
The MIT Alewife Machine: Architecture and Performance

Anant Agarwal, Ricardo Bianchini�, David Chaikeny, Kirk L. Johnson,
David Kranz, John Kubiatowicz, Beng-Hong Limz, Kenneth Mackenzie, and Donald Yeung

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract

Alewife is a multiprocessor architecture that supports up to 512 pro-
cessing nodes connected over a scalable and cost-effective mesh
network at a constant cost per node. The MIT Alewife machine,
a prototype implementation of the architecture, demonstrates that a
parallel system can be both scalable and programmable. Four mech-
anisms combine to achieve these goals: software-extended coherent
shared memory provides a global, linear address space; integrated
message passing allows compiler and operating system designers
to provide efficient communication and synchronization; support for
fine-grain computation allows many processors to cooperate on small
problem sizes; and latency tolerance mechanisms – including block
multithreading and prefetching – mask unavoidable delays due to
communication.

Microbenchmarks, together with over a dozen complete applica-
tions running on the 32-node prototype, help to analyze the behavior
of the system. Analysis shows that integrating message passing with
shared memory enables a cost-efficient solution to the cache coher-
ence problem and provides a rich set of programming primitives.
Block multithreading and prefetching improve performance by up
to 25% individually, and 35% together. Finally, language constructs
that allow programmers to express fine-grain synchronization can
improve performance by over a factor of two.

1 Introduction

The last few years have seen the introduction of a number of parallel-
processing systems with truly impressive maximum performance.
The amount of raw computation packaged in a single chassis is
quickly approaching a trillion operations per second. Unfortunately,
end-users rarely benefit from the advertised maximum performance
of today’s massively parallel systems. Any application that actually
exploits the full potential of a machine typically requires months of

�Affiliation: University of Rochester, Rochester, NY 14627
yCurrent affiliation: Digital Equipment Corporation Systems Research

Center, Palo Alto, CA 94301
zCurrent affiliation: IBM T.J. Watson Research Center, Yorktown

Heights, NY 10598

This paper to appear in ISCA ’95

careful programming, painful debugging, and relentless tuning.

The MIT Alewife machine shows that a parallel architecture can
yield a rich shared memory programming environment on a scalable
hardware base. The hardware, compiler, and operating system com-
bine to achieve the goal of programmability by solving problems that
traditionally burden multiprocessor programmers; namely, schedul-
ing computation and moving data between processing elements. Fea-
tures of this environment include a globally shared address space, a
scalable cache coherence mechanism, a compiler that automatically
partitions regular programs with loops, a library of efficient synchro-
nization and communication routines, distributed garbage collection,
and a parallel debugger. These features allow programmers to write
applications quickly. Statistics-gathering tools help to optimize per-
formance.

The goal of scalability addresses both the cost of building the
machine and its ability to run programs efficiently. The Alewife
architecture permits a physically scalable implementation: Alewife
machines are built by replicating a single, modular processing node.
Passive backplanes provide the wires to connect the nodes in a low-
cost, two-dimensional mesh network. In order to provide I/O fa-
cilities, VME and SCSI interface boards plug into the edges of the
mesh. Whether an Alewife machine has one node or 512 nodes,
this physical layout results in a constant cost per node. In the pro-
totype, despite unit quantity purchasing, a single-node costs only
about $2,000. With volume fabrication, this cost can be reduced
substantially.

This paper shows how the hardware and software components of
Alewife provide good performance on parallel applications, without
sacrificing physical scalability or programmability. Indeed, most ap-
plications were written for other machines and run on Alewife with-
out significant porting effort. The primary challenge to achieving
these goals simultaneously is the latency of interprocessor commu-
nication, which dominates the time required for intranode memory
accesses. Therefore, Alewife provides four classes of architectural
mechanisms that implement an automatic locality managementstrat-
egy. This strategy seeks to maximize the amount of local communi-
cation by consolidating related blocks of computation and data, and
attempts to minimize the effects of non-local communication when
it is unavoidable. The four classes of mechanisms are: coherent
caches for shared memory, integrated message passing, support for
fine-grain computation, and latency tolerance.

Coherent shared memory Although Alewife provides the ab-
straction of globally shared memory to programmers, the system’s
physical memory is statically distributed over the nodes in the ma-
chine. On each node, a Communications and Memory Manage-

1

ment Unit (CMMU)[18] fields memory requests from a Sparcle
processor[2] and determines whether requests access local or re-
mote memory. When necessary, the CMMU synthesizes messages
that fetch memory from remote nodes.

The memory hardware helps manage locality by caching both pri-
vate and shared data on each node. A scalable, software-extended
scheme called LimitLESS[9] maintains the coherence of cached data.
This scheme handles common-case memory accesses in the CMMU
hardware, but relies on software traps to enforce coherence for mem-
ory blocks that are shared by a large number of processors.

Integrated message passing While the programmer sees a
shared memory programming model, for performance reasons much
of the underlying software is implemented using message passing.
The performance of all of the layers of software that help manage
locality (including the compiler, libraries, run-time system, and Lim-
itLESS handlers) depend on an efficient communication mechanism.
Features in Sparcle and the CMMU combine to provide a stream-
lined interface for transmitting and receiving messages: both system
and user code can quickly describe and atomically launch a packet
directly into the interconnection network; a fast interrupt mecha-
nism speeds message reception; and a direct memory access (DMA)
mechanism allows data to flow between the network and memory.

The Alewife hardware supports a seamless interface between
the various software layers by integrating the shared memory and
message-passing mechanisms. To do so, the system provides for-
ward progress guarantees to shared memory accesses in the face of
message reception interrupts. In addition, the DMA engine main-
tains the coherence between the data in messages and the data in
local caches [16].

Fine-grain computation Given a fixed-size data set, the gran-
ularity of computation (the time between events that require inter-
processor communication) decreases as the number of processors
in a system increases. A system that cannot handle small tasks
efficiently must attempt to increase synchronization and communi-
cation granularity artificially, possibly defeating attempts to manage
locality. Alewife’s support for fine-grain computation includes fast,
user-level messages and support for full/empty bit synchronization.

Alewife’s programming languages, parallel C and Mul-T, include
constructs for expressing fine-grain synchronization. These con-
structs allow a thread to synchronize implicitly upon every memory
access.

Latency tolerance Block multithreading and prefetching pro-
vide the last line of defense in Alewife’s locality management strat-
egy. These mechanisms attempt to tolerate the latency of inter-
processor communication when it cannot be avoided. Prefetching
allows code to anticipate communication by requesting data or locks
before they are needed. Block multithreading allows a processor to
switch between threads of computation on a cache miss or a failed
synchronization attempt.

Latency tolerance requires support from Alewife’s hardware and
software components. Prefetching and block multithreading both
require lockup-free caches[15]. Prefetching requires support in the
compiler and special memory operations. Block multithreading re-
quires a fast context switch[3] and a solution to the window of vul-
nerability problem created by interleaved threads of execution[17].

Directory

Distributed

Private

Memory

Cache

FPU

Network
Router

Alewife node

CMMU

Sparcle

Shared

Distributed

Memory

HOST

VME
Host Interface

SCSI Disk Array

Figure 1: The Alewife architecture.

Although it is helpful to think of Alewife’s mechanismsas belong-
ing to four distinct classes, the machine’s implementation integrates
them tightly. For example, the CMMU’s transaction buffer closes the
window of vulnerability opened not only by multithreading, but also
by fast message handling and software-extended coherence. The
transaction buffer also provides storage for prefetching. Similarly,
Sparcle’s fast interrupt mechanism accelerates LimitLESS event han-
dling, message reception,fine-grain synchronization events,and con-
text switching.

