In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning (KR-89)
Los Altos, CA: Morgan Kaufmann, 1989.

Towards a Theory of Access-Limited Logic for Knowledge
Representation*®

J. M. Crawford’ and Benjamin Kuipers
Department of Computer Sciences
The University of Texas At Austin
Austin, Texas 78712
jc@cs.utexas.edu
kuipers@cs.utexas.edu

Abstract

One of the fundamental problems in the the-
ory of knowledge representation is the diffi-
culty of achieving both logical coherence and
computational tractability. We present steps
toward a theory of access-limited logic, in
which access to assertions in the knowledge-
base is constrained by semantic network style
locality relations. Where a classical de-
ductive method or logic programming lan-
guage would retrieve all assertions that sat-
isfy a given pattern, an access-limited logic
retrieves all assertions reachable by follow-
ing an available access path. The complexity
of inference is thus independent of the size
of the knowledge-base and depends only on
its local connectivity. Access-Limited Logic,
though incomplete, still has a well defined se-
mantics and a weakened form of completeness
(‘Socratic Completeness’) and is complete in
some important special cases.

1 Introduction

Access-Limited Logic (ALL) is a logic for knowl-
edge representation which utilizes semantic network
style access limitations to guarantee computational
tractability, even in very large knowledge-bases. Pre-
vious work has used the access limitations inherent
in semantic networks for special purpose reasoning; in
ALL these limitations form an integral part of the logic
itself. A semantics for ALL has been defined by map-
ping queries, assertions and knowledge-bases to pred-
icate calculus, and in terms of this mapping, consis-
tency and weakened completeness results have been
proven.

*This work has taken place in the Qualitative Reasoning
Group at the Artificial Intelligence Laboratory, UT-Austin.
Research of the Qualitative Reasoning Group is supported,
in part, by NSF through grant IRI-8602665, and by NASA
through grants NAG 2-507 and NAG 9-200.

fSupported in part by a fellowship from GTE.

Reasoning is hard. If a knowledge representation
language is as expressive as first-order predicate calcu-
lus then the problem of deciding what an agent implic-
itly knows (i.e. what an agent could logically deduce
from its knowledge) is unsolvable. Thus a knowledge
representation system, which does not give up expres-
sive power, must use a weak inference system with an
incomplete set of deduction rules or accept artificial
resource limits (e.g. bounds on the number of appli-
cations of modus ponens). However, these approaches
tend to be difficult to describe semantically and tend
to place unnatural limits on an agent’s reasoning abil-
ity [Levesque, 1986].

Our primary interest is the development of a sys-
tem for the representation of commonsense knowledge.
People seem to be able to reason efficiently with a
very large commonsense knowledge-base. One rea-
son for this is that when solving a given problem they
only make use of the limited subset of their knowledge
which is relevant to the problem.

Our approach in ALL begins with the well known
mapping between atomic propositions in predicate cal-
culus and slots in frames; the atomic proposition that
the object a stands in relation r to the object b can be
written logically as r(a,b) or expressed, in frames, by
including object b in the r slot of object a. Thus in a
frame-based system it is natural to define the frames
directly accessible from the frame a as those which ap-
pear in slots of a'. Extending this idea, one may define
an access path, in a network of frames, as a series of
frames each directly accessible from its predecessor.
It proves useful to generalize this definition and allow
access paths to branch on all values found in a given
slot. A sequence of propositions defines an access path
if any variable appearing as the first argument to a
proposition has appeared previously in the sequence.
For example, “John’s parent’s sister” can be expressed
in ALL as the path:

(parent(John,), sister(z,y))

'Slots in ALL contain only frames and rules (defined
below).

This defines an access path from the frame for John to
the frames for John’s parents (found by looking in the
parent slot of the frame for John), to John’s parents’
sisters.

From access paths we build the inference rules of
ALL. A rule is always associated with a particular slot
in the network. Backward chaining if-needed rules are
written in the form: 8 < a (the structure of @ and £ is
discussed below) and applied when a value for the slot
is needed. Forward chaining if-added rules are written
in the form: o — 3 and applied when a new value for
the slot is inserted. In either case the antecedent of the
rule must define an access path (beginning with the
slot the rule is associated with). For example, using
the access path above we can write the if-needed rule:

aunt(John,y) < parent(John, x), sister(z,y)

But note that we cannot write the (logically equiva-
lent) rule:

aunt(John,y) < sister(z,y), parent(John, z),

since the antecedent does not define an access path.

Where a classical deductive method or logic pro-
gramming language would retrieve all known asser-
tions that satisfy a given pattern, an access-limited
logic retrieves all assertions reachable by following an
available access path. The use of access paths alone,
however, is insufficient to guarantee computational
tractability in very large knowledge-bases. The evalu-
ation of a path can cause an explosive back-chaining
of rules which can spread throughout the knowledge-
base. To prevent this, ALL introduces a second form
of access limitation. The knowledge-base in ALL is
divided up into partitions and back-chaining is not al-
lowed across partitions — facts in other partitions are
simply retrieved. When used together, these two kinds
of access limitations can limit the complexity of infer-
ence to a polynomial function of the size of the portion
of the knowledge-base accessible from the local parti-
tion.

