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Abstract

This article develops a robust mixed model that assumes a multivariate skew-t distribution

for random effects and an independent multivariate t-distribution for errors. It simultaneously

captures skewness and heavy tailedness in data, while allowing the random effects and error

distributions to have different degrees of freedom. It is fit using an EM-type algorithm.

Simulations show that its efficiency for estimating mean response is comparable to that of

the recent skew-t mixed model. But it may be considerably more efficient than the latter for

estimating variance-covariance parameters when at least one of the random effects distribution

or the error distribution has heavy tails, possibly due to outliers. The proposed model is used

to analyze a data set consisting of lengths of claws of fiddler crabs (Uca mjoebergi).

Keywords: EM algorithm, heavy tailed distribution, method comparison, outlier, robust mixed-

effects model, skew-t distribution.

1 Introduction

Linear mixed models are routinely used for analyzing a variety of dependent data, including longi-

tudinal data, repeated measurements data and method comparison data. The popularity of these

1Corresponding author. Email: pankaj@utdallas.edu, Tel: +1-972-883-4436, Fax: +1-972-883-6622.
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models is primarily due to the fact that they offer considerable flexibility in modeling of within-

subject dependence in the data while remaining mathematically tractable and computationally

efficient (see, e.g., Pinheiro and Bates, 2000; Jiang, 2007). Besides all major statistical software

such as R (R Development Core Team, 2012), SAS (SAS Institute Inc.) and SPSS (IBM Corp.)

provide the capability to fit such models, facilitating their usage.

A linear mixed model is generally formulated as

Yi = Xiβ + Zibi + ei, i = 1, . . . ,m, (1)

where i is the subject index; Yi is the ni-vector of observed responses on the ith subject; β is

the p-vector of fixed effects with Xi as the corresponding ni × p design matrix; bi is the q-vector

of random effects with Zi as the corresponding ni × q design matrix; and ei is the ni-vector of

within-subject random errors. The matrices Xi and Zi have full column ranks. All the vectors

here and elsewhere in this article are column vectors unless specified otherwise.

The standard version of this model assumes that

bi ∼ independent Nq(0,Ψ), ei ∼ independent Nni
(0,Σi), i = 1, . . . ,m, (2)

and the two are mutually independent. Here the q × q matrix Ψ and ni × ni matrix Σi are

non-singular covariance matrices. The matrix Ψ may be unstructured or structured, but Σi is

generally parameterized in terms of a small number of parameters that do not change with i. We

refer to model (1) together with the normality assumption (2) as the normal mixed model (NMM).

Its parameters are generally estimated using a maximum likelihood (ML) method and the large

sample theory is used for testing hypotheses and constructing confidence intervals. See Pinheiro

and Bates (2000) and Jiang (2007, 2013) for accounts of theory, applications and computations

involving these models.

The assumption of normality in (2) is frequently violated in practice. In particular, there may

be skewness or heavy tailedness (meaning: tails heavier than those of a normal distribution) in

the distribution of either the random effects or the errors, causing skewness or heavy tailedness

in the observed data. The tails are often heavy due to outliers which may occur either in the

random effects (b-outliers) or in the errors (e-outliers; Pinheiro, Liu and Wu, 2001). Although
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the likelihood-based estimates of fixed effects may be robust to non-normality of random effects

(Butler and Louis, 1992), the same is not true for estimates of random effects, which may behave

badly if the normality does not hold (Zhang and Davidian, 2001). Moreover, if outliers are present

in the data even in moderate amounts, the ML estimates of all parameters suffer from loss of

efficiency (Pinheiro et al., 2001). This loss is especially severe for estimates of variance-covariance

parameters, which are needed to compute standard errors of the fixed effects estimates. These

parameters may also be of interest in their own right, e.g., as in method comparison studies

(Choudhary and Yin, 2010) — an application of interest in this article. If the normality assumption

is violated, it may be possible make it tenable by transforming the data. But a transformation is

not always successful. Besides the transformed data may be difficult to interpret. This is especially

a concern in method comparison studies where a transformation other than the log is generally

not recommended (Bland and Altman, 1999).

In any case, a viable alternative to NMM is a robust mixed model whose development has

received considerable attention in recent years. Four approaches for robust modeling have become

especially popular. The first is a semiparametric approach where only the first two moments of

the response vector are modeled using generalized estimating equations (Liang and Zeger, 1986).

The second approach bounds the influence of outlying observations on parameter estimates by

obtaining them as solutions of appropriately defined estimating equations (Richardson, 1997; Stahel

and Welsh, 1997). The third is a fully parametric approach that replaces the assumption of

normality for random effects and/or errors with a more general distribution that has normality

as a special case — e.g., a mixture of normals, a t, a skew-normal (Azzalini, 1985) or a skew-t

distribution (Azzalini and Capitanio, 2003). This approach is in the spirit of Box (1980) and

Lange, Little and Taylor (1989) as it embeds the normal model in a larger model with additional

parameters for accommodating non-normality. The fourth approach uses only weak distributional

assumptions about random effects (Jiang, 1999; Wang, Tsai and Qu, 2012). The reader interested

in a comparison of some of these approaches is referred to Heritier et al. (2009, ch. 4).

This article focuses on the third approach, i.e., robust mixed models of the form (1) that are

flexible enough to incorporate skewness and heavy tailedness in the data. It has been considered
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by several authors. Specifically, Verbeke and Lesaffre (1996) assume a finite mixture of normals

as the distribution of random effects. Zhang and Davidian (2001) approximate the random effects

density by a seminonparametric representation. Pinheiro et al. (2001) assume a joint multivariate

t-distribution for random effects and errors. This model is called the t mixed model (TMM).

Arellano-Valle, Bolfarine and Lachos (2005) assume independent skew-normal distributions for

random effects and errors. Lachos, Ghosh and Arellano-Valle (2010) assume a joint multivariate

skew-normal/independent distribution (Branco and Dey, 2001) for random effects and errors, with

skewness only in random effects. Ho and Lin (2010) study a special case of this model called

the skew-t mixed model (STMM), wherein a joint multivariate skew-t distribution is assumed for

random effects and errors, and skewness is incorporated only in random effects. These models are

generally fit using variants of the expectation-maximization (EM) algorithm (Dempster, Laird and

Rubin, 1977; McLachlan and Krishnan, 2007). An alternative algorithm is given by Song, Zhang

and Qu (2007). See also Verdinelli and Wasserman (1991) and Rosa, Gianola and Padovani (2004)

for Bayesian approaches to outlier problems and robust mixed models.

Among the aforementioned robust mixed models, the STMM is an especially attractive choice

as it simultaneously captures the effects of skewness and heavy tailedness in data, while remaining

computationally efficient. Moreover, the NMM and TMM are its special cases. However, despite

the flexibility offered by the STMM, its applicability is limited by the drawback that the degrees

of freedom of the assumed t-distributions for random effects and errors must be the same. Thus,

this model cannot accommodate different levels of heaviness in the tails of random effects and

error distributions. This phenomenon arises, e.g., when only the errors have heavy tails but not

the random effects. It is observed in the crab claws data introduced later in this section, which

motivated this work. In this article, we propose a mixed model that assumes a multivariate skew-

t distribution for random effects and an independent multivariate t-distribution for errors. The

independence of these two distributions allows their degrees of freedom to be different, thereby

overcoming the foregoing limitation of STMM and broadening the scope of mixed models.

This article is organized as follows. Section 2 presents the proposed model and describes an

EM-type algorithm for fitting it. Section 3 summarizes a simulation study to compare estimators
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based on GSTMM and STMM. Section 4 illustrates an application by analyzing the crab data.

Section 5 concludes with a discussion. The appendices contain technical details. We use the

software R (R Development Core Team, 2012) for all statistical computations in this article.

