
Pareto Efficient Design for Reconfigurable
Streaming Applications on CPU/FPGAs

Jun Zhu, Ingo Sander, Axel Jantsch
Royal Institute of Technology, Stockholm, Sweden

{junz, ingo, axel}@kth.se

Abstract—We present a Pareto efficient design method
for multi-dimensional optimization of run-time reconfigurable
streaming applications on CPU/FPGA platforms, which automat-
ically allocates applications with optimized buffer requirement
and software/hardware implementation cost. At the same time,
application performance is guaranteed with sustainable through-
put during run-time reconfigurations. As the main contribu-
tion, we formulate the constraint based application allocation,
scheduling, and reconfiguration analysis, and propose a design
Pareto-point calculation flow. A public domain solver - Gecode is
used in solutions finding. The capability of our method has been
exemplified by two cases studies on applications from media and
communication domains.

I. INTRODUCTION

To deliver high performance streaming media applications
with reduced design costs and time-to-market, there are trends
in embedded system design to use combined components of
multi-CPU and custom circuits in commercial off-the-shelf
(COTS) FPGAs, the so called hybrid multi-CPU/FPGAs [1].
While free FPGA gates are customized as application-specific
reconfigurable components for performance-critical functions
and CPUs as execution engines for software, such COTS chips
can be used as embedded platforms with high throughput and
run-time reconfiguration (RTR) requests [2]. One pragmatic
application of them, for instance, is being used in a roaming
smart-phone with reconfigurable communication protocols.

Unfortunately, the design space exploration techniques and
optimization methodologies on hybrid multi-CPU/FPGAs are
still immature. The difficulties exit in two categories:
• While applications scheduling with resource con-

straints on multi-processors has been know to be NP-
complete [3], the reconfiguration analysis even increases
the design complexity.

• To design systems that use less resources (cost) with-
out losing performance guarantees, the decision-making
over diversified COTS platforms remains difficult. For
instance, the XC5VFX devices in Xilinx Virtex-5 family
cover a wide range of 380∼2280KB reconfigurable logic
blocks and up to two PowerPC cores [4].

To design predictable streaming applications, synchronous
data flow (SDF) model [5] has been widely used. An example
SDF application is depicted in Fig. 1(a). The nodes denote
computation processes, and the edges denote communication
channels associated with FIFO buffers. Each time a process
executes, it consumes (produces) a fixed token rate from input-
side (into output-side) FIFOs. These numbers are denoted as
symbols at the each side of channels. For instance, process

(a) Example application model
(is reconfigurable)

(b) Design specifications
(has two working modes)

- 1
3(2) 2(1)

2 1

SW HW
WCETHW reconfig.

OH

-

-
2

1

1
1 2

2

-

Cost
SW HW

Fig. 1: An example reconfigurable SDF application model and
its design specifications on a CPU/FPGA platform.

pj consumes 2 tokens from channel chi,j and produces 1
token into channel chj,k on each invocation (firing). A process
is enabled and ready for execution when both the input-side
FIFOs have sufficient data tokens and the output-side FIFOs
have enough vacant space. While a process is computing, the
data tokens remain in input-side FIFOs until the computation
is completed and the output results are available in output-
side FIFOs at the end of each execution. Especially, the
computation of pj is reconfigurable with two working modes.
Each process (working mode) has a worst case execution
time (WCET) when it is partitioned as either SW or HW.
While software (SW) reconfigurations correspond to process
context switch on processors, the overhead (OH) is negligible
compared with process execution time. The hardware (HW)
reconfiguration OH to manipulate reconfigurable logics on
FPGAs at run-time is non-trivial, during which the compu-
tation is stalled. Assuming a specified number of processors
on each chip, the implementation cost of each process is
either the size of SRAM storage for SW or the area of logic
blocks and (reconfiguration) memory for HW. In Fig. 1(b), the
design specifications (normalized) to implement the illustrative
application on a single-CPU/FPGA platform are exemplified.