However, a price must be paid for the efficiency of
access limitations. Inference in ALL is weaker than
inference in predicate calculus, since only locally ac-
cessible facts and rules can be used in deductions.
However, any concept in the knowledge-base is poten-
tially reachable; A string of queries, while conveying
no new information, can move the focus of attention
around to invoke the rules of the system in any or-
der. Thus, access-limited logic has a property we call
Socratic Completeness®> for any query of a proposi-
tion which is a consequence (in predicate calculus) of

2The idea of Socratic Completeness was invented in-
dependently in [Powers, 1987] where it is referred to as
Socratic Adequacy.

the knowledge-base, there exists a preliminary query
after which the query succeeds. Further, ALL is Par-
titionally Complete if the rules needed to derive a
proposition are in the same partition as the propo-
sition and the proposition can be proven using only
backward-chaining rules then a query of the proposi-
tion succeeds.

The logical properties of ALL are stated more care-
fully in the next section. Section 3 examines the com-
plexity of inference in ALL, section 4 presents a sim-
ple example from our implementation of ALL, section
5 discusses related work, and section 6 overviews our
current plans for future work.

2 The Logical Coherence of ALL.

‘Logical coherence’ is an informally defined collection
of desirable formal properties. We have proven that
ALL has the following properties of a logically coherent
knowledge representation system:

e ALL has a well defined syntax and proof theory.

e The semantics of ALL can be defined by a
purely syntactic mapping of ALL knowledge-
bases, queries and assertions to predicate calcu-
lus.

e In terms of this mapping, inference in ALL is con-
sistent, Socratically Complete, and Partitionally
Complete.

These properties are stated more precisely in theorems
below.

We view these formal properties as necessary but
not sufficient conditions for logical coherence. There
remains, at least, the less formal claim that knowledge
can be organized cleanly into partitions. This claim is
discussed in the last subsection of this section.

The rest of this section sketches the formal develop-
ment of ALL. The full account can be found in [Craw-
ford and Kuipers, 1989].

2.1 Basic Notation
In the meta-theory of ALL we use the following nota-
tion. Quantified expressions are written in the form:

({(quanti fier)(variable) : (range) : {expression)).
Thus, for example:
(Vx : pred, (z) : pred,(z))
is read “For all & such that pred, (z), pred,(z)”. Sim-
ilarly:
(Uz : pred(z) : foo(x))
(where foo is a set valued function) denotes the union
over all z such that pred(z) of foo(x).
If a is a list then:
e head(a) is the first element in a.

e rest(a) is all but the first element in «.

2.2 Syntax of ALL

We now build up the syntax of ALL. First the alphabet
of an ALL is defined and then terms, propositions,
access paths, rules, knowledge-bases, and finally ALL
formula are defined.

2.21

The alphabet of an Access-Limited Logic consists of
countably infinite sets of variables, constants, and re-
lations, the binary relation isa, the connectives < and
—, and the operators query, and assert. A term is a
constant or a variable. A proposition is r(t1,...,t,)
where r is an n-ary relation and all ¢; are terms. A
fact is a proposition such that all ¢; are constants. For
a proposition or list of propositions a:

Alphabets, Terms and Propositions

e vars(a) is the set of variables appearing in a.

e relations(a) is the set of relations appearing in a.

e constants(a) is the set of constants appearing in

.

2.2.2 Access Paths

An access path (or simply a path) is a pair (V,a)
such that: V is a set of variables, and « is a list of
propositions in which the first term of each proposition
is either a constant, a member of V', or has appeared
previously in « (this can be made precise by a simple
recursive definition). If V = {} then we omit it and
say «a is an access path. A path of length one is a
primitive path.
2.2.3 Rules

Conseq < Ant is an if-needed rule iff:

o Key=r(t,...,t,)% is a proposition,

e Conseq = Key,

e Ant is a list of propositions,

e Either ¢; is a constant and Ant is a path, or ¢; is
a variable and ({t,}, Ant) is a path, and

e vars(Conseq) C vars(Ant).
Ant — Conseq is an if-added rule iff:
e Key and Conseq are propositions.
such that

e Ant is a list of propositions

head(Ant) = Key,
e (vars(Key), Ant) is a path, and
e vars(Conseq) C vars(Ant).

For any rule p: Key(p), Conseq(p), and Ant(p) access
its respective components.

*Intuitively, the Key of a rule is the proposition that
the rule is indexed under in the knowledge-base.

2.2.4 Knowledge-Bases
A Knowledge-Base, K, is a seven-tuple

(C,R,Nr, Ar,F, P, A).

The definition of a knowledge-base is given in figure 1.
If
K =(C,R,Nr,Ar,F, P, A)

is a knowledge-base and a is a proposition, list of
propositions or a rule then « is allowed in K iff

constants(a) C C A relations(a) C R.

2.2.5 Operations and Formula

If @ is a path then query(a) is a query. If a is a
primitive path then query(a) is a primitive query. If
f is a fact then assert(f) is an assertion. Any query
or assertion is an operation. Any primitive query or
assertion is a primitive operation. If O = query(a)
or O = assert(a) is an operations and « is allowed
in a knowledge-base K then O is allowed in K. If an
operation O is allowed in a knowledge-base K then
O(K) is an ALL formula.

2.3 Knowledge Theory

In this subsection we sketch the knowledge theory of
ALL. The knowledge theory of ALL defines the value
of ALL formula by defining the action of ALL oper-
ations (i.e. queries and assertions). Intuitively, the
assertion of a fact f, adds f to a knowledge-base
and returns the resultant knowledge-base (i.e. the
knowledge-base after f is added and all applicable if-
added rules are applied). A query of ¢, returns the
substitutions needed to make ¢ true in the knowledge-
base, and a new knowledge-base (since processing the
query may change the knowledge-base by invoking
rules).