The motivating example: Crab claws data

The claws of fiddler crabs are lost in fighting and their length is an important component of

their size and strength (Lailvaux, Reaney and Backwell, 2009). As part of a study comparing

the biochemistry and physical characteristics of original and regenerated claws, the laboratory of

the last author measured the lengths (in millimeters) of 25 fiddler crab claws. Every claw was

measured three times by each of three observers using two Mitutoyo vernier calipers (an older Dial

set and a digital Digimatic set). Thus, each observer takes six measurements on every claw — 3

from caliper 1 and 3 from caliper 2. The measurements are taken in a random order. There is a

total of 25× 3× 6 = 450 observations in the data.

Although the main goal of this method comparison study was to compare the extent of agree-

ment between the two calipers for each observer (Sengupta, 2012), here we restrict our attention to

examining separately for each observer whether the means and error variances of the two calipers

are same. Figure 1 displays a trellis plot of the data. The measurements from the two calipers

largely overlap, indicating similar means and variances between them for all observers. We return

this issue in Section 4 after finding an adequate model for these data.

Following a preliminary data analysis, we adopt a mixed model of the form

Yijkl = βjl + bij + eijkl, i = 1, . . . , 25, j = 1, 2, k = 1, 2, 3, l = 1, 2, 3, (3)

where Yijkl is the kth repeated measurement of the length of the ith claw, taken by the lth observer

using the jth caliper; βjl is the fixed intercept associated with the combination of jth caliper and

lth observer; bij is the random effect of ith specimen on jth caliper; and eijkl is the random error

term. This model can be written in the form (1) by taking

Yi = (Yi111, Yi121, Yi131, Yi112, Yi122, Yi132, . . . , Yi213, Yi223, Yi233)
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as the vector of ni = 18 observations on the ith claw, β as the vector of p = 6 elements

(β11, β12, . . . , β23), bi as the vector of q = 2 elements (bi1, bi2), and defining Xi, Zi and ei in a

conformable manner. This model is initially fit assuming the usual normality (2) with Ψ as an

unstructured matrix and Σ as a diagonal matrix,

Σ = diag
{
σ2

11, σ
2
11, σ

2
11, σ

2
12, σ

2
12, σ

2
12, . . . , σ

2
23, σ

2
23, σ

2
23

}
. (4)

The last assumption is equivalent to assuming that eijkl ∼ independent N (0, σ2
jl). The Σ matrix

does not depend on i due to balanced design of the data. This model allows each observer ×

caliper combination to have its own population mean and variance, which is typical for a method

comparison study (Choudhary and Yin, 2010).

This NMM is fit by the ML method using the nlme package (Pinheiro et al., 2012) in R. The

parameter estimates are given in Table 5. Figure 2 shows the resulting normal quantile-quantile

(QQ) plots of the predicted bi1 and bi2 values and the standardized residuals. Also shown is a

histogram of the residuals. These graphs suggest that the normality assumption is reasonable for

the random effects, whereas a heavy tailed distribution is needed for the errors. There are also four

outliers in the data and the tails of the error distribution appear heavier than normal even upon

ignoring them. These features of the crab data justify the need for a robust mixed model that

allows the random effects and error distributions to differ in heaviness of tails. We model these

data in Section 4 using a special case of the proposed model that assumes normality for random

effects and a t-distribution for errors.

2 The general skew-t mixed model

2.1 Preliminaries

Let f(y|θ) denote the probability density function of a random quantity Y with parameter θ.

Also, let G(α, β) denote a gamma distribution with parameters α, β > 0, and density

f(y|α, β) =
βα

g(α)
yα−1 exp(−βy), y > 0,
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where g(·) is the gamma function. We use T N (µ, σ2; (a, b)) to denote a N1(µ, σ
2) distribution

truncated to lie in the interval (a, b). Next, let SN q(µ,Σ,λ), tq(µ,Σ, ν) and Stq(µ,Σ,λ, ν)

respectively denote q-dimensional skew-normal, t and skew-t distributions. Here µ ∈ Rq is a

location vector; Σ is a q×q positive definite scale matrix; λ ∈ Rq is a vector of skewness parameters;

and ν (> 0) is degrees of freedom. To define these distributions, let φq(· | µ,Σ) denote the density

of a Nq(µ,Σ) distribution; Φ(·) denote the distribution function of a univariate standard normal

distribution; and τ(· | ν) denote the distribution function of a univariate t-distribution with ν

degrees of freedom. Also, let Σ1/2 denote a symmetric square root of a symmetric, positive-definite

matrix Σ so that Σ1/2Σ1/2 = Σ; and let Σ−1/2 denote the inverse of Σ1/2.

We say Y ∼ SN q(µ,Σ,λ) if its density function is

f(y|µ,Σ,λ) = 2φq(y|µ,Σ)Φ(λ′y∗), y ∈ Rq,

where y∗ = Σ−1/2(y − µ). Next, Y ∼ tq(µ,Σ, ν) if its density function is

f(y|µ,Σ, ν) = (νπ)−q/2
g((ν + q)/2)

g(ν/2)
|det(Σ)|−1/2 (1 + y∗′y∗/ν)

−(ν+q)/2
, y ∈ Rq.

Furthermore, Y ∼ Stq(µ,Σ,λ, ν) if its density function is

f(y|µ,Σ,λ, ν) = 2 ft(y|µ,Σ, ν) τ
(
λ′y∗{(ν + q)/(ν + y∗′y∗)}1/2 | ν + q

)
, y ∈ Rq,

where ft(y|µ,Σ, ν) is the density of a tq(µ,Σ, ν) distribution. Stochastic representations of these

distributions are given in Appendix A. See Azzalini and Capitanio (2003) for additional properties.

Consider a random vector Y following the mixed model (1) along with the assumptions that

Y = Xβ + Zb + e, b ∼ Stq(0,Ψ,λ, νb), e ∼ tn(0,Σ, νe), (5)

where b and e are mutually independent. This Y serves as a building block in the development

of the proposed skew-t mixed model. Reparameterize (Ψ,λ) as (Γ,γ), where

δ = λ/(1 + λ′λ)1/2, γ = Ψ1/2δ, Γ = Ψ1/2(Iq − δδ′)Ψ1/2 = Ψ− γγ ′, (6)

with Iq denoting a q × q identity matrix.

Proposition 1. Consider Y as defined in (5).
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(a) A hierarchical representation for Y is as follows:

Y |b,We ∼ Nn(Xβ + Zb,Σ/We), b |T,Wb ∼ Nq(γ T,Γ/Wb),

T |Wb ∼ T N (0, 1/Wb; (0,∞)), Wb ∼ G(νb/2, νb/2), We ∼ G(νe/2, νe/2). (7)

This representation may also be written by transforming (Wb,We) to (U = Wb, V = Wb/We).

(b) The mean vector and variance matrix of Y are as follows:

E[Y] = Xβ +

√
νb
π

g((νb − 1)/2)

g(νb/2)
Zγ, νb, νe > 1,

var[Y] =
νb

νb − 2
ZΨZ′ +

νe
νe − 2

Σ− νb
π

(
g((νb − 1)/2)

g(νb/2)

)2

Zγγ ′Z′, νb, νe > 2. (8)

Additional properties of Y, including its marginal density, are summarized in Proposition 2 in

Appendix A. This density, given by (A.7), is not available in a closed-form. It must be computed

via a one-dimensional numerical integration.

2.2 The proposed mixed model

The proposed model for the data (Yi,Xi,Zi), i = 1, . . . ,m, is model (1) but instead of the

normality assumption (2), it assumes

bi ∼ independent Stq(0,Ψ,λ, νb), ei ∼ independent tni
(0,Σi, νe), (9)

and bi and ei are mutually independent. We call it a general skew-t mixed model (GSTMM).

