International Journal of Soft Computing and Engineeing (IJSCE)
ISSN: 2231-2307, Volume-4 Issue-6, January 2015

ASIC Thread for Decimal (BCD) Algorithn
Tutorial on How Create a Thread and to Evaluate
ISPMACH4256ZE CPLD

Gelacio Castillo C, Martha P. Jiménez V, Aurora Apaicio C

Abstract— Here it is explained how can be designed by an easy
form, and using HDL tool, a thread for implement the algorithm
for natural binary format to decimal (BCD) format. In order to
achievethat, hereisreleased an explanation of such algorithm in
a fast and needed way. In VHDL, structural style will be used for
build each one modules for the Arithmetic Unit as well as those
modules for Control Unit. The program is the set of instructions.
Each instruction is a single operation as a sum, a shift, a
comparison and so on. Every those instructions are carried out by
asinglemodulein VHDL. The memory to store the program it is
implement by array of registers. That array is executed in a
sequence by which is driven by a Program Counter (PC). The
complete architectureit isexplain step by step in order to it can be
used as application note or a tutorial, and repeated by teachers,
students and hobbyist. The complete processor it is builds in a
single CPLD from Lattice Semiconductor. That is the ispMACH
LC4256ZE 5TN144C device.

Index Terms— Binary natural to decimal BCD format, tutorial on
how design a thread

[. INTRODUCTION

From the point of view of a programmer user, adrisgjust
one instruction which is used in high level lengaidgr do
easier the task, nevertheless, from a point of vidwa
engineer designer a thread is a set of low lewttuctions and
involves heavy work at hardware [1]. So, this wiskan
architecture for a thread, which deals with implatagon of
a single algorithm with a few instructions, it cha easily
located inside of harvard model with a memory fbe t
program and other one memory for data. The firanisirray
with a kind of flash registers built here with VHDand the
last, actually is a temporary register for shovaimexternal
display the decimal number. The data is an inputit8
number in natural binary format introduced by atemal
dipswitch. Just an external bit is used for enalild reset,
nevertheless can be used an input bit for resebtret one
for enable.

Manuscript Received on December 2014.

Dr. Gelacio Castillo C Ingenieria en Sistemas Computacionales
Instituto Politécnico Nacional, Escuela SuperioGfenputo, México D. F.
México.

M. en C. Martha P. Jiménez \ Ingenieria en Sistemas
Computacionales, Instituto Politécnico Nacional,cigda Superior de
Cémputo, México D. F. México.

M. en C. Aurora Aparicio C, Escuela Superior de Ingenieria Mecanica
y Eléctrica, Instituto Politécnico Nacional, MéxiBo F., México.

54

R L

o input input

] bit 8 bit

S EN/R data 3 E
= =
s L L S
& “.| CPLD = A
— ispMACH [—=> & @&
o . 42567ZE B =
o 5
i 2
=] y
L]

out 7 segment format

Figure 1: Entity top level block diagram

As it can see, only two inputs are used, the fgstn 8 bits
vector and the other one is a single bit input,efoable and
reset. The main output is a buffered 12 bits regisor
decimal (BCD) format. Inside of the same device is
implemented a BCD to seven segment encoder. Ofiitiona
other output can be leaves in order to monitonmgriflag or
signal control of the process. All of these eleraare shows
in the Fig. 1. One guide for develop is given ia ©hapter 5
of Sajjan [2]. Documentation available can be do@adifrom
web site of Lattice Semiconductor [3], [4]. A schemmade
by authors for this work, of the Breakout Board Eation
Kit, it is shown in the Fig. 2.

O 0C0000000000000O0 O
ODEDNE c00000000000000
BEHEE 000000000000000

0000000000000 O0O0
cocoo0 cooo

oo oo cooo

000 o0 00

cocoo0 - cocoo

co oo Lattice coece

0000 LC4256ZE o0 0O

coo0o0 5TN144C-TI cocoo

cococo A034RR78 oo 0O

cocoo0 cooo

oo oo cooo

000 1%%28 o0 00

cocoo0 coo0o

oo 0o I:I cooo

cocoo P cooo

o000 1040.C cooo

o0 00 o0 00

cocoo0 cooo

o000 R92 MINI LE-N-X-]

ocoooo 1733 usB THM oo oo

| | I I cocoo
| O
O Ne—

Figure 2: Breakout board development kit

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

ASIC Thread for Decimal (BCD) Algorithm: A Tutorial on How Create a Thread and to Evaluate ISPMACH4256E

CPL

[I. BINARY NATURAL TO DECIMAL (BCD) ALGORITHM

Any input data and output to a computer systemnlypaie in
decimal (BCD) format. However, because digital niaes
processes data from natural binary format, then
methodology for translate binary-decimal (BCD) fatrand

