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Abstract—We prove the inefficiency (in the sense of Pareto)
of the electricity system, as well as its resemblance with the
tragedy of the commons. Also, we present a mechanism intended
to achieve efficiency in the electricity consumption by means
of economic incentives. The proposed incentives might be seen
as an indirect revelation mechanism, in which users do not
have to reveal private information about their preferences.
Instead, a particular incentive is calculated for each user, based
solely on its relative consumption. We conclude that the success
of the proposed mechanism requires subsidies from external
institutions, at least during the transition between an inefficient
outcome and the efficient equilibrium.

Index Terms—Electricity market, dynamic pricing, game the-
ory, mechanism design.

I. INTRODUCTION

Demand response (DR) approaches arise in the context of
smart grids as mechanisms intended to encourage particular
behaviors in users. The main goal of DR strategies is to
achieve efficiency in the electricity system from the demand
side, by promoting smart consumption in users [1]. Efficiency
in the electricity system might benefit to both electricity util-
ities and users. Accordingly, the electricity utilities might be
interested in supporting DR programs, due to some potential
economic benefits (see [2]). Likewise, the expected electricity
price reduction might motivate users to cooperate with DR
programs. These premises have justified the use of economic
incentives as a mean to induce behavioral changes in users. In
particular, pricing mechanisms have been used extensively in
the literature (see [3]–[7] and the references therein). The pric-
ing mechanisms attempt to induce changes in the consumption
habits by means of time varying electricity prices, which are
aligned with the electricity demand. Specifically, higher prices
applied in peak consumption hours might incentive users to
redistribute their consumption. The objective of the incentives
is to induce an optimal consumption, that maximizes an
optimality criteria, such as the social welfare. An example of
these mechanisms is the real time pricing scheme, which uses
a marginal price signal as a mechanism to incentive users.

The design of DR approaches based on price incentives has
been made using economical models, such as ideal markets,
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where agents are price takers [8]. In ideal markets, the
marginal price scheme might lead to an efficient equilibrium in
the sense of Pareto, a.k.a., competitive equilibrium. However,
the Pareto optimal might not be reachable in situations where
agents are selfish and price anticipating. In that case, the Nash
equilibrium is a preferred solution concept, because it allows
to model stable outcomes in situations that induce strategic
interactions among agents. In general, the Nash equilibrium
is not equal to the competitive equilibrium. Additionally, it
has been shown that the efficiency of an affine marginal price
mechanism is reduced when the agents are price anticipating
[9].

From this perspective, the design of mechanisms offers
some theoretical tools intended to design rules (or incentives)
to achieve of the desired outcomes in a strategical environ-
ment. Specifically, mechanisms can be designed to achieve
the social optimal, regardless of the characteristics of users
and their environment [7]. Particularly, the Vickrey-Clarke-
Groves mechanism needs that users explicitly reveal their
private information in order to solve the social welfare op-
timization problem. Furthermore, there are some mechanisms
that consider the DR problem as a resource allocation problem,
and assume that the utility is able to commit a desired quantity
of energy to each user [10].

However, real situations exhibit some practical limitations,
by which the DR objectives might be unreachable. On the
one hand, the incentives design can be seen as a distributed
optimization problem. Along this line, the information re-
quired to solve the problem (i.e., the users preferences) is
distributed among the users. However, 1) there is no guarantee
that the users would be willing to report true information; and
2) solving the problem might require an outstanding amount
of computational resources. On the other hand, capturing all
the required information from users might demand a nonvi-
able communication infrastructure. These characteristics are
discussed by Hurwicz in the seminal paper [11], where the
resource allocation problem is analyzed.

In this work, we design a mechanism intended to achieve the
Pareto efficient outcome in the DR problem. This mechanism
is based on economical incentives that modify the price
charged to each user. Specifically, we model the electricity
market as a one-shot game which implements ex-post prices.
Hence, the mechanism do not considers a negotiation proce-
dure prior to the resource allocation. The proposed mechanism
can be classified as an indirect-revelation mechanism, since
users do not have to reveal their private information. Instead,
our mechanism only requires a demand signal to compute



the incentives. In particular, the proposed mechanism assumes
an information exchange process that is carried out in a
one-dimensional message space, rather than multidimensional
information spaces as some mechanisms in the literature.

