Threading Tradeoffs in Domain Decomposition

Jed Brown
Collaborators: Barry Smith, Karl Rupp, Matthew Knepley, Mark Adams,
Lois Curfman Mclnnes

CU Boulder

SIAM Parallel Processing, 2016-04-13

@]J University of Colorado Argot’]l’]eé

Boulder NATIONAL LABORATORY

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

1/16

Scaling regime: HPGMG-FE on Edison, SuperMUC, Titan

1e10 HPGMG-FE Performance
- : d -
e e edison np=131072
v v supermuc np=140608 1500
6/|m = titan np=262144 e 155B
@
1)
5| A2 1a00
Climate 12.9B y 3098
SYPD)
at ° v
2% goal ¢ . 13003
o) e A \ - o
a D =
3l \ 7
1.6B L} %
\ . - ~ 1200
%
2 % L
. []
o. Titan >200ms 1100
1te '\ -
| | v
w) —~ u . - Y. . v
107 10° 10'

Solve time (s)
Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13 2/16

Scaling regime: HPGMG-FE on Edison at various scales

DOF/s

lel0 HPGMG-FE Performance

e e edison np=131072

|| v v edison np=65536 155B

= m edison np=32768

'-.\-.

" ——— LT . variability

10" 10°
Solve time (s)

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf

4500

)
400

TFlop/s

200

100

2016-04-13

3/16

CAM-SE dynamics numbers

25 km resolution, 18 seconds/RK stage
Current performance at strong scaling limit
Edison 3 SYPD

Titan 2 SYPD
Mira 0.9 SYPD

Performance requirement: 5 SYPD (about 2000x faster than real time)

e 10 ms budget per dynamics stage
e Increasing spatial resolution decreases this budget (CFL)

Null hypothesis: Edison will run ACME faster than any DOE machine
through 2020

e Difficult to get large allocations

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

4/16

Party line

Processes are heavy abstractions compared to threads
Halo exchange is expensive — sharing is better
OpenMP is lighter weight than MPI

Processes have substantial memory overhead

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf

2016-04-13

5/16

Question

What is the difference between a thread and a process?

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13 6/16

Question

What is the difference between a thread and a process?
e Both are created using clone (2)
e Equivalent entries in kernel data structure
e Threads use CLONE_VM, processes have copy-on-write

e Rule of thumb

Threads cost 10u s to create

Processes cost 1001 s to create

No difference in context switching

Only paid once — everyone uses thread pools anyway

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

7/16

Portable shared memory between MPI processes

o MPI-3 portable shared memory windows

e MPI_Comm_split_type (comm, MPI_COMM TYPE_SHARED,
0, MPI_INFO_NULL, &newcomm) ;

e int MPI_Win_allocate_shared(MPI_Aint size, int
disp_unit, MPI_Info info, MPI_Comm comm, void
*baseptr, MPI_Win xwin);

[Hoefler et al, MPI+MPI, 2013]

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13 8/16

Halos or contiguous memory?

00

(a) Contiguous (b) Noncontig Separate (c) Noncontig Padded

Common assumption: halo copying is expensive
Alternative is shared memory
Cache utilization for 162 local domain with halos
e Entire local region is contiguous; no partially filled cache lines
e 18%xsizeof (double) = 466568
163 local domain embedded in contiguous memory
e Avoid false sharing: align owned portion to cache-line boundaries
e 32x18x18x*sizeof (double) = 829448
e False sharing a serious problem if local sizes not divisible by line size
Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13 9/16

Messaging from threaded code

Off-node messages need to be packed and unpacked

Many MPI+threads apps pack in serial — bottleneck
Extra software synchronization required to pack in parallel

e Formally O(log T) critical path, T threads/NIC context
e Typical OpenMP uses barrier — oversynchronizes

MPI_THREAD_MULTIPLE — atomics and O(T) critical path
Choose serial or parallel packing based on T and message sizes?
> 1 hardware NIC context/core now, maybe not in future

What is lowest overhead approach to message coalescing?

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

10/16

But processes can’t work for hyperthreads (?)

e Can processes hyperthreaded onto the same core share L1 cache?

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13 11/16

But processes can’t work for hyperthreads (?)

e Can processes hyperthreaded onto the same core share L1 cache?
e Modern caches are physically tagged
e lIdentical cache sharing to threads

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13 11/16

But processes can’t work for hyperthreads (?)

e Can processes hyperthreaded onto the same core share L1 cache?
e Modern caches are physically tagged

e lIdentical cache sharing to threads
e TLB is not shared between processes

e |s your application TLB-limited?

