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Abstract

Separation logic is an extension of Hoare’s logic which
supports a local way of reasoning about programs that mu-
tate memory. We present a study of the semantic structures
lying behind the logic. The core idea is of a local action, a
state transformer that mutates the state in a local way. We
formulate local actions for a class of models called separa-
tion algebras, abstracting from the RAM and other specific
concrete models used in work on separation logic. Local
actions provide a semantics for a generalized form of (se-
quential) separation logic. We also show that our condi-
tions on local actions allow a general soundness proof for a
separation logic for concurrency, interpreted over arbitrary
separation algebras.

1 Introduction

Separation logic is an extension of Hoare’s logic which
has been used to attack the old problem of reasoning about
the mutation of data structures in memory [33, 17, 23, 34].
Separation logic derives its power from an interplay be-
tween the separating conjunction connective ∗ and proof
rules for commands that use ∗. Chief among these are the
frame rule [17, 23] and the concurrency rule [22].

{p}C {q}
{p ∗ r}C {q ∗ r} FrameRule

{p1}C1 {q1} {p2}C2 {q2}
{p1 ∗ p2}C1 ‖ C2 {q1 ∗ q2}

ConcurrencyRule

The frame rule codifies an intuition of local reasoning. The
idea is that, if we establish a given Hoare triple, then the
precondition contains all the resources that the command
will access during computation (other than resources allo-
cated after the command starts). As a consequence, any
additional state will remain unchanged; so the invariant as-
sertion R in the rule (the frame axiom), can be freely tacked
onto the precondition and the postcondition. Similarly, the

concurrency rule states that processes that operate on sepa-
rate resources can be reasoned about independently.

Syntactically, the concurrency and frame rules are
straightforward. But, the reason for their soundness is sub-
tle, and rests on observations about the local way that im-
perative programs work [37]. Typically, a program accesses
a circumscribed collection of resources; for example, the
memory cells accessed during execution (the memory foot-
print). Our purpose in this paper is to describe these seman-
tic assumptions in a general way, for a collection of models
that abstract away from the RAM and other concrete models
used in work on separation logic.

By isolating the circumscription principles for a class
of models, the essential assumptions needed to justify the
logic become clearer. In particular, our treatment of concur-
rency shows that soundness of a concurrent version of sepa-
ration logic relies only on locality properties of the prim-
itive actions (basic commands) in the programming lan-
guage. Soundness of the concurrent logic was very diffi-
cult to come by, originally, even for a particular separation
algebra (the RAM model); it was proven in a remarkable
work of Brookes [12]. Our treatment of concurrency builds
on Brookes’s original insights, but makes several different
choices in formulation which allow for a more general proof
that applies to arbitrary separation algebras. We show that
as long as the primitive commands in a language satisfy the
frame rule, one obtains a model of a concurrent logic. This
is in contrast to Brookes’s original and further papers on
concurrent separation logics [10, 11, 16, 15], all of which
have proven soundness for particular models in a way that
relies on very specific interpretations of the primitive ac-
tions, rather than for a class of models.

This paper will not contain any examples of using the
logic; see, e.g., [36, 28, 5, 4] and their references.

Warning. In this paper we avoid the traditional Hoare
logic punning of program variables as logical variables, to
avoid nasty side conditions in the proof rules; see [9, 27] for
further discussion. This is for theoretical simplicity; our re-



sults can be extended to cover variable alteration, as is done
in most separation logic papers, with their associated modi-
fies clauses. (Furthermore, avoiding the pun is more in line
with real languages like C or ML, even if it departs slightly
from the theoretical tradition in program logic.)

2 Separation Algebras and Predicates

Most papers on separation logic make use of a domain
of heaps, which is equipped with a partial operator for glu-
ing together heaps that are separate in some sense (various
senses have appeared in the literature). We abstract from
this situation with the following definition.

Definition 1 (Separation Algebra) A separation algebra
is a cancellative, partial commutative monoid (Σ, •, u) . A
partial commutative monoid is given by a partial binary
operation where the unity, commutativity and associativity
laws hold for the equality that means both sides are de-
fined and equal, or both are undefined. The cancellative
property says that for each σ ∈ Σ, the partial function
σ • (·) : Σ ⇀ Σ is injective. The induced separateness
(#) and substate (�) relations are given by

σ0#σ1 iff σ0 • σ1 is defined
σ0 � σ2 iff ∃σ1. σ2 = σ0 • σ1.

Examples of separation algebras:

1. Heaps, as finite partial functions from l-values to r-
values

H = L ⇀fin RV

where the empty partial function is the unit and where
h0 • h1 takes the union of partial functions when h0

and h1 have disjoint domains of definition. h0 • h1 is
undefined when h0(l) and h1(l) are both defined for at
least one l-value l ∈ L. By taking L to be the set of
natural numbers and RV the set of integers we obtain
the RAM model [23, 34]. By taking L to be a set of
locations and RV to be certain tuples of values or nil
we obtain models where the heap consists of records
[33, 17]. And by taking L to be sequences of field
names we obtain a model of hierarchical storage [1].

