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Abstract - Wireless distributed microsensor systems will
enable fault tolerant monitoring and control of a variety of appli-
cations. Due to the large number of microsensor nodes that may
be deployed and the long required system lifetimes, replacing the
battery is not an option. Sensor systems must utilize the minimal
possible energy while operating over a wide range of operating
scenarios. This paper presents an overview of the key technolo-
gies required for low-energy distributed microsensors. These
include power aware computation/communication component
technology, low-energy signaling and networking, system parti-
tioning considering computation and communication trade-offs,
and a power aware software infrastructure.

I. INTRODUCTION

The design of micropower wireless sensor systems has

gained increasing importance for a variety of civil and mili-

tary applications. With recent advances in MEMS technology

and its associated interfaces, signal processing, and RF cir-

cuitry, the focus has shifted away from limited macrosensors

communicating with base stations to creating wireless net-

works of communicating microsensors that aggregate com-

plex data to provide rich, multi-dimensional pictures of the

environment. While individual microsensor nodes are not as

accurate as their macrosensor counterparts, the networking of

a large number of nodes enables high quality sensing net-

works with the additional advantages of easy deployment and

fault-tolerance. These characteristics that make microsensors

ideal for deployment in otherwise inaccessible environments

where maintenance would be inconvenient or impossible

[1][2][3].

The potential for collaborative, robust networks of

microsensors has attracted a great deal of research attention.

The WINS [5] and PicoRadio [6] and projects, for instance,

aim to integrate sensing, processing and radio communication

onto a microsensor node. Current prototypes are custom cir-

cuit boards with mostly commercial, off-the-shelf compo-

nents. The Smart Dust [4] project seeks a minimum-size

solution to the distributed sensing problem, choosing optical

communication on coin-sized “motes.” The prospect of thou-

sands of communicating nodes has sparked research into net-

work protocols for information flow among microsensors,

such as directed diffusion [7].

The unique operating environment and performance

requirements of distributed microsensor networks require fun-

damentally new approaches to system design. As an example,

consider the expected performance versus longevity of the

microsensor node, compared with current battery-powered

portable devices. The node, complete with sensors, DSP, and

radio, is capable of a tremendous diversity of functionality.

Throughout its lifetime, a node may be called upon to be a

data gatherer, a signal processor, and a relay station. Its life-

time, however, must be on the order of months to years, since

battery replacement for thousands of nodes is not an option. In

contrast, much less capable devices such as cellular tele-

phones are only expected to run for days on a single battery

charge. High diversity also exists within the environment and

user demands upon the sensor network. Ambient noise in the

environment, the rate of event arrival, and the user’s quality

requirements of the data may vary considerably over time.

A long node lifetime under diverse operating conditions

demands power-aware system design. In a power-aware

design, the node’s energy consumption displays a graceful

scalability in energy consumption at all levels of the system

hierarchy, including the signal processing algorithms, operat-

ing system, network protocols, and even the integrated circuits

themselves. Computation and communication are partitioned

and balanced for minimum energy consumption. Software

that understands the energy-quality tradeoff collaborates with

hardware that scales its own energy consumption accordingly.

Using the MIT µAMPS project as an example, this paper sur-

veys techniques for system-level power-awareness.

II. NODE ARCHITECTURE CONSIDERATIONS

Figure 1 outlines the architecture of a µAMPS sensor node.

The power subsystem consists of a battery with DC-DC con-

version to the appropriate voltages required by the system.

Digitized data from analog sensors are processed by a Stron-

Figure 1:  Architectural Overview of the MIT µAMPS sensor node.
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gARM SA-1100, which communicates with adjacent nodes

through a 2.4 GHz radio transceiver. A small operating system

(µOS), sensor algorithms and network protocols are resident in

ROM. The power-aware system is sentient of the many variables

that define the energy consumption at each architectural block,

from leakage currents in the integrated circuits, to the output

quality and latency requirements of the end user, to the duty

cycles of radio transmission.

A. Computation and Dynamic Voltage Scaling

Energy consumption in a static CMOS-based processor can be

classified into switching and leakage components. The switch-

ing energy is expressed as Eswitch= CtotVdd
2 where Ctot is the

total capacitance switched by the computation and Vdd is the

supply voltage. Energy lost due to leakage currents is modeled

with an exponential relation to the supply voltage [8]:

(1)

where Vth is the device threshold voltage and VT is the thermal

voltage. While switching energy is usually the more dominant

of the two components [9], the scaling of device thresholds for

low-voltage operation coupled with the low duty cycle operation

of a sensor node can induce precisely the opposite behavior.

