SMOOTH COMPACTIFICATIONS OF CERTAIN NORMIC BUNDLES

ANTHONY VÁRILLY-ALVARADO AND BIANCA VIRAY

ABSTRACT. For a finite cyclic Galois extension of fields K/k of degree n and a separable polynomial of degree dn or dn-1, we construct an explicit smooth compactification $X \to \mathbb{P}^1_k$ of the affine normic bundle X_0 given by

$$N_{K/k}(\vec{z}) = P(x) \neq 0,$$

extending the map $X_0 \to \mathbb{A}^1_k$, where $(\vec{z}, x) \mapsto x$. The construction makes no assumption of the characteristic of k, making it a suitable departure point for studying the arithmetic of smooth compactifications of X_0 over global fields of positive characteristic.

1. Introduction

For a finite extension K/k of fields and a polynomial $P(x) \in k[x]$, the affine norm hypersurface $X_0 \subset \mathbb{A}_k^{n+1}$ given by

$$N_{K/k}(\vec{z}) = P(x) \neq 0 \tag{1.1}$$

parametrizes the values of P(x) that are norms for K/k.

Suppose that k is a number field. The classical Hasse norm theorem states that if K/k is a cyclic Galois extension and if P(x) is a nonzero constant, then X_0 satisfies the Hasse principle. Although both the Hasse principle and weak approximation fail for more general X_0 , Colliot-Thélène has conjectured that the Brauer-Manin obstruction controls failures of weak approximation on any smooth proper model of X_0 . See [DSW14, §1] for a summary of progress towards this conjecture.

The existence of a smooth proper model X of X_0 extending the projection

$$X_0 \to \mathbb{A}^1, \qquad (\vec{z}, x) \mapsto x$$

to a map $X \to \mathbb{P}^1_k$ is especially useful for proving arithmetic results in the direction of Colliot-Thélène's conjecture, because the map $X \to \mathbb{P}^1_k$ affords some control over the Brauer group of X. This map can also be used to prove that certain subsets of the number field k are diophantine [Poo09, VAV12, CTvG].

The known constructions of $X \to \mathbb{P}^1$ proceed in two steps. First, one constructs a partial compactification $X' \to \mathbb{A}^1_k$ (e.g. [CTHS03, §2] or [CTvG, Proposition 2.2(i)]). Second, one extends $X' \to \mathbb{A}^1_k$ to a map $X \to \mathbb{P}^1$ via Hironaka's theorem. This second step limits the scope of the construction to fields of characteristic 0.

Our goal in this note is to give an explicit construction of a compactification $X \to \mathbb{P}^1_k$ convenient for arithmetic applications, under some hypotheses. (For example, the Picard group and Brauer group of such a compactification X are easily computable; see the proofs of [VAV12, Proposition 3.1 and Theorem 3.2].) The construction of X does not impose a restriction on the characteristic of k; it therefore serves as a starting point for studying the arithmetic of smooth compactifications of X_0 over global fields of positive characteristic.

2000 Mathematics Subject Classification. Primary 11 G35; Secondary 14 G05.

Theorem 1.1. Let K/k be a cyclic Galois extension of fields of degree n, and let $P(x) \in k[x]$ be a separable polynomial of degree dn or dn-1. There exists a smooth proper compactification X of X_0 , fibered over $\mathbb{P}^1_k = \operatorname{Proj} k[x_0, x_1]$, such that $X \to \mathbb{P}^1_k$ extends the map $X_0 \to \mathbb{A}^1_k$. Furthermore, the generic fiber of $X \to \mathbb{P}^1_k$ is a Severi-Brauer variety, and the degenerate fibers lie over $V(P(x_0/x_1)x_1^{dn})$, and consist of the union of n rational varieties all conjugate under $\operatorname{Gal}(K/k)$.

1.1. **Outline.** Our construction of a smooth compactification takes a cue from work of Kang: the generic fiber of our construction is the embedded Severi-Brauer variety in [Kan90].

In §3.2, we construct a partial compactification $Y_a \to \operatorname{Spec} R$ of the variety $z_1 \cdots z_n = a \neq 0$ for any k-algebra R with no zero-divisors and any $a \in R \setminus 0$. In §3.3, we give an explicit open covering of Y_a , which we use in §3.4 to prove that Y is smooth if and only if $V(a) \subset \operatorname{Spec}(R)$ is smooth. We describe the geometry of the degenerate fibers of $Y_a \to \operatorname{Spec} R$ in §3.5.

In §4, we construct a K/k-twist of Y_a , $X_{K,a}^0 \to \operatorname{Spec} R$. Finally, in §5, we restrict to the case R = k[x] and a = P(x), give a full compactification $X \to \mathbb{P}^1_k$, and prove Theorem 1.1.

