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Abstract is thus undesirable. Making disk 10s preemptible would
reduce blocking and improve the schedulability of real-
time disk 10s.

Allowing higher-priority requests to preempt ongoing

disk IOs is of particular benefit to delay-sensitive mul- Another domain where preemptible disk access is essen-

timedia and real-time systems. In this paper we propos%al is that of interactive multimedia such as video, au-

Semi-preemptible I0which divides an 10 request into dio, and interactive virtual reality. Because of the large

zmaltliéimg&a;gggssd \?\Zk (r:g;r:tanmd;nto d:;azlitrr);?éqmount of memory required by these media data, they
mp ; P 9 . are stored on disks and are retrieved into main memory
gies to allow preemption of each component of a disk

only when needed. For interactive multimedia applica-

access—seek, rotation, gnd Qata transfer: We analyze trﬂ%ns that require short response time, a disk 10 request
performance and describe implementation challenges

) . . must be serviced promptly. For example, in an immer-
Sot;Lﬁ;ﬁ;u?;g?CSeh%W\fV;?% T;rr?;e@:?hp};tt::g :?:sniiu(;)isk sive virtual world, the Iatenf:y tolerance between a he_ad
throughput. For example, expected waiting time for diskmovgment and.the renderlr?g of the next scene (WhI.Ch
10s in a viaeo streaminé system is reduced times may mvolve_a_ disk 10 to retrieve relevant_ media data) is

. aroundl5 milliseconds [2]. Such interactive 10s can be
with the throughput loss of less thérpercent. modeled as higher-priority 10 requests. However, due
to the typically large 10 size and the non-preemptible
nature of ongoing disk commands, even such higher-
i priority 10 requests can be kept waiting for tens, if not
1 Introduction hundreds, of milliseconds before being serviced by the

disk.

Traditionally, disk I0s have been thought of as non- ) ) o
preemptible operations. Once initiated, they cannot b © reduce the response time for a higher-priority request,
stopped until completed. Over the years, operating sysifS Waiting time must be reduced. Theaiting timefor

tem designers have learned to live with this restriction 20 10 request is the amount of time it must wait, due
However, non-preemptible 10s can be a stumbling blockl® the non-preemptibility of the ongoing 10 request, be-
for applications that require short response time. Infore being serviced by the disk. The response time for
this paper, we propose methods to make disk 10s semthe higher-priority request is then the sum of its waiting

preemptible, thus providing the operating system a finefime and service time. Treervice times the sum of the
level of control over the disk-drive. seek time, rotational delay, and data transfer time for an

IO request. (The service time can be reduced by intelli-

Preemptible disk access is desirable in certain setting$]ent data placement [27] and scheduling policies [26].
One such domain is that of real-time disk schedul-However, our focus is on reducing the waiting time by
ing. Real-time scheduling theoreticians have developedcreasing the preemptibility of disk access.)

schedulability tests (the test of whether a task set is

schedulable such that all deadlines are met) in varioud? this study, we explor&semi-preemptible 1@previ-
settings [9, 10, 11]. In real-time scheduling theory, ous_ly callet_j V|rtu_al 10 [5]), an _abstrgctlon for disk 10,
blocking, or priority inversion, is defined as the time Which provides highly preemptible disk access (average
spent when a higher-priority task is prevented from rur,_pree_mpt_lblllty of the order o_f one m|II|§econd) with little
ning due to the non-preemptibility of a low-priority task. 10SS in disk throughputSemi-preemptible |@reaks the

Blocking degrades schedulability of real-time tasks ang®®mponents of an IO job into fine-grained physical disk-
commands and enables 10 preemption between them. It

1In this paper, we refer to blocking as thaiting time.



thus separates the preemptibility from the size and durawith this knowledge, the disk driver waits f& ms
tion of the operating system’s 10 requests. before performing a JIT-seek. This JIT-seek method
makesT},, preemptible, since no disk operation is be-
Semi-preemptible 1@naps each 10 request into mul- ing performed. The disk then performs the two sub-seek
tiple fast-executing disk commands using three methdisk commands, and the&h successive read commands,
ods. Each method addresses the reduction of one afach of size20 kB, requiring1 ms each. A higher-
the possible components of the waiting time—ongoingpriority 10 request could be serviced immediately after
IO’s transfer time Lirqnsser), rotational delay oz, each disk-commandsemi-preemptible 1Ghus enables
and seek timel(sccr)- preemption of an originally non-preemptible read 10 re-
guest. Now, during the service of this 10, we have two

o Chunking Transter. A large 10 transfer is divided ~ SCENarios:

into a number of small chunk transfers, and pre-
emption is made possible between the small trans- o No higher-priority 10 arrives. In this case, the

fers. If the 10 is not preempted between the chunk
transfers, chunking does not incur any overhead.
This is due to the prefetching mechanism in current
disk drives (Section 3.1).

e Preempting T,ot. By performing just-in-time
(JIT) seek for servicing an IO request, the rotational
delay at the destination track is virtually elimi-
nated. The pre-seek slack time thus obtained is pre-
emptible. This slack can also be used to perform
prefetching for the ongoing 10 request, or/and to
perform seek splitting (Section 3.2).

e Splitting Tsecx- Semi-preemptible 1@an split a

e A higher-priority 10 arrives.

disk does not incur additional overhead for trans-
ferring data due to disk prefetching (discussed in
Sections 3.1 and 3.4). (If,,; cannot mask seek-
splitting, the system can also choose not to perform
seek-splitting.)

In this case, the
maximum waiting time for the higher-priority re-
quest is now a merg@ms, if it arrives during one of
the two seek disk commands. However, if the on-
going request is at the stage of transferring data, the
longest stall for the higher-priority request is just

long seek into sub-seeks, and permits a preemption ms. The expected value for waiting time is only
. 2 2 . “ g .
between two sub-seeks (Section 3.3). 3 SRR = 2.03 ms, a significant reduction
from 23 ms (refer to Section 3 for details).

