart position and the
pole angle. The first category makes the task more difficult by introducing non-linear interactions
between the poles. The second makes the task non-Markov, requiring the controller to employ short
term memory to disambiguate underlying process states. Together, these extensions represent a
family of tasks that can effectively test algorithms designed to learn control policies.

The sequence of comparisons presented below begins with a single pole version and then moves
on to progressively more challenging variations culminating in a version where two separate poles
of different length must be balanced simultaneously without the benefit of velocity information (see
Appendix A for the equations of motion).

5.2 Other Methods

CoSyNE was compared to eight ontogenetic methods and seven phylogenetic methods in the pole
balancing domain:

5.2.1 ONTOGENETIC METHODS

Random Weight Guessing (RWG) where the network weights are chosen at random (i.i.d.) from
a uniform distribution. This approach is used to give an idea of how difficult each task is to
solve by simply guessing a good set of weights.

Policy Gradient RL (PGRL,; Sutton et al., 2000) where sampled Q-values are used to differentiate
the performance of a given policy with respect to its parameters. The policy was implemented
using a feed-forward neural network with one hidden layer.

Recurrent Policy Gradients (RPG; Wierstra et al., 2007) where a stochastic policy is represented
by a Long Short-Term Memory network (LSTM; Hochreiter and Schmidhuber, 1997) trained
with BackPropagation Through Time (Werbos, 1990). The gradient of the expected future
reward over all possible state trajectories with respect to the policy parameters is calculated by
Monte Carlo approximation. To reduce variance in the approximation, a baseline representing
the expected average reward is used.

Value and Policy Search (VAPS; Meuleau et al., 1999) extends the work of Baird and Moore
(1999) to policies that can make use of memory. The algorithm uses stochastic gradient de-
scent to search the space of finite policy graph parameters. A policy graph is a state automaton
that consists of nodes labeled with actions that are connected by arcs labeled with observa-
tions. When the system is in a particular node, the action associated with that node is taken
and the underlying Markov environment transitions to the next observation that determines
which arc is followed to the next action node.

Q-learning with MLP (Q-MLP): This method is the basic Q-learning algorithm (Watkins and
Dayan, 1992) that uses a Multi-Layer Perceptron (i.e., a feed-forward artificial neural net-
work) to map state-action pairs to values Q(s,a). The input layer of the network has one unit
per state variable and one unit per action variable. The output layer consists of a single unit
indicating the Q-value. Values are learned through gradient descent on the prediction error
using the backpropagation algorithm. This kind of approach has been studied widely with

946

COOPERATIVE SYNAPSE NEUROEVOLUTION

success in tasks such as pole-balancing (Lin and Mitchell, 1992), pursuit-evasion games (Lin,
1992), and backgammon (Tesauro, 1992).

Sarsa(A) with Case-Based function approximator (SARSA-CABA; Santamaria et al., 1998):
This method consists of the Sarsa on-policy Temporal Difference control algorithm with el-
igibility traces that uses a case-based memory to approximate the Q-function. The memory
explicitly records state-action pairs (i.e., cases) that have been experienced by the controller.
The value of a new state-action pair not in the memory is calculated by combining the val-
ues of the k-nearest neighbors. A new case is added to the memory whenever the current
query point is further than a specified density threshold, ty away from all cases already in
the memory. The case-based memory provides a locally-linear model of the Q-function that
concentrates its resources on the regions of the state space that are most relevant to the task
and expands its coverage dynamically according to tg.

Sarsa(A) with CMAC function approximator (SARSA-CMAC; Santamaria et al., 1998): This is
the same as SARSA-CABA except that it uses a Cerebellar Model Articulation Controller
(CMAC; Albus, 1975; Sutton, 1996) instead of a case-based memory to represent the Q-
function. The CMAC partitions the state-action space with a set of overlapping tilings. Each
tiling divides the space into a set of discrete features which maintain a value. When a query is
made for a particular state-action pair, its Q-value is returned as the sum of the value in each
tiling corresponding to the feature containing the query point. SARSA-CABA and SARSA-
CMAC have both been applied to the pendulum swing-up task and the double-integrator task.

Adaptive Heuristic Critic (AHC; Anderson, 1987): uses a learning agent composed of two com-
ponents: an actor (policy) and a critic (value-function), both of which are implemented using
a feed-forward neural network trained with a variant of backpropagation.

The three value-function based methods (SARSA-CABA, SARSA-CMAC, and Q-MLP) each
use a different kind of function approximator to represent a Q-function that can generalize across
the continuous space of state-action pairs. Although these approximators can compute a value for
any state-action pair, they do not implement true continuous control since the policy is not explicitly
stored. Instead, continuous control is approximated by discretizing the action space at a resolution
that is adequate for the problem. In order to select the optimal action a for a given state s, a one-step
search in the action space is performed. The control agent selects actions according to an €-greedy
policy: with probability 1 —¢€, 0 < € < 1, the action with the highest value is selected, and with
probability €, the action is random. This policy allows some exploration so that information can
be gathered for all actions. In all simulations the controller was tested every 20 trials with e=0 and
learning turned off to determine whether a solution had been found.

5.2.2 PHYLOGENETIC METHODS

Symbiotic, Adaptive Neuro-Evolution (SANE; Moriarty, 1997) is a cooperative coevolutionary
method that evolves two different populations simultaneously: a population of neurons and a
population of network blueprints that specify how the neurons are combined to form complete
networks. Each generation of networks is formed both using the blueprints and at random.
Neurons that combine to form good networks receive high fitness, and are recombined in a

947

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

single population. Blueprints that result in favorable neuron combinations are also recom-
bined to search for even better combinations.