This paper describes the experience gained by designing, fabricat-
ing, and running a complete parallel system. Specifically, it evaluates
the effectiveness of the Alewife architecture and its locality manage-
ment strategy. Section 2 describes the machine’s implementation and
its programming environment to show how the mechanisms combine
to produce a coherent system. Section 3 describes Alewife’s prim-
itive mechanisms and uses microbenchmarks to measure the base
performance of the mechanisms in terms of the latency and band-
width of primitive functions. Section 4 presents detailed case-studies
of two applications that illustrate the benefits of Alewife’s approach.
Section 5 discusses related work on parallel architectures. Finally,
Section 6 summarizes the insight gained from implementing Alewife
and describes plans for future research.

2 The Alewife Machine

The Alewife architecture is organized as shown in Figure 1. Memory
is physically distributed over the processing nodes, which use a mesh
network for communication.

Each Alewife node consists of a Sparcle[2] processor, 64K bytes
of direct-mapped cache, 4M bytes of data and 2M bytes of directory
(to support a 4M byte portion of shared memory), 2M bytes of private
(unshared) memory, a floating-point coprocessor, and an Elko-series

2

Figure 2: 16-node machine and 128-node chassis.

Transaction

Buffer

Network
Interface

and
DMA Control

Network Queues
and

Control

Memory

Coherence

and

DRAM

Control

Registers
and

Statistics

Alewife−1000
CMMU

Invalidation

Cache

and

Management

Control

Processor
Glue
Logic

Figure 3: Block diagram and floorplan for the CMMU (15mm� 15mm).

mesh routing chip (EMRC) from Caltech. Both the cache memories
and floating-point unit (FPU) are off-the-shelf, SPARC-compatible
components. The EMRC network routers use wormhole routing and
are connected to form a direct network with a mesh topology. The
nodes communicate via messages through this network. A single-
chip Communications and Memory ManagementUnit (CMMU) ser-
vices data requests from the processor and network. I/O is provided
by a SCSI disk array attached to the edges of the mesh network.

Figure 2 shows the physical realization of a 16-node Alewife
system and the chassis for 128 nodes. The 16-node system, com-
plete with two internal 3 1

2 -inch disk drives, is about 74�12�46 cm,
roughly the size of a floor-standing workstation. Packaging for a
128-node machine occupies a standard 19-inch rack. Timing num-
bers in this paper reflect a 32-node Alewife machine, packaged in
the lower right quarter of the 128-node chassis.

User access to an Alewife machine is through a host workstation.
Client interface software connects to the Alewife machine via UNIX
sockets to a server process running on the host. External NFS file
access is also provided by the host.

The first Alewife machine became operational in May, 1994. Re-
sults in this paper were obtained using first-silicon versions of Sparcle
and the CMMU. Although there are a few bugs in the CMMU, all
of them have software work-arounds. However, one of the bugs
involves a timing conflict with the FPU, requiring operation at 20
MHz when floating-point is in use. Integer codes run at 30 MHz.
A planned respin of the CMMU will correct these bugs and boost
performance to the intended 33 MHz. For consistency, the remainder
of this paper will quote performance numbers at a 20 MHz system
speed.

2.1 Sparcle processor

Sparcle was derived from an industry-standard SPARC (version 7)
processor. It provides an efficient and tight coupling between the
processor pipeline and the communications network. Many of the
features of the underlying SPARC implementation are exploited di-
rectly by Alewife: for example, the SPARC external coprocessor in-
terface is used for fast messaging, interrupt control, and fine-grained
synchronization. SPARC also provides register windows that can be
exploited as separate contexts for block multithreading.

Sparcle augments the basic SPARC architecture with a few simple

mechanisms to facilitate rapid messaging, block multithreading, and
fine-grain synchronization:

� User-level colored loads and stores. The SPARC architecture
defines an 8-bit Alternate Space Indicator (ASI) that serves
to tag all load and store operations with one of 256 different
“colors”. Sparcle allocates the top 128 ASI values to the user
and defines new load and store instructions that emit these ASI
values.

� Extra synchronous trap lines. These lines enable unique trap
vectors for context-switch and fine-grain synchronization traps.

� Context management instructions. New instructions allow
rapid switching between active hardware contexts. The SPARC
current window pointer is visible at the pins,permitting context-
dependent state in the CMMU and FPU.

These changes require an increase of fewer than 2000 gates over
the unmodified SPARC design. Together, they yield a processor
with support for low-overhead communication, including a 14-cycle
context-switch time for a remote data cache miss.

2.2 The Alewife CMMU

The Alewife CMMU[18] implements most of the unique functional-
ity of Alewife. In an Alewife node, the CMMU is connected directly
to the first-level cache bus and serves much the same functionality
as a cache-controller/memory-managementunit in a uniprocessor. It
contains tags for the cache, provides DRAM refresh and ECC, and
handles cache fills and replacements. In addition, it implements the
architectural mechanisms described in this paper. The CMMU also
provides asynchronous queueing for the EMRC network chips and a
number of hardware statistics facilities.

Figure 3 shows a block diagram of this chip. The Processor Glue
Logic is responsible for interpreting colored memory operations and
coprocessorinstruction requests. The Cache Managementand Inval-
idation Control and Memory Coherence and DRAM Control blocks
comprise, respectively, the processor and memory portions of the
cache coherence protocol. In addition, both blocks service requests
from the Network Interface and DMA Control block, which provides
user-level message passing with locally coherent DMA[16]. Since
the processor and memory sides of the cache coherence protocol

3

Gate Mechanism
Category Count % SM MP LT FG

Processor Requests 11686 12
p p p

Full/Empty Decode 2157 2
p

Memory Service 13351 13
p p

DRAM Control 8720 9
p p

Livelock Removal 2108 2
p p

Transaction Buffer 17399 17
p p p

IPI interface 11805 12
p p

Network Queueing 7363 7
p p p p

CMMU Registers 9308 9
p p

Statistics 11958 12
Miscellaneous 4627 5

Table 1: Functional block sizes (in gates) for the Alewife CMMU,
as well as contributions to shared memory (SM), message passing
(MP), latency tolerance (LT), and fine-grain synchronization (FG).
Total chip resources: 100K gates and 100K bits of SRAM.

as well as the message-passing interfaces share the same network
queues, message passing and shared memory are integrated[14].

The Transaction Buffer is a 16-entry, fully-associative data
store that tracks outstanding cache coherence transactions, holds
prefetched data, and stages data in transit between the cache, net-
work and memory. It is integrated closely with the mechanism for
removing livelock in the face of block multithreading [17]. The
Registers and Statistics block contains a dedicated cycle counter, a
timer, and a number of statistics facilities. The Network Queues
and Control block contains asynchronous interfaces for the EMRC
network routers.

Figure 3 also shows a floorplan of the CMMU. This chip is imple-
mented with three layers of metal in the LEA-300K hybrid gate-array
technology from LSI Logic. Shaded blocks are standard-cell mem-
ories. The rest of the chip is implemented in a sea-of-gates style;
costs for the gate-array portion of the chip are given in Table 1. In
this technology, a NAND gate is one (1) gate, while a scan flip-flop
takes nine (9) gates.

2.3 Programming model

Although the fast-message capability of Alewife makes it a good
vehicle for executing programs written in a message-passing style,
it is better viewed by the programmer as a shared-memory machine.
The Alewife hardware mechanisms, including fast messages, are
combined in support of the shared-memory programming model.
To facilitate programming, Alewife provides tools that inform pro-
grammers when poor performance is caused by widely-shared data
objects, and which parts of the application are affected. Programmers
can then fine-tune performance by using the direct message-passing
interface integrated with shared memory.

Alewife has compilers for a parallel version of ANSI C and a
parallel version of LISP called Mul-T [13]. For parallel C, Alewife
supports the p4 library from Argonne National Laboratory as well
as parallel loops and distributed arrays. Automatic partitioning can
be used when a program uses parallel loops and arrays [1].

