SMOOTH COMPACTIFICATIONS OF CERTAIN NORMIC BUNDLES
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ABSTRACT. For a finite cyclic Galois extension of fields K/k of degree n and a separable
polynomial of degree dn or dn—1, we construct an explicit smooth compactification X — IP’}§
of the affine normic bundle X, given by

Ni/e(Z) = P(z) 0,
extending the map Xy — A,lc, where (2, 2) — 2. The construction makes no assumption of

the characteristic of k, making it a suitable departure point for studying the arithmetic of
smooth compactifications of X over global fields of positive characteristic.

1. INTRODUCTION

For a finite extension K/k of fields and a polynomial P(z) € k[z], the affine norm hyper-

surface Xy C AZ“ given by
Niw(Z) = P(x) 0 (1.1)
parametrizes the values of P(z) that are norms for K/k.

Suppose that £k is a number field. The classical Hasse norm theorem states that if K/k
is a cyclic Galois extension and if P(z) is a nonzero constant, then X, satisfies the Hasse
principle. Although both the Hasse principle and weak approximation fail for more general
Xy, Colliot-Thélene has conjectured that the Brauer-Manin obstruction controls failures of
weak approximation on any smooth proper model of Xj,. See [DSW14], §1] for a summary of
progress towards this conjecture.

The existence of a smooth proper model X of X, extending the projection

X — Al (Z,x) —

to a map X — P} is especially useful for proving arithmetic results in the direction of
Colliot-Thélene’s conjecture, because the map X — P}, affords some control over the Brauer
group of X. This map can also be used to prove that certain subsets of the number field &
are diophantine [P0oo09, VAV12,|CTvG].

The known constructions of X — P! proceed in two steps. First, one constructs a partial
compactification X’ — A} (e.g. [CTHS03, §2] or [CTvG, Proposition 2.2(i)]). Second, one
extends X’ — A} to a map X — P! via Hironaka’s theorem. This second step limits the
scope of the construction to fields of characteristic 0.

Our goal in this note is to give an explicit construction of a compactification X — P}
convenient for arithmetic applications, under some hypotheses. (For example, the Picard
group and Brauer group of such a compactification X are easily computable; see the proofs
of [VAV12 Proposition 3.1 and Theorem 3.2].) The construction of X does not impose a
restriction on the characteristic of k; it therefore serves as a starting point for studying the
arithmetic of smooth compactifications of X over global fields of positive characteristic.
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Theorem 1.1. Let K/k be a cyclic Galois extension of fields of degree n, and let P(x) € k|x]
be a separable polynomial of degree dn or dn— 1. There exists a smooth proper compactifica-
tion X of Xy, fibered over P}, = Proj k[xo, z1], such that X — P} extends the map X, — A}
Furthermore, the generic fiber of X — P} is a Severi-Brauer variety, and the degenerate

fibers lie over V(P(xo/z1)x{"), and consist of the union of n rational varieties all conjugate
under Gal(K/k).

1.1. Outline. Our construction of a smooth compactification takes a cue from work of Kang:
the generic fiber of our construction is the embedded Severi-Brauer variety in [Kan90].

In §3.2], we construct a partial compactification Y, — Spec R of the variety z; - - 2z, = a # 0
for any k-algebra R with no zero-divisors and any a € R\ 0. In , we give an explicit open
covering of Y, which we use in §3.4] to prove that Y is smooth if and only if V' (a) C Spec(R)
is smooth. We describe the geometry of the degenerate fibers of ¥, — Spec R in §3.5

In we construct a K /k-twist of Y, X?(’a — Spec R. Finally, in , we restrict to the
case R = k[z] and a = P(z), give a full compactification X — P}, and prove Theorem [L.1]

Remark 1.2. Artin [Art82] gives a construction of a Severi-Brauer bundle X — Al associ-
ated to a maximal k[z]-order in a central simple k(z)-algebra. This can be translated into a
partial compactification of Xy — A}, proper over A}, whose generic fiber is a Severi-Brauer
variety, and whose degenerate fibers consist of n rational varieties conjugate under Gal(K/k).

