
Design and Implementation of Semi-preemptible IO

Zoran Dimitrijevíc Raju Rangaswami Edward Chang
University of California, Santa Barbara

zoran@cs.ucsb.edu raju@cs.ucsb.edu echang@ece.ucsb.edu

Abstract

Allowing higher-priority requests to preempt ongoing
disk IOs is of particular benefit to delay-sensitive mul-
timedia and real-time systems. In this paper we propose
Semi-preemptible IO, which divides an IO request into
small temporal units of disk commands to enable pre-
emptible disk access. We present main design strate-
gies to allow preemption of each component of a disk
access—seek, rotation, and data transfer. We analyze the
performance and describe implementation challenges.
Our evaluation shows thatSemi-preemptible IOcan sub-
stantially reduce IO waiting time with little loss in disk
throughput. For example, expected waiting time for disk
IOs in a video streaming system is reduced2.1 times
with the throughput loss of less than6 percent.

1 Introduction

Traditionally, disk IOs have been thought of as non-
preemptible operations. Once initiated, they cannot be
stopped until completed. Over the years, operating sys-
tem designers have learned to live with this restriction.
However, non-preemptible IOs can be a stumbling block
for applications that require short response time. In
this paper, we propose methods to make disk IOs semi-
preemptible, thus providing the operating system a finer
level of control over the disk-drive.

Preemptible disk access is desirable in certain settings.
One such domain is that of real-time disk schedul-
ing. Real-time scheduling theoreticians have developed
schedulability tests (the test of whether a task set is
schedulable such that all deadlines are met) in various
settings [9, 10, 11]. In real-time scheduling theory,
blocking1, or priority inversion, is defined as the time
spent when a higher-priority task is prevented from run-
ning due to the non-preemptibility of a low-priority task.
Blocking degrades schedulability of real-time tasks and

1In this paper, we refer to blocking as thewaiting time.

is thus undesirable. Making disk IOs preemptible would
reduce blocking and improve the schedulability of real-
time disk IOs.

Another domain where preemptible disk access is essen-
tial is that of interactive multimedia such as video, au-
dio, and interactive virtual reality. Because of the large
amount of memory required by these media data, they
are stored on disks and are retrieved into main memory
only when needed. For interactive multimedia applica-
tions that require short response time, a disk IO request
must be serviced promptly. For example, in an immer-
sive virtual world, the latency tolerance between a head
movement and the rendering of the next scene (which
may involve a disk IO to retrieve relevant media data) is
around15 milliseconds [2]. Such interactive IOs can be
modeled as higher-priority IO requests. However, due
to the typically large IO size and the non-preemptible
nature of ongoing disk commands, even such higher-
priority IO requests can be kept waiting for tens, if not
hundreds, of milliseconds before being serviced by the
disk.

To reduce the response time for a higher-priority request,
its waiting time must be reduced. Thewaiting timefor
an IO request is the amount of time it must wait, due
to the non-preemptibility of the ongoing IO request, be-
fore being serviced by the disk. The response time for
the higher-priority request is then the sum of its waiting
time and service time. Theservice timeis the sum of the
seek time, rotational delay, and data transfer time for an
IO request. (The service time can be reduced by intelli-
gent data placement [27] and scheduling policies [26].
However, our focus is on reducing the waiting time by
increasing the preemptibility of disk access.)

In this study, we exploreSemi-preemptible IO(previ-
ously called Virtual IO [5]), an abstraction for disk IO,
which provides highly preemptible disk access (average
preemptibility of the order of one millisecond) with little
loss in disk throughput.Semi-preemptible IObreaks the
components of an IO job into fine-grained physical disk-
commands and enables IO preemption between them. It



thus separates the preemptibility from the size and dura-
tion of the operating system’s IO requests.

Semi-preemptible IOmaps each IO request into mul-
tiple fast-executing disk commands using three meth-
ods. Each method addresses the reduction of one of
the possible components of the waiting time—ongoing
IO’s transfer time (Ttransfer), rotational delay (Trot),
and seek time (Tseek).

• Chunking Ttransfer. A large IO transfer is divided
into a number of small chunk transfers, and pre-
emption is made possible between the small trans-
fers. If the IO is not preempted between the chunk
transfers, chunking does not incur any overhead.
This is due to the prefetching mechanism in current
disk drives (Section 3.1).

• Preempting Trot. By performing just-in-time
(JIT) seek for servicing an IO request, the rotational
delay at the destination track is virtually elimi-
nated. The pre-seek slack time thus obtained is pre-
emptible. This slack can also be used to perform
prefetching for the ongoing IO request, or/and to
perform seek splitting (Section 3.2).

• Splitting Tseek. Semi-preemptible IOcan split a
long seek into sub-seeks, and permits a preemption
between two sub-seeks (Section 3.3).

The following example illustrates howSemi-preemptible
IO can reduce the waiting time for higher-priority IOs
(and hence improve the preemptibility of disk access).

1.1 Illustrative Example

Suppose a500 kB read-request has to seek20, 000 cylin-
ders requiringTseek of 14 ms, must wait for aTrot of 7
ms, and requiresTtransfer of 25 ms at a transfer rate of
20 MBps. The expected waiting time,E(Twaiting), for
a higher-priority request arriving during the execution of
this request, is23 ms, while the maximum waiting time
is 46 ms (please refer to Section 3 for equations).Semi-
preemptible IOcan reduce the waiting time by perform-
ing the following operations.

It first predicts both the seek time and rotational delay.
Since the predicted seek time is long (Tseek = 14 ms),
it decides to split the seek operation into two sub-seeks,
each of10, 000 cylinders, requiringT ′seek = 9 ms each.
This seek splitting does not cause extra overhead in this
case because theTrot = 7 can mask the4 ms increased
total seek time (2 × T ′seek − Tseek = 2 × 9 − 14 = 4).
The rotational delay is nowT ′rot = Trot − (2× T ′seek −
Tseek) = 3 ms.

With this knowledge, the disk driver waits for3 ms
before performing a JIT-seek. This JIT-seek method
makesT ′rot preemptible, since no disk operation is be-
ing performed. The disk then performs the two sub-seek
disk commands, and then25 successive read commands,
each of size20 kB, requiring 1 ms each. A higher-
priority IO request could be serviced immediately after
each disk-command.Semi-preemptible IOthus enables
preemption of an originally non-preemptible read IO re-
quest. Now, during the service of this IO, we have two
scenarios:

• No higher-priority IO arrives. In this case, the
disk does not incur additional overhead for trans-
ferring data due to disk prefetching (discussed in
Sections 3.1 and 3.4). (IfTrot cannot mask seek-
splitting, the system can also choose not to perform
seek-splitting.)

