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Scaling regime: HPGMG-FE on Edison, SuperMUC, Titan
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Scaling regime: HPGMG-FE on Edison at various scales
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CAM-SE dynamics numbers

25 km resolution, 18 seconds/RK stage
Current performance at strong scaling limit
Edison 3 SYPD

Titan 2 SYPD
Mira 0.9 SYPD

Performance requirement: 5 SYPD (about 2000x faster than real time)

e 10 ms budget per dynamics stage
e Increasing spatial resolution decreases this budget (CFL)

Null hypothesis: Edison will run ACME faster than any DOE machine
through 2020

e Difficult to get large allocations
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Party line

Processes are heavy abstractions compared to threads
Halo exchange is expensive — sharing is better
OpenMP is lighter weight than MPI

Processes have substantial memory overhead
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Question

What is the difference between a thread and a process?

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13 6/16



Question

What is the difference between a thread and a process?
e Both are created using clone (2)
e Equivalent entries in kernel data structure
e Threads use CLONE_VM, processes have copy-on-write

e Rule of thumb

Threads cost 10u s to create

Processes cost 1001 s to create

No difference in context switching

Only paid once — everyone uses thread pools anyway
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Portable shared memory between MPI processes

o MPI-3 portable shared memory windows

e MPI_Comm_split_type (comm, MPI_COMM TYPE_SHARED,
0, MPI_INFO_NULL, &newcomm) ;

e int MPI_Win_allocate_shared(MPI_Aint size, int
disp_unit, MPI_Info info, MPI_Comm comm, void
*baseptr, MPI_Win xwin);

[Hoefler et al, MPI+MPI, 2013]
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Halos or contiguous memory?

00

(a) Contiguous (b) Noncontig Separate (c) Noncontig Padded

Common assumption: halo copying is expensive
Alternative is shared memory
Cache utilization for 162 local domain with halos
e Entire local region is contiguous; no partially filled cache lines
e 18%xsizeof (double) = 466568
163 local domain embedded in contiguous memory
e Avoid false sharing: align owned portion to cache-line boundaries
e 32x18x18x*sizeof (double) = 829448
e False sharing a serious problem if local sizes not divisible by line size
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Messaging from threaded code

Off-node messages need to be packed and unpacked

Many MPI+threads apps pack in serial — bottleneck
Extra software synchronization required to pack in parallel

e Formally O(log T) critical path, T threads/NIC context
e Typical OpenMP uses barrier — oversynchronizes

MPI_THREAD_MULTIPLE — atomics and O(T) critical path
Choose serial or parallel packing based on T and message sizes?
> 1 hardware NIC context/core now, maybe not in future

What is lowest overhead approach to message coalescing?
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But processes can’t work for hyperthreads (?)

e Can processes hyperthreaded onto the same core share L1 cache?
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But processes can’t work for hyperthreads (?)

e Can processes hyperthreaded onto the same core share L1 cache?
e Modern caches are physically tagged
e lIdentical cache sharing to threads
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But processes can’t work for hyperthreads (?)

e Can processes hyperthreaded onto the same core share L1 cache?
e Modern caches are physically tagged

e lIdentical cache sharing to threads
e TLB is not shared between processes

e |s your application TLB-limited?
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Does the code need to look different?

void Laplace3D (int xs,int xm,int ys,int ym,
int zs,int zm,double xxxx,double x*xxy) {
int i, 3,k;
for (i=xs; i1<xs+xm; 1++) {

for (j=ys; J<ystym; J++) A
for (k=zs; k<zs+tzm; k++) {

y[i] [j] [k] = 6xx[1][]][k]
x[1-11[31[k] - x[1]1[3-1]I[k]
x[1][31[k-11 — x[i+1]1[3][K]
x[11[3+111k] — x[11[3][k+1];

}

e No const, no restrict, soooo much pointer indirection.

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

12/16



<Laplace3D+0x3bc>
<Laplace3D+0x3c0>
<Laplace3D+0x3c4>
<Laplace3D+0x3ca>
<Laplace3D+0x3d0>
<Laplace3D+0x3d4>
<Laplace3D+0x3d9>
<Laplace3D+0x3dd>
<Laplace3D+0x3e2>
<Laplace3D+0x3e6>
<Laplace3D+0x3eb>
<Laplace3D+0x3ef>
<Laplace3D+0x3f4>
<Laplace3D+0x3£8>
<Laplace3D+0x3fd>
<Laplace3D+0x402>
<Laplace3D+0x406>
<Laplace3D+0x409>
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Assembly from gcc -03

mov
add

vmovapd ymm0O, YMMWORD PTR
vimsub213pd ymmO, ymm4, YMMWORD PTR

mov
vsubpd
mov
vsubpd
mov
vsubpd
mov
vsubpd
mov
vsubpd

vmovupd YMMWORD PTR

add
cmp
Jjb
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rax, QWORD PTR [rbp-0x50]
r8d, O0x1
[r9+rcx*1]

rax, QWORD PTR [rbp-0x58]

ymmO, ymmO, YMMWORD PTR [rax+rcxx1l]
rax, QWORD PTR [rbp-0x60]

ymmO, ymm0, YMMWORD PTR [rax+rcxx*1]
rax, QWORD PTR [rbp-0x68]

ymmO, ymmO, YMMWORD PTR [rax+rcxx1l]
rax, QWORD PTR [rbp-0x78]

ymmO, ymmO, YMMWORD PTR [rax+trcxxl]
rax, QWORD PTR [rbp-0x80]

ymmO, ymm0, YMMWORD PTR [rax+rcxx*1]
[rdi+rcx*1], ymmO

rcx, 0x20

r8d, r14d

00000000000003bc <Laplace3D+0x3bc>
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Sharing large read-only data/code

Memory hogs

e Templated/generated code
e |Lookup tables
e Nonscalable replicated data structures

Solutions

e Threads: work around undesirable sharing
e Processes: allocate dynamically in a shared window
e Processes: compile into shared library: transparently shared
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HPGMG-FV: flat MPI vs MP1+OpenMP (Aug 2014)
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Outlook

Application scaling mode must be scientifically relevant
Threads and processes are more alike than usually acknowledged

Processes versus threads is about shared versus private by default

e No problem to share when desirable
e Debuggability consequences

Pointer indirection is handy; abstracts contiguity.
Algorithmic barriers exist
e Throughput architectures are not just “hard to program”
Vectorization versus memory locality
What is the cost of performance variability?
e Measure best performance, average, median, 10th percentile?

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

16/16



