
Computing Optimal Randomized Resource Allocations for
Massive Security Games

Christopher Kiekintveld, Manish Jain, Jason Tsai
James Pita, Fernando Ordóñez, and Milind Tambe

University of Southern California, Los Angeles, CA 90089
{kiekintv, manishja, jasontts, jpita, fordon, tambe}@usc.edu

ABSTRACT
Predictable allocations of security resources such as police offi-
cers, canine units, or checkpoints are vulnerable to exploitation
by attackers. Recent work has applied game-theoretic methods
to find optimal randomized security policies, including a fielded
application at the Los Angeles International Airport (LAX). This
approach has promising applications in many similar domains, in-
cluding police patrolling for subway and bus systems, randomized
baggage screening, and scheduling for the Federal Air Marshal Ser-
vice (FAMS) on commercial flights. However, the existing meth-
ods scale poorly when the security policy requires coordination of
many resources, which is central to many of these potential appli-
cations.

We develop new models and algorithms that scale to much more
complex instances of security games. The key idea is to use a com-
pact model of security games, which allows exponential improve-
ments in both memory and runtime relative to the best known al-
gorithms for solving general Stackelberg games. We develop even
faster algorithms for security games under payoff restrictions that
are natural in many security domains. Finally, introduce additional
realistic scheduling constraints while retaining comparable perfor-
mance improvements. The empirical evaluation comprises both
random data and realistic instances of the FAMS and LAX prob-
lems. Our new methods scale to problems several orders of magni-
tude larger than the fastest known algorithm.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence - Intelligent Agents

General Terms
Algorithms, Performance, Experimentation, Security, Theory

Keywords
Game Theory, Stackelberg Games, Algorithms, Uncertainty, Secu-
rity, Randomization, Patrolling, Risk Analysis

1. INTRODUCTION
Providing security for transportation systems, computer networks,

and other critical infrastructure is a large and growing problem.Cite as: Computing Optimal Randomized Resource Allocations for Mas-
sive Security Games, Christopher Kiekintveld, Manish Jain, Jason Tsai,
James Pita, Fernando Ordóñez, and Milind Tambe, Proc. of 8th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Central to many of these security problems is a resource alloca-
tion task. For example, a police force may have limited person-
nel to conduct patrols, operate checkpoints, and conduct random
searches. Other scarce resources including bomb-sniffing canines,
vehicles, and security cameras. The key question is how to effi-
ciently allocate these resources to protect against a wide variety of
potential threats.

The adversarial aspect of security domains poses unique chal-
lenges for resource allocation. A motivated attacker can gather in-
formation about security measures by surveillance to plan more ef-
fective attacks. Predictable resource allocations may be exploited
by an attacker, greatly reducing resource effectiveness. A better
approach for deploying security resources is to use randomization
to increase the uncertainty of potential attackers. We develop new
computational methods that use game-theoretic analysis to gener-
ate optimal randomized resource allocations for security domains.

Game theory offers a more sophisticated approach to random-
ization than simply “rolling dice.” It allows the analyst to factor
differential risks and values into the game model, and incorporates
game-theoretic predictions of how the attacker will respond to a
given security policy. Recent work by Paruchuri et. al. uses a
game-theoretic approach to create randomized security policies for
traffic checkpoints and canine patrols at the Los Angeles Interna-
tional Airport (LAX), which are deployed in the daily operation of
airport security [11, 12]. They build on recent advances in solu-
tion algorithms for Bayesian Stackelberg games, which capture the
surveillance aspect of the domain.

A significant limitation of existing solution methods is that they
handle multiple security by enumerating all possible combinations
of resource assignments. This grows combinatorially in the num-
ber of resources, which makes it computationally infeasible to solve
large problems. Enumeration was feasible in the LAX application
due to the relatively small size of the domain (on the order of 10 re-
sources). We are interested in application domains with thousands
of attack targets and hundreds of resources. Section 3 describes
one such domain–the problem of assigning Federal Air Marshals
(FAMs) to flights.

We introduce new techniques for randomized security resource
allocation that scale to problems orders of magnitude larger than
existing methods. The first algorithm introduces a compact rep-
resentation to dramatically reduce both space and time require-
ments for the multiple-resource case. Two additional algorithms
further improve performance by exploiting payoff regularities in
a restricted class of security games. Finally, we extend the first
algorithm to incorporates additional scheduling and resource con-
straints into the model. We demonstrate compelling performance
improvements in both memory and runtime on random problem in-
stances and realistic data from the LAX and FAMS domains.



2. GAME-THEORETIC MODELING OF
SECURITY GAMES

Security problems are increasingly studied using game-theoretic
analysis, ranging from computer network security [18, 15] to ter-
rorism [14]. We model the security resource allocation problem as
a Stackelberg game. Stackelberg games were introduced to study
duopoly competition [16], and are now widely used to model lead-
ership and commitment. A related family of Stackelberg games
called inspection games includes models of arms inspections and
border patrolling [1]. Stackelberg games have also been applied to
resource allocation in a computer job scheduling domain [13]. The
most directly related work applies Stackelberg games to security
patrolling, both in a generic “police and robbers” scenario [5] and
a fielded application at the LAX airport [12].

Motivated by these and other applications, there have been sev-
eral recent algorithmic advances for Stackelberg games. Conitzer
and Sandholm give complexity results and algorithms for comput-
ing optimal commitment strategies, including both pure and mixed-
strategy commitments and a Bayesian case [4]. A new algorithm
for solving Bayesian Stackelberg games (DOBSS) is central to the
LAX application [11]. We consider cases with multiple resources,
which can be solved using the existing algorithms only by exhaus-
tively enumerating an exponential number of joint assignments.
Our algorithms use compact representations to dramatically reduce
the time and space requirements to compute solutions for common
classes of Stackelberg security games with multiple resources.