2.3.1 The Domain and Range of ALL

Operations

Any given sets C, R, Nr, Ar,P and function A, de-
fine a finite set of possible knowledge-bases (differ-
ing only in facts) KB and an infinite set of ground
substitutions © (binding variables in the alphabet
to constants in C'). For this subsection fix the sets
C,R,Nr, Ar P, and the function A. Then, for any
operation, O, allowed in the knowledge-bases in KB
(note that an operation allowed in any knowledge-base
in KB is allowed in all knowledge-bases in K B):

0O:KB— 2° x KB.

We notate these returned values with pairs: (< set of
substitutions >, < knowledge-base >). and use kb and
sub as accessors on their first and second components
respectively.

be the one appearing in Key(p)).

A Knowledge-Base, K, is a seven-tuple (C, R, Nr, Ar, F, P, A) where:

A set of if-needed rules such that: (Vp: p € Nr: constants(p) C C A relations(p) C R).
= A set of if-added rules such that: (Vp: p € Ar: constants(p) C C A relations(p) C R).
= A set of facts such that: (Vf: f € F: constants(f) C C A relations(f) C R).

(Ui:1<i<n:p;)=C xR (i.e. each element of C' x R is in some p;).
A rule association function mapping: Nr U Ar = C'U R, such that:
(Mp:pe ArUNr: A(p) € R — {A(p)} = relations(Key(p)))

(i.e. if a rule p is associated with a relation then that relation must

C = A set of constants.

R = A set of relations.

Nr =

Ar

F

P = A set of partitions, subsets of C x R, {p1, ...
A =

Figure 1: Definition of a Knowledge-Base.

,Pn}, such that:

2.3.2 The Partitions of ALL Operations

Intuitively, a partition of K corresponds to a part
of the knowledge-base which is somehow semantically
cohesive and distinct from the rest of the knowledge-
base. Facts and rules are often thought of as being
‘in’ partitions and operations are thought of as ‘taking
place’ in subsets of C' x R (unions of partitions). The
intuition behind this comes from the frame view of
ALL knowledge-bases. Recall that ALL constants can
be thought of as frames and relations as slots in these
frames (e.g. the fact r(c1,¢2) is equivalent to having
the value ¢y in the r slot of the frame ¢;). Thus a
pair (r,c) can be thought of as a particular slot in a
particular frame in the knowledge-base. We refer to
such a pair as a frame-slot. Partitions are thus sets of
frame-slots. Further, note that any primitive path «
(by the definition of a path) must reference exactly one
frame-slot and thus can be said to be ‘in’ a partition.
In fact, since partitions can overlap, it can be in several
partitions and any operation on « is performed ‘in’
the subset of C' x R formed by taking the union of the
partitions « is in. Intuitively, this union defines the
rules which are available to the operation. Thus an
operation on «a has access to the rules of all partitions
« is in.

More formally, if K = (C,R,Nr,Ar,F,P, A) is a
knowledge-base and a = r(¢, t1,...,t,) is a primitive
path (i.e. ¢ a constant and all ¢;, 1 <14 < n, are terms)
and p is a partition of K then a € p iff {(c,r) € p. If
P ={p1,...,pn} and O = query(a) or O = assert(a)
then union of partitions for O is:

park(O)=(Ui:1<i<nAa€p;:p;)

2.3.3 The Values of ALL Operations

Defining the values of ALL operations is primar-
ily a mater of formalizing the action of forward

and backward chaining rules. We use the follow-
ing basic notation for knowledge-bases and substitu-
tions: If K3 = (C,R,Nr,Ar,F;,P,A) and Ky, =
(C,R,Nr,Ar, F», P, A) are knowledge-bases, then:

Kl UK2 == <C,R7N7“,A7“7F1 U F27P7A).
If further, f is a fact allowed in K7 then:
Ki+f=(C,R,Nr,Ar,Fy U {f}, P, A),

and f € Ky iff f € Fy. If 6 and n are substitutions
then 6 o 5 notates 0 followed by ». If further, ©; is a
set of substitutions then 5o ®; = {no#6, |, € O1}.
For a primitive operations O, we define O, (K, p) as
the result of the operation O on the knowledge-base
K, in some subset of C' x R, p, with rule chaining cut
off at depth n (the full formal definition of O, is given
in [Crawford and Kuipers, 1989]). We then define O
in terms of O,, as shown in figure 2. Note that since O
is defined as the union over all n of O, recursive rules
(e.g. rules of form ¢ < ¢) do not cause any problems
in ALL (or its lisp implementation). Figure 3 shows
an example of a query on a simple knowledge-base.

2.4 Mapping ALL to Predicate Calculus

We define the semantics of ALL by mapping ALL
knowledge-bases, assertions, and queries to (first or-
der) predicate calculus. An alternative approach
would be to define a model theory for ALL, in terms
of which ALL is complete. This could be done, but we
believe that (since the model theory of predicate calcu-
lus is well understood), mapping to predicate calculus
and appropriately weakening the notion of complete-
ness gives a more perspicuous picture of the seman-
tics of ALL. Further, we believe that consistency and
Socratic Completeness relative to predicate calculus
(or perhaps an appropriate non-monotonic logic) are

If O is a primitive operation allowed in a knowledge-base K then:
OK)=(Un:n>0:0,(K,park(0)))

The result of a non-primitive operations is defined in terms of the results of its constituent primitive
operations. Again assume that O is an operation allowed in K:

If sub(query(q)(K)) = {} (i.e. query(q) ‘failed’),
O(K) = {{}, K)

O(K) = (U8 :0 € sub(query(q)(K))
1 (0 o sub(query(a'0)(K)), kb(query(q)(K)) U kb(query(a’)(K))))

Figure 2: The definition of O.