Conventional Neuroevolution (CNE) is our implementation of single-population Neuroevolution
similar to the algorithm used in Wieland (1991). In this approach, each chromosome in the
population represents a complete neural network. CNE differs from Wieland’s algorithm in
that (1) the network weights are encoded with real instead of binary numbers, (2) it uses rank
selection, and (3) it uses burst mutation. CNE is like ESP except that it evolves at the network
level instead of the neuron level, and therefore provides a way to isolate the performance
advantage of cooperative coevolution (ESP) over a single population approach (CNE).

Evolutionary Programming (EP; Saravanan and Fogel, 1995) is a general mutation-based evo-
lutionary method that can be used to search the space of neural networks. Individuals are
represented by two n-dimensional vectors (where n is the number of weights in the network):
X contains the synaptic weight values for the network, and & is a vector of standard deviation
values of X. A network is constructed using the weights in X, and offspring are produced by
applying Gaussian noise to each element X(i) with standard deviation S(i),i e{l..n}.

Cellular Encoding (CE; Gruau et al., 1996a,b) uses Genetic Programming (GP; Koza, 1991) to
evolve graph-rewriting programs. The programs control how neural networks are constructed
out of “cells.” A cell represents a neural network processing unit (neuron) with its input
and output connections and a set of registers that contain synaptic weight values. A network
is built through a sequence of operations that either copy cells or modify the contents of
their registers. CE uses the standard GP crossover and mutation to recombine the programs
allowing evolution to automatically determine an appropriate architecture for the task and
relieve the investigator from this often trial-and-error undertaking.

Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES; Hansen and Ostermeier
2001) evolves the covariance matrix of the mutation operator in evolutionary strategies. The
results in the pole-balancing domain were obtained from Igel (2003).

NeuroEvolution of Augmenting Topologies (NEAT; Stanley and Miikkulainen, 2002; Stanley
2004) is another NE method that evolves topology as well as synaptic weights, but unlike CE
it uses a direct encoding. NEAT starts with a population of minimal networks (i.e., no hid-
den units) that can increase in complexity by adding either new connections or units through
mutation. Every time a new gene appears, a global innovation number is incremented and
assigned to that gene. Innovation numbers allow NEAT to keep track of the historical origin
of every gene in the population so that (1) crossover can be performed between networks with
different topologies, and (2) the networks can be grouped into “species” based on topological
similarity.

Whenever two networks are recombined, the genes in both chromosomes with the same in-
novation numbers are lined up. Those genes that do not match are either disjoint or excess,

depending on whether they occur within or outside the range of the other parent’s innovation
numbers, and are inherited from the more fit parent.

The number of disjoint and excess genes is used to measure the distance between genomes.
Using this distance, the population is divided into species so that individuals compete primar-
ily within their own species instead of with the population at large. This way, topological

948

COOPERATIVE SYNAPSE NEUROEVOLUTION

Q output

FOOD O m ©

cart long pole short pole cart long pole short pole

Figure 6: Neural network control of the pole balancing system. At each time step the network
receives the current state of the cart-pole system (x, X, 01,01, 62, 8) through its input layer.
For the feed-forward networks (a) used in the Markov tasks (1la and 2a), the input layer
activation is propagated forward through the hidden layer of neurons to the output unit
which indicates force to be applied to the cart. For the recurrent networks (b) used in
the non-Markov tasks (1b and 2b), the neurons do not receive the velocities (X, 01, 8,),
instead they must use their feedback connections to determine which direction the poles
are moving. For the single pole version the network only has inputs for the cart and long
pole.

innovations are protected and have time to optimize their structure before they have to com-
pete with other species in the population.

Enforced SubPopulations (ESP; Gomez and Miikkulainen, 1997) is similar to SANE in that it
uses cooperative coevolution at the neuron level, but, instead of using blueprints, the neuron
population is split into disjoint subpopulations, one for each hidden unit in the network ar-
chitecture being evolved. Instead of selecting neurons from a single population, as in SANE,
to form networks, networks consist of one neuron from each subpopulation. During repro-
duction, neuron genotypes are only mated with members of their own subpopulation, and
offspring remain in their parents’ subpopulation.

For Q-MLP, SANE, CNE, ESP, and CoSyNE, experiments were run using our own code. For
PGRL, AHC, SARSA, publicly available code from Grudic (2000), Anderson (1987), and Santa-
maria et al. (1998), was used respectively, modified for the pole-balancing domain. The parameter
settings for each of these methods are listed in Appendix B. For VAPS, EP, CMA-ES, NEAT, and
CE, the results were taken from the papers cited above. Data was not available for all methods on
all tasks: however, in all such cases the method is shown to be significantly weaker already in a
previous, easier task.

5.3 Task Setup

The pole balancing environment was implemented using a realistic physical model with friction, and
fourth-order Runge-Kutta integration with a step size of 0.01s (see Appendix A for the equations of
motion and parameters used). The state variables for the system are the following:

949

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

X : position of the cart.
X velocity of the cart.
6 : angle of the i-th pole (i=1,2).
0, : angular velocity of the i-th pole.

Figure 6 shows how the network controllers interact with the pole balancing environment. At
each time-step (0.02 seconds of simulated time) the network receives the state variable values scaled
to [-1.0, 1.0]. This input activation is propagated through the network to produce a signal from the
output unit that represents the amount of force used to push the cart. The force is then applied and
the system transitions to the next state which becomes the new input to the controller. This cycle is
repeated until a pole falls or the cart goes off the end of the track. In keeping with the setup in prior
work (e.g., Wieland, 1991; Gruau et al., 1996b) we restrict the force to be no less than +1,/256 x 10
Newtons so that the controllers cannot maintain the system in unstable equilibrium by outputting a
force of zero when the poles are vertical.

