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Abstract normative system)”. Here, ¢ is a temporal logic expres-

sion over the usuatTL temporal operator§), <, [], and

U (every temporal operator must be preceded by a deontic
operator, cfCTL syntax), and) denotes a normative system.
In NTL, obligations and permissions are thus, ficetntextu-
alisedto a normative system and, second, havetamporal
dimension. It has been argued that the latter can help avoid
some of the paradoxes of classical deontic logicL gener-
alisesCcTL because by lettingy denote the empty normative
system, the universal path quantifieican be interpreted as
0,,,; much of the technical machinery developed for reason-
ing with cTL can thus be adapted forrL [Emerson, 1990;
Clarkeet al, 200d. NTL is in fact a descendent of tiNorma-

tive ATL (NATL) logic introduced ifWooldridge and van der
Hoek, 200%: howeverNTL is muchsimpler (and we believe
more intuitive) tharnATL, and we are able to present many
more technical results for the logic: we first give a sound and
complete axiomatisation, and then discuss the logic's rela
tionship to standard deontic logics. We introduce a syneboli
representation language for normative systems, and invest
gate the complexity of model checking ferL, showing that

it varies fromp-complete in the simplest case upERPTIME-
hard in the worst. We present an example to illustrate the
1 Introduction approach, and present some brief conclusions.

We introduceNormative Temporal Logi¢NTL), a
logic for reasoning about normative systenms.L

is a generalisation of the well-known branching-
time temporal logiccTL, in which the path quan-
tifiers A (“on all paths...”) andE (“on some
path...”) are replaced by the indexed deontic
operatorsO,, and P,,, where for exampleO, ¢
means { is obligatory in the context of norma-
tive systemn”. After defining the logic, we give

a sound and complete axiomatisation, and discuss
the logic’s relationship to standard deontic logics.
We present a symbolic representation language for
models and normative systems, and identify four
different model checking problems, corresponding
to whether or not a model is represented symboli-
cally or explicitly, and whether or not we are given
an interpretation for the normative systems named
in formulae to be checked. We show that the com-
plexity of model checking varies from-complete

up toEXPTIME-hard for these variations.

Normative systems, or social laws, have been widely pro- ] )
moted as an approach to coordinating multi-agent sys2 Normative Temporal Logic

tems[Shoham and Tennenholtz, 1996Crudely, a norma- oEripke Structures:  Let® — {p,q,...} be a finite set of
0

tive system defines a set of constraints on the behaviour Qf ;i hronositional variables A Kripke structure{over )
agents, corresponding to obligations, which may or may n a quadk — (S, S, R V), where: Sis a finite, non-empty

be observed by agents. A number of.formalisms hqve be%]et ofstates with S C S(S # () being theinitial states
proposed for reasoning about normative behaviour in muIt|-R C Sx Sis a total tﬁnary relation 0§, which we refer to
agent systems, typically based on deontic Idgiteyer and as thetransition relatiort; andV : S — 2 labels each state
Wieringa, 199k However the computational properties of with the set of propositional variables true in that state. A

such formalisms — in particular, their use in the practieal d &/ath overR is an infinite sequence of states= s, s,, . ..

sign and synthesis of normative systems and the complexi hich must satisfy the :

; ; s ) ; g property thet € N: (s),Su+1) € R
Ogr%a;sevrgr;g(;,:i:‘t;]ttht}gn(;migsaics)r:e(\:laleve?ellstggtal\tltg::‘rt:g{i]\}eiqrghm If uc N, then we denote by[u] the componentindexed hy
Paper, : P in 7 (thus~[0] denotes the first element|1] the second, and

poral Logic (NTL), a logic for reasoning about normative sys- o '
tems, which is closely related to the well-known and widely—SO on). A pathr such thatr[0] = sis ans-path

used branching time logicTL [Emerson, 1990 In NTL, the

universal and existential path quantifiersaafi are replaced Normative Systems: In this paper, a normative system is
by indexed deontic operato®, andP,,, whereO, o means a set of constraints on the behaviour of agents in a system
that “p is obligatory in the context of the normative system