Parallelism in Mul-T is specified with thefuture construct. Low
thread creation overhead is achieved using lazy task creation [22], a
method for dynamic partitioning and load balancing. The Alewife
runtime system includes a parallel stop-and-copy garbage collector.

2.4 Alewife debugging and tuning

Alewife provides a number of facilities to aid in program debug-
ging and performance tuning. An Alewife version of GDB allows
symbolic program debugging, complete with the ability to set break-
points, examine data and registers on individual nodes, and inspect
threads, both active and blocked.

The programmer can make use of two distinct facilities in Alewife
for performance debugging. First, the LimitLESS cache coherence
mechanism can be configured to collect information about which
memory locations are being shared and accessed in a pattern that
causes poor performance. A tool is available that traces errant mem-
ory behavior directly to source variables.

Second, the Alewife CMMU provides extensive facilities for per-
formance monitoring. Four 32-bit statistics counters and a histogram
array can be configured to measurea wide variety of hardware events:
examples include cache hits and misses, instruction counts, and net-
work throughput statistics. A graphical interface allows users to
specify a set of statistics and displays static and dynamic views of
the results.

3 Mechanisms and Microbenchmarks

This section describes the implementation of the mechanisms intro-
duced in Section 1. It presents the cost and the raw performance of
each of the mechanisms in isolation.

3.1 Shared memory

The Alewife machine provides hardware support for distributed,
cache-coherent shared memory. Cache lines in Alewife are 16 bytes
in size and are kept coherent through a software-extended scheme
called LimitLESS[8, 9]. This scheme implements a full-map di-
rectory protocol by supporting up to five readers per memory line
directly in hardware and by trapping into software for more widely-
shared data. Consequently, LimitLESS involves a close interaction
between hardware and software. The hardware invokes software
handling for remote requests by making use of the Alewife message-
passing interface: faulted coherence requests are forwarded to the
processor in the same way as any other message. The queueing
inherent in the message-passing interface permits multiple pending
LimitLESS coherence requests.

Shared memory is distributed, in the sense that the shared address
space is physically partitioned among nodes. Each 16-byte memory
line has a home node that contains storage for its data and coherence
directory. All coherenceoperations for a given memory line, whether
handled by hardware or software, are coordinated by its home node.
Each Alewife node contains the data and coherence directories for a
4M byte portion of shared memory.

The Alewife directory entry format is shown in Figure 4. Direc-
tories are 64-bits wide and are stored in off-chip DRAM. Each entry
contains five 9-bit pointers, two bits of state, two bits of meta-state,
and four full/empty bits (one for each word in the line). The Local
Bit provides an optimization which guarantees that the local node
can always acquire a pointer. The Pointers In Use field indicates the
number of other pointers that are in use. The number of pointers
available to the hardware may be adjusted from two to five with the
Pointers Available field. Since the Pointers In Use field can be set
by software, the cost of the LimitLESS read handler is amortized

4

M
eta−State(2 bits)

0481013142332415059

Pointers Available (2 bits)

Pointers In Use (3 bits)

Local Bit (1 bit)

F/E Bits (4 bits)

Pointer #0 (9 bits)

Pointer #1 (9 bits)

Pointer #2 (9 bits)

Pointer #3 (9 bits)

Pointer #4 (9 bits)

User Defined Bits (5 bits)

State (2 bits)

663

Figure 4: A hardware directory entry in Alewife.

Name of Meta-State Description
Normal dir. entry under hardware control
Trap-On-Write reads handled by hw, writes by sw
Write-In-Progress dir. entry software interlocked
Trap-Always all requests handled by sw

Table 2: The four directory entry meta-states of the CMMU.

over up to six different read requests: when invoked to handle a read
request, the handler resets the Pointers In Use field, allowing the next
five requests to be handled without software intervention.

Table 2 describes the four LimitLESS meta-states. Two of these
states, Normal and Trap-On-Write, are persistent. Normal
indicates that a directory entry is entirely under hardware control
– the four states associated with this meta-state form a base write-
invalidate protocol. Trap-On-Write indicates that the identities
of some of the readers are unknown to the hardware; consequently, a
write request must be handled by software. Read requests, however,
take advantage of a “read-ahead” optimization: the CMMU simulta-
neously forwards read requests to the local processorand returns data
to the requesting nodes at hardware speed. Trap-Always permits
experimental protocols to be constructed in entirely software.

LimitLESS interrupt handlers directly manipulate hardware direc-
tories. Thus, although all hardware directory entry manipulations are
atomic, interlock mechanisms are necessary to prevent the hardware
from modifying directories that are in the process of being altered
by software. To implement this functionality, Alewife provides two
instructions for directory entry manipulation,rldir (read and lock
directory) and wudir (write and unlock directory). While the mu-
tual exclusion provided by these instructions is sufficient for simple
atomicity, Alewife provides a second mechanism for greater perfor-
mance: the Write-In-Progress meta-state. This state marks a
directory entry as requiring software manipulation and unavailable
to the hardware. This additional state is necessary for the read-ahead
optimization described above.

Sparcle employs a single-ported, unified first-level cache, with no
on-chip instruction cache. Consequently, 32-bit loads and stores that
hit in the cache take two and three cycles, respectively (one cycle for
the instruction fetch). Doubleword (64-bit) loads and stores that hit
in the cache take one additional cycle.

Table 3 shows the cost incurred when memory references miss in
the cache. These values were obtained with a sequence of experi-
ments run on an otherwise idle Alewife system. All remote misses or
invalidations are between adjacent nodes. Each additional “hop” of
communication distance increases these latencies by approximately
1.6 cycles.

For a simple load miss to remote memory handled in hardware,
58% of the 38-cycle miss penalty is due to network latency (1.1

Miss Home # Inv. hw/ Miss Penalty
Type Location Msgs sw Cycles �sec

local 0 hw 11 0.55
remote 0 hw 38 1.90

Load remote (2-party) 1 hw 42 2.10
remote (3-party) 1 hw 63 3.15

remote – swy 425 21.25
local 0 hw 12 0.60
local 1 hw 40 2.00

remote 0 hw 38 1.90
Store remote (2-party) 1 hw 43 2.15

remote (3-party) 1 hw 66 3.30
remote 5 hw 84 4.20
remote 6 sw 707 35.35

y This sw read time represents the throughput seen by a single node
that invokes LimitLESS handling at a sw-limited rate.

Table 3: Typical shared memory miss penalties.

Action Count
Cache-miss to request in network 2
Request transit time (8 bytes) 7
Request at memory to output header transmit 7
Data return in network (24 bytes) 15
Response arrival to beginning of cache fill 3
Cache fill time 4

Table 4: Rough breakdown of 38-cycle clean read-miss to neigh-
boring node.

out of 1.9 microseconds). Roughly three-quarters of the network
latency is time spent transferring flits between the CMMU and the
interconnection network (36 flits at 22.5 nanoseconds/flit). Table 4
gives a breakdown of the various latencies involved in satisfying a
remote read-miss.

Misses handled in software represent the access time seen when
a cache line is shared more widely than is supported in hardware
(five pointers), so that the home node processor must be interrupted
to service the request. In the case of a load, the software time
represents the maximum throughput available when every request
requires software servicing. Because of the read-ahead optimiza-
tion and amortized read-handling, this latency number will rarely
be experienced by a requesting node. The software store latency
represents an actual latency seen by a writer; it includes the time
required for the software handler to send six invalidations, for these
invalidations to be received by the hardware, and for an exclusive
copy to be returned.

3.2 Message passing

Message passing is both a crucial component of the LimitLESS
cache coherence protocol and a mechanism to be used in coopera-
tion with software-extended shared memory. Some communication
operations, such as file I/O, remote task dispatch, and the inner
loops of typical scientific codes, can often be implemented more
efficiently with message passing than with shared memory. Further,
since Alewife provides a protected user-level message-passing inter-
face, compilation targets such as active messages[30] are naturally
supported.