Figure 2 demonstrates that, for sufficiently low duty cycles or

high supply voltages, leakage energy can exceed switching

energy. For example, when the duty cycle of the SA-1100 pro-

cessor is 10%, the leakage energy is more than 50% of the total

energy consumed. Techniques such as dynamic voltage scaling

and the progressive shutdown of idle components (discussed in

Section IV.) mitigate the energy consumption penalties of low

duty cycle operation.

Dynamic voltage scaling (DVS) exploits variabilities in pro-

cessor workload and latency constraints and realizes this

energy-quality trade-off at the circuit level [10][11]. As dis-

cussed above, the switching energy of any particular computa-

tion is Eswitch= CtotVdd
2, a quantity that is independent of time.

Reducing Vdd offers a quadratic savings in switching energy at

the expense of additional propagation delay through static logic.

Hence, if the workload on the processor is light, or the latency

tolerable by the computation is high, we can reduce Vdd and the

processor clock frequency together to trade off latency for

energy savings.

Figure 3 depicts the measured energy consumption of the SA-

1100 processor running at full utilization. The energy consumed

per operation is plotted with respect to the processor frequency

and voltage. As expected, a reduction in clock frequency allows

the processor to run at lower voltage. The quadratic dependence

of switching energy on supply voltage is evident, and for a fixed

voltage, the leakage energy per operation increases as the opera-

tions occur over a longer clock period.

Using a digitally adjustable DC-DC converter, the SA-1100 in

the µAMPS sensor node can adjust its own core voltage to dem-

onstrate energy-quality tradeoffs with DVS. In Figure 4a, for a

fixed computational workload, the latency (an inverse of qual-

ity) of the computation increases as the energy decreases. In

Figure 4b, the quality of a FIR filtering algorithm is varied by

scaling the number of filter taps. As we sacrifice filter quality,

the processor can run at a lower clock speed and thus operate at

a lower voltage. In each example, our DVS-based implementa-

tion of energy-quality tradeoffs consumes up to 60% less energy

than a fixed-voltage processor.

B. Radio Communication Hardware

The characteristics of sensor networks call for interesting
considerations in communication models that differ from multi-
media networks. The average energy consumption for a sensor
radio (Figure 5) when sending a burst packet is given by the fol-
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Figure 2:  Comparison of leakage and switching energy in SA-1100.
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Figure 3:  Measured energy consumption characteristics of SA-1100.
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(a) (b)

59   88.5 118  147.5 176.9 206.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (MHz)

N
or

m
al

iz
ed

 E
ne

rg
y 

pe
r 

O
pe

ra
tio

n

fixed voltage 

variable voltage 



lowing equation:

Ptx/rx is the power consumption of the transceiver, Ton-tx/rx is the
transmit/receive on-time (actual data transmission/reception
time), Tstartup-tx/rx is the start-up time of the transceiver, Pout is
the output transmit power which drives the antenna and d is the
duty cycle of the receiver. Although the primary purpose of the
sensor node is to transmit data, a receiver is also necessary to
support a communication protocol in the network (i.e., time syn-
chronization, acknowledgment signal, etc.).

It is important to note that the power consumption of the
transceiver (Ptx/rx) does not vary with the data rate to first order.
For short-range transmission (e.g., under 10 meters) at gigahertz
carrier frequencies, the radio’s power is dominated by the fre-
quency synthesizer which generates the carrier frequency rather
than the actual transmit power. Hence, data rate, to first order,
does not affect the power consumption of the transceiver [15].
But as packets become shorter, the radio’s start-up time
becomes significant. To reduce energy, the node’s radio module
is duty cycled, or turned on/off during the active/idle periods.
Figure 6 illustrates the effect of start-up time on transmitter
energy consumption when sending a 100 bit packet at 1 Mbps.
As the start-up time increases, the radio energy becomes domi-
nated by the start-up transient rather than the active transmit
time. Unfortunately, transceivers today require initial start-up
times on the order of milliseconds due to an inherent feedback

loop in the PLL-based frequency synthesizer. The start-up time
must be lowered to a few tens of microseconds to minimize
energy consumption for the short packets expected in microsen-
sor communication.