D

Operations what it must do areA.- Rotation by one bit in
each iteration. The MSB in the source register §abit)
replace to the LSB target register (of 12 bit).itemation start
with a rotation2A.- Then, the 12 bit register it must be split in
3 nibbles; Low Nibble (L-N), Intermediate NibbleNl), and

decimal (BCD) to binary format it is needed. ThisHigher Nibble (H-N)3A.- Now foIIovys comparisons. If L-N

algorithm and reverse. Such algorithm issued byitketime
in 1997 by an application note of Xilinx Company.[%he
implementation this algorithm to translate a nuniberatural
binary format to decimal (BCD) format it is releddere. In 8
bit, the bigger account reached is 11111111, whgh
equivalent to 255 in decimal format. So, a 12 legister is
needed to get decimal format, split it in 3 groghs4 bit
(nibble), each nibble for a digit.

binary format

0011 else do nothing. If H-N > 0100 then add 0O0ls& eo
nothing.4A.-Ok, now follows join them together, concatenate
(with & in VHDL) the three nibbles in order to rery the
12 bits register5A.- Finally do rotation by one bit on the
register of 12 bit. This point is the end of therdtion.
However, the number of iterations is the same asitimber
of bits in the source register.

Ill. INSTRUCTIONS

According with algorithm there are a little insttionis and
these are very simple. These shown in the followiagle 1.

Table 1: Instructions

“Trantsolated mnemonic code
Init 0000
hundreds] tens [units ReadPort D001

Figure 3: What it must do by algorithm

To start the explanation, the main idea it is ttertbat after a
complete rotation of a binary number it not changésit idea
itis shows in the following Fig. 4. The MSB b, the “source
register” it is placed in LSB position of the tardgg bits
register. This is just the idea.

bit 0

bit 7

§ bit Source Register 8 bit Target Register
Figure 4: The first idea of algorithm

So, it must do some operations in order put thebmsrmside
a register of 12 bit instead a register of 8 hig at the same
time leave that in decimal (BCD) format. What itshdo, it is
shows in the Fig. 5.

+

b
F

-
-

bit bit bit bit

bit 7 11 8 4 0
LTI gy
§ bit source nibble I nibbleI nibble
register hundreds” tens units

replace and shift

Figure 5: Activity inside registers

55

Sust
CompAdd

shift8 0100
shiftl2 0101

Init is the instruction by which are initializedethegisters of 8
and 12 bit respectively. Furthermore, this is thedole by
which reset is carried out by external bit EN/Ra&e@ort is
the instruction by which is read the number in bifarmat
from external dipswitch (input 8 bit data). Sust the
instruction by which the substitution were carrigat from
MSB bit in the register of 8 bit to the LSB bittime register of
12 bit. CompAdd is the module by which is carriad ¢a)
split in nibbles, (b) comparison, and (c) add by DG it is
necessary in each nibble. This is because theyeayesimple
operations. So, CompAdd is just an instructionft8hs the
instruction for shift by one bit, from the right teft, in the
register of 8 bit. Shift12 carries out shift by dmg from the
right to the left in the register of 12 bit. Thestiaare
component in Arithmetic and Logic Unit (ALU). Thegetwo

0010
0011

needed counters; a counter program (PC) and counter

iterations (ItC). Actually, the PC is a pointer tite next
instruction that read from E2PROM. ItC will have ttontrol
on the number of iterations, of course. Some othredules
where implemented in order to get the completegiesi the
Unit Control, along with PC and ItC. Modules in thimit

control are not instruction. Two of these are PEC. |
ReadCode is a module that read the following opmrditom

E2PROM. Accumulators for 8 and 12 bits registetsctvare
temporary register. Module for codec to translatemf
decimal (BCD) format in 12 bit to seven segmentpldiy.

Complete architecture it is draws in the Figure 6.

Published By:
Blue Eyes Intelligence Engineering \ =,
& Sciences Publication Pvt. Ltd.

