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Abstract. We exhibit d-dimensional limit-periodic Schrödinger operators

that are uniformly localized in the strongest sense possible. That is, for each

of these operators, there is a uniform exponential decay rate such that every
element of the hull of the corresponding Schrödinger operator has a complete

set of eigenvectors that decay exponentially off their centers of localization
at least as fast as prescribed by the uniform decay rate. Consequently, these

operators exhibit uniform dynamical localization.

1. Introduction

Localization is a topic that has been explored in the context of Schrödinger
operators to a great extent. In [4], we investigated uniform localization in one-
dimensional limit-periodic Schrödinger operators. We refer the reader to that paper
for a discussion of history and context. When presenting the results from [4], we
were asked by a number of people whether there are analogous results in higher
dimensions. The purpose of this paper is to give an affirmative answer. That is, we
generalize the results from [4] and exhibit the phenomenon of uniform localization
in multi-dimensional limit-periodic Schrödinger operators.

Before introducing the relevant Schrödinger operators, we give some preliminary
definitions first that will be necessary to describe the resulting hulls.

Definition 1.1. (a) We say that Ω is a Cantor group if it is an infinite, totally
disconnected, metrizable, compact Abelian group. We fix a metric dist on Ω that is
compatible with the topology.

(b) Consider a Cantor group Ω and a Zd action by translations, {Tn}n∈Zd . That
is, there are α1, . . . , αd ∈ Ω such that for ω ∈ Ω, we have

(1) Tnω = ω +

d∑
j=1

njαj ,

where we write the group operation as +.1 We say that the action is minimal if all

orbits are dense, that is, for each ω ∈ Ω, we have {Tnω : n ∈ Zd} = Ω.
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1While + is a natural way to denote the group operation in the abstract setting, for the concrete

groups that arise as hulls of limit-periodic elements of `∞(Zd), this is ambiguous. Thus, in the
concrete setting, we will prefer to use · to denote the group operation.
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Given a Cantor group Ω that admits a minimal Zd action T by translations, we
consider Schrödinger operators Hω acting on `2(Zd) as

(2) (Hωu)(n) =
∑
|l|1=1

u(n+ l) + Vω(n)u(n),

where

(3) Vω(n) = f(Tnω), ω ∈ Ω, n ∈ Zd

with f ∈ C(Ω,R).

Definition 1.2. We say that a family {un} ⊂ `2(Zd) is uniformly localized if there
exist constants r > 0, called the decay rate, and C <∞ such that for every element
un of the family, one can find mn ∈ Zd, called the center of localization, so that
|un(k)| ≤ Ce−r|k−mn| for every k ∈ Zd. We say that the operator Hω has ULE if
it has a complete set of uniformly localized eigenfunctions.2

The notion of uniformly localized eigenfunctions and related ones were intro-
duced by del Rio et al. in their comprehensive study of the question “What is
localization?” [5, 6]. As explained there, ULE implies uniform dynamical localiza-
tion, that is, if Hω has ULE, then

(4) sup
t∈R

∣∣〈δn, e−itHωδm
〉∣∣ ≤ Cωe−rω|n−m|

with suitable constants Cω, rω ∈ (0,∞). While both properties are desirable, they
are extremely rare.

The occurrence of pure point spectrum for the operators {Hω}ω∈Ω is called phase
stable if it holds for every ω ∈ Ω. It is an unusual phenomenon since most known
models are not phase stable. It is known that uniform localization of eigenfunctions
(ULE) has a close connection with phase stability of pure point spectrum. Indeed,
it was shown in [6, Theorem C.1] that if a µ-ergodic family {Hω}ω∈Ω of Schrödinger
operators on `2(Zd) with continuous sampling function has ULE for ω in a set of
positive µ-measure, then Hω has pure point spectrum for every ω ∈ supp(µ), where
supp(µ) denotes the topological support of µ, that is, the complement of the largest
open set S ⊂ Ω for which µ(S) = 0. Jitomirskaya pointed out in [8] that this result
can be strengthened for a minimal T in the sense that if there exists some ω0 such
that Hω0 has ULE, then Hω has pure point spectrum for every ω ∈ supp(µ).

Our main result is the following.

Theorem 1.3. There exists a Cantor group Ω that admits a minimal Zd action T by
translations, and an f ∈ C(Ω,R) such that for every ω ∈ Ω the Schrödinger operator
with potential f(Tnω) has ULE with ω-independent constants. In particular, we
have uniform dynamical localization (4) for every ω with ω-independent constants
as well.

