
In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning (KR-89)
Los Altos, CA: Morgan Kaufmann, 1989.

Towards a Theory of Access-Limited Logic for KnowledgeRepresentation�J. M. Crawfordy and Benjamin KuipersDepartment of Computer SciencesThe University of Texas At AustinAustin, Texas 78712jc@cs.utexas.edukuipers@cs.utexas.eduAbstractOne of the fundamental problems in the the-ory of knowledge representation is the di�-culty of achieving both logical coherence andcomputational tractability. We present stepstoward a theory of access-limited logic, inwhich access to assertions in the knowledge-base is constrained by semantic network stylelocality relations. Where a classical de-ductive method or logic programming lan-guage would retrieve all assertions that sat-isfy a given pattern, an access-limited logicretrieves all assertions reachable by follow-ing an available access path. The complexityof inference is thus independent of the sizeof the knowledge-base and depends only onits local connectivity. Access-Limited Logic,though incomplete, still has a well de�ned se-mantics and a weakened form of completeness(`Socratic Completeness') and is complete insome important special cases.1 IntroductionAccess-Limited Logic (ALL) is a logic for knowl-edge representation which utilizes semantic networkstyle access limitations to guarantee computationaltractability, even in very large knowledge-bases. Pre-vious work has used the access limitations inherentin semantic networks for special purpose reasoning; inALL these limitations form an integral part of the logicitself. A semantics for ALL has been de�ned by map-ping queries, assertions and knowledge-bases to pred-icate calculus, and in terms of this mapping, consis-tency and weakened completeness results have beenproven.�This work has taken place in the Qualitative ReasoningGroup at the Arti�cial Intelligence Laboratory, UT-Austin.Research of the Qualitative Reasoning Group is supported,in part, by NSF through grant IRI-8602665, and by NASAthrough grants NAG 2-507 and NAG 9-200.ySupported in part by a fellowship from GTE.

Reasoning is hard. If a knowledge representationlanguage is as expressive as �rst-order predicate calcu-lus then the problem of deciding what an agent implic-itly knows (i.e. what an agent could logically deducefrom its knowledge) is unsolvable. Thus a knowledgerepresentation system, which does not give up expres-sive power, must use a weak inference system with anincomplete set of deduction rules or accept arti�cialresource limits (e.g. bounds on the number of appli-cations of modus ponens). However, these approachestend to be di�cult to describe semantically and tendto place unnatural limits on an agent's reasoning abil-ity [Levesque, 1986].Our primary interest is the development of a sys-tem for the representation of commonsense knowledge.People seem to be able to reason e�ciently with avery large commonsense knowledge-base. One rea-son for this is that when solving a given problem theyonly make use of the limited subset of their knowledgewhich is relevant to the problem.Our approach in ALL begins with the well knownmapping between atomic propositions in predicate cal-culus and slots in frames; the atomic proposition thatthe object a stands in relation r to the object b can bewritten logically as r(a; b) or expressed, in frames, byincluding object b in the r slot of object a. Thus in aframe-based system it is natural to de�ne the framesdirectly accessible from the frame a as those which ap-pear in slots of a1. Extending this idea, one may de�nean access path, in a network of frames, as a series offrames each directly accessible from its predecessor.It proves useful to generalize this de�nition and allowaccess paths to branch on all values found in a givenslot. A sequence of propositions de�nes an access pathif any variable appearing as the �rst argument to aproposition has appeared previously in the sequence.For example, \John's parent's sister" can be expressedin ALL as the path:(parent(John; x); sister(x; y))1Slots in ALL contain only frames and rules (de�nedbelow).

This de�nes an access path from the frame for John tothe frames for John's parents (found by looking in theparent slot of the frame for John), to John's parents'sisters.From access paths we build the inference rules ofALL. A rule is always associated with a particular slotin the network. Backward chaining if-needed rules arewritten in the form: � � (the structure of � and � isdiscussed below) and applied when a value for the slotis needed. Forward chaining if-added rules are writtenin the form: �! � and applied when a new value forthe slot is inserted. In either case the antecedent of therule must de�ne an access path (beginning with theslot the rule is associated with). For example, usingthe access path above we can write the if-needed rule:aunt(John; y) parent(John; x); sister(x; y)But note that we cannot write the (logically equiva-lent) rule:aunt(John; y) sister(x; y); parent(John; x);since the antecedent does not de�ne an access path.Where a classical deductive method or logic pro-gramming language would retrieve all known asser-tions that satisfy a given pattern, an access-limitedlogic retrieves all assertions reachable by following anavailable access path. The use of access paths alone,however, is insu�cient to guarantee computationaltractability in very large knowledge-bases. The evalu-ation of a path can cause an explosive back-chainingof rules which can spread throughout the knowledge-base. To prevent this, ALL introduces a second formof access limitation. The knowledge-base in ALL isdivided up into partitions and back-chaining is not al-lowed across partitions | facts in other partitions aresimply retrieved. When used together, these two kindsof access limitations can limit the complexity of infer-ence to a polynomial function of the size of the portionof the knowledge-base accessible from the local parti-tion.However, a price must be paid for the e�ciency ofaccess limitations. Inference in ALL is weaker thaninference in predicate calculus, since only locally ac-cessible facts and rules can be used in deductions.However, any concept in the knowledge-base is poten-tially reachable; A string of queries, while conveyingno new information, can move the focus of attentionaround to invoke the rules of the system in any or-der. Thus, access-limited logic has a property we callSocratic Completeness 2 | for any query of a proposi-tion which is a consequence (in predicate calculus) of2The idea of Socratic Completeness was invented in-dependently in [Powers, 1987] where it is referred to asSocratic Adequacy.