International Journal of Soft Computing and Engineeing (IJSCE)

EN/R —»

Memorw
TUmnit

F 3

-

L

.

| Program Counter (P'C) |

—P—l Counter of Iterations |

| Accwrnlator of 8 bit |

Accumulator of 12 bit

Read Operation
Code from
MESTory

BECD to
Tsegment
codec

Figure 6: Block diagram architecture

IV. STATES MACHINE

In the following Fig. 7, is drawn the states maehity which
was designed in VHDL the algorithm. With EN/R = té
process return to Init state, that is; initializé #den read code
of Init instruction, execute instruction Init anditialize
accumulators, however ItC is not increased andGasmot
increased. With EN/R ="1' the process go to the siate by
increasing PC and ItC, that implies that PC isiahited to
"0000" when EN/R ='0"and it is increased whenEN/'1,
after the respective accumulator has been execanedf ItC
has been increased. At the end of each iteratienJtC is
increased and if its account is minor of numbebibfin the
source register. If ItC it is not increased at #rel of an
iteration, the process it is stoped. Each instonctate four
cycles of clock module of Control Unit take at ledwee
cycle of clock. The registers of PC, ItC and "cotage all of
four bits, however all of these have different solEach
module has two flags. One input Flag, and one dufag.
Through these flags, the dialog it is carry outaih the
process.

56

ISSN: 2231-2307, Volume-4 Issue-6, January 2015

E'I*'i-_'R_
gl
1 pe
—» is
0 C Executed ':}CI
- 1

read code
for the next
imstrrction

L3

Instruction
it is

executed

counter of

iterations
I+ it is

execirted

12 bt it is
executed

executed

Figure 7: State machine

V. INIT INSTRUCTION

The Fig. 8 shows a block diagram of Init modulerm@enber
this is an instrucction and its code is "0000". Migdinit in
the Fig. 8 shows two input bit, “clkinit" of courigethe clock
signal, and "inFlaginit" comes from "read code" mied as
well as "codopinit" just when the process it idialized, and
after that the process it is carried out accoraiith diagram
of Fig. 7. Initialization to 12 and 8 bits accuntols is carry
out by "outACS8init" and "outAC12init", enabled witthe
flags "outFlag8init* and "outFlag12init" respectiveFig. 9
is the flow diagram for Init module.

clkinit —_

——> outAC8init

module | = OUAC2init

codopinit ——) i
— oufFlag8init
inFlaginit) — outFlag] 2init

Figure 8: Entity module Init

Now in the Fig. 9 it is going to show details ad\l for its
proramming on VHDL.

Published By:
Blue Eyes Intelligence Engineering \ =,
& Sciences Publication Pvt. Ltd.

ASIC Thread for Decimal (BCD) Algorithm: A Tutorial on How Create a Thread and to Evaluate ISPMACH4256E

CPLD

Table 2: Cycle
mnemonic | code
} Init Q000
codopinit else ReadPort 0001
0000 . Sust 0010
OutACASinit <= (others => 'Z); + Y| CompAdd | 0011
outACA12init <= (others =>'Z"); - ¥ shift8 0100
outFlag8init <="Z"; Ly-< shiftl2 0101

outFlagl2init <="Z";
aux0 ="0"
auxl ='0"

10
<o =

outFlag8init <="0';
outFlagl2init <="0";

aux0 = '1',

outFlag8init <="'1";

outFlagl2init <="1";

outACASinit <= "00000000";
outACA12init <= "000000000000";

S

04
aux0 ="1"
outFlag8init <="'1";
outFlagl2init <="1";
outACASinit <= "00000000";
outACA12init <= "000000000000";

outFlag8init <="'0';
outFlagl2init <="0";

Figure 9: Flow diagram Init instruction

In the Fig. 9, "aux0" and "aux1" are variablesdesit module
VHDL. Both of these have the same roll, aboid thét part
of process it is execute twice. Furthermore, opamabf
initializing must be executed under two conditio(es} the
first one when algorithm is solicited by the firdtne,
"inFlaginit" can has '0' at the start of proce$3,thie second
one when EN/R ="'1", it must be guarantised accatorg are
put in '0's. After each accumulator, 8 bit or 12 has been
executed PC it is increased if and only when EN/R'=If
EN/R = '0' PC must not be increased. Only in thet ftep,
both accumulators it is execute at the same tirhenTwhen
the process is inside of the cycle of iterationsst jone
accumulator executed at the time. While outFlagitér, then
PC is increased if the other flags are accomplisfda
instruction "Init" is executed just one time, a¢ theginning
the process. The instruction "ReadPort", also exgcanly
one time, after of "Init". Both of these instruct®are not part
of iterations. Table 2 which include circle and spwghows
those instruction part of iterations, "Sust", "Cdkdgd",
"shift8", and "shift12". Remember that each cytle execute
as the state machine in the Fig. 7.