• A higher-priority IO arrives. In this case, the
maximum waiting time for the higher-priority re-
quest is now a mere9 ms, if it arrives during one of
the two seek disk commands. However, if the on-
going request is at the stage of transferring data, the
longest stall for the higher-priority request is just1
ms. The expected value for waiting time is only
1
2

2×92+25×12

2×9+25×1+3 = 2.03 ms, a significant reduction
from 23 ms (refer to Section 3 for details).

This example shows thatSemi-preemptible IOsubstan-
tially reduces the expected waiting time and hence in-
creases the preemptibility of disk access. However, if
an IO request is preempted to service a higher-priority
request, an extra seek operation may be required to re-
sume service for the preempted IO. The distinction be-
tween IO preemptibility and IO preemptionis an im-
portant one. Preemptibility enables preemption, but in-
curs little overhead itself. Preemption will always incur
overhead, but it will reduce the service time for higher-
priority requests. Preemptibility provides the system
with the choice of trading throughput for short response
time when such a tradeoff is desirable. We explore the
effects of IO preemption further, in Section 4.3.

1.2 Contributions

In summary, the contributions of this paper are as fol-
lows:

• We introduceSemi-preemptible IO, which abstracts
both read and write IO requests so as to make them
preemptible. As a result, system can substantially



reduce the waiting time for a higher-priority request
at little or no extra cost.

• We show that making write IOs preemptible is not
as straightforward as it is for read IOs. We propose
one possible solution for making them preemptible.

• We present a feasible path to implementSemi-
preemptible IO. We explain how the implementa-
tion is made possible through use of a detailed disk
profiling tool.

The rest of this paper is organized as follows: Section 2
presents related research. Section 3 introducesSemi-
preemptible IOand describes its three components. In
Section 4, we evaluate our prototype. In Section 5, we
make concluding remarks and suggest directions for fu-
ture work.

2 Related Work

Before the pioneering work of [4, 14], it was as-
sumed that the nature of disk IOs was inherently non-
preemptible. In [4], the authors proposed breaking up
a large IO into multiple smaller chunks to reduce the
data transfer component (Ttransfer) of thewaiting time
(Twaiting) for higher-priority requests. A minimum
chunk size of one track was proposed. In this paper,
we improve upon the conceptual model of [4] in three
respects: 1) in addition to enabling preemption of the
data transfer component, we show how to enable pre-
emption ofTrot andTseek components; 2) we improve
upon the bounds for zero-overhead preemptibility; and
3) we show that making write IOs preemptible is not as
straightforward as it is for read IOs, but we propose one
possible solution.

Weissel et al. [24] recently proposed Cooperative I/O,
a novel IO semantics aimed to reduce the power con-
sumption of storage subsystem by enabling applications
to provide more information to OS scheduler. Similarly,
in this paper we propose an IO abstraction to enable pre-
emptive disk scheduling.

Semi-preemptible IOuses ajust-in-time seek(JIT-seek)
technique to make the rotational delay preemptible. JIT-
seek can also be used to mask the rotational delay
with useful data prefetching. In order to implement
both methods, our system relies on accurate disk pro-
filing [1, 7, 18, 22, 25]. Rotational delay masking
has been proposed in multiple forms. In [8, 26], the
authors present rotational-latency-sensitive schedulers,

which consider the rotational position of the disk arm
to make better scheduling decisions. In [13, 16, 12], the
authors presentfreeblock scheduling, wherein the disk
arm services background jobs using the rotational delay
between foreground jobs. In [19], Seagate uses a vari-
ant of just-in-time seek in some of its disk drives to re-
duce power consumption and noise.Semi-preemptible
IO uses similar techniques for a different goal—to make
rotational delays preemptible.

There is a large body of literature proposing IO schedul-
ing policies for multimedia and real-time systems that
improve disk response time [3, 20, 21, 23].Semi-
preemptible IOis orthogonal to these contributions. We
believe that the existing methods can benefit from using
preemptible IO to improve schedulability and further de-
crease response time for higher-priority requests. For in-
stance, to model real-time disk IOs, one can draw from
real-time CPU scheduling theory. In [14], the authors
adapt theEarliest Deadline First(EDF) algorithm from
CPU scheduling to disk IO scheduling. Since EDF is
a preemptive scheduling algorithm, a higher-priority re-
quest must be able to preempt a lower-priority request.
However, an ongoing disk request cannot be preempted
instantaneously. Applying such classical real-time CPU
scheduling theory is simplified if the preemption gran-
ularity is independent of system variables like IO sizes.
Semi-preemptible IOprovides such an ability.

3 Semi-preemptible IO

Before introducing the concept ofSemi-preemptible IO,
we first define some terms which we will use through-
out the rest of this paper. Then, we propose an abstrac-
tion for disk IO, which enables preemption of IO re-
quests. Finally, we present our disk profiler and the disk
parameters required for the implementation ofSemi-
preemptible IO.

Definitions:

• A logical disk blockis the smallest unit of data that
can be accessed on a disk drive (typically512 B).
Each logical block resides at a physical disk loca-
tion, depicted by a physical address (cylinder, track,
sector).

• A disk commandis a non-preemptible request is-
sued to the disk over the IO bus (e.g., the read,
write, seek, and interrogative commands).

• An IO requestis a request for read or write access
to a sequential set of logical disk blocks.



• Thewaiting timeis the time between the arrival of a
higher-priority IO request and the moment the disk
starts servicing it.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
������

��

Seek Time
Delay

Data Transfer
Disk Head

IO Bus

Read
Data Transfer on IO Bus

Request

Time

Rotational Time

Figure 1: Timing diagram for a disk read request.

In order to understand the magnitude of the waiting time,
let us consider a typical read IO request, depicted in Fig-
ure 1. The disk first performs a seek to the destination
cylinder requiringTseek time. Then, the disk must wait
for a rotational delay, denoted byTrot, so that the target
disk block comes under the disk arm. The final stage
is the data transfer stage, requiring a time ofTtransfer,
when the data is read from the disk media to the disk
buffer. This data is simultaneously transferred over the
IO bus to the system memory.

