
Cryptographic Accumulators: Definitions,

Constructions and Applications

Nelly Fazio Antonio Nicolosi

Courant Institute of Mathematical Sciences

New York University

New York, NY, USA

{fazio,nicolosi}@cs.nyu.edu

Abstract

After their first appearance in the cryptographic community ten
years ago, cryptographic accumulators have received a discontinuous
attention from the researchers of the field. Although occasionally stud-
ied, there has been no systematic effort to organize the knowledge of
the subject, abstracting away from the unnecessary details of specific
proposals, so as to provide a reliable starting point for further investi-
gation.

The goal of this paper is to present a complete picture of the
topic, starting from the issue of defining an adequate formalization
for cryptographic accumulators, and then moving on to a description
of known constructions. A quick tour of interesting applications is
then presented; finally, some possible lines for future development are
suggested.

1 Introduction

In 1993, Benaloh and de Mare [4] introduced the notion of accumulator
schemes as a decentralized alternative to digital signatures in the design of
secure distributed protocols and described the basic functionalities and se-
curity properties that such schemes should provide to eliminate the necessity

This paper was written as part of the class G22.3033-010 — Topics in Cryptography

(Instructor: Prof. Victor Shoup, Term: Fall 2002.)

1

of a trusted authority in applications such as time-stamping and member-
ship testing. Since their introduction, accumulators have been considered
as interesting primitives, but overall they have received less attention than
what they seem to be worthy.

Furthermore, even the few works that have investigated their properties,
do not constitutes systematic and organized effort: many applications have
been proposed during the last ten years (time-stamping [4], fail-stop signa-
tures [2], anonymous credential system [7], group signatures [7]), but each
time a new, different definition of accumulator scheme have been introduced
to best suite the specific setting.

Basically, an accumulator scheme is an algorithm to combine a large set
of values into one, short accumulator, such that there is a short witness that
a given value was indeed incorporated into the accumulator.
Recently, Camenisch and Lysyanskaya [7] introduced the more challenging
notion of dynamic accumulators, which allow to dynamically delete and add
elements from/into the original set. The proposed variant is particularly
interesting since it achieves such higher degree of flexibility with a work per
deletion and addition independent of the number of accumulated values,
and without requiring knowledge of any sensitive information to update old
witnesses to be consistent with the new accumulator.

1.1 Organization of the Paper

The informal definition stated above gives an intuitive idea of what an accu-
mulator scheme should be, but it is too vague to be of any use in the security
proof of any concrete application: a proper formalization is required.

Section 2 compares the few definitions proposed so far, and combines
them to provide a novel model for accumulator schemes that aims to be
general enough to be appropriate for any reasonable application and, at the
same time, formal enough to allow a precise security analysis.

Section 3 presents an overview of the constructions that have been pro-
posed to date, trying to follow, as much as possible, the line of development
by which subsequent proposals have built on previous results.

To provide a practical motivation for the study of cryptographic accu-
mulators, some interesting applications will be described in Section 4.

Finally, Section 5 concludes, suggesting some open problems and possible
directions for future research.

2

2 Definitions

2.1 One-Way Accumulators

Accumulator schemes are a relatively new gadget in Cryptography, and there
is still no standard formal definition for them. When they were first proposed
by Benaloh and de Mare [4], one-way accumulators were defined as a family
of one-way hash functions with an additional special property, called quasi-
commutativeness.

Definition 1 (One-Way Hash Functions, [4])
A family of one-way hash functions is an infinite sequence of families of

functions {Hλ}λ∈N, where Hλ
.
= {hk : Xk × Yk → Zk}, with the following

properties:

1. For any integer λ and any hk ∈ Hλ, hk(·, ·) is computable in time
polynomial in λ.

2. For any probabilistic, polynomial-time algorithm A:

Pr[hk
R

← Hλ; x
R

← Xk; y, y′
R

← Yk; x
′ ← A(1λ, x, y, y′) :

hk(x, y) = hk(x
′, y′)] < negl(λ)

where the probability is taken over the random choice of hk, x, y, y′ and
the random coins of A.

Definition 2 (Quasi-commutativeness, [4])
A function f : X × Y → X is said to be quasi-commutative if:

(∀x ∈ X)(∀y1, y2 ∈ Y)[f(f(x, y1), y2) = f(f(x, y2), y1)]

Definition 3 (One-Way Accumulators, [4])
A family of one-way accumulators is a family of one-way hash functions

each of which is quasi-commutative.

This definition, although elegant and simple, does not make clear the
basic functionality of secure accumulators, which intuitively consists in the
capability of accumulating a set L of values into a unique, small value z
in such a way that only for elements y ∈ L it is possible to provide a
proof that y actually has been accumulated within z. Furthermore, as first
noticed in [12], the one-way property imposed by the second requirement
of Definition 1 is often too weak for applications where the adversary can
choose some of the values to be accumulated. A more appropriate level of
security can be obtained by strengthening such requirement as to enforce a
strongly one-wayness property, as follows:

3

Definition 4 (Strongly One-Way Hash Functions, [12])
A family of strongly one-way hash functions is an infinite sequence of

families of functions {Hλ}λ∈N, where Hλ
.
= {hk : Xk × Yk → Zk}, having

the following properties:

1. For any integer λ and any hk ∈ Hλ, hk(·, ·) is computable in time
polynomial in λ.

2. For any probabilistic, polynomial-time algorithm A:

Pr[hk
R

← Hλ; x
R

← Xk; y
R

← Yk; (x
′, y′) ← A(1λ, x, y) :

y′ 6= y ∧ hk(x, y) = hk(x
′, y′)] < negl(λ)

where the probability is taken over the random choice of hk, x, y and
the random coins of A.