The proof is constructive and produces a family of pairs (Ω, f) for which the
statement holds. The precise description of this family requires the material we
will present in Section 2 below.

As in [4], we will still heavily use Pöschel’s results from [9] (which will be recalled
in Section 4) to obtain the above theorem. The key step in proving Theorem 1.3 is

2Recall that a set of vectors is called complete if their span (i.e., the set of finite linear combi-
nations of vectors from this set) is dense.
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to construct a distal limit-periodic potential in our framework, which will be done
in Section 3. The proof of Theorem 1.3 will be presented in Section 5.

2. The Connection Between Limit-Periodicity and Cantor Groups

In this section we establish a connection between the hulls of limit-periodic ele-
ments of `∞(Zd) and Cantor groups which admit a minimal Zd action by transla-
tions. For d = 1, this was worked out in detail in [1, Section 2]; here we present its
generalization to the general case. While this connection is probably well known
to experts, its presentation is still worthwhile since it is fundamental for this paper
and all its predecessors [1, 2, 3, 4].

Definition 2.1. Let d ∈ Z+. The group Zd acts on `∞(Zd) as (SmV )(n) = V (n−
m) for n,m ∈ Zd and V ∈ `∞(Zd). The set orb(V ) = {SmV : m ∈ Zd} is called the

orbit of V and the closure of its orbit is called its hull, that is, hull(V ) = orb(V ).
An element V of `∞(Zd) is called periodic if its orbit is finite. It is called limit-
periodic if it belongs to the closure of the set of periodic elements of `∞(Zd).

V is periodic in the sense of Definition 2.1 if and only if it is periodic in each
direction, that is, there are p1, . . . , pd ∈ Z+ such that for all n = (n1, . . . , nd),
k = (k1, . . . , kd) ∈ Zd, we have V (n1 + k1p1, . . . , nd + kdpd) = V (n1, . . . , nd). We
will call p = (p1, . . . , pd) ∈ (Z+)d a periodicity vector of V .

The following proposition describes how limit-periodic elements of `∞(Zd) may
be generated.

Proposition 2.2. Suppose Ω is a Cantor group that admits a minimal Zd action
by translations, {Tn}n∈Zd . Then, for every f ∈ C(Ω,R) and every ω ∈ Ω, the
element Vω of `∞(Zd) defined by Vω(n) = f(Tnω) is limit-periodic. Moreover, for
each ω ∈ Ω, we have hull(Vω) = {Vω̃ : ω̃ ∈ Ω}.

We first prove the following simple lemma:

Lemma 2.3. Suppose that {Tn}n∈Zd is an action by translations as in (1) on
the compact Abelian group Ω. Then, for each j ∈ {1, . . . , d}, there is a sequence

{n(j)
k }k∈Z+

⊂ Z+ such that limk→∞ n
(j)
k αj = ωe, the identity element of Ω.

Proof. Let us fix j and explain how to find {n(j)
k }k∈Z+

⊂ Z+. Since Ω is compact,
there exists an increasing sequence of positive integers mk → ∞ such that mkαj
converges to some ω ∈ Ω as k → ∞. For each k, choose m̃k ∈ {mk+` : ` ≥ 1}
such that n

(j)
k := m̃k −mk ≥ k. Then, n

(j)
k →∞ as k →∞ and limk→∞ n

(j)
k αj =

ω − ω = ωe, as desired. �

Proof of Proposition 2.2. For a given ε > 0, we may choose a compact open neigh-
borhood U of the identity ωe ∈ Ω that is small enough so that |f(ω+ωU )−f(ω)| < ε
for every ωU ∈ U and every ω ∈ Ω.

Since U is compact and open, we can choose δ > 0 such that dist(ωU , ωΩ\U ) > δ
for every ωU ∈ U and every ωΩ\U ∈ Ω \ U .

Lemma 2.3 shows that we can choose p1, . . . , pd ∈ Z+ such that d(ωe, pjαj) < δ
for j = 1, . . . , d. By the defining property of δ, it follows that the closure of

d∑
j=1

njpjαj : n = (n1, . . . , nd) ∈ Zd

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is a compact subgroup of Ω that is contained in U . Its index is bounded by
∏
pj .