Motivation. Given the example application and its design
specifications in Fig. 1, we explore three design options and
analyze their reconfiguration scheduling. With design option
A (pi and pj partitioned to HW and pk to SW), the schedule
is illustrated in Fig. 2(a). The time range of the scheduling
evolves horizontally, while the process and FIFO status are
listed out vertically, i.e., at each time tag a process in executing
state has a number to denote the remaining execution time
slots, a FIFO status is denoted as the using storage space
in tokens, and processes with stalled computation or FIFOs
not used have otherwise blank status. At time tag 0, pi starts
the execution and requires space 1 for one output token on
FIFO i,j . At time tag 1, pi finishes the previous firing, outputs
1 result token, and starts a new firing. As the scheduling
evolves, the schedule enters a periodic phase from time tag

Periodic phase A Periodic phase BReconfiguration stall

1 1 1 1 1 1 1 1
2 1 2 1 1

1 1 1
1 2 3 3 2 3 3 2 3 3 3 2 3 3

1
1

1 1 1 1 1 1 1 1 0 1

(c) Design option C:

1 1 1 1 1 1 1 1
2 1 2 1 1

1 1 1
1 2 3 3 2 3 3 2 3 3 3 2 3 3

1
1

1 1 1 2 1 1 1 1 1 1 1

2 2 2

(a) Design option A:

1 1 1 1 1 1 1 1 1
3 2 1 3 2 1 2 1

1 1 1
1 2 3 4 4 3 4 4 3 4 4 3

1 1 1 2 1 1 1 1 1 1

(b) Design option B:

(d) Design pareto points: A and C
(A dominates)

0

3
1 3

5

1

Cost

5
6
4

SW HW
Design
option

A
B
C

FIFO

B

Fig. 2: Example application scheduling (pj has two working
modes A and B) and design Pareto points.

4 to 6, in which pj works in mode A (with WCET 2 slots).
From time tag 8, pj starts the reconfiguration1 with an OH 2
and switches to working mode B (with WCET 1 slot). Again,
the schedule enters another periodic phase from time tag 10 to
12. The application throughput is guaranteed in both periodic
phases, since all processes have the same execution iterations
in a time period 3. In addition, the application throughput
is guaranteed even during mode transition, e.g., between time
tags 4, 7, and 10 the sink process pk always executes once. For
each FIFO, the required FIFO size is the maximal buffer usage
in scheduling. Similarly, the reconfiguration scheduling of two
other design options are illustrated in Fig. 2(b-c), in which
pj is implemented in SW in design option B with neglected
reconfigurable OH. Apparently, all design options have the
same application throughput guarantees. Their SW/HW cost,
and FIFO buffer requirement are evaluated in Fig. 2(d).
Although these quantities have a partial order to indicate the
precedence of design options, A dominates B in the sense that
the former one is always preferred with not worse (bigger)
evaluations on all criteria. The set of optimal design options
A and C are called Pareto points [6], i.e., either one has at
least one criteria better than the other (A has less HW cost,
and B has less SW and FIFO cost). In this paper, we use Pareto
points to indicate the trade-offs of multiple criteria in design
space exploration, which can not be optimized independently.
However, a systematic way to calculate design Pareto points
in reconfigurable streaming applications is still lacking.

As the contribution in this paper, we propose a new Pareto
efficient design framework for reconfigurable SDF stream-
ing applications on hybrid multi-CPU/FPGAs platforms. The
problem is formulated as constraint based allocation and
scheduling of streaming applications with guaranteed through-
put even during the run-time reconfigurations. The pruned
Pareto-optimal points found can be used in cost-efficient
selection from variably priced CPU/FPGA platforms.

This paper is structured as follows: the related work is
introduced in Section II. Our application model and archi-
tecture platform are introduced in Section III. We present our
constraint based framework for design Pareto-point calculation

1For clarity, we fix the reconfiguration time slot to 8. But, our method to
be presented in Section IV is more general and fits run-time reconfigurations.

in Section IV. Section V shows our experimental results.
Finally, Section VI concludes the paper.

II. RELATED WORK

Bilsen et al. [7] first present cyclo-static dataflow model,
which supports cyclically changing of the number of tokens
produced and consumed by processes. Since the mode chang-
ing behavior is predefined at compile-time, static schedules can
be constructed when the necessary and sufficient conditions
for scheduling hold. Furthermore, the buffer requirement is
analyzed for cyclo-static dataflow models according to the
specified throughput requirement in [8]. However, the mode
changing problem to be addressed in this paper is more
challenging in the sense that the reconfigurations are only
known at run-time (unpredictable at compile-time).