2.2 Collision-free Accumulators

Still, the strongly one-way property does not completely solve the issue of
guaranteeing security in a setting where the adversary A actively partici-
pates in the selection of the values y ∈ L to be accumulated (i.e. x and y in
the definition above are no longer randomly chosen, but rather carefully se-
lected by the adversary). To fill this gap, Barić and Pfitzmann [2] proposed
the notion of collision-free accumulators:

Definition 5 (Accumulator Scheme, [2])
An accumulator scheme is a 4-tuple of polynomial time algorithms (Gen,

Eval, Wit, Ver), where:

• Gen, the key generation algorithm, is a probabilistic algorithm used to
set up the parameters of the accumulator. Gen takes as input a security
parameter 1λ and an accumulation threshold N (i.e. an upper bound
on the total number of values that can be securely accumulated) and
returns an accumulator key k from an appropriate key space Kλ,N ;

• Eval, the evaluation algorithm, is a probabilistic algorithm used to
accumulate a set L

.
= {y1, . . . , yN ′} of N ′ ≤ N elements from an

efficiently-samplable domain Yk, where k is some accumulator key from
Kλ,N . Eval receives as input (k, y1, . . . , yN ′) and returns an accumu-
lated value (or accumulator) z ∈ Zk and some auxiliary information
aux, which will be used by other algorithms. Notice that every exe-
cution of Eval on the same input (k, y1, . . . , yN ′) must yield the same
accumulated value z, whereas the auxiliary information aux can differ;

4

• Wit, the witness extraction algorithm, is a probabilistic algorithm that
takes as input an accumulator key k ∈ Kλ,N , a value yi ∈ Yk and the
auxiliary information aux previously output (along with the accumu-
lator z) by Eval(k, y1, . . . , yN ′), and returns either a witness wi (from
an efficiently-samplable witness space Wk) that “proves” that yi was
accumulated within z if this is indeed the case, or the special symbol ⊥
if yi 6∈ {y1, . . . , yN ′}.

• Ver, the verification algorithm, is a deterministic algorithm that, on
input (k, yi, wi, z), returns a Yes/No answer according to whether the
witness wi constitutes a valid proof that yi has been accumulated within
z or not.

Such definition doesn’t require the quasi-commutative property, and is
thus slightly more general than that of [4]. Following the terminology of [2],
the class of accumulators as defined in [4] will be referred to as elementary
accumulators. Elementary accumulators can be easily adapted to satisfy
Definition 5: the details of the construction follows.

The key generation algorithm simply consists of randomly selecting a
function hk from the family Hλ for the appropriate value of the security
parameter, along with a random x ∈ Xk. To accumulate a set of values
y1, . . . , yN ∈ Yk into a single, short accumulator z ∈ Zk, it suffices to itera-
tively apply the function hk on x, y1, . . . , yN ; formally:

Eval(k, y1, . . . , yN) :

parse k as (hk, x)

z0 ← x

zi ← hk(zi−1, yi), i = 1, . . . , N

z ← zN

aux ← (y1, . . . , yN)

Output: (z, aux)

By the quasi-commutativeness of hk, it is clear that the order in which
the yi’s are hashed to obtain z in the above algorithm is irrelevant. Another
advantage of the quasi-commutative property of hk is that the Wit algorithm

5

can be realized in terms of Eval:

Wit(k, yi, aux) :

parse k as (hk, x)

parse aux as (y1, . . . , yN)

if yi 6∈ {y1, . . . , yN} then fail

L′ ← {y1, . . . , yN} \ {yi}

wi ← Eval(k, L′)

Output: wi

To verify a witness wi for an element yi and accumulator z, the Ver algo-
rithm just checks whether hk(wi, yi)

?
= z, accepting or rejecting accordingly.

It is easy to see that the verification algorithm always succeeds on witnesses
honestly created with the Wit algorithm. This shows that the resulting ac-
cumulator scheme is functionally correct, completing the description of the
generic transformation.

Definition 6 (N-times Collision-Freeness, [2])
An accumulator scheme is said to be N -times collision-free if for any integer
λ and for any probabilistic, polynomial-time algorithm A:

Pr[k ← Gen(1λ, N); (y1, . . . , yN , y′, w′) ← A(1λ, N, k);

(z, aux) ← Eval(k, y1, . . . , yN) :

(y1, . . . , yN ∈ Yk) ∧ (y′ 6∈ {y1, . . . , yN}) ∧ (Ver(z, y′, w′) = Yes)] < negl(λ)

where the probability is taken over the random coins of Gen, Eval and A.

Definition 7 (Collision-Freeness, [2])
An accumulator scheme is said to be collision-free if it is N -times collision-
free for any value of N polynomial in λ.

2.3 Dynamic Accumulators

For many applications of cryptographic accumulators, the set of interest L
evolves with the time, after the accumulator z has been computed. A naive
way of handling such situations would be to recompute the accumulator
from scratch each time the set L changes: however, this would be highly
impractical, especially when the set L is rather large. For this reason, re-
cently Camenisch and Lysyanskaya [7] introduced the notion of dynamic

6

accumulators, where the cost of computing the new accumulator z′, result-
ing after adding or deleting an element from L, is independent of the number
of accumulated values.

Definition 8 (Dynamic Accumulator Scheme, [7])
A dynamic accumulator scheme is a 7-tuple of polynomial time algorithms

(Gen, Eval, Wit, Ver, Add, Del, Upd), where:

• Gen, Eval, Wit, Ver are as in a regular accumulator scheme (see Defi-
nition 5);

• Add, the element addition algorithm, is a (usually deterministic) al-
gorithm that given an accumulator key k, a value z ∈ Zk obtained as
the accumulation of some set L of less than N elements of Yk, and
another element y′ ∈ Yk, returns a new accumulator z′ corresponding
to the set L ∪ {y′}, along with a witness w′ ∈ Wk for y′ and some
update information auxAdd which will be used by the Upd algorithm;

• Del, the element deletion algorithm, is a (usually deterministic) algo-
rithm that given an accumulator key k, a value z ∈ Zk obtained as the
accumulation of some set L of elements of Yk, and an element y′ ∈ L,
returns a new accumulator z′ corresponding to the set L \ {y′}, along
with some update information auxDel which will be used by the Upd

algorithm;

• Upd, the witness update algorithm, is a deterministic algorithm used
to update the witness w ∈ Wk for an element y ∈ Yk previously ac-
cumulated within an accumulator z ∈ Zk, after the addition (or dele-
tion) of an element y′ ∈ Yk \ {y} in (or from) z. Upd takes as input
(k, y, w, b, auxop) (where op is either Add or Del), and returns an up-
dated witness w′ that “proves” the presence of y within the updated
accumulator z′.