5

stio header, $ipiout0
stio dataword, $ipiout1
stio address, $ipiout2
stio length, $ipiout3
ipilaunch 2, 1

Figure 5: Machine code implementing
a message send. In addition to the re-
quired header, this message includes one
explicit data word, and one block of data
from memory.

� One-to-All Write
� One-to-All Read

 Producer-Consumer Write
� Producer-Consumer Read

|

0
|

200
|

400
|

600
|

800
|

1000
|

1200

|1

|
|

|
|

|
|

|
|

|10

|
|

|
|

|
|

|
|

|100

|
|

|
|

|
|

|
|

|1000

 (a) Shared Memory

 Bisection Traffic (Mbits/sec)

 T
ra

ns
ac

tio
n

La
te

nc
y

(u
se

c)

�����

�

�

�

�
�
��
��
�
�

��� � �
�

�
���

�� � � � ���

� 4096
� 2048
	 1024
� 256
� 64
� 32

|

0
|

200
|

400
|

600
|

800
|

1000
|

1200
|1

|
|

|
|

|
|

|
|

|10

|
|

|
|

|
|

|
|

|100

|
|

|
|

|
|

|
|

|1000

 (b) Message Passing

 Bisection Traffic (Mbits/sec)

 O
ne

-W
ay

 M
es

sa
ge

 L
at

en
cy

 (
us

ec
)

message sizes, in bytes:

�

�

�

��

�

�

�
�

�

��

�

�

	 	
	

	

	

	

	

��
�

�

�

�

� �

�

�
�

��

�

�
�

Figure 6: Latency versus bisection traffic for 16 nodes. (a) shared memory, two different
data types. (b) message passing, random destinations.

Messages in Alewife are sent through a two phase process: first
describe, then launch. A message is described by writing directly
to an output descriptor array with a colored store instruction called
stio. The output descriptor array consists of 16 memory-mapped
network registers in the CMMU. Writes into this array incur the same
cost as write hits in the cache. Once a message is described, it is
launchedvia an atomic, single-cycle instruction calledipilaunch.
This two phase process permits direct, user-level access to the net-
work queues.

Figure 5 illustrates code for launching a message that consists
of a header, one word of data from a register, and a block of data
from memory (to be transferred via DMA). header, dataword,
address, and length are aliases for arbitrary Sparcle registers.
On entry to this code sequence,header contains the packet header,
dataword contains the word of data,addresspoints to the start of
the data block, andlength gives the number of double-words in the
data block. This packetdescriptor is two double-words long and con-
tains one double-word of explicit data (header and dataword).
Alewife maintains local coherence for the data block specified by
address and length: data is acquired from the local cache at the
source and invalidated from the local cache at the destination.

When a message arrives at its destination, it typically causes an
interrupt. The CMMU overlaps message arrival with interrupt pro-
cessing by posting the interrupt as soon as it has received the header
of a message. Since the operating system reserves one of the four
Sparcle hardware contexts for message processing (as in [24, 27]),
no register saves or restores are necessary. The first 16 words of
an incoming message are presented in the memory-mapped input
packet array. Consequently, an interrupt handler may either load
words directly from this array via the ldio instruction, or initiate a
DMA sequence to store the message into memory.

The Alewife message-passing interface has low overhead. A sim-
ple, 2-word message (one header, one data-word), can be transmitted
with 3 instructions, or 7 cycles. Message reception can use polling or
interrupts. The cost of reception is more expensive when an interrupt
must be fielded at the receiving end. Using interrupts, a system-level
handler for a 2-word message can be entered in approximately 35
cycles. This time includes reading the message from the network,
dispatching on an opcode in the header, and setting up for a general
call to handler routines written in C.

Adding user-level message protection increases this entry time
by another 15 cycles to approximately 50 cycles. A null user-level
message handler requires a total of 95 cycles. Much of this time
is associated with saving and restoring the system-level timer (to
time out an errant user-level handler and prevent a user from locking
up the machine), preventing access to shared memory before the
current message has been removed from the queue, and checking
for user-requested atomicity. Simple modifications planned for the
respin of the CMMU will combine these three functions into a single
mechanism and reduce the overhead of protected message passing
considerably.

3.3 Shared memory versus message passing

Measurements of Alewife’s mesh network show that each channel
provides a peak bandwidth of approximately 356 Mbits/second (22.5
nanoseconds per 8-bit flit). For a sixteen node machine, this rate
yields a maximum possible bisection bandwidth of 2.8 Gbits/sec.
Synthetic workload generators measure the capacity of Alewife’s
network in more realistic environments.

Figure 6 characterizes Alewife’s network performance in terms of
latency and bandwidth of both shared memory and message passing.
A shared-memory workload generator simulates two different types
of data. Figure 6(a) shows the results of running this microbench-
mark on a 16-node Alewife machine. The horizontal axis shows the
bisection traffic achieved by each run; the vertical axis uses a loga-
rithmic scale to plot the average latency of a memory transaction (a
read or a write). This experiment measures actual network traffic, as
opposed to the bandwidth available to user data. For shared mem-
ory, user data accounts for roughly half of the traffic. The latency
is measured from the time a node requests a memory block until the
time that the block is ready to be accessed from a transaction buffer.

The curves in Figure 6(a) marked with circles show the base
performance of shared memory. During these experiments, every
processor accesses memory in a producer-consumer fashion: each
processor writes to a number of blocks in its local memory and then
reads the same amount of data from another processor’s memory.
The read phase of this benchmark generates bisection traffic of up
to 1 Gbit/sec, over 35% of the maximum possible bandwidth. The
shared memory coherence protocol produces half as much traffic

6

during the write phase of this benchmark. All of the producer-
consumer transactions require about 2 microseconds (�sec) latency
across the entire traffic range.

The experiments plotted with triangles show the performance
when each processor writes to a number of memory blocks and all
of the other processors in the system read the blocks. This one-to-all
scenario invokes Alewife’s software-extended shared memory. Due
to the directory read-ahead feature (see Section 3.1), the read latency
at low bandwidths is similar to the producer-consumer experiments.
However, the read traffic saturates at 346 Mbits/sec, with a 4.2 �sec
latency; the base write latency lies at 52 �sec, and increases to 380
�sec as bandwidth demands increase.

Figure 6(b) shows the results of a synthetic message-passing work-
load: this microbenchmark consists of a single loop in which each
processor transmits a “ping” message to another node, selected ran-
domly. The other node responds with an acknowledgment message.
In this experiment, almost all of the network traffic (measured by
the horizontal axis) consists of user data. The vertical axis mea-
sures the average latency of half of a ping/ack round-trip (including
both hardware and software delays). The highest bisection traffic
achieved with random ping destinations is 1.2 Gbits/sec, over 40%
of the maximum possible bandwidth. This traffic corresponds to the
right-most point on the graph, with 1024-byte messages and a 100
�sec/message latency. The lowest latency is 7.0 �secfor 32 byte
messages.

Contrasting Figures 6(a) and 6(b) shows the benefits of each mech-
anism. Shared memory provides a fast, convenient abstraction for
orchestrating interprocessor communication, but message passing
makes more efficient use of bandwidth.

3.4 Fine-grain synchronization

The primary advantage of fine-grain synchronization is that more
parallelism can be exposed to the underlying hardware or software
system than if coarse-grain synchronization techniques, such as bar-
riers, were employed. For example, a thread synchronizing at a
barrier has to wait for the arrival of all other synchronizing threads
before proceeding, regardless of whether that thread depends on re-
sults computed by the other threads. By synchronizing on exactly
the data words to be consumed, fine-grain synchronization elimi-
nates false dependencies and allows a thread to proceed as soon as
the data it needs is available.