the knowledge-base, there exists a preliminary queryafter which the query succeeds. Further, ALL is Par-titionally Complete | if the rules needed to derive aproposition are in the same partition as the propo-sition and the proposition can be proven using onlybackward-chaining rules then a query of the proposi-tion succeeds.The logical properties of ALL are stated more care-fully in the next section. Section 3 examines the com-plexity of inference in ALL, section 4 presents a sim-ple example from our implementation of ALL, section5 discusses related work, and section 6 overviews ourcurrent plans for future work.2 The Logical Coherence of ALL.`Logical coherence' is an informally de�ned collectionof desirable formal properties. We have proven thatALL has the following properties of a logically coherentknowledge representation system:� ALL has a well de�ned syntax and proof theory.� The semantics of ALL can be de�ned by apurely syntactic mapping of ALL knowledge-bases, queries and assertions to predicate calcu-lus.� In terms of this mapping, inference in ALL is con-sistent, Socratically Complete, and PartitionallyComplete.These properties are stated more precisely in theoremsbelow.We view these formal properties as necessary butnot su�cient conditions for logical coherence. Thereremains, at least, the less formal claim that knowledgecan be organized cleanly into partitions. This claim isdiscussed in the last subsection of this section.The rest of this section sketches the formal develop-ment of ALL. The full account can be found in [Craw-ford and Kuipers, 1989].2.1 Basic NotationIn the meta-theory of ALL we use the following nota-tion. Quanti�ed expressions are written in the form:(hquantifierihvariablei : hrangei : hexpressioni):Thus, for example:(8x : pred1(x) : pred2(x))is read \For all x such that pred1(x), pred2(x)". Sim-ilarly: ([x : pred(x) : foo(x))(where foo is a set valued function) denotes the unionover all x such that pred(x) of foo(x).If � is a list then:� head(�) is the �rst element in �.� rest(�) is all but the �rst element in �.

2.2 Syntax of ALLWe now build up the syntax of ALL. First the alphabetof an ALL is de�ned and then terms, propositions,access paths, rules, knowledge-bases, and �nally ALLformula are de�ned.2.2.1 Alphabets, Terms and PropositionsThe alphabet of an Access-Limited Logic consists ofcountably in�nite sets of variables, constants, and re-lations, the binary relation isa, the connectives and!, and the operators query, and assert. A term is aconstant or a variable. A proposition is r(t1; . . . ; tn)where r is an n-ary relation and all ti are terms. Afact is a proposition such that all ti are constants. Fora proposition or list of propositions �:� vars(�) is the set of variables appearing in �.� relations(�) is the set of relations appearing in �.� constants(�) is the set of constants appearing in�.2.2.2 Access PathsAn access path (or simply a path) is a pair hV; �isuch that: V is a set of variables, and � is a list ofpropositions in which the �rst term of each propositionis either a constant, a member of V , or has appearedpreviously in � (this can be made precise by a simplerecursive de�nition). If V = fg then we omit it andsay � is an access path. A path of length one is aprimitive path.2.2.3 RulesConseq Ant is an if-needed rule i�:� Key = r(t1; . . . ; tn)3 is a proposition,� Conseq = Key,� Ant is a list of propositions,� Either t1 is a constant and Ant is a path, or t1 isa variable and hft1g; Anti is a path, and� vars(Conseq) � vars(Ant).Ant! Conseq is an if-added rule i�:� Key and Conseq are propositions.� Ant is a list of propositions such thathead(Ant) = Key,� hvars(Key); Anti is a path, and� vars(Conseq) � vars(Ant).For any rule �: Key(�), Conseq(�), and Ant(�) accessits respective components.3Intuitively, the Key of a rule is the proposition thatthe rule is indexed under in the knowledge-base.

2.2.4 Knowledge-BasesA Knowledge-Base, K, is a seven-tuplehC;R;Nr;Ar; F; P;Ai:The de�nition of a knowledge-base is given in �gure 1.If K = hC;R;Nr;Ar; F; P;Aiis a knowledge-base and � is a proposition, list ofpropositions or a rule then � is allowed in K i�constants(�) � C ^ relations(�) � R:2.2.5 Operations and FormulaIf � is a path then query(�) is a query. If � is aprimitive path then query(�) is a primitive query. Iff is a fact then assert(f) is an assertion. Any queryor assertion is an operation. Any primitive query orassertion is a primitive operation. If O = query(�)or O = assert(�) is an operations and � is allowedin a knowledge-base K then O is allowed in K. If anoperation O is allowed in a knowledge-base K thenO(K) is an ALL formula.2.3 Knowledge TheoryIn this subsection we sketch the knowledge theory ofALL. The knowledge theory of ALL de�nes the valueof ALL formula by de�ning the action of ALL oper-ations (i.e. queries and assertions). Intuitively, theassertion of a fact f , adds f to a knowledge-baseand returns the resultant knowledge-base (i.e. theknowledge-base after f is added and all applicable if-added rules are applied). A query of q, returns thesubstitutions needed to make q true in the knowledge-base, and a new knowledge-base (since processing thequery may change the knowledge-base by invokingrules).2.3.1 The Domain and Range of ALLOperationsAny given sets C;R;Nr;Ar,P and function A, de-�ne a �nite set of possible knowledge-bases (di�er-ing only in facts) KB and an in�nite set of groundsubstitutions � (binding variables in the alphabetto constants in C). For this subsection �x the setsC;R;Nr;Ar,P , and the function A. Then, for anyoperation, O, allowed in the knowledge-bases in KB(note that an operation allowed in any knowledge-basein KB is allowed in all knowledge-bases in KB):O : KB �! 2� �KB:We notate these returned values with pairs: h < set ofsubstitutions>, < knowledge-base> i. and use kb andsub as accessors on their �rst and second componentsrespectively.

