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Abstract

Technological trends require that future scalable microprocessors be decentralized. Applying

these trends toward memory systems shows that size of cache accessible in a single cycle will

decrease in future generation of chips. Thus, a bank-exposed memory system comprising of small,

decentralized cache banks must eventually replace that of a monolithic cache. This paper considers

how to e�ectively use such a memory system for sequential programs.

This paper presents Maps, the software technology central to bank-exposed architectures, which

are architectures with bank-exposed memory systems. Maps solves the problem of bank disam-

biguation { that of determining at compile-time which bank a memory reference is accessing. Bank

disambiguation is important because it enables the compile-time optimization for data locality,

where data can be placed closed to the computation that requires it. Two methods for bank

disambiguation are presented: equivalence-class uni�cation and modulo unrolling. Experimental

results are presented using a compiler for the MIT Raw machine, a bank-exposed architecture that

relies on the compiler to (1) manage its memory and (2) orchestrate its instruction level paral-

lelism and communication. Results on Raw using sequential codes demonstrate that using bank

disambiguation improves performance by a factor of 3 to 5 over using ILP alone.

1 Introduction

Technological trends are forcing computer architects to reexamine their assumptions. In

future technology, wire delay is scaling approximately with feature size, but a combination

of decreasing transistor size and increasing die size means that the fraction of the chip

�This research is funded by Darpa contract # DABT63-96-C-0036. Walter Lee is funded in part by an
IBM Research Fellowship.
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reachable by a wire in a single cycle is diminishing dramatically [1, 14, 31]. Even with

conservative clock scaling, this fraction is projected to reduce to less than 2% in the next

decade [1]. Consequently, design complexity will be bound not by chip capacity but by wire

latency. Future microprocessors must be built out of localized structures that do not require

long wires.

Modern superscalars are full of centralized components that do not scale, such as issue

logic, register window, wakeup logic, and bypass paths. Some have proposed to addressed the

scalability problem incrementally, by identifying the least scalable components and proposing

more decentralized designs of those components. This approach, however, only addresses the

scalability problem in the short term. Wire latency will prevent a design with just one single

point of centralization from continuing to take advantage of the exponential increasing in

transistor budget. For a microprocessor to be scalable, its entire processing core, from the

dispatch unit to the register �le to the functional units, must be decentralized. A natural

way to achieve this goal is to design future microprocessors by replicating technologically

feasible processing cores.
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Figure 1: ILP and memory parallelism for various microprocessors over the last two decades.
Points in the graph represent commercial microprocessors from that year. Each microprocessor
contributes two points, one for its maximum number of instructions per cycle (ILP), and one for
its maximum number of primary cache (L1) accesses per cycle (memory parallelism). Memory
parallelism has remained at one or two accesses per cycle, while ILP has improved much more.

A truly scalable microprocessor, however, not only entails a scalable processing core {

the memory system must scale as well. A recent study shows that cache access time in terms
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of gate delay scales poorly with capacity and sub-linearly with technology [1]. Thus, the size

of cache accessible in a single cycle will decrease in future generation of chips. For example,

in the aggressive 2014 technology projected by the SIA technology roadmap [25], a 512-byte

cache will require three cycles to access. Furthermore, as shown in Figure 1, the number of

cache ports has not scaled with the number of functional units in a microprocessor.

Based on these observations, it is no longer reasonable to design the memory system in

a future microprocessor as a single monolithic unit. A conventional hierarchical memory

system does not address the issues, because data from the centralized L1 cache may still

traverse a potentially large distance to reach the growing number of compute elements that

can �t on a chip. To maintain scalability, the memory system must be decentralized.

PE
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L1

PE

L1
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L1

Execute

Memory
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Figure 2: A bank-exposed architecture comprises units of processing element and a memory bank.
Each processing element is tightly coupled with a memory bank, but it can access all the memory
banks through a communication network.

Figure 2 shows an abstract view of a scalable, fully decentralized microprocessor. The

microprocessor comprises individual autonomous units, each with its own processing element

and L1 cache bank. Each processing element has direct access to an L1 cache bank; a com-

munication network can be used to access values in other cache banks. In this organization,

cache banks are kept small, fast, and scalable with technology. Furthermore, because compu-

tation is mapped to each processing element statically, data can be statically placed near the

processing element that needs it. We call such an architecture a bank-exposed architecture,

because it allows the compiler to manage the locality of data along with computation.

This paper considers the challenge of utilizing a bank-exposed architecture for sequential

programs. It focuses on bank disambiguation, a central problem in attaining good perfor-

mance from such an architecture. Bank disambiguation is the problem of determining at
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compile-time which bank a memory reference is accessing. A particular load or store in-

struction is said to be bank disambiguated if the instruction accesses the same compile-time

predictable bank every time it is executed. Bank disambiguation is important because it is

a prerequisite for the compile-time optimization of data locality. When a memory reference

is known to refer to memory on a particular bank, the computation that operates on it can

be placed close to that bank.

This paper presents Maps, a compiler managed memory system that performs bank dis-

ambiguation for bank-exposed architecture. It presents two complimentary bank disambigua-

tion techniques. Equivalence class uni�cation uses pointer analysis to guide the intelligent

placement of data. Modulo unrolling uses intelligent loop unrolling to turn undisambiguated

access into disambiguated ones.

A good bank disambiguation scheme should satisfy three criteria. First, it should dis-

tribute data evenly across the memory banks. It is easy to bank disambiguate all accesses

by mapping all data to a single bank, but that is ine�cient use of memory and will likely

lead to poor locality. Second, the distribution should lead to good locality, where data is

close to the computation that uses it. Finally, when code transformation is involved, the

scheme should try to minimize any increase in code size. The methods in this paper aim for

balanced distribution and minimizes code growth. It provides the opportunity for a back

end to optimize for locality, but it does not address the locality issue directly.

The methods in this paper apply to any bank-exposed architecture for both general-

purpose and embedded systems [7, 11, 20, 22, 32]. In theory, it may also be used to map

sequential programs onto distributed shared memory multiprocessors, although the commu-

nication latencies on DSMs have historically been too high to be able to pro�tably exploit

the instruction level parallelism extracted by this compiler approach. This paper uses the

Raw machine, a bank-exposed architecture, to illustrate its techniques.