The following four task configurations of increasing difficulty were used:

1. One Pole

(&) Complete state information
(b) Incomplete state information

2. Two Poles

(a) Complete state information
(b) Incomplete state information

Task 1a is the classic one-pole configuration. In 1b, the controller only has access to two of the
four state variables: it does not receive the velocities (X, 0). In 2a, the system now has a second pole
next to the first, making the state-space 6-dimensional. Task 2b, like 1b, is hon-Markov with the
controller only seeing x, 01, and 8. Fitness was determined by the number of time steps a network
could keep both poles within a specified failure angle from vertical and the cart between the ends of
the track. The failure angle was 12° and 36° for the one and two pole tasks, respectively. For the
one-pole tasks, the initial pole angle was set to 4.0° from vertical. For the two-pole tasks, the initial
angle of the long pole was 4.0°, and the short pole was vertical. A task was considered solved if a
network could do this for 100,000 time steps, which is equal to over 30 minutes in simulated time.
CoSyNE evolved networks with one hidden unit, 20 weights per subpopulation for the 1-pole tasks,
and 30 weights for the 2-pole tasks. Mutation was set to 0.3 for all experiments, which means that
each weight in a new network have a 30% chance of being perturbed with Cauchy distributed noise.
The initial weight range was [—10,10]. All simulations were run on a 1.5GHz Intel Xeon.

5.4 Results: Balancing One Pole

Balancing one pole is a relatively easy problem that gives us a performance baseline before moving
on to the much harder two-pole task. It has also been solved with many other methods and therefore
serves to put the results in perspective with prior literature.

5.4.1 COMPLETE STATE INFORMATION

Table 1 shows the results for the single pole balancing task with complete state information. The re-
sults show that simply choosing weights at random (RWG) is sufficient to solve this task efficiently.
CoSyNE was the only method that solved the task in fewer evaluations.

950

COOPERATIVE SYNAPSE NEUROEVOLUTION

Method Evaluations | CPU time (sec)
AHC 189,500 95
PGRL 28,779 1,163
Q-MLP 2,056 53
SARSA-CMAC 540 487
SARSA-CABA 965 1,713
RPG (863) —
CMA-ES 283 —
CNE 352 5
SANE 302 5
NEAT 743 7
ESP 289 4
RWG 199 2

] CoSyNE \ 98 \ 1 \

Table 1: One pole with complete state information. Comparison of various learning methods
on the basic pole balancing problem with continuous control. Results for all methods are
averages of 50 runs.

With the exception of RWG, there is a clear divide between the performance of the ontoge-
netic and phylogenetic methods, especially in terms of CPU time. For the value-based, ontogenetic
methods, evaluating and updating values can be computationally expensive. The value-function ap-
proximator must be evaluated O(|A|) times per state transition to determine the best action-value
estimate, where A is a finite set of actions. Q-MLP and AHC have a notable CPU time advantage
over SARSA because their value functions are represented compactly by neural networks which can
be evaluated quickly, while the CMAC and case-based memory are coarse-codings have memory
requirements and evaluation cost grow exponentially with the dimensionality of the state space.

In contrast, evolutionary methods do not update any agent parameters during interaction with
the environment and only need to evaluate a function approximator once per state transition since
the policy is represented explicitly.

PGRL is also quite slow as each update to the policy requires sampling O(|A|T) trajectories,
where T is the number of state transitions in the initial trajectory of each update. RPG performed
best of the ontogenetic methods, but it must be noted that the criteria for success in the referenced
work (Wierstra et al., 2007) was 10K steps instead of the 100K steps used with all the other methods
(hence the parentheses in all tables for this method).

This task poses very little difficulty for the NE methods. However, NEAT required more than
twice as many evaluations as CNE, SANE, and ESP because it explores different topologies that
initially behave poorly and require time to develop. For this task the speciation process is an
overkill—the task can be solved more efficiently by devoting resources to searching for weights
only. All observed performance differences are statistically significant (p < 0.01) except between
CNE, SANE and ESP.

951

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

Method Evaluations | CPU time
VAPS (500,000) (5days)
SARSA-CABA 15,617 6,754
SARSA-CMAC 13,562 2,034
Q-MLP 11,331 340
RWG 8,557 3
RPG (1,893) —
NEAT 1,523 15
SANE 1,212 6
CNE 724 15
ESP 589 11
CoSyNE 127 2

Table 2: One pole with incomplete state information. The table shows the number of evaluations,
CPU time, and success rate of the various methods. Results are the average of 50 simula-
tions, and all differences are statistically significant (p < 0.01). The results for VAPS are
in parenthesis since only a single unsuccessful run according to our criteria was reported
by Meuleau et al. (1999).

5.4.2 INCOMPLETE STATE INFORMATION

This task is identical to the first task except the controller only senses the cart position x and pole
angle 6. Therefore, the underlying states {x, X, 6, é} are hidden and the networks need to be recurrent
so that the velocities can be computed internally using feedback connections. This makes the task
significantly harder since it is more difficult to control the system when the concomitant problem of
velocity calculation must also be solved. We were unable to solve this task with AHC and PGRL.