57

VI. READ-PORT INSTRUCTION

Fig. 10 shows block entity for the ReadPort Indfarc Input
"inPortALp" read external data from dipswitch. Itpu
"inFlagLp" come from "read code from the next instron".

clklLp
—> outPortALp
“enLe Module
- ReadPort
nPortALp —,
el —outFlaglp
inFlaglp___,

Figure 10: Entity ReadPort

Input "codopLP" also come from "read code from tesxt
instruction”. Bus "outPortALp" go to the 8 bits acaulator.
The output "outFlagLP" also go to the accumulatbee logic
of the code VHDL it is show in the Fig. 11.

g

codopLp else

0001

-

outPortALp <= (others == 'Z');
outFlaglp == '7':

e

1

outFlaglp <= '0';

outPortAlLp <= inPortAlp ;
outFlaglLp == '1";

Figure 11: Flow Diagram ReadPort

At the end of of the instruction "ReadPort" the bus
"outPortALp" must be put in high impedance 'Z', doghe
bus of 8 bit could be used by others instructiéusthermore,
although "codop" it is "0001" the data it is nottpan

outPortALp until "inFlagLp" = '1". Furthermore oldigLp is

putin high value, “1” logic, so, accumulator o know that
a data must be saved, such as indicated in thersathine in
the Fig. 7.

Published By:
Blue Eyes Intelligence Engineering \ =,
& Sciences Publication Pvt. Ltd.

International Journal of Soft Computing and Engineeing (IJSCE)

VII. SUSTINSTRUCTION

Fig. 12 shows block entity for the “Sust” instracti As stated
earlier, the LSB in 12 bits register it is repl&ageMSB from 8
bits register. This is the only thing that makesttey module
“Sust” instruction.

clksu —y |:> OutAC12bitsu
codopsu =
inAC8bitsu | module | outsust
Sust
. -
inAC12bitsu = — outFlagsuB
inFlagsu —outFlagsu

Figure 12: Entity “Sust”

Module in the Fig. 12 has codop because such masdie
instruction. Has "inAC8bitsu" which come from acauator
of 8 bit, "inAC12bitsu" that come from accumulatgrl2 bit.
The last it is due to this module replace LSB i tbgister of
12 bit by MSB from the register of 8 bit, suctsishows in the
Fig. 5. "inFlagsu" come from whether, accumulato bit or
accumulator of 12 bit. The register of 8 bit is ngdate,
however the register of 12 bit it changes. It habus
"outAC12bitsu" which go to accumulator of 12 bi@utput
"outsust" it is not needed, however it is used &MRor
buffer. Flag called "outFlagsu" inform to accumatabf 12
bit that the data it is ready to be stored. Figsi@ws flow for
the VHDL code. It can see from Fig. 11 and 13, tiosviogic
is the same. The block in the bottom from Figure ih3he
first two lines. The register "outsust” is not neéds the
simplest form of RAM storage. It can see from Feggid and
13, how the logic is the same. The block in thedrotfrom
Fig. 13, in the first two lines. The register "augt' is not
needed is the simplest form of RAM storage.

outAC12bitsu <= (others =>'Z";
outsust <= (others == 'Z");
outFlagsu <="Z",

outFlagsuB <="Z;

codopsu clse

0010

outFlagsu <="'0;
outFlagsuB <='0";

SAK

outAC12bitsu <= inAC12bitsu(11 downto 1)&inAC8bitsu(7);
outsust <= inAC12bitsu(11 downto 1)&inAC8bitsu(7);
outFlagsu <="1";

outFlagsuB <="1";

Figure 13: Flow diagram “Sust” module

58

ISSN: 2231-2307, Volume-4 Issue-6, January 2015

VIILI.

Any other instruction have similar architecture. wéwer, in
order to be clearer, block diagram, for "CompAdd"
instruction is in the Fig. 14. Entity is shown, lwé data input
of 12 bit called "inBufi2ca”, on this data it isrdad out
operation of split register, comparison of nibbleth the
binary number "0100", add if it is needed and cteration.

COMPADD INSTRUCTION

clkea —, Module
CompAdd
snibb00
inBufl2ca — zzigl};g ;
— outFlagea
_ variable
inFlagea .

Figure 14: Entity CompAdd

Due to deal with an ASIC processor and operatioasrary
simple, the design of this module include operation
previously given; (splits register of 12 bit in hibs,
comparisons, add and concatenation). Its flow diaggiven
in the Fig. 15. That shows the first part of flofittwe logic for
do this module. Fig. 16 is the second part of kiwv tliagram.

codopca
0011

else [

ik

outBufl2ca <= (others == 'Z");
outFlagca <="Z';

——

aux :="0"
Fany 1
(a0) H
1 elsif 0
v
aux ='1"

outBufl2ca <= snibb02 & snibb01 & snibb00;
outFlagca <="1";

loutFlagea <="0";

Figure 15: Flow diagram “CompAdd” first part

Published By:
Blue Eyes Intelligence Engineering \ =,
& Sciences Publication Pvt. Ltd.