2.1 Stackelberg Security Games
We begin by defining a generic security problem as a normal-

form Stackelberg game. A security game has two players, a de-
fender, Θ, and an attacker, Ψ. These players need not represent
individuals, but could also be groups that cooperate to execute a
joint strategy, such as a police force or terrorist organization. Each
player has a set of possible pure strategies, denoted σΘ ∈ ΣΘ and
σΨ ∈ ΣΨ. A mixed strategy allows a player to play a probability
distribution over pure strategies, denoted δΘ ∈ ∆Θ and δΨ ∈ ∆Ψ.
Payoffs for each player are defined over all possible joint pure-
strategy outcomes: ΩΘ : ΣΨ × ΣΘ → R for the defender and
similarly for the attacker. The payoff functions are extended to
mixed strategies in the standard way by taking the expectation over
pure-strategy outcomes.

So far, our game description follows the standard normal-form
game. Stackelberg games introduce a distinction between the play-
ers: a “leader” moves first, and the “follower” observes the leader’s
strategy before acting. In our security games, the defender is a
Stackelberg leader, and the attacker is a follower. This models the
capability of malicious attackers to employ surveillance in planning
attacks. In this model, predictable defense strategies are vulnerable
to exploitation by a determined adversary. Formally, the attacker’s
strategy in a Stackelberg security game is a function that selects a
strategy in response to each leader strategy: FΨ : ∆Θ → ∆Ψ.

2.2 Stackelberg Equilibrium
The standard solution concept in game theory is a Nash equi-

librium: a strategy profile (strategy for each player) such that no
player can gain by unilaterally deviating to another strategy [10].
Stackelberg equilibrium is a refinement of Nash equilibrium spe-
cific to Stackelberg games. It is a form of subgame perfect equilib-
rium, in that it each player chooses a best-response in any subgame
of the original (where subgames correspond to partial sequences of
actions). This eliminates Nash equilibrium profiles supported by
non-credible threats off the equilibrium path. Subgame perfection
alone does not guarantee a unique solution for Stackelberg games,

since the follower can be indifferent among a set of strategies.
There are two types of unique Stackelberg equilibria, first proposed
by Leitmann [8], and ‘typically called “strong” and “weak” after
Breton et. al. [3]. The strong form assumes that the follower will
always choose the optimal strategy for the leader in cases of indif-
ference, while the weak form assumes that the follower will choose
the worst strategy for the leader. A strong Stackelberg equilibrium
exists in all Stackelberg games, but a weak Stackelberg equilibrium
may not [2]. In addition, the leader can often induce the favorable
strong equilibrium by selecting a strategy arbitrarily close to the
equilibrium that causes the the follower to strictly prefer the de-
sired strategy [17]. We adopt strong Stackelberg equilibrium here
due to the key existence result and because it is the most commonly
adopted concept in the related literature [10, 4, 11].

DEFINITION 1. A pair of strategies (δΘ, FΨ) form a Strong
Stackelberg Equilibrium (SSE) if they satisfy the following:

1. The leader plays a best-response:
ΩΘ(δΘ, FΨ(δΘ)) ≥ ΩΘ(δ′Θ, FΨ(δ′Θ)) ∀ δ′Θ ∈ ∆Θ.

2. The follower play a best-response:
ΩΨ(δΘ, FΨ(δΘ)) ≥ ΩΨ(δΘ, δΨ) ∀ δΘ ∈ ∆Θ, δΨ ∈ ∆Ψ.

3. The follower breaks ties optimally for the leader:
ΩΘ(δΘ, FΨ(δΘ)) ≥ ΩΘ(δΘ, δΨ)∀δΘ ∈ ∆Θ, δΨ ∈ ∆∗Ψ(δΘ),
where ∆∗Ψ(δΘ) is the set of follower best-responses, as above.

Whether or not the Stackelberg leader benefits from the ability to
commit depends on whether commitment to mixed strategies is al-
lowed. Committing to a pure strategy can be either good or bad
for the leader; for example, in the “Rock, Paper, and Scissors”
game, committing to a pure strategy guarantees a loss. However,
the ability to commit to a mixed strategy always weakly increases
the leader’s payoffs in equilibrium profiles of the game [17]. In the
context of a Stackelberg security game, a deterministic policy is
a liability for the defender (the leader), but a credible randomized
security policy is an advantage. Our model allows commitment to
mixed strategies by the defender.

3. MOTIVATING DOMAINS
The primary problem we address in this work is combinatorial

explosion in the game representation for security games with mul-
tiple resources. Many security domains feature multiple resources,
including the LAX application described above [12]. In this case,
multiple canine units (resources) are assigned to cover multiple tar-
gets (airport terminals). The authors solved this problem by enu-
merating all possible assignments of canines to terminals–roughly
800 possible assignments. We are interested in applications with
thousands of resources and targets, such as subway systems, ran-
dom baggage screening, container inspections at ports, and schedul-
ing for the Federal Air Marshals Service. By way of comparison,
even 100 targets and 10 resources yields a problem with 1.7×1013

assignments; a massive increase from the LAX problem.
The Federal Air Marshal Service (FAMS) has law enforcement

authority for commercial air transportation.1 One important activ-
ity of the service is to deploy armed Federal Air Marshals (FAMs)
on commercial flights, where they are able to detect, deter and de-
feat terrorist/criminal attempts to gain control of the aircraft. As
US commercial airlines fly 27,000 domestic flights and over 2000
1See the TSA websites http://www.tsa.dhs.
gov/lawenforcement/programs/fams.shtm and
http://www.tsa.dhs.gov/lawenforcement/
programs/fams.shtm for additional information.



international flight each day, FAMs lacks the resources to cover
all flights and deployments must be risk-based. However, even the
possibility that a FAM could on any given flight is a powerful de-
terrent for terrorist activities. The effectiveness of this deterrence
depends on the ability of the FAMS to randomize the flight sched-
ules for air marshals. If a terrorist adversary were able to reliably
predict which flights will not have marshals, the deterrence effect
would be reduced.