Now, given f ∈ C(Ω,R) and ω ∈ Ω, we consider the element Vω of `∞(Zd) defined
by Vω(n) = f(Tnω). With the arbitrary choice of ε > 0 above and the resulting
U and δ > 0, we consider the following element V pω of `∞(Zd), V pω (n) = f(T ñω),
where ñ = (ñ1, . . . , ñd) is defined by ñj ∈ {0, . . . , pj − 1} and ñj ≡ nj mod pj .
Thus, V pω is periodic. We have

‖Vω − V pω ‖∞ = sup
n∈Zd

|Vω(n)− V pω (n)|

= sup
n∈Zd

|f(Tnω)− f(T ñω)|

= sup
n∈Zd

|f(T ñω + (Tnω − T ñω))− f(T ñω)|

< ε.

The first three steps follow by simple rewriting, and the final step follows from the
choice of U and the fact that, by construction, Tnω − T ñω belongs to U . This
shows that Vω is limit-periodic since ε > 0 is arbitrary and V pω is periodic.

The statement hull(Vω) = {Vω̃ : ω̃ ∈ Ω} follows since both sides are compact and
contain orb(Vω) as a dense subset (for the right-hand side, this is a consequence of
the minimality of the action). This completes the proof of the proposition. �

Thus, we have seen that a Cantor group that admits a minimal Zd action by
translations and a continuous sampling function give rise to limit-periodic elements
of `2(Zd). Let us now turn to the converse. That is, given a limit-periodic element
of `2(Zd), we want to show that it arises in this way.

Lemma 2.4. Suppose V ∈ `∞(Zd) is limit-periodic. Then, hull(V ) is compact
and it has a unique topological group structure so that V is the identity element
and Zd → hull(V ), m 7→ SmV is a homomorphism. Moreover, the group structure
is Abelian and there exist arbitrarily small compact open neighborhoods of V in
hull(V ) that are finite index subgroups.

Proof. Since V is limit-periodic, we can find for each ε > 0, a periodic Vp with
‖V − Vp‖∞ < ε. Since orb(Vp) is finite, it follows that orb(V ) is contained in the
ε-neighborhood of a finite set. That is, orb(V ) is totally bounded and hence its
closure hull(V ) is compact.

Obviously, there is a unique group structure on orb(V ) such that Zd → orb(V ),
m 7→ SmV is a homomorphism. Our goal is to show that it extends uniquely to
a group structure on hull(V ). It suffices to show uniform continuity of the group
structure on orb(V ). This will then also show that the resulting extension of the
group structure to hull(V ) is Abelian. We have

‖Sm1+k1V − Sm2+k2V ‖∞ = ‖Sm1−m2
V − Sk2−k1V ‖∞

≤ ‖Sm1−m2V − V ‖∞ + ‖V − Sk2−k1V ‖∞
= ‖Sm1

V − Sm2
V ‖∞ + ‖Sk1V − Sk2V ‖∞.

Here, the first and the third step follow since translations are isometries and the
second step follows from the triangle inequality. Put differently, if a, b, c, d ∈ orb(V )
and we denote the group operation by ·, then ‖a ·b−c ·d‖∞ ≤ ‖a−c‖∞+‖b−d‖∞,
which shows the desired uniform continuity.
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To prove the last statement about finite index subgroups in small neighborhoods
of the identity, let ε > 0 be given. Choose a periodic Vp ∈ `∞(Zd) with ‖V −
Vp‖∞ < ε

2 . Also, there are p1, . . . , pd ∈ Z+ such that for all n = (n1, . . . , nd), k =

(k1, . . . , kd) ∈ Zd, we have Vp(n1 + k1p1, . . . , nd + kdpd) = Vp(n1, . . . , nd). In other
words, Vp is invariant under Sm for every m ∈ (p1Z) × · · · × (pdZ). Clearly, the
closure of {SmV : m ∈ (p1Z) × · · · × (pdZ)}, which we denote by hullp(V ), is a
compact subgroup of hull(V ) of index at most

∏
pj . Since hull(V ) is the union of

finitely many disjoint translates of hullp(V ), it follows that hullp(V ) is also open.
By the invariance property of Vp, hullp(V ) is contained in the ε

2 -ball around Vp,
and hence it is contained in the ε-ball around V . This completes the proof of the
lemma. �

Proposition 2.5. Suppose V ∈ `∞(Zd) is limit-periodic, but not periodic. Then,
there exists a Cantor group Ω and a minimal Zd action by translations, {Tn}n∈Zd ,
such that V (n) = f(Tnωe) with the identity element ωe of Ω and a suitable function
f ∈ C(Ω,R).