ASIC Thread for Decimal (BCD) Algorithm: A Tutorial on How Create a Thread and to Evaluate ISPMACH4256E
CPLD

P
14
| outFlagca <="'0"

-

inBufl2ca(3 downto 0)
= "0100"

snibb00 <= inBufl2ca(3 downto 0) l

snibb00 == inBufl2ca(3 downto 0) + 3; ‘

4

inBufl2ca(7 downto 4)
= "0100"

snibb01 <= inBufl2ca(7 downto 4)‘

snibb01 == inBufl2ca(7 downto 4) + 3;

{

inBufl2ca(1l1downto 8)
} ||O 1001I

snibb02 <= inBufl2ca(1l1 downto S)W

snibb02 <= inBufl2ca(11 downto 8) + 3; ‘

Figure 16: Flow diagram “CompAdd” second part

Note that if codop = "0011" then input to "inFlafjaelse
nothing it is done and so module it is switch offh output by
high impedance 'Z' leaving free the bus. Signatubts'

defined inside of architecture of VHDL syntax. Texiable
“aux” it is define inside of process and is revalue the next
clock cycle in order to not to repeat the operatlomust be
ensured that at a first stage "inFlagac" = '1' #iaoh '0', in
order to can do operations. After that, when 'd'cedenation
is carried out and sent to the output. In othensiwcircledAO

block must be done in the first step, and thenlégéc" = '0'
block.

IX. SHIFT 8BIT INSTRUCTION

Shift8bit instruction deal with shift by one bitfine register of
8 bit from of right to left. Fig. 17 shows blockadjram this
module.

clkms8 —»
module
codopms8 —>| shift8bit — outACms8
Ea N variable |— OutFlagms8
mFlagmsS —b aux

Figure 17: Entity “Shift8bit”

59

The "inFlagms8" and "codopms8" comes from "ReadCode

module, however "InACms8" comes from 8 bits accatarl
(see Fig. 7). At the end, when "outFlagms8" = 81'bit
accumulator is updated by the data on the bus '©ot#8"
shown in Fig. 17. Fig. 18 shows logic flow for sltif one bit.
If "codopms8" = "0100" then do it shift, else switoff from
output by high impedance in the bus. Shift on aadator of
12 bit is equal except by size of register. ModURS", "read
code", ItC, "AC 12 bhit", and "AC 8 bit" are modulegUnit
Control UC (Fig. 7). However, the logic flow is ladi of
instruction in the ALU.

else

codopms8 ,

0100

outACms8 <= (others == 'Z');
outFlagms8 <= ' 7.

ok

aux :="'0";

+—t—

inFlagms8

G

o
1+ ‘outFlangS <="0"; ‘

;

B§
| outFlagms8 <="'0"; |

gl
aux :="'1";

outFlagms8 <="1";
outACms8 (0) <="'0";
outACms8 (7 downto 1) <= inACms8 (6 downto 0);

Figure 18: Flow diagram “Shift8bit”

X. ACCUMULATOR OF 8BIT

Accumulator save result of an operation, then thata is
ready for a next operation. The chat on every coduies on
all this architecture it is carry out by "inFlagid"outFlag" of
each module whether is module of instruction on Aldd
module on UC.

clkac® = ;5dule —>outac8
nac8 |:'l> ac8bit
inFlacacg = @UX |—outFlagac8

Figure 19: Entity 8 bits accumulator

From entity Fig. 19, the data “inac8” and "inFlagacomes
from the last 8 bits operation, and enables toab@mulator
to save the new data. As has been indicated, Jariabix"
allows update the accumulator just one time, alghothis
module could delay for more one clock cycle.

Published By:
Blue Eyes Intelligence Engineering \ =,
& Sciences Publication Pvt. Ltd.

International Journal of Soft Computing and Engineeing (IJSCE)

inFlagac®

gy

10
outFlagac8 <='0";
aux :="'0";

—l[}

aux :='1";

outac8 <= inac§;
outFlagac8 <="1";

;

outFlagac8 <="1";

Figure 20: Flow diagram “ac8bit”

Xl. ACCUMULATOR OF 12BITS

Module for 12 bit accumulator has the same logi@ dfit
accumulator shown in the Fig. 19 and 20, excefttishaf 12
bit.