7", and P, means { is permissible in the context of the 'ArelationR C Sx Sis total iff vs3s : (s,§) € R



More precisely, a normative system defines, for every possik is a Kripke structures is a state in/C, | an interpretation
ble system transition, whether or not that transition is-con over K, andy a formulae of the language, as follows:

sidered to be legal or not. Different normative systems may
differ on whether or not a transition is legal. Formally, a-no
mative system (w.r.t. a Kripke structurdC = (S S, R, V))

is simply a subset dR, such thaR\ 7 is a total relation. The
requirementthaR\ 7 is total is areasonablenesonstraint: it
prevents normative systems which lead to states with no suc-
cessor. LeN(R) = {n | (n € R) & (R\ nistota)} be the
set of normative systems ovBr The intended interpretation
of a normative system is that(s,s') € n means transition
(s, 9) is forbidden in the context of, henceR\ n denotes the
legaltransitions of). Since it is assumeglis reasonable, we
are guaranteed that a legal outward transition exists feryev
state. Ifr is a path oveR andr is a normative system over
R, thenw is n-conformantf Yu € N, («[u], 7[u + 1]) & 7.

K,skE T;

K,ski piff pe V(s) (wherep € ®);

K,s k1 —piffnot K, s = ¢;

K,skE eV yiff K,sk= pork, s v,

K,sk 0,0¢iff Vi € Cip(s) : K, w[1] =1 ;

K,sk= PoOwiff 31 € Ci(p(s) : K, w[1] =1 o

K,sk= Op(U ) iff Y € C(s),Iue N, s.t.IC, w[U] =
Yandwv, (0 <v<u): K, V] F ¢

K,s 1 Py(pUy) iff 3m € Ci(,(s),ue N, s.t.IC, w[u] =
pandwy, (0 <v<u): K 7V = ¢

The remaining classical logic connectives\(}' “ —", “ ")

LetC,(s) be the set of;-conformant-paths (w.r.t. Som&).
Since normative systems are js&tts(of disallowed tran-

are assumed to be defined as abbreviations in terms \of
in the conventional manner. We write =, ¢ if K, 50 =1 ¢

sitions), we carcomparethem, to determine, for example, foralls € S, K E¢if K pforalll, andE ¢if £ |= ¢
whether one isnore liberal(less restrictive) than another: if for all K. The remainingTL temporal operators are defined:
n C 7', theny places fewer constraints on a system thgn
hencen is more IiberaI_. Notice that, assuming explicitrep— 0, 9 0,(TUY) P,
resentation of normative systems, (i.e., representingaao 0, ¢ -P,0—¢ P,y
tive systemy directly as a subset df), checking such prop- . ]
erties can be done in polynomial time. We can also operat&ecalling thaty, denotes the empty normative system, we
on them with the standard set theoretic operations of uniorPbtain the conventional path quantifiers@fL as follows:
intersection, etc. Taking the union of two normative system Aa = Oy, o, Ea = Py .

11 andne may yield (depending on whethBr\ (1, U n2) is

total) a normative system thatnsore restrictivg(less liberal)  Properties and Axiomatisation: The following Proposi-
than either of its parent systems, while takingititersection  tion makes precise the expected property théess liberal

of two normative systems yields a normative system which issystem has more obligations (and less permissions) than a
less restrictivgmore liberal). Care must be taken when oper-more liberal system

ating on normative systems in this way to ensure the regultin
system is reasonable.

