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Abstract—The minimum expected length for fixed-to-variable
length encoding of an �-block memoryless source with entropy �
grows as �� � ����, where the term ���� lies between 0 and 1.
However, this well-known performance is obtained under the im-
plicit constraint that the code assigned to the whole �-block is a
prefix code. Dropping the prefix constraint, which is rarely neces-
sary at the block level, we show that the minimum expected length
for a finite-alphabet memoryless source with known distribution
grows as

�� �
�

�
���������

unless the source is equiprobable. We also refine this result up to
���� for those memoryless sources whose log probabilities do not
reside on a lattice.

Index Terms—Analytic information theory, fixed-to-variable
lossless compression, memoryless sources, one-to-one codes,
Shannon theory, source coding.

I. INTRODUCTION

L OSSLESS symbol-by-symbol compressors are required to
satisfy the condition of “unique decodability” whereby dif-

ferent input strings are assigned different compressed versions.
Uniquely decodable nonprefix codes do not offer any advantages
over prefix codes since any uniquely decodable code must assign
lengths to the various symbols that satisfy Kraft’s inequality,
while a prefix code is guaranteed to exist with those symbol
lengths. Achieved by the Huffman code, an exact expression
for the minimum average length of a prefix symbol-by-symbol
binary code is unknown. It is upper bounded by the entropy (in
bits) of the probability distribution of the symbols plus one bit
(this follows by the analysis of the suboptimal Shannon code in
[28], which, incidentally, Shannon devised to encode blocks of
data). Macmillan [19] showed that the minimum average length
of a prefix symbol-by-symbol binary code is lower bounded by
the entropy-a result which is frequently wrongly attributed to
Shannon, who never addressed the fundamental limits of prefix
codes. Further improvements on the upper bound (as a function
of the distribution) were reported in [3], [4], [12], [21], [27].
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However, the paradigm of symbol-by-symbol compression is
severely suboptimal even for memoryless sources. For example,
symbol-by-symbol compression is unable to exploit the redun-
dancy of biased coin flips. Algorithmically, at the expense of
a slight penalty in average encoding length, this inefficiency is
dealt with stream codes such as arithmetic coding. To approach
the minimum average encoding length one can partition the
source string of length into blocks of length and apply the
symbol-by-symbol approach at the block level. The resulting
average compressed length per source symbol is equal to the
entropy of each symbol, , plus at most bits if the
source is memoryless, or more generally, equal to the entropy
of consecutive symbols divided by plus at most bits.
Thus, to achieve the best average efficiency without regard to
complexity, we can let , apply a Huffman code to the whole

-tuple and the resulting average compressed length behaves as

(1)

The term in (1) belongs to , and has been investigated
in detail for biased coin flips in [27], [29]. In particular,1 when

is irrational (where is the bias)

(2)

where is the binary entropy function.
As argued in [32], [35], it is possible to attain average com-

pressed length lower than (1). The reason is that it is often
unnecessary, and in fact wasteful, to impose the prefix condi-
tion on a code that operates at the level of the whole file to
be compressed. Applying prefix codes to -block supersymbols
is only optimal in terms of the linear growth with (it attains
the entropy rate for stationary ergodic sources); however, as far
as sublinear terms, this conventional approach incurs loss of
optimality. The optimal fixed-to-variable length code performs
no blocking on the source output; instead the optimal length-
compressor chooses an encoding table that lists all source re-
alizations of length in decreasing probabilities (breaking ties
using a lexicographical ordering on the source symbols) and as-
signs, starting with the most probable, the binary strings of in-
creasing lengths2

The fact that the length of the compressed file is unknown a
priori is immaterial since the decompressor receives as input the
compressed file, including where the file “starts and ends.” For
example, files stored in a random-access medium (such as a hard

1We omit the more involved formula given in [29] for the rational case.
2Including the empty string is convenient but has no impact on our results.
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disk) do not satisfy the prefix condition: a directory (organized
as a so-called inode pointer structure, e.g., [20]) contains the
starting and ending locations of the sequence of blocks occupied
by each file in the storage medium.

The foregoing code is optimal not just in the sense of average
length but in the sense that the cumulative distribution function
of its length is larger than or equal to that of any other code. Such
optimal codes have been previously considered under the rubric
of one-to-one codes, but because of their misguided standing
as nonuniquely decodable symbol-by-symbol codes, they have
failed to attract much attention.