2. Heaps with permissions [8],

HPerm = L ⇀fin RV × P

where P is a permission algebra (i.e., a set with a par-
tial commutative and associative operation ◦ satisfy-
ing the cancellativity condition). h0 • h1 is again the
union when the domains are disjoint. Some overlap
is allowed, though: when h0(l) = (rv, p0), h1(l) =

(rv, p1) and p0 ◦p1 is defined then h0 and h1 are com-
patible at l. When all common l-values are compatible,
h0 • h1 is defined, and (h0 • h1)(l) = (rv, p0 ◦ p1) for
all compatible locations l. An example of a permission
algebra is the interval (0, 1] of rational numbers, with
◦ being addition but undefined when permissions add
up to more than 1.

Another permission algebra is given by the set
{R,RW} of read and read-write permissions, where
R ◦ R = R and RW ◦ p is undefined. At first sight,
it might be thought that this algebra models the idea of
many readers and a single writer. But, unfortunately,
it does not allow conversion of a total (RW ) permis-
sion to several read permissions, or vice versa. In con-
trast, the algebra (0, 1] does allow such conversion us-
ing identities such as 1/2 + 1/2 = 1; see [8].

3. Variables as resource [9, 27] is S × H , where H is as
above and

S = Var ⇀fin Val

has the “union of disjoint functions” partial monoid
structure. Variables-as-resource models can also be
mixed with the permission construction.

4. Multisets over a given set of Places, with • as multiset
union, which can be used to model states in Petri nets
without capacity [32].

5. The monoid [Places ⇀fin {marked, unmarked}] of
partial functions, again with union of functions with
disjoint domain, can be used to model Petri nets with
capacity 1. Note that the • operation in nets with ca-
pacity 1 is partial, while in nets without capacity it is
total.

Definition 2 Let Σ be a separation algebra. Predicates
over Σ are just elements of the powerset P (Σ). It has an
ordered total commutative monoid structure (∗, emp) given
by

p ∗ q = {σ0 • σ1 | σ0#σ1 ∧ σ0 ∈ p ∧ σ1 ∈ q}
emp = {u}

P (Σ) is in fact a boolean BI algebra, where p ∗ (·) and
p u (·) have right adjoints [30]. Because they are left ad-
joints they preserve all joins, so we automatically get two
distributive laws⊔

X ∗ p =
⊔
{x ∗ p | x ∈ X}⊔

X u p =
⊔
{x u p | x ∈ X}.

Similar laws do not hold generally for
d

, but the predi-
cates p that satisfy an analogue of the first law play a crucial
role in this work.
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Definition 3 (Precise Predicates) A predicate p ∈ P (Σ) is
precise if for every σ ∈ Σ, there exists at most one σp � σ
such that σp ∈ p. We let Prec denote the set of precise
predicates.

Examples of Predicates.

1. In the heap model, if l ∈ L is an l-value and rv ∈ R an
r-value, then the predicate l 7→ rv ∈ P (Σ) is the set
{σ} consisting of a single state σ where σ(l) = rv and
σ(l′) is undefined for other l-values l′. It is precise.

2. l0 7→ rv0 ∗ l1 7→ rv1 is the set {σ} where σ is defined
only on locations l0 and l1, mapping them to rv0 and
rv1. Again, this predicate is precise.

3. l0 7→ rv0 t l1 7→ rv1 is the disjunction, i.e. the set
{σ0, σ1}where σi maps li to rvi and is undefined else-
where. l0 7→ rv0 t l1 7→ rv1 is not a precise predicate.

Lemma 4 (Precision Characterization) 1. Every
singleton predicate {σ} is precise.

2. p is precise iff for all nonempty X ⊆ P (Σ),
l

X ∗ p =
l
{x ∗ p | x ∈ X}

Condition 2 in this lemma can be taken as a basis for a def-
inition of precision in a complete lattice endowed with an
ordered commutative monoid (rather than the specific lat-
tices P (Σ)). Also, the assumption that σ • (·) be injective is
equivalent to the requirement
l

X ∗ {σ} =
l
{x ∗ {σ} | x ∈ X} for all nonempty X.

Precision plays a greater role here than in previous work,
where it arose as a technical reaction to soundness problems
in proof rules for information hiding [25, 12, 22]. This prop-
erty is used in the characterization of the lattice structure of
local functions, in the definition of the “best” or largest local
action below, and again later when we turn to concurrency.

3 Local Actions

Conceptual Development. In [37] a soundness proof was
given for separation logic in terms of an operational seman-
tics for the RAM (heaps) model. The development there
revolved around relations

R ⊆ Σ× (Σ ∪ {fault})

(σ, σ′) ∈ R signifies that the program can deliver final
state σ′ when started in σ, and (σ, fault) ∈ R signifies
that a memory fault can occur (by dereferencing a dangling
pointer). In terms of these relations, two properties were
identified that correspond to the frame rule:

1. Safety Monotonicity: (σ, fault) 6∈ R and σ � σ′

implies (σ′, fault) 6∈ R.

2. Frame Property: If (σ0, fault) 6∈ R, σ = σ0•σ1 and
(σ, σ′) ∈ R then ∃σ′0. σ′ = σ′0 •σ1 and (σ0, σ

′
0) ∈ R.

The first condition says that if a state has enough resource
for safe execution of a command, then so do superstates.
The second condition says that if a little state σ0 has enough
resource for the command to execute safely, then execution
on any bigger state can be tracked back to the small state.