The main contributions of this paper are as follows: 1)
we formulate the demand response problem as a tragedy of
the commons dilemma, highlighting the efficiency loss in the
electricity system when price signals are not controlled; 2) we
propose a novel scheme of economic incentives for achieving
optimal demand profiles in a population of strategic agents. In
particular, we prove that under certain conditions, there is not
a mechanism that satisfies the budget balance property in the
electricity system.

The remainder of the paper is organized as follows. The
problem statement as well as the introduction of two solution
concepts is made in Section II. The design of the incentives
mechanisms is presented in Section III, while the concluding
remarks are presented in Section IV.

II. THE ELECTRICITY MARKET MODEL: ECONOMIC
ENVIRONMENT

In this section, we introduce the electricity system model
as well as two solution concepts, namely the competitive
equilibrium and the Nash equilibrium. The main objective of
this section is to highlight the characteristics of the solution
concepts in terms of both the profit achieved by the population
and the amount of resources spent.

A. General Framework

The electricity market model considers three main compo-
nents, namely the producers, the consumers, and an indepen-
dent system operator (ISO). Particularly, producers and con-
sumers are constrained to sell and buy electricity, respectively.
On the other hand, the ISO is a nonprofit entity in charge of
regulating the electricity market, e.g., set the market clearing
price [6].

In this case, we consider a population composed by N
users that are subscribed to a unique producer. The population
is defined as the set V = {1, . . . , N}. We assume that the
ith user has a daily consumption Qi ≥ 0, where i ∈ V .
However, the consumption along a day is not uniform, because
the electricity necessity of each user varies according to the
time of the day, e.g., higher consumptions would be made
in the night. Since the valuation given by each user to the
electricity is a time varying function, it is convenient to divide
a day in time periods that has roughly the same demand.
Accordingly, let us divide a period of 24 hours in a set of T
time intervals denoted τ = {τ1, . . . , τT }. Formally, we define
the set τ as a partition of [0, 24), where ∪t∈{1,...,T}τt = τ and
∩t∈{1,...,T}τt = ∅. Now, let qti be the electricity consumption
of the ith user in the tth time interval, such that

∑T
t=1 q

t
i = Qi,

where qti ≥ 0 and t ∈ {1, . . . , T}. Along these lines, the daily
electricity consumption of the ith user is represented by the
vector qi = [q1i , . . . , q

T
i ]> ∈ RT

≥0. On the other hand, the joint
electricity consumption of the whole population is denoted by
q = [q>1 , . . . , q

>
N ]>. Without loss of generality, we assume

that the electricity consumption of the ith user satisfies qti ≥ 0,
in each time instant t.

The electricity necessity of the ith user in a given time
instant t might be represented by means of a valuation function
vti : R → R, where vti(q

t
i) is the valuation that the ith user

gives to an electricity consumption of qti units in the tth time
interval. Moreover, a daily valuation is equivalent to the sum of
the electricity valuation perceived in each time interval τt, i.e.,
the daily valuation of the ith user is the function vi : RT → R,
defined as vi(qi) =

∑T
t=1 v

t
i(q

t
i), where t ∈ {1, . . . , T}.

B. Solution concepts

1) Competitive Equilibrium: A competitive equilibrium
considers that users are price taker. This implies that each user
adjusts its consumption in order maximize its profit, assuming
that prices are given. Let the vector λ be the daily electricity
price defined as λ = [λ1, . . . , λT ]>, where λt is the price in
the tth time interval. Thereby, the profit of the ith user can
be expressed as Ui(qi) = vi(qi) − q>i λ. On the other hand,
profit of the producer is defined as G = g>λ−

∑N
t=1 C(gt),

where the vector g = [g1, . . . , gT ]> defines the daily power
generation, gt is the power generated in the tth time period,
and C(gt) is the generation cost associated with a production
of gt electricity units. We assume that the generation cost
function C(·) is the same for all t.

In an ideal market, interactions among producer and users
lead to an equilibrium in which generation equals demand, i.e.,
in a given time instant t, we have gt =

∑N
i=1 q

t
i . Moreover,

the generation costs equal generation profits, such that G = 0.
According to the previous definitions, the consumers welfare
function is maximized by solving [9]

maximize
q

N∑
i=1

Ui(q) =

N∑
i=1

(
vi(qi)−

T∑
t=1

C
( N∑

j=1

qtj

))
subject to qti ≥ 0, i = {1, . . . , N}, t = {1, . . . , T}.