In [9], simulation based techniques have been introduced
for the analysis of different performance metrics of scenario-
aware SDF models with stochastic mode changes. Schedu-
lability analysis and reconfiguration methods for multi-mode
(adaptive) real-time systems has been studied in [10, 11],
where each mode consists of different tasks. They develop
mode change protocols in mode transition stages, and exploit
analysis techniques to ensure that no deadlines are violated
during the transition periods. On RTR hybrid CPU/FPGAs,
Yuan et al. [12] address SW/HW partitioning and scheduling
of task graphs with the objective of maximizing application
throughput. All these work do not address multi-dimensional
optimization on platform resource, as we do in this paper.

An inspiring Pareto calculator has been proposed for the op-
timization of multi-dimensional space of attributes [6], which
is a tool for general compositional computations. It has been
used to calculate optimized design options for MPEG-4 media
on mobile devices via a wireless connection, with the trade-
offs on the quality of the video, energy consumption and trans-
mission latency. Based on our previous work on performance
analysis of SDF applications on reconfigurable FPGA [13]
with integer linear programming (ILP) techniques, and the
constraint based scheduling on a hybrid (non-reconfigurable
and static allocation) SW/HW architectures [14], we propose,
in contrast to the existing work, a new constraint based
framework for SW/HW allocation, scheduling, and run-time
reconfiguration analysis of SDF streaming applications on
multi-CPU/FPGA platforms. A design Pareto-point calculation
flow for SW/HW and buffer cost efficient design is proposed
to integrate with domain specific composable (linear and non-
linear) constraints.

III. APPLICATION AND ARCHITECTURE MODELS

We consider a subset of SDF models, which are said to be
consistent [5]. Given a producer-consumer processes pi and
pj with channel chi,j , pi has output rate ni,j and pj has input
rate mi,j . For consistent SDF models, pi and pj can run in
a repetitive pattern with non-trivial (non-zero) firing times ri
and rj , where ri and rj are the minimum integer solutions of
a set of balance equations for all channels in the model.

ri · ni,j = rj ·mi,j (1)

A vector of the non-trivial firing times for each process in the
model is called repetition vector. A regular SDF model can
be transformed (expanded) to an equivalent homogeneous SDF
(HSDF) model with all input/output rate 1, but this transfor-
mation dramatically increases the problem size (Section V).
Hence, we work on regular SDF models directly.

+

RTOS

CPUs

FPGA

Configuration
Slot

Configuration

Reconfigurable Area

Non-reconfigurable Area

Controller

Memory

Control

Configuration

Reconfiguraion

Config n

Config 1
Buffer

SRAM

Fig. 3: Partially RTR CPU/FPGA architecture model.

The partially RTR multi-CPU/FPGA architecture is illus-
trated in Fig. 3. There are CPUs dedicated to SW processes and
custom circuits to HW processes. While the cost of memory
(SRAM) and custom circuits on FPGAs is determined by
application allocation decision, the buffer requirement depends
heavily on scheduling policies (RTOS). Given a reconfigurable
process allocated as HW, new functionality can be loaded from
the configuration memory into the configuration slot (recon-
figurable circuits in FPGA) specified by the reconfiguration
control. Since this loading takes time (reconfiguration stall),
the system timing might be violated without reconfiguration
analysis. On the other hand, processes improperly imple-
mented as SW might degrade system performance, especially
when the number of processors is limited. It is critical to meet
throughput guarantees even during the run-time reconfigura-
tion transitions.

Our work is based on the following assumptions:
• The reconfiguration of one process does not interfere the

working of other running processes on such a partially
RTR CPU/FPGAs platform.

• The hard-core multi-processors are homogeneous, on
which each process has the same WCET being mapped
onto different processors, e.g., PowerPC on Virtex-5.

• The cost to implement processes as either SW or HW is
known at design-time in specifications.

IV. METHODOLOGY

Here, we present our methodology and constraint based
framework. The problem has been formulated as both linear
and non-linear (e.g., multiplication) constraints. The time tag
t in our formulation is discrete numbers with t ∈ N0, when it
is not otherwise clarified.