Acknowledgements. We also thank Jean-Louis Colliot-Thélene and the anonymous referee
for comments improving the exposition.

2. PRELIMINARIES ON VECTORS

Throughout, we fix an integer n > 1. By the weight of a vector v = (v,,)"_, € Z", we
mean the sum ZZ;:IO Um; we also say v has length n. Let V), denote the set of nonnegative
integer vectors of weight n and length n. Write o: V,, — V), for the shift operator

vV = (’U(),’Ul, Ce ,Un_l) —> (’Ul,Ug, ... ,’Un_l,’UQ) =: U(V).

For any v = (v,,)"_ € V, we define two nonnegative integers:

pv) = max (= vy — - —vi), V)= V) p(o(V)) + o™ (V).
and for any integers 7,7 with ¢ Z jmodn and v; > 0, we let v/ := (v, + i mod nm —

9 mod n,m)gz_:lg; note that v/ € V,,, because v; > 0. We collect a few straightforward relations
used frequently below.

Lemma 2.1. We have the following relations.
(1) p(o®(v)) =p(v) +vo+v1+ - +v5-1 — s for any v €V, and for any s € (0, n].

(2) For any integer r and any vectors v, w; € V, with 1 < i < r, such that 22:1 W, =
iy Vi we have 35 ANwi) = 320 Avi) = n (305 w(wa) — D20 p(va)).
(3) Fiz integers 0 <r < s <n and fiv v = (v,)"_2 € V, such that v,,v, > 0. Then:
0 < p(vh) + u(v®") = 2u(v) < 1, and the first inequality is strict if and only if
p(v)y=i—3"" v, =5 — S v, for some i € (1, 5] and j € (0,7] U (s,n].
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Proof. Let w := 0°(v), so that w; = v,4 if j <n —s and w; = vj1,_, if j > n —s. Then
1 —wy— wy — -+ — w;_1 equals
((1+8)—vo— -+ —Vigs1) FUo+ - +vs_1—35 ifi+s<n
((i+s—n)—vo—"+—Vigsn-1)+(n—5) —vs—---—wv,_1 otherwise.
To conclude , note that since v has weight n, we have vo+v; +---4+v,1—s=(n—3s) —

Vs — VUsqy1 — = Up—1-
By (1), for any vector v = (vn,)!_}y € V,, we have

3

-1
A(V) =nu(v) + (n—=1—=m)v, —m).
m=0

Using the assumption that Y ;_, w; = >_._, v;, the proof of is now a simple manipulation.

It remains to prove . Let w™ := v™® and w' := v®". Since r < s, by the definition of
1 we have

pv) —1<p(w) <p(v) and  p(v) < p(wh) < p(v) + 1L

Furthermore, pu(w~) = p(v) — 1 if and only if the maximum of {i — vy — -+ — Vi1 }ic(om)
is only achieved for i € (r,s|]. Similarly, pu(v) = p(w™) if and only if the maximum of
{i —=vo — -+ = vi_1 }ic(om) i only achieved for i € (0,7] U (s,n]. O

The following notion is the fundamental book-keeping device in the construction of X —
P}.
Definition 2.2. A vector v = (vg,v1,...,0,_1) € V, is well-spaced if

v; > 0= vyy, >0 and v;4; =0 for all j € [1,v; — 1]

for all i € [0,n). Here indices are considered modulo n.

For example, v = (0, 3,0,0,2,0,4,0,0) is well-spaced whereas w = (0, 3,0,0,2,4,0,0,0)
is not. Note that o(v) is well-spaced if and only if v is well-spaced.

Remark 2.3. We are unaware if well-spaced vectors arise naturally in other fields. It would
be interesting to have a conceptual understanding of why these vectors yield useful affine
coverings of the varieties under consideration (see §3)).