Proof. We may set Ω = hull(V ), which is a Cantor group by Lemma 2.4. The
identity element ωe is simply V itself. The Zd action is given by Tn = Sn with
the translations Sn introduced above. Note that this action is indeed an action by
translations in the sense of Definition 1.1, simply choose αj = T (0,··· ,1,··· ,0)(V ) with
the j-th component being 1.

Let us show that this action is minimal. It suffices to show that for ω1, ω2 ∈ Ω
and ε > 0, there is n ∈ Zd such that dist(Tnω1, ω2) = ‖Tnω1 − ω2‖∞ < ε. Since
Ω = hull(V ), we can choose n1, n2 ∈ Zd such that ‖ωj − TnjV ‖∞ < ε

2 , j = 1, 2.
Now set n := n2−n1. Putting everything together and using that T is an isometry,
we find

‖Tnω1 − ω2‖∞ ≤ ‖Tnω1 − Tn+n1V ‖∞ + ‖Tn+n1V − ω2‖∞
= ‖ω1 − Tn1V ‖∞ + ‖Tn2V − ω2‖∞
< ε.

Finally, the continuous function f is simply the evaluation at zero, that is, f(ω) =
ω(0) (recall that each ω is a function on Zd and may therefore be evaluated at
0 ∈ Zd). Then, we clearly have the desired formula V (n) = f(Tnωe). �

Definition 2.6. f ∈ C(Ω,R) is called periodic (with respect to the Zd action T ) if
for some p ∈ (Z+)d, we have f(T pω) = f(ω) for every ω ∈ Ω.

Proposition 2.7. Suppose Ω is a Cantor group that admits a minimal Zd action
by translations, {Tn}n∈Zd . Then, the set of periodic elements is dense in C(Ω,R).

Proof. Given f̃ ∈ C(Ω,R) and ε > 0, we have to find a periodic f ∈ C(Ω,R)

with ‖f − f̃‖∞ < ε. Since f̃ is uniformly continuous, there is δ > 0 such that

dist(ω1, ω2) < δ implies |f̃(ω1)− f̃(ω2)| < ε.
By Proposition 2.2 and Lemma 2.4, we can choose a compact subgroup Ω0 of

Ω that has finite index and that is contained in the δ-neighborhood of the identity
element. Denote the Haar measure on Ω0 by µ0 and define

f(ω) =

∫
Ω0

f̃(ω + ω0) dµ0(ω0).
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By construction, we have ‖f − f̃‖∞ < ε. Moreover, f is constant on Ω0 and also
on each of its cosets. This implies that f is periodic. �

We conclude this section with two more observations.

Proposition 2.8. Suppose we are given a Cantor group Ω with a minimal Zd
action T by translations. Then, for any f ∈ C(Ω,R), hull(F (ωe)) is a quotient
group of Ω (here, F (ωe) = (f(Tnωe))n∈Zd).

Proof. Define φ by φ : Ω −→ hull(F (ωe)), φ(ω) = F (ω). It is not hard to see that the
group structure of hull(F (ωe)) is like F (ω1) ·F (ω2) = F (ω1 +ω2), since F (Tnωe) =
Sn(F (ωe)). It follows that φ is a group homomorphism. By Proposition 2.2, φ is
surjective. The continuity of φ follows from the compactness of Ω and the continuity
of f . So we have

hull(F (ωe)) ∼= Ω/ker(φ),

implying the lemma. �

Proposition 2.9. There exists some f ∈ C(Ω,R) such that hull(F (ωe)) ∼= Ω.

Proof. It suffices to prove that there exists some f ∈ C(Ω,R) such that ker(φ) =
{ωe}. Define the function f : Ω→ R by f(ω) = dist(ωe, ω). Clearly, f is continuous,
so there is an associated F (defined as in Proposition 2.8) : Ω→ `∞(Zd) such that
hull(F (ωe)) is a quotient group of Ω. Consider φ : Ω −→ hull(F (ωe)), φ(ω) = F (ω).
If F (ω) = F (ωe), then f(ω) = f(ωe), that is, dist(ωe, ω) = dist(ωe, ωe) = 0,
implying ω = ωe and ker(φ) = {ωe}. �

3. Construction of Distal Limit-Periodic Elements in `∞(Zd)

Definition 3.1. A function Q(x) : [0,∞) → [1,∞) is called an approximation
function if both

q(t) = t−4 sup
x≥0

Q(x)e−tx

and

(5) h(t) = inf
κt

∞∏
i=0

q(ti)
2−i−1

are finite for every t > 0. In (5), κt denotes the set of all sequences t ≥ t1 ≥ t2 ≥
· · · ≥ 0 with

∑
ti ≤ t.