The definition presented above is actually slightly different from that of
[7]: a few changes were made to attain a formalization more adherent to
the original motivation of [4], i.e. avoiding the need for a trusted central
authority. In fact, to meet the efficiency requirement for the element dele-
tion algorithm Del, in [7] Camenisch and Lysyanskaya considered schemes
where the accumulator key generation algorithm Gen outputs, along with
the accumulator key k, some secret information tk that enables an efficient
implementation of the Del algorithm, but at the same time opens a poten-
tial hole in the security of the scheme itself. Thus, the trapdoor tk should

7

only be available to an “accumulator manager”, who is trusted to use this
knowledge exclusively for the purpose of updating the accumulator after the
removal of some elements, and not for deriving fake witnesses for values
which have not been accumulated.
Such schemes, in which the presence of a trapdoor information is essential
for the proper functioning of the system, will be referred to as trapdoor
dynamic accumulator schemes.

Once the notion of accumulator scheme has been augmented to allow dy-
namic updates of the accumulator, it is necessary to reconsider the security
requirements that should be satisfied. In [7], Camenisch and Lysyanskaya
suggested the following notion of security, defined in terms of an adaptive
attack scenario:

Definition 9 (Security for Dynamic Accumulator Schemes, [7])
Let S be a dynamic accumulator scheme. An accumulator manager runs
S.Gen and gives the key k to the adversary. The set L of values to be accu-
mulated and the corresponding accumulator z are initially set to be empty.
Then, the adversary adaptively modifies the set L, by asking the accumula-
tor manager to add and/or remove values yi ∈ Yk in/from the accumulator
as she wishes, obtaining back the new accumulator z (along with the wit-
ness wi for the newly inserted yi, in the case of an Add operation) and
the associated auxop information necessary to update the other witnesses
(where op is either Add or Del). At the end, the adversary attempts to pro-
duce a witness w′ ∈ Wk for a y′ not belonging to the current set L such
that S.Ver(y′, w′, z) = Yes. S is secure if the adversary has only a negligi-
ble probability of succeeding, where the probability is taken over the random
coins of the adversary and of the accumulator manager.

As it turns out, the above definition is essentially equivalent to Definition
7, in the sense that a dynamic accumulator scheme S satisfies it if and only
if the “restricted” accumulator scheme S̃

.
= (S.Gen,S.Eval,S.Wit,S.Ver)

is collision-free. This is because the Add, Del and Upd algorithms, which
are available in S but not in S̃, do not provide any new functionality, but
only allow to achieve higher computational and communication efficiency.
Indeed, all three of these extra algorithms can be simulated by S̃ at the cost
of a polynomial (although considerable) time overhead. Hence, if there were
an attacker breaking S in the attack scenario of Definition 9, it would be
possible to construct an attacker breaking the collision-freeness of S̃, via a
straightforward simulation of the Add, Del and Upd algorithms.

Things are slightly different for trapdoor dynamic accumulator schemes.
Namely, the security of a trapdoor dynamic accumulator scheme S does

8

not immediately follow from the collision-freeness of the restricted accu-
mulator scheme S̃. But before arguing more about this, it is necessary to
extend Definition 9 to the trapdoor case. This can be easily done by adding
the requirement that, after executing the S.Gen algorithm, the accumulator
manager keeps secret the trapdoor tk (corresponding to the accumulator key
k), and only uses it to respond to Del queries.
Now, to see why the above equivalency argument does not apply “as is”
to trapdoor dynamic accumulator schemes, observe that it could no longer
be possible to simulate Del queries, since the Del algorithm of a trapdoor
scheme requires knowledge of the trapdoor corresponding to the accumula-
tor key, whereas there is no trapdoor information available in the restricted
accumulator scheme S̃.

Nevertheless, for specific schemes a simulation argument may still be pos-
sible: this is indeed the case for the trapdoor dynamic accumulator scheme
constructed in [7], which will be presented in Section 3.

3 Constructions

The goal of the previous section was to formally define the functionalities and
security properties that accumulator schemes should enjoy to be useful. For
such definitional effort not to have been vain, another important question
must be answered, namely whether cryptographic accumulators of any of the
proposed kinds do exist at all, and if so, what computational or combinatoric
assumptions are needed to construct such objects.

The current section aims to answer this question, by presenting an
overview of the constructions that have been proposed to date in the lit-
erature. In brief, two main approaches have been pursued, quite different
from each other: one based on (a variant of) a well-known number theo-
retic assumption, and the other based on families of functions with strong
(pseudo-)random properties.

3.1 The Number-Theoretic Approach

In [4], Benaloh and de Mare presented a one-way elementary accumulator
based on the exponentiation function modulo a composite number n. Such
function is quasi-commutative, and for a suitable choice of the modulus n it
is also believed to be one-way over an appropriate domain. To specify more
precisely such conditions, a little bit of notation and terminology is needed.

9

Definition 10 (Safe Prime, [4])
A number p is said to be a safe prime if p = 2p′ + 1 and both p and p′ are
odd primes. For λ ∈ N, let S-Primeλ be the set of safe primes of size λ.

Definition 11 (Rigid Integer, [4])
A number n is said to be a rigid integer if n = pq where p and q are distinct
safe primes such that |p| = |q|. For λ ∈ N, let Rigidλ be the set of rigid
integers of size λ.