Lemma 2.4. Let v € V, be a well-spaced vector with ¢ + 1 nonzero entries indexed by
Qo < -+ <ig. Set iy :=mn+ig. Then u(v) =iy, and for any r,s € [0,4] and j € (ir,irs1),
we have

T R e 1 T

and if ¢ 7£ 0, N(VM“H) = M(V) + L ;lJ ’ M(O' S(V " TH)) = 58,7‘—&-1 mod ¢+1-
Proof. For any vector v = (v,,)" %, € V,,, the maximum of {i —vy—--- — Vi—1}ic(o,n] 1S never
achieved at an ¢ = 7 where v; = 0. Additionally, since v is well-spaced, v;, = 4,41 — %, for all
r € [0,/¢]. Hence

,U(V) = :2{%?(@} (Z} — Uiy~ — /Uir—l) = :2[%,)(6} (z'r — (il — z’o) e — (ir _ Z'rfl)) =i
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and the maximum of {i — vy — - -+ — vi_1 }ic(0,n] is achieved at i = i, for all r € [0, ].
Thus, the formulas for p(v7) and p(viri+1) follow from the same argument as in Lemma[2.1] (3).
Let w := v/, Then

p(o' (w)) = p(w) +wo + - +wy, 1 — is by Lemma ,
= p(v) = {lJ +wo+ - Fwi o1 — i by the formula for u(v?"),
n

= p(v) — LiJ +vo+ v, — s+ {ZJ by the definition of v/,
n n
= u(v) — 1 since v;, = 4,41 — i, for r € [0, ().
Similarly, if w := vr+1 we have

(o™ (w)) = p(w) + wo + « -+ + wi, 1 — i

:u(v)J{ JIJ g+ - Wi,y — b

ir 1 . i” 1
:M(V)+ \\ T_: J +'U0+"'+Ui571_Zs+5s,r+1m0d5+1 - \‘ ; J
- ,u(v) - 2.0 + 5s,r+1 mod /+1- ]

3. THE AUXILIARY BUNDLE Y — Spec R

3.1. Notation. Let R be a k-algebra with no zero-divisors. Given a nonzero element a € R,
we use the standard notation D(a) to denote the open affine subscheme of Spec R given by
Spec R,; if R is graded, we let D, (a) denote the open affine subscheme of Proj R given by
Spec(Ry,)o-

Let N = (*°') — 1, and fix coordinates on Py = Projk [{yv : v € V,,}]. We set PY :=
P Xspeck Spec R.

3.2. Construction of Y,. For any nonzero a € R, we consider the embedding
la: Proj R[tg,... ,ty_1] N D(a) — P¥ Xspec R D(a)

Un—1

induced by the map y, +— a*t{°t}" ... £."7' (This is easily seen to be an embedding since it is
the composition of the (n)-uple embedding with a scaling of the coordinates by an appropriate
power of a.) The image of ¢, is cut out by the equations (see [Har92, Example 2.6]):

aZLl w(wi) H Yy, = azz=1 w(vi) H Yw; (31)
i=1 i=1

for all integers r and all sets of vectors w;, v;, with 1 <4 <, such that Y|, w; =>""_ v,

Let Y, be the closure in P} of the image of ¢,.

Lemma 3.1. The order n automorphism ¢: PX — PX . y, — Yo(v) PTESETVES Y.

Proof. Fix an integer r and vectors v;, w;, with 1 <4 <r, such that >/ v, =" w;. It

is clear that .7, o (v;) = >.7_, o (w;). Moreover, by Lemma [2.1)(T)),

S ulo(vi) = D ulo(w)) = > u(vi) = > lws)
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Therefore, ¢ preserves the relations (3.1)). O
3.3. An open covering.
Proposition 3.2. The open subvarieties { D, (y,) C P : v €V, well-spaced} cover Y.

Proof. Let w = (wq, wy,...,w,_1) € V, be a vector that is not well-spaced. We will show
that D, (yw) NY, C D, (yy) for some well-spaced vector v € V,. Let iy < --- < i, be the
indices such that w;; > 0, and set ipy1 = ip + n.