A Knowledge-Base, K, is a seven-tuple hC;R;Nr;Ar; F; P;Ai where:C = A set of constants.R = A set of relations.Nr = A set of if-needed rules such that: (8� : � 2 Nr: constants(�) � C ^ relations(�) � R).Ar = A set of if-added rules such that: (8� : � 2 Ar: constants(�) � C ^ relations(�) � R).F = A set of facts such that: (8f : f 2 F : constants(f) � C ^ relations(f) � R).P = A set of partitions, subsets of C �R, fp1; . . . ; png, such that:([i : 1 � i � n : pi) = C �R (i.e. each element of C �R is in some pi).A = A rule association function mapping: Nr [Ar =) C [R, such that:(8� : � 2 Ar [Nr : A(�) 2 R! fA(�)g = relations(Key(�)))(i.e. if a rule � is associated with a relation then that relation mustbe the one appearing in Key(�)).Figure 1: De�nition of a Knowledge-Base.2.3.2 The Partitions of ALL OperationsIntuitively, a partition of K corresponds to a partof the knowledge-base which is somehow semanticallycohesive and distinct from the rest of the knowledge-base. Facts and rules are often thought of as being`in' partitions and operations are thought of as `takingplace' in subsets of C �R (unions of partitions). Theintuition behind this comes from the frame view ofALL knowledge-bases. Recall that ALL constants canbe thought of as frames and relations as slots in theseframes (e.g. the fact r(c1; c2) is equivalent to havingthe value c2 in the r slot of the frame c1). Thus apair hr; ci can be thought of as a particular slot in aparticular frame in the knowledge-base. We refer tosuch a pair as a frame-slot. Partitions are thus sets offrame-slots. Further, note that any primitive path �(by the de�nition of a path) must reference exactly oneframe-slot and thus can be said to be `in' a partition.In fact, since partitions can overlap, it can be in severalpartitions and any operation on � is performed `in'the subset of C �R formed by taking the union of thepartitions � is in. Intuitively, this union de�nes therules which are available to the operation. Thus anoperation on � has access to the rules of all partitions� is in.More formally, if K = hC;R;Nr;Ar; F; P;Ai is aknowledge-base and � = r(c; t1; . . . ; tn) is a primitivepath (i.e. c a constant and all ti, 1 � i � n, are terms)and p is a partition of K then � 2 p i� hc; ri 2 p. IfP = fp1; . . . ; png and O = query(�) or O = assert(�)then union of partitions for O is:parK(O) = ([i : 1 � i � n ^ � 2 pi : pi)2.3.3 The Values of ALL OperationsDe�ning the values of ALL operations is primar-ily a mater of formalizing the action of forward

and backward chaining rules. We use the follow-ing basic notation for knowledge-bases and substitu-tions: If K1 = hC;R;Nr;Ar; F1; P; Ai and K2 =hC;R;Nr;Ar; F2; P; Ai are knowledge-bases, then:K1 [K2 = hC;R;Nr;Ar; F1 [F2; P; Ai:If further, f is a fact allowed in K1 then:K1 + f = hC;R;Nr;Ar; F1 [ffg; P; Ai;and f 2 K1 i� f 2 F1. If � and � are substitutionsthen � � � notates � followed by �. If further, �1 is aset of substitutions then � ��1 = f� � �1 j �1 2 �1g.For a primitive operations O, we de�ne On(K; p) asthe result of the operation O on the knowledge-baseK, in some subset of C �R, p, with rule chaining cuto� at depth n (the full formal de�nition of On is givenin [Crawford and Kuipers, 1989]). We then de�ne Oin terms of On as shown in �gure 2. Note that since Ois de�ned as the union over all n of On, recursive rules(e.g. rules of form q q) do not cause any problemsin ALL (or its lisp implementation). Figure 3 showsan example of a query on a simple knowledge-base.2.4 Mapping ALL to Predicate CalculusWe de�ne the semantics of ALL by mapping ALLknowledge-bases, assertions, and queries to (�rst or-der) predicate calculus. An alternative approachwould be to de�ne a model theory for ALL, in termsof which ALL is complete. This could be done, but webelieve that (since the model theory of predicate calcu-lus is well understood), mapping to predicate calculusand appropriately weakening the notion of complete-ness gives a more perspicuous picture of the seman-tics of ALL. Further, we believe that consistency andSocratic Completeness relative to predicate calculus(or perhaps an appropriate non-monotonic logic) are