Flights should not necessarily have equal weighting in a random-
ized schedule. While information about how flight risks are evalu-
ated is not public, it is easy to imagine that many factors contribute
to the evaluation, ranging from specific intelligence to general risk
factors. A game-theoretic approach is ideal for creating a random-
ized schedule that incorporates these risk factors. However, cre-
ating such a schedule is significantly more daunting than even the
LAX problem. There are thousands of flights each day, departing
from hundreds of airports worldwide, and a multiplicity of air mar-
shals to schedule. Moreover, there are scheduling constraints that
must be considered in generating an allocation. An individual air
marshal’s potential departures are constrained by their current lo-
cation, and schedules must account for flight and transition times.
The algorithms we develop in the sequel are motivated by these
challenges.

4. A COMPACT REPRESENTATION FOR
MULTIPLE RESOURCES

Many security domains–including both LAX and FAMS–involve
allocating multiple resources to cover many potential targets. They
can be represented in normal form, but only at the cost of a combi-
natorial explosion in the size of the strategy space and payoff rep-
resentation. We develop a compact representation for multiple re-
sources and introduce an algorithm that exploits this representation.
Our approach is similar in spirit to other compact representations
for games [7, 6], but tailored to security domains.

4.1 Compact Security Game Model
Let T = {t1, . . . , tn} be a set of targets that may be attacked,

corresponding to pure strategies for the attacker. The defender has a
set of resources available to cover these targets,R = {r1, . . . , rm}
(for example, in the FAMS domain targets could be flights and air
marshals modeled as resources). Here we assume that all resources
are identical and may be assigned to any target, but relax these as-
sumptions in Section 6. Associated with each target are four pay-
offs defining the possible outcomes for an attack on the target, as
shown in Table 1. There are two cases, depending on whether or
not the target is covered by the defender. The defender’s payoff
for an uncovered attack is denoted Uu

Θ(t), and for a covered attack
Uc

Θ(t). Similarly, Uu
Ψ(t) and Uc

Ψ(t) are the attacker’s payoffs.

Table 1: Example payoffs for an attack on a target.
Covered Uncovered

Defender 5 –20
Attacker –10 30

A crucial feature of the model is that payoffs depend only on
the identity of the attacked target and whether or not it is covered
by the defender. For example, it does not matter whether or not
any unattacked target is covered or not. From a payoff perspective,
many resource allocations are identical. We exploit this by sum-
marizing the payoff-relevant aspects of the defender’s strategy in
a coverage vector, C, that gives the probability that each target is

covered, ct. The analogous attack vector A gives the probability of
attacking a target, which in the sequel we restrict to attack a single
target with probability 1 (without loss of generality because a SSE
solution still exists). The defender’s expected payoff given attack
and coverage vectors is shown in Equation 1. Equation 2 gives the
expected payoff for an attack on target t, given C. The same nota-
tion applies for the follower, replacing Θ with Ψ. We also define
the useful notion of the attack set, Γ(C), which contains all tar-
gets that yield the maximum expected payoff for the attacker given
coverage C.

UΘ(C,A) =
X
t∈T

at · (ct · Uc
Θ(t) + (1− ct)Uu

Θ(t)) (1)

UΘ(t, C) = ctU
c
Θ(t) + (1− ct)Uu

Θ(t) (2)
Γ(C) = {t : UΨ(t, C) ≥ UΨ(t′, C) ∀ t′ ∈ T}. (3)

In a strong Stackelberg equilibrium, the attacker selects the target
in the attack set with maximum payoff for the defender. Let t∗

denote this optimal target. Then the expected SSE payoff for the
defender is ÛΘ(C) = UΘ(t∗, C), and for the attacker ÛΨ(C) =
UΨ(t∗, C).

4.2 Compact Versus Normal Form
Any security game represented in this compact form can also

be represented in normal form. The attack vector A maps directly
to the attacker’s pure strategies, with one strategy per target. For
the defender, each possible allocation of resources corresponds to a
pure strategy in the normal form. A resource allocation maps each
available resource to a target, so there are n Choose m ways to
allocate m resources to n targets (assuming at most one resource
is assigned to a target). Equation set 4 gives an example of how a
coverage vector corresponds to a mixed strategy, for two resources
and four targets. δi,j

Θ is the probability assigned to a pure strategy
covering targets i and j. The first row states that the probability
of covering target 1 is the sum of the probability assigned to pure
strategies that cover 1.

δ1,2
Θ + δ1,3

Θ + δ1,4
Θ = c1

δ1,2
Θ + δ2,3

Θ + δ2,4
Θ = c2

δ1,3
Θ + δ2,3

Θ + δ3,4
Θ = c3

δ1,4
Θ + δ2,4

Θ + δ3,4
Θ = c4 (4)

The payoff function ΩΘ for the defender defines a payoff for
each combination of a resource allocation schedule and target. If
the target is covered by the allocation, the value is Uc

Θ, and if not it
is Uu

Θ. The attacker payoff function is defined similarly. Compar-
ing the size of the strategies and payoff functions in these alterna-
tive representations is striking. In the compact form, each strategy
is represented by n continuous variables, and the payoff function
by 4n variables. In contrast, the defender’s strategy in normal form
requires nChoosem variables, while the attacker strategy remains
the same. The payoff function is of size n · (n Choose m).

4.3 ERASER Solution Algorithm
The ERASER algorithm (Efficient Randomized Allocation of

SEcurity Resources) takes as input a security game in compact
form and solves for an optimal coverage vector corresponding to
a SSE strategy for the defender. The algorithm is a mixed-integer
linear program (MILP), presented in Equations 5–11. Equations 6
and 7 force the attack vector to assign a single target probability
1. Equation 8 restricts the coverage vector to probabilities in the



range [0, 1], and Equation 9 constraints the coverage by the num-
ber of available resources.

In Equations 10 and 11, Z is a large constant relative to the
maximum payoff value. Equation 10 defines the defender’s ex-
pected payoff, contingent on the target attacked in A. The con-
straint places an upper bound of UΘ(t, C) on d, but only for the
attacked target. For all other targets, the RHS is arbitrarily large.
Since the objective maximizes d, for any optimal solution d =
UΘ(C,A). This also implies that C is maximal, given A for any
optimal solution, since d is maximized.