XIl. PROGRAM COUNTER (PC)

Block diagram of module PC is in the Fig. 21. Insth
processor, which is actually a thread, PC modutedsmost
complex, although it is quite simple and easy.

clkpe o
nFlagAC8bit o)
nFlagAC12bit o

resetpe —

Figure 21: Entity PC

Fig. 22 is a first part of flow diagram PC for it in VHDL
code. As it was shown previously from the Fig. fleraone
operation which is carried out by instruction, aoclator it is
executed for save the new data, and then PCiicieased,
just until accumulator module have finished, whethis 8 or
12 bit. PC module knows that information by "inFAghit"

module
PC

oy oufpe

variable
aux

— outFlagpe

60

ISSN: 2231-2307, Volume-4 Issue-6, January 2015

and "inFlagAC12bit" respectively, which comes from
accumulators. Actually "outpc” it is the pointer reemory.
The "outFlagpc” 'l' means that PC module has been
increased. After that, the following module it RéadCode"
(Fig. 7), which is part of UC. Such module read e&ddm
memory, the data which pointed by PC. The secordrpthe

flow of logic it is show by the Fig. 23.

outpc <="0000";
outFlagpe <="0";

inFlagAC8bit='1' and
outpe = "0000"

| s

outpc <= oufpc + 1;
outFlagpe <="1";

MODULE —,‘

inFlagAC8bit ='0' and
outpe = "0000"

elsif

" IIlit "

81 4

‘

outpc <= outpc + 0;
outFlagpe <="1",

inFlagACSbit = 1" and
outpe = "0001"

elsif

si 4

outpe <=outpe + 1;
outFlagpe <="1";

inFlagAC8bit = 0" and
outpe = "0001"

elsif

5]
outpc <= outpe + 0;
outFlagpe <=0,

elsif

I I
_ 7

Figure 22: Flow diagram PC first part

|<— " ReadPort " MODULE —>|

Published By:
Blue Eyes Intelligence Engineering \ =,
& Sciences Publication Pvt. Ltd.

ASIC Thread for Decimal (BCD) Algorithm: A Tutorial on How Create a Thread and to Evaluate ISPMACH4256E
CPLD

inFlagAC12bit ="1" and
outpc = "0010"

yes |

outpc <= outpe + I;
outFlagpe <="1";

inFlagAC12bit ="0" and

elsif
outpe ="0010"

yes]

outpc <= outpe + 0;
outFlagpe <="0;

+— " Sust " MODULE 4>‘

inFlagAC12bit="1" and
outpe ="0011"

elsif

yes |
outpc <= outpe + 1,
outFlagpe <="1";

inFlagAC12bit ="0" and
outpc = "0011"

elsif

"CompAdd" MODULE —P‘

¥es §
outpe <= outpe + 0;

= outFlagpc <=0,
®

Figure 23: Flow diagram PC second part

Iteration counter "ItC" it is increased until aprition cycle
has finished, after "shift12" and before "Sust" mled, as it is
shown in the Table 2. Fig. 24 shows the last piddgic flow
of PC module. Fig. 22, 23 and 24 outlines logiaffor PC as
part of Unit Control (CU). As it can see, this letmore
complex module inside the UC. Remember that PG it
increased until accumulator has finished. Thatuse if the
account of ItC has not achieved his higher valubelVItC
has its higher value, “ItC” and then PC stop. P@vkisuch
information by input flags "inFlagAC8bit", "inFlagal2bit",
which come from accumulators, as well as flag fria®
module"flagiter”, as is seen from state machinthenFig. 7
and in the last block at the bottom Fig. 24. Nbt toutpc” =
"0010" it is the code for "Sust" instruction.

‘

61

inFlagAC8bit = '1' and
outpe = "0100"

yes |
outpc <= outpc + 1;
outFlagpc <="1";

inFlagAC8bit = '0' and
outpe = "0100"

ft8bit MODULE —

elsif

yes §
outpc <= outpc + 0;
outFlagpc <="0';

‘<— shi

inFlagAC12bit="1' and
outpc = "0101"

elsif

yes
oufpc <= outpc + 1;
outFlagpc <="1";

inFlagAC12bit ="0' and
outpc = "0101"

elsif

yesy
outpc <= outpc + 0;
outFlagpc <="0';

-

)‘es ¢ Ill
outpc <= outpc + 0;
outFlagpe <='0";

+— shift12bit MODULE —

-

outpe <= "0010";
outFlagpe <="'1";

Figure 24: Flow diagram PC third and last part

Xlll. READ CODE M ODULE

Flag "inFlaglnstrom” in the Fig. 25 comes from RE€well as
“inPCrom". Flag "outFlagrom" enables to next instion
and "outcode" is the code of this.

inFlagInstrom — — oufcode

module
ReadCode

inPCrom —> — outFlagrom

Figure 25: Entity ReadCode module

Published By:
Blue Eyes Intelligence Engineering \ =,
& Sciences Publication Pvt. Ltd.