The following example illustrates hoBemi-preemptible

IO can reduce the waiting time for higher-priority 10s This example shows th&emi-preemptible IGubstan-
(and hence improve the preempitibility of disk access). {ia|ly reduces the expected waiting time and hence in-
creases the preemptibility of disk access. However, if
an 10 request is preempted to service a higher-priority
request, an extra seek operation may be required to re-
sume service for the preempted 10. The distinction be-
tweenlO preemptibilityand IO preemptionis an im-
portant one. Preemptibility enables preemption, but in-
curs little overhead itself. Preemption will always incur
overhead, but it will reduce the service time for higher-
priority requests. Preemptibility provides the system
with the choice of trading throughput for short response
time when such a tradeoff is desirable. We explore the
effects of IO preemption further, in Section 4.3.

1.1 lllustrative Example

Suppose &00 kB read-request has to sek 000 cylin-
ders requiringl’s..,. of 14 ms, must wait for &, of 7
ms, and require®;,.q,s rer Of 25 ms at a transfer rate of
20 MBps. The expected waiting timé;(Tyqiting), fOr

a higher-priority request arriving during the execution of
this request, i23 ms, while the maximum waiting time
is 46 ms (please refer to Section 3 for equatiormi-
preemptible ICcan reduce the waiting time by perform-
ing the following operations.

It first predicts both the seek time and rotational delay.l 2 Contributions
Since the predicted seek time is lorif{.x = 14 ms), )
it decides to split the seek operation into two sub-seeks,
each of10, 000 cylinders, requirind’’, ., = 9 ms each.
This seek splitting does not cause extra overhead in this
case because the,; = 7 can mask thé ms increased
total seek timeZ x T7_.; — Tseer, = 2 X 9 — 14 = 4).
The rotational delay is noW,,,, = Tyt — (2 X T%,.;, —
Tseek) =3 ms.

'n summary, the contributions of this paper are as fol-

¢ We introduceSemi-preemptible IQwhich abstracts
both read and write 10 requests so as to make them
preemptible. As a result, system can substantially



reduce the waiting time for a higher-priority request which consider the rotational position of the disk arm
at little or no extra cost. to make better scheduling decisions. In [13, 16, 12], the
. ) o authors preserfreeblock schedulingwherein the disk
» We show that making write 10s preemptible is not arm services background jobs using the rotational delay

as stralghgorwalrd.as ]Lt IS forkreathOs. We propslsebetween foreground jobs. In [19], Seagate uses a vari-
one possible solution for making them preemptible. o ¢ just-in-time seek in some of its disk drives to re-

e We present a feasible path to implemegmi- duce power consumption and noisBemi-preemptible
preemptible 10 We explain how the implementa- O uses similar techniques for a different goal—to make
tion is made possible through use of a detailed diskotational delays preemptible.

profiling tool. ) _ )
There is a large body of literature proposing 10 schedul-

ing policies for multimedia and real-time systems that
The rest of this paper is organized as follows: Section Zmprove disk response time [3, 20, 21, 23]Semi-
presents related research. Section 3 introd®&®i-  preemptible IGis orthogonal to these contributions. We
preemptible I0and describes its three components. Inpelieve that the existing methods can benefit from using
Section 4, we evaluate our prototype. In Section 5, wepreemptible IO to improve schedulability and further de-
make concluding remarks and suggest directions for fugrease response time for higher-priority requests. For in-
ture work. stance, to model real-time disk 10s, one can draw from
real-time CPU scheduling theory. In [14], the authors
adapt thekarliest Deadline Firs{EDF) algorithm from
CPU scheduling to disk 10 scheduling. Since EDF is
2 Related Work a preemptive scheduling algorithm, a higher-priority re-
guest must be able to preempt a lower-priority request.
However, an ongoing disk request cannot be preempted
sumed that the nature of disk I0s was inherently non.nStantaneously. Applying such classical real-time CPU

preemptible. In [4], the authors proposed breaking upscheduling theory is simplified if the preemption gran-

a large 10 into multiple smaller chunks to reduce theulant_y is mdep_endent of system vanabk_e_s like 10 sizes.

data transfer componertiays s..) of thewaiting time Semi-preemptible I@rovides such an ability.

(Twaiting) for higher-priority requests. A minimum

chunk size of one track was proposed. In this paper,

we improve upon the conceptual model of [4] in three . .

respects: 1) in addition to enabling preemption of the3 Semi-preemptible 10

data transfer component, we show how to enable pre-

emption of7}.,, and7s..;, components; 2) we improve Before introducing the concept &emi-preemptible 10

upon the bounds for zero-overhead preemptibility; andwe first define some terms which we will use through-

3) we show that making write 10s preemptible is not asout the rest of this paper. Then, we propose an abstrac-

straightforward as it is for read |0s, but we propose ongtion for disk 10, which enables preemption of 10 re-

possible solution. quests. Finally, we present our disk profiler and the disk
parameters required for the implementation S¥mi-

Weissel et al. [24] recently proposed Cooperative I/O,preemptible 10

a novel 10 semantics aimed to reduce the power con-

sumption of storage subsystem by enabling application®efinitions:

to provide more information to OS scheduler. Similarly,

in this paper we propose an IO abstraction to enable pre- ¢ A logical disk blockis the smallest unit of data that

Before the pioneering work of [4, 14], it was as-

emptive disk scheduling. can be accessed on a disk drive (typicdll2 B).
Each logical block resides at a physical disk loca-
Semi-preemptible I@ses gust-in-time seekJIT-seek) tion, depicted by a physical address (cylinder, track,

technique to make the rotational delay preemptible. JIT-  sector).
seek can also be used to mask the rotational delay
with useful data prefetching. In order to implement
both methods, our system relies on accurate disk pro-
filing [1, 7, 18, 22, 25]. Rotational delay masking
has been proposed in multiple forms. In [8, 26], the e An IO requestis a request for read or write access
authors present rotational-latency-sensitive schedulers, to a sequential set of logical disk blocks.

e A disk commands a non-preemptible request is-
sued to the disk over the 10 bus (e.g., the read,
write, seek, and interrogative commands).



e Thewaiting timeis the time between the arrival of a Semi-preemptible I@an be expressed as
higher-priority 10 request and the moment the disk
starts servicing it.