In a similar way, Equation 11 forces the attacker to select a strat-
egy in the attack set of C. The first part of the constraint specifies
that k − UΨ(t, C) ≥ 0, which implies that k must be at least as
large as the maximal payoff for attacking any target. The second
part forces k − UΨ(t, C) ≤ 0 for any target that is attacked in A.
If the attack vector specifies a target that is not maximal, this con-
straint is violated. Taken together, the objective and Equations 10–
11 imply that C and A are mutual best-responses in any optimal
solution.

max d (5)
at ∈ {0, 1} ∀t ∈ T (6)X

t∈T

at = 1 (7)

ct ∈ [0, 1] ∀t ∈ T (8)X
t∈T

ct ≤ m (9)

d− UΘ(t, C) ≤ (1− at) · Z ∀t ∈ T (10)
0 ≤ k − UΨ(t, C) ≤ (1− at) · Z ∀t ∈ T (11)

We now show that an optimal solution to the ERASER MILP
corresponds to a SSE of the security game. First we show that the
legal coverage vectors can be implemented by mixed strategies, and
then show how full a full SSE can be constructed from an optimal
ERASER solution.

THEOREM 1. For any feasible ERASER coverage vector, there
is a corresponding mixed strategy δΘ that implements the desired
coverage probabilities.

Proof sketch: TranslatingC into a mixed strategy involves solv-
ing a set of n linear equations with

`
n
m

´
variables; in practice, we

use a linear program. The claim is trivial when m = 1, since each
pure strategy maps directly to a target. In the general case, we must
map the feasible set of ERASER coverage vectors to the feasible
set of the mixed strategies ∆Θ. We provide the intuition for this
mapping here. Each pure strategy σΘ can be represented by an
m-dimensional indicator vector that selects m out of the possible
n targets. The full set of pure strategies ΣΘ consists of the

`
n
m

´
indicator vectors of this form. The set of possible mixed strate-
gies for the normal-form game is ∆Θ, defined by valid probability
distributions over ΣΘ.

Now, let PE be the polyhedron defined by the solution space of
the ERASER coverage vector. We show that all extreme points of
PE are in ∆Θ, which implies that PE is a subset of the polyhedron
defined over ∆Θ. The extreme points of PE are defined by n lin-
early independent equality constraints. Since they have to satisfyPn

i=1 ci = m, n − 1 of the constraints 0 ≤ ci ≤ 1 must be tight,
so n− 1 of the ci variables are either 0 or 1. Since m is an integer,
the other variable must also be either 0 or 1. This implies that ex-
actly m of the ci = 1 and the rest of ci = 0 for any extreme point
of PE . This c vector is therefore one of the pure strategies σΘ that

define the extreme points of ∆Θ, proving the inclusion. We can
similarly argue the other direction, proving equivalence of the fea-
sibility sets. If ERASER has a valid solution, we will be able to
find a corresponding mixed strategy.

THEOREM 2. A pair of attack and coverage vectors (C,A) is
optimal for the ERASER MILP correspond to at least one SSE of
the game.

PROOF. We claim above that C corresponds to a mixed strategy
for the defender, butA is an incomplete description of the attacker’s
Stackelberg strategy FΨ; it does not specify choices for any cover-
age other than C. Here we show that the conditions of the MILP
imply the existence of a function FΨ extending A such that C and
FΨ satisfy the conditions of SSE given in Definition 1. We have al-
ready shown above that C and A are mutual best-responses for an
optimal MILP solution. It remains to describe the attacker’s behav-
ior off the equilibrium path, for any other feasible coverage vectors
C′ 6= C. Let t∗ ∈ Γ(C′) be a target in the attack set for C′ with
maximal payoff for the defender, and let A′ be the attack vector
which places probability 1 on t∗. By construction, A′ is feasible in
the MILP and satisfies conditions 2 and 3 for a SSE. Since (C′, A′)
is a feasible solution in the MILP, UΘ(C′, A′) ≤ UΘ(C,A) since
(C,A) is optimal for the MILP. Let FΨ be a function constructed
using this method for every possible C′ 6= C. C is a best-response
to FΨ since UΘ(C′, A′) ≤ UΘ(C,A), satisfying condition 1 of the
SSE.

5. EXPLOITING PAYOFF STRUCTURE
We now consider a class of security games in which the de-

fender always benefits by having additional resources covering an
attacked target, while the attacker is always worse off attacking a
more heavily defended target. These assumptions are quite reason-
able in many security games. Formally, we restrict payoff functions
so thatUu

Θ(t) < Uc
Θ(t) andUu

Ψ(t) > Uc
Ψ(t) for all t (note the strict

inequalities). This is similar in spirit to a zero-sum assumption, but
somewhat less restrictive. It is well-known that zero-sum games of-
ten admit more efficient solution algorithms, such as Luce’s poly-
nomial method for 2-player, zero-sum games [9]. We introduce two
algorithms that compute extremely fast solutions for security games
with this restriction on payoffs by exploiting structural properties
of the optimal solution. We begin with three observations about the
properties of the optimal solution for this class of games.

OBSERVATION 1. All else equal, increasing ct for any target
not in Γ(C) has no effect on ÛΘ(C) or ÛΨ(C).

Increasing ct can only decrease UΨ(t, C) (due to the payoff as-
sumption), and cannot affect the payoffs for any other target. Since
t was not in Γ(C) before, decreasing the payoff cannot result in a
change to Γ(C), and therefore cannot influence the SSE payoffs.

OBSERVATION 2. If Γ(C) ⊂ Γ(C′) and ct = c′t for all t ∈
Γ(C) then ÛΘ(C) ≤ ÛΘ(C′).

In other words, adding an additional target to the attack set can-
not hurt the defender. This is a straightforward consequence of
the SSE assumption that the defender receives the optimal payoff
among targets in the attack set.