To allow Q-MLP and the SARSA methods to solve this task, we extended their inputs to include
the immediately previous cart position, pole angle, and action (x;_1,6;_1,a;_1) in addition to x, 6,
and a;. This delay window of depth 1 is sufficient to disambiguate process states (Lin and Mitchell,
1992). For VAPS, the state-space was partitioned into unequal intervals, 8 for x and 6 for 6, with
the smaller intervals being near the center of the value ranges (Meuleau et al., 1999).

Table 2 compares the various methods in this task. The table shows the number of evaluations
and average CPU time for the successful runs.

The results for VAPS are in parenthesis in the table because only a single run was reported by
Meuleau et al. (1999). It is clear, however, that VAPS is the slowest method in this comparison,
only being able to balance the pole for around 1 minute of simulated time after several days of
computation (Meuleau et al., 1999). The evaluations and CPU time for the SARSA methods are
the average of the successful runs only (out 29 of 50 for SARSA-CMAC and 35 out of 50 for
SARSA-CABA). Of the value-function methods, Q-MLP fared the best, reliably solving the task
and doing so much more rapidly than SARSA.. Since both the CMAC and the cased-based memory
are local function approximators, they require a dense sampling of the state space to obtain good
value estimate. The MLP, being a global function approximator, is able to learn values for a whole
set of states every time a state is updated. This property has been considered undesirable in some
domains because updates at one state can disrupt or unlearn values at distant states. Because the

952

COOPERATIVE SYNAPSE NEUROEVOLUTION

relatively simple form of the optimal value function for this task, the MLP accelerates learning by
providing “useful” information about more of the state space on each update which is especially
useful to bootstrap learning at the beginning when there is virtually no information about the value
of most states. For more complicated value functions, the potential for instability in the MLP could
give local representations the advantage (Boyan and Moore, 1995).

The performance of the five evolutionary methods degrades only slightly compared to the pre-
vious task. CoSyNE, CNE, and ESP were two orders of magnitude faster than VAPS and SARSA,
one order of magnitude faster than Q-MLP, and approximately twice as fast as SANE and NEAT.
CoSyNE was able to balance the pole for over 30 minutes of simulated time usually within 2 seconds
of learning CPU time, and do so reliably.

The results on these first two tasks show that the single pole environment is not very challenging.
A large part of the search space represents successful solutions, so that simply choosing points at
random (i.e., RWG) can compete favorably with other ontogenetic approaches that start at one point
and then must make relatively small incremental changes to reach a solution, without not getting
stuck in a local minimum.

5.5 Results: Balancing Two Poles

The double pole problem is a better test environment for these methods, representing a significant
jump in difficulty. Here the controller must balance two poles of different lengths (1m and 0.1m)
simultaneously. The second pole adds two more dimensions to the state-space (62,92) and non-
linear interactions between the poles.

5.5.1 COMPLETE STATE INFORMATION

For this task, CoSyNE was compared with Q-MLP, CNE, SANE, ESP, NEAT, and the published re-
sults of RPG, EP, and CMA-ES. Despite extensive experimentation with many different parameter
settings, we were unable to get the SARSA methods to solve this task within 12 hours of computa-
tion.

Table 3 shows the results for the two-pole configuration with complete state information. Q-
MLP compares very well to the NE methods with respect to evaluations, in fact, better than on
task 1b, but again lags behind SANE, ESP and NEAT by nearly an order of magnitude in CPU
time. ESP and NEAT are statistically even in terms of evaluations, requiring roughly three times
fewer evaluations than SANE. In terms of CPU time, ESP has a slight but statistically significant
(p < 0.01) advantage over NEAT. This is an interesting result because the two methods take such
different approaches to evolving neural networks. NEAT is based on searching for an optimal
topology, whereas ESP, like CoSyNE, optimizes a single, general topology (i.e., fully recurrent
networks). At least in the difficult versions of the pole balancing task, the performance of these two
approaches is very similar.

CMA-ES required the fewest number of evaluations, 59 less than CoSyNE on average, although
we do not have the CMA-ES run data to test for statistical significance.

5.5.2 INCOMPLETE STATE INFORMATION

Although the previous task is difficult, the controller has the benefit of complete state information.
In this task, as in task 1b, the controller does not have access to the velocities, that is, it does not
know how fast or in which direction the poles are moving.

953

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

Method Evaluations | CPU time
RWG 474,329 70
EP 307,200 —
CNE 22,100 73
SANE 12,600 37
Q-MLP 10,582 153
RPG (4,981) —
NEAT 3,600 31
ESP 3,800 22
CoSyNE 954 4
CMA-ES 895 —

Table 3: Two poles with complete state information. The table shows the number of pole bal-
ancing attempts (evaluations) and CPU time required by each method to solve the task.
Evolutionary Programming data is taken from Saravanan and Fogel (1995), CMA-ES from
Igel (2003). Q-MLP, CNE, SANE, NEAT, ESP, CoSyNE data are the average of 50 sim-
ulations, and all differences are statistically significant (p < 0.01) except the number of
evaluations for NEAT and ESP.

Gruau et al. (1996b) were the first to tackle the two-pole problem without velocity information.
Although they report the performance for only one simulation, we include their results to put the
performance of the other methods in greater perspective. None of the value-function methods we
tested made noticeable progress on the task after approximately 12 hours of computation. Therefore,
in this task, only the evolutionary methods are compared.