The Alewife machine provides both hardware and software sup-
port for fine-grain synchronization. Hardware support consists of
a full/empty bit[29] for each 32-bit data word. To access these
bits, colored load and store instructions are provided that perform
full/empty test-and-set operations. Table 5 presents a sample of
Alewife data-access instructions. All of these instructions return the
original full/empty bit in the coprocessor status word. Two Sparcle
instructions, bempty (branch on empty) and bfull (branch on
full), can then be used to examine this bit.

In Alewife, the odd data width introduced by full/empty bits does
not impact DRAM, cache, or network data widths. At memory side,
full/empty bits are stored in the bottom four bits of the coherence
directory entry (see Figure 4). At cache side, they are stored as an
extra field in the cache tags. In data packets, they are transmitted in
the bottom four bits of the address, and take advantage of the 16-byte
cache-line width.

The system provides several language extensions for fine-grain

Name Meaning
ldn Load and examine full/empty bit.
stn Store and examine full/empty bit.
lden Load, set empty, examine original value.
stfn Store, set full, examine original value.
ldet Load, set empty, and trap if already empty.
stft Store, set full, and trap if already full.

Table 5: Examples of Alewife’s data-access instructions.

Event hw sw
Read success 2 6
Read failure 21 6
Write 3 6
Unload thread 120–130
Reload thread 90–100

Table 6: Costs in cycles of fine-grain, producer-consumer syn-
chronization in Alewife. “hw” represents the use of full hardware
support; “sw” represents explicit checking in software.

synchronization in the form of J-structures and L-structures. Pat-
terned after I-structures[6], J-structures support producer-consumer
style synchronization on vector elements, with full/empty bits asso-
ciated with each vector element. A J-structure read waits until the
element is full before returning its value. A J-structure write updates
the element and sets it to full. An L-structure supports mutual-
exclusion style synchronization on vector elements with full/empty
bits associated with each vector element. L-structures support 3
operations: a locking read, an unlocking write, and a non-locking
read.

Table 6 compares the costs (in cycles) of implementing J-structure
read and write operations, with and without hardware support. The
hardware implementation (hw) relies on traps to signal a failed read,
and uses a separate, centralized waiting queue. It allows successful
reads and writes to proceed at the speed of normal Sparcle loads
and stores. The software-based implementation (sw) uses an addi-
tional memory word to emulate a full/empty bit for each J-structure
element.

3.5 Latency tolerance

Latency tolerance in Alewife takes two forms: block multithreading
and non-binding software prefetching. By supporting both block
multithreading and prefetching, Alewife provides a platform for di-
rectly comparing these two latency tolerance mechanisms.

Three different mechanisms in the Alewife CMMU help sup-
port block multithreading. First, the CMMU takes advantage of as
much parallelism as possible when servicing a remote cache miss
by generating a context-switch trap in parallel with message gener-
ation. Second, the CMMU implements lockup-free caches. Third,
the CMMU implements a livelock avoidance technique, to prevent
the livelock that can arise when cache-coherent shared memory is
coupled with context switching and LimitLESS.

Software prefetch is implemented in Alewife as two different
colored load instructions, one for read prefetch and the other for
write prefetch; the value returned from the prefetch instructions is
ignored. Prefetched data is returned in the transaction buffer.

7

� Multiple Contexts

 Prefetching

|

0
|

1
|

2
|

3
|

4
|

5
|

6

|0

|10

|20

|30

|40

|50

 Outstanding Requests

 C
yc

le
s

pe
r

ite
ra

tio
n

�

� �

Figure 7: Effectiveness of latency tolerance mechanisms.

To measure the benefit of latency tolerance using context switch-
ing and prefetching, an experiment runs a small loop on one processor
that adds numbers fetched from the memory of another processor.
Figure 7 shows the number of cycles per loop iteration as a function
of the number of outstanding requests. As expected, one outstanding
request incurs the same overhead using either prefetching or context
switching. As the prefetch depth is increased, the performance im-
proves until the limit of network bandwidth is reached. For context
switching, the limiting factor is the overhead of the mechanism, not
bandwidth. Because the loop performs remote reads which have a
relatively low latency (�40 cycles), the 14 cycle context switch time
hides all of the latency with two contexts. For longer remote latencies
that can occur in real programs, three contexts may be beneficial.

Although the absolute performance of prefetching is better due to
low overhead, its use is limited to places where cache-miss behavior
can be predicted statically. Results in Section 4 show that context
switching can increase the performance of a parallel application,
even when prefetching has been carefully used.

4 Application Performance

This section presents the performance of a number of applications
and demonstrates the efficacy of the mechanisms in the machine.
It starts by summarizing the performance of a dozen applications
written in a shared-memory style. The following subsection com-
pares the performance of an application written in a message-passing
style on Alewife and on the Thinking Machines’ CM-5 multiproces-
sor. The last two subsections present details of two application case
studies, MP3D and MICCG3D.

4.1 Shared memory performance

Shared-memory applications perform well on Alewife, proving the
viability of both the software-extended coherence mechanism and
the low-dimensional communication substrate provided by the mesh
network. Table 7 summarizes the main characteristics of the applica-
tions evaluated on Alewife. The first five applications shown in the
table are from the SPLASH suite[28], the three following ones are
from the NAS parallel benchmarks[7], the next four are engineering
kernels, and the last solves a numerical problem.

Table 8 presents the running time and speedup performance of

Program Input Size
MP3D 18k particles, 6 iterations
Barnes-Hut 16k bodies, 4 iterations
LocusRoute 3817 wires, 20 routing channels (Primary2)
Cholesky 3948� 3948 floats, 56934 non-zeros (TK15)
Water 729 molecules, 5 iterations
Appbt 20 � 20 � 20 floats
Multigrid 56 � 56 � 56 floats
CG 1400� 1400 doubles, 78148 non-zeros
EM3D 20000 nodes, 20% remote neighbors
Gauss 512 � 512 floats
FFT 80k floats
SOR 512 � 512 floats, 50 iterations
MICCG3D 32 � 32 � 32 and 64 � 64 � 64 floats

Table 7: Main application characteristics.

these applications on Alewife. The table includes results for “Mod
MP3D”, which is a version of the original MP3D application that
eliminates some useless code and improves locality by modifying
the mapping of particles to processors. Section 4.3 discusses both
the original and modified versions of MP3D in detail.

All the speedups presented in Table 8 are based on the parallel
implementation of each program running on one processor except
those that are marked in the table with asterisks and the different
versions of MICCG3D. These exceptions ran with input sizes that
do not fit on a single node’s memory1. The experiments with an
asterisk assume that the speedup is linear at the smallest number
of nodes that can hold the data set. The MICCG3D speedups are
computed using a best sequential running time that is obtained by
assuming sequential running time grows linearly with problem size.
The Alewife compiler, used for all applications, produces code with
a sequential running time that is within 10% of gcc at the “-O2”
level of optimization.

The results show that Alewife usually achieves good application
performance, especially for the computational kernels, even for rel-
atively small input sizes. In particular, MP3D (an application with a
difficult shared-memory workload) achieves extremely good results.
In contrast, a comparison between the two entries for Cholesky in
the table demonstrates the importance of the input size for the per-
formance of this application; a 5-fold input size increase leads to a
significant improvement in speedup. The modest speedups of CG
and Multigrid result from load imbalance and bad cache behavior,
which can be addressed by using larger input sizes and the latency
tolerance mechanisms in Alewife.

Table 8 presents the performance of the 32�32�32 and
64�64�64 input sizes for MICCG3D (labelled MICCG3D-32 and
MICCG3D-64, respectively) using coarse-grain and fine-grain syn-
chronization. The speedups appear low because they are measured
against the best sequential implementation of the application, rather
than a uniprocessor run of the parallel algorithm. The performance
of MICCG3D will be explained in detail in Section 4.4.