P, (TU )
‘|O77<>‘|g0

Proposition 1 Let XC be a Kripke structure, | be an interpre-
tation over/C, andn;, 2 € X0 If1 (1) C 1(72) thenK =

— —

Syntax of NTL: The language afiTL is a generalisation of O = Opap @NAK =1 Poip = Py 0. i L

CTL: the only issue that may cause confusion is that, within¥Ve now present a sound and complete axiomatisationfor
this language, we refer explicitly to normative systemsigvh ~ and some of its variants. First, letrL™ be NTL without
are semanticobjects. We will therefore assume a stock of the empty normative systery. Formally,NTL™ is defined
syntactic elements,, which will denote normative systems. exactly asNTL, except for the requirement that, contains

To avoid a proliferation of notation, we will use the symhol  the s, symbol and the corresponding restriction on interpre-
both as a syntactic element for normative systems in the langtions.” An axiom system fauTL—, denoted-—, is defined
guage, and the same symbol to denote the corresponding §8; axjoms and rules (Ax1)—(R2) in Figure NTL~ can be

mantic object. Arinterpretationfor symbolsy,, with respect
to a transition relatiofR is a functionl : £, — N(R). When
Ris a transition relation of Kripke structu#€ we say that

is an interpretation ovelC. We will assume that the symbol
ny always denotes themptyseinormative system, i.e., the
normative system which forbids transitions. Note that this
normative system will be reasonable &yKripke structure.
Thus, we require that for alt |(7y) = . The syntax ofNTL

is defined by the following grammar:

pu=T|p|-p|eVe | PO | PyleUp) | 0,00 | Oy(el p)

wherep € ¢ andn € X,. Sometimes we calk occurring
in an expressio®, « or P, « atemporal formula(although
such anx is not a well-formed formula).

Semantic Rules: The semantics ofiTL are given with re-
spect to the satisfaction relatior=". I, s |= ¢ holds when

seen as anulti-dimensionalariant ofcTL, where there are
several indexed versions of each path quantifier.

Going on toNTL, we add axioms (Obl) and (Perm) (Fig-
ure 1); the corresponding inference system is denietétVe
then, have the following chain of implications NTL (the
second element in the chain is a variant of the deontic ax-
iom discussed below). If something is naturally, or phyl§jca
inevitable, then it is obligatory in any normative systemn; i
something is an obligation within a given normative system
n, then it is permissible im; and if something is permissible
in a given normative system, then it is naturally (physigcall
possible:
F(Ap = Opp)  F(Opp—Pyrp)  F(Php— Ep)

Finally, letNTL™ be the extension afiTL obtained by ex-
tending the logical language with propositions on the form



(Ax1) All validities of propositional logic and require interpretations to interptetas set union and
(Ax2) P, — Py (TU ) as set intersection. As discussed above, we must then furthe
(Ax2b) 0, [y < =P, O restrict interpretations such thiat\ (I(n:1) U1(12)) always is
(AX3) 0, — O(TUP) total. This would give us a kind of calculus of_ normative sys-

" K tems. LetC be a Kripke structure andbe an interpretation
(AX3b) P, [y < =0,$p with the mentioned properties:

(Ax4) P,O (e V) < (PrOpVP,O) K= Pouge — Pre K =i Py — Py
(Ax5) 0,0 < =P,O=p K |:| Ongo — Onun/go K |:| 077‘_'77'90 — Ontp

(AX6) Pp(pU) «— (b V (¢ APROPy(pUY))) (all of which follow from Proposition 1). Having such a cal-

(AXT) Oy(pU ) = (¥ V (¢ A OO0y (pU))) culus allows one to reason about the composition of norma-
(Ax8) P,OT AO,OT tive systems.

(AX9) O, [l — (=0 AP,Op)) — (9 — ~On(yU ) o o o

(Ax9b) O, TI(p — (= AP, OR)) — (p — =0, 1) Relationship with Deontic Logic: The two main differ-

ences between the language nofL and the language of

(Ax10) Oy Ll — (= Ay — 0409))) — (¥ =~ conyventional deontic logic (henceforth “deontic logictea