Remark 1.2. Artin [Art82] gives a construction of a Severi-Brauer bundle $\tilde{X} \to \mathbb{A}^1_k$ associated to a maximal k[x]-order in a central simple k(x)-algebra. This can be translated into a partial compactification of $X_0 \to \mathbb{A}^1_k$, proper over \mathbb{A}^1_k , whose generic fiber is a Severi-Brauer variety, and whose degenerate fibers consist of n rational varieties conjugate under Gal(K/k).

Acknowledgements. We also thank Jean-Louis Colliot-Thélène and the anonymous referee for comments improving the exposition.

2. Preliminaries on vectors

Throughout, we fix an integer n > 1. By the weight of a vector $\mathbf{v} = (v_m)_{m=0}^{n-1} \in \mathbb{Z}^n$, we mean the sum $\sum_{m=0}^{n-1} v_m$; we also say \mathbf{v} has length n. Let \mathcal{V}_n denote the set of nonnegative integer vectors of weight n and length n. Write $\sigma \colon \mathcal{V}_n \to \mathcal{V}_n$ for the shift operator

$$\mathbf{v} = (v_0, v_1, \dots, v_{n-1}) \mapsto (v_1, v_2, \dots, v_{n-1}, v_0) =: \sigma(\mathbf{v}).$$

For any $\mathbf{v} = (v_m)_{m=0}^{n-1} \in \mathcal{V}_n$ we define two nonnegative integers:

$$\mu(\mathbf{v}) := \max_{i \in (0,n]} (i - v_0 - \dots - v_{i-1}), \qquad \lambda(\mathbf{v}) := \mu(\mathbf{v}) + \mu(\sigma(\mathbf{v})) + \dots + \mu(\sigma^{n-1}(\mathbf{v})),$$

and for any integers i, j with $i \not\equiv j \mod n$ and $v_j > 0$, we let $\mathbf{v}^{i,j} := (v_m + \delta_{i \mod n, m} - \delta_{j \mod n, m})_{m=0}^{n-1}$; note that $\mathbf{v}^{i,j} \in \mathcal{V}_n$, because $v_j > 0$. We collect a few straightforward relations used frequently below.

Lemma 2.1. We have the following relations.

- (1) $\mu(\sigma^s(\mathbf{v})) = \mu(\mathbf{v}) + v_0 + v_1 + \dots + v_{s-1} s \text{ for any } \mathbf{v} \in \mathcal{V}_n \text{ and for any } s \in (0, n].$
- (2) For any integer r and any vectors $\mathbf{v}_i, \mathbf{w}_i \in \mathcal{V}_n$ with $1 \leq i \leq r$, such that $\sum_{i=1}^r \mathbf{w}_i = \sum_{i=1}^r \mathbf{v}_i$, we have $\sum_{i=1}^r \lambda(\mathbf{w}_i) \sum_{i=1}^r \lambda(\mathbf{v}_i) = n \left(\sum_{i=1}^r \mu(\mathbf{w}_i) \sum_{i=1}^r \mu(\mathbf{v}_i) \right)$.
- (3) Fix integers $0 \le r < s < n$ and fix $\mathbf{v} = (v_m)_{m=0}^{n-1} \in \mathcal{V}_n$ such that $v_r, v_s > 0$. Then: $0 \le \mu(\mathbf{v}^{r,s}) + \mu(\mathbf{v}^{s,r}) 2\mu(\mathbf{v}) \le 1$, and the first inequality is strict if and only if $\mu(\mathbf{v}) = i \sum_{m=0}^{i-1} v_m = j \sum_{m=0}^{j-1} v_m$ for some $i \in (r,s]$ and $j \in (0,r] \cup (s,n]$.

Proof. Let $\mathbf{w} := \sigma^s(\mathbf{v})$, so that $w_j = v_{j+s}$ if j < n-s and $w_j = v_{j+s-n}$ if $j \ge n-s$. Then $i - w_0 - w_1 - \cdots - w_{i-1}$ equals

$$\begin{cases} ((i+s) - v_0 - \dots - v_{i+s-1}) + v_0 + \dots + v_{s-1} - s & \text{if } i+s \le n \\ ((i+s-n) - v_0 - \dots - v_{i+s-n-1}) + (n-s) - v_s - \dots - v_{n-1} & \text{otherwise.} \end{cases}$$

To conclude (1), note that since **v** has weight n, we have $v_0 + v_1 + \cdots + v_{s-1} - s = (n-s) - v_s - v_{s+1} - \cdots - v_{n-1}$.