International Journal of Soft Computing and Engineeing (IJSCE)

arrayrom:= ("0000",
"Q0Oo1",
"0010",
"Oo11",
"O100",
"O101",
others == "0000");

Il

- elsif
inFlagInstrom —lo

1 l |0utFlagr0m <= '0';|

outcode <= memrom((conv_integer(inPCrom));
outFlagrom <="1";

Figure 26: Flow diagram “ReadCode”

ISSN: 2231-2307, Volume-4 Issue-6, January 2015

ac8hit06.vhd mux06.vhd
acl2bit06.vhd packagep06.vhd
coderNibbles06.vhd pcinc06.vhd
compadd06.vhd ReadPort06.vhd
contlter06.vhd shift8bit06.vhd
contring06.vhd shift12bit06.vhd
div06.vhd sust06.vhd
init06.vhd topp06.vhd
ReadCode06.vhd

List 1: VHDL codes
Here some VHDL codes of modules are delivered, whie
not part in the solution of algorithm, for exampl@)
"coderNibbles06", (b) "contring06", (c) "div06", @n(c)
"mux06". These modules were for down to frequenuy @

Program memory is very simple it is a constant yarranultiplex seven segment display.

"arrayrom" from VHDL. Datas are accesed by PC astpp
toward such address memory. That module is pakirof
Control (UC) and it is included on State Machine"sesad
code for the next instruction” from Figure 7. Until this point,
it has nine entities delivered as well as his retpe
architecture. Although in total were eleven moddde
implement algorithm, some of them as 12 bits acdatou

XVI.

The next Tables are results sinthesis, implememtatind
fitter report from the development tools and of rsay it is
can be found from such report.

REPORTS FROM SINTHESIS FROM VHDL PROJECT

Table 3: Project_Summary

and 12 bits shift have similar architecture with tspective
8 bits modules. In addition, the Iteration Coumtexdule did

not shown, however it has similar architecture wvfta PC.

Fig. 1 has inside the top-level entity has inpud autput.

Placed inside of such box, which is the symbolefatity and

CPLD also, are all modules. At this level, the aartions

were made, with every one modules previously oedinn

order to get common busses such data and addresset

used signals defined in VHDL syntax, one, four,heignd

Project Name processorv07
Project Path C:\...\processorv07
Device M4256_96

Package 144

GLB Input Mux Size 33

Available Blocks 16

Speed -5.8

Part Number LC4256ZE-5TN144C
Source Format Pure_VHDL

twelve bits respectively. Furthermore other fourdules
attached also, although such modules do not ate gBCD
algorithm, however they used to get display. Théme
modules are, (1) timer to get two frequency fopliy, (2)
counter ring, (3) mux in order to display decimatniat in
seven segments and (4) coder from BCD to sevenesggm

XIV. TooLs

The main approach and concern on this work is anaxde
however a simple assessment on performance an@ sfop

Table 4: Compilation_Times
Prefit Time 0 secs
Load Design Time 0.05 secs
Partition Time 0.23 secs
Place Time 0.00 secs
Route Time 0.00 secs
Total Fit Time 00:00:01

Table 5: Design_Summary

device used, can be carry out. This exercise wasséed and
addressed to teach and shows how can be desigrdicasich
simples threads, from configurable and HardwarecEygtson
Languages (HDL) tools. Device under assesment
iISp)MACH 4256ZE CPLD (LC4256ZE-5TN144C), from
Lattice Semiconductor. Such device has 256 madis-ead
some data from performance are show in the nextosec
Software for VHDL design is ispLever Classic frorattice
Semiconductor [5]. In the following tables, resualte shows.

XV. VHDL CoDEs

Now in this section it will show list of codes VHDI hese
codes, it can be obtain by e-mail and then instiiside of a

project. That implies structural style in VHDL and
environment ispLever Classic under which was depraked
[6], but is not exclusive. It can be used othereadepment
environment.

Total Input Pins 11
Total Logic Functions 201
Total Output Pins 45
Sotal Bidir /0 Pins 2
Total Buried Nodes 154
Total Flip-Flops 188
Total D Flip-Flops 177
Total T Flip-Flops 8
Total Latches 3
Total Product Terms 791
Total Locked Pins 57
Total Unique Output Enables 2
Total Unique Clocks 3
Total Unique Clock Enables 10
Total Unique Resets 1
Fmax Logic Levels 2

62

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

ASIC Thread for Decimal (BCD) Algorithm: A Tutorial on How Create a Thread and to Evaluate ISPMACH4256E