According to Definition 3, to fully specify an elementary accumulator,
it suffices to describe the generic function hk ∈ Hλ, for an arbitrary λ ∈ N.
For the case of the elementary accumulator of Benaloh and de Mare, hk is
defined as follows. The key k is just a rigid integer n of size λ. Let G ⊂ Z

∗

n be
the group of quadratic residues modulo n. Then G is a cyclic group of order
n′ .

= ϕ(n)/4 = p′q′. Hence, for any y relatively prime with p′ and q′, the
y-power map is a permutation over G. Thus, a one-way, quasi-commutative
function can be defined as:

hk : G × Z
∗

n′ → G

hk : (x, y) 7→ xy mod n

Quasi-commutativeness of this function is clear. To show the one-way
property, we need to prove that it is infeasible to compute a x′ such that
hk(x, y) = hk(x

′, y′) for random λ-bit rigid integer n and random x ∈ G,
y, y′ ∈ Z

∗

n′ . Letting z
.
= hk(x, y) = xy mod n, this is equivalent to assert the

computational hardness of computing a y′-th root of a random z ∈ G, even
knowing a y-th root of z (i.e. x). Using a well-known algebraic manipulation
due to Shamir [15], it is possible to show that knowledge of a y-th root of
a random element of G doesn’t help in finding a y′-th root of the same
element, as long as y′ doesn’t divide y. Since in the current setting both y
and y′ are drawn independently at random from Z

∗

n′ , the chance of y′ being
a divisor of y are negligible [11]: hence, the one-wayness of the proposed
elementary accumulator is essentially equivalent to the difficulty of finding
a root of random index of a random element of G, which is the well known
RSA assumption.

There still is a technical problem with the above construction. The issue
is that, for an accumulator to be useful, the domain from which the y’s are
drawn (which in this case is the set Z

∗

n′) should be efficiently sampleable,
which means that n′ should be publicly known. But since n′ .

= ϕ(n)/4,
publishing n′ would reveal ϕ(n), thus allowing to efficiently recover of the
factorization of n, which makes the RSA problem easily solvable.

10

Fortunately, there is an easy way out of this apparently circular situation:
just consider the extension of the function hk to G × Zn/4. The domain for
the y’s is now efficiently sampleable; as for the one-wayness, the negligibility
of the statistical distance between the uniform distribution over Z

∗

n′ and
the uniform distribution over Zn/4 makes it possible to adjust the above
argument so as to work for the new, broader domain.

As mentioned in Section 2, it was early recognized that one-wayness is
often not enough for a family {Hλ}λ∈N to be safely used to accumulate a
list of values into a single, short accumulator. Indeed, if the adversary is
allowed to attempt forgery of a witness w′ for an element y′ of her choice
(rather than uniformly distributed over the domain Yk), than the one-way
property doesn’t help. In particular, the argument outlined above to prove
the one-wayness of the elementary accumulator of Benaloh and de Mare
won’t go through: the weak point is that in the strong one-way setting (see
Definition 4) the probability of y′ being a divisor of y is no longer negligible,
as the adversary will have a good chance of finding a factor of a random
element y ∈ Zn/4.

In [4], Benaloh and de Mare informally suggested to accommodate this
problem by introducing a random oracle [3] in the construction. Indeed,
given a function H : Ȳk → Yk that behaves like a random oracle, it is
possible to transform any one-way accumulator, with generic function hk :
Xk×Yk → Xk, into a strongly one-way accumulator, whose generic function
is h̄k : Xk × Ȳk → Xk, defined as h̄k(x, ȳ) = hk(x, H(ȳ)). In this way, no
matter how clever the adversary is in choosing the element ȳ′ ∈ Ȳk for which
she wants to attempt a witness-forgery, she will still be facing the problem
of inverting the one-way function hk at the random point y′

.
= H(ȳ′), which

is assumed to be hard.
However, the above solution relies on the Random Oracle Model, and

thus provides just an heuristic argument [8], rather than a full proof of secu-
rity, for concrete instantiations of the proposed construction. Alternatively,
as proposed in [2] by Barić and Pfitzmann, it is possible to achieve strong
one-wayness from the RSA-based construction of Benaloh and de Mare by
restricting the domain Yk to contain only prime numbers, and basing the se-
curity analysis on a stronger variant of the RSA assumption, in the standard
model. More precisely, define Primes to be the set of all prime numbers,
and let Yk

.
= Primes ∩ Zn/4. Consider the restriction of the modular expo-

11

nentiation function to G × Yk, i.e.:

ĥk : G × Yk → G

ĥk : (x, y) 7→ xy mod n

Now that the y’s are subject to the additional constraint of being primes,
the adversary can’t take advantage of her knowledge of a root of random
index y when trying to find another pair (x′, y′) such that (x′)y′

mod n =
xy mod n

.
= z. However, the difficulty of such computation is not equivalent

to the RSA assumption, since the adversary can pick her favorite index for
the root extraction (whereas in the standard RSA assumption the index
is chosen at random). What is needed here is a different computational
assumption, first introduced by Barić and Pfitzmann in [2] under the name
of strong RSA assumption:

Assumption 1 (Strong RSA Assumption, [2])
For any integer λ and for any probabilistic, polynomial-time algorithm A:

Pr[n
R

← Rigidλ; k ← n; z
R

← G; (x′, y′) ← A(1λ, n, z) :

y′ ∈ Yk ∧ (x′)y′

= z mod n] < negl(λ)

where the probability is taken over the random choice of n and z, and the
random coins of A.

In [2], Barić and Pfitzmann showed that the strong RSA assumption not
only entails the strong one-wayness of the family of functions Ĥλ

.
= {ĥk |n ∈

Rigidλ, k ← n}, but also suffices to prove that the accumulator scheme SBF,
obtained extending the elementary accumulator {Hλ}λ∈N according to the
generic transformation presented in Section 2.2, also satisfies the stronger
notion of collision-freeness (for a proof, see Theorem 5 of [2]).

Adding an additional twist to the above construction, Camenisch and
Lysyanskaya obtained a secure trapdoor dynamic accumulator scheme [7].
The crux of their result lies in the observation that the modular exponenti-
ation function, which is the core of the collision-free accumulator discussed
above, comes with an associated trapdoor information, namely the factor-
ization of n as p · q (or, equivalently, the order n′ .