~Pa(yUY)) first, contextuadeontic operators allowing a formula to refer
(AX10b) O, (¢ — (-1 A 0,0¢)) = (¢ — =P,OY) to several different normative systems, and, sectempo-
(Ax11) 0, (¢ — ) — (P,Op — P, O) ral operators.All deontic expressions iNTL refer to time:
(R1) If - ¢ then O, [y (generalization) P,O ¢ (“itis permissible in the context of thaty is true at

the next time point”)O, [ 1¢ (“it is obligatory in the context
(R2) If o andf- ¢ — ¢ thent- v (modus ponens) of n thate always will be true”); etc. Deontic logic contains
(Obl) Oyya — Opax no notion of time. In order to compare our temporal deon-
(Perm) P,a — Pp,a tic statements wi_th those qf de_o_ntic logic we must take the
(Obl+) n C 1 — (Oya — O, @) temporal dimension to be implicit in the latter. Two of the
= " n perhaps most natural ways of doing that is to take “obliga-
(Perm+) n E ' — (Pyya — Pya) tory” (Oy) to mean alwaysobligatory” (0,, [J¢), or “oblig-
atory at thenext point in timé (O, O¢), respectively, and
Figure 1: The three systemsL~ ((Ax1)—(R2), derived from similarly for permission. In either case, all the principle
an axiomatisation o€TL); NTL ((Ax1)—(R2),(Obl),(Perm)); of Standard Deontic Logi¢spL) hold also fornpL, viz.,
NTLT ((Ax1)—(R2),(Obl+),(Perm+))x stands for atemporal O(¢ — 1) — (Op — O%) (K); —~OL (D); and fromgp

formula. infer O¢ (N). The two mentioned temporal interpretations of
the (crucial) deontic axior® are (bothnTL validities):
n = n’ andn = ' (C can then be defined), interpreted in -0, []1 and-0,O L

the obvious way (e.gk, s C ' iff | c (). An , ) )
axiom system fg,\fTL%’?deEtgdﬁﬂs obtgmed fr(gn?’r)‘ by With these translations, all of the most commonly discussed

adding the schemes (Obl+) and (Perm-+) (Figure 1). so-called paradoxes of deontic logic also holds .. How-

, ever, it has been argued (cf., e.fMeyer and Wieringa,
Theorem 1 (Soundness and CompletenesShe inference 1993 that one of the causes behind some of the instances of
mechanisni-~ is so_und and complete Wlth_respect to validity tpe paradoxes (particularly those involving contranydtdy
of NTL™ formulas, i.e., for every formula in the language  gpjigations) is that the language of conventional deootid
of NTL™, we have= ¢ iff -~ . The same holds for with i 150 weak, and that by incorporating temporal operators
respect to formulas fromTL and-" with respect tanTL ™. some instances of the paradoxes can be avoided.
Proof:  All three cases are proven by adjusting the tech-
nique presented ifEmerson, 1990 For theNTL™ case, 3 Symbolic Representations
the tableau-based construction[&merson, 1990immedi-
ately carries through: we will encounter, for every geredat
state, successors of differentdimensions. For the caseLof ; : .

cause of thestate explosion problemgiven a system with

which includes the symbaj,, we have to add clauses corre- Bool bles. th h | tvoically hagbstat
sponding to (Obl) and (Perm) to the construction of the clo1 BOOIEan variables, the system will typically states.
Instead, practical reasoning tools provielecinct symbolic

surecl(y) of a formulag: if O,,« (respectivelyP, ) is in . > B ;
: . representation languages for defining Kripke structures. W
Cl(p) then als0,,a (respectivelyPy, ) should be ircl(p). present such a language for defining models, and also intro-

+
In th_e case ONTL. , we have to close offl(y) under the duce an associated symbolic language for defining normative
implications of axioms (Obl+) and (Perm+). systems

In practice, explicit state representations of Kripke ciives
are rarely if ever used when reasoning about systems, be-

Going beyondNTL™, we can impose further structure on
¥, and its interpretations. For example, we can add union# Symbolic Language for Models: We present theim-
and intersections of normative systems by requibijgo in-  PLE REACTIVE MODULES LANGUAGE (SRML), a “stripped
clude symbols; LI v/, n 1 7 whenever it includeg and’, down” version of Alur and HenzingerisEACTIVE MODULES