CPLD
Table 6: Device_Resource_Summary http://www.latticesemi.com/en/Products/DevelopmearaigisAndKits
- — lispMACH4256ZEBreakoutBoard.aspx.
Device | Used | Not | Utili [4] Lattice Semiconductor. Data Sheet DS1022. ispMACBOOZE
Total Used | zation Family. 1.8V In-System Programmable Ultra Low PowRiDs.
August 2013. http://www.latticesemi.cofa From URL:
Dedicated Pins http://www.latticesemi.com/en/Products/FPGAandCR§MACH4
- 0OOO0ZE.aspx.
Clock/Input F_)'ns 4 1 3 25 [5] Peter Alfke and Bernie New. Application Note. Skri@ode
Input-Only Pins 10 2 8 20 Conversion between BCD and Binary. XAPP 029 Octdtier1997
I/O / Enable Pins 2 2 0 100 (Version 1.1). Xilinx. Online available as XAPP 029
- [6] Lattice Semiconductor. Habel-HDL Reference Manuiabl{ever
/O Pins 94 53 41 56 Classic) 2003. Hillsboro, OR 97124ttp://www.latticesemi.com
Logic Functions 256 201 55 78 Available from URL:
Input Registers 96 0 926 0 http://www.latticesemi.com/en/Products/DesignSof&WmdIP/FPG
AandLDS/ispLEVERCIassic.aspx
GLB Inputs 576 433 143 75
Logical Product| 1280 604 676 a7
Terms Dr. Gelacio Castillo Cab Prof fi E la S ior d
- r. Gelacio Castillo Cabrera Professor from Escuela Superior de
OCCUpled GLBs 16 16 0 100 Coémputo, Instituto Politécnico Nacional. Digital skgms and Computer
Macrocells 256 201 55 78 Architectura are some of his courses taught atiiibtitute. Some of his
Control Product Terms: published articles are (1): "CMOS prototype forirrat prosthesis
- applications with analog processing", and (2): fétanance evaluation of an
GLB Clock/Clock | 16 15 1 93 architecture for the characterization of photo-cig: design, fabrication test
Enables on CMOS technology", (3): "Protesis de retina: Wemion para el futuro"”,
GLB Reset/Presets 16 0 16 0 (4): "Procesamiento biolégico: el desafio actuaknmaportante”. Many
other of his works are find in proceeding. His meaterest in research are
Macrocell Clocks 256 3 253 1 "design of werable devices", "analog devices" aod teach them.
Macrocell Clock| 256 88 168 34
Enables M. en C. Martha P. Jiménez V Professor from Escuela Superior de
Coémputo, Instituto Politécnico Nacional. Her maiterest is on research for
Macrocell Enables 256 0 256 0 methodology for teaching mathematical in highercadion. Many others of
Macrocell Resets 256 5 251 1 her published works are find in proceedings. She $mne institutional
Macrocell Presets 256 0 256 0 books as "Matematicas discretas".
Global Routing Pool| 356 201 155 56

Maybe could come to be tediouse read this Tablmseher
they have important datas from which it is possidle
assesment for performance of such type of solutions
algorithm.

XVILI.

Here has been outlined the building of a threaddiyg, as an
example, the algorithm to translate a number gimeratural

binary format to decimal (BCD) format. In ordersteows and
teach how is go on and developed the processpibssible

down to external frequence to see slowly the proaes then
up to it frequency. External 12 leds array candienected to
see activity of 12 bits register as well as 8 bigister, of
course, three seven segments display. Furtherrnoeejed

for each flag it is can connected to see its agtivihat

processor has excellent performance from a teagioing of

view. Actually this is a thread, and so, can beedamany
others threads. Apendix A has bus architectiue.

CONCLUSIONS

REFERENCES
[1]

Intel. "Tutorial: Intel® Threading Building Blocks'Intel. Document

Number 319872-009US. URL: http://www.intel.con.
"TBBtutorial.pdf". Intel: Developer Zone.

https://software.intel.com/en-us/articles/inteledwling-building-bloc
ks-tutorial-pdf.

Sajjan G. Shiva, "Computer Organization, Desigm Architecture".
Boca Raton, FL, 33487, USA. Ed. CRC Press Tayla Brancis
Group 2014, pp. 185-214. International StandardkB¥amber 13:
978-1-4665-8554-6 (Book: Hardback). Purchased Bdbks not
available from web sitehttp://www.taylorandfrancis.com Only
referenced.

Lattice Semiconductor. User's Guide. ispMACH 4256BEeakout

(2]

(3]

Board Evaluation Kit. March 2012 Revision: EB65 11.
http://www.latticesemi.com Available from web site:
63

M. en C. Aurora Apericio C, Professor from Escuela Superior de
Ingenieria Mecanica y Eléctrica, Instituto Polit@cnNacional. Her main
interest is on research for analog devices and@oegpplications. Some of
her courses taught are on "analog systems" andtf@®ystem". She has
some institutional books as "Material de Apoyo p&xaAsignatura de
Control". Many other works are find in proceedings.

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