Assume K = (C, R, Nr, Ar, F, P, A) is a knowledge-base such that:
C = {c}

R = {ri,r}
Nr = {ri(c,z) + ra(c,z)}
Ar = {}

F = {rq(c,)}

P = {{{c,r1),{c;r2)}}

Further, A(r1(c,z) < ra(c,z)) = r1. Consider query(ri(c,z))(K) (where = is a variable). This is
a primitive operation so we first compute queryg(ri(c, x))(K, parg (ri(c,z))). Rule back-chaining
is cut off at depth 0 so no rules apply and queryg(ri(c, z)) (K, park (r1(c,z))) = ({}, K) (an empty
list of substitutions is returned since there is no known value of x such that the query suc-
ceeds). However when we calculate query; (r1(c,z))(K,park (ri(c,z))), the if-needed rule applies
and query: (r1 (¢, x)) (K, park (r1 (e, z))) = ({{z/c}}, K+7r1(c,c)) (where {z/c} binds z to ¢). Asn is
increased further there are no other rules to apply so query(ri(c,z))(K) = ({{z/c}}, K +r1(c,¢)).

Figure 3: A query on a simple knowledge-base.

Assume K = (C,R,Nr, Ar,F,P, A

~

is a knowledge-base such that:

C = {c}
R = {ri,ra,r3}
Nr = {ri(c¢,z) « ra(c,z)}
Ar = {r(c,z) = r3(c,z)}
F = {ra(c,0)}
P o= {{{e,r1), (e, r2), {c,r3) }}

Finally, A(ri(c,z) < ra(c,x)) =11, A(ri(c,z) = r3(c,x)) = r1. Consider query(rs(e,c))(K). This
query must fail since r3(c, ¢) is not a fact in K and there are no if-needed rules for r3(c, ¢). But, any
model of PC(K) must be a model of PC(rz(c,c)) (by the two rules and the fact that r3(c,¢) is in
F). Hence, inference in ALL is not complete.

Figure 4: A form of incompleteness in ALL.

Assume K = (C, R, Nr, Ar, F, P, A) is a knowledge-base such that:

C = {c}

R = {ri,ra,r3}
Nr = {ri(c,z) < ro(c,x),ra(c,z) r3(c,x)}
Ar = {}

F = {rs(c,c)}

Po= {{{er)}

{<C= 7“2>7 <C= 7“3)}}

Finally, A(ry(c,x) < ra(c,x)) =11, A(ra(e,x) < r3(c,x)) = ro. Consider query(ri(c,c))(K). This
query must fail since ry(c, ¢) is not a fact in K and is not in parg (r1(c,¢)) (so no rules for ry(c, ¢)
can fire). But, any model of PC(K) must be a model of PC(ry (¢, c)) (by the two rules and the fact
that r3(c,c) is in F).

Figure 5: Another form of incompleteness in ALL.

necessary properties for any knowledge representation
system.

Mapping ALL to predicate calculus is fairly straight
forward. Propositions do not change at all. Paths be-
come conjunctions. Rules become implications with all
variables universally quantified (there are some com-
plications in mapping rules associated with frames (as
opposed to slots) — these are discussed in [Crawford
and Kuipers, 1989]). Knowledge-bases become the
conjunction of their rules and facts. We notate the
Predicate Calculus equivalent of an ALL object, a, by
PC(a).

2.5 Consistency

Consistency is often intuitively thought of as “You
can’t derive a contradiction.” Thus consistency re-
quires that the substitutions returned by a query must
be semantic consequences of the old knowledge-base.
The requirements on the new knowledge base are more
subtle. Consistency intuitively requires that proposi-
tions do not suddenly become true, or, in model the-
oretic terms, that models are not suddenly lost. Thus
any model of the new knowledge-base must also be a
model of the old knowledge base (and in an assertion
a model of the formula being asserted):

Theorem 1 (Consistency) For any knowledge-base
K, any path a allowed in K, and any fact f allowed
mn K:

1 (V6 €O

: 0 € sub(query(a)(K))
: PC(K) = PC(ab))
2. PC(K) = PC(kb(query(a)(K)))

(

3. (PC(K) ANPC(f)) = PC(kb(assert(f)(K)))

Proof (sketch): The proof of consistency is primar-
ily a matter of carefully working through the definition
of @. We induct on n to show that O,, is consistent.
We then induct on the length of a to show that O is
consistent.

2.6 Completeness

Completeness can be thought of as “Any true fact
is derivable.” Thus completeness requires that all
substitutions which are semantic consequences of the
old knowledge-base are returned by query. Complete-
ness also requires that true facts do not suddenly
become false. In model theoretic terms this means
that we do not gain models. Thus any model of the
old knowledge-base must also be a model of the new
knowledge-base. Note that the requirements for com-
pleteness are simply the requirements for consistency
with their implications reversed:

Conjecture 1 (Completeness of ALL)
For any knowledge-base K, any path a allowed in K,
and any fact f allowed in K, let ©, be the set of all

ground substitutions binding all and only variables in
«. Then:

(V8 € ©, :PC(K)]=PC(ab)

: 0 € sub(query(a)(K)))

2. PC(kb(query(a)(K)) = PC(K)

3. PC(kb(assert(f)(K))) E (PC(K) ANPC(f))

Unfortunately, part one of this conjecture is false.
In some cases, rules necessary for a query to succeed
cannot be accessed. Two such cases are shown in the
examples in figures 4 and 5. Notice, however, that in
the example in figure 4:

query(rs(c, c)) (kb(query(r1 (¢, ¢)) (K)))

would succeed since r3(c, ¢) is added to

kb(query(ri(c, ¢))(K))

by the if-added rule 7 (¢,z) — r3(c,z). Similarly, in
the example of in figure 5:

query(ri(c,) (kb(query(ra (¢, ¢)) (K)))

succeeds. This suggests the idea behind Socratic Com-
pleteness. Very informally, the Socratic Completeness
Theorem says that for any query o which ‘should’ suc-
ceed in a knowledge-base, there exists a preliminary
query 3, after which a query of o succeeds. We also
show a second type of partial completeness result, Par-
titional Completeness. Partitional Completeness says,
that if all the information needed to process a query
can be located by the if-needed rules in the partitions
of the query, then that query succeeds.