III. ENERGY-EFFICIENT NETWORKS

Once the power-aware microsensor nodes are incorporated
into the framework of a larger network, additional power-aware
methodologies emerge at the network level. Decisions about
local computation versus radio communication, the partitioning
of computation across nodes, and error correction on the link
layer offer a diversity of operational points for the network.

A. Signal Processing in the Network

A network protocol layer for wireless sensors allows for sen-
sor collaboration. Sensor collaboration is important for two rea-
sons. First, data collected from multiple sensors can offer
valuable inferences about the environment. For example, large
sensor arrays have been used for target detection, classification
and tracking. Second, sensor collaboration can provide trade-
offs in communication versus computation energy. Since it is
likely that the data acquired from one sensor are highly corre-
lated with data from its neighbors, data aggregation can reduce
the redundant information transmitted in the network. Figure 7
shows the amount of energy required to aggregate data from 2, 3
and 4 sensors and to transmit the result to the basestation, com-
pared to all sensors’ transmitting data to the basestation individ-
ually. When the distance to the basestation is large, there is a
large advantage to using local data aggregation (e.g. beamform-
ing) rather than direct communication. Since wireless sensors
are energy-constrained, it is important to exploit such trade-offs
to increase system lifetimes and improve energy efficiency.

The energy-efficient network protocol LEACH (Low Energy
Adaptive Clustering Hierarchy) utilizes clustering techniques
that greatly reduce the energy dissipated by a sensor system
[12]. In LEACH, sensor nodes are organized into local clusters.
Within the cluster is a rotating cluster-head. The cluster-head
receives data from all other sensors in the cluster, performs data
aggregation, and transmits the aggregate data to the end-user.
This greatly reduces the amount of data that is sent to the end-
user for increased energy-efficiency. LEACH can achieve up to

E Ptx T on tx– T startup tx–+( ) Pout T on tx–⋅+⋅=

1 d Prx T on rx– T startup rx–+( )⋅ ⋅+ (1)

Figure 5:  Radio Architecture.
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a factor of eight reduction in energy over conventional routing
protocols such as multi-hop routing. However, the effectiveness
of a clustering network protocol is highly dependent on the per-
formance of the algorithms used for data aggregation and com-
munication. It is important to design and implement energy-
efficient sensor algorithms for data aggregation and link-level
protocols for the wireless sensors.

Beamforming algorithms are one class of algorithms which
can be used to combine data. Beamforming can enhance the
source signal and remove uncorrelated noise or interference.
Since many types of beamforming algorithms exist, it is impor-
tant to make a careful selection based upon their computation
energy and beamforming quality. Comparing the Max Power
beamforming algorithm and the LMS beamforming algorithm,
for instance, measurements on the SA-1100 indicate that the
Max Power algorithm requires more than 5 times the energy of
the LMS algorithm [13].

B. System Partitioning

Algorithm implementations for a sensor network can take
advantage of the network’s inherent capability for parallel pro-
cessing to further reduce energy. Partitioning a computation
among multiple sensor nodes and performing the computation
in parallel permits a greater allowable latency per computation,
allowing energy savings through frequency and voltage scaling.

As an example, consider a target tracking application that
requires sensor data to be transformed into the frequency
domain through 1024-point FFTs. The FFT results are phase-
shifted and summed in a frequency-domain beamformer to cal-
culate signal energies in 12 uniform directions, and the line-of-
bearing (LOB) is estimated as the direction with the most signal
energy. By intersecting multiple LOB’s at the basestation, the
source’s location can be determined. Figure 8a demonstrates the
tracking application performed with traditional clustering tech-
niques for a 7 sensor cluster. The sensors (S1-S6) collect data
and transmit the data directly to the cluster-head (S7), where the
FFT, beamforming and LOB estimation are performed. Mea-
surements on the SA-1100 at an operating voltage of 1.5V and
frequency of 206 MHz show that the tracking application dissi-
pates 27.27 mJ of energy.