A. Allocation and mapping

A set of boolean decision variables µi denote whether each
process pi is allocated to CPUs (µi = 0) or FPGAs (µi = 1).
We assume that different computation iterations (instances) of
a process allocated to CPUs can only execute on one specified
processor. Then, a set of boolean variables αi,µpn

indicate the
presence of pi on processor µpn, with αi,µpn ≡ 0 for processes

allocated to FPGAs. Processes allocation and mapping can be
formalized as the following.

Constraint 1. (Allocation & mapping) While each process pi
can be allocated to CPUs or FPGAs, a process allocated to
CPUs needs one (and only one) processor for different process
instances. ∑

µpn∈U

αi,µpn
= ¬µi, ∀pi ∈ P (2)

in which P is the set of processes in application models, and
U is the set of processors in the architecture platform.

The mapping problem on homogeneous multi-processors
contains symmetries, i.e., for some mapping decisions, there
are duplicated equivalent solutions in the searching space.
Thus, we apply a stronger restriction (Eq. 3) to order the
processors in allocation to exclude revisiting symmetrically
equivalent states.∑

i

2iαi,µpn
>
∑
i

2iαi,µpn+1 , ∀µpn, µpn+1 ∈ U (3)

in which the equality holds when neither of the consecutive
processors µpn and µpn+1 has processes allocated.

B. Extended execution semantics

In our previous work [14], event models based on cumu-
lative functions were used to capture process working load
and pressing capabilities. For instance, in the example SDF
application in Fig. 1(a), an arrival function Ri,j(t) is defined
as the accumulated data tokens arrived in chi,j until time tag
t, a service function Ci,j(t) is defined as the accumulated data
tokens consumed by pj until time tag t, and a demand function
Di,j(t) captures the extra output buffer space requirement
when pi is executing as defined in the following.

Di,j(t) =
{
Ri,j(t) + ni,j , if pi is executing;
Ri,j(t), if pi is stalling. (4)

Accordingly, the execution semantics of SDF applications has
been formalized (refer to [14]). For instance, the buffer usage
in scheduling (denoted as numbers for each FIFO in Fig. 2)
can be derived as the following.

Property 1. (Buffer usage) In scheduling, the buffer space in
usage B′i,j(t) for FIFO i,j is the difference between Di,j(t)
and Ci,j(t) plus an offset of the initial data tokens B0

i,j in
FIFO i,j .

B′i,j(t) = Di,j(t)− Ci,j(t) +B0
i,j (5)

In this paper, we extend the execution semantics to be
allocation aware, and captures the run-time reconfiguration
of the reconfigurable process as well. Besides the allocation
decision variables µi, we use a boolean function ξ(t) to denote
the working mode at time tag t of the reconfigurable process
pj , i.e., ξ(t) = 0 indicates that pj works in mode A , otherwise
pj is in (or being reconfigured to) mode B. For instance, the
process computation latency is formulated in the following
constraint.

Constraint 2. (Computation latency) While each process can
be allocated to CPUs or FPGAs, its WCET in implementation

is denoted as tCsw ,j or tChw ,j with the following constraints.

Ci,j(t+ tC,j) = Ci,j(t) +mi,jKj(t), ∀Kj(t)∈{0,1} (6)
where tC,j = ¬µjtCsw ,j + µjtChw ,j (7)

in which Kj(t) denotes the incremental properties of Ci,j(t).
Especially, for a reconfigurable process pj , the WCET varies
from tACsw ,j

(tAChw ,j
) to tBCsw ,j

(tBChw ,j
) during the reconfiguration

from working mode A to B. Thus, tC,j in Eq. 6 can be defined:

tC,j =¬ξ(t)(¬µjtACsw ,j + µjt
A
Chw ,j

)+

ξ(t)(¬µjtBCsw ,j + µjt
B
Chw ,j

) (8)

However, the constraints in Eq. (6-8) can not be imple-
mented in Gecode solver directly and need to be rewritten. For
instance, Eq. (6-7) are equivalent to the following constraint
applicable in Gecode.

¬µjCi,j(t+ tCsw ,j) + µjCi,j(t+ tChw ,j)
= Ci,j(t) +mi,jKj(t), ∀Kj(t) ∈ {0, 1} (9)

Without being explicitly mentioned in this paper, tC,j has
the same definitions as in Eq. (6-8) to be allocation decision
and reconfiguration (for the reconfigurable process) aware.
Similarly, other SDF execution semantics on computation and
buffer resources can be extended, which are omitted for clarity
in this paper.