The rest of this paper is organized as follows. Section 2 gives the background for our

research. Sections 3 and 4 describe our two methods for bank disambiguation, equivalence-

class uni�cation and modulo unrolling, respectively. Section 5 presents experimental results.

Section 6 describes related work. Section 7 concludes.
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Figure 3: A Raw microprocessor is a mesh of tiles, each with a processing element, some memory
and a switch. The processing element contains both registers and an ALU. The processing element
interfaces with its local instruction memory, local data memory and local switch. The switch
contains its own instruction memory.

2 Background

This section gives the background of our research. First, it describes the Raw architecture,

the bank-exposed architecture on which we implement Maps. Then, it overviews the Raw

compiler and its interface with Maps.

The Raw architecture Figure 3 depicts the Raw microprocessor. It consists of a 2-

dimensional mesh of tiles. Each tile is composed of a processing element and a cache memory

bank. A switch is provided on each tile to communicate with other tiles. Two communi-

cation networks connect the tiles: the static network and the dynamic network. The static

network is a fast compiler-routed register-level network. Bank-disambiguated accesses to

compile-time-known banks either complete over the static network or are local to a tile. The

dynamic network is a slower runtime-routed network that serves the role of a conventional

memory system's arbitration logic. Accesses to compile-time-unknown banks complete over

the dynamic network. Each Raw tile has its own instruction stream; di�erent tiles proceed

in a loosely synchronous manner, communicating only for register and control dependences.

The Raw compiler Rawcc is the Raw parallelizing compiler based on the SUIF compiler

infrastructure [33]. It takes a sequential C or Fortran program, extracts its instruction level

parallelism, and parallelizes it across the tiles of the Raw machine. Figure 4 gives the major

components of Rawcc.

Rawcc comprises two major components. Maps is the memory front end that performs
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Figure 4: Structure of the Raw compiler.

bank disambiguation of memory accesses. It partitions all memory references and data ob-

jects into equivalent classes. Each equivalent class is labeled as either a single-tile equivalent

class or a low-order-interleaved one. Objects in a single-tile equivalent class are mapped to

a single tile. Objects in a low-order-interleaved class must be arrays; they are interleaved

element-wise across the tiles. The Maps analysis ensures that memory references can be

bank disambiguated if objects are mapped in such a manner.

Maps itself is made up of three components. It begins by collecting information from

traditional pointer and array analysis. This information is then used to perform analysis for

bank disambiguation. The third component deals with accesses that Maps decides not to

bank disambiguate. This paper focuses on techniques for bank disambiguation; a description

of handling for non-disambiguable access can be found in [5].

The space-time scheduler is the back end of Rawcc. It performs tasks related to the

mapping of instruction level parallelism to the Raw tiles. In addition, it is responsible for

mapping each equivalence class of data objects to the memory bank of a speci�c Raw tile.

The space-time scheduler performs this mapping with two goals: it tries to map equivalence

classes that are rarely concurrently accessed to the same physical bank, and it tries to map

accesses close to the computation that needs it. See [17] for details.

6



3 Equivalence-class uni�cation

This section describes equivalence-class uni�cation, our �rst method for bank disambigua-

tion. Equivalence class uni�cation (ECU) is our baseline disambiguation technique. It is

applicable to all memory accesses, including arbitrary array accesses, pointer dereferences,

structure references, and heap references. ECU provides disambiguation through careful

data placements that are guided by pointer analysis.

Section 3.1 gives an introduction to pointer analysis, while Section 3.2 describes ECU

itself. Throughout this section, we use Figure 5 as an expository example.

3.1 Pointer analysis

Pointer analysis is a compile-time technique that, for every memory-reference instruction,

determines the data objects that the instruction can possibly refer. Maps uses SPAN [27],

a state-of-the-art pointer-analysis package that provides an inter-procedural, 
ow-sensitive,

and context-sensitive pointer analysis.

To understand pointer analysis, consider the input program in Figure 5(a). Figure 5(b)

shows the results of the SPAN pointer analysis package on the program. SPAN assigns a

unique number, called a location-set number, to each abstract object in the program. An

abstract data object is either a stack-allocated variable declaration in the program or a group

of dynamic objects created by the same heap-memory allocation call site in the program. An

entire array is considered a single object, but each �eld in a structure is considered a separate

object. Figure 5(b) shows the abstract data objects marked with assign comments, with the

location set numbers for the objects listed alongside the comment. Finally, pointer analysis

annotates each memory reference instruction with a location-set list, a list of location-set

numbers corresponding to the objects that the memory reference can refer. In Figure 5(b),

each memory reference is annotated with its location-set list, shown as ref comments. For

simplicity, location-set numbers are shown only for objects that have program load/stores

to them; in the compiler all objects are assigned such numbers. Dotted edges represent

potential memory dependences derived from pointer analysis: two memory references are
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potentially dependent if 1. the intersection of their location-set lists is non-empty; 2. one of

the accesses is a store.

3.2 Equivalence-class uni�cation method

Figure 5 helps explain the ECU method through an example. First, ECU runs pointer anal-

ysis described above: Figure 5(b) shows the results of pointer analysis. Next, ECU represents

the pointer analysis information as a bipartite graph of data objects and memory references.

Figure 5(c) shows the bipartite graph for the program in Figure 5(b). A node is constructed

for each abstract object and for each memory reference. The upper row shows the abstract

objects, with the location-set number for each object in parentheses. The lower row shows

the memory references. Edges are constructed from each memory reference to the all the

abstract objects whose numbers are in the reference's location-set list.

Subsequently, ECU de�nes alias equivalence classes from the bipartite graph. Alias equiv-

alence classes form the �nest partition of the location set numbers such that each memory

access refers to location-set numbers in only one class. ECU derives the equivalence classes

by computing the connected components of the bipartite graph. Figure 5(d) shows the bi-

partite graph in Figure 5(c) partitioned into four equivalence classes. References in the same

alias class may potentially refer to the same object, while references in di�erent classes never

refer to the same object.