LANGUAGE (RML) [Alur and Henzinger, 1999 which was each rule is enabled sands' is obtained from executing this
introduced in[Hoek et al, 2004. SRML represents the core collection of rules ors.

of RML, with some “syntactic sugar” removed to simplify the
presentation and semantics. The basic idea is to present a . _ )
Kripke structurefC by means of a number of symbolically A Symbolic Language for Normative Systems: We now
represented agents, where the choices available to eveny ag mtrodupe thesRML Norm LanguagdsnL) for representing
are defined by a number of rules, defining which actions an?ormatwe systems, which corresponds toskelL language
available to the agent in every state; a transifigrs’) in or .m.o.delfs.' The general form of 8NL normative system
corresponds to guple of actions, one for each agent in the definition is:
system Here is an example of an agent definitionSRML

« " nor mat i ve- syst emid
(agents are referred to as “modules” B)KML): y

x1 di sables ¢y,,...,4,
nmodul e togglecont r ol s x
init
G T o X= T Here,id € %, is the name of the normative system; these
b2: T~ x=1 names will be used to refer to normative systems in formulae
;’P?;‘t €. N of NTL. The body of the normative system is defined by a set
;j N of constraint rules A constraint rule
4 (—‘X) ~ X =T
This module, nametbggle controls a single Boolean vari-
able,x. The choices available to the agent are defined by
thei nit andupdat e rule$. Thei nit rules define the consists of a condition pagt, which is a propositional logic
choices available to the agent with respect to the iniaéii;m  formula over the variables of the system, and a set of rule
of its variables, while theipdat e rules define the agent’s labels{/y,..., 4} (we require[] & {¢1,...,4}). If xiis
choices subsequently. In this example, there areitwiot satisfied in a particular state, thany SRML rule with a label
rules and twoupdat e rules. Thei ni t rules define two that appears on the r.h.s. of the constraint rule will beghé
choices for the initialisation of variable assign it the value in that state, according to this normative systemin SNL
T or the valuel. Both of these rules can fire initially, as interpretationis then simply a set a§NL normative systems,
their conditions ") are always satisfied; in fact, only one each with a distinct name.
of the available rules will eveactually fire, corresponding Given SNL normative systems; andnz, for somesrRML
to the “choice made” by the agent on that decision roundsystemp, we say:n, is at least as liberahsn, in systemp if
The effect of firing a rule is to execute the assignment statefor every states € S,, every rule that is legal according g
ments on the r.h.s. of the rule, which modify the agent’s conis legal according ta);; and they arequivalentif for every
trolled variables. (The “prime” notation for variablesge. states € S, the set of rules legal according 4@ andr, are
X', means “the value of afterwards”.) Rules are identified the same.
by labels (4); these labels do not form part of the original ) )
RML language, and in fact play no part in the semantics off N€orem 2 The problem of testing whethenL normative
SRML — they are used to identify rules in normative systemsSYysteémy is at least as liberal asNL normative system, is
as we shall see below. We assume a distinguished 1ape! * PSPACEcomplete, as is the problem of testing equivalence of
for rules, which is used to identify rules that should neverSuch systems.
be made illegal by any normative system. With respect tqbroof'
updat e rules, the first rule says that ¥ has the valueT, '
then the corresponding action is to assign it the valuehile
the second rule says thatihas the value., then it can sub-

sequently be assigned the valtie In sum, the module non- zinger,]) and check that there is some rule lega atcording

deterministically chooses a value foinitially, and then on ; . . .
subsequent rounds toggles this value. In this example, thté) 72 IS not legal insaccording toy,, OF vice versa. Hence the

i ni t rules are non-deterministic, while thgpdat e rules complement problem is INPSPACE and so the problem is
are deterministic. AlSRML systemp, is a set of such mod- in PSPACE ForpPspPACEhardness, we reduce the problem of

ules, where the controlled variables of modules are muytuall pr%pasmo_nal |51vz(asr_|ant checking oves)RML gmdules[_A_Iur |

disjoint. ?n Ienzm(gj;ef_,. iven ansrML systemp ar(li prop(;sﬁmna
The Kripke structurdC, = (S,,S),R,,V,) corresponding ormuia ¢, detine normf_itw.e systems and; as follows