Furthermore, the process scheduling with computation and
buffer resource constraints is refined to be aware of the
allocation and mapping decisions.

Constraint 3. (Allocation & scheduling association) While the
processes allocated to FPGAs are concurrent in scheduling,
the processes allocated to one single processor can only
execute sequentially. This mapping and scheduling association
is formalized as:∑

pj∈P

αj,µpn
Wj(t) ∈ {0, 1}, ∀µpn ∈ U (10)

Wj(t) =
∑
∆t

Ci,j(t+∆t+1)−Ci,j(t+∆t)
mi,j

, ∆t∈[0,tC,j) (11)

in which Wj(t) denotes the 1-0 (computing or stalling) status
of process pj at time tag t on CPUs or FPGAs, and tC,j has
the same definitions as in Eq. (6-8) to be allocation decision
and reconfiguration aware.

C. Reconfiguration analysis

Periodic
phase A

Reconfig.
phase

Periodic
phase BPrologue

iterative

Transient
phase

Fig. 4: Timing phases of reconfiguration analysis.

We decompose the reconfiguration analysis into different
stepwise timing phases, as illustrated in Fig. 4.

• Prologue: is the start-up phase with no throughput guar-
antees. The length of the prologue phase can be controlled
and specified by τ0 in Constraint A-1 (Appendix).

• Periodic phase A(B): are phases with guaranteed appli-
cation throughput as defined in Constraint A-1 and A-2.
The throughput requirement can be distinct for different

working modes. The length Lperiod is throughput rele-
vant, and can be specified in constraints. Periodic phase A
guarantees a sustainable throughput in mode A of recon-
figurable process pj before the run-time reconfiguration
request.

• Reconfiguration phase: consists of a period working in
mode A, during which the reconfiguration starting time
tag t′ is explored (optimized) upon the reconfiguration re-
quest. The reconfiguration stall takes tR,j (Constraint A-
3). The length of this phase is specified to be the worst
case Lperiod + tR,j .

• Transient phase: has a length τ1, in which throughput
is met but no periodic properties in scheduling yet.

To make the phases in gray (colored) iterative, we can use the
timing analysis to explore more reconfiguration scenarios, and
adopt the worst case requirement for each buffer size.

D. Design Pareto points calculation

In design specifications, the cost to implement each process
pi in SW (if feasible) on CPUs is measured as the code size
πSW
i in SRAM or the area of custom circuits πHW

i in HW.
The only unit we use for HW area cost is the number of logic
elements (LE). The memory cost for a configuration stored in
the configuration memory is thus calculated as the equivalent
LE cost which is technology dependent. The SW and HW
implementation cost on our platform are defined.

Property 2. (SW & HW implementation cost) The process
allocation determines the total SW cost πSW

Sum and total HW
cost πHW

Sum .

πSW
Sum =

∑
pi∈P

¬µi · πSW
i , πHW

Sum =
∑
pi∈P

µi · πHW
i (12)

Assuming different FIFOs are implemented disjointly, the
buffer cost on the platform is formalized.

Property 3. (Buffer cost) In scheduling, the buffer cost in
total corresponds to the sum of the maximal buffer usage of
all FIFOs.

γSum =
∑
∀chi,j

max
∀t

B′i,j(t) (13)

To evaluate the quality of design options in solutions find-
ing, a constraint on SW/HW implementation cost and buffer
requirement is formulated to prune design options.

Constraint 4. (Design options pruning) Given a set of design
Pareto points ParetoSet found in design space exploration.
Besides meeting all other constraints formulated above, a
solution sol should not be dominated (⊀) by any Pareto points
φ.

sol ⊀ φ⇐⇒sol .πSW
Sum < φ.πSW

Sum ∨ sol .πHW
Sum < φ.πHW

Sum

∨ sol .γSum < φ.γSum , ∀φ∈ParetoSet (14)

in which sol ⊀ φ always holds when ParetoSet = ∅.

To maintain a set of Pareto points in design space explo-
ration, we present such a calculation flow in Algorithm 1.
In line 4, while all the formulated constraints are used in

solutions finding, a ParetoSet is dynamically maintained2

during exploration and used in Constraint 4. From line 8 to 10,
if a sol dominates (≺) a current Pareto point, the dominated
design option is moved into another DominatedSet .