As a whole, experience with porting a variety of applications in a
short period of time shows that Alewife provides a good environment
for applications written in a shared-memory style. Programs can be
easily ported to the machine and can achieve good performance.

1Barnes-Hut was run with 32k bodies as input, while Cholesky was run
with five times as many non-zeros as the base input size.

8

Running Time (Mcycles) Speedup
Program 1P 2P 4P 8P 16P 32P 1P 2P 4P 8P 16P 32P

Orig MP3D 67.6 41.7 24.8 13.9 7.4 4.3 1.0 1.6 2.7 4.9 9.2 15.7
Mod MP3D 47.4 24.5 12.4 6.9 3.5 2.2 1.0 1.9 3.8 6.9 13.4 21.9
Barnes-Hut 9144.6 4776.5 2486.9 1319.4 719.6 434.2 1.0 1.9 3.7 6.9 12.7 21.1
Barnes-Hut * – 10423.6 5401.6 2873.3 1568.4 908.5 – 2.0 3.9 7.3 13.3 22.9
LocusRoute 1796.0 919.9 474.1 249.5 147.0 97.1 1.0 2.0 3.8 7.2 12.2 18.5
Cholesky 2748.1 1567.3 910.5 545.8 407.7 398.1 1.0 1.8 3.0 5.0 6.7 6.9
Cholesky * – – 2282.2 1320.8 880.9 681.1 – – 4.0 6.9 10.4 13.4
Water 12592.0 6370.8 3320.9 1705.5 897.5 451.3 1.0 2.0 3.8 7.4 14.0 27.9
Appbt 4928.3 2617.3 1360.5 704.7 389.7 223.7 1.0 1.9 3.6 7.0 12.6 22.0
Multigrid 2792.0 1415.6 709.1 406.2 252.9 165.5 1.0 2.0 3.9 6.9 11.0 16.9
CG 1279.2 724.9 498.0 311.1 179.0 124.9 1.0 1.8 2.6 4.1 7.1 10.2
EM3D 331.7 192.1 95.5 46.8 22.4 10.7 1.0 1.7 3.5 7.1 14.8 31.1
Gauss 1877.0 938.9 465.8 226.4 115.7 77.8 1.0 2.0 4.0 8.3 16.2 24.1
FFT 1731.8 928.0 491.8 261.6 136.7 71.8 1.0 1.9 3.5 6.6 12.7 24.1
SOR 1066.2 535.7 268.8 134.9 68.1 32.3 1.0 2.0 4.0 7.9 15.7 33.0
MICCG3D-32-Coarse – 36.6 21.7 11.7 6.9 4.4 – 0.5 0.8 1.5 2.5 3.9
MICCG3D-32-Fine – – 11.7 5.8 2.9 1.5 – – 1.5 3.0 5.9 11.5
MICCG3D-64-Coarse – – – – – 32.2 – – – – – 4.3
MICCG3D-64-Fine – – – – – 12.5 – – – – – 11.1

Table 8: Performance of shared-memory applications on Alewife.

� CM-5 Polling
� Alewife Polling
� Alewife Interrupts

 CM-5 Interrupts

|

0
|

4
|

8
|

12
|

16

|0

|1

|2

|3

|4

|5

|6

 Number of Processors

 S
pe

ed
up

�

�

�

�

�

�

�

�

�

�

�

�

Figure 8: Performance of a message-passing implementation of the
sparse triangular matrix solver.

4.2 Message-passing performance

This section compares Alewife’s support for short messages with
that of the CM-5. It shows that for a sparse matrix application with
irregular, fine-grain communication requirements, Alewife delivers
performance that is comparable to the CM-5 under polling and su-
perior under interrupts. The application is a power grid benchmark
from a sparse matrix suite [11] which uses the techniques of [10].

Figure 8 presents speedups of message-passing implementations
of this application on Alewife and the CM-5, under both polling2

and interrupts. Speedups are computed based on the running time
(in cycles) of an optimized sequential code running on a single CM-5
node. The difference between the two polling implementations is
10%, and can be entirely attributed to the use of an experimental
compiler on Alewife.

2Unlike the CM-5, user polling on Alewife allows system messages to
continue to generate interrupts while user messages are received via polling.

 Ideal
� Orig MP3D 2C+PF
� Orig MP3D 2C
� Orig MP3D PF
� Orig MP3D 1C

|

0
|

4
|

8
|

12
|

16
|

20
|

24
|

28
|

32

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Number of Processors

 S
pe

ed
up

�
�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�
�
�

�

�

�

Figure 9: Speedups for various versions of MP3D: single-context
(1C), two contexts (2C), and prefetching (PF).

More importantly, the difference between polling and interrupt
versions on Alewife is only 16%. Since this application has ex-
tremely fine-grained communication (one or two floating-point num-
bers per message), this implies that interrupt-driven messagepassing,
which excels at unpredictable message traffic, is more than sufficient
for coarser-grained applications. In contrast, the interrupt-driven
version of this application on the CM-5 suffers more than a factor of
three degradation over the polling version. This illustrates the bene-
fits of Alewife’s fast interrupt handling, discussed in Section 3.2. In
summary, these results show that message passing on Alewife has
comparable performance to the CM-5 for small messages while han-
dling a wider variety of message traffic (including DMA) efficiently.

4.3 MP3D

On Alewife, MP3D achieves the largest speedup ever reported for
this application. There are two reasons for this result. First, most of

9

||0

|2

|4

|6

|8

|10

|12

|14

 E
xe

cu
ti

o
n

 T
im

e
(M

C
yc

le
s)

System

LimitLESS

Synch

Memory

User

O
rig

8
M

od
8

O
rig

16
M

od
16

O
rig

32
M

od
32

Figure 10: Orig and Mod MP3D running times, with costs.

the communication traffic in the benchmark is caused by migratory
data, and Alewife’s coherence protocol is optimized for this type
of data. Second, Alewife has relatively low (�60-cycle) latency
for 3-party remote read transactions, which results from Alewife’s
pipelined memory system and its simple, flat network hierarchy. This
low latency pays off when the whole hierarchy must be traversed
frequently.

MP3D also serves as a good vehicle for assessing the performance
of Alewife’s latency tolerance mechanisms. The original MP3D
code is a good candidate for latency tolerance, since improvements
in locality for this program are difficult to obtain without significant
code restructuring. Accordingly, this section considers the effect of
using multiple contexts, software prefetching, and a combination of
these two. Figure 9 presents the speedups of different versions of
MP3D. All speedups in this graph are computed with respect to the
non-prefetching parallel implementation running on one processor.

In order to investigate the maximum possible benefit of prefetch-
ing, software prefetching was inserted by hand. The prefetch in-
structions concentrate on the data causing the majority of the cache
misses in MP3D. As seen in Figure 9, prefetching achieves a 23%
improvement in speedup at 32 processors over the non-prefetching
version.

Block multithreading allows MP3D to perform marginally bet-
ter than hand-crafted software prefetching (26% vs 23%), proving
that context switching can help applications achieve performance
comparable to versions generated by sophisticated compilers and/or
programmers. An interesting observation is that the combination of
prefetching and multithreading for MP3D approaches the speedup
performance of the hand-optimized version of the application, Mod
MP3D (see Table 8). One possible explanation for this effect is
that multithreading can tolerate the latency of replacement cache
misses, which are difficult to predict when implementing software
prefetching.