For a typical commodity system, once a disk command
is issued on the IO bus, it cannot be stopped. Tradition-
ally, an IO request is serviced using a single disk com-
mand. Consequently, the operating system must wait un-
til the ongoing IO is completed before it can service the
next IO request on the same disk. Let us assume that a
higher-priority request may arrive at any time during the
execution of an ongoing IO request with equal probabil-
ity. The waiting time for the higher-priority request can
be as long as the duration of the ongoing IO. The ex-
pected waiting time of a higher-priority IO request can
then be expressed in terms of seek time, rotational delay,
and data transfer time required for ongoing IO request
as

E(Twaiting) =
1
2
(Tseek + Trot + Ttransfer). (1)

Let Vi be the sequence of fine-grained disk commands
we use to service an IO request. Let the time required to
execute disk-commandVi beTi. Let Tidle be the dura-
tion of time during the servicing of the IO request, when
the disk is idle (i.e., no disk command is issued). Using
the above assumption that the higher-priority request can
arrive at any time with equal probability, the probability
that it will arrive during the execution of theith com-
mandVi can be expressed aspi = TiP

Ti+Tidle
. Finally,

the expected waiting time of a higher-priority request in

Semi-preemptible IOcan be expressed as

E(T ′waiting) =
1
2

∑
(piTi) =

1
2

∑
T 2

i

(
∑

Ti + Tidle)
. (2)

In the remainder of this section, we present 1)chunk-
ing, which dividesTtransfer (Section 3.1); 2)just-in-
time seek, which enablesTrot preemption (Section 3.2);
and 3)seek splitting, which dividesTseek (Section 3.3).
In addition, we present our disk profiler, Diskbench, and
summarize all the disk parameters required for the im-
plementation ofSemi-preemptible IO(Section 3.4).

3.1 Chunking: PreemptingTtransfer

The data transfer component (Ttransfer) in disk IOs can
be large. For example, the current maximum disk IO
size used by Linux and FreeBSD is128 kB, and it can be
larger for some specialized video-on-demand systems2.
To make theTtransfer component preemptible,Semi-
preemptible IOuseschunking.

Definition 3.1: Chunkingis a method for splitting the
data transfer component of an IO request into multi-
ple smallerchunk transfers. The chunk transfers are
serviced using separate disk commands, issued sequen-
tially.

Benefits: Chunking reduces the transfer component of
Twaiting. A higher-priority request can be serviced af-
ter a chunk transfer is completed instead of after the en-
tire IO is completed. For example, suppose a500 kB
IO request requires aTtransfer of 25 ms at a transfer
rate of20 MBps. Using a chunk size of20 kB, the ex-
pected waiting time for a higher-priority request is re-
duced from12.5 ms to0.5 ms.

Overhead: For small chunk sizes, the IO bus can be-
come a performance bottleneck due to the overhead of
issuing a large number of disk commands. As a re-
sult, the disk throughput degrades. Issuing multiple
disk commands instead of a single one also increases
the CPU overhead for performing IO. However, for the
range of chunk sizes, the disk throughput using chunk-
ing is optimal with negligible CPU overhead.

2These values are likely to vary in the future.Semi-preemptible IO
provides a technique that does not deter disk preemptibility with the
increased IO sizes.



3.1.1 The Method

To perform chunking, the system must decide on the
chunk size.Semi-preemptible IOchooses the minimum
chunk size for which the disk throughput is optimal
and the CPU overhead acceptable. Surprisingly, large
chunk sizes can also suffer from throughput degradation
due to the sub-optimal implementation of disk firmware
(Section 3.4). Consequently,Semi-preemptible IOmay
achieve even better disk throughput than the traditional
method where an IO request is serviced using a single
disk command.

In order to perform chunking efficiently,Semi-
preemptible IOrelies on the existence of a read cache
and a write buffer on the disk. It uses disk profiling to
find the optimal chunk size. We now present the chunk-
ing for read and write IO requests separately.

3.1.2 The Read Case

Disk drives are optimized for sequential access, and they
continue prefetching data into the disk cache even after
a read operation is completed [17]. Chunking for a read
IO requests is illustrated in Figure 2. The x-axis shows
time, and the two horizontal time lines depict the activity
on the IO bus and the disk head, respectively. Employ-
ing chunking, a largeTtransfer is divided into smaller
chunk transfers issued in succession. The first read com-
mand issued on the IO bus is for the first chunk. Due to
the prefetching mechanism, all chunk transfers follow-
ing the first one are serviced from the disk cache rather
than the disk media. Thus, the data transfers on the IO
bus (the small dark bars shown on the IO bus line in
the figure) and the data transfer into the disk cache (the
dark shaded bar on the disk-head line in the figure) occur
concurrently. The disk head continuously transfers data
after the first read command, thereby fully utilizing the
disk throughput.

������
������
������
������
������
���

��
��
��
��
��
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

��
��
��
��
��
�

		
		
		
		
		
	



















������
������
������
������
������
���

������
������
������
������
������
���

� ��� ��������� ������� ������� ���������

Seek Time Rotational
Delay

Data Transfer
Disk Head

IO Bus

Read
Data Transfer on IO Bus

Request

Time

Time

Figure 2: Virtual preemption of the data transfer.

Figure 3 illustrates the effect of the chunk size on the
disk throughput using a mock disk. The optimal chunk
size lies betweena andb. A smaller chunk size reduces
the waiting time for a higher-priority request. Hence,
Semi-preemptible IOuses a chunk size close to but larger

thana. For chunk sizes smaller thana, due to the over-
head associated with issuing a disk command, the IO
bus is a bottleneck. Pointb in Figure 3 denotes the point
beyond which the performance of the cache may be sub-
optimal3.

D
is

k 
th

ro
ug

hp
ut

maximum

(b)

minimum 

(a)

good firmware design

sub−optimal firmware design

chunk size chunk size
Chunk size

Figure 3: Effect of chunk size on disk throughput.

3.1.3 The Write Case

Semi-preemptible IOperforms chunking for write IOs
similarly to chunking for read requests. However, the
implications of chunking in the write case are different.
When a write IO is performed, the disk command can
complete as soon as all the data is transferred to the disk
write buffer4. As soon as the write command is com-
pleted, the operating system can issue a disk command
to service a higher-priority IO. However, the disk may
choose to schedule a write-back operation for disk write
buffers before servicing a new disk command.We refer
to this delay as theexternal waiting time. Since the disk
can buffer multiple write requests, the write-back opera-
tion can include multiple disk seeks. Consequently, the
waiting time for a higher-priority request can be substan-
tially increased when the disk services write IOs.

In order to increase preemptibility of write requests, we
must take into consideration the external waiting time
for write IO requests. External waiting can be reduced
to zero by disabling write buffering. However, in the ab-
sence of write buffering, chunking would severely de-
grade disk performance. The disk would suffer from
an overhead of one disk rotation after performing an IO
for each chunk. To remedy external waiting, our proto-
type forces the disk to write only the last chunk of the
write IO to disk media by setting force-unit-access flag

3We have not fully investigated the reasons for sub-optimal disk
performance and it is the subject of our future work.