/ _ 1 _1 ZTiQ
E(Twaiting) - 5 Z(psz) - §m (2)

Data Transfer on 10 Bus

10 Bus
In the remainder of this section, we presentchunk-
ing, which dividesTi, qnsfer (Section 3.1); 2)just-in-
: time seekwhich enable§’.,; preemption (Section 3.2);
ST o penTrande Time and 3)seek splittingwhich dividesT,..,, (Section 3.3).
In addition, we present our disk profiler, Diskbench, and
Figure 1: Timing diagram for a disk read request.  summarize all the disk parameters required for the im-
plementation oSemi-preemptible IQSection 3.4).

Disk Head

In order to understand the magnitude of the waiting time,
let us consider a typical read IO request, depicted in Fig-
ure 1. The disk first performs a seek to the destinatio
cylinder requiring7..; time. Then, the disk must wait
for a rotational delay, denoted 1., so that the target

disk block comes under the disk arm. The final stagerpe gata transfer COMPONEfTt{ansfer) in disk 10s can

is the data transfer stage, requiring a timelPunsrers  pe large. For example, the current maximum disk 10
when the data is read from the disk media to the disksj;e ysed by Linux and FreeBSDIia8 kB, and it can be
buffer. This data is simultaneously transferred over thqarger for some specialized video-on-demand systems
10 bus to the system memory. To make theT,qnser COMponent preemptibleSemi-
OPreemptible IQuseschunking

1 Chunking: Preempting T ansfer

For a typical commodity system, once a disk comman

is issued on the 10 bus, it cannot be stopped. Traditionpefinition 3.1: Chunkingis a method for splitting the
ally, an 10 request is serviced using a single disk COM-ata transfer component of an 10 request into multi-
mand. Consequently, the operating system must wait Unpje smallerchunktransfers. The chunk transfers are

til the ongoing 10 is completed before it can service theggpyiced using separate disk commands, issued sequen-
next 10 request on the same disk. Let us assume that fally.

higher-priority request may arrive at any time during the

execution of an ongoing 10 request with equal probabil-genefits: Chunking reduces the transfer component of
ity. The waiting time for Fhe hlgher-pnon.ty request can Towaiting. A higher-priority request can be serviced af-
be as long as the duration of the ongoing I0. The exer 5 chunk transfer is completed instead of after the en-
pected waiting time of a higher-priority 10 request can e |0 is completed. For example, supposé0a kB
then be expressed in terms of seek time, rotational delayg request requires &, qns er Of 25 Ms at a transfer
and data transfer time required for ongoing 10 reques}ate of20 MBps. Using a chunk size ofo kB, the ex-
as pected waiting time for a higher-priority request is re-
1 duced froml12.5 ms to0.5 ms.
E(Twaiting) - §(Tseek + Trot + Ttransfer)- (1)
Overhead: For small chunk sizes, the IO bus can be-

come a performance bottleneck due to the overhead of
Let V; be the sequence of fine-grained disk commands>>ung a large number of disk commands. As a re-

we use to service an |10 request. Let the time required t()SU|t’ the disk throughput degrades. Issuing multiple

execute disk-commarnid be T;. Let Ty, be the dura- disk commands instead of a ;lngle one also increases
i ; ) S the CPU overhead for performing 10. However, for the
tion of time during the servicing of the 10 request, when range of chunk sizes. the disk throuahout using chunk-
the disk is idle (i.e., no disk command is issued). Using 9 ’ 9np 9

the above assumption that the higher-priority request can'd's optimal with negligible CPU overhead.

arrive at any time with equal probability, the probability

that it will arrive during the execution of thé”" com- P , _ . .
These values are likely to vary in the futu®@emi-preemptible 10

_ T; i
mandV; can be §>_<pre.ssed as = Y Ti+Tiae Finally, _ provides a technique that does not deter disk preemptibility with the
the expected waiting time of a higher-priority request inincreased IO sizes.




3.1.1 The Method thana. For chunk sizes smaller than due to the over-
head associated with issuing a disk command, the 10
To perform chunking, the system must decide on thebus is a bottleneck. Poinatin Figure 3 denotes the point
chunk size.Semi-preemptible I@hooses the minimum beyond which the performance of the cache may be sub-
chunk size for which the disk throughput is optimal optimaP.
and the CPU overhead acceptable. Surprisingly, large
chunk sizes can also suffer from throughput degradation A
due to the sub-optimal implementation of disk firmware | ST
(Section 3.4). Consequentl$emi-preemptible I@nay | AN
achieve even better disk throughput than the traditional
method where an 10 request is serviced using a single
disk command.

sub—optimal firmware design

Disk throughput

In order to perform chunking efficiently, Semi- 1 1
preemptible 10relies on the existence of a read cache j j -
a}nd a write buffer on thg disk. It uses disk profiling to minimum - maximum Chunk size
find the optimal chunk size. We now present the chunk- (@ (b)

ing for read and write 10 requests separately.

Figure 3: Effect of chunk size on disk throughput.