Definition 3.2. A sequence V ∈ `∞(Zd) is called distal if for some approximation
function Q, we have

inf
i∈Zd
|Vi − Vi+k| ≥ Q(|k|)−1

for every k ∈ Zd \ {0}.

Proposition 3.3. If V ∈ `∞(Zd) is distal, then every Ṽ ∈ hull(V ) is also distal.

Proof. This follows readily from the definition. �

We will construct a distal sequence in our framework, which is a key step to get
our main result.

Lemma 3.4. There exist a Cantor group Ω that admits a minimal Zd action T by
translations and an f ∈ C(Ω,R) such that (f(Tnωe))n∈Zd is a distal sequence.
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Proof. Choose a collection Γ = {(n(1)
v , n

(2)
v , · · · , n(d)

v ) : v ∈ Z+} for which we have(
n

(i)
v

)2

≤ n
(i)
v+1 ≤

(
n

(i)
v

)2m

, n
(i)
v |n(i)

v+1 and n
(i)
v ≤ Cn

(j)
v for some positive integers

m and C, every 1 ≤ i, j ≤ d and every v ∈ Z+.
Define

a(i)
v (p) = q, p = q mod n(i)

v ,

and then define a d-dimensional limit-periodic potential as

V (t) =

d∑
i=1

∞∑
v=1

a
(i)
v (ti)(

n
(1)
v−1

)2

n
(1)
v

(
n

(2)
v−1

)2

n
(2)
v · · ·

(
n

(d)
v−1

)2

n
(d)
v

,

where t = (t1, t2, · · · , td) ∈ Zd and n
(i)
0 = 1, 1 ≤ i ≤ d. We will show that V is

distal.

Write Vk(t) =
∑d
i=1

∑k
v=1

a(i)v (ti)(
n
(1)
v−1

)2
n
(1)
v

(
n
(2)
v−1

)2
n
(2)
v ···

(
n
(d)
v−1

)2
n
(d)
v

. Clearly, Vk is pe-

riodic and limk→∞ Vk = V uniformly. Given t 6= h ∈ Zd, we assume that
|t − h| = |t1 − h1|( |ti − hi| ≤ |t1 − h1| for 1 ≤ i ≤ d ). Fix k so that

n
(1)
k−1 ≤ |t− h| < n

(1)
k .

If k ≥ 2, we have

|Vk(t)− Vk(h)| ≥ 1(
n

(1)
k−1

)2

n
(1)
k

(
n

(2)
k−1

)2

n
(2)
k · · ·

(
n

(d)
k−1

)2

n
(d)
k

.

We also have

|(V (t)− Vk(t))− (V (h)− Vk(h))|

=

∣∣∣∣∣∣∣
d∑
i=1

∞∑
v=k+1

a
(i)
v (ti)− a(i)

v (hi)(
n

(1)
v−1

)2

n
(1)
v

(
n

(2)
v−1

)2

n
(2)
v · · ·

(
n

(d)
v−1

)2

n
(d)
v

∣∣∣∣∣∣∣
≤dn(1)

k

∞∑
v=k+1

1(
n

(1)
v−1

)2

n
(1)
v

(
n

(2)
v−1

)2

n
(2)
v · · ·

(
n

(d)
v−1

)2

n
(d)
v

≤
2dn

(1)
k(

n
(1)
k

)2

n
(1)
k+1

(
n

(2)
k

)2

n
(2)
k+1 · · ·

(
n

(d)
k

)2

n
(d)
k+1

≤ 1

2
(
n

(1)
k−1

)2

n
(1)
k

(
n

(2)
k−1

)2

n
(2)
k · · ·

(
n

(d)
k−1

)2

n
(d)
k

.
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So we have

|V (t)− V (h)|
=|Vk(t)− Vk(h) + (V (t)− Vk(t))− (V (h)− Vk(h))|

≥ 1(
n

(1)
k−1

)2

n
(1)
k

(
n

(2)
k−1

)2

n
(2)
k · · ·

(
n

(d)
k−1

)2

n
(d)
k

− 1

2
(
n

(1)
k−1

)2

n
(1)
k

(
n

(2)
k−1

)2

n
(2)
k · · ·

(
n

(d)
k−1

)2

n
(d)
k

=
1

2
(
n

(1)
k−1

)2

n
(1)
k

(
n

(2)
k−1

)2

n
(2)
k · · ·

(
n

(d)
k−1

)2

n
(d)
k

≥ 1

2
(
n

(1)
k−1

)2+2m (
n

(2)
k−1

)2+2m

· · ·
(
n

(d)
k−1

)2+2m

≥ 1

2
∏d
j=2

(
C2+2m

(
n

(1)
k−1

)2d+2dm
)

≥ 1

2C2d+2dm|t− h|2d+2dm
.