Clearly, it allows νb and νe to differ. The response vectors Y1, . . . ,Ym are independent copies of

Y defined in the previous section. Therefore, we can get a hierarchical representation for Yi, and

E[Yi] and var[Yi] simply by adding a subscript i to the random quantities in (7) and (8). Further,

using (A.7) the observed data log-likelihood function is

logL(θ) = log{f(y1, . . . ,ym|θ)} =
m∑
i=1

log{f(yi|θ)} =
m∑
i=1

log

(∫ ∞
0

f(yi, vi|θ) dvi

)
, (10)

with f(yi, v|θ) as in (A.6) and θ as the vector of unknown model parameters.
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The proposed GSTMM reduces to the usual NMM when λ = 0 and νb, νe → ∞. To compare

it with STMM (Lachos et al., 2010; Ho and Lin, 2010) and its special case TMM (Pinheiro et

al., 2001), let us first define the STMM. This model is also of the form (1) but it assumesbi

ei

 ∼ independent Stq+ni


0

0

 ,
Ψ 0

0 Σi

 ,
λ

0

 , ν
 . (11)

It reduces to TMM when λ = 0, meaning there is no skewness. Notice that STMM jointly models

(bi, ei) as a multivariate skew-t with ν degrees of freedom. Marginally, bi ∼ Stq(0,Ψ,λ, ν),

ei ∼ tni
(0,Σi, ν) and cov[bi, ei] = 0; but bi and ei are not mutually independent unless ν → ∞.

In contrast, bi and ei appear independently in GSTMM (see (9)), allowing them to have different

degrees of freedom. To gain further insight into the difference between the two models, consider

the hierarchical representation of STMM (Ho and Lin, 2010) similar to (7) for GSTMM:

Y |b,W ∼ Nn(Xβ + Zb,Σ/W ), b |T,W ∼ Nq(γ T,Γ/W ),

T |W ∼ T N (0, 1/W ; (0,∞)), W ∼ G(ν/2, ν/2). (12)

A comparison of (7) and (12) shows that to model the t-distributions of b|T and e as scale mixtures

of normals, STMM uses a common gamma variable W , whereas GSTMM uses two independent

gamma variables, Wb and We. Clearly, STMM is a special case of GSTMM when Wb and We are

identical, justifying calling the new model a “generalization.” By identical we mean Wb and We are

equal with probability one; merely having the same distribution (i.e., νb = νe = ν) is not enough.

Nevertheless, in this case the two models have the same E[Y] and var[Y], provided they exist.

In general, GSTMM and STMM are not expected to produce similar results when νb = νe = ν.

But they do tend to be similar when all νb, νe and ν are large, without necessarily being equal. In

this case, the two models are similar to the skew-normal mixed model (Arellano-Valle et al., 2005)

with skewness only in random effects. It may be noted that STMM is not nested within GSTMM

because it is not obtained by imposing a constraint in the parameter space of GSTMM. As a result,

a likelihood ratio test cannot be used to distinguish between them. One has to rely on a model

selection criterion, e.g., the Akaike Information Criterion (AIC) for this purpose.

Besides NMM, other special cases of GSTMM can be obtained by making certain a priori

assumptions about the parameters in (9). For example, assuming λ = 0 gives bi ∼ tq(0,Ψ, νb),
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whereas assuming νb → ∞ gives bi ∼ SN q(0,Ψ,λ). These two assumptions together give bi ∼

Nq(0,Ψ). Further, assuming νe →∞ gives ei ∼ Nni
(0,Σi).

2.3 An ECM algorithm for ML estimation

In principle, the log-likelihood function in (10) can be maximized directly to get the ML estimator

θ̂. But it is generally not practical due to the dimension of θ̂. So we consider an EM-type algorithm

— the ECM algorithm (Meng and Rubin, 1993) — wherein the M-step of EM is replaced by a

sequence of computationally simpler constrained maximization (CM) steps. Each iteration of ECM

increases the likelihood function and the algorithm typically converges to a local or global maxima.

To develop the ECM algorithm, we take Ymiss,i = (bi, Ti, Ui, Vi) as the missing data and

(Yi,Ymiss,i) as the complete data on the ith subject. The quantities (b, T, U, V ) are from (7)

with (Wb,We) transformed to (U = Wb, V = Wb/We). It is convenient to partition θ into three

blocks: (β,θΣ), (γ,θΓ) and (νb, νe). Here θΣ is a vector of parameters, not depending on the sub-

ject i, that parameterizes Σ1, . . . ,Σm. Similarly, θΓ is a vector of parameters that parameterizes

Γ. If Ψ (and hence Γ) is unstructured, θΓ represents the distinct elements of Γ.

Ignoring the terms that are free of θ, the expected complete-data log-likelihood in the rth ECM

iteration, i.e., E
[
log
{
f(Y1,Ymiss,1, . . . ,Ym,Ymiss,m|θ)

}
|Y1, . . . ,Ym,θ

(r)
]
, can be written as

Q(θ|θ(r)) =
m∑
i=1

{
Qi1

(
β,θΣ|θ(r)

)
+Qi2

(
γ,θΓ|θ(r)

)
+Qi3

(
νb, νe|θ(r)

)}
, (13)

where upon using Er to denote the expectation over the conditional distribution of Ymiss,i|Yi

evaluated at θ(r), we have

Qi1(β,θΣ|θ(r)) = −(1/2) log(det Σi)− (1/2)(Yi −Xiβ)′Σ−1
i (Yi −Xiβ)Er[Ui/Vi]

+ (Yi −Xiβ)′Σ−1
i ZiEr[biUi/Vi]− (1/2) trace

(
Z′i Σ

−1
i ZiEr[bib

′
iUi/Vi]

)
,

Qi2(γ,θΓ|θ(r)) = −(1/2) log(det Γ)− (1/2) trace
(
Γ−1

{
Er[bib

′
iUi]− Er[biTiUi]γ ′

− γ(Er[biTiUi])
′ + Er[T

2
i Ui]γγ ′

})
,

Qi3(νb, νe|θ(r)) = (νe/2)Er[log(Ui/Vi)− (Ui/Vi)] + (νb/2)Er[logUi − Ui] + (νb/2) log(νb/2)

− log(g(νb/2)) + (νe/2) log(νe/2)− log(g(νe/2)).
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The E and CM steps in the rth iteration of the proposed ECM algorithm are as follows:

E-step: Compute the conditional expectations in (13) as described in Appendix B.

CM-step 1: Fix θΣ = θ
(r)
Σ and update β by maximizing

∑m
i=1Qi1

(
β,θ

(r)
Σ |θ

(r)
)

over β, yielding

β(r+1) =

(
m∑
i=1

X′i
(
Σ

(r)
i

)−1
XiEr[Ui/Vi]

)−1 m∑
i=1

X′i
(
Σ

(r)
i

)−1(
YiEr[Ui/Vi]− ZiEr[biUi/Vi]

)
.

CM-step 2: Fix β = β(r+1) and update θΣ by numerically maximizing
∑m

i=1Qi1

(
β(r+1),θΣ|θ(r)

)
over θΣ to get θ

(r+1)
Σ .

CM-step 3: Fix θΓ = θ
(r)
Γ and update γ by maximizing

∑m
i=1Qi2

(
γ,θ

(r)
Γ |θ

(r)
)

over γ, yielding

γ(r+1) =
m∑
i=1

Er[biTiUi]/
m∑
i=1

Er[T
2
i Ui].

CM-step 4: Fix γ = γ(r+1) and update θΓ by maximizing
∑m

i=1Qi2

(
γ(r+1),θΓ|θ(r)

)
over θΓ to

get θ
(r+1)
Γ . If Γ is unstructured then θ

(r+1)
Γ consists of distinct elements of

Γ(r+1) =
1

m

m∑
i=1

(
Er[bib

′
iUi]− Er[biTiUi]

(
γ(r+1)

)′ − γ(r+1)
(
Er[biTiUi]

)′
+ Er[T

2
i Ui]γ

(r+1)
(
γ(r+1)

)′)
,

otherwise the maximization is done numerically.

CM-step 5: Update (νb, νe) by numerically maximizing
∑m

i=1Qi3

(
νb, νe|θ(r)

)
over (νb, νe) to get(

ν
(r+1)
b , ν

(r+1)
e

)
.