3.1.2 The Read Case .

3.1.3 The Write Case
Disk drives are optimized for sequential access, and the . . . .
continue prefetching data into the disk cache even afteﬁeml—preemptlble I@erforms chunking for write 10s

a read operation is completed [17]. Chunking for a reads'm'l.arly 0 chunkmg_for_read requests. Howeyer, the
|0 requests is illustrated in Figure 2. The x-axis ShoWS|mpI|cat|ons of chunking in the write case are different.

time, and the two horizontal time lines depict the activity ::Nrrlnenl a:evglte IOnls pzlrlf?hr mgdt’at?setrd'ikfgfrm(ﬂarlgecg;k
on the 10 bus and the disk head, respectively. Employ_w?itepbeuffe; SOA(; s?)son as etheawrite (?or?]ma?]d i(;, com
ing chunking, a larg€},qnsfer iS divided into smaller )

chunk transfers issued in succession. The first read Conp_leted, the operating system can issue a disk command

mand issued on the 10 bus is for the first chunk. Due toto service a higher-priority 10. However, the disk may

the prefetching mechanism, all chunk transfers foIIow-Choose to schedule a write-back operation for disk write

ing the first one are serviced from the disk cache rathelouffers before servicing a new disk command.We refer

than the disk media. Thus, the data transfers on the 10° this delay as thexternal waiting timeSince the disk
' can buffer multiple write requests, the write-back opera-

bus (the small dark bars shown on the IO bus line in includ itivle disk ks, C v th
the figure) and the data transfer into the disk cache (thgor)_can.mcu € mulliple disk seeks. Lonsequently, the
dark shaded bar on the disk-head line in the figure) occufa't'ng time for a hlgher—prlprlty request can be substan-
concurrently. The disk head continuously transfers dat lally increased when the disk services write |Os.

after the first read command, thereby fully utilizing the

disk throughput. In order to increase preemptibility of write requests, we

must take into consideration the external waiting time
Data Transfer on 10 Bus . i
Red for write 10 requests. External waiting can be reduced
I0Bls  —&3 to zero by disabling write buffering. However, in the ab-
sence of write buffering, chunking would severely de-
S grade disk performance. The disk would suffer from
DiskHead — T Es—— an overhead of one disk rotation after performing an 10

; Time

Seek Time Rotational Data Transfer Time ..
Delay for each chunk. To remedy external waiting, our proto-

Figure 2: Virtual preemption of the data transfer. ~ type forces the disk to write only the last chunk of the
write 10 to disk media by setting force-unit-access flag

Figure 3 illustrates the effect of the chunk size on the 3we have not fully investigated the reasons for sub-optimal disk
disk throughput using a mock disk. The opt|ma| chunk performance and it is the subject of our future work.

size lies between andb. A smaller chunk size reduces If the size qf the write 10 is larger than the size of the write buffer,
then the disk signals the end of the 10 as soon as the excess amount

the v_vaiting time for a higher-prior_ity request. Hence, of gata (which cannot be fitted into the disk buffer) has been written to
Semi-preemptible 1@ses a chunk size close to but larger the disk media.



in SCSI write command. Using this simple technique, it The JIT-seek method is illustrated in Figure 4. The x-
triggers the write-back operation at the end of each writeaxis depicts time, and the two horizontal lines depict a
10. Consequently, the external waiting time is reducedregular IO and an 10 with JIT-seek, respectively. With
since the write-back operation does not include multipleJIT-seek, the read command for an 10 operation is de-

disk seeks.

3.2 JIT-seek: PreemptingT ot

After the reduction of thél},.q,s .- COMponent of the

waiting time, the rotational delay and seek time com-

ponents become significant. The rotational peribg)(
can be as much a$) ms in current-day disk drives. To
reduce the rotational delay compon€nty;) of the wait-
ing time, we propose pust-in-time seekJIT-seektech-
nique for IO operations.

Definition 3.2: The JIT-seektechnique delays the ser-

layed and issued just-in-time so that the seek operation
takes the disk head directly to the destination block,
without incurring any rotational delay at the destination
track. Hence, data transfer immediately follows the seek
operation. The available rotational slack, before issu-
ing the JIT-seek command, is now preemptible. We can
make two key observations about the JIT-seek method.
First, an accurate JIT-seek operation reducesTihe
component of the waiting time without any loss in per-
formance. Second, and perhaps more significantly, the
ongoing IO request can be serviced as much as possible,
or even completely, if sufficient slack is available before
the JIT-seek operation for a higher-priority request.

vicing of the next IO request in such a way that the rota-The pre-seek slack made available due to the JIT-seek
tional delay to be incurred is minimized. We refer to the operation can be used in three possible ways:

delay between two IO requests, due to JIT-seek|ak
time

Benefits:

1. The slack time between two 10 requests is fully

preemptible. For example, suppose that an IO request

must incur af’.,; of 5 ms, and JIT-seek delays the is-
suing of the disk command byms. The disk is thus
idle for T;;4. = 4 ms. Then, the expected waiting time
is reduced fron2.5 ms tol 21 — (.1 ms.

2 1+4

2. The slack obtained due to JIT-seek can also be used

to perform data prefetching for the previous IO or to

service a background request, and hence potentially in-

crease the disk throughput.

Overhead: Semi-preemptible I@redicts the rotational

delay and seek time between two IO operations in or-
der to perform JIT-seek. If there is an error in predic-
tion, then the penalty for JIT-seek is at most one extra
disk rotation and some wasted cache space for unused
prefetched data.