= ϕ(n)/4 of the group
G). Although the presence of such auxiliary information was of no help
for the construction of Barić and Pfitzmann (and indeed, some research
has focused on the issue of defining accumulator schemes without trapdoor
[12, 13], [14]), the availability of a trapdoor turned out to be a valuable tool

12

for speeding up the Del algorithm, which is the whole point of a trapdoor
dynamic accumulator scheme.

More in detail, the scheme of [7] is based on the exponentiation function
modulo a rigid integer n (whose factorization is know only to a trusted ac-
cumulator manager), defined over the domain G× Ỹk, where Ỹk

.
= Primes∩

[A, B] and 2 < A < B < A2 < n/4:1

h̃k : G × Ỹk → G

h̃k : (x, y) 7→ xy mod n

Notice that now the adversary cannot break the collision-freeness of the
scheme even if she is allowed to attempt witness-forgery for a composite
number y′ ∈ [A, B] \ Ỹk. In fact, the only way she could take advantage of
such “out-of-domain” choice would be to let y′

.
= y1 ·y2, for some y1, y2 ∈ Ỹk

that have already been accumulated. But this possibility is ruled out by the
constraint B < A2: indeed, if y′ ∈ [A, B], then B ≥ y′

.
= y1 · y2 ≥ A · A =

A2 ⇒ B ≥ A2, a contradiction.
To add an element y′ into an already existing accumulator z, it suffices

to apply the h̃k function once more:

Add(k, z, y′) :

z′ ← h̃k(z, y′)

w′ ← z

auxAdd ← y′

Output: (z′, w′, auxAdd)

The trick to efficiently delete an element y′ from an accumulator z given
the trapdoor information n′ is to compute the exponent ỹ that “undoes” the
y′-power map, i.e. ỹ

.
= (y′)−1 mod n′. This can be efficiently done using the

Extended Euclidean Algorithm Ext-GCD. The rest is administrivia:

Del(k, n′, z, y′) :

ỹ ← (y′)−1 mod n′

z′ ← h̃k(z, ỹ)

auxDel ← (y′, z′)

Output: (z′, auxDel)

1In this case, the accumulator key k is the pair (n, x).

13

Finally, the Upd algorithm operates as follows:

Upd(k, y, w, op, auxop) :

if op = Add then

yAdd ← auxop

w′ ← h̃k(w, yAdd)

else

parse auxop as (yDel, z
′)

(d, a, b) ← Ext-GCD(y, yDel)

if d 6= 1 then fail

w′ ← h̃k(z
′, a) · h̃k(w, b)

endif

Output: w′

The Upd algorithm is in fact comprised of two distinct parts, corre-
sponding to the Add and Del operations. To update a witness w for y after
the insertion of yAdd in z, it suffices to return as new witness the value
w′ .

= wyAdd mod n; indeed, it holds that:

(w′)y ≡ (wyAdd)y ≡ (wy)yAdd ≡ zyAdd ≡ z′ (mod n)

where the last congruence holds by the definition of the Add algorithm pre-
sented above.
To update a witness w for y after the removal of yDel from z (resulting in the
new accumulator z′), one has to use the Ext-GCD algorithm to compute inte-
gers a, b such that ay + byDel = 1 (notice that this is possible only if y 6= yDel

since otherwise GCD(y, yDel) = y 6= 1). Then, letting w′ .
= (z′)a · wb mod n

suffices, since:

(w′)y ≡ (z′)ay ·wby ≡ (z′)ay ·zb (♯)

≡ (z′)ay ·(z′)byDel ≡ (z′)ay+byDel ≡ z′ (mod n)

where the congruence (♯) holds since z = (z′)yDel mod n in virtue of the above
implementation of the Del algorithm.

To complete the presentation of the Camenisch and Lysyanskaya’s trap-
door dynamic accumulator scheme SCL, it remains to be proved that it is
indeed secure under Definition 9. A sketch of such proof is given below: for
more details, see Theorem 2 of [7].

The crucial point of the security proof is that the trapdoor information
n′ is used in the Del algorithm just to speed up the computation. Indeed,

14

access to the Add and Del oracles can be simulated by a stateful polynomial
time algorithm that doesn’t know the trapdoor. Such simulation would pro-
ceed as follows. At the beginning, create an initially empty set L that will
be updated during the simulation to stay in sync with the values present,
at any given moment, within the accumulator. When asked to insert an
element y′ into z, update L to reflect the insertion, and simply execute the
Add algorithm above on input (k, y′, z). To respond to a Del query, check
whether y′ ∈ L, and fail if not; then, update L accordingly and recompute
the accumulator from scratch, executing Eval(k, L). Notice that this com-
putation is much slower than that of Del, but is still polynomial time and
produce the required result without the help of any trapdoor information.

To complete the argument, just notice that any probabilistic, polynomial-
time adversary A attacking the security of the trapdoor dynamic accumula-
tor scheme SCL can be turned, using the above simulation, into another prob-
abilistic, polynomial-time adversary Ã attacking the collision-freeness of the
restricted accumulator scheme S̃CL .

= (SCL.Gen,SCL.Eval,SCL.Wit,SCL.Ver).
Now, it is easy to verify that S̃CL is just a syntactic variation of the ac-
cumulator scheme SBP of Barić and Pfitzmann, which was argued earlier
to be collision-free under the strong RSA assumption. Hence, the trapdoor
dynamic accumulator scheme SCL satisfies the requirements of Definition 9
under the same computational assumption.

3.2 The Combinatoric Approach

An alternative approach to the construction of cryptographic accumulators
has been pursued by Nyberg in [12, 13]. These two papers are quite similar
to each other, the second presenting a slightly improved solution. Thus,
the following presentation will focus on their common features and on the
specific details of the accumulator proposed in [13].