OBSERVATION 3. If ÛΨ(C) = x, then ct ≥ x−Uu
Ψ(t)

Uc
Ψ(t)−Uu

Ψ(t)
for

every target t with Uu
Ψ(t) > x.



The inequality comes from setting the expected payoff for the
target equal to the payoff for targets in the attack set: x = ct(U

c
Ψ)+

(1−ct)Uu
Ψ. Solving for ct gives the coverage probability necessary

to induce indifference between attacking t and any target in the
attack set. If this condition is not satisfied for some t with Uu

Ψ(t) >
x, then the attacker strictly prefers an attack on t instead of the
attack set, contradicting the definition of the attack set (or x).

Algorithm 1 ORIGAMI
targets← T sorted by Uu

Ψ(t)
payoff[t]← Uu

Ψ(t), coverage[t]← 0
left←m, next← 2
covBound← −∞
while next ≤ n do

addedCov[t]← payoff [next]−Uu
Ψ(t)

Uc
Ψ(t)−Uu

Ψ(t)
- coverage[t]

if coverage[t] + addedCov[t] ≥ 1 then
covBound←Max(covBound, Uc

Ψ(t))
end if
if covBound ≥ −∞ OR

P
t∈T addedCov[t] ≤ left then

BREAK
end if
coverage[t] += addedCov[t]
left -=

P
t∈T addedCov[t]

next++
end while
ratio[t]← 1

Uu
Ψ(t)−Uc

Ψ(t)

coverage[t] += ratio[t]·leftP
t∈T ratio[t]

if coverage[t] ≥ 1 then
covBound←Max(covBound, Uc

Ψ(t))
end if
if covBound ≥ −∞ then

coverage[t]← covBound−Uu
Ψ(t)

Uc
Ψ(t)−Uu

Ψ(t)

end if

We exploit these observations in the ORIGAMI algorithm (Op-
timizing Resources in GAmes using Maximal Indifference), which
we present pseudocode for in Algorithm 1. The idea is to directly
compute the attack set for the attacker, using the indifference equa-
tion in Observation 3. Starting with a target that has maximal
Uu

Ψ(t), the attack set is expanded at each iteration in order of de-
creasing Uu

Ψ(t).2 Each time the attack set is expanded, the cover-
age of each target is updates to maintain the indifference of attacker
payoffs within the attack set.

There are two termination conditions. The first occurs when
adding the next target to the attack set requires more total cover-
age probability than the defender has resources available. At this
point, the size of the attack set cannot be increased further, but ad-
ditional probability can still be added to the targets in the attack set
in the specific ratio necessary to maintain indifference. The sec-
ond termination condition occurs when any target t is covered with
probability 1. The expected value for an attack on this target cannot
be reduced below Uc

Ψ(t), so this define the final expected payoffs
for the attack set. The final coverage probabilities are computed
setting the coverages so that as many targets as possible have an
expected payoff of Uc

Ψ(t). In both cases, the solution maximizes
the number of targets in the final attack set. Within the attack set, it

2It is not strictly necessary to start from the maximal value and ex-
pand the set in order. A faster but slightly more complicated vari-
ation of the algorithm could be implemented using a binary search
to find the attack set of maximal size that can be induced using the
available coverage resources.

maximizes the total coverage probability assigned while maintain-
ing the attacker’s indifference between the targets. The coverage
probability for all targets outside of the attack set is 0. We show
below that these properties suffice to identify a coverage vector that
is a SSE of the security game.

THEOREM 3. ORIGAMI computes a coverage vector C that is
optimal for the ERASER MILP, and is therefore consistent with a
SSE of the security game.

PROOF. Let (C,A) be an optimal solution for ERASER MILP,
and C′ be a coverage vector generated by ORIGAMI. C′ is feasi-
ble in the MILP by construction. We first show that A must attack
a target in Γ(C′), or it violates the optimality constraint for the
attacker. Suppose ORIGAMI terminates because a target t is as-
signed c′t = 1. By construction, t ∈ Γ(C′), and Uc

Ψ(t) ≥ Uu
Ψ(t′)

for any t′ outside of Γ(C′). Since c′t = 1 it cannot be greater in
any coverage vector, and c′t′ = 0 so it cannot be smaller. There-
fore, t′ cannot be part of Γ(C) for any feasible C. Now, suppose
ORIGAMI terminates because all resources are assigned. Since
maximal coverage is assigned to targets in Γ(C′), in any coverage
vector C, c′t ≤ ct for at least one t or C violates the constraint on
total resources available. Now, let t′ be any target not in Γ(C′).
We know that UΨ(t, C′) > UΨ(t′, C′), and since c′t ≤ ct, then
UΨ(t, C) > UΨ(t′, C) and t′ is not in Γ(C).

Having established that Γ(C) ⊂ Γ(C′) for any feasible C, we
now consider whether any feasible C can improve the defender’s
payoff for an attack within Γ(C′). By Observation 1, we need to
consider only changes in coverage probability within Γ(C′). To
improve the defenders payoff over ÛΘ(C′), the coverage probabil-
ity for the new attack target t must increase. Otherwise, ÛΘ(C′)
would already achieve at least the payoff for t. First, take the case
where C′ assigns maximal coverage. It is not possible to have ct >
c′t for some twithout having ct′ < c′t′ for at least one other t′, since
the sum of c′t is already maximal. Since UΨ(t, C′) = UΨ(t′, C′),
an attack on t′ is strictly preferred and the target t with higher cov-
erage is no longer in the attack set. Similarly, in the case where
a target is assigned coverage probability 1, it is not possible to in-
crease the coverage of that target. Increasing the coverage of any
other target reduces the attackers payoff and removes it from the
attack set.

min k (12)
γt ∈ {0, 1} ∀t ∈ T (13)
ct ∈ [0, 1] ∀t ∈ T (14)X

t∈T

ct ≤ m (15)

UΨ(t, C) ≤ k ∀t ∈ T (16)
k − UΨ(t, C) ≤ (1− γt) · Z ∀t ∈ T (17)

ct ≤ γt ∀t ∈ T (18)

We have also implemented an MILP that applies the same princi-
ples as ORIGAMI, which we call ORIGAMI-MILP. It is presented
in Equations 12–18. The vector γ represents the attack set, and
replaces A in ERASER. γt is 1 for targets in the attack set, and 0
for all other targets. ORIGAMI-MILP is similar to ERASER, but
does not optimize the defender’s payoff. Instead, it minimizes the
attacker’s payoff, and adds a constraint that restricts ct for any t not
in Γ(C) to 0, consistent with Observation 1. This constraint forces
the attack set to include the maximal number of targets.