Finally, each equivalence class is mapped to a single tile. Figure 5(e) shows a sample

mapping using the equivalence classes in Figure 5(d). Mapping of equivalence class to mem-

ory banks is performed by the space-time scheduler, the backend of the Raw compiler. The

space-time scheduler performs this mapping with two goals: it tries to map virtual banks

that are rarely concurrently accessed to the same physical bank, and it tries to map accesses

close to the computation that needs it. See [17] for details.

Quality of the disambiguation The quality of the disambiguation from ECU depends

upon the number and size of the alias classes. A large number of small classes gives the

most memory parallelism, since accesses mapped to di�erent classes can execute in parallel.
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malloc.y (6) malloc.z(7)(c)

(d)

*q=33f.y=11 *r=44 p->x=22

malloc.z(7)

pf->y=55

malloc.y (6)malloc.x (5)f.x (1)ctr (4)f.z (3)f.y (2)

pf->y = 55

pf->y=55

malloc.x (5)ctr (4)f.z (3)f.y (2) f.x (1)

f.y=11 *q=33 p->x=22*r=44

void  fn  (int  cond)  {

    

    int   x, y, z;
struct  foo  {

};

    struct foo f;
    int ctr; 
    struct foo *pf, *p;
    int  *q, *r;

    pf = (struct foo *)
             malloc (sizeof (struct foo));

    p = cond  ?  &f  : pf;

    q = cond  ?  &f.y : &f.z;

    r = cond  ?  &f.x : &ctr;

}

// ref : 2    f.y = 11;

    p->x  = 22; 

    *q = 33; 

    *r = 44;
    pf->y = 55;

void  fn  (int  cond)  {

    

    int   x, y, z;
struct  foo  {

};

    struct foo f;
    int ctr; 
    struct foo *pf, *p;
    int  *q, *r;

    pf = (struct foo *)
             malloc (sizeof (struct foo));

    p = cond  ?  &f  : pf;

    q = cond  ?  &f.y : &f.z;

    r = cond  ?  &f.x : &ctr;

}

    f.y = 11;

    p->x  = 22; 

    *q = 33; 

    *r = 44;
    pf->y = 55;

// ref : 1,4
// ref : 6

 // assign : 1,2,3

// assign : 5,6,7

// assign : 4

// ref : 1,5

// ref : 2,3

(a) (b)

Equiv. class 2Equiv. class 1 Equiv. class 4Equiv. class 3

(e)

f.x (1)

malloc.x(5)

ctr (4)

malloc.y(6)f.y (2)

f.z (3)

malloc.z(7)

Bank 0 Bank 1 Bank 2 Bank 3

p = cond ? &f : pf
p->x = 22
r = cond ? &f.x : &ctr
*r = 44

q = cond? &f.y : &f.z
*q = 33

f.y = 11

PE 0 PE 1 PE 2 PE 3

Figure 5: Example showing equivalence-class uni�cation. (a) Initial program. (b) After pointer
analysis, showing location-set numbers and dependence edges (dotted lines). (c) Memory objects
and references represented as bipartite graph. (d) Connected components of bipartite graph marked
as equivalence classes (ECs). There are 4 ECs: f2,3g, f1,4,5g, f6g, f7g. This is the �nal output of
ECU. (e) The output after space time scheduling. PE = Processing element. Each EC is mapped
to a single bank; the code is distributed among the di�erent PEs while ensuring that the references
are local to the bank they access.

9



The number and size of the classes depend on the access patterns of the program, which the

compiler cannot control. Nevertheless, our results in Section 5 show that many programs

contain several alias classes. Finding any more than one class enables us to remove the

bottleneck of a centralized memory system.

4 Modulo unrolling

The major limitation of equivalence-class uni�cation is that an array belongs to one equiv-

alence class and is mapped to only one bank. This section presents modulo unrolling, a

technique for attaining bank disambiguation and memory parallelism for arrays. Modulo

unrolling is applicable to array references whose index expressions are a�ne functions of en-

closing loop induction variables.1 Such accesses are common in dense-matrix scienti�c codes

as well as some multimedia and streaming applications.

This section is organized as follows. Section 4.1 illustrates modulo unrolling through an

example. Section 4.2 describes modulo unrolling and its scope. Section 4.3 proves that the

unroll factor selected by modulo unrolling is necessary and su�cient. Section 4.4 discusses

the issue of code growth.

4.1 Example

Figure 6 gives an example of modulo unrolling. Figure 6(a) shows the code fragment forming

the compiler input, consisting of a simple for loop containing a single array reference A[i].

The array A[] ranges from 0 to 99. To enable parallel accesses, the compiler distributes A[]

among 4 memory banks using low-order interleaving.2 This distribution, however, makes

A[i] non-bank-disambiguable, because it touches data on all four banks.

In special cases, full unrolling can attain bank disambiguation. Figure 6(b) shows the

1An a�ne function of a set of variables is de�ned as a linear combination of those variables, plus a
constant. E.g: given i,j as enclosing loop variables, A[i + 2j + 3][2j] is an a�ne access, but A[ij + 4] and
A[2i2 + 1] are not.

2Low-order interleaving is the distribution of array elements in a round-robin manner across the memory
banks. That is, for a low-order interleaved array A[], element A[i] is allocated on bank i mod N .
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A[2]

A[6]

A[10]
. . .

A[3]

. . .

Bank 1 Bank 2

A[9]

A[5]

A[1]

A[8]A[8]
. . .

A[11]

A[7]A[5]

A[9]

A[4]

. . .

A[2]

A[6]

Bank 0

. . .

Bank 3

A[3]

A[7]

A[11]
. . .

Bank 0

A[0]

Bank 2 Bank 3

.

.

A[4]

A[0]

. . .

A[8]
. . .

A[1]

A[1]

A[5]

A[9]
. . .

. . .

A[2]

A[6]

A[10]
. . .

A[10]

A[3]

A[7]

A[11]
. . .