(1)
This optimization problem has a unique solution if the follow-
ing conditions are satisfied:
Assumption 1.

i. The valuation function vti(·) is differentiable, concave,
and non-decreasing.

ii. The generation cost function C(·) is differentiable, con-
vex, and non-decreasing.

iii. The generation cost function can be expressed as
C(q) = qp(q), where p(·) is differentiable, convex, and
non-decreasing.

In particular, the solution to Eq. (1) is feasible if the
following assumption is satisfied.
Assumption 2.

∂

∂qti
Ui(0, q−i) =

∂

∂qti
vti(0)− p

(∑
j 6=i

qtj

)
> 0,

for all i ∈ V .

Note that if the population V is finite, then p(q) = C(q)
q

corresponds to an average price scheme. In the remainder of



the document, we assume that the generation cost function has
the form C(q) = βq2 + bq.

Now, let µ = [µ1, . . . ,µN ]> be the optimal joint electricity
consumption in the sense of Pareto, where the vector µi ∈ RT

corresponds to the optimal daily demand of the ith user.
Consequently, the following first order condition (FOC) is
satisfied for every user i ∈ V:

∂

∂qti

N∑
i=1

Ui(q)

∣∣∣∣∣
q=µ

=
∂

∂qti
vti(q

t
i)

− p
( N∑

j=1

qtj

)
−
( N∑

h=1

qth

) ∂

∂qti
p
( N∑

j=1

qtj

)∣∣∣∣∣
q=µ

= 0. (2)

The equilibrium µ is efficient in the sense of Pareto, since it
maximizes the social welfare.

2) Nash Equilibrium: The Nash equilibrium is a solution
concept used in situations in which agents take part of a
strategic game. Particularly, in the electricity market, the
consumption made by each agent has an impact on the overall
energy cost, and therefore, influences the profit of other users.
Since users are price anticipating, they individually maximize
their profit taking into account the effect of its actions in the
electricity price. In this case, the profit function of the ith

agent is defined as

Wi(qi, q−i) = vi(qi)−
∑T

t=1
qtip
(∑N

j=1
qtj

)
, (3)

where p(·) : R → R is the function of average prices
and q−i is a vector composed by the daily consump-
tion of all the individuals, except the ith, i.e., q−i =
[q1, . . . , qi−1, qi+1, . . . , qN ]. Thereby, the optimization prob-
lem of a price anticipating user is represented by:

maximize
qi

Wi(qi, q−i) = vi(qi)−
T∑

t=1

qtip
( N∑

j=1

qtj

)
subject to qti ≥ 0, i = {1, . . . , N}, t = {1, . . . , T}.

(4)

This problem has a unique solution as long as the Assumption
1 is satisfied. Furthermore, the unique solution is feasible if
Assumption 2 is satisfied.

Now, let the vector ξ = [ξ1, . . . , ξN ] be the solution to
the maximization problem in Eq. (4). Hence, ξ satisfies the
following FOC

∂

∂qti
Wi(qi, q−i)

∣∣∣∣∣
q=ξ

=
∂

∂qti
vti(q

t
i)

− p
( N∑

j=1

qtj

)
− qti

∂

∂qti
p
( N∑

j=1

qtj

)∣∣∣∣∣
q=ξ

= 0, (5)

where the vector ξi in RT is the demand profile of the ith

agent, for all i ∈ V . If Eq. (5) is satisfied for all agent i ∈ V ,
we say that ξ is the Nash equilibrium of the game described
by Eq. (3).

3) Nash Equilibrium Inefficiency: Now we are interested in
analyzing the properties of both the competitive equilibrium
µ and the Nash equilibrium ξ that arise in the context of an
electricity system. Particularly, we find that the competitive
equilibrium achieves the maximum social profit by using a
lower amount of resources, compared with the Nash equi-
librium. However, the Nash equilibrium is a stable outcome
regardless of its inefficiency. This result is stated in the
following lemma.
Lemma 1. Suppose that Assumptions 1 and 2 are satisfied.
Also, consider that µ is the Pareto efficient equilibrium of
the system and ‖ · ‖1 is the L1-norm. Then, a game of the
form stated in Eq. (3) has a unique Nash equilibrium, namely
ξ = [ξ1

>, . . . , ξN
>]>, that satisfies the following conditions.

i. ‖ξ‖1 > ‖µ‖1 for all i ∈ V ,
ii. ξ is not efficient in the sense of Pareto.