If k = 1, we have

|V1(t)− V1(h)| ≥ 1(
n

(1)
0

)2

n
(1)
1

(
n

(2)
0

)2

n
(2)
1 · · ·

(
n

(d)
0

)2

n
(d)
1

.

We also have

|(V (t)− V1(t))− (V (h)− V1(h))|

=

∣∣∣∣∣∣∣
d∑
i=1

∞∑
v=2

a
(i)
v (ti)− a(i)

v (hi)(
n

(1)
v−1

)2

n
(1)
v

(
n

(2)
v−1

)2

n
(2)
v · · ·

(
n

(d)
v−1

)2

n
(d)
v

∣∣∣∣∣∣∣
≤ 2n1(

n
(1)
1

)2

n
(1)
2

(
n

(2)
1

)2

n
(2)
2 · · ·

(
n

(d)
1

)2

n
(d)
2

.
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So we have

|V (t)− V (h)|
=|Vk(t)− Vk(h) + (V (t)− Vk(t))− (V (h)− Vk(h))|

≥ 1(
n

(1)
0

)2

n
(1)
1

(
n

(2)
0

)2

n
(2)
1 · · ·

(
n

(d)
0

)2

n
(d)
1

− 2n1(
n

(1)
1

)2

n
(1)
2

(
n

(2)
1

)2

n
(2)
2 · · ·

(
n

(d)
1

)2

n
(d)
2

≥ 1

2
(
n

(1)
0

)2

n
(1)
1

(
n

(2)
0

)2

n
(2)
1 · · ·

(
n

(d)
0

)2

n
(d)
1

≥ 1

2
∏d
j=2

(
C
(
n

(1)
1

)d)
≥ 1

2C2d+2dm
(
n

(1)
1

)2d+2dm
.

Thus, we have

|V (t)− V (h)| ≥


1

2C2d+2dm
(
n
(1)
1

)2d+2dm , 0 < |t− h| < n
(1)
1 ;

1
2C2d+2dm|t−h|2d+2dm , |t− h| ≥ n(1)

1 .

Similarly, if |t− h| = |ti − hi|, 1 ≤ i ≤ d, we have

|V (t)− V (h)| ≥


1

2C2d+2dm
(
n
(i)
1

)2d+2dm , 0 < |t− h| < n
(i)
1 ;

1
2C2d+2dm|t−h|2d+2dm , |t− h| ≥ n(i)

1 .

Let M = max{n(i)
1 : 1 ≤ i ≤ d} and

Q(x) =

{
2C2d+2dmM2d+2dm, 0 ≤ x < M ;

2C2d+2dmx2d+2dm, x ≥M.

Q(x) is an approximation function (please refer to [4, Remark 4.5]). We have that

|V (t)− V (h)| ≥ 1

Q(|t− h|)
, t 6= h,

which implies that V is distal.
Let Ω = hull(V ). By Proposition 2.5, there exists f ∈ C(Ω,R) such that

f(Tnωe) = V (n), which concludes the proof. �

4. Pöschel’s Results

In this section we rewrite some of Pöschel’s results from [9], tailored to our
purpose.

Let M a Banach algebra of real d-dimensional sequences V = (Vi)i∈Zd with the
operations of pointwise addition and multiplication of sequences. In particular, the
constant sequence 1 is supposed to belong to M and have norm one. Moreover, M
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is required to be invariant under translation: if V ∈M, then ‖SkV ‖M = ‖V ‖M for
all k ∈ Zd, where as before SkVi = Vi−k.

We denote by M the space of all matrices A = (Vi,j)i,j∈Zd satisfying Ak =

(Vi,i+k) ∈ M, k ∈ Zd, that is, Ak is the k-th diagonal of A and it is required to
belong to M. In M , we define a Banach space

Ms = {A ∈M : ‖A‖s <∞}, 0 ≤ s ≤ ∞,

where

‖A‖s = sup
k∈Zd

‖Ak‖Me|k|s.

Obviously,

Ms ⊂M t, ‖ · ‖s ≥ ‖ · ‖t, 0 ≤ t ≤ s ≤ ∞.
In particular, M∞ is the space of all diagonal matrices in M .