3.2.1 The Method

Rotational
Seek Time Delay Data Transfer
Regular |0 — T e ———
Time
JIT-seek

Semi-preemptible 10

with JIT-seek Preemptible
Rotational
Slack

Seek Time Data Transfer

Time

Figure 4: JIT-seek.

e The pree-seek slack can be simply left unused. In
this case, a higher-priority request arriving during
the slack time can be serviced immediately.

e The slack can be used to perform additional data
transfers. Operating systems can perform data
prefetching for the current IO beyond the necessary
data transfer. We refer to it &ige prefetchingl3].
Chunking is used for the prefetched data, to reduce
the waiting time of a higher-priority request. Free
prefetching can increase the disk throughput. We
must point out, however, that free prefetching is
useful only for sequential data streams where the
prefetched data will be consumed within a short
time. Operating systems can also perform another
background request as proposed elsewhere [13, 16].

e The slack can be used to mask the overhead in-

curred in performingeek-splittingwhich we shall
discuss next.

3.3 Seek Splitting: PreemptingTscex

The seek delayT(;..r) becomes the dominant compo-
nent when theli,qnsrer @andT,.,; COMponents are re-
duced drastically. A full stroke of the disk arm may re-
quire as much a80 ms in current-day disk drives. It
may then be necessary to reduce’thg component to
further reduce the waiting time.

Definition 3.3: Seek-splittingbreaks a long, non-
preemptible seek of the disk arm into multiple smaller
sub-seeks.



Benefits: The seek-splittingmethod reduces thé,..x
component of the waiting time. A long non-preemptible °
seek can be transformed into multiple shorter sub-seeks.
A higher-priority request can now be serviced at the end
of a sub-seek, instead of being delayed until the entire
seek operation is finished. For example, suppose an IO
request involves a seek 20, 000 cylinders, requiring a
Tseer Of 14 ms. Using seek-splitting, this seek opera-

Throughput (MB/s)

tion can be divided into tw® ms sub-seeks a0, 000 sy
cylinders each. Then the expected waiting time for a 10
higher-priority request is reduced fronms to4.5 ms. Chunk size (kB)
Overhead (a) SCSI ST318437LW
verhead:
1. Due to the mechanics of the disk arm, the total time %

required to perform multiple sub-seeks is greater than
that for a single seek of a given seek distance. Thus,
the seek-splitting method can degrade disk throughput.
Later in this section, we discuss this issue further.

2. Splitting the seek into multiple sub-seeks increases
the number of disk head accelerations and decelera-
tions, consequently increasing the power usage and
noise. 5

Throughput (MB/s)

10

0 100 200 300 400 500 600 700 800 900 1000
Chunk size (kB)

(b) IDE WD400BB

3.3.1 The Method

Figure 5: Sequential read throughput vs. chunk size.
To split seek operation§emi-preemptible IQses a tun-
able parameter, the maximum sub-seek distance. The . . .
maximum sub-seek distandecides whether to split a 0llowing required disk parameters:
seek operation. For seek distances smaller than the max-
imum sub-seek distance, seek-splitting is not employed.
A smaller value for the maximum sub-seek distance
provides higher responsiveness at the cost of possible
throughput degradation.

e Disk block mappings. System uses disk mappings
for both logical-to-physical and physical-to-logical
disk block address transformation.

e The optimal chunk size. In order to efficiently
Unlike the previous two methods, seek-splitting may de- perform chunking,Semi-preemptible IQhooses
grade disk performance. However, we note that the over-  the optimal chunk size from the optimal range ex-
head due to seek-splitting can, in some cases, be masked. tracted using disk profiler.
If the pre-seek slack obtained due to JIT-seek is greater
than the seek overhead, then the slack can be used to®
mask this overhead. A specific example of this phe-
nomenon was presented in Section 1. If the slack is
insufficient to mask the overhead, seek-splitting can be
aborted to avoid throughput degradation. Making such a
tradeoff, of course, depends on the requirements of the
application.

Disk rotational factors. In order to perform JIT-
seek, system requires accurate rotational delay pre-
diction, which relies on disk rotation period and ro-
tational skew factors for disk tracks.

e Seek curve. JIT-seek and seek-splitting methods
rely on accurate seek time prediction.

The extraction of these disk parameters is described
3.4 Disk Profiling in [7].

As mentioned in the beginning of this sectiodBemi-  As regards chunking, the disk profiler provides the opti-
preemptible IOgreatly relies on disk profiling to obtain mal range for the chunk size. Figure 5 depicts the effect
accurate disk parameters. The disk profiler obtains thef chunk size on the read throughput performance for
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Figure 6: Sequential write throughput vs. chunk size.

seek time) for a SCSI disk obtained by the disk profiler
is presented in Figure 8. The disk profiler also obtains

one SCSI and one IDE disk drive. Figure 6 shows the

. ) the requir rameters for rotational del rediction
same for the write case. Clearly, the optimal range for, e required parameters for rotational delay predictio

. ; ) between accessing two disk blocks in succession with
the chunk size (between the pointsand b illustrated g

. S . near-microsecond-level precision. However, the varia-
previously in Figure 3) can be automatically extracted.,. : . -
. : o ) tions in seek time can be of the order of one millisec-
from these figures. The disk profiler implementation was ; : . -
: . . . ond, which restricts the possible accuracy of prediction.
successful in extracting the optimal chunk size for sev-_. .
Finally, to perform JIT-seek, the system combines seek

eral SCSI and IDE disk drives with which we experi- time and rotational delay prediction to predict,,. We

mented. For those who might also be interested in th : -
CPU overhead for performing chunking, we present thjave conducted more detailed study D, prediction

CPU utilization when transferring a large data segmen{n (71
from the disk, using different chunk sizes in Figure 7
for an IDE disk. The CPU utilization decreases rapidly
with an increase in the chunk size. Beyond a chunk size4
of 50 kB, the CPU utilization remains relatively con-
stant. This figure shows that chunking, using even small
chunk size %0 kB), is feasible for IDE disk without in- We now present the performance results for our im-
curring any significant CPU overhead. For SCSI disks,plementation ofSemi-preemptible 100ur experiments
the CPU overhead of chunking is even less than that foaimed to answer the following questions:

IDE disks, since the bulk of the processing is done by

the SCSI controller.