One of the motivations for Nyberg’s work was to obtain an “absolute”
accumulator, in the sense that the construction was to be provably secure
and not based on any trapdoor information, possibly known to some third
party — in line with the original intention of Benaloh and de Mare of pro-
viding a fully decentralized alternative to digital signatures. And in fact,
both of the accumulators proposed by Nyberg are trapdoorless and, even
better, their security does not depend on any computational assumption.
However, the argument provided in [13] to prove the (strong) one-wayness
of Nyberg’s construction assumes the availability of a hash function produc-
ing long, truly random hash codes; in other words, the accumulator scheme
is proven secure in the Random Oracle Model [3, 8].

15

Formally, the construction of [13] defines an elementary accumulator

(see Definition 4) {HNyb
λ }λ∈N. Assume that N = 2d is an upper bound on

the number of items to be accumulated within any single accumulator z.
Define ℓ

.
= e

lg eλN lg N , where e is Neper’s number and lg denotes base 2

logarithms, and let H : {0, 1}∗ → {0, 1}ℓ be an hash function that in the
security analysis will be treated as a random oracle. For simplicity, suppose
that ℓ is an integer multiple of d, i.e. ℓ = rd for some integer r. The key k
for the accumulator scheme will simply be a random bit string of length r:
k

R

← {0, 1}r. Furthermore, define Xk
.
= {0, 1}r and Yk

.
= {0, 1}∗.

The generic function hNyb
k ∈ HNyb

λ maps a pair (x, y) ∈ Xk × Yk to an
element z ∈ Xk as follows. First, consider the (random) image ȳ of y under
the random oracle H, i.e. ȳ

.
= H(y). Since H produces hash codes of length

ℓ = rd, ȳ can be viewed as an r-digit number in base 2d, i.e. ȳ = (ȳ1, . . . , ȳr),
where |ȳj | = d, j = 1, . . . , r. Define the bit string αr(ȳ)

.
= b = (b1, . . . , br) as

the result of replacing each ȳj with a 0 if and only if ȳj = 0:

bj
.
=

{

0 if ȳj = 0

1 if ȳj 6= 0

Under the assumption that H behaves as a random oracle, each bj can be
thought as an independent binary random variable, taking the value 0 with
probability 2−d.

In this way, y ∈ Yk has been mapped into a bit string b of length r, with
much more 1’s then 0’s. Finally, compute the bitwise and (denoted with ⊙)
of x and b; summarizing:

hNyb
k : (x, y) 7→ x ⊙ αr(H(y))

The quasi-commutativeness of the function hNyb
k follows from the com-

mutative and associative properties of the ⊙ operator. Indeed, for any
x ∈ Xk, y1, y2 ∈ Yk, it holds that:

hNyb
k (hNyb

k (x, y1), y2) = (x ⊙ αr(H(y1))) ⊙ αr(H(y2)) =

= x ⊙ (αr(H(y1)) ⊙ αr(H(y2))) =

= x ⊙ (αr(H(y2)) ⊙ αr(H(y1))) =

= (x ⊙ αr(H(y2))) ⊙ αr(H(y1)) =

= hNyb
k (hNyb

k (x, y2), y1)

The strong one-way property of the elementary accumulator {HNyb
λ }λ∈N

hinges upon the following result of Nyberg (Theorem 1 of [13]):

16

Theorem 1 Let b
(i)
j and cj be independent binary random variables such

that Pr[b
(i)
j = 0] = Pr[cj = 0] = 2−d, for i = 1, . . . , m, j = 1, . . . , r and

m ≤ N . Let z = (z1, . . . , zr) be the bitwise and of the r-bit strings b(i) .
=

(b
(i)
1 , . . . , b

(i)
r), i = 1, . . . , m, Then the probability that, for all j = 1, . . . , r, it

holds that cj = 0 only if zj = 0, is equal to (1 − 2−d(1 − 2−d)m)r.

Proof. For each j = 1, . . . , r, the probability that cj = 0 and zj = 1 is
2−d(1 − 2−d)m: the claimed result follows.

The above theorem provides an information-theoretic bound on the prob-
ability of finding a forged element c = (c1, . . . , cr) consistent with an accu-
mulator z = (z1, . . . , zr) resulting from the cumulative hash of the set of
values {b(1), . . . , b(m)}. For the chosen length of the hash codes produced by
the random oracle H, this bound is negligibly small:

(1 − 2−d(1 − 2−d)m)r ≤
(

1 −
1

N

(

1 −
1

N

)N)r
≈

(

1 −
1

eN

)r
≈ e−

r
eN = 2−λ

where the last equality holds due to the careful choice of ℓ
.
= e

lg eλN lg N ,

and the relations N = 2d and r = ℓ/d.
A few remarks are worth being mentioned regarding the combinatoric

construction described above. First, all the operations involved in the com-
putation of hNyb

k are simple bit manipulations, and could thus be imple-
mented quite efficiently. Second, the verification algorithm doesn’t even need
a witness w to check whether an element y has been accumulated within the
accumulator z = (z1, . . . , zr): just compute αr(H(y))

.
= b = (b1, . . . , br),

and verify that zj = 0 whenever bj = 0. However, in order for “false posi-
tive” to happen with negligible probability 2−λ, the length of the hash codes
produced by the random oracle H has to be prohibitively large, namely pro-
portional to λN lg N ,2 even though the accumulator z itself will be shorter
of a factor of lg N .

Finally, observe that it is easy to augment the above accumulator scheme
with an Add operation, since it suffices to apply the function hNyb

k one more
time. This means that Nyberg’s construction is suitable for applications
where the set of accumulated values dynamically changes, but in a mono-
tonically increasing fashion.

From a theoretical point of view, Nyberg’s construction is also interesting
because it shows that provably secure accumulators can be build without any

2Recall that N is an upper bound on the total number of elements to be cumulatively
hashed within a single accumulator.

17

computational assumption. On the other hand, its reliance on the Random
Oracle Model and its heavy space-inefficiency make the construction of little
practical interest.