If pu(w) > iy > 0, then there exists an r € [0, £) such that pu(w) = 4,41 —w;y —w;, —- - - —w;,..
Fix the smallest such r; then 4,1 — i, —w; > 0. Since w has length n and weight n, there
exists an r < s < ¢ such that (is;1 —is —w;,) < 0; fix the largest such s. Then by our
choice of r and s, if u(w) = j — vy — -+ — v;_1, we must have j € (i,,i5]. Therefore by
Lemma [2.1|([3)), the defining equations for Y, include the relation

Yaw = Yuwiris Yawissir

s0 Di(yw) C Dy (Ywiris). After possibly repeating the argument we may assume that
w(w) = iop.

If i1 — 2 —w;, = 0 for all r, then w is well-spaced. Otherwise, fix the smallest integer
r such that |i,.; — 4, — w;,| > 0; since u(w) = iy, we must have i,1 — i, — w; < 0. Since
w has length n and weight n, there exists an r < s < ¢ such that (is41 —is —w;,) > 0; fix
the smallest such s. Now by our choice of r and s, if u(w) = j — vy — -+ — v;_;, we must
have j € [0,4,] U (is,n). Then by the same argument as above, the defining equations for Y,
include the relation

Yy = Ywiriis Ywisin -
By replacing w with w'r we reduce the value of |i,;; — i, — w;,|. Repeating this process
we will arrive at a well-spaced vector v in finitely many steps. U

3.4. Smoothness of Y.

Proposition 3.3. Let A}, = Spec R[Zy, ..., Zn-1]. Let v €V, be a well-spaced vector with
¢+ 1 nonzero entries indexed by ig < --- < iy and set ipy1 := 19 +n. Then the map

l
Yw w; o+ (w)
w7 I z|x (H Z, )
Yv j€0,n), v;=0 r=0

yields an isomorphism Y, N Dy (yy) = V(Zy, -+ Z;, — a) C A% In particular, Y, is a com-
pactification of the variety in A%}, given by ZoZ, -+ Z,_1 = a.

Corollary 3.4. The variety Y, is smooth if and only if V(a) is smooth in Spec R.

Proof. This follows from Propositions and [3.3] and the Jacobian criterion. O
Proof of Proposition 3.3, Set i_y = i, — n. The proof of the proposition differs slightly in
the case when ¢ = 0. To give a unified presentation, if £ = 0 then we set y i1 = ayy.

Consider the following functions on Y,ND, (yy) for j =g, i+ 1,...,ip +n — 1

Yviir Yy * if 4, < j < ip4q for some 0 < r </,
9j = (3.2)

yvi""’iﬂrly;l lfj =14,,0<r< l.
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Lemma shows that the map sends g; — Zjmoan. In addition, Lemma together
with the relations (3.1) shows that g, ...g;, = a. Thus, to prove the map is a well-defined
isomorphism, we will show that

¢
m Wi olr+l(w
e = ] vel. | x (H ot ”)
j€lo,n), v;=0 r=0
¢ ir
where m = —1 + ZMFO wj + >, _o (o (w)). By Lemmas and , we have
V4 ig—1

2wy )+ 3o WD) = ot DY) = 3w+ 0t (W)
jE[O,%), r=0
V=

= (m+ Dp(v) + p(w) —ig = mp(v) + p(w).
Hence, by (3.1)), it suffices to prove that w + mv is equal to
‘

W, = Z wjvj77;T + Z M(O-ir+1 (W))Vir7ir+l.

j€[0,n), v;=0 r=0
For j such that v; = 0, it is evident that w9 = w; + mv;. Further,

ts+1—1

wi, = (m+ vy, — Y wj+p(e(w)) — p(o™ (W)

Jj=ts+1
is41—1 tsr1—1
=(m+ 1), — Z w; + Z Wi — Gsy1 + 15 by Lemma
Jj=is+1 Jj=tis
= mu;, + w;, since v;, = g1 — 5. ]

3.5. The degenerate fibers of Y, — Spec R.

Proposition 3.5. Let Q € V(a) € R be a closed point. The fiber Y, o consists of n rational
(n — 1)-dimensional irreducible components which are permuted cyclically by the automor-

phism ¢ of Lemma |3. 1.