4If the size of the write IO is larger than the size of the write buffer,
then the disk signals the end of the IO as soon as the excess amount
of data (which cannot be fitted into the disk buffer) has been written to
the disk media.



in SCSI write command. Using this simple technique, it
triggers the write-back operation at the end of each write
IO. Consequently, the external waiting time is reduced
since the write-back operation does not include multiple
disk seeks.

3.2 JIT-seek: PreemptingTrot

After the reduction of theTtransfer component of the
waiting time, the rotational delay and seek time com-
ponents become significant. The rotational period (TP )
can be as much as10 ms in current-day disk drives. To
reduce the rotational delay component (Trot) of the wait-
ing time, we propose ajust-in-time seek(JIT-seek) tech-
nique for IO operations.

Definition 3.2: The JIT-seektechnique delays the ser-
vicing of the next IO request in such a way that the rota-
tional delay to be incurred is minimized. We refer to the
delay between two IO requests, due to JIT-seek, asslack
time.

Benefits:

1. The slack time between two IO requests is fully
preemptible. For example, suppose that an IO request
must incur aTrot of 5 ms, and JIT-seek delays the is-
suing of the disk command by4 ms. The disk is thus
idle for Tidle = 4 ms. Then, the expected waiting time
is reduced from2.5 ms to 1

2
1×1
1+4 = 0.1 ms.

2. The slack obtained due to JIT-seek can also be used
to perform data prefetching for the previous IO or to
service a background request, and hence potentially in-
crease the disk throughput.

Overhead: Semi-preemptible IOpredicts the rotational
delay and seek time between two IO operations in or-
der to perform JIT-seek. If there is an error in predic-
tion, then the penalty for JIT-seek is at most one extra
disk rotation and some wasted cache space for unused
prefetched data.

3.2.1 The Method

Data TransferSeek TimePreemptible
Rotational

Data Transfer

JIT−seek

Seek Time

Slack

Delay
Rotational

Regular IO

with JIT−seek

Semi−preemptible IO 

Time

Time

Figure 4: JIT-seek.

The JIT-seek method is illustrated in Figure 4. The x-
axis depicts time, and the two horizontal lines depict a
regular IO and an IO with JIT-seek, respectively. With
JIT-seek, the read command for an IO operation is de-
layed and issued just-in-time so that the seek operation
takes the disk head directly to the destination block,
without incurring any rotational delay at the destination
track. Hence, data transfer immediately follows the seek
operation. The available rotational slack, before issu-
ing the JIT-seek command, is now preemptible. We can
make two key observations about the JIT-seek method.
First, an accurate JIT-seek operation reduces theTrot

component of the waiting time without any loss in per-
formance. Second, and perhaps more significantly, the
ongoing IO request can be serviced as much as possible,
or even completely, if sufficient slack is available before
the JIT-seek operation for a higher-priority request.

The pre-seek slack made available due to the JIT-seek
operation can be used in three possible ways:

• The pree-seek slack can be simply left unused. In
this case, a higher-priority request arriving during
the slack time can be serviced immediately.

• The slack can be used to perform additional data
transfers. Operating systems can perform data
prefetching for the current IO beyond the necessary
data transfer. We refer to it asfree prefetching[13].
Chunking is used for the prefetched data, to reduce
the waiting time of a higher-priority request. Free
prefetching can increase the disk throughput. We
must point out, however, that free prefetching is
useful only for sequential data streams where the
prefetched data will be consumed within a short
time. Operating systems can also perform another
background request as proposed elsewhere [13, 16].

• The slack can be used to mask the overhead in-
curred in performingseek-splitting, which we shall
discuss next.

3.3 Seek Splitting: PreemptingTseek

The seek delay (Tseek) becomes the dominant compo-
nent when theTtransfer and Trot components are re-
duced drastically. A full stroke of the disk arm may re-
quire as much as20 ms in current-day disk drives. It
may then be necessary to reduce theTseek component to
further reduce the waiting time.

Definition 3.3: Seek-splittingbreaks a long, non-
preemptible seek of the disk arm into multiple smaller
sub-seeks.



Benefits: The seek-splittingmethod reduces theTseek

component of the waiting time. A long non-preemptible
seek can be transformed into multiple shorter sub-seeks.
A higher-priority request can now be serviced at the end
of a sub-seek, instead of being delayed until the entire
seek operation is finished. For example, suppose an IO
request involves a seek of20, 000 cylinders, requiring a
Tseek of 14 ms. Using seek-splitting, this seek opera-
tion can be divided into two9 ms sub-seeks of10, 000
cylinders each. Then the expected waiting time for a
higher-priority request is reduced from7 ms to4.5 ms.

Overhead:

1. Due to the mechanics of the disk arm, the total time
required to perform multiple sub-seeks is greater than
that for a single seek of a given seek distance. Thus,
the seek-splitting method can degrade disk throughput.
Later in this section, we discuss this issue further.

2. Splitting the seek into multiple sub-seeks increases
the number of disk head accelerations and decelera-
tions, consequently increasing the power usage and
noise.

3.3.1 The Method

To split seek operations,Semi-preemptible IOuses a tun-
able parameter, the maximum sub-seek distance. The
maximum sub-seek distancedecides whether to split a
seek operation. For seek distances smaller than the max-
imum sub-seek distance, seek-splitting is not employed.
A smaller value for the maximum sub-seek distance
provides higher responsiveness at the cost of possible
throughput degradation.

Unlike the previous two methods, seek-splitting may de-
grade disk performance. However, we note that the over-
head due to seek-splitting can, in some cases, be masked.
If the pre-seek slack obtained due to JIT-seek is greater
than the seek overhead, then the slack can be used to
mask this overhead. A specific example of this phe-
nomenon was presented in Section 1. If the slack is
insufficient to mask the overhead, seek-splitting can be
aborted to avoid throughput degradation. Making such a
tradeoff, of course, depends on the requirements of the
application.

3.4 Disk Profiling

As mentioned in the beginning of this section,Semi-
preemptible IOgreatly relies on disk profiling to obtain
accurate disk parameters. The disk profiler obtains the

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900 1000

Th
ro

ug
hp

ut
 (M

B
/s

)

Chunk size (kB) 

(a) SCSI ST318437LW

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

Th
ro

ug
hp

ut
 (M

B
/s

)

Chunk size (kB) 

(b) IDE WD400BB

Figure 5: Sequential read throughput vs. chunk size.

following required disk parameters:

• Disk block mappings.System uses disk mappings
for both logical-to-physical and physical-to-logical
disk block address transformation.