Bank 0 Bank 1 Bank 2 Bank 3

Bank 1

for    i    =    0   to   99  do

endfor

A[ i ] =  . . .

A[0]

A[4]

A[99] = . . .

.

(c)

endfor

for    i    =    0   to   99  step  4  do

A[ i  + 0] =  . . .

A[ i  + 1] =  . . .

A[ i  + 2] =  . . .

A[ i  + 3] =  . . .

A[1] = . . .

A[0] = . . . (b)(a)

Figure 6: Example of modulo unrolling. (a) Original code. Array A is low-order interleaved on a
4-bank bank-exposed machine. The A[i] reference instruction goes to di�erent banks for di�erent
values of i. (b) Code after full unrolling. Disambiguation is attained, but code size is huge. (c)
Code after unrolling by factor 4. Disambiguation is attained with limited code size increase.
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sample loop in Figure 6(a) fully unrolled. This solution, however, is only possible if the loop

bounds are known, and it is only reasonable if the iteration count is small.

Modulo unrolling uses a modest amount of intelligent unrolling to make the example

access disambiguable. In the example, it unrolls the loop by a factor of four, as shown in

Figure 6(c). After the unrolling, each access refers to elements on the same memory bank:

A[i] to tile 0, A[i+ 1] to tile 1, A[i+ 2] to tile 2, and A[i+ 3] to tile 3. Thus, each access in

the unrolled loop has become bank disambiguated. Furthermore, the accesses can proceed

in parallel, thus providing memory parallelism.

4.2 Modulo unrolling method

Modulo unrolling is a technique for bank disambiguation that is applicable to array references

whose index expressions are a�ne functions of enclosing loop induction variables. This

section describes the method.

Modulo unrolling works as follows. First, the compiler looks for a�ne array accesses

inside loop-nests. For each array access and each loop, it computes the minimum unroll

factor required on the loop in order for the access to be bank disambiguated. Once the

compiler computes the induced unroll factors for each loop for each a�ne access, the �nal

unroll factor for a loop is the least common multiple (lcm) of all its unroll factors induced by

each enclosing a�ne accesses. Section 4.3 proves that the overall code-growth from modulo

unrolling is bounded by the number of memory banks in most cases, even for nested loops.

Let N be the number of memory banks in the target software-exposed architecture. We

de�ne the following:

De�nition 4.1 Given a k-dimensional (not necessarily perfectly nested) loop nest of the

form:

for v1 = l1 to u1 step s1

for v2 = l2 to u2 step s2

::::

for vk = lk to uk step sk

/* the loop body */
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We represent an a�ne access to an array A of dimension MAX1�MAX2� � � ��MAXd as

follows:

Ref = A[(
Pk

j=1 c1;jvj) + c1;k+1; : : : ; (
Pk

j=1 cd;jvj) + cd;k+1] 2

Then, for each j 2 [1; k], the minimum unroll factor Uj induced by Ref on the jth loop

is (we use Dj as an intermediate variable):

Dj = N = gcd

 
N;

dX
i=1

 
ci;j

dY
l=i+1

MAX l

!!

Uj = lcm(Dj ; sj) / sj

All variables above represent integers.

Scope Modulo unrolling handles arbitrary a�ne functions with few other restrictions.

Within its framework, it handles imperfectly nested loops, non-unit loop step sizes, hand-

linearized multidimensional arrays, and unknown loop bounds. Both imperfectly nested

loops and non-unit loop step sizes are handled naturally without any special case. Hand-

linearization of multidimensional arrays does not pose a problem, because the transformation

preserves the a�ne property: a linear combination of a�ne functions is also a�ne, and the

o�set of any array element from its base remains unchanged using hand-linearization. Only

unknown loop bounds require additional transformation beyond that required in the basic

framework [5].

4.3 Deriving the unroll factors

This section proves that unrolling each loop in a loop nest by a certain factor disambiguates

all a�ne array accesses in that nest. The proof also derives the formula above for the

minimum required the unroll factor Uj. We inherit the de�nitions in Section 4.2. Additional

variables needed for the proof are de�ned when needed.

A roadmap for the proof follows. First, two supporting theorems involving modular

arithmetic are proved, namely, the product modulo theorem (Theorem 4.2) and the sum-

of-products modulo theorem (Theorem 4.3). Then, a formula for the address of an array
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access is de�ned for row-major addressing (De�nition 4.4). Next, the condition for bank

disambiguation of a�ne accesses is represented as a requirement of the step-size after un-

rolling is performed (Theorem 4.5). After that, the unroll factor implied by the step-size

required after unrolling is shown to result in the minimum code-size increase among unrolls

that provide bank disambiguation (Theorem 4.6). Finally, for each loop in the loop nest

containing the a�ne access, the formula for the actual unroll factor is derived, such that the

required step-size after unrolling is attained (Theorem 4.7).

In all the proofs that follow, all variables and constants introduced are integers. The proof

begins by supplying two supporting theorems involving modular arithmetic, theorems 4.2

and 4.3.

Theorem 4.2 requires Lemmas 1 and 2; stated below without proof.

Lemma 1 Let X, N be integers, X � 0; N � 1. Let p1, p2 be integers that satisfy

N = gcd(N;X)p1, X = gcd(N;X)p2. Then p1; p2 � 1 and are relatively prime.

Lemma 2 Let X � 0; N � 1, and let p1, p2 be those de�ned in Lemma 1. Then

lcm(N;X) = p1X = p2N .

Theorem 4.2 (Product modulo theorem) Given X � 0 and N � 1, let

S = fs j sX mod N = 0g. Let D be the least element in S. Then D = N= gcd(N;X).

Proof Let p1 = N= gcd(N;X). We �rst show p1 2 S: p1X mod N = lcm(N;X) mod N

= 0.

Next, we show that 8s 2 S, p1 � s. s 2 S ) sX = kN for some k > 0 ) sX � lcm(N;X)

) sX � p1X ) s � p1. 2

Theorem 4.3 (Sum-of-products modulo theorem) Given n � 1, N � 1, and bi � 0

for 1 � i � n. Then

(k1b1 + � � �+ knbn) mod N = 0 for all ki � 0, 1 � i � n,

) bi mod N = 0 for all i; 1 � i � n.