Proof. For i = 0,...,n — 1, we define S; := Y, 0 N V({yw : p(c"*(w)) > 0)). From the
definition, it follows that ¢ acts on the set {S; : 0 <i < n — 1} via the permutation

So—= Sp_1 = Sp_a = .= 5= 5.

We claim that Y, o = SoUS1U---US,_; and that each S; is an irreducible rational (n — 1)-
dimensional variety.

Let v € V, be a well-spaced vector and let ig < --- < 2, be the indices of the nonzero
entries of v. By Proposition 3.3 Y, o N D (yy) is isomorphic to a union of £+ 1 hyperplanes
in Ay o) = Spec k(Q)[Zo, ..., Zn-1]. Furthermore, the hyperplane Z; = 0 is isomorphic to
the subvariety

v (<Z—W (o (w)) > 0>) C Yoo N D (yo)-

Hence, Y, oN D4 (yy) is a dense open subset of S;,US;, U---US;,. Since the open subvarieties
{D4(yv) NY, ¢ : v well-spaced} cover Y, g, this completes the proof. |
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4. A K/k TWIST OF Y,

Let K/k be a cyclic Galois extension of degree n, and let Rx := R ®; K. Fix a basis
{ag,...,an_1} of K as a k-vector space, as well as a generator 7 of Gal(K/k).

Let T" be a set of representatives for the orbits of V,under the action of the shift operator o.
Consider the K-isomorphism ¢: Proj K[{zy : v € V,,}| = Proj K[{yy : v € V,,}| determined
by

Yv = Qp2y + Q1 Zo(v) T+ Quo1Zgn-1(y) for v e T,
n—1
Yoi(v) = ZTi(aj)zgj(v) forveTandi=1,...,n—1.
§=0

Define X3 , := ¢! (Y,). Abusing notation, we write 7 for the endomorphism of Proj R[{z, :

v € V,}] Xr Rk given by id x7. Let ¢: PX¥ — PX be the automorphism of Lemma The
following diagram commutes

YRy .
Proj Rx[{zy : v € V,}] — Proj Rx[{yy : v € V,,}] (4.1)

Tl lm,{

VR :
Proj Rx[{zv : v € V,,}] i Proj Rx[{yy : v € V,,}|

By Lemma 3.1} the map ¢ preserves Y,. Together with the commutativity of the above
diagram, this implies that X%a descends to a R-scheme.

5. PROOF OF THEOREM [L.1]

Let K/k be a cyclic Galois extension of degree n and let P(x) € k[x] be a separable
polynomial of degree dn or dn — 1 for some d.

Lemma 5.1. There exists a smooth projective variety X = Xk i pz) — IE”}C such that X =

X?(,P(x) and that X]pl\{o} = X?(,P(l/x’)x’d"’ where ' = 1/;5.

Proof. We will construct X by glueing Yp(,) and Yp(q /4r)zan over Spec k[z*1] and Spec k[2/*!],
in a way which is compatible with the map ¢ from §4 Let y, denote the coordinates on
Yp() and let y;, denote the coordinates on Yp(j 4r),an. By Lemma , the morphism

V(1 atyzan X a1 Speckz’, '] = Yp(z) x a1 Specklz, 37"

where 3, + (/)P and x + 1/2’ is well-defined and is an isomorphism. Since A\(v) =
A(o(v)), this morphism is compatible with 1 and thus gives a glueing of X%P(x) and
X?(,P(l/w’)x’d"' O
Proposition 5.2. The variety X is a smooth proper compactification of Xo, the generic
fiver of X — P! is a Severi-Brauer variety, and the degenerate fibers of X — P! lie
over V(P(xo/x1)xd") and consist of the union of n rational varieties all conjugate under

Gal(K/k).
Proof. The compatibility (4.1)) together with Proposition and Corollary implies that

(X Xp1 Al) N D+(Z(1,1 ,,,,, 1)) = X,
7



which gives the first claim. The second claim is immediate from the construction of X, and

the third claim follows from Proposition and the compatibility (4.1)). O

Proposition [5.2| completes the proof of Theorem |1.1 [l
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