4 Applications

4.1 Time-Stamping and Membership Testing [4]

As noticed in Section 1, Benaloh and deMare’s original motivation for the
study of cryptographic accumulators was to provide a primitive for the de-
sign of space-efficient, distributed protocols not requiring a trusted party.

The first application considered by [4] is Time-Stamping [10], consisting
of a protocol by which a “publication” date can be attached to any docu-
ment, to provide an ordering criterion to determine the relative positions of
any two documents. In the presence of a trusted central authority C, a sim-
ple solution can be obtained by having C signing, at discrete time instants
called rounds, the set of all documents produced by all the m users of the
system during the given round.

To reduce the amount of trust to be placed on the central authority, it is
possible to augment the above scheme by requiring active cooperation from
all those participants who contributed documents to be published. While
this approach can eliminate the need for a trusted party, it can be shown that
it still requires a storage per user per round logarithmic in the total number
of participants. As it turns out, this space overhead can be made constant
using an accumulator scheme. The protocol would proceed as follows.

At round t, a new accumulator key kt is generated, and each of the m
participants encodes the messages he/she wishes to publish as an element
yt,i of the input domain Ykt , i = 1, . . . , m. All the yt,i’s values are then
accumulated together, computing (zt, auxt)

.
= Eval(kt, yt,1, . . . , yt,m), and

the participants store the resulting accumulator value zt, along with the
witness wt,i

.
= Wit(kt, wt,i, auxt) for their own value yt,i. In this way, to later

show that a given document was time-stamped at round t corresponding to
the accumulator value zt, user i just needs to show that such document is
encoded within the value yt,i, and then provide the witness wt,i to prove
that yt,i is indeed one of the values accumulated within zt.

Membership testing can be obtained as a simple variation of the previous
construction. Basically, each group corresponds to a round of the time-
stamping protocol and the group members play the role of the time-stamped
documents. Additionally, if the accumulated value z (which can be though
of as a very compact representation of the membership list) is made available

18

to users outside the group, then every member can prove to non-members
that he/she belongs to the group without having to disclose the entire list
of members.

4.2 Membership Revocation in ID Escrow Schemes [7]

Interestingly, dynamic accumulators can also help in improving the time-
efficiency of complex distributed protocols. One such example can be found
in [7], where Camenisch and Lysyanskaya showed how dynamic accumulators
can be used to enable efficient membership revocation in the anonymous
setting. In fact, the technique of [7] can be used to add a membership
revocation capability to Identity Escrow schemes, Group Signature schemes
and Anonymous Credential systems: to illustrate the basic ideas behind
such technique, a brief description of the construction for the case of Identity
Escrow schemes is included below.

An Identity Escrow (ID Escrow) scheme allows users to identify them-
selves as members of a group without disclosing their identity beyond the
very fact that they do belong to the group in question. To discourage users
from abusing their anonymity, the group manager is empowered with an
“escrow capability”. These two seemingly contradictory requirements are
usually satisfied by having the identification process take the form of an
interactive protocol between the group member and a (possibly external)
verifier. To ensure user anonymity under normal circumstances, the tran-
script of such interaction should reveal no information about the identity of
the group member to the eyes of any computationally-bounded party; the
group manager, however, holds some trapdoor information, which enables
him to “read between the lines” of the transcript and recover the identity
of the user, should the need for such escrow operation arise.

It is clear that this escrow capability does not prevent a user from misus-
ing her anonymity; furthermore, it only provides a way to uncover the iden-
tity of the abuser once a misusage has been detect by some other (maybe
non-cryptographic) means. To be more effective, the escrow mechanism
could be coupled with some form of membership revocation. Then, upon
detection of a case of anonymity abuse, the guilty member could be traced
and removed from the group.

Although satisfactory ID Escrow schemes have been proposed (e.g. [1]),
none of them enjoyed efficient membership revocation. To fill this gap, Ca-
menisch and Lysyanskaya presented in [7] an ID Escrow scheme which aug-
ments the proposal of [1] with the use of dynamic accumulators to keep track
of the current members of the group: supporting membership revocation is

19

then as simple as removing an element from the accumulated value.
Recall that in the ID Escrow scheme of [1], the group’s public key consists

essentially of four components: the description of a one-way function, the
description of a commitment scheme, the public key for a signature scheme,
and the public key for an encryption scheme. The group manager keeps
for himself the secret keys corresponding to the signature and encryption
schemes.

To join the group, a user u engages in an interactive Join protocol with
the group manager. At the end of the protocol, user u obtains a unique
membership certificate (x, v, e), where (v, e) is a signature (under the group
manager’s signing key) of a random message mu, of which u only knows a
preimage x under the system’s one-way function.

To prevent malicious users from gaining extra information by pooling
their certificates together, the Join protocol ensures that each message mu

associated to a user u is actually random by having the group manager
contributing some randomness to the choice of the message’s preimage x.
This is done in a secure way that guarantees that the group manager doesn’t
learn anything about x (beyond the fact that its image under the one-way
function is mu). Were this not the case, the group manager would have been
able to “frame” any user by first misusing the corresponding membership
certificate, and then escrowing the underlying identity.

Once a user u has obtained a certificate from the group manager, she
can prove her membership to the group via a Zero Knowledge Proof of
Knowledge of both the signature (v, e) and the preimage x of the signed
message. To enable the identity escrow, the proof of knowledge also includes
(in a verifiable fashion) an encryption (under the group public encryption
key) of the message mu. In this way, if the verifier keeps the transcript of
the identification protocol, the group manager will be able to uncover the
identity of the member that participated in that specific interaction.

As mentioned above, the idea of Camenisch and Lysyanskaya [7] to add
membership revocation to the ID Escrow scheme of [1] is to include in the
group public key an accumulator z, whose value evolves dynamically as users
join and leave the group. The protocols of the scheme are modified to make
use of such accumulator z as follows.

During the Join protocol, the group manager also takes care of adding
(part of) the user’s membership certificate3 to the current value of the ac-
cumulator z, and gives the user the corresponding witness w.