Algorithm 1: Design Pareto-point calculation flow.
Output: ParetoSet
ParetoSet ←− ∅;1

DominatedSet ←− ∅;2

/* A dynamic ParetoSet is used in Constraint 4 */3

while (sol = solutionsFinding(ParetoSet)) 6= Null do4

if |ParetoSet | > 0 then5

for k ← 1 to ParetoSet .size do6

/* If sol dominates a Pareto point */7

if sol ≺ ParetoSet .at(k) then8

DominatedSet .insert(ParetoSet .at(k));9

ParetoSet .erase(k);10

ParetoSet .insert(sol)11

Discussion. The SW/HW and buffer cost in the proposed
formulation are based on high-level estimations, e.g., buffer
cost based on symbolic token units. However, it is possible to
extend our method within a practical design flow, once these
vendor and technology dependent factors can be formalized
as design constraints. For instance, assuming FIFO buffers are
implemented as Block RAM (BRAM), a more practical buffer
cost γBRAM

Sum can be re-formalized from Eq. 13.

γBRAM
Sum = kBRAM

∑
∀chi,j

dBRAM d
max∀tB′i,j(t)
dBRAM

e (15)

in which kBRAM and dBRAM are the cost factor and depth of
BRAM.

V. EXPERIMENTAL RESULTS

To evaluate the potential of our methodology, we use it
on a Cd2dat [15] application from the media domain, and
a Wireless [16] application from the communication domain,
besides the example application Fig. 1(a). We implement our
method on top of the public domain constraint solving toolkit
Gecode [17], which is a library written in C++. All exper-
iments are carried out on a HP xw4600 Linux workstation
with a Quad-Core3 2.40GHZ processor and 4GB of RAM.

We adopt a reconfigurable FPGA platform with two proces-
sors, e.g., Xilinx Virtex-5 FPGAs. The design specifications of
different SDF applications are presented in Table I. For each
application, the number of SDF processes and the equivalent
HSDF process number are listed out. Especially, part of the
SDF processes have been pre-allocated on the platform, either
as SW or HW modules. In each application, we specify
one process to be reconfigurable with two working modes.

2To our best knowledge, it is infeasible with ILP modeling techniques.
3Only one core is actually utilized, since we do not explore multi-thread

searching in this paper (see Section VI).

Assuming the same specified (feasible) application throughput
requirement needs to be sustained (not only in different work-
ing modes but also in reconfiguration phases), we explore the
application allocation, scheduling, and reconfiguration analysis
between mode transitions. However, within the scope of this
paper, we do not investigate the impacts of varying application
throughput on design Pareto points.

The peak memory and running time on the experimental
workstation have been measured in the solver, which are
shown in Table I as well. We see that the memory and time us-
age increase exponentially with the problem size. Our method
has been computation efficient to solve the NP-hard allocation
and scheduling problem with a reasonable problem size, e.g.,
in 1.9s for the small example case and 105s for Cd2dat. The
design Pareto points for different application specifications are
illustrated in Fig. 5. For the example application, Pareto points
with even less FIFO cost than in Fig. 2 can be found, since
a lower throughput requirement has been specified in Table I
(0.2 instead of 0.33). We have distinguished Pareto points to
implement the reconfigurable process in either SW or HW
in the graph, marked as ‘Pareto point (SW)’ or ‘Pareto point
(HW)’ respectively. The buffer costs found are very tight4, in
the sense that for each application the minimal buffer cost
in all Pareto points is the same as the minimal dead-lock
avoiding bounds [18]. Another set of temporal Pareto points
DominatedSet dominated by new solutions found in design
space exploration (line 8 to 10 in Algorithm 1) are presented.
However, more design options which are pruned by Pareto
points are discarded. For instance, 263 failure nodes are pruned
for Wireless, while each node corresponds to a set of design
options for our formulation.

Memory issues. In our experiments, the peak memory
usage increases dramatically with the problem size, e.g.,
4.18e6KB (very close to the 4GB RAM capacity on our
workstation) is used for Cd2dat. On the other hand, memory
usage up to 2GB has also been reported in a model checking
method in [18], in which a relatively simpler problem (only
the scheduling of SDF applications) is considered. In another
experiment, we fixed the processes allocation to either SW or
HW (i.e., process number allocated to SW/HW is 0 in Table I)
for Wireless. A Pareto point has been found in 2.1s with peak
memory 414MB. Thus, it might be possible to use heuristics
in the constraint based techniques to improve the searching
efficiency, in terms of computation time and memory usage.