Distributing the FFT computation among the sensors reduces
energy dissipation. In the distributed processing scenario of
Figure 8b, the sensors collect data and perform the FFTs before

transmitting the FFT results to the cluster-head. At the cluster-
head, the FFT results are beamformed and the LOB estimate is
found. Since the 7 FFTs are done in parallel, we can reduce the
supply voltage and frequency without sacrificing latency. When
the FFTs are performed at 0.9V, and the beamforming and LOB
estimation at the cluster-head are performed at 1.3V, then the
tracking application dissipates 15.16 mJ, a 44% improvement in
energy dissipation.

C. Energy-Efficient Link Layer

Energy-quality tradeoffs appear at the link layer as well. One
of the primary functions of the link layer is to ensure that data is
transmitted reliably. Thus, the link layer is responsible for some
basic form of error detection and correction. Most wireless sys-
tems utilize a fixed error correction scheme to minimize errors
and may add more error protection than necessary to the trans-
mitted data. In a energy-constrained system, the extra computa-
tion becomes an important concern. Thus, by adapting the error
correction scheme used at the link layer, energy consumption
can be scaled while maintaining the bit error rate (BER) require-
ments of the user [14].

Error control can be provided by various algorithms and
techniques, such as convolutional coding, BCH coding, and
turbo coding. The encoding and decoding energy consumed by
the various algorithms can differ considerably. Table I shows the
energy per useful bit to encode and decode messages using vari-
ous BCH codes on the SA-1100. As the code rate increases, the
algorithm’s energy also increases. Hence, given bit error rate
and latency requirements, the lowest power FEC algorithm that
satisfies these needs should continuously be chosen. Power con-
sumption can be further reduced by controlling the transmit
power of the physical radio. For a given bit error rate, FEC low-
ers the transmit power required to send a given message. How-
ever, FEC also requires additional processing at the transmitter
and receiver, increasing both the latency and processing energy.
This is another computation versus communication trade-off
that divides available energy between the transmit power and
coding processing to best minimize total system power.

IV. POWER-AWARE SOFTWARE

The overall energy efficiency of wireless sensor networks
crucially depends on the software that runs on them. Although

Figure 8:  a) Approach 1: All computation is done at the cluster-head.
b) Approach 2: Distribute the FFT computation among all sensors.
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dedicated circuits can be substantially more energy-efficient, the
flexibility offered by general purpose processors and DSPs have
engineered a shift towards programmable solutions. Power con-
sumption can be substantially reduced by improving the control
software and the application software.

A. Energy Efficient Node Operating Systems

The embedded operating system can dynamically reduce sys-
tem power consumption by controlling shutdown, the powering
down all or parts of the node when no interesting events occur,
and dynamic voltage scaling, which has been discussed above.
Dynamic power management using node shutdown, in general,
is a non-trivial problem. The sensor node consists of different
blocks each characterized by various low power modes and
overheads to transition to them. The node sleep states are a com-
bination of various block shutdown modes. If the overheads in
transitioning to sleep states were negligible, then a simple
greedy algorithm could makes the system go into the deepest
sleep state as soon as it is idle. However, in reality, transitioning
to a sleep state and waking up has a latency and energy over-
head. Therefore, implementing the right policy for transitioning
to the available sleep states is critical. Assume that an event is
detected by nodek at some time, it finishes processing it at time
t1, and the next event occurs at time t2 = t1 + ti. At time t1, nodek
decides to transition to a sleep state sk from the active state s0 as
shown in Figure 9. Each state sk has a power consumption Pk,
and the transition time to it from the active state and back is
given by τd,k and τu,k respectively. By our definition of node-
sleep states, Pj > Pi, τd,i > τd,j and τu,i > τu,j for any i > j.

It has been shown in [15] that there exist thresholds {Tth,k}
corresponding to the states {sk}, (for N sleep states)
such that transitioning to a sleep state sk from state s0 will result
in a net energy loss if the idle time ti < Tth,k because of the tran-
sition energy overhead. This threshold is given by

(2)

which implies that the longer the delay overhead of the transi-
tion s0 -> sk, the higher the threshold, and that the greater the
difference between P0 and Pk, the smaller the threshold. These
observations are intuitively appealing too. Figure 10 shows the
simulation results of the spatial energy consumption of a 1000
node sensor network distributed randomly over a 100mx100m
area implementing a hierarchical node shutdown policy based

on thresholds and statistical event prediction. From the figure, it
can be seen that the shutdown policy allows energy consump-
tion to track event activity. Complete details of the shutdown
policy can be found in [15].