Proof sketch: Since Assumptions 1 and 2 are satisfied,
the optimization problems in Eq. (1) and (4) have a unique
solution, which we refer as ξ and µ, respectively. Now,
the proof of numeral (i) is made by contradiction. First, let
us assume that the total energy consumed by a price-taker
individual is greater or equal than the total energy consumed
by a strategic agent, i.e., ‖µi‖1 ≥ ‖ξi‖1. Since the valuation
function vti(·) is non-decreasing and concave at any time t, we
have that ∂

∂qti
vti(q

t
i) >

∂
∂qti

vti(q
t
i + c), for some constant c > 0.

Consequently, the inequality∑N

i=1

∂

∂qti
vi(ξi) ≥

∑N

i=1

∂

∂qti
vi(µi) (6)

is satisfied for any time t. Since the price function p(·)
is convexand and increasing, then the following inequalities
are satisfied:

∑N
i=1 p

(∑N
j=1 ξ

t
j

)
≤
∑N

i=1 p
(∑N

j=1 µ
t
j

)
and

∂
∂qti

p
(∑N

j=1 ξ
t
j

)
≤ ∂

∂qti
p
(∑N

j=1 µ
t
j

)
. We can use the previ-

ous expresions, along with Eq. (2), (5), and (6) to verify that∑N

i=1

∂

∂qti
vi(ξi) <

∑N

i=1

∂

∂qti
vi(µi) (7)

Seeing that Eq. (6) and (7) are in contradiction, we conclude
that ‖µi‖1 < ‖ξi‖1, for all i ∈ V. Particularly, from the
previous result we can conclude that the energy consumed in
the equilibrium of the game is greater than the optimal energy
consumption, i.e., ‖µ‖1 < ‖ξ‖1.

Now, the proof of numeral (ii) is made by direct proof.
From Assumption 1 we know that the competitive equilibrium
is unique, and corresponds to the best possible outcome for
the population. Hence, the competitive equilibrium is efficient
in the sense of Pareto. On the other hand, from numeral (i) we
conclude that ‖µ‖1 < ‖ξ‖1. Therefore, ξ 6= µ, which implies
that the total consumption at the Nash equilibrium ξ is not
efficient in the sense of Pareto.

Lemma 1 reveals that the electricity system presented in
Section II conforms a social dilemma similar to the ‘tragedy
of the commons’ [12]. This situation arises when a shared
resource is overused by the people, even if they know the
negative consequences of overusing it. In the case of the



electricity system, the Pareto efficient outcome µ maximizes
the population welfare, using less electricity resources than the
equilibrium of the game ξ. However, at least one agent has
incentives to deviate from the Pareto efficient outcome. There-
fore, the social welfare maximizer is not a stable point. This
fact illustrates the requirements for implementing incentives.
Remark 1. The discrimination of time periods is made in
order to model different preferences of users along the day.
However, the consumption made in a given time period t
is considered independent from the consumption made in
a different time period. That is, the optimization problems
described in Eq. (1) and (4) can be separated in T inde-
pendent optimization problems. In particular, we can do this
generalization because the electricity is not considered as a
limited resource that has to be allocated. Therefore, without
loss of generality, we can analyze the case of T = 1 and
the results obtained can be extended to cases with T > 1.
Accordingly, the notation used hereafter does not have into
account any particular time period.

III. ECONOMIC INCENTIVES

In the previous section, we have observed that a society
with strategic agents is not able to achieve the social optimal,
i.e., when the users are price anticipating, the stable outcome is
inefficient in terms of profits and resources usage. Accordingly,
the design of economic incentives is required in order to
guarantee that the efficient equilibrium is a stable outcome.
In this section, we design and analyze an indirect-revelation
mechanism to tackle the DR problem.

The design of incentives is strongly related to the mech-
anism design. Mechanism design arises in the context of
strategic situations that establish a game among some agents.
However, the main objective in mechanism design is find some
rules that guarantee the realization of a particular objective
function, rather than predict the outcome of a game, as in
classical game theory [13], [14]. Mechanism design is applied
mainly in scenarios with hidden information, e.g., situations
such as auctions and resource allocation problems. In these
situations, the players of the game have private information,
which is required by a central entity to find the optimal
outcome of the game.