These two conditions can be shown to be equivalent to
the frame rule: a relation R satisfies Safety Monotonicity
and the Frame Property iff the frame rule is sound for it.
But, the formulation of the second property is unpleasant: it
is a tabulation of a true operational fact (as shown in [37]),
but in developing our theory we seek a simpler condition.

The first step to this simpler formulation is to make use
of the fact that fault trumps; that is, in separation logic
Hoare triples are interpreted so that fault falsifies a triple
[17, 37, 34]. The result is that Hoare triples cannot distin-
guish between a command that just faults, and one that non-
deterministically chooses between faulting and terminating
normally. This suggests that in the semantics we can use
functions from states to the powerset P (Σ), together with
fault, rather than relations as above.

But, order-theoretically, where should fault go? The an-
swer is on the top, as in functions

f : Σ → P (Σ)>.

Conceptually, faulting is like Scott’s top: an inconsistent
or over-determined value. Technically, putting fault on the
top allows us to characterize the pointwise order in terms
of Hoare triples (Proposition 7), which shows that it is the
correct order for our purposes.

This much is mostly a standard essay on relations versus
functions into powersets. The payoff comes in the treatment
of locality. Using functions into the (topped) powerset, we
can work with a much simpler condition:

locality : σ1#σ2 implies f(σ1 • σ2) v (fσ1) ∗ {σ2}.

Here, the ∗ operation is extended with >, by p ∗ > = > ∗
p = >. It can be verified that a relation R satisfies Safety
Monotonicity and Frame Property iff the corresponding
function func(R) : Σ → P (Σ)> satisfies locality.1

Aside on total correctness. The use of P (Σ)> above is
strongly oriented to a partial correctness logic, where diver-
gence does not falsify a Hoare triple. The empty set repre-
sents divergence. To account for total correctness we would
just have to flip P (Σ)> upside down, obtaining (P (Σ)>)op.
In total correctness divergence and faulting are identified.

1func(R)σ returns > when (σ, fault) ∈ R, even if we also have
(σ, σ′) ∈ R for some σ′ 6= fault.
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Technical Development. We now make the main defini-
tions following on from these ideas.

Definition 5 P (Σ)> is obtained by adding a new greatest
element to P (Σ). It has a total commutative monoid struc-
ture, keeping the unit emp the same as in P (Σ), and ex-
tending ∗ so that p ∗ > = > ∗ p = >.

Definition 6 (Semantic Hoare Triple) If p, q ∈ P (Σ) and
f : Σ → P (Σ)> then

〈〈p〉〉 f 〈〈q〉〉 holds iff for all σ ∈ p. fσ v q

This is fault-avoiding because the postcondition does not
include >. A justification for putting fault on the top is
the following.

Proposition 7 (Order Characterization) f v g iff for all
p, q ∈ P (Σ), 〈〈p〉〉 g 〈〈q〉〉 implies 〈〈p〉〉 f 〈〈q〉〉

Definition 8 (Local Action) Suppose Σ is a separation al-
gebra. A local action f : Σ → P (Σ)> is a function satis-
fying the locality condition:

σ1#σ2 implies f(σ1 • σ2) v (fσ1) ∗ {σ2}.

We let LocAct denote the set of local actions, with pointwise
order.

Lemma 9 LocAct is a complete lattice, with meets and
joins defined pointwise (and inherited from the function
space [Σ → P (Σ)>]).

The proof is straightforward, but it is instructive to give part
of it to show a use of precision in action.

Proof: Assume that σ = σ0#σ1. Then we can show that
the pointwise meet is local

(
d

F )(σ0 • σ1) =
d
{f(σ0 • σ1) | f ∈ F}

v
d
{f(σ0) ∗ {σ1} | f ∈ F}

=
(d

{f(σ0) | f ∈ F}
)
∗ {σ1}

= ((
d

F )σ0) ∗ {σ1}.

The second-last step used that {σ1} is precise (Lemma 4).

Given any precondition p1 and postcondition p2, we can
define the best or largest local action satisfying the triple
〈〈p1〉〉 − 〈〈p2〉〉2.

Definition 10 (Best Local Action) bla[p1, p2] is the func-
tion of type Σ → P (Σ)> defined by

bla[p1, p2](σ) =
l
{p2 ∗ {σ0} | σ = σ0 • σ1, σ1 ∈ p1}.

2This is an analogue of the “specification statement” studied in the re-
finement literature

Lemma 11 Let f = bla[p1, p2]. The following hold:

• f is a local action;

• 〈〈p1〉〉 f 〈〈p2〉〉;

• If 〈〈p1〉〉 t 〈〈p2〉〉 and t is local then t v f .

Local actions form a one-object category (a monoid),
where the identity is bla[emp, emp] and the composition
f ; g functionally composes f with the obvious lifting g† :
P (Σ)> → P (Σ)>.3 This structure is used in the semantics
of skip and sequential composition in Figure 1.

Examples.

1. For the Heaps model, the function f which always re-
turns emp is not local. The function f that sets all
allocated locations to some specific r-value (say, 0) is
not local. For, f applied to a singleton heap [l 7→ 2] re-
turns [l 7→ 0]. According to locality, it should not alter
any location other than l. But, f([l 7→ 2, l′ 7→ 2]) =
{[l 7→ 0, l′ 7→ 0]}. Such a function is not definable in
the languages used in separation logic (and is typically
not definable in, say, C or Java.). In contrast, the op-
erations of heap mutation and allocation and disposal
are local actions (see the next section).