B. Energy Scalable Node Software

It is highly desirable to structure our algorithms and software
such that computational accuracy can be traded off with energy
consumption. Transforming software such that most significant
computations are accomplished first improves the energy-qual-
ity scalability can be improved [16]. Consider an example of a
sensor node performing an FIR filtering operation. If the energy
availability to the node were reduced, we may want to terminate
the algorithm early to reduce computational energy. In an
unscalable software implementation, this would result in severe
quality degradation. Figure 11 demonstrates the improved
energy-quality characteristics of an energy-scalable implemen-
tation of the FIR filtering operation. By accumulating the partial
products corresponding to the most significant coefficients first
(by sorting them in decreasing order of magnitude), the scalable
algorithm produces far more accurate results at lower energies.

C. Applications Programming Interface (API)

An application programming interface is an abstraction that
hides the underlying complexity of the system from the end-
user. Hence, a wireless sensor network API is a key enabler in
allowing end-users to manage the tremendous operational com-
plexity of such networks. While end-users are experts in their
respective application domains (say, remote climate monitor-
ing), they are not necessarily experts in distributed wireless net-
working and do not wish to be bothered with the internal
network operation. By defining high level objects, a functional
interface and the associated semantics, APIs make the task of
application development significantly easier.

Figure 9:  State transition latency and power.
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Figure 11:  Energy scalable software: FIR filtering example.
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An API consists of a functional interface, object abstractions,
and detailed behavioral semantics. Together, these elements of
an API define the ways in which an application developer can
use the system. Key abstractions in a wireless sensor network
API are the nodes, basestation, links, messages etc. The func-
tional interface itself is divided into the following:

• Functions that gather the state (of the nodes, part of a net-
work, a link between two nodes etc.)

• Functions that set the state (of the nodes, of a cluster or the
behavior of a protocol)

• Functions that allow data exchange between nodes and the
basestation

• Functions that capture the desired operating point from the
user at the basestation

• Functions that help visualize the current network state

• Functions that allow users to incorporate their own models
(for energy, delay etc.)

An API is much more than the sum of its functional interface
and object abstractions. This is because of the (often implicit)
application development paradigm associated with it. In other
words, the API is especially crafted to promote application
development based on certain philosophies which the designers
of the network consider to be optimal in the sense of correct-
ness, robustness and performance. For example, a good overall
application framework for wireless sensor networks is the “Get-
Optimize-Set” paradigm. This paradigm basically implies col-
lecting the network state, using this state information along with
the knowledge of the desired operating point to compute the
new optimal state and then setting the network to this state. The
entire application code is based on this template.

Power aware computation and communication is the key to
achieving long network lifetimes due to the energy constrained
nature of the nodes. An important responsibility of the API is
not only to allow the end-user to construct the system in a power
aware manner but also encourage such an approach. For starters,
functions in a high quality network API have explicit energy,
quality, latency and operating point annotations. Hence, instead
of demanding a certain function from the network, one can
demand a certain function subject to constraints (energy, delay,
quality etc.). Next, the API has basic energy modeling allowing
the end user to calibrate the energy efficiency of the various
parts of the application. For users requiring models beyond the
level of sophistication that the API offers, there are modeling
interfaces which allow users to register arbitrarily complex
models. Next, a good wireless sensor API allows what have
come to be known in the software community as “thick” and
“thin” clients. These adjectives refer to the complexity and over-
head of typical application layers. Finally, the “Get-Optimize-
Set” paradigm promulgated by the API allows the network to be
at the optimal operating point thus enhancing energy efficiency.

V. CONCLUSION

Distributed microsensor networks hold great promise in
applications ranging from medical monitoring and diagnosis to
target detection, home automation, hazard detection, and auto-

motive and industrial control. But even within a single applica-
tion, the tremendous operational and environmental diversity
inherent to the microsensor network demand the system’s ability
to make trade-offs between quality and energy dissipation.
Hooks for energy-quality scalability are necessary not only at
the component level, but also throughout the node’s algorithms
and the network’s communication protocols. Distributed sensor

networks designed with built-in power awareness and scalable

energy consumption will achieve maximal system lifetime in the

most challenging and diverse environments.
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