Experimental Results

e What is the level of preemptibility of Semi-
preemptible 1Gand how does it influence the disk

To perform JIT-seek, the system needs an accurate es- throughput?

timate of the seek delay between two disk blocks. The
disk profiler provides the seek curve as well as the varia- e What are theéndividual contributionsof the three
tions in seek time. The seek time curve (and variationsin ~ components oSemi-preemptible 1®



e What is the effect of IQpreemptioron the average 4.1 Preemptibility
response time for higher-priority requests and the
disk throughput? The experiments for preemptibility of disk access mea-
sure the duration of (non-preemptible) disk commands
in both non-preemptible IO anBemi-preemptible I
the absence of higher-priority 10 requests. The results

In order to answer these questions, we have im- . o !
plemented a prototype system which can service |dnclude both detailed distribution of disk commands du-

requests using either the traditional non-preemptibld@ions (@nd hence maximum possible waiting time) and
method fon-preemptible I or Semi-preemptible 10 the expected waiting time calculated using Equations 1

Our prototype runs as a user-level process in Linux an@nd 2. as explained in Section 3.
talks directly to a SCSI disk using the Linux SCSI-
generic interface. The prototype uses the logical-to-
physical block mapping of the disk, the seek curves, andt.1.1 Random Workload
the rotational skew times, all of which are automatically
generated by the Diskbench [7]. All experiments wereFigure 9 depicts the difference in the expected waiting
performed on a Pentium IB00 MHz machine with a  time between non-preemptible 10 aSeémi-preemptible
Seagate ST18437LW SCSI disk. This SCSI disk has 0. In this experiment, I0s were serviced for data situ-
two tracks per cylinder, with37 to 750 blocks per track  ated at random locations on the disk. The 10s were ser-
depending on the disk zone. The total disk capacity isviced using FCFS policy. We can see that the expected
18.4 GB. The rotational speed of the disk@800 RPM.  waiting time for non-preemptible 10s increases linearly
The maximum sequential disk throughput is betweenwith 10 size due to increased data transfer time. How-
24.3 and41.7 MBps. ever, the expected waiting time f8emi-preemptible 10
actually decreases with 10 size, since the disk spends

For performance benchmarking, we performed two setsnore time in data transfer, which is more preemptible.
of experiments. First, we tested the preemptibility of
the system using simulated IO workload. For the simu-
lated workload, we used equal-sized 10 requests within :

. .. @ Non-preemptible 10
each experiment. The low-priority 10s are for data lo- B Semi-preempible 10
cated at random positions on the disk. In the exper-
iments where we actually performed preemption, the
higher-priority 10 requests were also at random posi-
tions. However, their size was set to only one block in
order to provide the lower estimate for preemption over-
head. We tested the preemptibility unfiest-come-first-
serve (FCFShndelevatordisk scheduling policies. In
the second set of experiments we used trace workload

(5]

w
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N
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Expected waiting time (ms)
N
o

i —

obtained on the tested Linux system. We obtained the 5
traces from the instrumented Linux-kernel disk-driver. O 100 250 500 1000 2000
In the simulated experiments, non-preemptible 10s are 10 size (kB)

serviced using chunk sizes 28 kB. This is the size

used by Linux and FreeBSD for breaking up large 10s.Figure 9: Improvements in the expected waiting time
We assume that a large 10 cannot be preempted betwedRCFS).

chunks, since such is the case for current operating sys-

tems. On the other hand, our prototype services largeFigure 10 depicts the improvements in the expected
I0s using multiple disk commands and preemption iswaiting time when the system uses an elevator-based
possible after each disk command is completed. Basedcheduling policy. (The figure shows the results of ran-
on disk profiling, our prototype used the following pa- domly generated 10 requests serviced in batche® of
rameters foSemi-preemptible IOChunking divided the  The results are better than those of FCFS access since
data transfer into chunks 60 disk blocks each, except the elevator scheduler reduces the seek component that
for the last chunk, which can be smaller. JIT-seek useds the least-preemptible.

an offset ofl ms to reduce the probability of prediction

errors. Seeks for more than a half of the disk size inFigures 11 and 12 show the effect of improving 10 pre-
cylinders were split into two equal-sized, smaller seeksemptibility on the achieved disk throughput when an
We used the SCSeekcommand to perform sub-seeks. FCFS scheduling policy is used. There is a notice-
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Figure 10: Improvements in the expected waiting timeFigure 12: Effect on achieved disk throughput (Eleva-
(Elevator). tor).

able but minor reduction in disk throughput usi8gmi- mand. Hence, the disk access can be preempted only
preemptible 10(less thanl5%). This reduction is due when the current 10 request is completed. The distri-
to the overhead of seek-splitting and mis-prediction ofbution is dense near the sum of the average seek time,
seek and rotational delay. More details on the accuracyotational delay, and transfer time required to service an
of rotational delay predictions can be found in [7]. An- entire 10 request. The distribution is wider when the 10
other point worth mentioning is that the reduction in disk requests are larger, because the duration of data trans-
throughput inSemi-preemptible 1@ smaller for large fer depends not only on the size of the IO request, but
IOs than for small 10s due to the reduced number ofalso on the throughput of the disk zone where the data
seeks and hence the smaller overhead. resides.