• The optimal chunk size. In order to efficiently
perform chunking,Semi-preemptible IOchooses
the optimal chunk size from the optimal range ex-
tracted using disk profiler.

• Disk rotational factors. In order to perform JIT-
seek, system requires accurate rotational delay pre-
diction, which relies on disk rotation period and ro-
tational skew factors for disk tracks.

• Seek curve. JIT-seek and seek-splitting methods
rely on accurate seek time prediction.

The extraction of these disk parameters is described
in [7].

As regards chunking, the disk profiler provides the opti-
mal range for the chunk size. Figure 5 depicts the effect
of chunk size on the read throughput performance for



10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

Th
ro

ug
hp

ut
 (M

B
/s

)

Chunk size (kB) 

(a) SCSI ST318437LW

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900 1000

Th
ro

ug
hp

ut
 (M

B
/s

)

Chunk size (kB) 

(b) IDE WD400BB

Figure 6: Sequential write throughput vs. chunk size.

one SCSI and one IDE disk drive. Figure 6 shows the
same for the write case. Clearly, the optimal range for
the chunk size (between the pointsa and b illustrated
previously in Figure 3) can be automatically extracted
from these figures. The disk profiler implementation was
successful in extracting the optimal chunk size for sev-
eral SCSI and IDE disk drives with which we experi-
mented. For those who might also be interested in the
CPU overhead for performing chunking, we present the
CPU utilization when transferring a large data segment
from the disk, using different chunk sizes in Figure 7
for an IDE disk. The CPU utilization decreases rapidly
with an increase in the chunk size. Beyond a chunk size
of 50 kB, the CPU utilization remains relatively con-
stant. This figure shows that chunking, using even small
chunk size (50 kB), is feasible for IDE disk without in-
curring any significant CPU overhead. For SCSI disks,
the CPU overhead of chunking is even less than that for
IDE disks, since the bulk of the processing is done by
the SCSI controller.

To perform JIT-seek, the system needs an accurate es-
timate of the seek delay between two disk blocks. The
disk profiler provides the seek curve as well as the varia-
tions in seek time. The seek time curve (and variations in

0

0.05

0.1

0.15

0.2

0.25

50 100 150 200 250

C
P

U
 U

til
iz

at
io

n

Chunk Size (kB) 

system time
user+system time

Figure 7: CPU utilization vs. chunk size for IDE
WD400BB.

0

5

10

15

20

0 5000 10000 15000 20000 25000 30000

S
ee

k 
tim

e 
(m

s)

Seek distance (cylinders)

Rotational period
Seek curve

Figure 8: Seek curve for SCSI ST318437LW.

seek time) for a SCSI disk obtained by the disk profiler
is presented in Figure 8. The disk profiler also obtains
the required parameters for rotational delay prediction
between accessing two disk blocks in succession with
near-microsecond-level precision. However, the varia-
tions in seek time can be of the order of one millisec-
ond, which restricts the possible accuracy of prediction.
Finally, to perform JIT-seek, the system combines seek
time and rotational delay prediction to predictTrot. We
have conducted more detailed study onTrot prediction
in [7].

4 Experimental Results

We now present the performance results for our im-
plementation ofSemi-preemptible IO. Our experiments
aimed to answer the following questions:

• What is the level of preemptibility of Semi-
preemptible IOand how does it influence the disk
throughput?

• What are theindividual contributionsof the three
components ofSemi-preemptible IO?



• What is the effect of IOpreemptionon the average
response time for higher-priority requests and the
disk throughput?

In order to answer these questions, we have im-
plemented a prototype system which can service IO
requests using either the traditional non-preemptible
method (non-preemptible IO) or Semi-preemptible IO.
Our prototype runs as a user-level process in Linux and
talks directly to a SCSI disk using the Linux SCSI-
generic interface. The prototype uses the logical-to-
physical block mapping of the disk, the seek curves, and
the rotational skew times, all of which are automatically
generated by the Diskbench [7]. All experiments were
performed on a Pentium III800 MHz machine with a
Seagate ST318437LW SCSI disk. This SCSI disk has
two tracks per cylinder, with437 to 750 blocks per track
depending on the disk zone. The total disk capacity is
18.4 GB. The rotational speed of the disk is7200 RPM.
The maximum sequential disk throughput is between
24.3 and41.7 MBps.

For performance benchmarking, we performed two sets
of experiments. First, we tested the preemptibility of
the system using simulated IO workload. For the simu-
lated workload, we used equal-sized IO requests within
each experiment. The low-priority IOs are for data lo-
cated at random positions on the disk. In the exper-
iments where we actually performed preemption, the
higher-priority IO requests were also at random posi-
tions. However, their size was set to only one block in
order to provide the lower estimate for preemption over-
head. We tested the preemptibility underfirst-come-first-
serve (FCFS)andelevatordisk scheduling policies. In
the second set of experiments we used trace workload
obtained on the tested Linux system. We obtained the
traces from the instrumented Linux-kernel disk-driver.
In the simulated experiments, non-preemptible IOs are
serviced using chunk sizes of128 kB. This is the size
used by Linux and FreeBSD for breaking up large IOs.
We assume that a large IO cannot be preempted between
chunks, since such is the case for current operating sys-
tems. On the other hand, our prototype services larger
IOs using multiple disk commands and preemption is
possible after each disk command is completed. Based
on disk profiling, our prototype used the following pa-
rameters forSemi-preemptible IO. Chunking divided the
data transfer into chunks of50 disk blocks each, except
for the last chunk, which can be smaller. JIT-seek used
an offset of1 ms to reduce the probability of prediction
errors. Seeks for more than a half of the disk size in
cylinders were split into two equal-sized, smaller seeks.
We used the SCSIseekcommand to perform sub-seeks.

4.1 Preemptibility

The experiments for preemptibility of disk access mea-
sure the duration of (non-preemptible) disk commands
in both non-preemptible IO andSemi-preemptible IOin
the absence of higher-priority IO requests. The results
include both detailed distribution of disk commands du-
rations (and hence maximum possible waiting time) and
the expected waiting time calculated using Equations 1
and 2, as explained in Section 3.

4.1.1 Random Workload

Figure 9 depicts the difference in the expected waiting
time between non-preemptible IO andSemi-preemptible
IO. In this experiment, IOs were serviced for data situ-
ated at random locations on the disk. The IOs were ser-
viced using FCFS policy. We can see that the expected
waiting time for non-preemptible IOs increases linearly
with IO size due to increased data transfer time. How-
ever, the expected waiting time forSemi-preemptible IO
actually decreases with IO size, since the disk spends
more time in data transfer, which is more preemptible.