By (1), for any vector $\mathbf{v} = (v_m)_{m=0}^{n-1} \in \mathcal{V}_n$ we have

$$\lambda(\mathbf{v}) = n\mu(\mathbf{v}) + \sum_{m=0}^{n-1} ((n-1-m)v_m - m).$$

Using the assumption that $\sum_{i=1}^{r} \mathbf{w}_i = \sum_{i=1}^{r} \mathbf{v}_i$, the proof of (2) is now a simple manipulation. It remains to prove (3). Let $\mathbf{w}^- := \mathbf{v}^{r,s}$ and $\mathbf{w}^+ := \mathbf{v}^{s,r}$. Since r < s, by the definition of μ we have

$$\mu(\mathbf{v}) - 1 \le \mu(\mathbf{w}^-) \le \mu(\mathbf{v})$$
 and $\mu(\mathbf{v}) \le \mu(\mathbf{w}^+) \le \mu(\mathbf{v}) + 1$.

Furthermore, $\mu(\mathbf{w}^-) = \mu(\mathbf{v}) - 1$ if and only if the maximum of $\{i - v_0 - \dots - v_{i-1}\}_{i \in (0,n]}$ is only achieved for $i \in (r,s]$. Similarly, $\mu(\mathbf{v}) = \mu(\mathbf{w}^+)$ if and only if the maximum of $\{i - v_0 - \dots - v_{i-1}\}_{i \in (0,n]}$ is only achieved for $i \in (0,r] \cup (s,n]$.

The following notion is the fundamental book-keeping device in the construction of $X \to \mathbb{P}^1_k$.

Definition 2.2. A vector
$$\mathbf{v} = (v_0, v_1, \dots, v_{n-1}) \in \mathcal{V}_n$$
 is well-spaced if $v_i > 0 \Rightarrow v_{i+v_i} > 0$ and $v_{i+j} = 0$ for all $j \in [1, v_i - 1]$

for all $i \in [0, n)$. Here indices are considered modulo n.

For example, $\mathbf{v} = (0, 3, 0, 0, 2, 0, 4, 0, 0)$ is well-spaced whereas $\mathbf{w} = (0, 3, 0, 0, 2, 4, 0, 0, 0)$ is not. Note that $\sigma(\mathbf{v})$ is well-spaced if and only if \mathbf{v} is well-spaced.

Remark 2.3. We are unaware if well-spaced vectors arise naturally in other fields. It would be interesting to have a conceptual understanding of why these vectors yield useful affine coverings of the varieties under consideration (see §3).

Lemma 2.4. Let $\mathbf{v} \in \mathcal{V}_n$ be a well-spaced vector with $\ell + 1$ nonzero entries indexed by $i_0 < \cdots < i_\ell$. Set $i_{\ell+1} := n + i_0$. Then $\mu(\mathbf{v}) = i_0$, and for any $r, s \in [0, \ell]$ and $j \in (i_r, i_{r+1})$, we have

$$\mu(\mathbf{v}^{j,i_r}) = \mu(\mathbf{v}) - \left\lfloor \frac{j}{n} \right\rfloor, \qquad \mu(\sigma^{i_s}(\mathbf{v}^{j,i_r})) = 0,$$

and if $\ell \neq 0$,
$$\mu(\mathbf{v}^{i_r,i_{r+1}}) = \mu(\mathbf{v}) + \left\lfloor \frac{i_{r+1}}{n} \right\rfloor, \quad \mu(\sigma^{i_s}(\mathbf{v}^{i_r,i_{r+1}})) = \delta_{s,r+1 \bmod \ell+1}.$$

Proof. For any vector $\mathbf{v} = (v_m)_{m=0}^{n-1} \in \mathcal{V}_n$, the maximum of $\{i - v_0 - \cdots - v_{i-1}\}_{i \in (0,n]}$ is never achieved at an i = j where $v_j = 0$. Additionally, since \mathbf{v} is well-spaced, $v_{i_r} = i_{r+1} - i_r$ for all $r \in [0, \ell]$. Hence

$$\mu(\mathbf{v}) = \max_{r \in [0,\ell]} \left(i_r - v_{i_0} - \dots - v_{i_{r-1}} \right) = \max_{r \in [0,\ell]} \left(i_r - (i_1 - i_0) - \dots - (i_r - i_{r-1}) \right) = i_0$$

and the maximum of $\{i - v_0 - \cdots - v_{i-1}\}_{i \in (0,n]}$ is achieved at $i = i_r$ for all $r \in [0,\ell]$.