Theorem 4.1 (Theorem A, [9]). Let D be a diagonal matrix whose diagonal V is
a distal sequence for M. Let 0 < s ≤ ∞ and 0 < σ ≤ min{1, s2}. If P ∈ Ms and

‖P‖s ≤ δ · h(σ2 )−1, where δ > 0 depends on the dimension d only, then there exists

another diagonal matrix D̃ and an invertible matrix Q such that

Q−1(D̃ + P )Q = D.

In fact, Q,Q−1 ∈Ms−σ and Q̃−Q ∈M∞ with

‖Q− I‖s−σ, ‖V −1 − I‖s−σ ≤ C · ‖P‖s,

‖D̃ −D + [P ]‖∞ ≤ C2 · ‖P‖2s,
where C = δ−1 · h(σ2 ), and [·] denotes the canonical projection Ms → M∞. If P

is Hermitian, then Q can be chosen to be unitary on `2(Zd). Note that h is the
function (5) associated with V .

An important consequence of the preceding theorem for discrete Schrödinger
operators is the following.

Theorem 4.2 (Corollary A, [9]). Let V be a distal sequence for some translation
invariant Banach algebra M of d-dimensional real sequences. Then for 0 ≤ ε ≤
ε0, with ε0 > 0 sufficiently small, there exists a sequence Ṽ with Ṽ − V ∈ M,

‖Ṽ − V ‖M ≤ ε2

ε20
, such that the discrete Schrödinger operator

(H̃u)i = ε
∑
|l|1=1

ui+l + Ṽiui, i ∈ Zd

has eigenvalues {Vi : i ∈ Zd} and a complete set of corresponding exponentially
localized eigenvectors with decay rate 1 + log ε0

ε .

5. Proof of Theorem 1.3

We are now proving our main result, Theorem 1.3. By Lemma 3.4, there exist
a Cantor group Ω that admits a minimal Zd action T by translations and an f ∈
C(Ω,R) such that (f(Tnωe))n∈Zd is a distal sequence. Clearly, C(Ω,R) will induce
a class of limit-periodic potentials. We denote it by C, and one can check that this
class is a translation invariant Banach algebra with the `∞-norm. By Theorem 4.2,
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there exists a sufficiently small ε0 > 0 such that for 0 < ε ≤ ε0, there is a sequence

Ṽ ∈ C with ‖Ṽ − V ‖∞ ≤ ε20
ε2 so that the discrete Schrödinger operator

(Hu)n =
∑

|m−n|1=1

um +
Ṽn
ε
un, n ∈ Zd

has eigenvalues {Vn

ε , n ∈ Zd} and a total set of corresponding exponentially localized
eigenvectors with decay rate r = 1 + log ε0

ε . There exists a sampling function

f̃ ∈ C(Ω,R) such that f̃(Tnωe) = Ṽn

ε since Ṽ ∈ C.
More explicitly, for the Schrödinger operator H associated with the potential

f̃(Tnωe), denote its matrix representation with respect to the standard orthonormal
basis of `2(Zd), {δn}n∈Zd , by the same symbol. Pöschel’s theorem also implies that
there exists a unitary Q : `2(Zd)→ `2(Zd) (with corresponding matrix denoted by
the same symbol) such that

(6) H ·Q = Q ·D,

where D = (Di,j)i,j∈Zd is a diagonal matrix with the diagonal (Vn

ε )n∈Zd .

Write Qn = (Qi,i+n)i∈Zd as the n-th diagonal of Q (note that n ∈ Zd). By
Theorem 4.1 we have that Q ∈ Mr, where r > 0 and Mr is a space of matrices
associated with the Banach algebra C. (Note that Q ∈ Mr follows from [9, Proof
of Corollary A].) Since Q ∈ Mr, we have ‖Q‖r = supn∈Zd ‖Qn‖∞e|n|r < C where

C is a constant. So ‖Qn‖∞ < Ce−r|n|,∀n ∈ Zd. Let Q(n) = (Qi,n)i∈Zd be the n-th

column of Q, that is, Q(n) is an eigenfunction of H with respect to the eigenvalue
Vn

ε . Since Qk,n = Q(n)(k) = Qk,k+(n−k), Q
(n)(k) is also an entry in Qn−k, and

so |Q(n)(k)| < Ce−r|n−k|. C and r are independent of n, so the corresponding
Schrödinger operator H has ULE. This property is strong enough to imply that the
pure point spectrum of H is independent of ω [8], that is, it is phase stable. In order
to see this more explicitly, we will prove it in our framework, and furthermore show
that for other ω’s, the associated Schrödinger operator still has ULE with the same
constants C and r. Note that the latter property does not follow from Jitomirskaya’s
result in [8].