50 100 250 500 1000 2000
0

5

10

15

20

25

30

35

40

E
xp

ec
te

d 
w

ai
ti

ng
 ti

m
e 

(m
s)

IO size (kB)

Non-preemptible IO
Semi-preemptible IO

Figure 9: Improvements in the expected waiting time
(FCFS).

Figure 10 depicts the improvements in the expected
waiting time when the system uses an elevator-based
scheduling policy. (The figure shows the results of ran-
domly generated IO requests serviced in batches of40.)
The results are better than those of FCFS access since
the elevator scheduler reduces the seek component that
is the least-preemptible.

Figures 11 and 12 show the effect of improving IO pre-
emptibility on the achieved disk throughput when an
FCFS scheduling policy is used. There is a notice-



50 100 250 500 1000 2000
0

5

10

15

20

25

30

35

40

E
xp

ec
te

d 
w

ai
ti

ng
 ti

m
e 

(m
s)

IO size (kB)

Non-preemptible IO
Semi-preemptible IO

Figure 10: Improvements in the expected waiting time
(Elevator).

able but minor reduction in disk throughput usingSemi-
preemptible IO(less than15%). This reduction is due
to the overhead of seek-splitting and mis-prediction of
seek and rotational delay. More details on the accuracy
of rotational delay predictions can be found in [7]. An-
other point worth mentioning is that the reduction in disk
throughput inSemi-preemptible IOis smaller for large
IOs than for small IOs due to the reduced number of
seeks and hence the smaller overhead.

50 100 250 500 1000 2000
0

5

10

15

20

25

30

D
is

k 
th

ro
ug

hp
ut

 (
M

B
/s

)

IO size (kB)

Non-preemptible IO
Semi-preemptible IO
Free Prefetching

Figure 11: Effect on achieved disk throughput (FCFS).

Since disk commands are non-preemptible (even in
Semi-preemptible IO), we can use the duration of disk
commands to measure the expected waiting time. A
smaller value implies a more preemptible system. Fig-
ure 13 shows the distribution of the durations of disk
commands for both non-preemptible IO andSemi-
preemptible IO(for exactly the same sequence of IO re-
quests). In the case of non-preemptible IO (Figure 13
(a)), one IO request is serviced using a single disk com-

50 100 250 500 1000 2000
0

5

10

15

20

25

30

D
is

k 
th

ro
ug

hp
ut

 (
M

B
/s

)

IO size (kB)

Non-preemptible IO
Semi-preemptible IO
Free Prefetching

Figure 12: Effect on achieved disk throughput (Eleva-
tor).

mand. Hence, the disk access can be preempted only
when the current IO request is completed. The distri-
bution is dense near the sum of the average seek time,
rotational delay, and transfer time required to service an
entire IO request. The distribution is wider when the IO
requests are larger, because the duration of data trans-
fer depends not only on the size of the IO request, but
also on the throughput of the disk zone where the data
resides.

In the case ofSemi-preemptible IO, the distribution of
the durations of disk commands does not directly depend
on the IO request size, but on individual disk commands
used to perform an IO request. (We plot the distribution
for the Semi-preemptible IOcase in logarithmic scale,
so that the probability density of longer disk commands
can be better visualized.) In Figure 13 (b), we see that
for Semi-preemptible IO, the largest probability density
is around the time required to transfer a single chunk of
data. If the chunk includes the track or cylinder skew, the
duration of the command will be slightly longer. (The
two peaks immediately to the right of the highest peak,
at approximately2 ms, have the same probability be-
cause the disk used in our experiments has two tracks
per cylinder.) The part of the distribution between3 ms
and 16 ms in the figure is due to the combined effect
of JIT-seek and seek-splitting on the seek and rotational
delays. The probability for this range is small, approxi-
mately0.168, 0.056, and0.017 for 50 kB, 500 kB, and
2, 000 kB IO requests, respectively.

4.1.2 Trace Workload

We now present preemptibility results using IO traces
obtained from a Linux system. IO traces were obtained



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120

P
ro

ba
bi

lit
y 

de
ns

ity
 (1

/m
s)

Waiting time (ms)

IO size = 50kB
IO size = 500kB

IO size = 2000kB

(a) Non-preemptible IO (linear scale)

0.01

0.1

1

10

0 5 10 15 20

P
ro

ba
bi

lit
y 

de
ns

ity
 (1

/m
s)

Waiting time (ms)

IO size = 50kB
IO size = 500kB

IO size = 2000kB

(b) Semi-preemptible IO(logarithmic scale)

Figure 13: Distribution of the disk command duration
(FCFS). Smaller values imply a higher preemptibility.

from three applications. The first trace (DV15) was ob-
tained when the XTREAM multimedia system [6] was
servicing15 simultaneous video clients using the FCFS
disk scheduler. The second trace (Elevator15) was ob-
tained using the similar setup where XTREAM let Linux
elevator scheduler handle concurrent disk IOs. The third
was a disk trace of the TPC-C database benchmark with
20 warehouses obtained from [15]. Trace summary is
presented in Table 1.

Trace Number of Avg. req. size Max. block
requests [blocks] number

DV15 10800 128.7 28442272
Elevator15 10180 127.6 28429968

TPC 1376482 126.5 8005312

Table 1: Trace summary.

DV15 Elevator15 TPC
0

1

2

3

4

5

6

7

8

E
xp

ec
te

d 
w

ai
tin

g 
tim

e 
(m

s)

Trace

Non-preemptible IO
Semi-preemptible IO

Figure 14: Improvement in the expected waiting time
(using disk traces).

DV15 Elevator15 TPC
0

5

10

15

20

25

30

D
is

k 
th

ro
ug

hp
ut

 (M
B

/s
)

Trace

Non-preemptible IO
Semi-preemptible IO
Free Prefetching

Figure 15: Effect on the achieved disk throughput (using
disk traces).

Figures 14 and 15 show the expected waiting time and
disk throughput for these trace experiments. The ex-
pected waiting time was reduced by as much as65%
(Figure 14) with less than10% (Figure 15) loss in
disk throughput for all traces. (Elevator15 had smaller
throughput than DV15 because several processes were
accessing the disk concurrently, which increased the to-
tal number of seeks.)