Thus, the formulas for $\mu(\mathbf{v}^{j,i_r})$ and $\mu(\mathbf{v}^{i_r,i_{r+1}})$ follow from the same argument as in Lemma 2.1 (3). Let $\mathbf{w} := \mathbf{v}^{j,i_r}$. Then

$$\mu(\sigma^{i_s}(\mathbf{w})) = \mu(\mathbf{w}) + w_0 + \dots + w_{i_s-1} - i_s \qquad \text{by Lemma 2.1 (1)},$$

$$= \mu(\mathbf{v}) - \left\lfloor \frac{j}{n} \right\rfloor + w_0 + \dots + w_{i_s-1} - i_s \qquad \text{by the formula for } \mu(\mathbf{v}^{j,i_r}),$$

$$= \mu(\mathbf{v}) - \left\lfloor \frac{j}{n} \right\rfloor + v_0 + \dots + v_{i_s-1} - i_s + \left\lfloor \frac{j}{n} \right\rfloor \quad \text{by the definition of } \mathbf{v}^{j,i_r},$$

$$= \mu(\mathbf{v}) - i_0 \qquad \qquad \text{since } v_{i_r} = i_{r+1} - i_r \text{ for } r \in [0, \ell].$$

Similarly, if $\mathbf{w} := \mathbf{v}^{i_r, i_{r+1}}$, we have

$$\mu(\sigma^{i_s}(\mathbf{w})) = \mu(\mathbf{w}) + w_0 + \dots + w_{i_s-1} - i_s$$

$$= \mu(\mathbf{v}) + \left\lfloor \frac{i_{r+1}}{n} \right\rfloor + w_0 + \dots + w_{i_s-1} - i_s$$

$$= \mu(\mathbf{v}) + \left\lfloor \frac{i_{r+1}}{n} \right\rfloor + v_0 + \dots + v_{i_s-1} - i_s + \delta_{s,r+1 \bmod \ell+1} - \left\lfloor \frac{i_{r+1}}{n} \right\rfloor$$

$$= \mu(\mathbf{v}) - i_0 + \delta_{s,r+1 \bmod \ell+1}.$$

3. The auxiliary bundle $Y \to \operatorname{Spec} R$

3.1. **Notation.** Let R be a k-algebra with no zero-divisors. Given a nonzero element $a \in R$, we use the standard notation D(a) to denote the open affine subscheme of Spec R given by Spec R_a ; if R is graded, we let $D_+(a)$ denote the open affine subscheme of Proj R given by Spec $(R_a)_0$.

Let $N = \binom{2n-1}{n} - 1$, and fix coordinates on $\mathbb{P}_k^N = \operatorname{Proj} k \left[\{ y_{\mathbf{v}} : \mathbf{v} \in \mathcal{V}_n \} \right]$. We set $\mathbb{P}_R^N := \mathbb{P}_k^N \times_{\operatorname{Spec} k} \operatorname{Spec} R$.

3.2. Construction of Y_a . For any nonzero $a \in R$, we consider the embedding

$$\iota_a \colon \operatorname{Proj} R[t_0, \dots, t_{n-1}] \cap D(a) \hookrightarrow \mathbb{P}_R^N \times_{\operatorname{Spec} R} D(a)$$

induced by the map $y_{\mathbf{v}} \mapsto a^{\mu(\mathbf{v})} t_0^{v_0} t_1^{v_1} \cdots t_{n-1}^{v_{n-1}}$. (This is easily seen to be an embedding since it is the composition of the (n)-uple embedding with a scaling of the coordinates by an appropriate power of a.) The image of ι_a is cut out by the equations (see [Har92, Example 2.6]):

$$a^{\sum_{i=1}^{r} \mu(\mathbf{w}_i)} \prod_{i=1}^{r} y_{\mathbf{v}_i} = a^{\sum_{i=1}^{r} \mu(\mathbf{v}_i)} \prod_{i=1}^{r} y_{\mathbf{w}_i}$$
(3.1)

for all integers r and all sets of vectors $\mathbf{w}_i, \mathbf{v}_i$, with $1 \le i \le r$, such that $\sum_{i=1}^r \mathbf{w}_i = \sum_{i=1}^r \mathbf{v}_i$. Let Y_a be the closure in \mathbb{P}_R^N of the image of ι_a .

Lemma 3.1. The order n automorphism $\phi \colon \mathbb{P}^N_R \to \mathbb{P}^N_R, \ y_{\mathbf{v}} \mapsto y_{\sigma(\mathbf{v})}$ preserves Y_a .

Proof. Fix an integer r and vectors \mathbf{v}_i , \mathbf{w}_i , with $1 \le i \le r$, such that $\sum_{i=1}^r \mathbf{v}_i = \sum_{i=1}^r \mathbf{w}_i$. It is clear that $\sum_{i=1}^r \sigma\left(\mathbf{v}_i\right) = \sum_{i=1}^r \sigma\left(\mathbf{w}_i\right)$. Moreover, by Lemma 2.1(1),

$$\sum_{i=1}^{r} \mu(\sigma(\mathbf{v}_i)) - \sum_{i=1}^{r} \mu(\sigma(\mathbf{w}_i)) = \sum_{i=1}^{r} \mu(\mathbf{v}_i) - \sum_{i=1}^{r} \mu(\mathbf{w}_i).$$

Therefore, ϕ preserves the relations (3.1).