To accommodate a comparison with CE, controllers were evolved using both the standard fitness
function used in the previous tasks and also the “damping” fitness function used by Gruau et al.
(1996b). The damping fitness is the weighted sum of two separate fitness measurements (0.1f; +
0.9f,) taken over a simulation of 1000 time steps:

f, =1,/1000,

0 ift <100

fo= 0.75 .
T : -~ i - otherwise,
Yit-100([X'|+[X'|+[67|+[63)

where t is the number of time steps the poles were balanced out of the first 1000 steps. This complex
fitness is intended to force the network to compute the pole velocities, and avoid solutions that
balance the poles by merely swinging them back and forth (i.e., without calculating the velocities).
Table 4 compares the “surviving” methods for both fitness functions. To determine when the
task was solved for the damping fitness function, the best controller from each generation was tested
using the standard fitness to see if it could balance the poles for 100K time steps. The results for CE
are in parenthesis in the table because only a single run was reported by Gruau et al. (1996b).
Using the damping fitness, CMA-ES, ESP, CNE, NEAT, and CoSyNE required two orders of
magnitude fewer evaluations than CE. ESP was three times faster than CNE using either fitness

954

COOPERATIVE SYNAPSE NEUROEVOLUTION

Method Evaluations
Standard fitness | Damping fitness
RWG 415,209 1,232,296
CE — (840,000)
SANE 262,700 451,612
CNE 76,906 87,623
ESP 7,374 26,342
NEAT — 6,929
RPG (5,649) —
CMA-ES 3,521 6,061
CoSyNE 1,249 3,416

Table 4: Two poles with incomplete state information. The table shows the number of evaluations
for CNE, NEAT, and ESP using the standard fitness function (middle column), and using
the damping fitness function (right column). Results are the average of 50 simulations for
all methods except CE which is from a single run. All results are statistically significant
(p<0.01).

function, with CNE failing to solve the task about 40% of the time, and NEAT, using small popu-
lations of size 16 (Stanley, 2004) performed nearly as well as CMA-ES (damping function). RPG
was the only ontogenetic method to make significant progress in this task, again, however, only up
to 10K time-steps of balancing.

On this most difficult task CoSyNE outperformed the next best method, CMA-ES, by a factor
of two on both fitness functions.

6. Discussion

The results of the comparisons show that the phylogenetic methods (i.e., neuroevolution) are more
efficient on this set of tasks than the ontogenetic methods. In the single pole tasks, the value-based
ontogenetic methods were outperformed by random search. Our hope is that these results will help
put an end to the use of this task for evaluating artificial learning systems. On the more difficult
two-pole tasks, only Q-MLP was able to solve the completely observable version (task 2a), and
none of the ontogenetic methods could solve the partially observable one (task 2b). In contrast, all
of the neuroevolution methods scaled up to the most difficult tasks, with CMA-ES and CoSyNE
leading the pack.

The most challenging of the tasks exhibit many of the dimensions of difficulty found in real
world control problems: (1) continuous state and action spaces, (2) partial observability, and (3)
non-linearity. The first two are problematic for value-based reinforcement learning methods because
they either complicate the representation of the value function or the access to it. Neuroevolution
deals with them by evolving recurrent networks; the networks can compactly represent arbitrary
temporal, non-linear mappings. The success of CoSyNE on tasks of this complexity suggests that
it can be applied to the control of real systems that manifest similar properties—specifically, non-
linear, continuous systems such as aircraft control, satellite detumbling, and robot bipedal walking.

955

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

Other types of environments that are discrete or discontinuous, such as game-playing, job-shop
scheduling, and resource allocation may be better served by other learning or optimization strate-
gies.

The CoSyNE implementation used in this paper permuted all members of a subpopulation each
generation. This means that it is possible for the networks evaluated in a given generation to not
contain any combinations of weights found in the networks of the previous generation. While this
maximizes the amount of exploration performed by sampling new networks, good weight com-
binations may be lost that could lead to a solution more efficiently. This aggressive exploration
could become a problem for large networks, such as those that use very high-dimensional vision
inputs. Future work will begin by investigating schemes for assigning permutation probabilities to
weights (e.g., fitness proportional) in order to retain potential useful building blocks in the system
and facilitate search in larger network spaces.

7. Conclusion

Reinforcement learning can in principle be used to control real world systems, but conventional
methods scale poorly to large state-spaces and non-Markov environments. In this paper, we have
shown that for a set of benchmark tasks that exhibit many of the key dimensions of difficulty found
in real world control problems, neuroevolution in general, and CoSyNE in particular, can solve
these problems much more reliably and efficiently than non-evolutionary reinforcement learning
approaches.

Appendix A. Pole-balancing Equations

The equations of motion for N unjointed poles balanced on a single cart are

g FHesan(d) + 3%, R

M+ 3N, i
e 3 . ; - Upiéi
6 = 4—Ii(xcose.+gsme.+ e),
where IE. is the effective force from the ith pole on the cart,
= miliéizsinei + Zmi cosei(“piei +gsing;),
ili

and rfi; is the effective mass of the it" pole,

3
M = m; (1 — Zcos2 0).
Parameters used for the single pole problem:

956

COOPERATIVE SYNAPSE NEUROEVOLUTION

| Sym. | Description | Value \
X Position of cart on track [-24,24]m
S Angle of pole from vertical | [-12,12] deg.
F Force applied to cart -10,10 N
| Half length of pole 0.5m
M Mass of cart 1.0 kg
m Mass of pole 0.1 kg
Parameters for the double pole problem.
| Sym. | Description | Value |
X Position of cart on track [-2.4,2.4] m
0 Angle of pole from vertical | [-36,36] deg.
F Force applied to cart [-10,10] N
li | Half length of i™™ pole l; =0.5m
I, =0.05m
M Mass of cart 1.0 kg
m; | Mass of i'" pole m; = 0.1 kg
my = 0.01 kg
e | Coefficient of friction 0.0005
of cart on track
Hp | Coefficient of friction 0.000002
if i!" pole’s hinge

Appendix B. Parameter Settings Used in Pole Balancing Comparisons

Below are the parameters used to obtain the results for Q-MLP, SARSA-CABA, SARSA-CMAC,
CNE, SANE, ESP, and NEAT. The parameters for VAPS (Meuleau et al., 1999), RPG (Wierstra
etal., 2007), CMA-ES (lgel, 2003), EP (Saravanan and Fogel, 1995), and CE2 (Gruau et al., 1996b)
along with a detailed description of each method can be found in the cited papers.