The aforementioned expressions for β(r+1), γ(r+1) and Γ(r+1) are verified in Appendix C. This

ECM algorithm can be suitably modified to fit some special cases of GSTMM (see Appendix D).

When a numerical maximization is needed, it is a good idea to transform the parameters to make

the parameter space unconstrained (Pinheiro and Bates, 2000, ch. 2). Moreover, as is true for

any EM-type algorithm, one needs to run the ECM algorithm with several starting points to have

some assurance that the algorithm converges to a global maxima, θ̂.

Next, let I = −∂2 logL(θ)/∂θ2|θ=θ̂ denote the observed information matrix for θ. It is ob-

tained by numerically differentiating logL(θ) given by (10). From the large sample theory of ML

estimators (Lehmann, 1998, ch. 7), θ̂ is approximately normal with mean θ and covariance matrix

I−1 when the number of subjects m is large. This result can be used to compute standard errors

for ML estimators, test hypotheses and construct confidence intervals.
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Let the ni-vector Ŷi = Xiβ̂ + Zib̂i denote the fitted response for the ith subject, i = 1, . . . ,m.

Here b̂ = Ê[b|Y] estimates the best predictor of b, namely E[b|Y], which minimizes the mean

squared prediction error in the class of all predictors of b based on Y. It is computed by substi-

tuting θ = θ̂ in E[b|Y] given by Proposition 5 in Appendix E. Next, let êi = Yi − Ŷi denote the

ni-vector of residuals for the ith subject. These residuals can be used for model checking.

3 A Monte Carlo simulation study

In this section, we use simulation to compare ML estimators based on GSTMM and STMM. We

do not include NMM and TMM in the comparison as they are special cases of the models being

compared and have already been compared in Pinheiro et al. (2001) and Ho and Lin (2010).

Pinheiro et al. conclude that the TMM-based estimators are more efficient than those based on

NMM when outliers are present in the data, even in moderate amounts. Moreover, the gains in

efficiency are bigger for variance-covariance parameters than fixed effects. Ho and Lin conclude

that ML estimators based on TMM and STMM are more precise than those based on NMM.

We saw in Section 2 that E[Y], the mean response of a subject, under STMM or GSTMM does

not equal the usual Xβ unless the skewness parameter λ = 0. For these models, the practitioner

may be more interested in inference on E[Y] rather than β and λ separately. Therefore, we

compare estimators of E[Y] instead of β and λ. We also compare estimators of the scale matrices

Ψ and Σ. We take m = 100 subjects and focus on a simplified version of model (3) considered for

the crab data, with no observer effect and only two repeated measurements. This model is

Yijk = βj + bij + eijk, i = 1, . . . , 100, j = 1, 2, k = 1, 2. (14)

It can be expressed in the familiar form (1) by taking Yi = (Yi11, Yi12, Yi21, Yi22), β = (β1, β2),

bi = (bi1, bi2) and appropriately defining Xi, Zi and ei. In this case, Ψ has (ψ2
1, ψ

2
2) as diagonal

elements and ψ12 as the off-diagonal element. Moreover, Σ = diag{σ2
1, σ

2
1, σ

2
2, σ

2
2}.

We consider two scenarios for simulating bi and ei. In the first scenario, we follow Pinheiro

et al. (2001) and simulate them from mixtures of normals that represent contaminated normal
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distributions. Specifically,

bi ∼ independent (1− pb)N2(0,Ψ) + pbcN2(0,Ψ),

ei ∼ independent (1− pe)N4(0,Σ) + pecN4(0,Ψ), i = 1, . . . , 100, (15)

where pb and pe denote the respective expected proportions of b- and e-outliers in the data and

c denotes the contamination factor. There are no b-outliers when pb = 0 and no e-outliers when

pe = 0. We take pb, pe = 0, 0.05, 0.10, 0.25, and c = 2, 4, resulting in a total of 32 outlier patterns.

Pinheiro et al. call the contamination pattern “close” when c = 2, and “distant” when c = 4.

Thus, the simulation model in the first scenario is given by (14) and (15). The following values,

motivated by the ML estimates from the crab data, are assigned to the parameters of this model:

(β1, β2) = (32, 35), (σ2
1, σ

2
2) = (1, 1.252), (ψ2

1, ψ
2
2, ψ12) = (36, 49, 40.74), (λ1, λ2) = (0, 0). (16)

As in Pinheiro et al., the values in (16) are taken as the target values for the parameters. It follows

that the target value for E[Y1], the common mean response of the subjects, is (32, 32, 35, 35).

We simulate 500 datasets from the foregoing simulation model for each combination of (pb, pe, c).

Both GSTMM and STMM are fit to each dataset and the ML estimates of E[Y1], Σ and Ψ are

computed. The ECM algorithm of Section 2 is employed for fitting GSTMM and it is suitably

modified for fitting STMM. The resulting estimates are used to estimate biases and mean squared

errors of the estimators. The efficiencies of GSTMM-based estimators relative to STMM are

computed by dividing the mean squared errors under STMM by those under GSTMM. The biases

and relative efficiencies for c = 4 are presented in Tables 1 and 2, respectively. We do not present

results for c = 2 as the conclusions remain qualitatively similar to the c = 4 case.

The results in Table 1 suggest that the estimators of E[Y1] have comparable biases under both

models. The biases in estimation of (σ2
1, σ

2
2) can also be considered comparable unless pe = 0.25

in which case STMM estimators have more bias than their GSTMM counterparts. The estimators

of Ψ also generally have more bias under STMM than GSTMM, especially so when pb is large.

We next consider the relative efficiencies presented in Table 2. For ease in interpretation of

these results, we take the view that a gain or loss of up to 20% is too modest to be important

for a practitioner, especially if the change is not in the same direction for all parameters. We see
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that the two models are equally efficient when there are no outliers. When outliers are present,

most efficiencies are one or more, a few are 0.9 and 0.8, but none is less than 0.8. This suggests

that although GSTMM may lose some efficiency over STMM, the loss is never significant from a

practical viewpoint. In contrast, GSTMM may offer substantial gains in efficiency over STMM,

especially for Σ and Ψ, depending upon the proportion of outliers. Specifically, the GSTMM’s

gain for E[Y1] is notable when pe = 0.25 and pb < pe, with maximum gain of 40%. The gain for Σ

ranges between 40% to 500% when pe = 0, 0.10, 0.25, with largest gains in case of pe = 0.25, and

efficiencies practically one in case of pe = 0.05. The gain in efficiency for Ψ is quite substantial

(between 400% to 1300%) when pb = 0.25. On the whole, these findings suggest that there may

not be much practical difference between the two models for estimation of the mean response, but

GSTMM may be considerably more efficient than STMM for estimating Ψ and Σ, especially when

there is a sizable proportion of either b- or e-outliers.

On a reviewer’s suggestion, we also compare the average estimated marginal densities of bi

under the two models. The predicted values of bi are computed using Proposition 5 in Appendix

E in case of GSTMM and using Ho and Lin (2010) in case of STMM. The two average densities

are virtually indistinguishable and both capture the corresponding true density quite well.

We would like to note that in case of close contamination pattern (c = 2), average ν̂b equals 30,

27, 25 and 19 respectively when pb = 0, 0.05, 0.10 and 0.25; whereas the average ν̂e equals 31, 25,

21 and 14 respectively when pe = 0, 0.05, 0.10 and 0.25. In case of distant contamination pattern

(c = 4), these averages are 30, 10, 4 and 2 for ν̂b, and 34, 7, 4 and 2 for ν̂e. Obviously, we expect

ν̂b and ν̂e to get calibrated by the proportion and the size of outliers — these results give an idea

of how this calibration works. Note, in particular, that the average fitted t-distribution in case of

25% distant outliers does not have a finite variance.