VI. CONCLUSION

In this paper, we have presented a Pareto efficient design
method for reconfigurable streaming applications on off-the-
shelf CPU/FPGA platforms. The problem is formulated as
constraint based application allocation, scheduling, and recon-
figuration analysis. A design Pareto-point calculation flow for
SW/HW and buffer cost is implemented on a public domain
constraint solver Gecode [17], and is exemplified by two case
studies from different application domains.

4They are throughput and reconfiguration stall tR,j relevant. For Cd2dat
and Wireless, we specify tR,j to be 1-2 orders-of-magnitude higher than tC,j .

 0

 1

 2 1

 2

 3

 4

 5 2

 3

 4

FIFO

Pareto point (SW)

(1,3,3)

(2,1,3)

Pareto point (HW)(0,5,3)

SW

HW

FIFO

(a) Example

 0
 1

 2
 3

 6

 8

 10

 12
 32

 33

 34

 35

FIFO

Pareto point (SW)

(1,10,32)

(2,8,32)

(3,6,32)

Pareto point (HW)(0,12,34)

Dominiated point

(1,10,34)

(2,8,35)

SW

HW

FIFO

(b) Cd2dat

 2
 3

 4
 5

 6
 7

 8
 9 30

 32
 34

 36
 38

 40
 42 50

 51

 52

FIFO

Pareto point (SW)

(4,40,50)

(5,38,50)

(6,36,50)

(7,34,50)

(8,32,50)

(9,30,50)

Pareto point (HW)
(3,42,51)

Dominiated point
(4,40,51)

(5,38,51)

SW

HW

FIFO

(c) Wireless

Fig. 5: Design Pareto points for different applications.

TABLE I: Design specifications and experimental results.

application process # a pre-allocation b
thru. req. mem. c time d

SDF HSDF SW HW SW/HW

Example 3 4 0 1 2 0.2 1.29e3 1.90e3

Cd2dat 6 612 0 3 3 0.5 4.18e6 1.05e5

Wireless 24 32 3 15 6 0.028 3.80e6 1.94e4
a The number of SDF processes and equivalent HSDF processes.
b The number of processes pre-allocated as SW or HW on the platform.
c The peak memory consumption (KB) in solutions finding.
d The solutions finding time (ms).

Recently, the latest Gecode 3.1.0 starts to support parallel
search in multiple threads. However, the searching speed on
multi-thread heavily depends on whether the search tree can
be distributed to each thread efficiently, and it takes more
memory (more than single thread) as well [17]. To consider
using multiple threads in searching and using heuristics with
reduced peak memory in the exploration of search tree remain
to be our future work.

ACKNOWLEDGEMENTS

This research has been partially supported by the SYSMODEL
project through the European ARTEMIS programme.

APPENDIX
Constraint A-1. (Application throughput) After some start-
up time period τ0 (τ0 > 0, with no stable output tokens), a
specified throughput ρk should be met to sustain the required
output rate at the application sink process pk.

Ck(τ0 + cLperiod)− Ck(τ0) > ρkcLperiod . ∀c∈N0 (A-1)

Empirically, we choose Lperiod = q · d rk

ρk
e, q ∈ N\{∞},

with rk the firing times of pk in the repetitive pattern.

Constraint A-2. (Periodic phase) The repeated process and
FIFO status at time tag t′ and t′ + Lperiod determines a
periodic phase between them with length Lperiod .

B′i,j(t
′) = B′i,j(t

′ + Lperiod), ∀FIFO i,j (A-2)
W ′i (t

′) = W ′i (t
′ + Lperiod), ∀pi ∈ P (A-3)

where W ′i (t
′) =

tC,i∑
k=1

k · Ci(t′ + k)

in which variables W ′i (t
′) and W ′i (t

′ + Lperiod) are process
status (denoted as numbers for each process in Fig. 2).

Constraint A-3. (Reconfiguration stall) When the reconfig-
urable process pj is allocated to FPGAs, the computation of

pj stalls for tR,j time period after the reconfiguration starts
at time tag t′. On the other hand, pj allocated to CPUs
has ignorable reconfiguration overhead, i.e., no mandatory
computation stalls.