Table 5 describes the parameters common to all of the value function methods.

| Parameter | Description

|

€ greediness of policy
a learning rate

y discount rate

A eligibility

Table 5: All parameters have a range of (0,1).

957

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

Q-MLP
Parameter Task
la | 1b | 2a
€ 0.1 |0.1]0.05
o 04 (04| 0.2
% 0909 09
A 0 0 0

For all Q-MLP experiments the Q-function network had 10 hidden units and the action space was
guantized into 26 possible actions: +0.1,0.25,0.5,1,2,3,4,5,6,7,8,9,10.

SARSA-MLP
Parameter Task
la | 1b | 2a
€ 0.1 |0.1]0.05
o 04 (04| 01
% 0909 09
A 0 0 | 03

For all Q-MLP experiments the Q-function network had 10 hidden units and the action space was
guantized into 26 possible actions: +0.1,0.25,0.5,1,2,3,4,5,6,7,8,9,10.

SARSA-CABA
Parameter Task

la | 1b
Tqg 0.03 | 0.03
T 0.05 | 0.05
T 01 | 01
€ 0.05 | 0.05
a 04 | 01
% 0.99 | 0.99
A 04 | 04

T4 is the density threshold, T and T} are the smoothing parameters for the input and output spaces,

respectively. See Santamaria et al. (1998) for a more detailed description of the Case-Based Memory
architecture.

958

SARSA-CMAC

COOPERATIVE SYNAPSE NEUROEVOLUTION

Parameter Task
la 1b
€ 0.05 0.05
a 04 0.1
Y 0.9 0.9
A 0.5 0.3
No. of tilings | 45: 50:

10 based on x, X, 01
5 based on x,6

5 based on x, 6

5 based on x, 0

5 based on x

5 based on x

5 based on 6

5 based on 8

10 based on ¢, %¢_1, 6
10 based on X, 6¢,6;_1
5 based on x;, 6;

5 based on x¢_1, 6;_1
5 based on x;

5 based on x¢_1

5 based on 6;

5 based on 6;_1

where x; and 6, are the cart position and pole angle at time t. Each variable was divided in to 10
intervals in each tiling. For a more complete explanation of the CMAC architecture see Santamaria
etal. (1998).

SANE
Parameter Task
1(a,b) \ 2(a,b)
no. of neurons 100 200
no. of blueprints 50 100
evals per generation | 200 400
size of networks 5 7
The mutation rate for all runs was set to 10%.
CNE
Parameter Task
la | 1b | 2a | 2b
no. of networks | 200 | 200 | 400 1000
size of networks | 5 5 5 | rand [1..9]
burst threshold 10 | 10 | 10 15

The mutation rate for all runs was set to 40%. Burst threshold is the number of generations after
which burst mutation is activated if the best network found so far is not improved upon. CNE
evaluates each of the networks in its population once per generation.

959

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

ESP
Parameter Task
la [1b [2a | 2b
network type FF | FR | FF | FR

initial no. of subpops 5 5 5 5
size of subpopulations | 20 | 20 | 40 | 100
evals per generation 200 | 200 | 400 | 1000
burst threshold 10 | 10 | 10 5

The mutation rate for all runs was set to 40%. Burst threshold is the number of generations after
which burst mutation is activated if the best network found so far is not improved upon. FF denotes
a feed-forward network, whereas FR denotes a fully recurrent network.

Acknowledgments

This research was partially funded by the following grants: NSF EIA-0303609, NSF 11S-0083776,
THECB (Texas Higher Education Coordinating Board) ARP-003658-476-2001, and CSEM Alp-
nach and the EU MindRaces project: FP6 511931.

References

J. S. Albus. A new approach to manipulator control: The cerebellar model articulation controller
(CMAQC). Journal of Dynamic Systems, Measurement, and Control, 97(3):220-227, 1975.

C. W. Anderson. Learning to control an inverted pendulum using neural networks. IEEE Control
Systems Magazine, 9:31-37, 1989.

C. W. Anderson. Strategy learning with multilayer connectionist representations. Technical Report
TR87-509.3, GTE Labs, Waltham, MA, 1987.

L. C. Baird and Andrew W. Moore. Gradient descent reinforcement learning. In Advances in Neural
Information Processing Systems 12, 1999.

R. K. Belew, J. Mclnerney, and N. N. Schraudolph. Evolving networks: Using the genetic algorithm
with connectionist learning. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors,
Proceedings of the Workshop on Artificial Life (ALIFE ’90). Reading, MA: Addison-Wesley,
1991. ISBN 0-201-52570-4.

J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely approximating the
value function. In Advances in Neural Information Processing Systems 7, 1995.

B. Bryant and R. Miikkulainen. Neuroevolution of adaptive teams: Learning heterogeneous behav-
ior in homogeneous multi-agent systems. In Congress in Evolutionary Computation, Canberra,
Australia, 2003.