One of the most commonly used mechanisms is the direct-
revelation mechanism. A direct-revelation mechanism pro-
poses a game in which players are asked explicitly to reveal
the information required to calculate the ideal outcome, i.e.,
the strategy of each agent consists on revealing (truthfully
or untruthfully) its private information (see Vickrey second
price auction) [14]. In general, direct-revelation mechanisms
are characterized by being inefficient with respect to both
communication and computation resources [15]. Such char-
acteristics would be unsuitable for the DR problem, since
its implementation in a large population might require an
nonviable amount of resources.

On the other hand, an indirect-revelation mechanism pro-
poses a game in which the outcome is calculated through
information about the agents, which implicitly contains the

preferences of each agent. In particular, the demand pro-
file of each user contains information about its preferences.
Accordingly, although the preferences of each user remain
unrevealed, the consumption information can be considered as
truthful information for assigning incentives. Since prices are
set ex-post (i.e., prices are set once the consumption has been
made), intentionally false consumptions would lead to loses
rather than gains. In this case, we assume that the utility has
information about the consumption profile of each user. This is
reasonable, because that information is obtained through smart
meters to calculate the electricity bill.

An initial intuition about the mechanism, is that incentives
should reflect the contribution that an agent makes to the
population surplus. The main idea is to redistribute the social
gains among agents, according to the contribution of each one
to the population welfare. Thus, an agent that cooperates is
provided with higher incentives than another agent that do
not cooperates. From Lemma 1, we know that the welfare
of the population increases as the agents approach to the
Pareto optimal outcome. Hence, the profit loose that the
ith user experiences when it unilaterally deviates from the
inefficient equilibrium ξi can be compensated through the
benefits induced in the rest of the population. In this way,
an agent would be incentivized to cooperate for the sake of
the population. In order to align the users welfare function
with the population objective function, we consider incentives
of the form

Ii(q) =
(∑

h6=i
qh

)(
hi(q−i)− p

(∑N

j=1
qj

))
, (8)

where hi(q−i) is a design term that has some relevance with
respect to the properties of the mechanism (as stated below).
The incentives modify the price charged to each user. In
particular, we consider that the profit of the ith agent in a
game with incentives is defined as

Ŵi(qi, q−i) = vi(qi)− qip
(∑N

j=1
qj

)
+ Ii(q). (9)

These incentives are calculated having into account the relative
consumption of each user with respect to the population
consumption profile. The form of this incentive is related to
the price used in the Vickrey-Clarke-Groves mechanism [14]
and some utility functions used in potential games [16]. Let ω
be the equilibrium of this game, such that satisfies the FOC:

∂

∂qti
Ŵi(q)

∣∣∣
q=ω

=
∂

∂qti
vi(qi)

− p
( N∑

j=1

qtj

)
−
( N∑

h=1

qh

) ∂

∂qti
p
( N∑

j=1

qtj

)∣∣∣
q=ω

= 0. (10)

Since Eq. (2) and (5) are equivalent, the Nash equilibrium
ω of the game with incentives is equal to the competi-
tive equilibrium µ. Therefore, the Nash equilibrium of the
game with incentives ω is efficient in the sense of Pareto.
Note that the equilibrium of the game with incentives do
not depends on hi(q−i), since hi(q−i) is independent of
the term qi. However, the form of hi(q−i) influences the



welfare of the ith individual. For example, hi(q−i) = 0
lead to a unrealistic pricing mechanism in which each user
is charged with the total generation cost C(

∑N
j=1 qj), i.e.,

Wi(q) + Ii(q) = vi(qi) − C
(∑N

j=1 q
t
j

)
. A more reasonable

mechanism is provided by the Clarke pivot rule [14], that
calculates incentives with respect to the contribution made by
an agent to the society. Inspired in the Clarke pivot rule, we
propose

hi(q−i) = p
(∑

j 6=i
qj + f(q−i)

)
, (11)

where f(q−i) is a function that represents the alternative
behavior of the ith agent. Although the Clarke pivot rule
defines f(q−i) = 0, we find that the case with f(q−i) 6= 0
provide some interesting properties. In particular, we consider
that f(q−i) is a linear combination of the vector q−i of the
form

f(q−i) =
∑

j 6=i
αjqj , (12)

where αi ∈ R for all i ∈ V . The next result shows that
when we consider an affine marginal price function, there
is no function f(·) of the form in Eq. (12), such that the
mechanism of incentives is budget balanced. That is, the sum
of the incentives on the population can not be equal to zero.
Therefore, the mechanism requires subsidies from an external
agent.
Theorem 1. Suppose that Assumptions 1 and 2 are satisfied.
Also consider that p(z) = βz + b, where z ∈ R, β > 0, and
b ≥ 0, and a population of two or more agents. Then, there
does not exists a function f(·) of the form in Eq. (12), such
that the incentives mechanism described by Eq. (8) and (11)
satisfies the budget balance property.