P GO (wherel does not occur ip):

to SRML systemp is given as follows: the state s& and val-

uation functionV, corresponds to states (valuations of vari- _ _

ables) that could be reached pywith initial statesS) being "o Mt gye' E?/St egmm nor ”ftd' Ve'bISySt;mm

states that could be generatedihyi t rules; the transition T di sables I sables

relationR, is defined by(s, s') € R, iff there exists a tuple of According tor,,  is always enabled: thug will be equiva-

updat e rules, one for each module in the system, such thajgn to.), iff ,» holds across all reachable states of the system.

(]

xmdi sabl es fm,, ..., Im

x di sabl es #4,..., 4

We do the proof for checking equivalence; the lib-
erality case is similar. For membershiprgPACE consider
the complement problem: guess a stateheck thas € S,,
(reachability of states iRML is in PSPACE[Alur and Hen-

2To be more precise, the rules apearded commands



4 Model Checking

Model checking is an important computational problem f
any modal or temporal logitClarkeet al, 200J. We con-
sider two versions of the model checking problem i,
depending on whether the model is presented explicitly

7

N\

N
s6 .
e v S
s5 @

symbolically. For each of these cases, there are two f

ther possibilities, depending on whether we are given an in-

terpretationl for normative systems named in formulae or
not. If we are given an interpretation for the normative sys
tems named in the formula, thertL model checking essen-

tially amounts to a conventional verification problem: show
ing that, under the given interpretation, the model and-ass

Figure 2: Reduction for Theorem 3.

Symbolic Model Checking: As we noted above, explicit
state model checking problems are perhaps of limited inter-

£st, since such representations are exponentially lartieein

ciated normative systems have certain properties. Howeve'?umber of propositional variables. Thus we now consider the

theuninterpretednodel checking problem corresponds to the
synthesiof normative systems: we ask whethibere exist
normative systems that would have the desired properties.

Explicit State Model Checking: The interpreted explicit
state model checking probleior NTL is as follows.

Given a Kripke structurdC = (S, S, R, V), interpreta-
tionl : ¥, — N(R) and formulap of NTL, is it the case
that C ':| Lp?

The cTL model checking problem is-completel Schnoebe-

len, 2003. The standard dynamic programming algorithm for
cTL model checking may be easily adapted for interpreted e
plicit stateNTL model checking, and has the same worst cas

time complexity. More interesting is the case where we arggof-

not given an interpretation. Theninterpreted explicit state
model checking probleffior NTL is as follows.

Given a Kripke structurdC = (S, S, R, V) and formula
¢ of NTL, does there exist an interpretatibn %, —
N(R) such thatC = ¢?

Theorem 3 The uninterpreted explicit state model checking
problem forNTL is NP-complete.

X .
éem forNTL is EXPTIME-hard.

SRML model checking problem fovTL. Again, we have two
versions, depending on whether we are given an interpreta-
tion or not.

Theorem 4 The interpretedsRML model checking problem
for NTL is PSPACECOMplete.

Proof: PspAcEhardness is by a reduction from the prob-
lem of propositional invariant verification fosrRmL [Alur
and Henzinger]®. Given a propositional formula and an
(S)RML systemp, letl = {n,y}, and simply check whether
K, =1 Oy, 1. Membership oPsPACEis by adapting the
cTL symbolic model checking algorithm §€heng, 1995 o

Theorem 5 The uninterpretedsRML model checking prob-

By reduction from the problem of determin-
ing whether a given player has a winning strategy in the
two-player gameEEK-G,4 [Stockmeyer and Chandra, 1979,
p.154. An instance ofPEEK-G, is a quad(Xy, Xz, X3, )
where:X; andX, are disjoint, finite sets of Boolean variables
— variablesX; are under the control of agent 1, aKd are
under the control of agent X5 C (X; UXs) are the variables
true in the initial state of the game; agdis a propositional
formula overX; U X, representing the winning condition.
The agents take try to maketrue, by taking it in turns to