960

COOPERATIVE SYNAPSE NEUROEVOLUTION

P. J. Darwen. Co-Evolutionary Learning by Automatic Modularization with Speciation. PhD thesis,
University College, University of New South Wales, November 1996.

R. Eriksson and B. Olsson. Cooperative coevolution in inventory control optimization. In Pro-
ceedings of 3rd International Conference on Artificial Neural Networks and Genetic Algorithms,
1997.

F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior. Adaptive
Behavior, 5:317-342, 1997.

F. Gomez, D. Burger, and R. Miikkulainen. A neuroevolution method for dynamic resource alloca-
tion on a chip multiprocessor. In Proceedings of the INNS-IEEE International Joint Conference
on Neural Networks, pages 2355-2361, Piscataway, NJ, 2001. IEEE.

F. J. Gomez. Robust Nonlinear Control through Neuroevolution. PhD thesis, Department of Com-
puter Sciences, The University of Texas at Austin, August 2003. Technical Report Al-TR-03-303.

F. J. Gomez and R. Miikkulainen. Active guidance for a finless rocket using neuroevolution. In
E. Cant-Paz et al., editor, Proceedings of the Genetic Evolutionary Computation Conference
(GECCO-03). Springer-VerlagBerlin; New York, 2003.

D. Grady. The vision thing: Mainly in the brain. Discover, 14:57-66, June 1993.

U. Grasemann and R. Miikkulainen. Effective image compression using evolved wavelets. In Pro-
ceedings of the Genetic Evolutionary Computation Conference (GECCO-05), New York, 2005.
ACM. ISBN 1-59593-010-8.

B. Greer, H. Hakonen, R. Lahdelma, and R. Miikkulainen. Numerical optimization with neuroevo-
lution. In Proceedings of the 2002 Congress on Evolutionary Computation (CEC2002), 2002.

F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and direct encod-
ing for genetic neural networks. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference, pages 81-89,
Cambridge, MA, 1996a. MIT Press.

F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and direct encoding
for genetic neural networks. Technical Report NC-TR-96-048, NeuroCOLT, 1996b.

G. Grudic. Simulation code for policy gradient reinforcement learning.
http://www.cis.upenn.edu/ grudic/PGRLSIim/, 2000.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159-195, 2001.

S. A. Harp, T. Samad, and A. Guha. Towards the genetic synthesis of neural networks. In Proceed-
ings of the Third International Conference on Genetic Algorithms, pages 360-369, 1989.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780,
1997.

961

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field
Guide to Dynamical Recurrent Neural Networks. IEEE Press, 2001.

J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms. In D. A. Waterman
and F. Hayes-Roth, editors, Pattern-Directed Inference Systems. Academic Press, New York,
1978.

J. Horn, D. E. Goldberg, and K. Deb. Implicit niching in a learning classifier system: Nature’s way.
Evolutionary Computation, 2(1):37-66, 1994.

P. Husbands and F. Mill. Simulated co-evolution as the mechanism for emergent planning and
scheduling. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 264-270. San Francisco, CA: Morgan Kaufmann,
1991. ISBN 1-55860-208-9.

C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In R. Reynolds,
H. Abbass, K. C. Tan, B. McKay, D. Essam, and T. Gedeon, editors, Congress on Evolutionary
Computation (CEC 2003), volume 4, pages 2588-2595. IEEE, 2003.

J.-S. R. Jang. Self-learning fuzzy controllers based on temporal backpropagation. IEEE Transac-
tions on Neural Networks, 3(5):714-723, September 1992.

T. Jansen and R. P. Wiegand. The cooperative coevolutionary (1+1) ea. Evolutionary Computation,
12(4), 2004.

T. Jansen and R. P. Wiegand. Exploring the explorative advantage of the CC (1+1) ea. In E. Cant-Paz
et al., editor, Proceedings of the Genetic Evolutionary Computation Conference (GECCO-03).
Springer-VerlagBerlin; New York, 2003.

D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf, C. Taylor, and A. Wang. Evolu-
tion as a theme in artificial life: The Genesys/Tracker system. In C. G. Langton, C. Taylor, J. D.
Farmer, and S. Rasmussen, editors, Proceedings of the Workshop on Artificial Life (ALIFE ’90).
Reading, MA: Addison-Wesley, 1991. ISBN 0-201-52570-4.

H. Kitano. Designing neural networks using genetic algorithms with graph generation system.
Complex Systems, 4:461-476, 1990.

J. R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1991.

L.-J. Lin. Self-improving reactive agents based on reinforcement learning, planning, and teaching.
Machine Learning, 8(3):293-321, 1992.

L.-J. Lin and T. M. Mitchell. Memory approaches to reinforcement learning in non-Markovian
domains. Technical Report CMU-CS-92-138, Carnegie Mellon University, School of Computer
Science, May 1992,

A. Lubberts and R. Miikkulainen. Co-evolving a go-playing neural network. In Coevolution: Turn-
ing Adaptive Algorithms Upon Themselves, Birds-of-a-Feather Workshop, Genetic and Evolu-
tionary Computation Conference (GECCO-2001), 2001.

962

COOPERATIVE SYNAPSE NEUROEVOLUTION

M. Mandischer. Representation and evolution of neural networks. In R.F. Albrecht, C.R. Reeves,
and N.C. Steele, editors, Proceedings of the Conference on Artificial Neural Nets and Genetic
Algorithms at Innsbruck, Austria, pages 643-649. Springer-Verlag, 1993.

N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling. Learning finite state controllers for partially
observable environments. In 15th International Conference of Uncertainty in Al, 1999.