4.2 Individual Contributions

Figure 16 shows the individual contributions of the three
strategies with respect to expected waiting time for the
random workload with the elevator scheduling policy. In
Section 4.1, we showed that the expected waiting time
can be significantly smaller inSemi-preemptible IOthan
in non-preemptible IO. Here we compare only contri-
butions withinSemi-preemptible IOto show the impor-
tance of each strategy. Since the time to transfer a single
chunk of data is small compared to the seek time (typi-
cally less than1 ms for a chunk transfer and10 ms for
a seek), the expected waiting time decreases as the data
transfer time becomes more dominant. When the data



50 100 250 500 1000 2000
0

1

2

3

4

5

E
xp

ec
te

d 
w

ai
tin

g 
tim

e 
(m

s)

IO size (kB)

Chunking
Chunking + JIT-seek
Chunking + JIT-seek + seek-splitting

Figure 16: Individual contributions ofSemi-preemptible
IO components on the expected waiting time (Elevator).

transfer time dominates the seek and rotational delays,
chunking is the most useful method for reducing the ex-
pected waiting time. When the seek and rotational de-
lays are dominant, JIT-seek and seek-splitting become
more effective for reducing the expected waiting time.

Figure 17 summarizes the individual contributions of
the three strategies with respect to the achieved disk
throughput. Seek-splitting can degrade disk through-
put, since whenever a long seek is split, the disk re-
quires more time to perform multiple sub-seeks. JIT-
seek requires accurate prediction of the seek time and
rotational delay. It introduces overhead in the case of
mis-prediction. However, when the data transfer is dom-
inant, benefits of chunking can mask both seek-splitting
and JIT-seek overheads. JIT-seek aids the throughput
with free prefetching. The potential free disk through-
put acquired using free prefetching depends on the rate
of JIT-seeks, which decreases with IO size. We believe

50 100 250 500 1000 2000
0

5

10

15

20

25

30

35

D
is

k 
th

ro
ug

hp
ut

 (M
B

/s
)

IO size (kB)

Chunking
Chunking + JIT-seek
Chunking + JIT-seek + seek-splitting
Free prefetching

Figure 17: Individual effects ofSemi-preemptible IO
strategies on disk throughput (Elevator).

that the free prefetching is a useful strategy for multime-
dia systems that often access data sequentially and hence
can use most of the potential free throughput.

4.3 Effect of Preemption

To estimate the response time for higher-priority IO
requests, we conducted experiments wherein higher-
priority requests were inserted into the IO queue at a
constant rate (ν). While the constant arrival rate may
seem unrealistic, the main purpose of this set of ex-
periments is only to “estimate” the benefits and over-
heads associated with preempting an ongoingSemi-
preemptible IOrequest to service a higher-priority IO
request.

Table 2 presents the response time for a higher-priority
request when usingSemi-preemptible IOin two pos-
sible scenarios: (1) when the higher-priority request
is serviced after the ongoing IO is completed (non-
preemptible IO), and (2) when the ongoing IO is pre-
empted to service the higher-priority IO request (Semi-
preemptible IO). If the ongoing IO request is not pre-
empted, then all higher-priority requests that arrive
while it is being serviced, must wait until the IO is com-
pleted. The results in Table 2 illustrate the case when
the ongoing request is a read request. The results for the
write case are presented in Table 4.

IO ν Avg. Resp.[ms] Throughput[MB/s]
[kB] [req/s] npIO spIO npIO spIO

50 0.5 19.2 19.4 3.39 2.83
50 1 21.8 16.0 3.36 2.89
50 2 20.8 17.6 3.32 2.82
50 5 21.0 18.2 3.18 2.62
50 10 21.2 18.3 2.95 2.30
50 20 21.1 18.4 2.49 1.68

500 0.5 29.2 15.7 16.25 16.40
500 1 28.1 15.5 16.15 16.20
500 2 28.2 16.7 15.94 15.77
500 5 28.6 16.0 15.28 14.58
500 10 28.9 16.3 14.24 12.48
500 20 29.4 16.8 11.96 8.57

Table 2: The average response time and disk throughput
for non-preemptible IO (npIO) and Semi-preemptible
IO (spIO).

Preemption of IO requests is not possible without over-
head. Each time a higher-priority request preempts a
low-priority IO request for disk access, an extra seek is
required to continue servicing the preempted request af-
ter the higher-priority request has been completed. Ta-
ble 2 presents the average response time and the disk
throughput for different arrival rates of higher-priority
requests. For the same size of low-priority IO requests,



the average response time does not increase significantly
with the increase in the arrival rate of higher-priority re-
quests. However, the disk throughput does decrease with
an increase in the arrival rate of higher-priority requests.
As explained earlier, this reduction is expected since the
overhead of IO preemption is an extra seek operation per
preemption. For applications that require short response
time, the performance penalty of IO preemption seems
acceptable.

4.3.1 External Waiting Time

In Section 3.1, we explained the difference in the pre-
emptibility of read and write IO requests and introduced
the notion of external waiting time. Table 3 summarizes
the effect of external waiting time on the preemption of
write IO requests. The arrival rate of higher-priority re-
quests is set toν = 1 req/s. As shown in Table 3, the av-
erage response time for higher-priority requests for write
experiments is several times longer than for read experi-
ments. Since the higher-priority requests have the same
arrival pattern in both experiments, the average seek time
and rotational delay are the same for both read and write
experiments. The large and often unpredictable external
waiting time in the write case explains these results.

Exp. Waiting[ms] Avg. Response[ms]
IO npIO spIO npIO spIO

[kB] RD WR RD WR RD WR RD WR

50 8.2 11.4 3.9 9.5 21.8 105.8 16.0 24.6
250 11.8 12.9 3.1 5.6 25.5 27.2 16.1 21.2
500 16.4 18.7 2.5 4.7 28.1 36.0 15.5 20.3

Table 3: The expected waiting time and average re-
sponse time for non-preemptible andSemi-preemptible
IO (ν = 1 req/s).

Table 4 presents the results of our experiments aimed to
find out the effect of write IO preemption on the average
response time for higher-priority requests and disk write
throughput. For example, in the case of50 kB write IO
requests, the disk can buffer multiple requests, and the
write-back operation can include multiple seek opera-
tions. Semi-preemptible IOsucceeds in reducing exter-
nal waiting time and provides substantial improvement
in the response time. However, since the disk is able to
efficiently reorder the buffered write requests in the case
of non-preemptible IO, it achieves better disk through-
put. For large IO requests,Semi-preemptible IOachieves
write throughput comparable to that of non-preemptible
IO. We suggest that write preemption can be disabled
when maintaining high system throughput is essential,
and the disk reordering is useful (reordering could also
be done in the operating system scheduler using the low-
level disk knowledge).