Proof: This proof is made by contradiction. First, we as-
sume that there exists a function f(·) such that the mechanism
is budget balanced, i.e.,

∑N
i=1 Ii(q) = 0. Now, we express

the incentives in matrix form. On that purpose, we first we
define [f(q−1), . . . , f(q−N )]> = Fq, as a vector with the
ith element equal to f(q−i). In particular, F = (eα> −
diag(α1, . . . , αN )), α = [α1, . . . , αN ]>, diag(α1, . . . , αN )
is a diagonal matrix, and e is a vector in RN with all its
components equal to 1.

Since p(·) is an affine function, Eq. (8) can be expressed
as
∑N

i=1 Ii(q) = β
∑N

i=1

(∑N
j 6=i qj

)(
f(q−i)−qi

)
. This can

be rewritten in matrix form as
∑N

i=1 Ii(q) = βq>Φ(Fq−q),
where Φ = (ee> − I) and I is the identity matrix in RN×N .

Now, considering the budget balance condition, we have
q>ΦFq = q>Φq. This equation is satisfied if either qi = 0
for all i ∈ V , or if F = I . Note that F is a matrix with zeros
in the diagonal, therefore, F 6= I . Accordingly, none of the
aforementioned conditions are satisfied for all vector q ∈ RN

+ .
Consequently, we conclude that the budget balance property
can not be achieved by means of the incentives mechanism
described by Eq. (8), (11), and (12).

Theorem 1 states the impossibility of finding a mechanism
in the form of Eq. (8) and (12) that do not require external
influence in form of subsidies or taxes. This result is not

unexpected, since the Myerson-Satterthwaite Theorem states
the impossibility of mechanisms with ex post efficiency and
without external subsidies, for a game between two parties
[17]. Since there is not a mechanism such that the budget
balance property is satisfied, then let us state some desirable
conditions for the mechanism. First, we consider that all users
are equivalent for the utility. Consequently, we make the
following fairness assumption.
Assumption 3. Incentives for the ith and jth agents are
equivalent whether their consumption is the same, i.e., if qi =
qj , then Ii(q) = Ij(q). Particularly, if qi = qj for all i, j ∈ V ,
then Ii(q) = Ij(q) = 0. On the other hand, a higher power
consumption deserves a lower incentive, i.e., if qi < qj , then
Ii(q) > Ij(q).

We find that the a function f(q−i) that satisfies Assumption
3 corresponds to the average of q−i. This result is summarized
in the following proposition.
Proposition 1. Assume a population of N ≥ 2 agents,
incentives of the form in Eq. (8), (11), and (12), and that
Assumption 3 is satisfied. Then the function f(·) has the form
f(q−i) = 1

N−1
∑

j 6=i qj , for all j, i ∈ V .

Proof: Since the average price signal is defined as p(z) =
βz+ b, incentives from Eq. (8) might be rewritten as Ii(q) =(∑

j 6=i qj
)
β
(
f(q−i) − qi

)
. Now, let us consider an uniform

population consumption profile q in RN
+ , such that qj = qi =

σ, for all i, j ∈ V . Now, we define two population profiles
q̂ = q + δei and q̃ = q + δej , where ei is an N-dimensional
vector with the ith entry equal to 1 and 0 otherwise, for all
j, i ∈ V . According to Assumption 3, the incentives given to
the ith and jth individuals are the same, since q̂i = q̃j and
q̂−i = q̃−j . Therefore,

Ii(q̂) = β
(

(N − 1)σ
)(
f(q̂−i)− σ − δ

)
= Ij(q̃) = β

(
(N − 1)σ

)(
f(q̃−j)− σ − δ

)
(13)

The previous equation is satisfied if f(q̂−i) = f(q̃−j), that is
equivalent to σ

∑
h6=i αh = σ

∑
h 6=j αh. The last expression

is satisfied only if αi = αj = κ, for all j, i ∈ V .
Now, suppose that all agents have the same consumption

profile, i.e., there is a uniform population consumption profile
q. According to the Assumption 3, Ij(q) = Ii(q) = 0.
Therefore Ii(q) =

(∑
j 6=i qj

)
β
(
f(q−i) − qi

)
= 0. Having

into account that qj = qi = σ, we have that Ii(q) =
β
(
(N − 1)σ

)(
(N − 1)κσ − σ

)
= 0. Therefore, κ = 1

N−1 ,

and consequently, f(q−i) = 1
N−1

∑
j 6=i qj .