D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control. In E. Dale and
D. Michie, editors, Machine Intelligence. Oliver and Boyd, Edinburgh, UK, 1968.

G. Miller and D. Cliff. Co-evolution of pursuit and evasion i: Biological and game-theoretic foun-
dations. Technical Report CSRP311, School of Cognitive and Computing Sciences, University
of Sussex, Brighton, UK, 1994,

D. E. Moriarty. Symbiotic Evolution of Neural Networks in Sequential Decision Tasks. PhD thesis,
Department of Computer Sciences, The University of Texas at Austin, 1997. Technical Report
UT-AI97-257.

S. Nolfi and D. Parisi. Learning to adapt to changing environments in evolving neural networks.
Technical Report 95-15, Institute of Psychology, National Research Council, Rome, Italy, 1995.

L. Panait, S. Luke, and J. F. Harrison. Archive-based cooperative coevolutionary algorithms. In
GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary compu-
tation, pages 345-352, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-186-4. doi:
http://doi.acm.org/10.1145/1143997.1144060.

J. Paredis. Steps towards co-evolutionary classification neural networks. In R. A. Brooks and
P. Maes, editors, Proceedings of the Fourth International Workshop on the Synthesis and Simu-
lation of Living Systems (Artificial Life IV), pages 102-108. Cambridge, MA: MIT Press, 1994.
ISBN 0-262-52190-3.

J. Paredis. Coevolutionary computation. Artificial Life, 2:355-375, 1995.

A. S. Perez-Bergquist. Applying ESP and region specialists to neuro-evolution for Go. Technical
Report CSTRO01-24, Department of Computer Sciences, The University of Texas at Austin, 2001.

J. B. Pollack, A. D. Blair, and M. Land. Coevolution of a backgammon player. In C. G. Langton and
K. Shimohara, editors, Proceedings of the 5th International Workshop on Artificial Life: Synthesis
and Simulation of Living Systems (ALIFE-96). Cambridge, MA: MIT Press, 1996. ISBN 0-262-
62111-8.

M. A. Potter and K. A. De Jong. Evolving neural networks with collaborative species. In Proceed-
ings of the 1995 Summer Computer Simulation Conference, 1995.

C. D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University of California, San
Diego, San Diego, CA, 1997.

J. C. Santamaria, R. S. Sutton, and A. Ram. Experiments with reinforcement learning in problems
with continuous state and action spaces. Adaptive Behavior, 6(2):163-218, 1998.

963

GOMEZ, SCHMIDHUMBER AND MIIKKULAINEN

N. Saravanan and D. B. Fogel. Evolving neural control systems. IEEE Expert, pages 23-27, June
1995.

K. O. Stanley. Efficient Evolution of Neural Networks Through Complexification. PhD thesis,
Department of Computer Sciences, The University of Texas at Austin, August 2004. Technical
Report Al-TR-04-314.

K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary Computation, 10:99-127, 2002.

R. S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural
Information Processing Systems 8, pages 1038-1044. Cambridge, MA: MIT Press, 1996.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998. ISBN 0-262-19398-1.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in Neural Information Processing Systems
12, volume 12, pages 1057-1063. MIT Press, 2000.

G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8:257-277, 1992.

H. M. Voigt, J. Born, and I. Santibanez-Koref. Evolutionary structuring of artificial neural networks.
Technical report, Technical University Berlin, Bio- and Neuroinformatics Research Group, 1993.

C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279-292, 1992.

P. Werbos. Backpropagation through time: what does it do and how to do it. In Proceedings of
IEEE, volume 78, pages 1550-1560, 1990.

B. A. Whitehead and T. D. Choate. Cooperative—competitive genetic evolution of radial basis func-
tion centers and widths for time series prediction. IEEE Transactions on Neural Networks, 1995.

S. Whiteson, N. Kohl, R. Miikkulainen, and P. Stone. Evolving keepaway soccer players through
task decomposition. In E. Cant-Paz et al., editor, Proceedings of the Genetic Evolutionary Com-
putation Conference (GECCO-03). Springer-VerlagBerlin; New York, 2003.

D. Whitley, S. Dominic, R. Das, and Charles W. Anderson. Genetic reinforcement learning for
neurocontrol problems. Machine Learning, 13:259-284, 1993.

R. P. Wiegand. An Analysis of Cooperative Coevolutionary Algorithms. PhD thesis, George Mason
University, Fall 2003.

R. P. Wiegand, W. C. Liles, and K. A. De Jong. An empirical analysis of collaboration methods
in cooperative coevolutionary algorithms. In L. Spector et al., editor, Proceedings of the Ge-
netic and Evolutionary Computation Conference, pages 1235-1242. San Francisco, CA: Morgan
Kaufmann, 2001. ISBN 1-55860-774-9. URL ci t eseer. i st. psu. edu/ 481900. ht i .

964

COOPERATIVE SYNAPSE NEUROEVOLUTION

A. Wieland. Evolving neural network controllers for unstable systems. In Proceedings of the
International Joint Conference on Neural Networks (Seattle, WA), pages 667-673. Piscataway,
NJ: IEEE, 1991.

D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Solving deep memory pomdps with recur-
rent policy gradients. In International Conference on Artificial Neural Networks, 2007.

B. Yamauchi and R. D. Beer. Integrating reactive, sequential, and learning behavior using dynamical
neural networks. In D. Cliff, P. Husbhands, J.-A. Meyer, and S. W. Wilson, editors, From Animals
to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Be-
havior, pages 382-391. Cambridge, MA: MIT Press, 1994. ISBN 0-262-53122-4.

X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-1447, 1999.

965