2.6.1

Theorem 2 (Socratic Completeness)
For any knowledge-base K, any path a allowed in K,
and any fact f allowed in K, let ©, be the set of all
ground substitutions binding all and only variables in
a. Then:
1.(V6 € ©,: PC(K) = "PC(ab)
: (36: B a path allowed in K
s Oesub(query(a)(kb(query(8)(K))))))
2. PC(kb(query(a)(K))) | PC(K)
3. PC(kb(assert(f)(K))) E (PC(K) APC(f))

Proof (sketch): Parts 2 and 3 follow relatively easily
from the definitions of O, and PC. Part 1 is shown by
induction on the length of . The tricky part is the
base case. We map K to an equivalent logic program
LP(K). We show that for any rule in K which would
apply on the next iteration of Trp(k) (Where T' is
the immediate consequence operator in logic program-
ming — see [Crawford and Kuipers, 1989, Apt, 1988,
Lloyd, 1984]) there exists a path in ALL the query
of which causes the rule to fire. The result then fol-
lows by a completeness result for the study of logic
programming.

1.

Socratic Completeness

2.6.2 Partitional Completeness

In order to state the partitional completeness the-
orem we first have to define which rules in the
knowledge-base are considered ‘part’ of which parti-
tions. A rule is considered a part of a partition if it can
apply to a frame-slot in that partition. If p is a parti-
tion of a knowledge-base K = (C, R, Nr, Ar, F, P, A),
and S is a set of rules from K then S\, is the restric-
tion of S to p (the set of rules from S which can apply
to frame-slots in p — the formal definition is given
in [Crawford and Kuipers, 1989]). If p is a union of
several partitions then S\, is just the union of S re-
stricted to the partitions. The restriction of K to only
the if-needed rules in p is:

K\I) = <CaR7NT\II7@7F7 {p}aAl>

where A’ is A restricted to the domain Nr\,. Note
that the restriction of K to some union of partitions p
is never computed (in the definition of ALL formula or
in our lisp implementation of ALL), but is only a for-
mal object used to state the partitional completeness
theorem.

Theorem 3 (Partitional Completeness) For any
knowledge-base K, any primitive path o allowed in K,
let ©,, be the set of all ground substitutions binding all
and only variables in . Then:
(V0 € Oy : PC(K\parg(a)) = PC(ah)
0 € sub(query(a)(K)))

Proof (sketch): The proof of this theorem again re-
lies on results from the study of logic programming.
Let ground(a) be the set of all variable free instantia-
tions of a. Further, for any logic program pg, and any
set of facts I, let:

T, 10(1) = 1
Tpy 1 (n+ 1)(I) Tpy(Tpy 1 (1))
The key lemma is:

(Vf € ground(q)

f€Trpky,) Tnd)
[€ kb(query,(q)(K,park(q))))

Which is shown by induction on n from the defini-
tion of O, and which again implies the result by a
completeness result from logic programming (for the
induction to go through, this lemma must actually be
strengthened somewhat — see [Crawford and Kuipers,
1989] for details).

2.7 About Partitions

An important part of the claim that ALL is logically
coherent is the claim that knowledge can be divided
into semantically distinct segments. Fortunately, par-
titions are not a new idea. Among other places, simi-
lar ideas can be found in Hayes’ clusters [Hayes, 1985].

The related idea that reasoning can be done by sep-
arating rules into partitions is also not new. It is
the idea behind, for example, blackboard architectures
[Hayes-Roth, 1985] (the difference between partitions
in ALL and the similar limitations in blackboard ar-
chitectures is the idea of access paths, which allow us
to use the entire knowledge-base as our ‘blackboard’).

3 The Computational Tractability of
ALL.

In the worst case the time complexity of an ALL op-
eration is a polynomial function of the size of the por-
tion of the knowledge-base accessible from the local
partition. We focus on primitive operations since non-
primitive operations are defined as sequences of prim-
itive operations (figure 2).

Assume O is a primitive operation allowed in a
knowledge-base K. By examination of the rules in
the partition of O in K we can determine:

e reach(O, K) — the set of all frame-slots which O
can ever reference.

e change(O, K) — the set of frame-slots which O
can ever change.

e frames(O, K) — the set of frames which O could
possibly put into frame-slots in change(O, K).

e operations(O, K) the set of all queries of
frame-slots in reach(O,K) and assertions of
frames in frames(O,K) into frame-slots in
change(O, K).

(Formal definitions of these sets are given in [Crawford
and Kuipers, 1989]). In a well partitioned knowledge-
base these sets should be much smaller than the total
size of the knowledge-base.

For a set S, let | S | be the cardinality of S.

Theorem 4 (Complexity) Assume O is a prim-
itive operation allowed in a knowledge-base K =
(C,R,Nr,Ar, F, P, A). Let

e o0 =| operations(O, K) |
¢ =| change(O, K) |
f =| frames(reach(O, K)) |
e 7 = the number of rules in park (O).

e a = the maximum arity of any relation in R.
e v = the mazimum number of variables in any rule
in parg (O).
The worst case time complexity of calculating O(K) is
bounded by:
a’o’r(r + f)?c’t?