Figure 10 presents the cost breakdown (measured by the Alewife
statistics hardware) for MP3D and Mod MP3D for 8, 16, and 32 pro-
cessors. As shown in this figure, Mod MP3D significantly reduces
both the busy time and the memory wait overhead of MP3D. An-
other interesting observation is that the overhead of handling widely
shared cache blocks in software (the LimitLESS component) and the
scheduler costs (the system component) are always negligible for
the two programs. In fact, none of the shared-memory applications
suffers significantly from these two types of overhead.

||0

|4

|8

|12

|16

|20

|24

|28

|32

|36

 E
xe

cu
ti

o
n

 T
im

e
(M

C
yc

le
s)

System

LimitLESS

Synch

Memory

User

A B C D
32x32x32
4 Procs

A B C D
32x32x32
16 Procs

A B C D
32x32x32
32 Procs

A B C D
64x64x64
32 Procs

Figure 11: MICCG3D running times. Coarse-grain (A). Fine-grain:
no hw (B), f/e bits with sw checks (C), and full hw support (D).

4.4 MICCG3D

MICCG3D solves Laplace’s equation on a three-dimensional grid
using a preconditioned conjugate gradient method. A central op-
eration in this method has been difficult to parallelize, due to the
computation’s complex data dependencies. This section reports re-
sults for a single iteration of four different parallel implementations
of MICCG3D. The first is coarse-grain: the data is block partitioned,
and each partition is assigned to a single thread. The data blocks and
threads are statically placed in the mesh, and barriers sequence the
computation.

The other three implementations are all fine-grain, and allocate
shared data in J-structures. They differ in the way they implement
the J-structures. In the first, J-structures consist of two separate
arrays: one for data, and one for synchronization variables. On each
J-structure reference, software checks the synchronization variable.
The second eliminates the need for the synchronization array by
using full/empty bits as provided in Alewife. Checking the bit at each
reference is still done in software. The last implementation uses the
full capability of Alewife’s full/empty bits, checkingsynchronization
state in hardware. (For additional information, see [31]).

Figure 11 shows a cost breakdown of various MICCG3D execu-
tion times. The system and LimitLESS components are negligible
and are not visible on the graph. Synchronization overhead in the
coarse-grain implementation is the time spent waiting in barriers; in
the fine-grain implementations, it is the time spent both in J-structure
operations and in waiting for pending J-structure values. For each
problem size and machine size, the figure shows breakdowns for all
four implementations of MICCG3D. Results for 4, 16, and 32 pro-
cessors are shown for a 32�32�32 grid; 32 processor results are also
shown for a 64�64�64 grid. A large difference in synchronization
waiting time is apparent between the coarse-grain and fine-grain im-
plementations. Synchronization overhead continues to be significant
with increasing machine size in the coarse-grain implementation for
several reasons. The amount of useful work between barriers de-
creases as more of the parallelism is exploited. As the number of
processors increases, the number of barriers increases to enforce the
data dependencies, and each barrier itself is more expensive since
barriers require global communication. The fine-grain implemen-
tations do not suffer from these effects because J-structures require
synchronization only where data dependencies occur.

The three fine-grain implementations show the impact of hard-
ware support for fine-grain synchronization on performance. The

10

implementation with only software support has the highest memory
overhead and synchronization overhead. The fine-grain implemen-
tation that uses software checking of full/empty bits has similiar
synchronization overhead, but has a lower memory overhead. The
comparison shows that full/empty bits afford compact storage and
communication of synchronization state, resulting in lower demands
on memory and network bandwidth. The implementation with full
hardware support for fine-grain synchronization shows the smallest
memory overhead.

In addition, using hardware to check synchronization state lowers
synchronization overhead. However, the reduction in synchroniza-
tion overhead is not as significant as the reduction in memory over-
head. In Figure 11, the “Memory” segments (in the B bars versus
C bars) are reduced by a greater amount due to full/empty bits than
the “Synch” segments (in the C bars versus D bars) due to hardware
checking. Hardware checking in the MICCG3D application still has
a significant impact on overall performance because the software
checking code increases register pressure, resulting in more register
spilling. This is reflected by smaller “User” segments in the D bars.
For codes with low register pressure, the overall gains from hard-
ware checking of full/empty bits would be much less than the gains
of having full/empty bits in the first place.

This study leads to two conclusions about fine-grain computation.
First, the ability to express synchronization at a fine granularity has
a first-order impact on performance for the MICCG3D application;
providing support for the fine-grain synchronization primitives in
hardware or software is a second-order effect. Second, the reduction
in memory and network bandwidth due to full/empty bits impacts
performance more significantly than hardware checking. In general,
the degree to which full/empty bits are more important than hardware
checking depends on register usage in the application code.

5 Related Work

A number of other systems provide a shared address space entirely in
hardware. DASH [20] is a cache-coherent multiprocessor that uses
a full-map directory-based cache coherence protocol. It includes
prefetching and a mechanism for depositing data directly in another
processor’s cache. The KSR1 and DDM [12] provide a shared
address space through cache-only memory. These machines also
allow prefetching. The Scalable Coherent Interface [5] also specifies
mechanisms for implementing large, shared address spaces.

Both the J-machine [24] and the CM-5 export hardware message-
passing interfaces directly to the user. These interfaces differ from
the Alewife interface in several ways. First, in Alewife, messagesare
normally delivered via an interrupt and dispatched in software, while
in the J-machine, messages are queued and dispatched in sequence
by the hardware. On the CM-5, message delivery through interrupts
is expensive enough that polling is normally used to access the net-
work. Second, neither the J-machine, nor the CM-5 allow network
messages to be transferred through DMA. Third, the J-machine does
not provide an atomic message send like Alewife does; this omission
complicates the sharing of a single network interface between user
code and interrupt handlers.

The Cray T3D integrates message passing and hardware support
for a shared address space. Message passing in the T3D is flexible
and includes extensive support for DMA. However, the T3D does
not provide cache coherence.

Several recently proposed architectures are based on the inte-

gration of shared memory and message passing in some form.
FLASH [19] includes a microcoded, kernel-level coprocessorfor mes-
sage handling including shared-memory protocol messages. Bulk
transfers in FLASH avoid using the receiving processor, but require
pre-negotiating memory allocation. FLASH provides a multi-user
environment. Typhoon [26] offers user-level message handling and
cache coherence, using a second processor dedicated to the network
interface. The *T [23] architecture uses a memory coprocessor
model as well.

A few architectures incorporate multiple contexts, pioneered by
the HEP [29], switching on every instruction. These machines, in-
cluding Monsoon [25] and Tera [4], do not have caches and rely
on a large number of contexts to hide remote memory latency. In
contrast, Alewife’s block multithreading technique switches only on
synchronization faults and cache misses to remote memory, permit-
ting good single-thread performance and requiring less aggressive
hardware multithreading support. A number of architectures — in-
cluding HEP, Tera, Monsoon, and the J-machine — also provide
support for fine-grain synchronization in the form of full/empty bits
or tags.

6 Conclusion

Alewife represents a step in the maturation of multiprocessing tech-
nology. Specifically, it augurs the end of the religious war between
proponents of the shared-memory and message-passing models of
parallel computation. The working machine demonstrates that both
models permit efficient and scalable implementations; moreover, the
two models may – and should – be integrated into a unified mul-
timodel framework. Although previous systems have implemented
some of Alewife’s mechanisms independently, Alewife is unique in
its combination of coherent caches for shared memory, integrated
message passing, support for fine-grained computation, and latency
tolerance. These four mechanisms provide an integrated solution
to the problems of communication and synchronization in parallel
systems.

This integration of architectural features results in a multiproces-
sor that is both programmable and scalable. The case-studyusing the
MP3D application illustrates this conclusion: it was easy to port this
demanding workload to the architecture, and the application worked
and realized acceptable speedups almost immediately. Subsequent
performance tuning and invoking Alewife’s latency tolerance mech-
anisms significantly improved MP3D’s performance.

Experience with a variety of other workloads confirms this anec-
dotal evidence. More broadly, experience with applications indicates
that a globally shared address space,cache coherence,and a message-
based runtime system is instrumental in the quick development of
working applications that perform well. Latency tolerance mecha-
nisms, fine-grain synchronization, and explicit message passing help
improve performance further.