Proof:  For membership innp, simply guess an interpre- alter the value of at most one of their variables. The deci-
tation| and verify thatC |=; . Since interpretations are sion problem is to determine whether agent 2 has a winning
polynomial in the size of the Kripke structure and formula, strategy in a given game. The idea of the proof is to define an
guessing can be done in (nondeterministic) polynomial timesrmL system that such that the runs of the system correspond
and checking is the interpreted explicit state model chegki to plays of the given game instance, and then to define an
problem. Hence the problem is kp. For NP-hardness, we NTL formula to be model checked, which names a normative
reducesAT. GivensAT instancep over variables, ..., %,  systemy, such that the transitions legal accordingjtoorre-

for each variable, create two variablegx ) andf(x), and  spond to a winning strategy for player 2. The construction of
define a Kripke structure withk + 1 states, as illustrated in  the srmL system follows that of thexPTIME-completeness
Figure 2; states is the initial state, and sta®y is a final  proof of ATL model checking ifHoek et al., 2004, with
state. Lety* denote thenTL formula obtained fromp by the difference that player 2's update rules are given lafsels
systematically replacing every variablewith (P,Ot(x)).  that they may be disabled). The formula to model check then
Define the formula to be model checked as: defines three properties) {f it is agent2’s turn, then accord-

ing ton at most one of its possible moves is legadl) &ll of
agent 1's moves are legal accordingrtdi.e, agent 2 must
win against all of these); andli() the legal paths according to

1 must represent wins for agent

¢ AN ik (Pa O (t(x) V(%)) A
Ar<ick(PrOtx) — =P, OF (%)) (P OF (%) — =Py Ot(%))

This formula is satisfied in the structure by some interpreta
tion iff ¢ is satisfiable.

(]

%In fact, the result of Alur and Henzinger, 1999is stated for
RML, but the proof only makes use of features frerRmML.



5 Example: Traffic Norms at (2, p,car-i) disables

Consider a circular road, with two parallel lanes. Vehicies cgtr ( '1 st rcg'r glh; ’ dfg;b: é:t ::!alr S -riaht:

culate on the two lanes clockwise. We consider two types of P ght
vehicles: cars, and ambulances. The road is discretisefiHin a nor rat i ve- syst em N3

nite number of positions, each one represented as an iestanc  at (1, p, car-i) and at (2, p,car-j) disables
of a propositionat(lane-numberlaneposition vehicleid). car-i-straight, car-i-right;

Thusat(2, 5, car23) means agentar23 is on lane 2 at po-  ging a model checker, we can then evaluate properties of

sition 5 (lane 1 is the outer lane, lane 2 is the inner lane). _W‘?he system: e.g., if there is only one ambulance then we have
also refer to lane 1 as the left lane and to lane 2 as the rig umun. [1—crash
niln2Uns

lane. At each time step, cars can either remain still or ceang
their position by one unit, moving either straight or chamygi 6 Conclusions & Acknowledgments
lane. Ambulances can remain still or change their position . )
by one or two units, either straight or changing lanes at will Several issues present themselves for future work: tight
We are interested in normative systems that prevent crashe2ounds for complexity of uninterpreted symbolic model

and that permit ambulances take priority over private c@os.  checking, the complexity of satisfiability, and a full imple
consider the following normative systems: mentation of a model checker encompassing the variations

. _ discussed in section 4 are the most obvious.
* M- Ambulances have priority over all other vehicles gratefully acknowledge support from the Spanish rebearc
(i.e., cars stop to allow ambulances overtake them); project Web(l)-2, TIC2003-08763-c02-00), the EU fundeojamt
e 1)2: Cars cannot use the rightmost (priority) lane; OpenKnowledge, FP6-027253), and the UK EPSRC project “Vir-

e 13 Vehicles have “right” priority (i.e., left lane has to U@l Organisations for E-Science.
ive way to any car running in parallel on the rightlane).
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