In the second scenario, we simulate bi and ei directly from t-distributions:

bi ∼ independent t2(0,Ψ, νb), ei ∼ independent t4(0,Σ, νe), i = 1, . . . , 100. (17)

The focus is on 16 combinations obtained by taking νb, νe = 4, 10, 30,∞, with values for other

parameters given by (16). A t-distribution with small degrees of freedom has heavy tails and it

converges to a normal distribution as its degrees of freedom approaches ∞. The simulation model
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in the second scenario is given by (14) and (17). We proceed exactly as in the first scenario to

estimate biases and efficiencies ML estimators based on GSTMM and STMM. These results are

presented in Tables 3 and 4.

The results in Table 3 show that estimators of E[Y1] have comparable biases under both models.

However, the estimators of (σ2
1, σ

2
2) and Ψ tend to have more bias under STMM than GSTMM

unless both νb and νe are large. This finding is consistent with what we saw in the first scenario.

As for efficiency, we see that no entry in Table 4 is less than one, implying that the GSTMM-

based estimators are at least as efficient as those based on STMM. However, like the first scenario,

the gain in efficiency for GSTMM depends not only on the parameter being estimated but also

on the extent of heavy tailedness. In particular, the relative efficiencies for E[Y1] are practically

one in all cases. The efficiencies for other parameters are also one when both νb and νe are large.

On the other hand, in case of νe = 4, the efficiency for Σ range between 4.8 to 8.5, with values

increasing as νb increases. Similarly, when νe = 4, the efficiency for Ψ range between 4.3 to

10.2, with values increasing as νe increases. Overall, these results show that there is no practical

difference in the two models for estimation of E[Y1]. However, if either νb or νe is small, GSTMM

may be substantially more efficient than STMM for estimation of Ψ and Σ. The gain in efficiency

is largest when one degree of freedom parameter is small and the other is large.

Taken together, the findings for scenarios 1 and 2 can be summarized as follows: There is not

much practical difference in the two models when both random effects and error distributions are

either normal or nearly so or when the estimand is mean response. However, when at least one of

the distributions has heavy tails, possibly due to a sizable proportion of either b- or e- outliers, the

GSTMM estimators of scale matrices Ψ and Σ may be substantially more efficient and less biased

than the STMM estimators. These conclusions remain unchanged when the simulation study is

repeated with non-zero skewness in random effects, three repeated measurements per subject and

other combinations for location and scale parameters (results not shown).
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4 Analysis of crab claws data

We now return to the crab data introduced in Section 1 where we found that normality was

reasonable for random effects but a heavy tailed distribution was needed for errors. So we

model these data using a special case of GSTMM that assumes (λ, νb) = (0,∞), i.e., bi ∼

independent N2(0,Ψ) and ei ∼ independent t18(0,Σ, νe). Here Ψ is unstructured with (ψ2
1, ψ

2
2)

as diagonal elements and ψ12 as the off-diagonal element, and Σ is as defined in (4). This model

has a total of 16 parameters. Table 5 summarizes the ML estimates and their standard errors

when this model is fit as described in Appendix D. The numerical derivatives and quadratures

needed for this computation are obtained using numDeriv package (Gilbert, 2011) and statmod

(Smyth et al., 2011) packages in R. For the fitted model, logL(θ̂) = 284.95 and AIC = −537.90.

The assumed GSTMM is preferred by AIC over four other competing models — full GSTMM

(without any constraint on λ and νb; 19 parameters, AIC = −532.18), STMM (18 parameters, AIC

= −524.48), TMM (16 parameters, AIC = −528.39), NMM (15 parameters, AIC = −429.62). The

fitting of the various models takes the following amounts of time (in seconds) on a Linux machine

with a 2.8 GHz processor and 1.5 GB memory: 2 sec (NMM), 39 sec (TMM), 49 sec (STMM), 116

sec (assumed GSTMM) and 196 sec (full GSTMM).

Figure 3 presents a QQ plot of standardized residuals (êijkl/σ̂jl), computed as described in

Section 2. The plot is generated using the car package (Fox and Weisberg, 2011) in R by taking

t-distribution with degrees of freedom ν̂e = exp(1.28) = 3.6 as the reference distribution. The

plot corroborates that, except for the four outlying points, the t-distribution assumption for the

errors is quite reasonable. The adequacy of the assumed model is confirmed by graphical checks

recommended by Pinheiro and Bates (2000). To assess the impact of the four outliers on the fitted

model, we refit the model twice — first by removing them from the data and next by replacing them

with their presumably correct values. We see that ν̂e increases to about 8 in both cases, but there

is little to no change in estimates of other parameters and their standard errors. This demonstrates

that the estimates of the fixed effects and variance-covariance parameters in a GSTMM are robust

to outliers but, nor surprisingly, the estimate of degrees of freedom gets calibrated by them.

The parameters β and Ψ have the same interpretation under the assumed GSTMM and NMM.
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Therefore, we can compare their estimates and standard errors reported in Table 5. In case of

β, the estimates are roughly the same but their standard errors are smaller under GSTMM than

NMM. In case of (log(ψ2
1), log(ψ2

2)), both estimates and standard errors are similar. In case of z(ρ),

the Fisher’s z-transformation of the random effects correlation ρ, both estimate and standard error

are smaller under NMM than GSTMM. Nevertheless, they lead to practically the same confidence

interval on the original scale of ρ. These results show that the assumed GSTMM not only fits

better than NMM, but it also produces estimates of β that are more precise than NMM. In case

of Σ, we see that the NMM-based log-scale estimates are a bit larger and have slightly smaller

standard errors compared to GSTMM. However, these estimates are not strictly comparable as Σ

does not have the same interpretation under the two models.

Our next task is to use the fitted GSTMM to separately examine for each observer whether

the means and error variances of the two calipers are the same. To this end, we first test the null

hypothesis β1l = β2l, l = 1, 2, 3, against its complement. The p-value for the asymptotic likelihood

ratio test of this hypothesis is less than 0.001. Next, we test the null hypothesis σ2
1l = σ2

2l, l = 1, 2, 3,

against its complement. The p-value for this test is also less than 0.001. Thus, there is at least

one observer for whom the means as well as variances of the two methods differ significantly.

Nevertheless, the estimates in Table 5 show that the differences, especially in the means, are minor

relative to the scale of measurement, and are not practically significant.

5 Discussion

The GSTMM proposed in this article offers more flexibility in modeling of data with outliers,

heavy tailedness and skewness than the STMM. Although the GSTMM does not gain substantial

efficiency over the STMM for estimating mean response, its efficiency gain for estimating scale

matrices of random effects and error distributions can be quite considerable. Accurate estimation

of these matrices is important as they determine standard errors of the estimated fixed effects

and mean response besides often being of independent interest. These advantages of GSTMM

come at the cost of additional complexity in fitting of the model. For either model, however, the
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computations need to be programmed using a software package such as R.

We saw both in simulation study and analysis of crab data that the estimates of the degrees of

freedom parameters in the GSTMM are sensitive to outliers. If a large number of extreme outliers

are present then the fitted t-distribution may not have finite mean or variance, which may pose

a problem in applications where inference on mean or variance of response is desired. In such a

case, alternative robust mixed modeling approaches that either constrain the influence of outlying

observations on the fitted model (Richardson, 1997) or produce estimators with high breakdown

points (Heritier et al., 2009) may be more attractive than the GSTMM.

We fit the GSTMM using an ECM algorithm wherein even the degrees of parameters are

updated in a CM step. However, the literature on fitting t-distributions generally suggests replacing

the CM step for updating the degrees of freedom by a step that maximizes the actual observed

data likelihood over this parameter while keeping all other parameters at their current values.

This results in the so-called ECME algorithm (Liu and Rubin, 1994), which tends to converge

faster than its ECM counterpart. Although ECME can be used in place of ECM for GSTMM as

well, the computation of the likelihood (10) needed for ECME is quite time consuming, potentially

outweighing its benefit. This is indeed the case in crab data where ECME takes a much longer

time to converge than ECM.