At this time, effort is underway to respin the CMMU and to build a
128-node machine. Although Alewife addresses many of the issues
of large-scale multiprocessing, it is essentially a single-usermachine.
Our future work will investigate mechanisms for protection and vir-
tual memory in multimodel multiprocessors. Implementing a virtual
machine model in the face of streamlined user-level communication
mechanisms is challenging, and forms the basis of the new FUGU

architecture [21].

11

7 Acknowledgments

The following members of the Alewife team contributed significantly
to the success of the project: Jonathan Babb, Rajeev Barua, Fred
Chong, David Hoki, Ed Hurley, Gino Maa, Anne McCarthy,Sramana
Mitra, Dan Nussbaum, and John Piscitello. Fred Chong wrote the
sparse matrix code described in Section 4.2.

Others outside of MIT contributed as well: we would like to thank
Mike Marchetti for the Multigrid code, and Leonidas Kontothanassis
for the FFT code and for assistance with writing Mod MP3D. The
Alewife machine was built in cooperation with LSI Logic Inc., Sun
Microsystems Inc., and the Information Sciences Institute at USC.

The Alewife project is funded in part by ARPA contract
N00014-87-K-0825, in part by a NSF Experimental Systems grant
MIP-9012773, and in part by NSF Presidential Young Investiga-
tor Award. Ricardo Bianchini was supported in part by Brazilian
NUTES/UFRJ and CAPES/MEC (grant # 2038/90-2) fellowships,
and by the Office of Naval Research Contract # N00014-92-J-1801
in conjunction with ARPA order # 8930.

References
[1] A. Agarwal, D. Kranz, and V. Natarajan. Automatic Partitioning of

Parallel Loops for Cache-Coherent Multiprocessors. In The 22nd In-
ternational Conference on Parallel Processing, August 1993.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B.H. Lim, D. Yeung,
G. D’Souza, and M. Parkin. Sparcle: An Evolutionary Processor De-
sign for Multiprocessors. IEEE Micro, 13(3):48–61, June 1993.

[3] A. Agarwal, B.H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A
Processor Architecture for Multiprocessing. In The 17th Annual Inter-
national Symposium on Computer Architecture, pages 104–114, June
1990.

[4] G. Alverson, R. Alverson, and D. Callahan. Exploiting Heterogeneous
Parallelism on a Multithreaded Multiprocessor. In Workshop on Multi-
threaded Computers, Proceedingsof Supercomputing,November1991.

[5] ANSI/IEEE Std 1596-1992 Scalable Coherent Interface, 1992.

[6] Arvind, R. Nikhil, and K. Pingali. I-Structures: Data Structures for
Parallel Computing. ACM Transcations on Programming Languages
and Systems, 11(4):598–632, October 1989.

[7] D. Bailey et al. The NAS Parallel Benchmarks. Technical Report
RNR-94-007, NASA Ames Research Center, March 1994.

[8] D. Chaiken and A. Agarwal. Software-Extended Coherent Shared
Memory: Performance and Cost. In The 21st Annual International
Symposium on Computer Architecture, pages 314–324, April 1994.

[9] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS Directo-
ries: A Scalable Cache Coherence Scheme. In The 4th International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 224–234. ACM, April 1991.

[10] F. Chong, S. Sharma, E. Brewer, and J. Saltz. Multiprocessor Runtime
Support for Irregular DAGs. In R. Kalia and P. Vashishta, editors,
Toward Teraflop Computing and New Grand Challenge Applications.
Nova Science Publishers, Inc., 1995.

[11] I. Duff, R. Grimes, and J. Lewis. User’s Guide for the Harwell-Boeing
Sparse Matrix Collection. Technical Report TR/PA/92/86, CERFACS,
October 1992.

[12] E. Hagersten, A. Landin, and S. Haridi. DDM — A Cache-Only
Memory Architecture. IEEE Computer, 25(9):44–54, September 1992.

[13] D. Kranz, R. Halstead, and E. Mohr. Mul-T: A High-Performance
Parallel Lisp. In The Symposium on Programming Languages Design
and Implementation, June 1989.

[14] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B.H. Lim.
Integrating Message-Passing and Shared-Memory; Early Experience.
In The 4th Annual Symposium on the Principles and Practice of Parallel
Programming, pages 54–63, May 1993.

[15] D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization.
In The 8th Annual Symposium on Computer Architecture, pages 81–87,
June 1981.

[16] J. Kubiatowicz and A. Agarwal. Anatomy of a Message in the Alewife
Multiprocessor. In The International Conference on Supercomputing,
July 1993.

[17] J. Kubiatowicz, D. Chaiken, and A. Agarwal. Closing the Window of
Vulnerability in Multiphase Memory Transactions. In The 5th Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 274–284. ACM, October 1992.

[18] J. Kubiatowicz, D. Chaiken, A. Agarwal, A. Altman, J. Babb, D. Kranz,
B.H. Lim, K. Mackenzie, J. Piscitello, and D. Yeung. The Alewife
CMMU: Addressing the Multiprocessor Communications Gap. In
HOTCHIPS, August 1994.

[19] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy. The Stanford FLASH Multiprocessor.
In The 21st Annual International Symposium on Computer Architecture
1994, April 1994.

[20] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and
J. Hennessy. The DASH Prototype: Logic Overhead and Performance.
IEEE Transactions on Parallel and Distributed Systems, 4(1):41–61,
Jan 1993.

[21] K. Mackenzie, J. Kubiatowicz, A. Agarwal, and M. Frans Kaashoek.
FUGU: Implementing Protection and Virtual Memory in a Multiuser,
Multimodel Multiprocessor. Technical Memo MIT/LCS/TM-503, Oc-
tober 1994.

[22] E. Mohr, D. Kranz, and R. Halstead. Lazy Task Creation: A Technique
for Increasing the Granularity of Parallel Programs. IEEE Transactions
on Parallel and Distributed Systems, 2(3):264–280, July 1991.

[23] R. Nikhil, G. Papadopoulos, and Arvind. *T: A Multithreaded Mas-
sively Parallel Architecture. In The 19th Annual International Sympo-
sium on Computer Architecture, pages 156–167, May 1992.

[24] M. Noakes, D. Wallach, and W. Dally. The J-Machine Multicomputer:
An Architectural Evaluation. In The 20th Annual International Sympo-
sium on Computer Architecture, pages 224–235, May 1993.

[25] G. Papadopoulosand D. Culler. Monsoon: An Explicit Token-Store Ar-
chitecture. In The 17th Annual International Symposium on Computer
Architecture, pages 82–91, June 1990.

[26] S. Reinhardt, J. Larus, and D. Wood. Tempest and Typhoon: User-
Level Shared Memory. In The 21st Annual International Symposium
on Computer Architecture, April 1994.

[27] C. Seitz, N. Boden, J. Seizovic, and W.K. Su. The Design of the
Caltech Mosaic C Multicomputer. In Research on Integrated Systems
Symposium Proceedings, pages 1–22, Cambridge, MA, 1993. MIT
Press.

[28] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Paral-
lel Applications for Shared-Memory. Computer Architecture News,
20(1):5–44, March 1992.

[29] B. J. Smith. Architecture and Applications of the HEP Multiprocessor
ComputerSystem. Society of Photo-optical Instrumentation Engineers,
298:241–248, 1981.

[30] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active mes-
sages: A mechanismfor integrated communication and computation. In
The 19th Annual International Symposium on Computer Architecture,
May 1992.

[31] D. Yeung and A. Agarwal. Experience with Fine-Grain Synchroniza-
tion in MIMD Machines for Preconditioned Conjugate Gradient. In
The 4th Annual Symposium on Principles and Practice of Parallel Pro-
gramming, pages 187–197, May 1993.

12