If O is a primitive operation allowed in a knowledge-base K then:O(K) = ([n : n > 0 : On(K; parK(O)))The result of a non-primitive operations is de�ned in terms of the results of its constituent primitiveoperations. Again assume that O is an operation allowed in K:If sub(query(q)(K)) = fg (i.e. query(q) `failed'),O(K) = hfg;Kielse O(K) = ([� : � 2 sub(query(q)(K)): h� � sub(query(�0�)(K)); kb(query(q)(K)) [kb(query(�0)(K))i)Figure 2: The de�nition of O.
Assume K = hC;R;Nr;Ar; F; P;Ai is a knowledge-base such that:C = fcgR = fr1; r2gNr = fr1(c; x) r2(c; x)gAr = fgF = fr2(c; c)gP = ffhc; r1i; hc; r2iggFurther, A(r1(c; x) r2(c; x)) = r1. Consider query(r1(c; x))(K) (where x is a variable). This isa primitive operation so we �rst compute query0(r1(c; x))(K; parK(r1(c; x))). Rule back-chainingis cut o� at depth 0 so no rules apply and query0(r1(c; x))(K; parK (r1(c; x))) = hfg;Ki (an emptylist of substitutions is returned since there is no known value of x such that the query suc-ceeds). However when we calculate query1(r1(c; x))(K; parK (r1(c; x))), the if-needed rule appliesand query1(r1(c; x))(K; parK(r1(c; x))) = hffx=cgg;K+r1(c; c)i (where fx=cg binds x to c). As n isincreased further there are no other rules to apply so query(r1(c; x))(K) = hffx=cgg;K + r1(c; c)i.Figure 3: A query on a simple knowledge-base.

Assume K = hC;R;Nr;Ar; F; P;Ai is a knowledge-base such that:C = fcgR = fr1; r2; r3gNr = fr1(c; x) r2(c; x)gAr = fr1(c; x)! r3(c; x)gF = fr2(c; c)gP = ffhc; r1i; hc; r2i; hc; r3iggFinally, A(r1(c; x) r2(c; x)) = r1, A(r1(c; x) ! r3(c; x)) = r1. Consider query(r3(c; c))(K). Thisquery must fail since r3(c; c) is not a fact in K and there are no if-needed rules for r3(c; c). But, anymodel of PC(K) must be a model of PC(r3(c; c)) (by the two rules and the fact that r2(c; c) is inF). Hence, inference in ALL is not complete.Figure 4: A form of incompleteness in ALL.
Assume K = hC;R;Nr;Ar; F; P;Ai is a knowledge-base such that:C = fcgR = fr1; r2; r3gNr = fr1(c; x) r2(c; x); r2(c; x) r3(c; x)gAr = fgF = fr3(c; c)gP = ffhc; r1ig;fhc; r2i; hc; r3iggFinally, A(r1(c; x) r2(c; x)) = r1, A(r2(c; x) r3(c; x)) = r2. Consider query(r1(c; c))(K). Thisquery must fail since r2(c; c) is not a fact in K and is not in parK(r1(c; c)) (so no rules for r2(c; c)can �re). But, any model of PC(K) must be a model of PC(r1(c; c)) (by the two rules and the factthat r3(c; c) is in F). Figure 5: Another form of incompleteness in ALL.

necessary properties for any knowledge representationsystem.Mapping ALL to predicate calculus is fairly straightforward. Propositions do not change at all. Paths be-come conjunctions. Rules become implications with allvariables universally quanti�ed (there are some com-plications in mapping rules associated with frames (asopposed to slots) | these are discussed in [Crawfordand Kuipers, 1989]). Knowledge-bases become theconjunction of their rules and facts. We notate thePredicate Calculus equivalent of an ALL object, a, byPC(a).2.5 ConsistencyConsistency is often intuitively thought of as \Youcan't derive a contradiction." Thus consistency re-quires that the substitutions returned by a query mustbe semantic consequences of the old knowledge-base.The requirements on the new knowledge base are moresubtle. Consistency intuitively requires that proposi-tions do not suddenly become true, or, in model the-oretic terms, that models are not suddenly lost. Thusany model of the new knowledge-base must also be amodel of the old knowledge base (and in an assertiona model of the formula being asserted):Theorem 1 (Consistency) For any knowledge-baseK, any path � allowed in K, and any fact f allowedin K:1. (8� 2 � : � 2 sub(query(�)(K)): PC(K) j= PC(��))2. PC(K) j= PC(kb(query(�)(K)))3. (PC(K) ^ PC(f)) j= PC(kb(assert(f)(K)))Proof (sketch): The proof of consistency is primar-ily a matter of carefully working through the de�nitionof O. We induct on n to show that On is consistent.We then induct on the length of � to show that O isconsistent.2.6 CompletenessCompleteness can be thought of as \Any true factis derivable." Thus completeness requires that allsubstitutions which are semantic consequences of theold knowledge-base are returned by query. Complete-ness also requires that true facts do not suddenlybecome false. In model theoretic terms this meansthat we do not gain models. Thus any model of theold knowledge-base must also be a model of the newknowledge-base. Note that the requirements for com-pleteness are simply the requirements for consistencywith their implications reversed:Conjecture 1 (Completeness of ALL)For any knowledge-base K, any path � allowed in K,and any fact f allowed in K, let �� be the set of all