We invert the numerically computed observed information matrix to estimate the covariance

matrix of the ML estimators. Alternatives to this approach include the method of Louis (1982)

and others reviewed in McLachlan and Krishnan (2007, section 4.7). Further work is needed to

develop and compare these methods for covariance matrix estimation.
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Appendix A Properties of Y (Section 2.1)

Consider b and e as defined in (5), and Wb and We as defined in (7). Let b∗ ∼ SN q(0,Ψ,λ),

G∗1 ∼ Nn(0, In), G∗2 ∼ Nq(0, Iq) and T ∗ ∼ T N (0, 1; (0,∞)). Assume that G∗1, G∗2, T
∗, Wb and

We are mutually independent. Then, with δ given by (6), the following stochastic representations

hold for e, b∗ and b (Ho and Lin, 2010):

e
d
= Σ1/2G∗1/W

1/2
e , b∗

d
= Ψ1/2δT ∗ + Ψ1/2(Iq − δδ′)1/2G∗2, b

d
= b∗/W

1/2
b . (A.1)

Proof of Proposition 1. The result in (a) follows from (A.1) upon using (6). The result in (b)

follows from (a) upon applying the law of iterated expectations and using well-known results about

moments involving normal and gamma variates.

Next, we present two results from literature that will help us derive the marginal density of Y

in Proposition 2. Define for v > 0,

Πv = (ZΨZ′ + vΣ), λv =
Π−1/2
v ZΨ1/2λ(

1 + λ′Ψ−1/2(Ψ−1 + Z′Σ−1Z/v)−1Ψ−1/2λ
)1/2 ,

ξv = λ′vΠ
−1/2
v (y −Xβ), ηv = (y −Xβ)′Π−1

v (y −Xβ) + νb + νe/v,

(A.2)

and let hv(·) denote the density a G(n∗/2, ηv/2) distribution, where

n∗ = n+ νb + νe. (A.3)

Lemma 1 (Arellano-Valle et al., 2005). Suppose Y|b ∼ Nn(Xβ + Zb,Σ) and b ∼ SN q(0,Ψ,λ).

Then marginally, Y ∼ SN n(Xβ,Πv=1,λv=1), with Πv and λv as in (A.2).

Lemma 2 (Azzalini and Capitanio, 2003). Suppose W ∼ G(α, β). Then for any c ∈ R we have,

E
(
Φ(cW 1/2)

)
= τ
(
c (α/β)1/2 | 2α

)
.

Proposition 2. Consider Y as defined in (5) along with the quantities given by (A.2) and (A.3).

(a) A hierarchical representation for Y is as follows:

Y |U, V ∼ SN n(Xβ,ΠV /U,λV ), U ∼ G(νb/2, νb/2), U/V ∼ G(νe/2, νe/2). (A.4)
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(b) For y ∈ Rn, u, v > 0, the joint density of (Y, U, V ) is

f(y, u, v|θ) = 2π−n/2 ν
νb/2
b ννe/2

e

g(n∗/2)

g(νb/2)g(νe/2)

(det Πv)
−1/2

v1+νe/2 η
n∗/2
v

Φ
(
ξvu

1/2
)
hv(u). (A.5)

(c) For y ∈ Rn, v > 0, the joint density of (Y, V ) is

f(y, v|θ) = 2π−n/2 ν
νb/2
b ννe/2

e

g(n∗/2)

g(νb/2)g(νe/2)

(det Πv)
−1/2

v1+νe/2 η
n∗/2
v

τ
(
ξv(n

∗/ηv)
1/2 | n∗

)
. (A.6)

(d) For y ∈ Rn, the marginal density of Y can be computed as

f(y|θ) =

∫ ∞
0

f(y, v|θ) dv. (A.7)

Proof. For (a), we use (A.1) to represent Y as

Y|b,We ∼ Nn(Xβ + Zb,Σ/We), b|Wb ∼ SN q(0,Ψ/Wb,λ),

where Wb ∼ G(νb/2, νb/2) and We ∼ G(νe/2, νe/2). The result now holds from Lemma 1 upon

transforming (Wb,We) to (U = Wb, V = Wb/We). For (b), we use (a) to write the joint density of

(Y, U, V ) and simplify. For (c), we integrate out u from f(y, u, v|θ) given in (b) using Lemma 2.

For (d), we integrate out v from f(y, v|θ) given in (c).

Appendix B Expectations for E-step (Section 2.3)

In this section, we omit the subject index i as subscript for random variates to simplify the notation.

Our strategy is to first obtain the joint distribution of the missing data (b, T, U, V ) conditional on

the observed Y and then use it to get the desired expectations. Define for v > 0,

Ωv = ZΓZ′ + vΣ, Λv = (Γ−1 + Z′Σ−1Z/v)−1, ζ2
v = (1 + γ ′Z′Ω−1

v Zγ)−1. (A.8)

Using well-known results for patterned matrices (Seber and Lee, 2003, page 467), one can see that

Ωv and Λv are related as Λv = Γ− ΓZ′Ω−1
v ZΓ and ΛvZ

′Σ−1/v = ΓZ′Ω−1
v . Moreover, ξv defined

in (A.2) can also be written as ξv = ζvγ
′Z′Ω−1

v (y −Xβ). We also need the following result that

gives first two moments of a normal random variable truncated to be positive.
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Lemma 3 (Johnson et al, 1994, pages 156-163). Let T ∼ T N (η, ω2; (0,∞)). Then

E[T ] = η +
φ(η/ω)

Φ(η/ω)
ω, E[T 2] = η2 + ω2 +

φ(η/ω)

Φ(η/ω)
ηω.

Proposition 3. Consider Y and other quantities as in Proposition 2 together with (A.8).

(a) The conditional density of V |Y is f(v|y,θ) = f(y, v|θ)/f(y|θ), y ∈ Rn, v > 0.

(b) The conditional density of U |Y, V is f(u|y, v,θ) = f(y, u, v|θ)/f(y, v|θ), y ∈ Rn, u, v > 0.

(c) T |Y, U, V ∼ T N
(
ξV ζV , ζ

2
V /U ; (0,∞)

)
.

(d) b|Y, T, U, V ∼ Nq
(
ΓZ′Ω−1

V (Y −Xβ) + ΛV Γ−1γ T,ΛV /U
)
.

Proof. The results in (a) and (b) hold from the definition of a conditional density. For (c), we can

see from (7) that Y|T, U, V ∼ Nn(Xβ + Zγ T,ΩV /U), T |U, V ∼ T N (0, 1/U ; (0,∞)). Moreover

as a function of t, f(t|y, u, v,θ) ∝ f(y|t, u, v,θ)f(t|u, v,θ). Now an application of Arellano-Valle

et al. (2005, Lemma 3) shows that the product on the right is further proportional to the density

of a T N (ξvζv, ζ
2
v/u; (0,∞)

)
distribution evaluated at t. This establishes the result.

For (d), we proceed in a similar manner to write f(b|y, t, u, v,θ) ∝ f(y|b, u, v,θ)f(b|t, u,θ)

as a function of b. Next an application of Arellano-Valle et al. (2005, Lemma 2) shows that the

product on the right is proportional to the density of a Nq(γt+ΛvZ
′Σ−1(y−Xβ−Zγt)/v,Λv/u)

distribution evaluated at b. The result follows from further simplifying the mean using (A.8).

Proposition 4. Consider Y and other quantities as in Proposition 3. Then we have the following

expectations conditional on Y and V .

(a) For an integer r such that n∗ + 2r > 0,

E[U r|Y, V ] = 2r
g((n∗ + 2r)/2)

g(n∗/2)

τ
(
ξV {(n∗ + 2r)/ηV }1/2 | n∗ + 2r

)
ηrV τ

(
ξV {n∗/ηV }1/2 | n∗

) .