µj · ξ′(t′) ·Wj(t′ + ∆t′) = 0, ∀∆t′ ∈ [0, tR,j) (A-4)

ξ′(t′) = ξ(t)− ξ(t− 1), ∀t ∈ N, ξ′(0) = 0 (A-5)

in which ξ′(t′) is the derivation of ξ(t′), and ξ′(t) = 1
indicates that the reconfiguration starts at time tag t′.

REFERENCES
[1] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie, J. Ortiz,

E. Komp, and P. Ashenden, “Programming models for hybrid FPGA-CPU com-
putational components: A missing link,” IEEE Micro, vol. 24, no. 4, pp. 42–53,
2004.

[2] M. Barr, “A reconfigurable computing primer,” Multimedia System Design, pp.
44–47, Septemer 1998.

[3] M. R. Garey and D. S. Johnson, Computers and intractability : a guide to the
theory of NP-completeness. W. H. Freeman, January 1979.

[4] Xilinx Ltd, http://www.xilinx.com.
[5] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous data flow

programs for digital signal processing,” IEEE Transactions on Computers, vol.
C-36, no. 1, pp. 24–35, January 1987.

[6] M. Geilen and T. Basten, “A calculator for pareto points,” in DATE ’07: Proceedings
of the conference on Design, automation and test in Europe, San Jose, CA, USA,
2007, pp. 285–290.

[7] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static
dataflow,” IEEE Transactions on Signal Processing, vol. 2, no. 44, pp. 397–408,
1996.

[8] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-off exploration
for cyclo-static and synchronous dataflow graphs,” IEEE Trans. Comput., vol. 57,
no. 10, pp. 1331–1345, 2008.

[9] B. D. Theelen, M. Geilen, T. Basten, J. Voeten, S. V. Gheorghita, and S. Stuijk,
“A scenario-aware data flow model for combined long-run average and worst-case
performance analysis.” in MEMOCODE. IEEE, 2006, pp. 185–194.

[10] Y. Shin, D. Kim, and K. Choi, “Schedulability-driven performance analysis of
multiple mode embedded real-time systems,” in DAC ’00: Proceedings of the 37th
conference on Design automation, New York, NY, USA, 2000, pp. 495–500.

[11] J. Real and A. Crespo, “Mode change protocols for real-time systems: A survey
and a new proposal,” Real-Time Syst., vol. 26, no. 2, pp. 161–197, 2004.

[12] M. Yuan, X. He, and Z. Gu, “Hardware/software partitioning and static task
scheduling on runtime reconfigurable FPGAs using a SMV solver,” in RTAS
’08: Proceedings of the 2008 IEEE Real-Time and Embedded Technology and
Applications Symposium. Washington, DC, USA: IEEE Computer Society, 2008,
pp. 295–304.

[13] J. Zhu, I. Sander, and A. Jantsch, “Performance analysis of reconfiguration in
adaptive real-time streaming applications,” in Proceedings of the 6th Workshop
on Embedded Systems for Real-Time Multimedia (ESTIMedia ’08), Atlanta, USA,
October 2008, pp. 53–58.

[14] ——, “Buffer minimization of real-time streaming applications scheduling on
hybrid CPU/FPGA architectures,” in Proceedings of Design Automation and Test
in Europe (DATE ’09), Nice, France, April 2009, pp. 1506–1511.

[15] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of embedded software
from synchronous dataflow specifications,” Journal of VLSI Signal Processing
Systems, vol. 21, no. 2, pp. 151–166, June 1999.

[16] O. Moreira, F. Valente, and M. Bekooij, “Scheduling multiple independent hard-
real-time jobs on a heterogeneous multiprocessor,” in Proceedings of the 7th ACM
& IEEE International conference on Embedded Software (EMSOFT ’07). New
York, NY, USA: ACM, 2007, pp. 57–66.

[17] Gecode, “Generic Constraint Development Environment,” 2009, http://www.
gecode.org/.

[18] M. Geilen, T. Basten, and S. Stuijk, “Minimising buffer requirements of syn-
chronous dataflow graphs with model checking,” in DAC ’05: Proceedings of the
42nd annual conference on Design automation. New York, NY, USA: ACM,
2005, pp. 819–824.