ground substitutions binding all and only variables in�. Then:1. (8� 2 �� : PC(K) j= PC(��): � 2 sub(query(�)(K)))2. PC(kb(query(�)(K)) j= PC(K)3. PC(kb(assert(f)(K))) j= (PC(K) ^ PC(f))Unfortunately, part one of this conjecture is false.In some cases, rules necessary for a query to succeedcannot be accessed. Two such cases are shown in theexamples in �gures 4 and 5. Notice, however, that inthe example in �gure 4:query(r3(c; c))(kb(query(r1(c; c))(K)))would succeed since r3(c; c) is added tokb(query(r1(c; c))(K))by the if-added rule r1(c; x) ! r3(c; x). Similarly, inthe example of in �gure 5:query(r1(c; c))(kb(query(r2(c; c))(K)))succeeds. This suggests the idea behind Socratic Com-pleteness. Very informally, the Socratic CompletenessTheorem says that for any query � which `should' suc-ceed in a knowledge-base, there exists a preliminaryquery �, after which a query of � succeeds. We alsoshow a second type of partial completeness result, Par-titional Completeness. Partitional Completeness says,that if all the information needed to process a querycan be located by the if-needed rules in the partitionsof the query, then that query succeeds.2.6.1 Socratic CompletenessTheorem 2 (Socratic Completeness)For any knowledge-base K, any path � allowed in K,and any fact f allowed in K, let �� be the set of allground substitutions binding all and only variables in�. Then:1. (8� 2 ��: PC(K) j= PC(��): (9�: � a path allowed in K: �2sub(query(�)(kb(query(�)(K))))))2. PC(kb(query(�)(K))) j= PC(K)3. PC(kb(assert(f)(K))) j= (PC(K) ^ PC(f))Proof (sketch): Parts 2 and 3 follow relatively easilyfrom the de�nitions of O, and PC. Part 1 is shown byinduction on the length of �. The tricky part is thebase case. We map K to an equivalent logic programLP(K). We show that for any rule in K which wouldapply on the next iteration of TLP(K) (where T isthe immediate consequence operator in logic program-ming | see [Crawford and Kuipers, 1989, Apt, 1988,Lloyd, 1984]) there exists a path in ALL the queryof which causes the rule to �re. The result then fol-lows by a completeness result for the study of logicprogramming.

2.6.2 Partitional CompletenessIn order to state the partitional completeness the-orem we �rst have to de�ne which rules in theknowledge-base are considered `part' of which parti-tions. A rule is considered a part of a partition if it canapply to a frame-slot in that partition. If p is a parti-tion of a knowledge-base K = hC;R;Nr;Ar; F; P;Ai,and S is a set of rules from K then Snp is the restric-tion of S to p (the set of rules from S which can applyto frame-slots in p | the formal de�nition is givenin [Crawford and Kuipers, 1989]). If p is a union ofseveral partitions then Snp is just the union of S re-stricted to the partitions. The restriction of K to onlythe if-needed rules in p is:Knp = hC;R;Nrnp; ;; F; fpg; A0i:where A0 is A restricted to the domain Nrnp. Notethat the restriction of K to some union of partitions pis never computed (in the de�nition of ALL formula orin our lisp implementation of ALL), but is only a for-mal object used to state the partitional completenesstheorem.Theorem 3 (Partitional Completeness) For anyknowledge-base K, any primitive path � allowed in K,let �� be the set of all ground substitutions binding alland only variables in �. Then:(8� 2 �� : PC(KnparK(�)) j= PC(��): � 2 sub(query(�)(K)))Proof (sketch): The proof of this theorem again re-lies on results from the study of logic programming.Let ground(�) be the set of all variable free instantia-tions of �. Further, for any logic program pg, and anyset of facts I , let:Tpg " 0(I) = ITpg " (n+ 1)(I) = Tpg(Tpg " n(I))The key lemma is:(8f 2 ground(q) : f 2 TLP(Knp) " n(;): f 2 kb(queryn(q)(K; parK(q))))Which is shown by induction on n from the de�ni-tion of On and which again implies the result by acompleteness result from logic programming (for theinduction to go through, this lemma must actually bestrengthened somewhat | see [Crawford and Kuipers,1989] for details).2.7 About PartitionsAn important part of the claim that ALL is logicallycoherent is the claim that knowledge can be dividedinto semantically distinct segments. Fortunately, par-titions are not a new idea. Among other places, simi-lar ideas can be found in Hayes' clusters [Hayes, 1985].

The related idea that reasoning can be done by sep-arating rules into partitions is also not new. It isthe idea behind, for example, blackboard architectures[Hayes-Roth, 1985] (the di�erence between partitionsin ALL and the similar limitations in blackboard ar-chitectures is the idea of access paths, which allow usto use the entire knowledge-base as our `blackboard').3 The Computational Tractability ofALL.In the worst case the time complexity of an ALL op-eration is a polynomial function of the size of the por-tion of the knowledge-base accessible from the localpartition. We focus on primitive operations since non-primitive operations are de�ned as sequences of prim-itive operations (�gure 2).Assume O is a primitive operation allowed in aknowledge-base K. By examination of the rules inthe partition of O in K we can determine:� reach(O;K) | the set of all frame-slots which Ocan ever reference.� change(O;K) | the set of frame-slots which Ocan ever change.� frames(O;K) | the set of frames which O couldpossibly put into frame-slots in change(O;K).� operations(O;K) | the set of all queries offrame-slots in reach(O;K) and assertions offrames in frames(O;K) into frame-slots inchange(O;K).(Formal de�nitions of these sets are given in [Crawfordand Kuipers, 1989]). In a well partitioned knowledge-base these sets should be much smaller than the totalsize of the knowledge-base.For a set S, let j S j be the cardinality of S.Theorem 4 (Complexity) Assume O is a prim-itive operation allowed in a knowledge-base K =hC;R;Nr;Ar; F; P;Ai. Let� o =j operations(O;K) j� c =j change(O;K) j� f =j frames(reach(O;K)) j� r = the number of rules in parK(O).� a = the maximum arity of any relation in R.� v = the maximum number of variables in any rulein parK(O).The worst case time complexity of calculating O(K) isbounded by: a2o2r(r + f)2cv+2Proof (sketch): Consider the vector of all opera-tions O0 2 operations(O;K). For any n these opera-tions produce a vector of knowledge-bases O0n(K). We