According to Proposition 1, the unique mechanism that
satisfies Assumption 3 is given by:

Ii(q) = β
(∑

j 6=i
qj

)( 1

N − 1

∑
j 6=i

qj − qi
)

(14)

for all qi ≥ 0, i, j ∈ V . Hence, the population incentives can
be expressed as ∑N

i=1
Ii(q) = βq>Aq, (15)



where A =
(
−1

N−1ee
> + N

N−1I
)

.
Based on the mechanism incentives defined in Eq. (14), we

know that the sum of incentives of the population is greater
than zero. Therefore, the mechanism requires subsidies. The
following proposition describes this.
Proposition 2. Suppose that Assumptions 1, 2, and 3 are sat-
isfied. Given an incentives mechanism of the form in Eq. (14),
then the incentives required by the population are positive,
i.e.,

∑N
i=1 Ii(q) ≥ 0, for all q ∈ RN

≥0,

Proof: First, consider q2i + q2j − 2qiqj = (qi − qj)2 ≥ 0
for all qi ∈ RT

≥0. Hence, we have that q2i + q2j ≥ 2qiqj . Now,
summing in both sides of the previous equation we obtain∑N

i=1

∑
j 6=i(q

2
i +q2j ) ≥

∑N
i=1

∑
j 6=i 2qiqj , which is equivalent

to (N − 1)
∑N

i=1 q
2
i ≥

∑N
i=1

∑
j 6=i 2qiqj . Reordering results∑N

i=1
q2i ≥

2

N − 1

∑N

i=1

∑
j 6=i

qiqj . (16)

Now, let Aj,i = −1
N−1 if i 6= j and Ai,i = 1 for all i, j ∈

V . Therefore, the incentives in Eq. (15) can be expressed as
βq>Aq = β

∑N
i=1 qj

(∑N
j=1 qjAj,i

)
. This can be rewritten

as

βq>Aq = β

(∑N

i=1
q2i +

−1

N − 1

∑N

i=1
qj

(∑
j 6=i

qj

))
.

From Eq. (16), it can be seen that q>Aq ≥ 0, for all q ∈ RN
≥0.

Remark 2. Based on the previous result, we find that the
social welfare reached by the population is greater when
the incentives scheme is introduced. That is, since the Nash
equilibrium of the game with incentives ω is efficient, we know
that

∑N
i=1Wi(ξ) <

∑N
i=1Wi(ω) ≤

∑N
i=1

(
Wi(ω) + Ii(ω)

)
.

Consequently,
∑N

i=1Wi(ξ) <
∑N

i=1 Ŵi(ω).

Remark 3. Let us consider a homogeneous population, com-
posed by agents with equal preferences. In such population,
the energy consumed at the equilibrium is the same for
every agent. According to Assumption 3, at the equilibrium,
the subsidies required from an external source are null. In
particular, incentives would be required only to shift the system
from an inefficient outcome toward the optimal equilibrium.

Furthermore, as the population size increases, the total
incentives of the population increase, i.e., the subsidies that
the mechanism requires increase with the population size.
Particularly, we have

lim
N→∞

βq>Aq = βq>q > βq>Aq.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we present the demand response problem as
a social dilemma, known as the tragedy of the commons. We
analyze the inefficiency of the Nash equilibrium that arises
in the population, in terms of profit and resources consumed
by the population in the equilibrium. Accordingly, we propose
an indirect-revelation mechanism, based on the Clarke pivot

rule, which yields to an efficient demand profile. In the
proposed mechanism, users are not asked to reveal their private
preferences or utility functions. Instead, the mechanism uses
consumption information to compute incentives for each agent.
In particular, these signals are defined in a one-dimensional
message space. One of the main contributions of this work,
is to prove the impossibility of such mechanism to achieve
budget balance, under certain restrictions on the mechanism
form. This result suggests that the success of a demand
response strategy is conditioned to external subsidies, at least
during the transition toward the optimal equilibrium.

Future work will be focused on the analysis of the transition
dynamics between inefficient and efficient outcomes. Also,
it would be interesting to analyze the characteristics of the
mechanism on different game settings.
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