Proof For each i 2 [1; n], set ki = 1 and kj = 0; j 6= i. Then bi mod N = 0. 2

14



De�nition 4.4 Given the representation of an a�ne access de�ned in De�nition 4.1, let

address(val1; : : : ; valk) be the address of the a�ne function evaluated with index variables

vj = valj (1 � j � k), assuming row-major array layout. Then,

address(val1; : : : ; valk) = &A + (: : : ((c1;1MAX 2 + c2;1)MAX 3 + c3;1) + � � �+ cd;1)val1
...

+ (: : : ((c1;kMAX 2 + c2;k)MAX 3 + c3;k) + � � �+ cd;k)valk

+ (: : : ((c1;k+1MAX 2 + c2;k+1)MAX 3 + c3;k+1) + � � �+ cd;k+1)

The following theorem derives the condition for memory bank disambiguation for an

a�ne function access of the form in De�nition 4.1.

Theorem 4.5 (Disambiguation condition) Given the context in De�nition 4.1, assume

that the array of the a�ne access is low-order-interleaved. To get bank disambiguated

accesses, each loop j 2 [1; k] can be unrolled so that the resultant step size Dj satis�es the

equation:

Dj = N = gcd

 
N;

dX
i=1

 
ci;j

dY
l=i+1

MAX l

!!

Proof Let X be an a�ne access in the loop nest before unrolling. Let X' be a static

instance of X after unrolling. For that instance to be bank disambiguable, its address must

obey the following:

address(v1; v2; :::vk) mod N = address(v01; v
0

2; :::; v
0

k) mod N for all legal input values

) address(v1; v2; :::vk) �address(v
0

1; v
0

2; :::; v
0

k) = 0 mod N .

Now, valid vi, v
0

i must have the form li +miDi; mi � 0. Substituting these values in and

canceling common terms, we have

address(m1D1; :::; mkDk) �address(0; :::0) = 0 mod N ; m1; :::mk � 0.

Thus,

((: : : ((c1;1MAX 2 + c2;1)MAX 3 + c3;1) + � � �+ cd;1) m1D1 +

...

(: : : ((c1;kMAX 2 + c2;k)MAX 3 + c3;k) + � � �+ cd;k) mkDk) mod N = 0.
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By Theorem 4.3,

Dj(: : : ((c1;jMAX 2 + c2;j)MAX 3 + c3;j) + � � �+ cd;j) mod N = 0 (1 � j � k);

i.e.,

Dj

 
dX

i=1

 
ci;j

dY
l=i+1

MAX l

!!
mod N = 0 (1 � j � k):

Using Theorem 4.2, the minimum value of Dj satisfying this condition is:

Dj = N = gcd

 
N;

dX
i=1

 
ci;j

dY
l=i+1

MAX l

!!

Any multiple of the above value for Dj also satis�es the condition. 2

The following theorem shows that the minimum value of Dj derived in Theorem 4.5

minimizes the overall code size for unrolling schemes that provide disambiguation.

Theorem 4.6 (Minimum code size) The value of Dj in Theorem 4.5 minimizes the

overall code size of the entire loop nest unrolled appropriately for providing disambiguation.

Proof The overall code size for the unrolled loop nest is proportional to D1 : : :Dk, i.e.,

the product of the unrolled step sizes. From Theorem 4.5, the given value of

Dj (1 � j � k) is minimum for disambiguation for each j, independent of the values of Dj

at other j. Hence the product of Dj's is minimized when Dj for each j is individually

minimized, as was done in Theorem 4.5. 2

The following theorem derives the �nal result, i.e., the value of the unroll factor Uj, in

terms of step size after unroll Dj.

Theorem 4.7 (Unroll factor formula) In order to attain the value of Dj in

Theorem 4.5, we need to unroll the jth loop nest (1 � j � k) by a factor Uj given by Uj =

lcm(Dj; sj) / sj.

Proof Unrolling a loop j produces step sizes that are multiples of sj. From Theorem 4.5,

an unrolled step size necessary for bank disambiguation is any multiple of Dj. Thus, the

lowest attainable step size that results in disambiguation is lcm(Dj; sj). The necessary

16



unroll factor Uj to reach this step size is the unrolled step size divided by the initial step

size: Uj = lcm(Dj; sj) / sj. 2

4.4 Bounds in code growth and the padding optimization

This section examines the increase in code size implied by the modulo unrolling. Code growth

is an undesirable side-e�ect of modulo unrolling. Note, however, that the unrolling required

by modulo unrolling can often be combined with the unrolling used to expose instruction

level parallelism. This combination can help reduce the unrolling overhead.

In this section, we �rst derive the worst case code growth. Then, we describe a padding

optimization that can reduce the code growth. Finally, we present an example that demon-

strates the application of the modulo unrolling formulas, both with and without the padding

optimization.

Bounds on unroll factors Unrolling incurs the cost of increased code size. To establish

a bound, we show that the unroll factor Uj derived in Theorem 4.7 is provably at most N ,

the number of banks. From Theorem 4.5, Dj = N=a positive integer � N . Inserting into

Theorem 4.7, Uj = lcm(Dj; sj) =sj � Dj � sj=sj = Dj � N .

In the worst case, since all the k loop in the loop nest may be unrolled N ways, the overall

code growth is at most a factor of Nk. For k �2, Nk can be large. In practice, however, for

most a�ne accesses, the overall code growth can often be limited to N irrespective of k by

applying the padding optimization discussed later in this section.

A �nal observation regarding code growth is that the decision of whether to modulo

unroll a nested loop is a local decision. If the code growth from modulo unrolling is deemed

excessive for one nested loop, the compiler can choose not to unroll the loop without adversely

e�ecting the modulo unrolling decisions in the rest of the program.

Padding Optimization For many a�ne functions that occur in practice, a simple op-

timization enables us to restrict the overall code growth and to greatly simplify the code

generation. This optimization is the padding optimization, which involves padding the last

array dimension size to be a multiple of N for all arrays. To see how, �rst we derive a simpler
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expression for Dj than the one in Theorem 4.7, in the case when the padding optimization

is performed.