THEOREM 4. ORIGAMI-MILP generates an optimal solution
for the ERASER MILP.



Proof sketch: ORIGAMI-MILP generates solutions with the
same properties as ORIGAMI. In particular, no coverage proba-
bility is assigned to targets outside of the attack set. This implies
that any target in the attack set is assigned exactly the coverage
probability necessary to induce indifference with all other targets
in the attack set, as in Observation 3. The objective of minimizing
the attacker’s payoff forces an attack set with the lowest expected
payoff for the attacker. Any target with an uncovered payoff higher
than this value must be included in the attack set, which forces the
attack set to be maximal. This in turn maximizes the defender’s
SSE payoff.

6. SCHEDULING AND RESOURCE CON-
STRAINTS

We now introduce ERASER-C (“Constrained”), an extension of
ERASER which adds the capability to represent certain kinds of
resource and scheduling constraints, motivated by the real example
domains described previously. We demonstrate that the basic idea
of using a compact representation of the defender’s strategy space
and the payoff functions for both players is still useful in this setting
when resources are heterogeneous.

The first extension allows resources to be assigned to sched-
ules covering multiple targets. The set of legal schedules S =
{s1 . . . sl} is a subset of the power set of the targets, with restric-
tions on this set representing scheduling constraints. We define
the relationship between targets and schedules with the function
M : S × T → {0, 1}, which evaluates to 1 if and only if t is cov-
ered in s.3 The defender’s strategy is an assignment of resources
to schedules, rather than targets. A second extension introduces re-
source types, Ω = {ω1, . . . , ωv}, each with the capability to cover
a different subset of S. The number of available resources of each
type is given by the functionR(ω). Coverage capabilities for each
type are given by the function Ca : S × Ω→ {0, 1}, which is 1 if
the type is able to cover the given schedule and 0 otherwise.4

The combination of schedules and resource types captures key
elements of the FAMS domain. Suppose we model air marshals
as resources, flights as targets, with payoffs defined by expert risk
analysis. A single marshal cannot be on all possible flights due to
location and timing constraints. We could use legal schedules to
define the set of feasible flights for a particular air marshal. Re-
source types can be used to specify different sets of legal schedules
for each resource (e.g., based on initial location). Adding these
constraints effectively reduces the space of feasible coverage vec-
tors. Consider an example with a single resource defending three
targets. There are two legal schedules, covering targets {1, 2} and
{2, 3}. Given only these schedules, it is not possible to implement
a coverage vector that places 50% probability on both targets 1 and
3, with no coverage of target 2.

An MILP implementing ERASER-C is presented in Equations 19–
30. The MILP is very similar to the original ERASER, but enforces
additional constraints on the legal schedules and coverage for each
resource type. The q variables represent the total probability that is
assigned to each schedule by all resource types, and the h variables
are the probability assigned to a schedule by a specific type of re-
source. In equations 29 and 30, Z is a large constant, relative to the
maximum payoff.

3For the purposes of the FAMS domain and the version of
ERASER-C presented here, all schedules are of size 2 and there
are no odd cycles in the graph where targets are vertices and edges
are schedules.
4Our implementation uses complete matrices for M and Ca, but
sparse representations could improve performance.

Constraint 20 restricts the attack vector to binary variables, which
correspond to pure strategies for the attacker. Constraints 21 through
23 restrict the defender’s strategy so that no target is assigned prob-
ability greater than 1. The coverage of each schedule must sum to
the contributions of the individual resource types, specified in 25.
The mapping between the coverage of schedules and coverage of
targets is enforced in constraint 26. Constraint 27 restricts the
schedule so that only the available number of resources of each
type are used. No probability may be assigned to disallowed sched-
ules for each resource type, which is explicitly enforced by con-
straint 28. The final three constraints specify the maximization per-
formed by both the attacker and defender, exactly as in the ERASER
(see Section 4.3).

max d (19)
at ∈ {0, 1} ∀t ∈ T (20)
ct ∈ [0, 1] ∀t ∈ T (21)
qs ∈ [0, 1] ∀s ∈ S (22)

hs,ω ∈ [0, 1] ∀s, ω ∈ S × Ω (23)X
t∈T

at = 1 (24)

X
ω∈Ω

hs,ω = qs ∀s ∈ S (25)

X
s∈S

qsM(s, t) = ct ∀t ∈ T (26)

X
s∈S

hs,ωCa(s, ω) ≤ R(ω) ∀ω ∈ Ω (27)

hs,ω ≤ Ca(s, ω) ∀s, ω ∈ S × Ω (28)
d− UΘ(t, C) ≤ (1− at) · Z ∀t ∈ T (29)

0 ≤ k − UΨ(t, C) ≤ (1− at) · Z ∀t ∈ T (30)

An optimal coverage vector of ERASER-C meets the equilib-
rium conditions, following the same line of reasoning as Theo-
rem 2. However, the MILP as written can result in coverage vectors
that cannot be implemented by mixed strategies in the original so-
lution space if arbitrary schedules are allowed (as noted above, in
the FAMS domain schedules have a restricted form). In particular,
additional constraints are necessary if there are odd cycles possi-
ble in the schedules. We defer full analysis and discussion of this
issue to future work, but note that in empirical testing with realis-
tic data even simple heuristic methods are able to generate sample
joint assignments that closely approximate the optimal coverage
probabilities identified by this MILP.