John = BethKim = Tom David = SarahWilliam SuzanFigure 6: A genealogy.show that if for some n and for all such O0, O0n(K) =O0n+1(K) then O(K) = On(K). We then show thatthere must exist such an n which is less than or equalto ao(r + f)c (by showing that knowledge-bases can-not shrink as n increases and showing a bound on howlarge they can grow). Finally, we show that the timeto calculate any O0n(K), from the values of all O0n�1,is bounded by ar(r + f)cv+1.4 Genealogy ExampleAn important part of our work with ALL has beenour experience with the lisp implementation of ALL.We now present an introductory example from our im-plementation work. The knowledge-base consists ofsimple family relationships and the rules describe howto deduce more complex relationships. We emphasizethat this example is one of the simplest we have imple-mented and is presented because it is relatively shortand self-contained, yet gives a feel for the use of ALLand illustrates the use of access paths.Figure 6 shows an example genealogy. To translatethis into a knowledge-base assume that:C = f People; John;Beth;Kim; Tom;David;Sarah;William; Suzan;Male; FemalegR = f isa; parent; child; son; daughter; brother;sister; spouse; husband; wife; uncle; aunt;cousin; gendergFurther, we need several if-added rules to enforceinvariants in the knowledge-base. For example, wemake sure that whenever there is a link parent(x; y)there is also a link child(y; x) (and vice-versa). Sim-ilarly, whenever there is a link son(x; y) there arelinks child(x; y) and gender(x;Male), and so on. Aimportant class of invariants are type restrictions |any frame put in a parent, child, or spouse slot `isa'`People'. The if-added rules are shown in �gure 7.There are several other types of invariants which we

parent(x; y) ! child(y; x)child(x; y) ! parent(y; x)son(x; y) ! gender(y;Male)son(x; y) ! child(x; y)daughter(x; y) ! gender(y; Female)daughter(x; y) ! child(x; y)husband(x; y) ! wife(x; y)husband(x; y) ! spouse(x; y)husband(x; y) ! gender(y;Male)wife(x; y) ! husband(x; y)wife(x; y) ! gender(y; Female)spouse(x; y) ! spouse(y; x)parent(x; y) ! isa(y; People)child(x; y) ! isa(y; People)spouse(x; y) ! isa(y; People)Figure 7: If-added rules for genealogy example.
brother(x; z) parent(x; y); son(y; z); x 6= zsister(x; z) parent(x; y); daughter(y; z);x 6= zuncle(x; z) parent(x; y); brother(y; z)uncle(x; z) aunt(x; y); husband(y; z)aunt(x; z) parent(x; y); sister(y; z)aunt(x; z) uncle(x; y); wife(y; z)cousin(v; z) parent(v; w); parent(w; x);child(x; y); y 6= w;child(y; z); v 6= zFigure 8: If-needed rules for genealogy example.

could add (e.g. whenever there are links child(x; y)and gender(y;Male) then there is a link son(x; y))but which are not necessary for this example. Simi-larly, we could add additional type restricting if-addedrules for some of the more complex relations (e.g.uncle(x; y) ! isa(y; People)). Note, however, thatthe type restricting rules together with the other in-variants ensure that any frames in the relations son,daughter, husband, and wife are `People'. We asso-ciate these if-added rules with the relations in theirkeys (e.g. A(parent(x; y)! child(y; x)) = parent).We use the if-needed rules shown in �gure 8 to de-duce the more complex relations. In these rules x 6= yis true when x and y are bound to di�erent frames. Weassociate these rules with the frame People (thus theyare available to �ll slots in any frame known to be aPeople). Notice that the rules for uncle and aunt aremutually recursive, but this causes no problem in ALL(though it would cause an in�nite loop in Prolog) sincequery is de�ned as the union over all n of queryn (see�gure 2). Finally, we assume that the knowledge-baseconsists of a single partition, and initially contains nofacts. We have thus de�ned an initial knowledge-baseK0.Now we assert into K0 the family relations in �gure6. This can be done by asserting the following path:wife(John;Beth); wife(Tom;Kim); (1)wife(David; Sarah); son(John; Tom);son(Beth; Tom); son(John;David);son(Beth;David); son(Tom;William);son(Kim;William); daughter(David; Suzan);daughter(Sarah; Suzan)Asserting this path adds many more facts to theknowledge-base than just those mentioned in the path.For example, it adds gender(Tom;Male), and thatthe frames John, Beth, Tom, Kim, David, Sarah,William, and Suzan are all People. Let K1 be theknowledge-base after the assertion of the path in 1.Finally, we can make queries intoK1. Consider �rst,query(uncle(William; x))(K1):Assume, p = parK1(uncle(William; x)):Clearly, query0(uncle(William; x))(K1; p)fails. Similarly,query1(uncle(William; x))(K1; p)fails since the facts parent(William; John) andparent(William;Beth) are known, but no brothers ofJohn or Beth are known. However,query1(brother(John; y))(K1; p)