Proof (sketch): Consider the vector of all opera-
tions O' € operations(O, K). For any n these opera-
tions produce a vector of knowledge-bases O),(K). We

John = Beth

Kim = Tom David = Sarah

William Suzan

Figure 6: A genealogy.

show that if for some n and for all such O', O] (K) =
0O,,11(K) then O(K) = O,(K). We then show that
there must exist such an n which is less than or equal
to ao(r + f)c (by showing that knowledge-bases can-
not shrink as n increases and showing a bound on how
large they can grow). Finally, we show that the time
to calculate any O! (K), from the values of all O!,_,,
is bounded by ar(r + f)c?*1.

4 Genealogy Example

An important part of our work with ALL has been
our experience with the lisp implementation of ALL.
We now present an introductory example from our im-
plementation work. The knowledge-base consists of
simple family relationships and the rules describe how
to deduce more complex relationships. We emphasize
that this example is one of the simplest we have imple-
mented and is presented because it is relatively short
and self-contained, yet gives a feel for the use of ALL
and illustrates the use of access paths.

Figure 6 shows an example genealogy. To translate
this into a knowledge-base assume that:

C ={ People, John, Beth, Kim,Tom, David,
Sarah, William, Suzan, Male, Fernale}

R ={ isa,parent,child, son,daughter,brother,
sister, spouse, husband, wi fe, uncle, aunt,

cousin, gender}

Further, we need several if-added rules to enforce
invariants in the knowledge-base. For example, we
make sure that whenever there is a link parent(z,y)
there is also a link child(y,z) (and vice-versa). Sim-
ilarly, whenever there is a link son(z,y) there are
links child(z,y) and gender(z, Male), and so on. A
important class of invariants are type restrictions —
any frame put in a parent, child, or spouse slot ‘isa’
‘People’. The if-added rules are shown in figure 7.
There are several other types of invariants which we

parent(z,y) — child(y,z)

)
>
=

&

B

N
1

parent(y,)

son(xz,y) — gender(y, Male)
son(z,y) — child(z,y)
daughter(z,y) — gender(y, Female)
daughter(z,y) — child(z,y)
husband(z,y) — wife(z,y)
husband(z,y) — spouse(z,y)
husband(z,y) — gender(y, Male)
wife(r,y) — husband(z,y)
wife(x,y) — gender(y, Female)
spouse(x,y) — spouse(y,x)
parent(z,y) — isa(y,People)
child(z,y) — isa(y, People)

spouse(x,y) — isa(y, People)

Figure 7: If-added rules for genealogy example.

brother(x,z) <« parent(z,y),son(y,z),x # z

sister(xz,z) <« parent(zx,y),daughter(y, z),
TF#z
uncle(x, z parent(z,y), brother(y, z)

aunt(z,y), husband(y, z)
parent(z,y), sister(y, z)
uncle(z,y), wife(y, z)

g

~

S

S
S =2 A

S

N
T
TTT T

parent(v,w), parent(w, x),

child(z,y),y # w,
child(y,z),v # z

Figure 8: If-needed rules for genealogy example.

could add (e.g. whenever there are links child(z,y)
and gender(y, Male) then there is a link son(z,y))
but which are not necessary for this example. Simi-
larly, we could add additional type restricting if-added
rules for some of the more complex relations (e.g.
uncle(x,y) — isa(y, People)). Note, however, that
the type restricting rules together with the other in-
variants ensure that any frames in the relations son,
daughter, husband, and wife are ‘People’. We asso-
ciate these if-added rules with the relations in their
keys (e.g. A(parent(z,y) — child(y,z)) = parent).

We use the if-needed rules shown in figure 8 to de-
duce the more complex relations. In these rules x # y
is true when = and y are bound to different frames. We
associate these rules with the frame People (thus they
are available to fill slots in any frame known to be a
People). Notice that the rules for uncle and aunt are
mutually recursive, but this causes no problem in ALL
(though it would cause an infinite loop in Prolog) since
query is defined as the union over all n of query, (see
figure 2). Finally, we assume that the knowledge-base
consists of a single partition, and initially contains no
facts. We have thus defined an initial knowledge-base
K.

Now we assert into Ky the family relations in figure
6. This can be done by asserting the following path:

wi fe(John, Beth), wife(Tom, Kim), (1)
wi fe(David, Sarah), son(John,Tom),
son(Beth,Tom), son(John, David),

son(Beth, David), son(Tom, William),
son(Kim, William), daughter(David, Suzan),
daughter(Sarah, Suzan)

Asserting this path adds many more facts to the
knowledge-base than just those mentioned in the path.
For example, it adds gender(Tom, Male), and that
the frames John, Beth, Tom, Kim, David, Sarah,
William, and Suzan are all People. Let K; be the
knowledge-base after the assertion of the path in 1.
Finally, we can make queries into K. Consider first,

query(uncle(William, z))(K1).
Assume,
p = parg, (uncle(William, x)).
Clearly,
queryo(uncle(William, z)) (K1, p)
fails. Similarly,
query, (uncle(William, z)) (K1, p)

fails since the facts parent(William, John) and
parent(William, Beth) are known, but no brothers of
John or Beth are known. However,

querys (brother(John,y))(K1,p)

succeeds with y bound to David (by the if-needed rule
for brother). Hence,

querys (uncle(William, x)) (K1, p)
succeeds with bound to Dawvid. Similarly,
query(cousin(Suzan, x)) (K1)

succeeds with z bound to William. One important
advantage gained by the use of access paths is that
the size of the knowledge-base could be increased with
no effect on the time taken to compute these queries
(unless we add frames which cause the access paths to
branch — e.g. by adding more children of John and
Beth).