7. EXPERIMENTAL EVALUATION
We evaluate the four algorithms using both randomly-generated

security games and real examples from the LAX and FAMS do-
mains. Our baseline for comparing with existing methods is DOBSS
[11], which is the fastest known algorithm for general Bayesian
Stackelberg games. While we do not consider the Bayesian case
here, DOBSS is also comparable to other methods (notably [4]) for
the non-Bayesian case. All of our algorithms generate optimal SSE
solutions, so the primary metrics of comparison are the computa-
tional requirements to compute solutions, in both time and mem-
ory. We note that the algorithms are applicable to different classes
of games, with faster algorithms generally able to solve a smaller
class of games. The ordering of the algorithms in terms of the size
of the class of games is given by ORIGAMI/ORIGAMI-MILP ⊂
ERASER ⊂ ERASER-C ⊂ DOBSS.



All of our experiments were run on a machine with dual Xeon
3.2Ghz processors and 2GB of RAM, running RHEL 3. We use
CPLEX 9.0.0 with default parameter settings to solve MILPs. All
data points are based on 20 sample game instances, except when
explicitly stated otherwise. Our first set of experiments compares
the performance of DOBSS, ERASER, and ERASER-C on ran-
dom game instances. We next compare ERASER, ORIGAMI, and
ORIGAMI-MILP on much larger instances that DOBSS is unable
to solve, given memory limitations. The final experiment compares
the algorithms on relevant example games for the LAX and FAMS
domains described in Section 3.

For the first set of tests we generate random instances of compact
security games of the form used by ERASER (see Section 4.1). To
generate a game with a given number of targets and resources, we
independently randomly draw four integer payoffs for each target.
Uc

Θ and Uu
Ψ are drawn from Uniform[0, 100], while Uu

Θ and Uc
Ψ

are drawn from Uniform[−100, 0]. We use a value of 5 resources
for this set of results and vary the number of targets. The gener-
ated game instances are translated into the representations used by
DOBSS and ERASER-C.

(a) Runtimes for DOBSS,
ERASER, and ERASER-C

(b) Memory use of DOBSS,
ERASER, and ERASER-C

(c) Runtimes for DOBSS and
ERASER-C

(d) Memory use of DOBSS and
ERASER-C

Figure 1: Runtime and memory scaling

Figure 1(a) compares runtime performance of DOBSS, ERASER
and ERASER-C on this set of games. The x-axis is the size of
the game (in targets), and the y-axis is runtime in minutes. For
example, the point (20, 4.68) indicates that DOBSS has an aver-
age runtime of 4.68m on problems with 20 targets; ERASER and
ERASER-C each run for 0.002s for 20 targets. The data show
an exponential increase in time necessary to compute DOBSS so-
lutions, and essentially no change in runtimes for ERASER and
ERASER-C up to 20 targets. The differences between both vari-
ants of ERASER and DOBSS are statistically significant (using
Yuen’s test) for the larger games, while there is no significant dif-
ference between ERASER and ERASER-C for games of this size.
Figure 1(b) compares the memory performance on the same set of
games; there the y-axis represents the memory usage of AMPL in
MB. Runtime performance roughly tracks memory performance,
and the same exponential behavior is observed for DOBSS. Mem-
ory limitations become prohibitive for DOBSS before runtimes be-
come extremely long (though the growth trend is already clear);

we were unable to successfully complete game instances beyond
roughly 1GB on the memory measure.

We also compare the performance of ERASER-C and DOBSS
on games which require the additional capabilities of ERASER-C;
ERASER is not included in this test because it cannot solve the rel-
evant games. Our random game instances now include schedules,
resource types, and the schedule and coverage mappings, as de-
scribed in Section 6. We test games with 3 resource types, and
availability of [3, 3, 2] for each type. There are twice as many
schedules as targets, and each schedule covers a randomly-selected
set of two targets (we also ensure that each target is covered in at
least one schedule). Each resource type covers approximately 33%
of the legal schedules, again selected randomly.

Figures 1(c) and 1(d) compare the performance of DOBSS and
ERASER-C on this set of games, using the same metrics as the pre-
vious set of results. DOBSS was unable to complete all games with
20 targets due to memory limitations; the black triangle gives the
result for the three complete trials (which are likely biased low).
All comparisons are statistically significant for large games. We
observe the same patterns of performance for both DOBSS and
ERASER-C for this set of games as in the more restricted class
solvable by ERASER. ERASER-C adds representational power,
and retains substantial performance improvements over the base-
line DOBSS algorithm.

We now compare the performance of ERASER, ORIGAMI, and
ORIGAMI-MILP on very large games well beyond the limits of
DOBSS. Random game instances are generated as before for the
experiment including ERASER; the random payoffs generated al-
ready meet the restrictions of the ORIGAMI algorithms. Figure 2(a)
compares the runtimes of the three algorithms on games with 25 re-
sources and up to 3000 targets. Figure 2(b) extends the data out to
1,000 resources and 40,000 targets for the two ORIGAMI algo-
rithms. In both figures, the x-axis is the number of targets, and the
y-axis is runtime, as before.

(a) (b)

Figure 2: Runtime scaling of ERASER, ORIGAMI, and
ORIGAMI-MILP

The ERASER algorithm was able to solve games of 3000 targets
in 13.30 minutes, which is quite impressive. The ORIGAMI algo-
rithms were even more impressive, solving these games in seconds.
Yuen’s test confirms that the ORIGAMI times for large games are
significantly different than the ERASER times. As a further point
of comparison, for the 3000 target, 25 resource game, the size of the
defender’s strategy space in normal form is roughly 1060 – clearly
infeasible to represent, let alone solve. The results for the two
ORIGAMI algorithms given in Figure 2(b) show that as the size
of the game scales to very large instances, ORIGAMI outperforms
ORIGAMI-MILP. To test the ultimate scalability of ORIGAMI,
we ran a single trial of a game with 1,000,000 targets and 10,000
resources. ORIGAMI successfully computed a solution in 1.51
hours.