succeeds with y bound to David (by the if-needed rulefor brother). Hence,query2(uncle(William; x))(K1; p)succeeds with x bound to David. Similarly,query(cousin(Suzan; x))(K1)succeeds with x bound to William. One importantadvantage gained by the use of access paths is thatthe size of the knowledge-base could be increased withno e�ect on the time taken to compute these queries(unless we add frames which cause the access paths tobranch | e.g. by adding more children of John andBeth).5 Related Work.ALL draws from several diverse �elds and we will nothave space here to examine in detail its relationship tothe large body of previous work. We simply sketch ingeneral terms the �elds from which it draws and a fewparticularly relevant past approaches.ALL draws from semantic networks [Findler, 1979,Brachman et al., 1983, Bobrow and Winograd, 1985,Vilain, 1985] the intuition that retrieval and reason-ing can be guided by the structure of the network.This has long been a key intuition behind semanticnetworks: \...the knowledge required to perform anintellectual task generally lies in the semantic vicin-ity of the concepts involved in the task." [Schubert,1979]. ALL also draws from semantic networks itsframe based data structures [Minsky, 1985].ALL di�ers from past work on semantic net-works in that it uses a single general purpose re-trieval/reasoning mechanism which is guided by thestructure of the network. Past work has generallyused the structure of the network only for specialpurpose reasoning (spreading activation, classi�ca-tion etc.), and has relied on a �rst-order logic theo-rem prover [Brachman et al., 1983, Schubert et al.,1983] or a weaker deduction system [Levesque, 1984,Patel-Schneider, 1985, Vilain, 1985] for general reason-ing.A notable exception to this rule is the recent work ofSchubert [Schubert, 1979, Haan and Schubert, 1986].ALL and the networks of Schubert share several fea-tures including the use of access limitations to guidereasoning. The most obvious way to use the structureof a semantic network to limit access would be to per-form deduction with facts not more than a few (saymaybe two) nodes away in the network. The prob-lem with this strategy is that some nodes (e.g. thenode for your spouse) may have a large number oflinks, many of which are irrelevant to the problem athand. The solution used in ECOSYSTEM is to main-tain a taxonomy of knowledge and use this taxonomy

to guide reasoning [Haan and Schubert, 1986]. Thedi�erence in ALL is that access is limited to knownaccess paths, which may access facts many nodes awayin the network, but do so in a controlled fashion. Thusin ALL it is the structure of the knowledge itself (ormore speci�cally the structure of the access paths inthe rules) which controls access and reasoning.The design of the inference mechanism in ALL hasbeen heavily in
uenced by logic programming. In factany function free logic program (without negation) canbe written in ALL. Further, the notation, and theproofs of the completeness of logic programming [Apt,1988, Lloyd, 1984], have been used extensively in thecompleteness proofs for ALL.6 Discussion and Future Work.Ultimately we are working towards a formal theorywhich has the expressive power of predicate calculus,and is consistent and Socratically Complete, but stillhas polynomial time complexity. The current formal-ism of ALL (unlike our Lisp implementation) can ex-press only implication | not general negation. It isstraight forward to add to ALL the ability to expressfull classic negation (i.e. not negation by failure), butthen inference in ALL (using rules alone) is no longerSocratically Complete. For example, from two rules ofthe form: p q:p qone should be able to conclude :q, but neither rule canapply since there are no facts. We are currently work-ing to increase the deductive power of ALL by addinga Reductio Ad Absurdum mechanism. This involvesadding the ability to make an assumption and thenreason about its consequences. If the consequencesinclude `false' then we can conclude the negation ofthe assumption. In the above example we assume qand derive p and :p. Thus we can conclude :q. Webelieve that such a mechanism will allow SocraticallyComplete reasoning in the presence of classic negation.There is also no obvious way to express full existen-tial quanti�cation in our current formalism or our im-plementation. We have incorporated de�nite descrip-tions (e.g. \The man with the wooden leg"), whichde�ne a type of existential quanti�cation (a de�nitedescription should pick out a unique known frame or,if there is no frame meeting the description, createa new one) into the implementation of ALL, but wehave not yet formalized them as they do not seem totranslate naturally into predicate calculus.However, we have observed that commonsense rea-soning often involves reasoning about groups of similarobjects, and that much of this reasoning can be done

without full �rst order quanti�cation. One may, forexample, reason about a large class of objects by rea-soning about a representative object having the prop-erties common to all objects in the group (or reasonabout a `skolem' object having properties that some(unknown) object of the group is known to have). Inour implementation work we have been developing a\commonsense set theory" entirely within the quanti-�er limitations of ALL, and have applied it to severalexamples.In general, our lisp implementation of ALL is con-siderably ahead of our formalism. Beyond de�nite de-scriptions and common-sense set theory we have im-plemented full negation (using Reductio Ad Absurdumas discussed above) and an ability to make default as-sumptions. We have built up a small knowledge-baseof common-sense knowledge and have investigated sev-eral classes of problems:� We have written a version of the inferential dis-tance rule of Touretzky [Touretzky, 1986]), andhave looked at some standard examples of mul-tiple inheritance (e.g. royal elephants and birdsthat are penguins) and at a Nixon diamond.� We have implemented a fairly standard solutionto the Yale shooting problems [Hanks and McDer-mott, 1986].� Using our common-sense set theory we have im-plemented a solution to McCarthy's sterilizationproblem [1987] and other more complex problemsinvolving sets of similar objects.� To demonstrate Socratic Completeness and theuse of Reductio Ad Absurdum, we have imple-mented a solution to the following logical puzzletaken from [Wylie, 1957]:In a certain bank the positions of cashier,manager, and teller are held by Brown,Jones and Smith, though not necessar-ily respectively. The teller, who was anonly child, earns the least. Smith, whomarried Brown's sister, earns more thanthe manager.What position does each man �ll ?Our solution involves the use of rules which de-�ne notions of partial orders and one-to-one rela-tions between sets. When we state the problemin ALL, our lisp implementation initially fails tosolve it, but after a suitable sequence of prelimi-nary queries (essentially the questions one wouldask a person to step them through the puzzle) isable to do so.