Corollary 4.8 In Theorem 4.7, if the last dimension of the array (MAX d) is padded to the

next higher multiple of N , then the expression for Dj simpli�es to Dj = N = gcd (N; cd;j).

Proof From the expansion of the expression for Dj in Theorem 4.5, we get

Dj= N = gcd (N; ((: : : ((c1;jMAX 2 + c2;j)MAX 3 + c3;j) + � � �)MAX d + cd;j))

= N = gcd (N; (X �MAXd + cd;j)) for some integer X

= N = gcd (N; cd;j)

It can be shown that since the value of X does not matter for this result, the result holds

for cases when only last dimension of the array reference is a�ne. 2

We de�ne the following class of array references, which bene�ts from padding optimiza-

tion.

De�nition 4.9 (Simple-index last dimension) A simple-index last dimension array ref-

erence is an array reference whose index expression in the last array dimension is of the form

c1 � i + c2, where i is any loop induction variable and c1; c2 are any integer constants. The

array index expressions other than for the last dimension are unrestricted and need not even

be a�ne.

Most a�ne functions that occur in real programs are of the simple-index last dimension

class. Some references that have non-a�ne expressions in all but the last array dimension

are also in this class. The following theorem shows that for this class, at most one of the

enclosing loops is unrolled by modulo unrolling.

Theorem 4.10 Consider a simple-index last dimension array reference. If the array ac-

cessed by the reference has its last dimension padded to a multiple of N , then at most one of

enclosing loops needs to be unrolled. That is, the Uj values for the other loops will automat-

ically be one.
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Proof From Corollary 4.8, Dj = N = gcd (N; cd;j). Recall that cd;j is the index of the jth

loop induction variable in the last array dimension. Since the reference is a simple-index in

the last dimension, all but one of the cd;j's for di�erent j are zero. For all these j values

with cd;j = 0, it follows that Dj = N= gcd(N; 0) = 1. Hence, Uj, the unroll factor, is also

1. 2

Thus, for array references that have simple-index last dimension, Theorem 4.10 shows

that the code-size growth is no more than N , irrespective of the depth of the loop nest.

In some cases, padding optimization may fail to bound the overall code growth to N .

Such cases include those where the a�ne functions are not simple index functions, as well

as cases where the loop nest contains multiple simple index functions that induce unrolls on

di�erent loops of the loop nest. For cases where the predicted code growth is prohibitive,

modulo unrolling can operate on a subset of array accesses to reduce the unroll factor { only

the accesses in the subset will become bank disambiguated.

5 Results

This section presents results for the Maps memory system in the context of the Raw archi-

tecture. Application programs are compiled with Rawcc and simulated on a simulator of the

Raw architecture as described in Section 2. The processing element on each Raw tile is a

MIPS R4000 instruction set augmented with network access instructions. Latencies of the

basic instructions are as follows: 2-cycle load, 1-cycle store, 1-cycle integer add or subtract;

2-cycle integer multiply; 36-cycle integer divide; 4-cycle 
oating add, subtract, or multiply;

and 10-cycle 
oating divide. Except for divides, all basic 
oating point operations are fully

pipelined. The simulator simulates in�nite data and instruction memories on chip. Two sets

of results are presented. Section 5.1 compares application performance with varying amount

of bank disambiguation support. Results show that in the 32-tile case, Maps improves per-

formance by a factor of 3 to 5 for a broad range of programs. Section 5.2 presents more

detailed analysis of the performance with our bank disambiguation techniques.
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Benchmark Source Language Lines Seq. time Primary Description
of code (cycles) Array size

DENSE MATRIX

Btrix Nasa7 FORTRAN 236 287M 15�15� Vectorized Block
(SPEC92) 15�5 Tri-Diagonal Solver

Cholesky Nasa7 FORTRAN 126 34.3M 16�16�32 Cholesky Decomposition
(SPEC92) & Substitution

Swim SPEC95 FORTRAN 486 96.2M 513�33 Shallow Water Model

Tomcatv SPEC92 FORTRAN 254 78.4M 32�32 Mesh Generation with
Thompson's Solver

Vpenta Nasa7 FORTRAN 157 21.0M 32�32 Inverts 3 Pentadiagonals
(SPEC92) Simultaneously

Mxm Nasa7 FORTRAN 64 2.01M 32�64, Matrix Multiplication
(SPEC92) 64�8

Life Rawbench C 118 2.44M 32�32 Conway's Game of Life

Jacobi Rawbench C 59 2.38M 32�32 Jacobi Relaxation

Alvinn SPEC92 C 331 23.8M 30�131 Neural-Network
Training

Ocean Splash/ C 1174 309.7M 256�256 Ocean Movement
Jade Simulation

MULTIMEDIA

Adpcm Media- C 295 2.8M 10240 Speech Compression
bench

SHA Perl Oasis C 608 1.0M 512�16 Secure Hash
Algorithm

MPEG-kernel UC C 86 14.6K 32�32 MPEG-1 Video Software
Berkeley Encoder Kernel

Latnrm UTDSP C 81 103K 64 Normalized Lattice
Filter

FIR-�lter UTDSP C 44 548K 1024 Finite Impulse
Response Filter

IRREGULAR

fppp-kernel SPEC92 FORTRAN 735 8.98K - Electron Interval
Derivatives

Moldyn CHAOS C 805 63M 256�3, Molecular Dynamics
32000�2 Encoder Kernel

Unstructured CHAOS C 850 150M 17377�3, Computational Fluid
32000�2 Dynamics

Table 1: Benchmark characteristics. Sequential time is the run-time for the single-tile case.
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Application suite Table 1 lists the characteristics of the benchmarks used for the eval-

uation. The benchmarks are derived from the following sources: Rawbench [3], SPEC [9],

Mediabench [15], UTDSP [16], Jade [24], UC Berkeley MPEG-1 Tools [26], and CHAOS [29].