Lemma 5.1. Suppose we are given matrices A,B ∈ RZd×Zd

, one of which has only
finitely many non-zero diagonals. Then, we have for the k-th diagonal of Z = AB,

Zk =
∑
l∈Zd

Al · T l(Bk−l),

where · is the pointwise multiplication (i.e., Al ·T l(Bk−l) is still a sequence) and T
is the translation defined by T l(Bk−l)(n) = Bk−l(n+ l) for n ∈ Zd.

Proof. Since for n, k ∈ Zd, we have

zn,n+k =
∑
t∈Zd

an,tbt,n+k

=
∑
l∈Zd

an,n+lbn+l,n+k

=
∑
l∈Zd

an,n+lbn+l,n+l+k−l,

the lemma follows. �
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Given an ω ∈ Ω, we have that (f̃(Tnω))n∈Zd ∈ hull((f̃(Tnωe))n∈Zd). If ω is in
the orbit of ωe, that is, ω = T tωe for some t ∈ Zd, ULE with the same constants
and eigenvalues follows from unitary operator equivalence directly. However, we
write this out in detail so that we see clearly what happens in the case where ω can
only be approximated by elements of the form T tωe.

By the previous lemma, (6) is equivalent to the following form:

∀k ∈ Zd :
∑
l∈Zd

Hl · T l(Qk−l) =
∑
l∈Zd

Ql · T l(Dk−l).

If the potential is replaced by f̃(Tn+tωe), the corresponding matrix H̃ has H̃j(n) =
Hj(n+ t) = T t(Hj)(n). We have

∀k ∈ Zd :
∑
l∈Zd

T t(Hl) · T t+l(Qk−l) =
∑
l∈Zd

T t(Ql) · T l+t(Dk−l).

We let Q̃k(n) = Qk(n + t), k ∈ Zd and D̃0(n) = D0(n + t). Reversing the steps
above, this means that

H̃ · Q̃ = Q̃ · D̃.
We can conclude that H̃ has the pure point spectrum {Vn+t

ε : n ∈ Zd} =

{Vn

ε : n ∈ Zd}. Moreover, Q̃ is the eigenfunction matrix of H̃, and for any n, k ∈ Z,

|Q̃k(n)| = |Qk(n+ t)| ≤ Ce−r|k|. So for the eigenfunction Q̃(k) of H̃, we still have

|Q̃(k)(n)| < Ce−r|k−n|, and hence ULE with the same constants follows.

If limm→∞ T tmωe = ω, that is, f̃(Tnω) = limm→∞ f̃(Tn+tmωe), then for

f̃(Tn+tmωe), we have already seen that

(7) H̃〈m〉 · Q̃〈m〉 = Q̃〈m〉 · D̃〈m〉,

where the notation 〈m〉 means that the matrices are corresponding to f̃(Tn+tmωe).

Let Q̃
〈m〉
k be the k-th diagonal of Q̃〈m〉. Clearly, Q̃

〈m〉
k (n) = Qk(n+tm). There exists

some f̃k ∈ C(Ω,R) such that Q̃
〈m〉
k (n) = Qk(n+ tm) = f̃k(Tn+tmωe) since Qk ∈ C.

So limm→∞ Q̃
(m)
k (n) = limm→∞ f̃k(Tn+tmωe) = f̃k(Tnω), and we denote f̃k(Tnω)

by Q̃
〈∞〉
k (n). Similarly, limm→∞ D̃〈m〉 exists and D̃

〈∞〉
0 (n) = f(Tnω), where D̃

〈∞〉
0

is the 0-th diagonal of D̃〈∞〉. Thus, as we let m→∞, (7) takes the following form:

(8) H̃〈∞〉 · Q̃〈∞〉 = Q̃〈∞〉 · D̃〈∞〉,
where H̃〈∞〉 is (the matrix representation of) the Schrödinger operator with the

potential f̃(Tnω). Equation (8) implies that H̃〈∞〉 has the pure point spectrum

{Vn

ε : n ∈ Zd}, and its eigenfunctions are uniformly localized since |(Q̃〈∞〉)(k)(n)| <
Ce−r|k−n| for any k, n ∈ Zd, where (Q̃〈∞〉)(k) is the k-th column of Q̃〈∞〉. This
finishes the proof.
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