2. Any transition on a Petri net without capacity defines
a local action on the multiset monoid (in fact, a de-
terministic local action). Any transition on a net with
capacity 1 determines a local action on the separation
algebra [Places ⇀fin {marked, unmarked}]. Interest-
ingly, transitions for nets with capacity do not define
local actions on the separation algebra which is the set
of places with union of disjoint subsets as •.

3. Generally, bla[p, emp] is the local action that disposes
of, or annihilates, p. Similarly, bla[emp, p] allocates p,
or lets the knowledge of p materialize.

The annihilation bla[p, emp] behaves strangely when p is
not precise. For example, when p is l0 7→ r0 t l1 7→ r1 for
l0 6= l1 in the heap model, bla[p, emp] on the heap [l0 7→ r0]
disposes l0, but diverges on [l0 7→ r0, l1 7→ r1]. However,
in case p is precise, the definition is well-behaved, in the
sense that it simply removes part of the state satisfying p.

4 Programming Language

The commands of our language are as follows:

C ::= c | skip | C;C | C + C | C?

3How to make this into a more genuine, many object, category is not
completely obvious.
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JcKv = v(c)

JskipKvσ = {σ}
JC1;C2Kv = (JC1Kv); (JC2Kv)

JC?Kv =
⊔

nJC nKv

JC1 + C2Kv = JC1Kv t JC2Kv

- v : PrimCommands → LocAct

- JCKv ∈ LocAct

- (f ; g)σ =
{

> if fσ = >⊔
{gσ′ | σ′ ∈ fσ} otherwise

Figure 1. Denotational Semantics

Here, c ranges over an unspecified collection
PrimCommands of primitive commands, + is non-
deterministic choice, ; is sequential composition, and (·)?

is Kleene-star (iterated ;). We use + and (·)? instead of
conditionals and while loops for theoretical simplicity:
given appropriate primitive actions the conditionals and
loops can be encoded, but we do not need to explicitly
consider boolean conditions in the abstract theory.

The denotational semantics of commands is given in Fig-
ure 1. The meanings of primitive commands are given by
a valuation v. The meaning of Kleene-star is a local action
because of Lemma 9.

Example Language and Model. We illustrate this defini-
tion with a particular concrete model and several primitive
commands. As a model we take

Σ = S ×H = (Var ⇀fin RV )× (L ⇀fin RV )

as in Section 2. We assume further that L ⊆ RV .
For x, y ∈ Var and l ∈ L, we can define

load(l, x)
=

d
rv bla[l 7→ rv ∗ x 7→ − , l 7→ rv ∗ x 7→ rv]

store(x, l)
=

d
rv bla[l 7→ – ∗ x 7→ rv , l 7→ rv ∗ x 7→ rv]

move(x, y)
=

d
rv bla[x 7→ rv ∗ y 7→ – , x 7→ rv ∗ y 7→ rv]

Here, load is the analogue of the assembly language in-
struction that retrieves a value from memory and puts it in
a register, while store takes a value from the register bank
and puts it into memory, and move copies a value from one
register to another. Here the use of

d
is the meet of local

actions (not just assertions), and is essentially being used to

model universal quantification outside of a triple to treat rv
as if it were a ghost variable.

Primitive commands free(l) and new(x) for disposing
and allocating heap locations denote the following best lo-
cal actions.

free(l) = bla[l 7→ –, emp]
new(x) = bla[x 7→ –,

⊔
l x 7→ l ∗ l 7→ −]

So, allocation and deallocation are special cases of the gen-
eral concepts of materialization and annihilation. In these
definitions l 7→ − is the predicate denoting {σ} where σ(l)
is defined and where σ(l0) is undefined for l0 6= l. In the
postcondition for new(x) we are using

⊔
l to play the role

of existential quantification in the evident way.4

We have used the best local actions bla[−,−] to define
these functions, but we could also define them by more ex-
plicit reference to states. For example, load(l, x) is

λσ.if (l, x ∈ dom(σ)) then (σ|x:=σ(l)) else >

where we use (σ|x:=rv) for updating a partial function.
In this model we can have boolean expressions for test-

ing, say, whether two locations have the same value ([l] ==
[l′]). Following [17], we call a predicate p intuitionistic if
p ∗ true = p, and define the intuitionistic negation ¬ip of
p to be {σ | ∀σ′. σ • σ′ 6∈ p}. Generally, we can pre-
sume a collection of primitive boolean expressions b, which
give rise to primitive commands assume(B) for some in-
tuitionistic predicate B ∈ P (Σ). Our valuation v has to
map assume(B) to a local action v(assume(B)) ∈ LocAct
which returns an input state σ if B holds in σ; diverges if
¬iB holds; faults otherwise. Then, we can encode condi-
tionals and loops as

(assume(B);C1) + (assume(¬iB);C2)
(assume(B);C)?; assume(¬iB)

The point of this is just to make clear that, in the general
theory, we do not need to consider boolean expressions ex-
plicitly: the assume statements can be taken to be given
primitive commands, in which case their use in loops and
conditionals can be encoded in terms of the more basic non-
deterministic choice and Kleene iteration.5

5 Sequential Abstract Separation Logic

The rules for Abstract Separation Logic are in Figure 2.
Note that we have to require that I be nonempty in the con-
junction rule because {true}C{true} does not generally
hold in separation logic (because of the fault-avoiding in-
terpretation of triples).