3.3. An open covering.

Proposition 3.2. The open subvarieties $\{D_+(y_{\mathbf{v}}) \subseteq \mathbb{P}_R^N : \mathbf{v} \in \mathcal{V}_n \text{ well-spaced}\}\ cover\ Y_a.$

Proof. Let $\mathbf{w} = (w_0, w_1, \dots, w_{n-1}) \in \mathcal{V}_n$ be a vector that is not well-spaced. We will show that $D_+(y_{\mathbf{w}}) \cap Y_a \subset D_+(y_{\mathbf{v}})$ for some well-spaced vector $\mathbf{v} \in \mathcal{V}_n$. Let $i_0 < \dots < i_\ell$ be the indices such that $w_{i_j} > 0$, and set $i_{\ell+1} = i_0 + n$.

If $\mu(\mathbf{w}) > i_0 \ge 0$, then there exists an $r \in [0, \ell)$ such that $\mu(\mathbf{w}) = i_{r+1} - w_{i_0} - w_{i_1} - \cdots - w_{i_r}$. Fix the smallest such r; then $i_{r+1} - i_r - w_{i_r} > 0$. Since \mathbf{w} has length n and weight n, there exists an $r < s \le \ell$ such that $(i_{s+1} - i_s - w_{i_s}) < 0$; fix the largest such s. Then by our choice of r and s, if $\mu(\mathbf{w}) = j - v_0 - \cdots - v_{j-1}$, we must have $j \in (i_r, i_s]$. Therefore by Lemma 2.1(3), the defining equations for Y_a include the relation

$$y_{\mathbf{w}}^2 = y_{\mathbf{w}^{i_r, i_s}} y_{\mathbf{w}^{i_s, i_r}},$$

so $D_+(y_{\mathbf{w}}) \subset D_+(y_{\mathbf{w}^{i_r,i_s}})$. After possibly repeating the argument we may assume that $\mu(\mathbf{w}) = i_0$.

If $i_{r+1} - i_r - w_{i_r} = 0$ for all r, then \mathbf{w} is well-spaced. Otherwise, fix the smallest integer r such that $|i_{r+1} - i_r - w_{i_r}| > 0$; since $\mu(\mathbf{w}) = i_0$, we must have $i_{r+1} - i_r - w_{i_r} < 0$. Since \mathbf{w} has length n and weight n, there exists an $r < s \le \ell$ such that $(i_{s+1} - i_s - w_{i_s}) > 0$; fix the smallest such s. Now by our choice of r and s, if $\mu(\mathbf{w}) = j - v_0 - \cdots - v_{j-1}$, we must have $j \in [0, i_r] \cup (i_s, n)$. Then by the same argument as above, the defining equations for Y_a include the relation

$$y_{\mathbf{w}}^2 = y_{\mathbf{w}^{i_r,i_s}} y_{\mathbf{w}^{i_s,i_r}}.$$

By replacing **w** with \mathbf{w}^{i_s,i_r} , we reduce the value of $|i_{r+1} - i_r - w_{i_r}|$. Repeating this process we will arrive at a well-spaced vector **v** in finitely many steps.

3.4. Smoothness of Y_a .

Proposition 3.3. Let $\mathbb{A}_R^n = \operatorname{Spec} R[Z_0, \dots, Z_{n-1}]$. Let $\mathbf{v} \in \mathcal{V}_n$ be a well-spaced vector with $\ell + 1$ nonzero entries indexed by $i_0 < \dots < i_{\ell}$ and set $i_{\ell+1} := i_0 + n$. Then the map

$$\frac{y_{\mathbf{w}}}{y_{\mathbf{v}}} \mapsto \left(\prod_{j \in [0,n), \ v_j = 0} Z_j^{w_j} \right) \times \left(\prod_{r=0}^{\ell} Z_{i_r}^{\mu(\sigma^{i_{r+1}}(\mathbf{w}))} \right)$$

yields an isomorphism $Y_a \cap D_+(y_{\mathbf{v}}) \cong V(Z_{i_0} \cdots Z_{i_\ell} - a) \subset \mathbb{A}_R^n$. In particular, Y_a is a compactification of the variety in \mathbb{A}_R^n given by $Z_0Z_1 \cdots Z_{n-1} = a$.