(b) For an integer r such that n∗ + r > 0,

E

[
U r/2 φ(ξVU

1/2)

Φ(ξVU1/2)
|Y, V

]
=

2(r−1)/2

π1/2

g((n∗ + r)/2)

g(n∗/2)

η
n∗/2
V

(ηV + ξ2
V )(n∗+r)/2 τ

(
ξV {n∗/ηV }1/2 | n∗

) .
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(c) For an integer r such that n∗ + 2r > 1,

E[TU r |Y, V ] = ζV

(
ξVE[U r|Y, V ] + E

[
U (2r−1)/2 φ(ξVU

1/2)

Φ(ξVU1/2)
|Y, V

])
.

(d) For an integer r such that n∗ + 2r > 2,

E[T 2U r |Y, V ] = ζ2
VE[U r−1|Y, V ] + ξV ζVE[TU r |Y, V ].

(e) E[bTU |Y, V ] = ΓZ′Ω−1
V (Y −Xβ)E[TU |Y, V ] + ΛV Γ−1γE[T 2U |Y, V ].

(f) E[bU |Y, V ] = ΓZ′Ω−1
V (Y −Xβ)E[U |Y, V ] + ΛV Γ−1γE[TU |Y, V ].

(g) E[bb′U |Y, V ] =
(
Iq + E[bU |Y, V ](Y −Xβ)′Σ−1Z/V + E[bTU |Y, V ]γ ′Γ−1

)
ΛV .

Proof. For (a), we write E[U r|V,Y] =
∫∞

0
urf(u|y, v,θ) du, and simplify using Proposition 2 and

Lemma 2. A similar argument is used for (b). For the rest, we use Proposition 3, Lemma 3 and

the law of iterated expectations.

The aforementioned results suggest that the expectations involved in the E-step can be com-

puted in the following manner. The two expectations, E[log(V )|Y] =
∫∞

0
log(v)f(v|y,θ) dv and

E[log(U) |Y] =
∫∞

0

(∫∞
0

log(u)f(u|y, v,θ) du
)
f(v|y,θ) dv, need to be computed numerically with

the densities given by Proposition 3. To compute expectation of any other random quantity, first

compute its expectation conditional on (Y, V ) using Proposition 4 and then average it over the

conditional distribution of V |Y. The one-dimensional integral involved in this averaging must be

computed numerically. All the expectations are evaluated at θ = θ(r).

Appendix C Maximizers in CM-steps (Section 2.3)

The expressions for β(r+1) in CM-step 1 and γ(r+1) in CM-step 3 are obtained by respectively solving

(∂/∂β)
∑m

i=1Qi1

(
β,θ

(r)
Σ |θ

(r)
)

= 0 for β and (∂/∂γ)
∑m

i=1Qi2

(
γ,θ

(r)
Γ |θ

(r)
)

= 0 for γ. The expres-

sion for Γ(r+1) in CM-step 4 follows from a standard result that the quantity −(m/2) log(det Γ)−

(1/2) trace(Γ−1∑m
i=1 Ai) is maximized with respect to Γ when Γ =

∑m
i=1 Ai/m (Johnson and

Wichern, 2002, Result 4.10).

22



Appendix D Fitting some special cases of GSTMM

We now briefly explain how the ECM algorithm of Section 2.3 can be modified to fit some special

cases of GSTMM. In case 1, we take λ = 0, i.e., bi ∼ tq(0,Ψ, νb), implying (γ,Γ) = (0,Ψ). The

algorithm works by setting γ = 0 in the expected log-likelihood (13) and omitting CM-step 3.

In case 2, we take νb → ∞, i.e., bi ∼ SN q(0,Ψ,λ). In this case, we do not need the gamma

distribution for Wb as U = Wb ≡ 1. The ECM algorithm can be applied after suitably modifying

the likelihood (13). Essentially this means setting U ≡ 1 and removing the terms involving νb.

In case 3, we take λ = 0 and νb →∞, i.e., bi ∼ Nq(0,Ψ). The ECM algorithm can be applied

after modifying the likelihood (13) as suggested for cases 1 and 2.

In case 4, we take νe → ∞, i.e., ei ∼ Nni
(0,Σi). As in case 2, the gamma distribution for

We is not needed as We = U/V ≡ 1. We can apply the ECM algorithm essentially after setting

U/V ≡ 1 and dropping the terms involving νe.

In case 5, λ = 0 and νb, νe → ∞, i.e., bi ∼ Nq(0,Ψ) and ei ∼ Nni
(0,Σi). This is the usual

NMM. Although the ECM algorithm can be applied after modifying (13) as suggested for cases 3

and 4, an alternative approach is generally used in practice (Pinheiro and Bates, 2000, ch. 2).

Appendix E Computing E[b|Y] (Section 2.3)

Proposition 5. Consider Y as defined in (5). Then E[b|Y] =
∫∞

0
E[b|y, v] f(v|y,θ) dv, where

f(v|y,θ) is given by Proposition 3 and

E[b|Y, V ] = ΓZ′Ω−1
V (Y −Xβ) + ΛV Γ−1γ ζV

(
ξV + E

[
U−1/2 φ(ξVU

1/2)

Φ(ξVU1/2)
|Y, V

])
,

with the last expectation given by part (b) of Proposition 4.

Proof. It suffices to verify the expression for E[b|Y, V ] to establish the result. For this, we write

E[b|Y, V ] = E[E[b|Y, T, U, V ]], where the inner expectation is ΓZ′Ω−1
V (Y − Xβ) + ΛV Γ−1γ T

from part (d) of Proposition 3 and the outer expectation is with respect to the distribution of

(T, U)|Y, V ]. The result follows from computing this expectation by again applying the law of

iterated expectations — by first computing it with respect to T |Y, U, V using part (c) of Propo-
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sition 3 and Lemma 3, and then averaging the result over the conditional distribution of U |Y, V

using part (b) of Proposition 4.
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Figure 1: Trellis plot of crab data.
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Figure 2: Normal QQ plots of predicted claw × caliper random effects and standardized residuals,

and a histogram of standardized residuals. A line passing through the first and third quartiles is

added in each QQ plot.
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Figure 3: t QQ plot of standardized residuals for the crab data.
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pb = 0 pb = 0.05 pb = 0.10 pb = 0.25

pe pe pe pe

0 .05 .10 .25 0 .05 .10 .25 0 .05 .10 .25 0 .05 .10 .25

GSTMM

E[Y111] 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

E[Y121] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

σ2
1 -0.1 -0.1 0.0 0.3 -0.1 -0.1 -0.1 0.2 -0.1 -0.1 -0.1 0.2 -0.1 -0.1 -0.1 0.2

σ2
2 -0.1 -0.1 0.0 0.4 -0.1 -0.2 -0.1 0.3 -0.1 -0.2 -0.1 0.2 -0.1 -0.2 -0.1 0.3

ψ2
1 -1.8 -1.9 -1.9 -2.0 -1.9 -2.3 -1.6 -1.1 -1.5 -1.9 -1.4 -0.7 9.0 8.3 9.0 10.3

ψ2
2 -2.5 -2.6 -2.5 -2.7 -2.7 -3.2 -2.3 -1.5 -2.0 -2.6 -1.9 -0.9 12.2 11.2 12.2 14.0

ψ12 -2.1 -2.1 -2.1 -2.2 -2.2 -2.6 -1.9 -1.3 -1.7 -2.2 -1.6 -0.9 10.1 9.3 10.0 11.5

STMM

E[Y111] 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

E[Y121] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2

σ2
1 -0.1 0.1 0.2 0.7 -0.1 0.0 0.1 0.6 -0.1 0.0 0.1 0.6 -0.2 -0.1 0.0 0.6

σ2
2 -0.1 0.1 0.2 1.1 -0.2 0.0 0.2 1.0 -0.2 -0.1 0.1 0.9 -0.3 -0.1 0.1 0.9

ψ2
1 -1.6 -4.5 -6.0 -7.8 5.8 0.9 -0.7 -3.1 12.6 7.2 5.1 2.5 47.6 37.4 33.0 27.5

ψ2
2 -2.2 -6.1 -8.1 -10.6 7.7 1.2 -1.1 -4.2 17.2 9.8 7.0 3.4 64.8 50.8 44.8 37.4

ψ12 -1.8 -5.1 -6.8 -9.0 6.5 1.0 -1.0 -3.7 14.2 8.0 5.7 2.5 53.9 42.2 37.2 30.8

Table 1: Estimated biases of ML estimators when the simulation model, given by (14) and (15),

is based on contaminated normal distributions with distant contamination pattern.