References[Allen et al., 1984] Allen, J. F., Giuliano, M., andFrisch A. M. The HORNE Reasoning System, TR126, Computer Science Department, University ofRochester, Rochester NY., 1984.[Apt, 1988] Apt, Krzysztof, R. Introduction to LogicProgramming. To appear in Handbook of Theoret-ical Computer Science, ed. J. van Leeuwen., NorthHolland.[Brachman and Levesque, 1985] Brachman, Ronald J.and Levesque, Hector, J. Readings in KnowledgeRepresentation, Morgan Kaufmann, Los Altos,Cal., 1985.[Brachman et al., 1983] Brachman, R.J., Fikes,R. E.,and Levesque H. J. Krypton: a functional ap-proach to knowledge representation, Computer,16:67-73., 1983.[Bobrow and Winograd, 1985] Bobrow, Daniel G.,and Winograd, Terry. An Overview of KRL, aKnowledge Representation Language. In [Brach-man and Levesque, 1985], pp. 263-285.[Crawford and Kuipers, 1989] Crawford, J. M., andKuipers, B. Access-Limited Logics. Forthcomingtechnical report.[Findler, 1979] Findler, N.V., Associative Networks:Representation and Use of Knowledge by Com-puter, Academic Press, New York, 1979.[Haan and Schubert, 1986] Haan, J., and Schubert, L.K. Inference in a topically organized semantic net.In Proc. Natl. Conf. Am. Assoc. Artif. Intell.,Philadelphia, Pa., 1986, pp. 334-338.[Hanks and McDermott, 1986] Hanks, Steve, and Mc-Dermott, Drew. Default Reasoning, Nonmono-tonic Logics, and the Frame Problem. In Proc.Natl. Conf. Am. Assoc. Artif. Intell., Philadel-phia, Pa., 1986, pp. 328-333.[Hayes, 1985] Hayes, Patrick J. The Second NaivePhysics Manifesto. In Hobbs, Jerry R. and Moore,Robert C., Formal Theories of the CommonsenseWorld, Ablex Publishing Co.: New Jersey, 1985,pp. 18-30.[Hayes-Roth, 1985] Hayes-Roth, B. A Blackboard Ar-chitecture for Control. In Arti�cial IntelligenceJournal, 26:251-321, 1985.[Kay, 1973] Kay, M. The MIND system. In NaturalLanguage Processing, ed. R. Rustin., New York:Algorithmics Press, 1973.[Levesque, 1986] Levesque, H. J. Knowledge represen-tation and reasoning. In Ann. Rev. Comput. Sci.1:255-87, 1986. Palo Alto, California: Annual Re-views Inc.

[Levesque, 1984] Levesque, H.J. A Logic of Implicitand Explicit Belief. In Proc. Natl. Conf. Am. As-soc. Artif. Intell., Austin, Texas, 1984, pp. 198-202.[Lloyd, 1984] Lloyd, J.W. Foundations of Logic Pro-gramming, Springer-Verlag, New York, 1984.[McCarthy, 1987] McCarthy, J. Generality in Arti�-cial Intelligence. In Communications of the ACM30:1030-1035, 1987.[Minsky, 1985] Minsky, Marvin. A Framework forRepresenting Knowledge. In [Brachman andLevesque, 1985], pp. 246-262.[Patel-Schneider, 1985] Patel-Schneider, P. A Decid-able First-Order Logic for Knowledge Represen-tation. In Proc. Int. Jt. Conf. Artif. Intell., LosAngeles, California, 1985, pp. 455-458.[Powers, 1987] Powers, L. H. Knowledge by Deduc-tion. In The Philosophical Review, LXXXVII, No.3, 1978, pp. 337-371.[Schubert, 1979] Schubert, L.K., R.G. Goebel, andN.J. Cercone, \The Structure and Organizationof a Semantic Net for Comprehension and Infer-ence," in [Findler, 1979], pp. 121-175.[Schubert et al., 1983] Schubert, L.K., Papalaskaris,M.A., and Taugher, J. Determining Type, Part,Color, and Time Relationships. In IEEE Com-puter, 16(10), 53-60, 1983.[Touretzky, 1986] Touretzky, David S. The Mathemat-ics of Inheritance Systems, Morgan Kaufmann,Los Altos, California, 1986.[Vilain, 1985] Vilain, M. The restricted language ar-chitecture of a hybrid representation system. InProc. Int. Jt. Conf. Artif. Intell., Los Angeles,California, 1985, pp. 547-551.[Woods, 1975] Woods, W. What's in a link: foun-dations for semantic networks. In Representationand Understanding: Studies in Cognitive Science, ed. Bobrow, D. and Collins, A., New York: Aca-demic, 1975, pp. 35-82.[Wylie, 1957] Wylie, C.R., Jr. /em 101 Puzzles inThought & Logic, Dover Publications Inc, Mine-ola, New York, 1957.