4This would sometimes be written ∃l.x 7→ l ∗ l 7→ −, and we are just
using the ability of a complete Boolean algebra to interpret quantification.

5If we wanted to include booleans explicitly in the general theory we
could use “local booleans”, functions Σ → {t, f}⊥ that are monotone wrt
the � order on Σ.
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STRUCTURAL RULES

{p}C {q}
{p ∗ r}C {q ∗ r}

p′ v p {p}C {q} q v q′

{p′}C {q′}

{pi}C {qi}, all i ∈ I

{
⊔

i∈I pi}C {
⊔

i∈I qi}
{pi}C {qi}, all i ∈ I

{
d

i∈I pi}C {
d

i∈I qi}
I 6= ∅

BASIC CONSTRUCTS

{p} skip {p}
{p}C1 {q} {q}C2 {r}

{p}C1;C2 {r}

{p}C1 {q} {p}C2 {q}
{p}C1 + C2 {q}

{p}C {p}
{p}C? {p}

Figure 2. Rules of Abstract Separation Logic

Definition 12 (Axioms) An axiom set Ax is a set of triples

{p}c{q}

for primitive commands c, where there is at least one axiom
for each primitive command.6

Definition 13 (Proof-theoretic Consequence Relation)
We write

Ax ` {p}C {q},
to mean that {p}C {q} is derivable from Ax using the rules
in Figure 2.

The semantics of judgements is based on a notion of val-
uation, that maps primitive commands to local actions.

Definition 14 (Satisfaction) Suppose that we have a valu-
ation v as in Figure 1. We say that v satisfies {p}C {q} just
if 〈〈p〉〉 JCKv 〈〈q〉〉 is true according to Definition 6.

Definition 15 (Semantic Consequence Relation) We
write

Ax |= {p}C {q}
to mean that for all valuations v, if v satisfies Ax then v
satisfies {p}C {q}.

Theorem 16 (Soundness) All of the proof rules preserve
semantic validity (Ax |= {p}C {q}). As a result, a proof-
theoretic consequence is also a semantic consequence:

Ax ` {p}C {q} implies Ax |= {p}C {q}.

The soundness of the frame rule follows Definition 8,
and the other rules are straightforward. We have also proven
the converse of Theorem 16, included in the longer version
of this paper [13].

6The canonical axiom {false} c {false} can be taken when a specific
choice is not desired.

6 A Logic for Concurrency

We add three new command forms for parallel composi-
tion, lock declarations `.C, and critical sections.7

C ::= · · · | C ‖ C | `.C | with ` doC

This language assumes that there is a fixed infinite set
Locks , from which the `’s are drawn. The basic constraint
on the critical sections is that different with ` doC for the
same ` must be executed with mutual exclusion. In imple-
mentation terms, we can consider the critical section as be-
ing implemented by P(`);C;V (`) where P(`) and V (`)
are Dijkstra’s operations on (binary) mutex semaphore `.

The program logic will manipulate an environment map-
ping locks to precise predicates.

Env = Locks ⇀fin Prec.

The need for precision of these predicates (the lock invari-
ants) can be seen from the Reynolds counterexample for
concurrent separation logic [22, 12].

The judgments of the concurrency logic are of the form

η B {p}C{q}

where η ∈ Env defines all the lock variables free in C. The
rules for concurrency are in Figure 3.

Definition 17 (Proof-theoretic Consequence Relation, II)
We write

η; Ax ` {p}C {q},

to mean that η B {p}C {q} is derivable from assumptions

η′ B {p} c {q}, where {p} c {q} ∈ Ax and η′ ∈ Env ,

by the rules in Figure 3.

7 A Concurrency Model

In broad outline, our semantics for the concurrent logic
follows that of Brookes [12]. First, we define an interleav-
ing semantics based on action traces. This is a denotational
but completely syntactic model, that resolves all the con-
currency for us. Second, we give a way to “execute” the
traces in given states. Brookes did this using an additional
“local enabling relation” defined for the traces. Here, trace
execution just uses the denotational semantics in terms of
local functions. This allows us to formulate our model for
arbitrary separation algebras.

7In [22] a conditional notion of critical section was used for conve-
nience, but this can be encoded in terms of simple sections and assume.
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η B {p1}C1 {q1} η B {p2}C2 {q2}
η B {p1 ∗ p2}C1 ‖ C2 {q1 ∗ q2}

η, ` 7→ r B {p}C {q}
η B {p ∗ r} `.C {q ∗ r}

η B {p ∗ r}C {q ∗ r}
η, ` 7→ r B {p} with ` doC {q}

Plus the rules from Figure 2 with ηB added uniformly

Figure 3. Rules for Concurrency

T (c) = {c} T (skip) = {skip} T (C1;C2) = {τ1; τ2 | τi ∈ T (Ci)}
T (C1 + C2) = T (C1) ∪ T (C2) T (C?) = (T (C))? T (C1 ‖ C2) = {τ1 zip τ2 | τi ∈ T (Ci)}
T (`.C) = {(V (`); τ ;P(`))− ` | τ ∈ T (C) is `-synchronized} T (with ` doC) = {P(`); τ ;V (`) | τ ∈ T (C)}

where τ1 zip τ2 and the auxiliary τ1 zip′ τ2 are defined as follows:

γ ::= skip | act(`) | check(c, c)
ε zip τ = τ τ zip ε = τ ε zip′ τ = τ τ zip′ ε = τ

(c1; τ1) zip (c2; τ2) = check(c1, c2); ((c1; τ1) zip′ (c2; τ2)) (γ; τ1) zip τ2 = (γ; τ1) zip′ τ2

τ1 zip (γ; τ2) = τ1 zip′ (γ; τ2) (α1; τ1) zip′ (α2; τ2) = (α1; (τ1 zip (α2; τ2))) ∪ (α2; ((α1; τ1) zip τ2))

Figure 4. Trace Semantics

Syntactic Trace Model The traces will be made up of the
primitive actions of our programming language, plus two
additional semaphore operations to model entry and exit
from critical regions.

Definition 18 An atomic action α is a primitive command
or skip or a race-check or an `-action act(`).

α ::= c | skip | check(c, c) | act(`)

act(`) ::= P(`) | V (`)

A trace τ is a sequential composition of atomic actions:

τ ::= α; · · · ;α

We write ε for the empty trace, τ−` for the trace obtained by
deleting all `-actions from τ , and τ |` for the trace obtained
by removing all non-` actions from τ .

Definition 19 A trace τ is `-synchronized if τ |` is an ele-
ment of the regular language (P(`);V (`))?.

We are going, in what follows, to concentrate on `-
synchronized traces only. This is justified for two reasons.
First, any P(`) will have a matching V (`) because the
semaphore operations will be generated in traces by entry to
and exit from critical regions with ` doC. The second rea-
son can be stated logically and operationally. Operationally,

if one critical region for ` is nested within another region
for the same ` then the inner region can never be executed.
Logically, the proof rule for critical regions can never be
used on the inner region, because the rule for with ` doC
in Figure 3 deletes ` from the environment.

The set of traces T (C) of a command C is defined in
Figure 4. Most cases are straightforward. The traces of `.C
are obtained by restricting to the `-synchronized traces of C
and deleting `-actions. The deletion of `-actions is justified
by Lemma 21, since `-actions behave like skip when ` is
mapped to emp by the environment η. The semantics of `.C
starts with a V (`) and ends with a P(`) to model the idea
that the lock declaration begins by transferring state into the
lock ` and terminates by releasing it. This follows the view
of P(`) and V (`) as resource ownership transformers [22],
formalized below using the annihilation and materialization
operations discussed at the end of Section 3. The critical
region with ` doC just inserts mutex operations before and
after C. The traces of C1 ‖ C2 are interleavings, except
that any time two primitive actions can potentially execute
at the same time we insert a check for races. We remark that
races are not detected at this stage: we merely insert check
statements that will be evaluated at execution time.

Executing Traces As an individual trace is just a sequen-
tial composition of simple commands, we can define its de-
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notational semantics following Figure 1.

JcKvη = v(c) JskipKvησ = {σ}
JC1;C2Kvη = (JC1Kvη); (JC2Kvη)

JP (`)Kvη = bla[emp, η(`)]

JV (`)Kvη = bla[η(`), emp]

Jcheck(c1, c2)Kvη = check(v(c1), v(c2))

where check(f, g) is defined as follows:

check(f, g)(σ) =

 {σ} if ∃σfσg. σf • σg = σ ∧
f(σf ) 6= > ∧ g(σg) 6= >

> otherwise

In words, check(f, g)(σ) faults if we cannot find a parti-
tion σf •σg of σ where the components of the partition con-
tain sufficient resource for f and g individually. In case the
entire state σ has enough resource for both f and g (mean-
ing they don’t deliver >), check(f, g)(σ) skips. In different
models, this sense of race takes on a different import. For
example, in the plain heap model, by this definition racing
means that two operations touch the same location, even if
they are only reading the same location, while in permission
models two operations can read the same location without it
being judged a race. Note, though, that this determination,
whether or not we have a race, is not something that must be
added to a model: it is always completely determined just
by the • operation.

Lemma 20 Jcheck(c1, c2)Kvη is local.

A crucial property of trace execution is the following,
which it relies essentially on lock invariants being precise.

Lemma 21 If τ is an `-synchronized trace then

JV (`); τ ;P(`)Kvη w Jτ − `Kvη

Interpreting the Logic. We can now define a semantics
of Hoare triples that takes the lock invariants into account.

Definition 22 (Semantic Consequence Relation, II)
Given a set of traces S, we define the semantics
JSKvη =

⊔
τ∈SJτKvη. We write

η; Ax |=I {p}C {q}

to mean that for all valuations v, if v satisfies Ax then
〈〈p〉〉 JT (C)Kvη 〈〈q〉〉 is true according to Definition 6.

The following lemma is the essential part of the proof of
soundness for parallel composition.

Lemma 23 (Parallel Decomposition Lemma) If σ = σ1•
σ2 and JτiKvησi v qi for i = 1, 2, and τ ∈ (τ1 zip τ2) then
JτKvησ v q1 ∗ q2.