3In the specific construction of [7], only the prime e of a user’s certificate (x, v, e) gets
actually accumulated within z.

20

At the same time, the group manager makes available, in a publicly
readable “group bulletin board”, the auxiliary information auxAdd to allow
existing members to update their own witnesses, using the Upd algorithm.

In a dynamic setting, where users can be removed from the group, prov-
ing knowledge of a membership certificate is no longer enough to prove
(current) membership to the group: a group member u should also convince
the verifier that her membership certificate has not been invalidated. To this
aim, the verifier has to keep track of the current value of the accumulator z
(which is the evolving part of the group public key); the user and the veri-
fier then engage in a more involved Zero Knowledge Proof of Knowledge, by
which the user u proves, beside her knowledge of both the signature (v, e)
and of the preimage x of the signed message, that she also knows a witness
w for the presence of e in the current accumulated value z. Clearly, if the
group manager decides to remove a user from the group, and updates the
accumulator z accordingly, such Zero Knowledge Proof of Knowledge would
fail, and the verifier would (correctly) reject the user membership claim.

As a last remark, it is worth noticing that the idea of using an accu-
mulator to keep track of user membership would work with any ID Escrow
scheme; however, the accumulator scheme described in Section 3.1 fit par-
ticularly well with the ID Escrow scheme of [1], allowing for efficient and
compact implementation of the scheme’s protocols.

4.3 Other Applications [2, 9]

In [2], Barić and Pfitzmann showed how the “compression” property of ac-
cumulators can be exploited to reduce the space requirement of fail-stop
signature to O(1). More recently, Goodrich et al. proposed a size-oblivious
authenticated dictionary [9] based on the space-efficiency property of cryp-
tographic accumulators. The reader is referred to [2, 9] for the details of
those constructions.

5 Conclusion and Open Problems

Accumulator schemes are a powerful primitive. We have mentioned some
of the cases in which their cryptographic properties turned out to be valu-
able tools to improve the space- and time-efficiency of secure distributed
protocols.

Somewhat surprisingly, they haven’t been yet subject of thorough inves-
tigation. There still is no well-established formalization for them: we have

21

compared the existing proposals, and tried to combine them into a single
satisfactory definition.

We belive that accumulators schemes constitute a promising field for re-
search, and that original contributions are possible in at least two orthogonal
directions: providing new constructions and devising more applications. We
conclude proposing a list of interesting questions regarding the design of
alternative constructions.

1. Recently, the cryptographic properties of Gap Diffie-Hellman Groups
[6] and Bilinear Maps [5] have been successfully employed to obtain
a wide variety of primitives. Is it possible to design space-efficient
accumulators based on these assumptions?

2. The dynamic accumulator scheme proposed by Camenisch and Lysyan-
skaya [7] features an update algorithm Upd that must be applied to
a witness after each single addition/removal operation. Hence, the
time to bring a witness up-to-date after a batch of N operations is
proportional to N . Is it possible to construct dynamic accumulators
in which the time to update a witness can be made independent from
the number of changes to the accumulated value?

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, A practical and
provably secure coalition-resistant group signature scheme, Advances
in Cryptology—Crypto’00, LNCS, vol. 1880, Springer-Verlag, 2000,
pp. 255–270.

[2] N. Barić and B. Pfitzmann, Collision-free accumulators and fail-
stop signature schemes without trees, Advances in Cryptology—
Eurocrypt’97, LNCS, vol. 1233, Springer-Verlag, 1997, pp. 480–494.

[3] B. Bellare and P. Rogaway, Random oracles are practical: a paradigm
for designing efficient protocols, Proceedings of the 1st ACM conference
on Computer and communications security, ACM Press, 1993, pp. 62–
73.

[4] J. Benaloh and M. de Mare, One-way accumulators: a decentralized al-
ternative to digital signatures, Advances in Cryptology—Eurocrypt’93,
LNCS, vol. 765, Springer-Verlag, 1993, pp. 274–285.

22

[5] D. Boneh and M. Franklin, An Efficient Public Key Traitor Trac-
ing Scheme, Manuscript, available at: http://crypto.stanford.edu/
~dabo/pubs.html, 2001.

[6] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the
Weil pairing, Advances in Cryptology—Asiacrypt’01, LNCS, vol. 2248,
Springer-Verlag, 2001, pp. 514–532.

[7] J. Camenisch and A. Lysyanskaya, Dynamic accumulators and ap-
plications to efficient revocation of anonymous credentials, Advances
in Cryptology—Crypto’02, LNCS, vol. 2442, Springer-Verlag, 2002,
pp. 61–76.

[8] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodol-
ogy, revisited, Proceedings of the thirtieth annual ACM symposium on
Theory of computing, ACM Press, 1998, pp. 209–218.

[9] M. Goodrich, R. Tamassia, and J. Hasić, An efficient dynamic and
distributed cryptographic accumulator, Information Security (ISC’02),
vol. 2433, 2002, pp. 372–388.

[10] S. Haber and W. Stornetta, How to time-stamp a digital document,
Journal of Cryptology 3 (1991), no. 2, 99–111.

[11] D. Knuth and T. Pardo, Analysis of a simple factorization algorithm,
Theoretical Computer Science 3 (1976), no. 3, 321–348.

[12] K. Nyberg, Commutativity in cryptography, Proc. of the 1st Int. Work-
shop on Functional Analysis at Trier University, de Gruiter, W., 1996,
pp. 331–342.

[13] , Fast accumulated hashing, 3rd Fast Software Encryption Work-
shop, LNCS, vol. 1039, Springer-Verlag, 1996, pp. 83–87.

[14] T. Sander, Efficient accumulators without trapdoor, ICICS’99, LNCS,
vol. 1726, Springer-Verlag, 1999, pp. 252–262.

[15] A. Shamir, On the generation of cryptographically strong pseudorandom
sequences, ACM Transactions on Computer Systems (TOCS) 1 (1983),
no. 1, 38–44.

23