In the case ofSemi-preemptible 10the distribution of

B Non-preemptible [0 the durations of disk commands does not directly depend
E ﬁeﬂixﬁﬂﬁﬁb‘elo on the 10 request size, but on individual disk commands
ee Treeenng used to perform an 10 request. (We plot the distribution

_ 30 for the Semi-preemptible 1@ase in logarithmic scale,
3 25 so that the probability density of longer disk commands
?z: 0 can be better visualized.) In Figure 13 (b), we see that
2 for Semi-preemptible IQthe largest probability density
i is around the time required to transfer a single chunk of
£ 10 data. If the chunk includes the track or cylinder skew, the
?g 5 duration of the command will be slightly longer. (The
two peaks immediately to the right of the highest peak,

o

50 100 250 500 1000 2000 at approximately2 ms, have the same probability be-

10 size (kB) . . .

cause the disk used in our experiments has two tracks

per cylinder.) The part of the distribution betwe®ms
and 16 ms in the figure is due to the combined effect
of JIT-seek and seek-splitting on the seek and rotational
Since disk commands are non-preemptible (even irdelays. The probability for this range is small, approxi-
Semi-preemptible ) we can use the duration of disk mately0.168, 0.056, and0.017 for 50 kB, 500 kB, and
commands to measure the expected waiting time. 22 000 kB 10 requests, respectively.
smaller value implies a more preemptible system. Fig-
ure 13 shows the distribution of the durations of disk
commands for both non-preemptible 10 af®kmi- 4.1.2 Trace Workload
preemptible IQ(for exactly the same sequence of IO re-
quests). In the case of non-preemptible 10 (Figure 13We now present preemptibility results using IO traces
(a)), one IO request is serviced using a single disk comebtained from a Linux system. 10 traces were obtained

Figure 11: Effect on achieved disk throughput (FCFS).
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(b) Semi-preemptible IQogarithmic scale) disk traces).

Figure 13: Distribution of the disk command duration Figures 14 and 15 show the expected waiting time and
(FCFS). Smaller values imply a higher preemptibility.  disk throughput for these trace experiments. The ex-
pected waiting time was reduced by as much6a%
(Figure 14) with less thal0% (Figure 15) loss in
disk throughput for all traces. (Elevatorl5 had smaller
from three applications. The first trace (DV15) was ob-throughput than DV15 because several processes were
tained when the XTREAM multimedia system [6] was accessing the disk concurrently, which increased the to-
servicing1l5 simultaneous video clients using the FCFStal number of seeks.)
disk scheduler. The second trace (Elevatorl5) was ob-
tained using the similar setup where XTREAM let Linux
elevator scheduler handle concurrent disk 10s. The thirdt.2  Individual Contributions
was a disk trace of the TPC-C database benchmark with
20 warehouses obtained from [15]. Trace summary ifrigure 16 shows the individual contributions of the three
presented in Table 1. strategies with respect to expected waiting time for the
random workload with the elevator scheduling policy. In
Section 4.1, we showed that the expected waiting time
can be significantly smaller iBemi-preemptible I@han
Trace Number of | Avg. req. size | Max. block in non-preemptible 10. Here we compare only contri-

requests [blocks] number butions withinSemi-preemptible I@ show the impor-
DV15 10800 128.7 28442272 ; ; ;
Elevatorls | 10180 1276 28429968 tance of each strategy. Since the time to transfer a single

TPC 1376482 126.5 8005312 chunk of data is small compared to the seek time (typi-
cally less thanl ms for a chunk transfer and) ms for

a seek), the expected waiting time decreases as the data
Table 1: Trace summary. transfer time becomes more dominant. When the data




B Chunking that the free prefetching is a useful strategy for multime-
B Chuning - ek + seekcsplitting dia systems that often access data sequentially and hence

can use most of the potential free throughput.

4.3 Effect of Preemption

3 To estimate the response time for higher-priority 10
requests, we conducted experiments wherein higher-
priority requests were inserted into the 10 queue at a
constant rate). While the constant arrival rate may
0 seem unrealistic, the main purpose of this set of ex-
50 100 250 500 1000 2000 . . . .
10 size (kB) periments is only to “estimate” the benefits and over-
heads associated with preempting an ongoBemi-

Figure 16: Individual contributions @emi-preemptible preemptible 10request to service a higher-priority 10

IO components on the expected waiting time (Elevator) request.

Expected waiting time (ms)
N

Table 2 presents the response time for a higher-priority

transfer time dominates the seek and rotational delaydeduest when usingemi-preemptible 10n two pos-
chunking is the most useful method for reducing the ex-Sible scenarios: 1) when the higher-priority request
pected waiting time. When the seek and rotational delS serviced after the ongoing 10 is completed (non-
lays are dominant, JIT-seek and seek-splitting becom@reemptible 10), and2) when the ongoing 10 is pre-
more effective for reducing the expected waiting time. €mpted to service the higher-priority 10 requeSefi-
preemptible Q. If the ongoing 10 request is not pre-
Figure 17 summarizes the individual contributions of €émpted, then all higher-priority requests that arrive
the three strategies with respect to the achieved diskhile itis being serviced, must wait until the 10 is com-
throughput. Seek-splitting can degrade disk throughpleted. The results in Table 2 illustrate the case when
put, since whenever a long seek is split, the disk rethe ongoing request is a read request. The results for the
quires more time to perform multiple sub-seeks. JIT-Write case are presented in Table 4.
seek requires accurate prediction of the seek time and

rotational delay. It introduces overhead in the case of kB [Te’; /] ﬁ;?(')RESp[:;f(]) Trg%’ghp“qM ir/) IS(])
mls-predlctpn. Howeve_r, when the data transfer is (_jo_m- = 55 192 54 330 553
inant, benefits of chunking can mask both seek-splitting 50 1| 218 16.0| 3.36 289
and JIT-seek overheads. JIT-seek aids the throughput| 50 2| 208 17.6| 3.32 2.82
with free prefetching. The potential free disk through- 28 1?) ig 12-5 g-;g ;-gg
put acquired using free prefetchmg depgnds on the. rate| o, 20| 211 184 249 168
of JIT-seeks, which decreases with 10 size. We believe = 05 202 1571 16.95 16.40
500 1| 281 15.5| 16.15 16.20
500 2| 282 16.7| 15.94 15.77
p——— 500 5| 286 16.0| 15.28 14.58
unidng 500 10 | 28.9 16.3| 14.24 12.48

O Chunking + JIT-seek
W Chunking + JIT-seek + seek-splitting 500 20| 294 16.8| 11.96 8.57

[ Free prefetching

Table 2: The average response time and disk throughput
for non-preemptible 10+{p/0) and Semi-preemptible
1O (splO).