In the rest of this paper,Section II deals with the nonasymptotic
analysis of one-to-one codes. Section III summarizes previous
results on the minimum average length achievable for biased coin
flips. Section IV states our results on asymptotic analysis of the
minimum average length of fixed-to-variable length codes for
memoryless sources with known distributions. For equiprobable
distributions we can save on average between 1.914 and 2 bits
(from the logarithm of the number of equiprobable realizations)
plus an exponentially vanishing term. For nonequiprobable dis-
tributions, we can save from the entropy of the -tuple
plus an term. If the log probabilities of the source do not
reside on a lattice, we show that the term is in fact

plus a vanishing term, where is the variance of .
Proofs are given in Section V.

II. NONASYMPTOTIC ANALYSIS OF OPTIMAL

VARIABLE-LENGTH CODES

Consider a probability distribution on a set of ordered
elements . Define by

if or if and .
Thus, if is the -th most probable element in
according to distribution , with ties broken according to the
ordering in . It is easy to verify that

(3)

for all : if (3) failed to be satisfied for , there
would be at least masses strictly larger than .

The one-to-one code assigns to the shortest (possibly
empty) binary string (ties broken with the ordering ) not
assigned to any element with . Thus, we
obtain the simple but important conclusion that the length of
the encoding of is . Finding an exact expression
for the minimum average length

(4)

as a function of appears to be challenging. For equiprob-
able on a set of elements, it can be shown that the
average length of the one-to-one code is (cf. [17])

(5)

(6)

which simplifies to

(7)

when is a power of 2.
A simple upper bound first noticed in [34] is obtained as

(8)

(9)

(10)

(11)

where (10) follows from (3). Note that dropping the prefix con-
dition makes the entropy an upper bound to the minimum av-
erage length, rather than a lower bound. Various lower bounds
on have been proposed in [1], [2], [5], [10], [18], [23],
[33]. Distilling the main ideas in [1], the following result gives
the tightest known bound.

Theorem 1: Define the monotonically increasing function
by

(12)

Then

(13)

Proof: For brevity, denote , and

(14)

(15)

(16)

(17)

(18)

where:
• (14) is a deterministic function of ;
• (15) bits;
• (17) follows by writing out the relative entropy on the right

side where the reference measure is the geometric (posi-
tive) distribution ;

• (18) the relative entropy .

Weakening the bound in (13) by

(19)

and using the upper bound (11), we obtain the bound in [1]

(20)

Another way of weakening (13) is to use the monotonic in-
creasing nature of and (11) to con-
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clude with (21) and (22), as shown at the bottom of the page,
which is the bound found in [2].

In the remainder of the paper, we turn attention to the asymp-
totic behavior of the minimum average length of the encoding
of an -tuple of a memoryless stationary source with marginal
distribution

(23)

Note that all the results obtained in this section apply to that
case by letting and play the role of and ,
respectively.

III. ASYMPTOTIC MINIMUM AVERAGE LENGTH: COIN FLIPS

A. Fair Coin Flips

For fair coin flips , the exact result can be obtained
from (6) letting

(24)

in contrast to

(25)

obtained with the Huffman code operating on -tuples (or single
bits).

B. Biased Coin Flips

The minimum average length for a binary memoryless source
with bias has been investigated in great detail (up to
term) in [31], which shows that

(26)

and in fact [31] characterizes the term up to vanishing
terms. If is irrational and positive , then we
get (27), as shown at the bottom of the page. If

(28)

where (28) is an irreducible fraction, we need to add (29), shown
at the bottom of the page, divided by to (27) where

and is standard normal.

IV. ASYMPTOTIC MINIMUM AVERAGE LENGTH:
MEMORYLESS SOURCES

We assume henceforth that the source is memoryless with
distribution on a finite alphabet , i.e.,

(30)

The proofs of the following asymptotic results are given in
Section V.