Corollary 3.4. The variety Y_a is smooth if and only if V(a) is smooth in Spec R.

Proof. This follows from Propositions 3.2 and 3.3, and the Jacobian criterion. \Box

Proof of Proposition 3.3. Set $i_{-1} = i_{\ell} - n$. The proof of the proposition differs slightly in the case when $\ell = 0$. To give a unified presentation, if $\ell = 0$ then we set $y_{\mathbf{v}^{i_0, i_{\ell+1}}} := ay_{\mathbf{v}}$. Consider the following functions on $Y_a \cap D_+(y_{\mathbf{v}})$ for $j = i_0, i_0 + 1, \dots, i_0 + n - 1$:

$$g_{j} := \begin{cases} y_{\mathbf{v}^{j,i_{r}}} y_{\mathbf{v}}^{-1} & \text{if } i_{r} < j < i_{r+1} \text{ for some } 0 \le r \le \ell, \\ y_{\mathbf{v}^{i_{r},i_{r+1}}} y_{\mathbf{v}}^{-1} & \text{if } j = i_{r}, 0 \le r \le \ell. \end{cases}$$

$$(3.2)$$

Lemma 2.4 shows that the map sends $g_j \to Z_{j \mod n}$. In addition, Lemma 2.4 together with the relations (3.1) shows that $g_{i_0} \dots g_{i_\ell} = a$. Thus, to prove the map is a well-defined isomorphism, we will show that

$$y_{\mathbf{w}}y_{\mathbf{v}}^m = \left(\prod_{j \in [0,n), \ v_j = 0} y_{\mathbf{v}^{j,i_r}}^{w_j}\right) \times \left(\prod_{r=0}^{\ell} y_{\mathbf{v}^{i_r,i_{r+1}}(\mathbf{w}))}^{\mu(\sigma^{i_{r+1}}(\mathbf{w}))}\right)$$

where $m = -1 + \sum_{j,v_j=0} w_j + \sum_{r=0}^{\ell} \mu(\sigma^{i_{r+1}}(\mathbf{w}))$. By Lemmas 2.4 and 2.1(1), we have

$$\sum_{\substack{j \in [0,n), \\ v_j = 0}} w_j \cdot \mu(\mathbf{v}^{j,i_r}) + \sum_{r=0}^{\ell} \mu(\sigma^{i_{r+1}}(\mathbf{w})) \mu(\mathbf{v}^{i_r,i_{r+1}}) = (m+1)\mu(\mathbf{v}) - \sum_{j=0}^{i_0-1} w_j + \mu(\sigma^{i_{\ell+1}}(\mathbf{w}))$$

$$= (m+1)\mu(\mathbf{v}) + \mu(\mathbf{w}) - i_0 = m\mu(\mathbf{v}) + \mu(\mathbf{w}).$$

Hence, by (3.1), it suffices to prove that $\mathbf{w} + m\mathbf{v}$ is equal to

$$\mathbf{w}' := \sum_{j \in [0,n), \ v_i = 0} w_j \mathbf{v}^{j,i_r} + \sum_{r=0}^{\ell} \mu(\sigma^{i_{r+1}}(\mathbf{w})) \mathbf{v}^{i_r,i_{r+1}}.$$

For j such that $v_j = 0$, it is evident that $w'_j = w_j + mv_j$. Further,

$$w'_{i_s} = (m+1)v_{i_s} - \sum_{j=i_s+1}^{i_{s+1}-1} w_j + \mu(\sigma^{i_{s+1}}(\mathbf{w})) - \mu(\sigma^{i_s}(\mathbf{w}))$$

$$= (m+1)v_{i_s} - \sum_{j=i_s+1}^{i_{s+1}-1} w_j + \sum_{j=i_s}^{i_{s+1}-1} w_j - i_{s+1} + i_s \quad \text{by Lemma 2.1(1)}$$

$$= mv_{i_s} + w_{i_s} \quad \text{since } v_{i_s} = i_{s+1} - i_s.$$

3.5. The degenerate fibers of $Y_a \to \operatorname{Spec} R$.

Proposition 3.5. Let $Q \in V(a) \in R$ be a closed point. The fiber $Y_{a,Q}$ consists of n rational (n-1)-dimensional irreducible components which are permuted cyclically by the automorphism ϕ of Lemma 3.1.

Proof. For $i=0,\ldots,n-1$, we define $S_i:=Y_{a,Q}\cap V(\langle y_{\mathbf{w}}:\mu(\sigma^{i+1}(\mathbf{w}))>0\rangle)$. From the definition, it follows that ϕ acts on the set $\{S_i:0\leq i\leq n-1\}$ via the permutation

$$S_0 \mapsto S_{n-1} \mapsto S_{n-2} \mapsto \ldots \mapsto S_1 \mapsto S_0.$$

We claim that $Y_{a,Q} = S_0 \cup S_1 \cup \cdots \cup S_{n-1}$ and that each S_i is an irreducible rational (n-1)-dimensional variety.