pb = 0 pb = 0.05 pb = 0.10 pb = 0.25

pe pe pe pe

0 .05 .10 .25 0 .05 .10 .25 0 .05 .10 .25 0 .05 .10 .25

E[Y111] 1.0 1.1 1.2 1.4 1.0 1.1 1.2 1.4 1.0 1.0 1.1 1.3 0.9 0.9 1.0 1.2

E[Y121] 1.0 1.1 1.2 1.4 1.0 1.1 1.1 1.4 1.0 1.0 1.1 1.3 0.9 0.9 1.0 1.2

σ2
1 1.0 1.1 2.3 4.5 1.4 0.9 1.6 5.3 1.7 0.8 1.4 5.6 2.1 0.9 1.2 5.0

σ2
2 1.0 1.1 2.2 4.5 1.3 0.8 1.5 5.5 1.7 0.8 1.3 5.7 2.1 1.0 1.2 5.2

ψ2
1 1.0 1.7 2.2 3.0 1.8 1.0 0.8 0.9 4.7 2.3 1.6 1.1 13.8 9.5 6.8 4.1

ψ2
2 1.0 1.7 2.2 2.9 1.7 1.0 0.8 0.9 4.6 2.3 1.6 1.0 13.8 9.5 6.7 4.1

ψ12 1.0 1.7 2.2 3.0 1.8 1.0 0.8 0.9 4.6 2.2 1.6 1.0 13.8 9.5 6.8 4.1

Table 2: Efficiencies of GSTMM-based ML estimators relative to STMM when the simulation

model, given by (14) and (15), is based on contaminated normal distributions with distant con-

tamination pattern.
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νb = 4 νb = 10 νb = 30 νb =∞

νe νe νe νe

4 10 30 ∞ 4 10 30 ∞ 4 10 30 ∞ 4 10 30 ∞

GSTMM

E[Y111]∗ -0.2 -0.2 -0.1 -0.1 0.2 -0.2 0.2 -0.4 -0.1 -0.3 -0.2 -0.3 -0.2 0.0 0.2 -0.4

E[Y121]∗ -0.3 -0.2 0.1 -0.2 0.4 -0.2 0.3 -0.4 0.0 -0.3 -0.1 -0.4 -0.1 -0.1 0.1 -0.4

σ2
1∗ 0.2 0.0 0.0 -0.5 0.1 0.0 0.0 -0.5 0.1 0.0 0.0 -0.5 0.1 0.0 0.0 -0.5

σ2
2∗ 0.2 -0.2 -0.1 -0.8 0.1 0.0 -0.1 -0.8 0.0 0.0 0.0 -0.9 0.0 -0.1 0.0 -1.0

ψ2
1 0.9 0.7 0.6 0.9 0.0 0.1 -0.1 -0.1 0.0 -0.1 -0.1 0.3 -1.7 -1.8 -2.3 -2.2

ψ2
2 1.4 1.4 1.0 1.1 0.1 0.4 0.2 -0.1 0.1 0.2 0.1 0.4 -2.1 -2.6 -3.2 -3.2

ψ12 1.2 1.0 0.7 1.0 0.1 0.2 0.0 -0.1 0.0 0.1 0.0 0.4 -1.8 -2.1 -2.6 -2.6

STMM

E[Y111]∗ -0.3 -0.2 -0.1 0.0 0.2 -0.2 0.2 -0.4 -0.2 -0.3 -0.2 -0.3 -0.2 0.0 0.2 -0.4

E[Y121]∗ -0.4 -0.2 0.1 -0.1 0.4 -0.2 0.3 -0.4 0.0 -0.3 -0.1 -0.4 -0.1 -0.2 0.1 -0.4

σ2
1∗ 2.6 0.6 -0.4 -0.8 3.3 1.1 0.0 -0.5 3.5 1.2 0.0 -0.5 3.6 1.2 0.0 -0.4

σ2
2∗ 3.9 0.8 -0.7 -1.2 4.9 1.8 0.0 -0.8 5.2 1.9 0.0 -0.8 5.4 1.7 0.0 -1.0

ψ2
1 11.2 15.8 17.4 18.0 1.0 4.6 5.0 5.0 -2.7 -0.2 0.1 0.6 -4.0 -1.9 -2.1 -2.0

ψ2
2 15.4 22.0 24.0 24.3 1.5 6.7 7.0 6.8 -3.5 0.0 0.3 0.7 -5.2 -2.7 -2.9 -2.8

ψ12 12.7 18.1 19.8 20.3 1.1 5.4 5.8 5.7 -3.0 -0.1 0.2 0.7 -4.4 -2.2 -2.4 -2.3

Table 3: Estimated biases of ML estimators when the simulation model, given by (14) and (17),

is based on t-distributions. The entries for starred parameters have been multiplied by 10.

νb = 4 νb = 10 νb = 30 νb =∞

νe νe νe νe

4 10 30 ∞ 4 10 30 ∞ 4 10 30 ∞ 4 10 30 ∞

E[Y111] 1.1 1.0 1.0 1.1 1.1 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.0 1.0 1.0

E[Y121] 1.1 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.1 1.0 1.0 1.0

σ2
1 4.6 1.7 1.2 1.3 6.9 1.9 1.0 1.0 8.4 2.1 1.0 1.0 8.8 2.2 1.0 1.0

σ2
2 4.8 1.6 1.2 1.4 7.1 2.1 1.0 1.0 7.7 2.1 1.0 1.0 7.1 2.1 1.0 1.0

ψ2
1 4.5 7.6 9.9 10 1.2 2.0 2.1 2.3 1.2 1.0 1.0 1.0 1.4 1.0 1.0 1.0

ψ2
2 4.7 7.6 10 10 1.2 2.1 2.1 2.3 1.2 1.0 1.0 1.0 1.4 1.0 1.0 1.0

ψ12 4.5 7.5 9.8 9.9 1.2 2.0 2.1 2.3 1.2 1.0 1.0 1.0 1.4 1.0 1.0 1.0

Table 4: Efficiencies of GSTMM-based ML estimators relative to STMM when the simulation

model, given by (14) and (17), is based on t-distributions.
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NMM GSTMM NMM GSTMM

θ θ̂ s.e. θ̂ s.e. θ θ̂ s.e. θ̂ s.e.

β11 33.79 1.39 32.94 0.89 log(σ2
13) -5.56 0.21 -5.64 0.26

β12 33.81 1.39 32.96 0.90 log(σ2
21) -3.10 0.17 -3.76 0.26

β13 33.83 1.39 32.98 0.90 log(σ2
22) -6.06 0.20 -6.31 0.27

β21 33.85 1.39 33.01 0.90 log(σ2
23) -4.07 0.17 -5.55 0.26

β22 33.88 1.39 33.02 0.90 log(ψ2
1) 3.88 0.28 3.89 0.26

β23 33.93 1.39 33.09 0.90 log(ψ2
2) 3.87 0.28 3.89 0.26

log(σ2
11) -3.54 0.17 -4.64 0.26 z(ρ) 5.95 0.33 6.30 0.43

log(σ2
12) -4.99 0.18 -5.19 0.24 log(νe) n/a n/a 1.28 0.32

Table 5: ML estimates of parameters and their standard errors (s.e.’s) that result from fitting the

NMM and the assumed GSTMM to the crab data. Here ρ = ψ12/(ψ1ψ2) is the correlation between

(bi1, bi2) and z(ρ) = tanh−1(ρ) is the Fisher’s z-transformation of ρ.
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