5 Related Work.

ALL draws from several diverse fields and we will not
have space here to examine in detail its relationship to
the large body of previous work. We simply sketch in
general terms the fields from which it draws and a few
particularly relevant past approaches.

ALL draws from semantic networks [Findler, 1979,
Brachman et al., 1983, Bobrow and Winograd, 1985,
Vilain, 1985] the intuition that retrieval and reason-
ing can be guided by the structure of the network.
This has long been a key intuition behind semantic
networks: “...the knowledge required to perform an
intellectual task generally lies in the semantic vicin-
ity of the concepts involved in the task.” [Schubert,
1979]. ALL also draws from semantic networks its
frame based data structures [Minsky, 1985].

ALL differs from past work on semantic net-
works in that it uses a single general purpose re-
trieval /reasoning mechanism which is guided by the
structure of the network. Past work has generally
used the structure of the network only for special
purpose reasoning (spreading activation, classifica-
tion etc.), and has relied on a first-order logic theo-
rem prover [Brachman et al., 1983, Schubert et al.,
1983] or a weaker deduction system [Levesque, 1984,
Patel-Schneider, 1985, Vilain, 1985] for general reason-
ing.

A notable exception to this rule is the recent work of
Schubert [Schubert, 1979, Haan and Schubert, 1986].
ALL and the networks of Schubert share several fea-
tures including the use of access limitations to guide
reasoning. The most obvious way to use the structure
of a semantic network to limit access would be to per-
form deduction with facts not more than a few (say
maybe two) nodes away in the network. The prob-
lem with this strategy is that some nodes (e.g. the
node for your spouse) may have a large number of
links, many of which are irrelevant to the problem at
hand. The solution used in ECOSYSTEM is to main-
tain a taxonomy of knowledge and use this taxonomy

to guide reasoning [Haan and Schubert, 1986]. The
difference in ALL is that access is limited to known
access paths, which may access facts many nodes away
in the network, but do so in a controlled fashion. Thus
in ALL it is the structure of the knowledge itself (or
more specifically the structure of the access paths in
the rules) which controls access and reasoning.

The design of the inference mechanism in ALL has
been heavily influenced by logic programming. In fact
any function free logic program (without negation) can
be written in ALL. Further, the notation, and the
proofs of the completeness of logic programming [Apt,
1988, Lloyd, 1984], have been used extensively in the

completeness proofs for ALL.

6 Discussion and Future Work.

Ultimately we are working towards a formal theory
which has the expressive power of predicate calculus,
and is consistent and Socratically Complete, but still
has polynomial time complexity. The current formal-
ism of ALL (unlike our Lisp implementation) can ex-
press only implication — not general negation. It is
straight forward to add to ALL the ability to express
full classic negation (i.e. not negation by failure), but
then inference in ALL (using rules alone) is no longer
Socratically Complete. For example, from two rules of
the form:

p < q
/2)

one should be able to conclude —q, but neither rule can
apply since there are no facts. We are currently work-
ing to increase the deductive power of ALL by adding
a Reductio Ad Absurdum mechanism. This involves
adding the ability to make an assumption and then
reason about its consequences. If the consequences
include ‘false’ then we can conclude the negation of
the assumption. In the above example we assume gq
and derive p and —p. Thus we can conclude —q. We
believe that such a mechanism will allow Socratically
Complete reasoning in the presence of classic negation.

There is also no obvious way to express full existen-
tial quantification in our current formalism or our im-
plementation. We have incorporated definite descrip-
tions (e.g. “The man with the wooden leg”), which
define a type of existential quantification (a definite
description should pick out a unique known frame or,
if there is no frame meeting the description, create
a new one) into the implementation of ALL, but we
have not yet formalized them as they do not seem to
translate naturally into predicate calculus.

However, we have observed that commonsense rea-
soning often involves reasoning about groups of similar
objects, and that much of this reasoning can be done

without full first order quantification. One may, for
example, reason about a large class of objects by rea-
soning about a representative object having the prop-
erties common to all objects in the group (or reason
about a ‘skolem’ object having properties that some
(unknown) object of the group is known to have). In
our implementation work we have been developing a
“commonsense set theory” entirely within the quanti-
fier limitations of ALL, and have applied it to several
examples.

In general, our lisp implementation of ALL is con-
siderably ahead of our formalism. Beyond definite de-
scriptions and common-sense set theory we have im-
plemented full negation (using Reductio Ad Absurdum
as discussed above) and an ability to make default as-
sumptions. We have built up a small knowledge-base
of common-sense knowledge and have investigated sev-
eral classes of problems:

e We have written a version of the inferential dis-
tance rule of Touretzky [Touretzky, 1986]), and
have looked at some standard examples of mul-
tiple inheritance (e.g. royal elephants and birds
that are penguins) and at a Nixon diamond.

e We have implemented a fairly standard solution
to the Yale shooting problems [Hanks and McDer-
mott, 1986].

e Using our common-sense set theory we have im-
plemented a solution to McCarthy’s sterilization
problem [1987] and other more complex problems
involving sets of similar objects.

e To demonstrate Socratic Completeness and the
use of Reductio Ad Absurdum, we have imple-
mented a solution to the following logical puzzle
taken from [Wylie, 1957]:

In a certain bank the positions of cashier,
manager, and teller are held by Brown,
Jones and Smith, though not necessar-
ily respectively. The teller, who was an
only child, earns the least. Smith, who
married Brown'’s sister, earns more than
the manager.