Benchmarks include several dense matrix applications, multimedia applications, and appli-

cations with irregular memory access patterns. All the benchmarks are ordinary sequential

programs written for a uni�ed address space. Rawcc compiles them without any user di-

rectives or pragmas of any kind. All speedups were attained with our automated compiler

without user intervention. Because the Raw machine does not support double-precision


oating point, all 
oating point operations are converted to single precision.

5.1 End-to-end performance

We �rst present results for end-to-end application performance with a varying degree of

bank disambiguation support. In all cases, instruction level parallelism is extracted and

exploited across the tiles of the Raw machine. Performance is collected for three types of

disambiguation support: trivial, equivalence-class uni�cation only (ECU only) , and ECU

with modulo unrolling. In trivial support, the compiler has no intelligent disambiguation

information. With no information, the compiler generally has two options: leave memory

accesses undisambiguated, or perform trivial bank disambiguation by mapping all objects to

one tile. On Raw, undisambiguated accesses happen to be very expensive due to software

overhead [5], so we select trivial bank disambiguation as our baseline technique. This method

models the cost of centralization in Raw's memory system, but it does not model the penalty

due to extra capacity misses in a �nite sized cache.

In ECU only, di�erent equivalent classes provided by ECU are mapped to di�erent tiles.

In ECU with modulo rolling, non-array equivalent classes are distributed, and arrays accessed

through a�ne references are low-order interleaved across the memory banks.

In these results, we expect end-to-end performance to improve with the quality of bank

disambiguation for two reasons. First, bank disambiguation improves memory parallelism,

allowing multiple concurrent memory accesses. Second, good disambiguation allows data to

be \parallelized" with the computation, so that the data can reside close to the computation
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that uses it.

Figure 7 compares the performance of the three bank disambiguation schemes on a Raw

machine with 32 tiles. The baseline for all three strategies is the execution time of the

sequential program running on one tile, with one functional unit and one memory bank. The

results show that ILP without memory parallelism yields poor performance. While using

ILP alone gives a speedup in the range 1-4, memory parallelism can increase performance

substantially. ECU increases the speedup on average by a factor of two beyond using ILP

alone, boosting it to between 2 and 6.3 Modulo unrolling further improves speedup to

between 7 and 24 in applications where it is applicable. Overall, the methods in this paper

deliver an additional factor of 3 to 5 in performance over using ILP alone for our benchmarks.
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Figure 7: Comparison of 32-tile speedups using instruction-level parallelism (ILP) alone, ILP with
ECU, and ILP with both ECU and modulo unrolling.

5.2 Detailed application results

Table 2 shows benchmark speedups for a varying number of tiles on Raw, using our bank

disambiguation techniques. The numbers in the last column, for N = 32, are identical to

the ILP + ECU + modulo unrolling numbers in Figure 7. We discuss some overall trends.

3Adpcm, SHA and fppp-kernel are exceptions; see Section 5.2 for details.
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Benchmark N=1 N=2 N=4 N=8 N=16 N=32
DENSE MATRIX

Btrix 0.83 1.48 2.61 4.40 8.58 9.64
Cholesky 0.88 1.75 3.33 6.24 10.22 17.15
Swim 0.88 1.43 2.70 4.47 8.97 17.81
Tomcatv 0.92 1.64 2.76 5.52 9.91 19.31
Vpenta 0.78 1.90 3.36 7.06 12.17 20.12
Mxm 0.94 1.97 3.60 6.64 12.20 23.19
Life 0.96 1.73 3.03 6.06 11.70 20.29
Jacobi 1.01 1.68 3.03 5.95 11.13 17.58
Alvinn 1.04 1.30 2.07 2.93 4.31 5.22
Ocean 0.88 1.16 1.97 3.05 4.09 4.51
MULTIMEDIA

Adpcm 0.97 0.99 1.19 1.23 1.13 1.13
SHA 0.96 1.18 1.63 1.53 1.44 1.42
MPEG-kernel 0.90 1.36 2.15 3.46 4.48 7.07
Latnrm 0.93 1.30 1.87 2.80 3.39 6.06
FIR-�lter 0.80 1.04 1.59 2.55 6.55 14.25
IRREGULAR

fppp-kernel 0.52 0.73 1.51 3.26 6.72 10.20
Moldyn array 0.95 1.36 2.38 2.99 4.28 4.38

structure 0.92 0.94 1.60 2.57 3.11 3.59
Unstruct array 0.82 1.21 2.35 3.59 5.22 6.12

structure 0.86 1.29 2.07 3.00 4.10 4.92

Table 2: Benchmark speedup with full Maps bank disambiguation (equivalence-class uni�cation
and modulo unrolling). Speedup compares the run-time of the Rawcc-compiled code versus the
run-time of the code generated by the Machsuif MIPS compiler for a varying number of tiles N .

Benchmark performance can be classi�ed into several types. Dense-matrix programs

performed very well, attaining multiprocessor-like speedups on a microprocessor. The per-

formance is due largely to modulo unrolling. For multimedia applications, two applications,

Adpcm and SHA, attain low speedups while the remaining three attain high speedups. For

Adpcm, the code is inherently serial for the large part; for SHA, while some ILP is available,

it is too �ne-grained for our current techniques to exploit. The other three multi-media

applications bene�t signi�cantly from memory parallelism. The results on two of them,

MPEG-kernel and FIR-�lter, are especially encouraging as these are key components of the

emerging workloads of the future involving audio, image and video data.

The irregular applications include Fppp-kernel, Moldyn and Unstructured. Fppp-kernel

consists of a big time-intensive basic-block with much parallelism and mainly accesses to

scalar data. Since only scalar variables are present, the benchmark does not bene�t from

ECU and modulo unrolling. Moldyn and Unstructured are more typical examples of scienti�c

programs with irregular access patterns. Both moldyn and unstructured are run using two
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versions: one using structures, and the other using arrays instead for the structure �elds.

For these irregular applications, Maps is able to improve performance by a factor of 2 to 3

compared to using ILP alone.
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Figure 8: Distribution of primary data on a 32-tile Raw machine. The tiles are sorted in decreasing
order of memory consumption. For each benchmark, the graph displays the memory consumption
on each tile normalized by the memory consumption of the tile with the largest consumption.