In the final set of experiments we test the algorithms on real data



Actions DOBSS ERASER (-C)
LAX (6 canines) 784 0.94s 0.23s
FAMS (small) ~6,000 4.74s 0.09s
FAMS (large) ~85,000 435.6s* 1.57s

Table 2: Runtimes on real data.

acquired for both the LAX canine and FAMS scheduling domains.
The LAX data consists of a single game instance with 6 resources
(canine units) and 8 targets (terminals). For FAMS we generated
two hypothetical examples using real (public) flight information
and hypothetical information about resources and coverage capa-
bilities, and hypothetical payoffs. Both examples cover a one week
period, but cover different foreign and domestic airports to generate
"small" and "large" tests.

Table 2 shows runtimes and DOBSS action space size for these
problem instances, averaged over 20 trials of the same game in-
stance. The first line compares DOBSS and ERASER for the LAX
security domain. The second and third lines compare DOBSS and
ERASER-C on the two instances of the FAMS domain (ERASER
is not capable of representing these problems). DOBSS did not
complete the large problem instance, reaching a memory limit after
435.6s of runtime. All differences in means are statistically sig-
nificant (though we emphasize that these are repeated trials on the
same game instance). Our algorithms show dramatic performance
improvements over DOBSS on these real data sets, in addition to
the randomly-generate data sets presented above.

8. CONCLUSION
Allocating limited resources is an important problem in many se-

curity domains. Airport security, the Federal Air Marshals, screen-
ing incoming shipments at ports, patrolling subway systems, and
random checks at customs are all examples of this. Increasingly,
game-theoretic analysis is seen as a valuable tool for analyzing
these problems, and especially for determining effective random-
ization strategies. We apply the theory of Stackelberg games to this
problem, following the successful application of similar technology
at the LAX airport by Pita et. al. [12].

We contribute new algorithms for computing optimal solutions
to security games that scale to massive games with many resources
and many targets. While the best existing algorithm was unable
to solve games larger than 20 targets due to memory limitations,
our algorithms scale to thousands–and in some cases millions–of
targets. The first method, ERASER, introduces a compact repre-
sentation for security games with multiple resources, avoiding a
combinatorial explosion in representation size of the normal-form
game. We present two algorithm which offer even more dramatic
performance improvements for a class of games with plausible re-
strictions on the payoff functions for the players. These algorithms
exploit structural properties of optimal solutions under the payoff
restrictions. Finally, we extend the ERASER algorithm to incor-
porate scheduling and resource constraints motivated by the FAMS
domain. The resulting ERASER-C algorithm is more expressive
than ERASER, but still improves performance over the existing
baseline methods. Together, these four algorithms offer a power-
ful set of computational tools for solving massive security games.
In many cases, they offer improvements of several orders of mag-
nitude in computational scalability.

9. ACKNOWLEDGEMENT
This research was supported by the United States Department

of Homeland Security through the Center for Risk and Economic

Analysis of Terrorism Events (CREATE) under grant number 2007-
ST-061-000001. We are also grateful to the United States Federal
Air Marshal Service for their exceptional collaboration. However,
any opinions, conclusions or recommendations herein are solely
those of the authors and do not necessarily reflect views of the De-
partment of Homeland Security or Federal Air Marshal Service.

10. REFERENCES
[1] R. Avenhaus, B. von Stengel, and S. Zamir. Inspection

games. In R. J. Aumann and S. Hart, editors, Handbook of
Game Theory, volume 3, chapter 51, pages 1947–1987.
North-Holland, Amsterdam, 2002.

[2] T. Basar and G. J. Olsder. Dynamic Noncooperative Game
Theory. Academic Press, San Diego, CA, 2nd edition, 1995.

[3] M. Breton, A. Alg, and A. Haurie. Sequential Stackelberg
equilibria in two-person games. Optimization Theory and
Applications, 59(1):71–97, 1988.

[4] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In ACM EC-06, pages 82–90, 2006.

[5] N. Gatti. Game theoretical insights in strategic patrolling:
Model and algorithm in normal-form. In ECAI-08, pages
403–407, 2008.

[6] A. Jiang and K. Leyton-Brown. A polynomial-time
algorithm for action-graph games. In Artificial Intelligence,
pages 679–684, 2006.

[7] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. Games and Economic
Behavior, 45(1):181–221, 2003.

[8] G. Leitmann. On generalized Stackelberg strategies.
Optimization Theory and Applications, 26(4):637–643, 1978.

[9] R. D. Luce and H. Raiffa. Games and Decisions. John Wiley
and Sons, New York, 1957. Dover republication 1989.

[10] M. J. Osbourne and A. Rubinstein. A Course in Game
Theory. MIT Press, 1994.

[11] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordonez,
and S. Kraus. Playing games with security: An efficient
exact algorithm for Bayesian Stackelberg games. In
AAMAS-08, pages 895–902, 2008.

[12] J. Pita, M. Jain, C. Western, C. Portway, M. Tambe,
F. Ordonez, S. Kraus, and P. Parachuri. Depoloyed ARMOR
protection: The application of a game-theoretic model for
security at the Los Angeles International Airport. In
AAMAS-08 (Industry Track), 2008.

[13] T. Roughgarden. Stackelberg scheduling strategies. SIAM
Journal on Computing, 33(2):332–350, 2004.

[14] T. Sandler and D. G. A. M. Terrorism and game theory.
Simulation and Gaming, 34(3):319–337, 2003.

[15] V. Srivastava, J. Neel, A. B. MacKenzie, R. Menon, L. A.
Dasilva, J. E. Hicks, J. H. Reed, and R. P. Gilles. Using game
theory to analyze wireless ad hoc networks. IEEE
Communications Surveys and Tutuorials, 7(4), 2005.

[16] H. von Stackelberg. Marktform und Gleichgewicht. Springer,
Vienna, 1934.

[17] B. von Stengel and S. Zamir. Leadership with commitment to
mixed strategies. Technical Report LSE-CDAM-2004-01,
CDAM Research Report, 2004.

[18] K. wei Lye and J. M. Wing. Game strategies in network
security. International Journal of Information Security,
4(1–2):71–86, 2005.