IO ν Avg. Response[ms] Throughput[MB/s]
[kB] [req/s] npIO spIO npIO spIO

50 0.5 93.1 26.9 4.85 1.98
50 1 105.8 24.6 4.75 1.96
50 2 91.1 22.7 4.68 1.94
50 5 102.2 24.4 4.40 1.84
50 10 87.5 23.7 3.95 1.70
50 20 81.3 23.3 3.09 1.42

500 0.5 32.4 20.3 13.71 11.41
500 1 36.0 20.3 13.64 11.24
500 2 35.0 20.8 13.45 11.02
500 5 34.9 20.5 12.82 10.36
500 10 36.6 20.3 11.67 9.13
500 20 34.6 20.7 9.64 6.92

Table 4: The average response time and disk write
throughput for non-preemptible andSemi-preemptible
IO.

5 Conclusion and Future Work

In this paper, we have presented the design ofSemi-
preemptible IO, and proposed three techniques for re-
ducing IO waiting-time—data transfer chunking, just-
in-time seek, and seek-splitting. These techniques en-
able the preemption of a disk IO request, and thus
substantially reduce the waiting time for a competing
higher-priority IO request. Using both synthetic and
trace workloads, we have shown that these techniques
can be efficiently implemented, given detailed disk pa-
rameters. Our empirical studies showed thatSemi-
preemptible IOcan reduce the waiting time for both read
and write requests significantly when compared with
non-preemptible IOs.

We believe that preemptible IO can especially benefit
multimedia and real-time systems, which are delay sen-
sitive and which issue large-size IOs for meeting real-
time constraints. We are currently implementingSemi-
preemptible IOin Linux kernel. We plan to further study
its performance impact on traditional and real-time disk-
scheduling algorithms.

6 Acknowledgements

This project is partially supported by NSF grants IIS-
0133802 (Career) and IIS-0219885 (ITR), and a UC
DiMI grant. The third author is supported by an IBM
Faculty Partnership Award. The authors wish to thank
our reviewers and especially Erik Riedel from Seagate
Research for their valuable comments and suggestions.



References

[1] M. Aboutabl, A. Agrawala, and J.-D. Decotignie. Tem-
porally determinate disk access: An experimental ap-
proach. Univ. of Maryland Technical Report CS-TR-
3752, 1997.

[2] R. T. Azuma. Tracking requirements for augmented re-
ality. Communications of the ACM, 36(7):50–51, July
1993.

[3] E. Chang and H. Garcia-Molina. Bubbleup - Low la-
tency fast-scan for media servers.Proceedings of the 5th
ACM Multimedia Conference, pages 87–98, November
1997.

[4] S. J. Daigle and J. K. Strosnider. Disk scheduling for
multimedia data streams.Proceedings of the IS&T/SPIE,
February 1994.

[5] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Virtual
IO: Preemptible disk access (poster).Proceedings of the
ACM Multimedia, December 2002.

[6] Z. Dimitrijevic, R. Rangaswami, and E. Chang. The
XTREAM multimedia system. IEEE Conference on
Multimedia and Expo, August 2002.

[7] Z. Dimitrijevic, R. Rangaswami, E. Chang, D. Watson,
and A. Acharya. Diskbench.
http://www.cs.ucsb.edu/∼zoran/papers/db01.pdf,
November 2001.

[8] L. Huang and T. Chiueh. Implementation of a rotation-
latency-sensitive disk scheduler.SUNY at Stony Brook
Technical Report, May 2000.

[9] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-
preemptive scheduling of periodic and sporadic tasks.
Proceedings of the Twelfth IEEE Real-Time Systems
Symposium, December 1991.

[10] D. I. Katcher, H. Arakawa, and J. K. Strosnider. Engi-
neering and analysis of fixed priority schedulers.Soft-
ware Engineering, 19(9):920–934, 1993.

[11] C. Liu and J. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment.ACM
Journal, January 1973.

[12] C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock
scheduling outside of disk firmware.Proceedings of the
Usenix FAST, January 2002.

[13] C. R. Lumb, J. Schindler, G. R. Ganger, and D. F. Na-
gle. Towards higher disk head utilization: Extracting
free bandwith from busy disk drives.Proceedings of the
OSDI, 2000.

[14] A. Molano, K. Juvva, and R. Rajkumar. Guaranteeing
timing constraints for disk accesses in RT-Mach.Pro-
ceedings of the Real Time Systems Symposium, 1997.

[15] Performance Evaluation Laboratory, Brigham
Young University. Trace distribution center.
http://tds.cs.byu.edu/tds/, 2002.

[16] E. Riedel, C. Faloutsos, G. R. Ganger, and D. F. Nagle.
Data mining on an OLTP system (nearly) for free.Pro-
ceedings of the ACM SIGMOD, May 2000.

[17] C. Ruemmler and J. Wilkes. An introduction to disk
drive modeling.Computer, 2:17–28, 1994.

[18] J. Schindler and G. R. Ganger. Automated disk drive
characterization.CMU Technical Report CMU-CS-00-
176, December 1999.

[19] Seagate Technology. Seagate’s sound barrier tech-
nology. http://www.seagate.com/docs/pdf/whitepaper/
soundbarrier.pdf, November 2000.

[20] C. Shahabi, S. Ghandeharizadeh, and S. Chaudhuri. On
scheduling atomic and composite multimedia objects.
IEEE Transactions on Knowledge and Data Engineer-
ing, 14(2):447–455, 2002.

[21] P. J. Shenoy and H. M. Vin. Cello: A disk scheduling
framework for next generation operating systems.Pro-
ceedings of the ACM Sigmetrics, June 1998.

[22] N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson.
Microbenchmark-based extraction of local and global
disk characteristics. UC Berkeley Technical Report,
1999.

[23] W. Tavanapong, K. Hua, and J. Wang. A framework
for supporting previewing and vcr operations in a low
bandwidth environment.Proceedings of the 5th ACM
Multimedia Conference, November 1997.

[24] A. Weissel, B. Beutel, and F. Bellosa. Cooperative I/O—
A novel I/O semantics for energy-aware applications.
Proceedings of the OSDI, December 2002.

[25] B. L. Worthington, G. Ganger, Y. N. Patt, and J. Wilkes.
Online extraction of scsi disk drive parameters.Proceed-
ings of the ACM Sigmetrics, pages 146–156, 1995.

[26] B. L. Worthington, G. R. Ganger, and Y. N. Patt.
Scheduling algorithms for modern disk drives.Proceed-
ings of the ACM Sigmetrics, pages 241–251, May 1994.

[27] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishna-
murthy, and T. E. Anderson. Trading capacity for perfor-
mance in a disk array.Proceedings of the OSDI, October
2000.