Memory distribution We measure the distribution of memory across the tiles. In general,

balanced data distribution is desirable because it minimizes the per-tile memory needed to

run an application, and it alleviates the need to build large and centralized memory that is

also fast. Figure 8 shows the distribution of primary data across tiles for our benchmarks

executing on 32 tiles. Most dense matrix codes can fully distribute their data; Swim and

Cholesky can only partially distribute their data because of their small problem sizes, but

their distributions become balanced with larger problem sizes. Load balance in the other

applications is limited by two factors: the limited number of equivalence classes, and the

unequal size of the classes.

Memory bandwidth utilization We measure how well an application takes advantage

of Raw's independent memory banks. Bandwidth utilization depends on the amount of

memory parallelism exposed by Maps and the amount of parallelism in the application.

Figure 9 measures the weighted memory bandwidth utilization of a 32-tile machine. It plots
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Figure 9: Weighted bandwidth utilization of the memory system on a 32-tile machine. The graph
displays the percentage of memory references being issued in a time slot when a given number of
tiles is issuing memory requests.

the percentage of memory references being issued in a clock cycle when a given number of

tiles is simultaneously issuing memory requests. The sum of the percentages for any one

application is 100%. For example, for Cholesky, almost 20% of the memory references are

issued in a cycle in which a total of 7 memory references are issued in all the tiles. Results

show that except for the two highly serial benchmarks (Adpcm and SHA), all the benchmarks

are able to exploit at least a small amount of parallel memory bandwidth. The �gure shows

that most of our benchmarks are indeed able to take advantage of the many ports in the

memory system.

6 Related work

Bank-exposed general-purpose microprocessors date back to as early as 1983 when Josh

Fisher proposed the ELI-512 VLIW machine [11]. The machine is a bank-exposed architec-

ture with a point-to-point network connecting its processing elements, each with an exposed

memory bank. It provides two ways to access memory: a fast \front door" that directly

addresses a particular bank, and a slower \back door" that can address any bank. More

recent bank-exposed architectures include iWarp [7] and the Raw machine [32]. On the em-
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bedded front, many DSP chips today, such as the Motorola DSP56000 family [20] and the

NEC �PD7701x family [22], have two exposed memory banks, called X and Y memory.

Bank disambiguation is equivalent to memory bank prediction described by Fisher [11].

He explores memory bank prediction in the context of the ELI-512 VLIW machine. On this

machine, successful bank disambiguation allows faster memory accesses through the front

door. Fisher does not provide any automatic way to perform bank disambiguation, but he

observes that unrolling can sometimes help disambiguate accesses. This observation forms

our basic for modulo unrolling, our fully automated technique.

Since then, work on bank disambiguation has mostly been con�ned to the DSP com-

munity. Saghir, Chow, and Lee [28] have developed a method for exploiting digital-signal

processing chips with dual memory bank. Their approach examines each memory reference

and constructs an interference graph that represents how frequently data objects can be

accessed in parallel. A min-cut algorithm is then used to partition the objects across the

memories. Similarly, Sudarsanam and Malik [30] also exploit the use of dual memory bank

in DSPs, with the additional constraint that each register is tied to a speci�c memory bank.

They exploit both a greedy algorithm and a simulated annealing technique based on inter-

ference graph. Unlike Maps, these approaches do not deal with pointer aliasing, nor do they

attempt to partition arrays. The common partitioning problem they solve are analogous to

the problem of mapping virtual object partitions to physical tiles in the Raw compiler. In

the Raw compiler, this problem is solved by the space-time scheduler [17], the back end of

Maps.

Other researchers have parallelized some of the benchmarks in this paper for multi-

processors. Automatic parallelization has been demonstrated to work well for dense matrix

scienti�c codes [6, 13]. In addition, some irregular scienti�c applications can be parallelized

on multiprocessors using inspector-executor method [10]. Typically these techniques involve

user-inserted calls to a runtime library such as CHAOS and are not automatic [21]. The pro-

grammer is responsible for recognizing cases amenable to such parallelization, namely those

where the same communication pattern is repeated for the entire duration of the loop. In

contrast, the Maps approach exploits instruction level parallelism and is thus more generally
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applicable.

Literature includes many kinds of memory disambiguation. Most of them are unrelated

to bank disambiguation, which is concerned with the location of a reference. Rather, they are

usually concerned with the dependence relation between references. Disambiguation of this

type includes relative memory disambiguation [18], run-time disambiguation [23], dynamic

memory disambiguation [8, 12], and a�ne-memory disambiguation [2, 4, 19, 34].

7 Conclusion

This paper presents Maps, a memory system for bank-exposed architectures. Maps pro-

vides memory parallelism through a compiler-managed set of decentralized memory banks.

This approach contrasts with the centralized view of memory maintained by existing micro-

processors, which inhibits scalability due to the need for centralized dependence checking

hardware and long wires. The system supports sequential programs and is transparent to

the programmer, thus requiring no extra programming e�ort.

This paper focuses on compile-time bank disambiguation, the main problem in exploiting

memory parallelism on a bank-exposed architecture. Bank disambiguation is the act of

ensuring that a memory reference refers to data on only one memory bank. Two methods

for banks disambiguation are presented. Equivalence class uni�cation uses pointer analysis

to partition data into classes that can be mapped to di�erent banks without disturbing bank

disambiguation. Modulo unrolling uses unrolling to enable the bank disambiguation of a�ne

accesses to low-order interleaved arrays.

We are encouraged by the results of the Maps approach to providing memory parallelism.

Experimental results demonstrate that our disambiguation methods improve performance

by a factor of three to �ve. Maps is able to exploit memory parallelism in a range of

applications, from those containing small amounts of memory parallelism to more regular

applications with large amounts of memory parallelism. This versatility opens up a range

of possible applications for Maps. From small embedded designs to desktop microprocessor-

based systems to supercomputers, machines with exposed memory banks can bene�t from

27



our techniques.
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