Proof: The proof is by induction on the definition of zip
and zip′. The first interesting case involves race check-
ing. Consider τ1 = c1; τ ′1 and τ2 = c2; τ ′2. Then
τ = check(c1, c2); τ ′ for some τ ′ ∈ (τ1 zip′ τ2). Since
Jci; τiKvησi v qi, we have JciKvησi 6= >, hence

check(Jc1Kvη, Jc2Kvη)(σ1 • σ2) = σ1 • σ2 6= >.

That is, Jcheck(c1, c2)Kvησ = σ. Induction hypothesis on
τ ′ gives Jcheck(c1, c2); τ ′Kvησ v q1 ∗ q2.

The other interesting case is the interleaving case of
zip′ (the bottom right equality in Figure 4). Consider
τ1 = α1; τ ′1 and τ2 = α2; τ ′2. and suppose that τ ∈
(α1; (τ ′1 zip (α2; τ ′2))) (the other case being symmetrical).
Then there is τ ′ ∈ (τ ′1 zip (α2; τ ′2)) with τ = α1; τ ′.

Since JτiKvησi v qi by assumption, we know that
Jτ ′1Kvησ′1 v q1 for each σ′1 ∈ v(α1)σ1, where v(αi)σi 6= >
by the execution semantics of sequential composition and
the fact that q1 6= >. By induction hypothesis, for any
such σ′1 where σ′1#σ2, we have Jτ ′Kvη(σ′1 • σ2) v q1 ∗ q2.
This says exactly that Jτ ′Kvη(σ′) v q1 ∗ q2, for all σ′ ∈
v(α1)σ1 ∗ {σ2}. Since α1 satisfies the locality condition
we have v(α1)(σ1 • σ2) v v(α1)σ1 ∗ {σ2}, and JτKvησ v
q1 ∗ q2 by the semantics of sequential composition.

Note the use of the locality property for the basic actions α
(including semaphore operations) near the end of this proof.

Theorem 24 (Soundness, II) All of the proof rules pre-
serve validity. As a result,

η; Ax ` {p}C {q} implies η; Ax |=I {p}C {q}

Proof: The proof is by induction on the derivation of
η; Ax ` {p}C {q}. For the rules in Figure 2 the proof is
straightforward. We consider the rules in Figure 3.

For the parallel rule, assume η; Ax |=I {pi}Ci {qi} for
i = 1, 2. We need to show η; Ax |=I {p1∗p2}C1 ‖ C2 {q1∗
q2}. Consider a valuation v that satisfies Ax and a trace τ ∈
T (C1 ‖ C2). We require 〈〈p1 ∗ p2〉〉 [[τ ]]vη 〈〈q1 ∗ q2〉〉. Take
σ = σ1 •σ2 such that σi ∈ pi for i = 1, 2. We need to show
that JτKvησ v q1 ∗ q2. Since τ ∈ T (C1 ‖ C2), we have
τ = τ1zipτ2 for τi ∈ T (Ci). By assumption, JτiKvησi v qi

for i = 1, 2. Lemma 23 gives JτKvησ v q1∗q2, as required.
For the lock declaration rule, assume (η|`:=r); Ax |=I

{p}C {q}. We need to show η; Ax |=I {p ∗ r} `.C {q ∗ r}.
Consider a valuation v that satisfies Ax and a trace τ ∈
T (`.C). We need to show that 〈〈p ∗ r〉〉 [[τ ]]vη 〈〈q ∗ r〉〉 holds.
Take σ ∈ p ∗ r. We need to prove that JτKvησ v q ∗
r. Since τ ∈ T (`.C), we have (V (`); τ ′;P(`)) − ` for `-
synchronized τ ′ ∈ T (C). By assumption and the semantics
of P(`) and V (`) we have JV (`); τ ′;P(`)Kv(η|`:=r)σ v
q ∗ r. Lemma 21 gives JV (`); τ ′;P(`)Kv(η|`:=r) w Jτ ′ −
`Kvη. Since τ = (τ ′ − `), we have shown JτKvησ v q ∗ r.
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For the critical region rule, the traces of with ` doC are
of the form P(`); τ ′;V (`). Given {p ∗ r}C{q ∗ r} and a
trace τ ′ of C, we can reason sequentially as follows, where
intermediate assertions indicate use of the sequencing rule

{p} P (`) {p ∗ r} τ ′ {q ∗ r} V (`){q}
This overall pre and post is what we need to establish for
any trace of with ` doC. The given preconditions and post-
conditions for P (`) and V (`) follow from their semantic
definitions as best local actions: you use p as a frame axiom
in the P case, and q as a frame axiom in the V case.

Because failure of a race check results in value >, and
because a Hoare triple is falsified by >, the theorem also
implies that any proven program is race-free. This notion
of race-freedom is relative to the given separation algebra.
In a plain heap model [L ⇀fin R] any access to a common
location is regarded as a race, while in permission models
concurrent reads are not judged racy.

Remarks on other rules. We did not include the auxil-
iary variable elimination rule, which comes to separation
logic from Owicki and Gries. This rule requires variables
to be present in Σ, while the general notion of separation
algebra does not require variables to be present. It is easy to
validate the rule in Σ’s that contain variables-as-resource. It
is possible, though, on the general level, to validate a ver-
sion of Milner’s expansion law, which captures part of the
import of the use of auxiliary variables.