Preemption of 10 requests is not possible without over-
head. Each time a higher-priority request preempts a
low-priority 10 request for disk access, an extra seek is

Disk throughput (MB/s)

i |
Iln|| i I i
I o I 50 I 500 1000 2000 required to continue servicing the preempted request af-
10 size (kB) ter the higher-priority request has been completed. Ta-
ble 2 presents the average response time and the disk
Figure 17: Individual effects oSemi-preemptible 10  throughput for different arrival rates of higher-priority
strategies on disk throughput (Elevator). requests. For the same size of low-priority 10 requests,




the average response time does not increase significantly ’L% v AVQIIbReSPO”S?n% Th%lghpu'iM B/ |9<])
with the increase in the arrival rate of higher-priority re- =21 | [rea/s] | ne SPo 1 0P 5P
ts. However, the disk throughput does decrease with >° 051 931 269 485 1.98
quests. However, the ghp S 50 1| 1058 246| 475 1.96
an increase in the arrival rate of higher-priority requests| 59 2| 911 27| 468 1.94
As explained earlier, this reduction is expected since the 50 5| 102.2 24.4| 4.40 1.84
overhead of IO preemption is an extra seek operation per 20 10 875 23.7| 3.95 170
tion. For applications that require short response—-- 201 8.3 2331 309 1.42
preemption. PP q 1response—n, 05| 324 203] 13.71 1141
time, the performance penalty of 10 preemption seems 509 1| 36.0 20.3| 13.64 11.24
acceptable. 500 2| 350 20.8| 13.45 11.02
500 5| 349 20.5| 12.82 10.36
500 10 | 36.6 20.3| 11.67 9.13
4.3.1 External Waiting Time 500 20 | 346 20.7| 9.64 6.92

In Section 3.1, we explained the difference in the pre-

emptibility of read and write 10 requests and introducedTable 4: The average response time and disk write

the notion of external waiting time. Table 3 summarizesthroughput for non-preemptible arSemi-preemptible

the effect of external waiting time on the preemption of 10.

write 10 requests. The arrival rate of higher-priority re-

quests is setto = 1 req/s. As shown in Table 3, the av-

erage response time for higher-priority requests for writ®d ~ Conclusion and Future Work

experiments is several times longer than for read experi-

ments. Since the higher-priority requests have the same

arrival pattern in both experiments, the average seek timén this paper, we have presented the desigrSemi-

and rotational delay are the same for both read and writpreemptible 1Q and proposed three techniques for re-

experiments. The large and often unpredictable externaducing 10 waiting-time—data transfer chunking, just-

waiting time in the write case explains these results.  in-time seek, and seek-splitting. These techniques en-

able the preemption of a disk IO request, and thus

Exp. Waiting[ms] Avg. Responskrns] substantially reduce the waiting time for a competing
10 nplo splo nplo splo higher-priority 10 request. Using both synthetic and

[kB] | RD WR|RD WR| RD WR| RD WR :
82 T4 39 o5 2l 1055 60 276 trace Work_lqads, we have shown_ that thes_e tec_hmques
250 | 11.8 129| 31 56| 255 272| 161 212| can be efficiently implemented, given detailed disk pa-
500 | 164 18.7| 25 47| 281 36.0| 155 20.3| rameters. Our empirical studies showed tiSsmi-

preemptible IGcan reduce the waiting time for both read

and write requests significantly when compared with

non-preemptible 10s.

Table 3: The expected waiting time and average re
sponse time for non-preemptible aBémi-preemptible

10 (v = 1req/s). We believe that preemptible 10 can especially benefit

} ) multimedia and real-time systems, which are delay sen-
Table 4 presents the results of our experiments aimed tgjtive and which issue large-size 10s for meeting real-

find out the effect of write 10 preemption on the averageime constraints. We are currently implement®gmi-
response time for higher-priority requests and disk Wr'tepreemptible IGin Linux kernel. We plan to further study

throughput. For example, in the case50tkB write 10 jis performance impact on traditional and real-time disk-
requests, the disk can buffer multiple requests, and th%cheduling algorithms.

write-back operation can include multiple seek opera-
tions. Semi-preemptible IGucceeds in reducing exter-
nal waiting time and provides substantial improvement
in the response time. However, since the disk is able t%
efficiently reorder the buffered write requests in the case
of non-preemptible |10, it achieves better disk through-
put. For large 10O requestSemi-preemptible I@chieves
write throughput comparable to that of non-preemptible

I0. We s est that write preemption can be disabled . . )
ugg wnte p pY ! iMI grant. The third author is supported by an IBM

when maintaining high system throughput is essential . :

and the disk reordering is useful (reordering could aIsoFaCUIty. Partnersrgp Awar_d.” Tge.ka;t.hc&rsl ¥V'Sh tg thantk
be done in the operating system scheduler using the low2Ur FEVIEWETS and especially Erik Riedel from seagate
level disk knowledge). Research for their valuable comments and suggestions.
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