Let $\mathbf{v} \in \mathcal{V}_n$ be a well-spaced vector and let $i_0 < \cdots < i_\ell$ be the indices of the nonzero entries of \mathbf{v} . By Proposition 3.3, $Y_{a,Q} \cap D_+(y_{\mathbf{v}})$ is isomorphic to a union of $\ell+1$ hyperplanes in $\mathbb{A}^n_{\mathbf{k}(Q)} = \operatorname{Spec} \mathbf{k}(Q)[Z_0, \dots, Z_{n-1}]$. Furthermore, the hyperplane $Z_{i_r} = 0$ is isomorphic to the subvariety

$$V\left(\left\langle \frac{y_{\mathbf{w}}}{y_{\mathbf{v}}} : \mu(\sigma^{i_r+1}(\mathbf{w})) > 0 \right\rangle\right) \subset Y_{a,Q} \cap D_+(y_{\mathbf{v}}).$$

Hence, $Y_{a,Q} \cap D_+(y_{\mathbf{v}})$ is a dense open subset of $S_{i_0} \cup S_{i_1} \cup \cdots \cup S_{i_\ell}$. Since the open subvarieties $\{D_+(y_{\mathbf{v}}) \cap Y_{a,Q} : \mathbf{v} \text{ well-spaced}\}$ cover $Y_{a,Q}$, this completes the proof.

4. A
$$K/k$$
 TWIST OF Y_a

Let K/k be a cyclic Galois extension of degree n, and let $R_K := R \otimes_k K$. Fix a basis $\{\alpha_0,\ldots,\alpha_{n-1}\}\$ of K as a k-vector space, as well as a generator τ of $\mathrm{Gal}(K/k)$.

Let T be a set of representatives for the orbits of \mathcal{V}_n under the action of the shift operator σ . Consider the K-isomorphism $\psi \colon \operatorname{Proj} K[\{z_{\mathbf{v}} : \mathbf{v} \in \mathcal{V}_n\}] \to \operatorname{Proj} K[\{y_{\mathbf{v}} : \mathbf{v} \in \mathcal{V}_n\}]$ determined by

$$y_{\mathbf{v}} \mapsto \alpha_0 z_{\mathbf{v}} + \alpha_1 z_{\sigma(\mathbf{v})} + \dots + \alpha_{n-1} z_{\sigma^{n-1}(\mathbf{v})} \quad \text{for } \mathbf{v} \in T,$$

 $y_{\sigma^i(\mathbf{v})} \mapsto \sum_{j=0}^{n-1} \tau^i(\alpha_j) z_{\sigma^j(\mathbf{v})} \quad \text{for } \mathbf{v} \in T \text{ and } i = 1, \dots, n-1.$

Define $X_{K,a}^0 := \psi_{R_K}^{-1}(Y_a)$. Abusing notation, we write τ for the endomorphism of Proj $R[\{z_{\mathbf{v}}:$ $\mathbf{v} \in \mathcal{V}_n$ }] $\times_R R_K$ given by id $\times \tau$. Let $\phi \colon \mathbb{P}_R^N \to \mathbb{P}_R^N$ be the automorphism of Lemma 3.1. The following diagram commutes

$$\operatorname{Proj} R_{K}[\{z_{\mathbf{v}} : \mathbf{v} \in \mathcal{V}_{n}\}] \xrightarrow{\psi_{R_{K}}} \operatorname{Proj} R_{K}[\{y_{\mathbf{v}} : \mathbf{v} \in \mathcal{V}_{n}\}] \qquad (4.1)$$

$$\downarrow^{\phi_{R_{K}}} \qquad \qquad \downarrow^{\phi_{R_{K}}} \operatorname{Proj} R_{K}[\{z_{\mathbf{v}} : \mathbf{v} \in \mathcal{V}_{n}\}] \xrightarrow{\psi_{R_{K}}} \operatorname{Proj} R_{K}[\{y_{\mathbf{v}} : \mathbf{v} \in \mathcal{V}_{n}\}]$$

By Lemma 3.1, the map ϕ preserves Y_a . Together with the commutativity of the above diagram, this implies that $X_{K,a}^0$ descends to a R-scheme.

5. Proof of Theorem 1.1

Let K/k be a cyclic Galois extension of degree n and let $P(x) \in k[x]$ be a separable polynomial of degree dn or dn - 1 for some d.