Neither did we explicitly include the Hoare logic rule
for introducing existentials [23]; it, semantically, just boils
down to the disjunction rule. Finally, we did not include a
version of the substitution rule from [23]. This would re-
quire formulation of a notion of parameterized local action.

8 Conclusion and Related Work

There are three main precursors to this work. The first
is the model theory of BI [24, 31], which Pym emphasized
can be understood as providing a general model of resource.
At first, models of BI were given in terms of total commuta-
tive monoids and then, prodded by the development in [17],
in terms of partial monoids. Separation algebras are a spe-
cial case of the models in [30], corresponding to (certain)
Boolean BI algebras.

The second precursor is [37], which identified Safety
Monotonicity and the Frame Property, conditions on an
operational semantics corresponding to the frame rule. In
comparison to [37] the main step forward – apart from con-
currency and consideration of a class of models rather than
a single one – is the use of functions into the poset P (Σ)>

instead of relations satisfying Safety Monotonicity and the
Frame Property. This shift has led to dramatic simplifica-
tions. For example, the formulation of the best state trans-
formers (Definition 10) is much simpler and easier to un-
derstand than its relational cousin in [25].

The relational version of local actions for separation al-
gebras was used in [18]. This was based on Safety Mono-
tonicity and the Frame Property, prior to our move to the
topped powerset. Also, the focus there was on program re-
finement, rather than abstract separation logic.

The third precursor is Brookes’s proof of the soundness
of concurrent separation logic, for the RAM model [12].
One of the key insights of Brookes’s work shows up again
here, where the semantics is factored into two parts: i) a
(stateless) trace model, where interleaving is done on the
(syntactic) actions; ii) a semantics that interprets the ac-
tions’ effects on states. With this factoring concurrency is
handled in the action-trace model, in a way that is largely in-
dependent of the meanings of the primitive commands, and
this means that the imperative (state transforming) meaning
of commands needs only to be given in a sequential set-
ting, for the traces, after concurrency has been resolved by
interleaving. We attempted to prove soundness for an inter-
leaving operational semantics of concurrency in the style of
Plotkin, but doing so directly turned out to be difficult, par-
ticularly in the case of lock (resource) declarations: these
are handled easily via filtering in the trace semantics.

There are, though, several differences in our seman-
tics and Brookes’s. Most importantly, Brookes’s traces are
made up of items that are tightly tied to the RAM model,
and are not themselves primitive commands in the language
under consideration. Because we use the primitive com-
mands themselves (plus semaphore operations) as the ele-
ments of the interleaving, we are able to see that soundness
depends only on the locality properties of the primitive com-
mands: this gives a sharper explanation of the conditions
needed for soundness, and it transfers immediately to the
more general class of models. Our proof of soundness for an
infinite class of models is (arguably) simpler than Brookes’s
proof for a single model; for example, our Lemma 23 is
considerably simpler in its statement than Brookes’s Paral-
lel Decomposition Lemma. There are other detailed differ-
ences, such as that we detect races while executing traces,
after interleaving, while Brookes detects races at an earlier
stage (during interleaving). This being said, we fully ac-
knowledge the influence of Brookes’s original analysis.

The concurrency model given in this paper is still re-
moved from the way that programs work in two respects
(even under timeslicing on a single-CPU machine). The
first is that the semantics of lock declarations `.C simply
drops all `-actions from traces. The second is that we pre-
sume that traces have structure inspired by the intuition of
mutual exclusion, but we do not explicitly represent block-
ing or busy-waiting in the semaphores used in their interpre-
tation. In the long version of the paper [13] we justify these
aspects of the model by connecting it to an operational se-
mantics in the style of Plotkin.8

8Also, because of race-freedom it should be possible to connect to a
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In formulating our results we have not aimed for the
maximum possible generality. Our results on the sequential
subset of ASL could almost certainly be redone using con-
text logic [14], which replaces the primitive of separation
by the primitive of pulling a state apart into a state-with-a-
hole (a context) and its filler; more work on context logic
would be required to generalize our more significant results
on concurrency. Abstract predicates and higher-order sep-
aration logic have been used to approach modules, while
the treatment here avoids higher-order predicates [26, 6].
Finally, it would be desirable to go beyond algebra and for-
mulate the essence of local action at a categorical level, per-
haps on the level of the general theory of effects [19, 29].

Rather than shooting for maximum generality, we have
chosen a tradeoff between complexity and generality, that
demonstrates the existence of at least one abstract account
of a basis for local reasoning about programs. It is but one
possible path through the subject. Recent work on the logic
for low-level code sometimes chooses to reflect locality in
a novel interpretation of Hoare triples [7] rather than in the
semantics of commands, or to express locality explicitly by
polymorphism [20, 3]. The work on Boogie [2] achieves
modularity using ideas that have hints of the primitives in
separation logic [21], and a study of the abstract principles
underlying Boogie could be valuable. And, it does not ap-
pear that the locality condition in our model can be used to
explain the “procedure local semantics” of [35]. Generally,
we believe that there is more to be learnt about local reason-
ing about programs, particularly concurrent programs, and
about semantics expressing local program behaviour.
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