What position does each man fill ?

Our solution involves the use of rules which de-
fine notions of partial orders and one-to-one rela-
tions between sets. When we state the problem
in ALL, our lisp implementation initially fails to
solve it, but after a suitable sequence of prelimi-
nary queries (essentially the questions one would
ask a person to step them through the puzzle) is
able to do so.

References

[Allen et al., 1984] Allen, J. F., Giuliano, M., and
Frisch A. M. The HORNE Reasoning System, TR,
126, Computer Science Department, University of
Rochester, Rochester NY., 1984.

[Apt, 1988] Apt, Krzysztof, R. Introduction to Logic
Programming. To appear in Handbook of Theoret-
ical Computer Science, ed. J. van Leeuwen., North
Holland.

[Brachman and Levesque, 1985] Brachman, Ronald J.
and Levesque, Hector, J. Readings in Knowledge
Representation, Morgan Kaufmann, Los Altos,
Cal., 1985.

[Brachman et al., 1983] Brachman, R.J., Fikes,R. E.,
and Levesque H. J. Krypton: a functional ap-
proach to knowledge representation, Computer,
16:67-73., 1983.

[Bobrow and Winograd, 1985] Bobrow, Daniel G.,
and Winograd, Terry. An Overview of KRL, a
Knowledge Representation Language. In [Brach-
man and Levesque, 1985], pp. 263-285.

[Crawford and Kuipers, 1989] Crawford, J. M., and
Kuipers, B. Access-Limited Logics. Forthcoming
technical report.

[Findler, 1979] Findler, N.V., Associative Networks:
Representation and Use of Knowledge by Com-
puter, Academic Press, New York, 1979.

[Haan and Schubert, 1986] Haan, J., and Schubert, L.
K. Inference in a topically organized semantic net.
In Proc. Natl. Conf. Am. Assoc. Artif. Intell.,
Philadelphia, Pa., 1986, pp. 334-338.

[Hanks and McDermott, 1986] Hanks, Steve, and Mc-
Dermott, Drew. Default Reasoning, Nonmono-
tonic Logics, and the Frame Problem. In Proc.
Natl. Conf. Am. Assoc. Artif. Intell., Philadel-
phia, Pa., 1986, pp. 328-333.

[Hayes, 1985] Hayes, Patrick J. The Second Naive
Physics Manifesto. In Hobbs, Jerry R. and Moore,
Robert C., Formal Theories of the Commonsense
World, Ablex Publishing Co.: New Jersey, 1985,
pp. 18-30.

[Hayes-Roth, 1985] Hayes-Roth, B. A Blackboard Ar-
chitecture for Control. In Artificial Intelligence
Journal, 26:251-321, 1985.

[Kay, 1973] Kay, M. The MIND system. In Natural
Language Processing, ed. R. Rustin., New York:
Algorithmics Press, 1973.

[Levesque, 1986] Levesque, H. J. Knowledge represen-
tation and reasoning. In Ann. Rev. Comput. Sci.
1:255-87, 1986. Palo Alto, California: Annual Re-
views Inc.

[Levesque, 1984] Levesque, H.J. A Logic of Implicit
and Explicit Belief. In Proc. Natl. Conf. Am. As-
soc. Artif. Intell., Austin, Texas, 1984, pp. 198-
202.

[Lloyd, 1984] Lloyd, J.W. Foundations of Logic Pro-
gramming, Springer-Verlag, New York, 1984.

[McCarthy, 1987] McCarthy, J. Generality in Artifi-
cial Intelligence. In Communications of the ACM
30:1030-1035, 1987.

[Minsky, 1985] Minsky, Marvin. A Framework for
Representing Knowledge. In [Brachman and
Levesque, 1985], pp. 246-262.

[Patel-Schneider, 1985] Patel-Schneider, P. A Decid-
able First-Order Logic for Knowledge Represen-
tation. In Proc. Int. Jt. Conf. Artif. Intell., Los
Angeles, California, 1985, pp. 455-458.

[Powers, 1987] Powers, L. H. Knowledge by Deduc-
tion. In The Philosophical Review, LXXXVII, No.
3, 1978, pp. 337-371.

[Schubert, 1979] Schubert, L.K., R.G. Goebel, and
N.J. Cercone, “The Structure and Organization
of a Semantic Net for Comprehension and Infer-
ence,” in [Findler, 1979], pp. 121-175.

[Schubert et al., 1983] Schubert, L.K., Papalaskaris,
M.A., and Taugher, J. Determining Type, Part,
Color, and Time Relationships. In IEEE Com-
puter, 16(10), 53-60, 1983.

[Touretzky, 1986] Touretzky, David S. The Mathemat-
ics of Inheritance Systems, Morgan Kaufmann,
Los Altos, California, 1986.

[Vilain, 1985] Vilain, M. The restricted language ar-
chitecture of a hybrid representation system. In
Proc. Int. Jt. Conf. Artif. Intell., Los Angeles,
California, 1985, pp. 547-551.

[Woods, 1975] Woods, W. What’s in a link: foun-
dations for semantic networks. In Representation
and Understanding: Studies in Cognitive Science
, ed. Bobrow, D. and Collins, A., New York: Aca-
demic, 1975, pp. 35-82.

[Wylie, 1957] Wylie, C.R., Jr. /em 101 Puzzles in
Thought & Logic, Dover Publications Inc, Mine-
ola, New York, 1957.