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13 11/16

Does the code need to look different?

void Laplace3D (int xs,int xm,int ys,int ym,
int zs,int zm,double xxxx,double x*xxy) {
int i, 3,k;
for (i=xs; i1<xs+xm; 1++) {

for (j=ys; J<ystym; J++) A
for (k=zs; k<zs+tzm; k++) {

y[i] [j] [k] = 6xx[1][]][k]
x[1-11[31[k] - x[1]1[3-1]I[k]
x[1][31[k-11 — x[i+1]1[3][K]
x[11[3+111k] — x[11[3][k+1];

}

e No const, no restrict, soooo much pointer indirection.

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

12/16

<Laplace3D+0x3bc>
<Laplace3D+0x3c0>
<Laplace3D+0x3c4>
<Laplace3D+0x3ca>
<Laplace3D+0x3d0>
<Laplace3D+0x3d4>
<Laplace3D+0x3d9>
<Laplace3D+0x3dd>
<Laplace3D+0x3e2>
<Laplace3D+0x3e6>
<Laplace3D+0x3eb>
<Laplace3D+0x3ef>
<Laplace3D+0x3f4>
<Laplace3D+0x3£8>
<Laplace3D+0x3fd>
<Laplace3D+0x402>
<Laplace3D+0x406>
<Laplace3D+0x409>

Jed Brown (CU Boulder)

Assembly from gcc -03

mov
add

vmovapd ymm0O, YMMWORD PTR
vimsub213pd ymmO, ymm4, YMMWORD PTR

mov
vsubpd
mov
vsubpd
mov
vsubpd
mov
vsubpd
mov
vsubpd

vmovupd YMMWORD PTR

add
cmp
Jjb

https://jedbrown.org/files/20160413-SIAMThreads.pdf

rax, QWORD PTR [rbp-0x50]
r8d, O0x1
[r9+rcx*1]

rax, QWORD PTR [rbp-0x58]

ymmO, ymmO, YMMWORD PTR [rax+rcxx1l]
rax, QWORD PTR [rbp-0x60]

ymmO, ymm0, YMMWORD PTR [rax+rcxx*1]
rax, QWORD PTR [rbp-0x68]

ymmO, ymmO, YMMWORD PTR [rax+rcxx1l]
rax, QWORD PTR [rbp-0x78]

ymmO, ymmO, YMMWORD PTR [rax+trcxxl]
rax, QWORD PTR [rbp-0x80]

ymmO, ymm0, YMMWORD PTR [rax+rcxx*1]
[rdi+rcx*1], ymmO

rcx, 0x20

r8d, r14d

00000000000003bc <Laplace3D+0x3bc>

2016-04-13

[rax+rcx*1]

13/16

Sharing large read-only data/code

Memory hogs

e Templated/generated code
e |Lookup tables
e Nonscalable replicated data structures

Solutions

e Threads: work around undesirable sharing
e Processes: allocate dynamically in a shared window
e Processes: compile into shared library: transparently shared

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

14/16

HPGMG-FV: flat MPI vs MP1+OpenMP (Aug 2014)

0.40

HPGMG-FV Solve Time

0.35

0.30

—
0.5 ./.(/.—

HPGMG-FV Solve Time (seconds)

0.20 A
@)
kj‘ﬁ/./ s o
015 g—— o oguo
o el 3 o0
0.10 8i O | p T LA T T
0.05
0.00

Jed Brown (CU]Boulder)

10 https/jedold@@org/files/201 600 €} SIAMThEIEQIO0

100,000 2016-04-13

=@—Mira
=&—Edison
=@-Hopper
—A—Stampede(SNB)
=l-Peregrine

O-K
=>=Edison(Flat MPI)

O~K (Flat MPI)

=&—Carver

15/16

Outlook

Application scaling mode must be scientifically relevant
Threads and processes are more alike than usually acknowledged

Processes versus threads is about shared versus private by default

e No problem to share when desirable
e Debuggability consequences

Pointer indirection is handy; abstracts contiguity.
Algorithmic barriers exist
e Throughput architectures are not just “hard to program”
Vectorization versus memory locality
What is the cost of performance variability?
e Measure best performance, average, median, 10th percentile?

Jed Brown (CU Boulder) https://jedbrown.org/files/20160413-SIAMThreads.pdf 2016-04-13

16/16