Lemma 5.1. There exists a smooth projective variety $X = X_{K/k,P(x)} \to \mathbb{P}^1_k$ such that $X_{\mathbb{A}^1} \cong$ $X_{K,P(x)}^{0}$ and that $X_{\mathbb{P}^{1}\setminus\{0\}}\cong X_{K,P(1/x')x'^{dn}}^{0}$, where x'=1/x.

Proof. We will construct X by glueing $Y_{P(x)}$ and $Y_{P(1/x')x'^{dn}}$ over Spec $k[x^{\pm 1}]$ and Spec $k[x'^{\pm 1}]$, in a way which is compatible with the map ψ from §4. Let y_v denote the coordinates on $Y_{P(x)}$ and let $y'_{\mathbf{v}}$ denote the coordinates on $Y_{P(1/x')x'^{dn}}$. By Lemma 2.1(2), the morphism

$$Y_{P(1/x')x'^{dn}} \times_{\mathbb{A}^1} \operatorname{Spec} k[x', x'^{-1}] \to Y_{P(x)} \times_{\mathbb{A}^1} \operatorname{Spec} k[x, x^{-1}]$$

where $y_{\mathbf{v}} \mapsto (x')^{d\lambda(\mathbf{v})} y'_{\mathbf{v}}$ and $x \mapsto 1/x'$ is well-defined and is an isomorphism. Since $\lambda(\mathbf{v}) =$ $\lambda(\sigma(\mathbf{v}))$, this morphism is compatible with ψ and thus gives a glueing of $X_{K,P(x)}^0$ and $X_{K,P(1/x')x'^{dn}}^{0}$.

Proposition 5.2. The variety X is a smooth proper compactification of X_0 , the generic fiber of $X \to \mathbb{P}^1$ is a Severi-Brauer variety, and the degenerate fibers of $X \to \mathbb{P}^1$ lie over $V(P(x_0/x_1)x_1^{dn})$ and consist of the union of n rational varieties all conjugate under Gal(K/k).

Proof. The compatibility (4.1) together with Proposition 3.3 and Corollary 3.4 implies that

$$(X \times_{\mathbb{P}^1} \mathbb{A}^1) \cap D_+(z_{(1,1,\dots,1)}) \cong X_0,$$

which gives the first claim. The second claim is immediate from the construction	of X , and
the third claim follows from Proposition 3.5 and the compatibility (4.1).	
Proposition 5.2 completes the proof of Theorem 1.1.	

References

- [Art82] M. Artin, *Left ideals in maximal orders*, Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math., vol. 917, Springer, Berlin, 1982, pp. 182–193. MR657429 (83j:16009) ↑1.2
- [CTvG] Jean-Louis Colliot-Thélène and Jan van Geel, Le complémentaire des puissances n-ièmes dans un corps de nombres est un ensemble diophantien. Preprint. arXiv:1401.0915. \u22311
- [CTHS03] Jean-Louis Colliot-Thélène, David Harari, and Alexei Skorobogatov, Valeurs d'un polynôme à une variable représentées par une norme, Number theory and algebraic geometry, London Math. Soc. Lecture Note Ser., vol. 303, Cambridge Univ. Press, Cambridge, 2003, pp. 69−89 (French, with English summary). MR2053456 (2005d:11095) ↑1
- [DSW14] Ulrich Derenthal, Arne Smeets, and Dasheng Wei, *Universal torsors and values of quadratic polynomials represented by norms*, Math. Ann., posted on 2014, 1-22, DOI 10.1007/s00208-014-1106-7, (to appear in print). ↑1
- [Har92] Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR1182558 (93j:14001) ↑3.2
- [Kan90] Ming Chang Kang, Constructions of Brauer-Severi varieties and norm hypersurfaces, Canad. J. Math. 42 (1990), no. 2, 230–238, DOI 10.4153/CJM-1990-013-7. MR1051727 (91h:12006) ↑1.1
- [Poo09] Bjorn Poonen, The set of nonsquares in a number field is Diophantine, Math. Res. Lett. **16** (2009), no. 1, 165–170, DOI 10.4310/MRL.2009.v16.n1.a16. MR2480570 (2010c:14025) \uparrow 1
- [VAV12] Anthony Várilly-Alvarado and Bianca Viray, *Higher-dimensional analogs of Châtelet surfaces*, Bull. Lond. Math. Soc. 44 (2012), no. 1, 125–135, DOI 10.1112/blms/bdr075. MR2881330 ↑1

DEPARTMENT OF MATHEMATICS MS 136, RICE UNIVERSITY, HOUSTON, TX 77005, USA *E-mail address*: varilly@rice.edu *URL*: http://www.math.rice.edu/~av15

University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195, USA

E-mail address: bviray@math.washington.edu URL: http://math.washington.edu/~bviray