Theorem 2: For a nonredundant source (i.e., memoryless and
equiprobable) with finite alphabet , the minimum expected
length of a lossless binary encoding of is given by

(31)

where and

(32)

which satisfies

(33)

Definition 1: A discrete real-valued random variable is of
lattice-type if there is a pair of real numbers , such that the
random variable has zero mass outside the lattice

Theorem 3: If is a nonlattice random variable
then, the minimum expected length of a lossless binary encoding
of is given by

(34)

where

(35)

Note that in the cases in which is either equiprobable or
binary valued, only takes one or two values, re-
spectively, and therefore it is a lattice distribution, outside the
purview of Theorem 3. The complexity of the term solu-
tion in the binary case, particularly (29), illustrates that a general
expression for the lattice case may be challenging. Furthermore,

(21)

(22)

(27)

(29)
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for any fixed , one can modify so slightly that
becomes nonlattice and the change in is as small as de-
sired. Therefore, pursuing the modification to the term for
sources with lattice-type does not in fact improve
the usefulness of the asymptotic results as approximations to fi-
nite- fundamental limits.

At the expense of a weaker conclusion, the following result
is more general than Theorem 3.

Theorem 4: If is not equiprobable, the minimum expected
length of a lossless binary encoding of is given by

(36)

The dominant sublinear term is, thus, independent of the dis-
tribution of the source (as long as it is not equiprobable). It is
tempting to conjecture that the same behavior holds for finite-al-
phabet Markov chains and other sources whose memory decays
sufficiently rapidly.

V. PROOFS

Proof of Theorem 2: Substituting

(37)

in (6), we obtain

(38)

(39)

(40)

where and the nonnegative function is maximized
when at which point it attains the
value

(41)

Proof of Theorem 3: As shown in [32], the analysis of the
minimal length of the optimal fixed-to-variable nonprefix code
is intimately connected to the analysis of error probability in
fixed-to-fixed data compression: the minimum error probability

of an -to- fixed-to-fixed code is equal to the proba-
bility that the minimum length of the fixed-to-variable code is
greater than or equal to , i.e.,

(42)

To verify (42), note that the optimum -to- fixed-to-fixed code
assigns a unique -bit string to each of the most likely
realizations of , and uses the string with s to signal error;
thus, an error obtains if , which happens with
probability

(43)

and (42) is established. This enables us to analyze the minimum
average length of fixed-to-variable coding through the analysis
of the fixed-to-fixed error probability

(44)

(45)

(46)

(47)

(48)

where

(49)

is the smallest rate of an -to- code with error probability not
exceeding . Based on the refined central limit theorem (e.g.,
[22]), Strassen [26] showed that for a memoryless source with
a nonlattice distribution, we have (50)–(52), as shown at the
bottom of the page, where is the inverse of the comple-
mentary cumulative Gaussian distribution function

(53)

(54)

(55)

which are both finite since the alphabet is finite.

(50)

(51)

(52)
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In order to integrate (50) with respect to , note that if is
uniform on is a standard Gaussian distribution.
Therefore

(56)

(57)

Using (56) and (57), we obtain (58)–(59), shown at the bottom
of the page.

We now proceed to deal with the integration of .
Denote the zero-mean unit-variance random variable

(60)

Letting be the third (noncentered) moment of , [22,
Theorem 5.22] states that the function

(61)

is such that for any , there exists , such that for all

(62)

for all real scalars . Letting

(63)

and in view of [26], we can bound for any and all suf-
ficiently large , we get (64)–(65), shown at the bottom of the
page. By monotone convergence, the integral of (65) with re-
spect to on vanishes. Together with (48) and (59) the
desired result is established.

Proof of Theorem 4: Henceforth, we assume that the source is
not equiprobable. We abbreviate , denote by
the atoms of such that

(66)

and we denote

(67)

for . Note that the entropy of can be ex-
pressed as

(68)

Let

(69)

such that denote the type of an -string; the
probability of each such string is equal to

(70)

Denote the set of all types of -strings drawn from an alphabet
of elements by

(71)

We introduce an order among types:

and we sort all types from the smallest index (largest proba-
bility) to the largest. This can be accomplished by observing
that is equivalent to

(72)

Therefore, to sort types one needs to sort the function

(73)

from the smallest value to the largest.
There are

(74)

(58)

(59)

(64)

(65)
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sequences of type and we list them in lexicographic order.
Then, the optimum code assigns length to the th se-
quence in this list. Denote the number of se-
quences more probable than or equal to type as

(75)

Using somewhat informal, but intuitive, notation, and
denote the next and previous types, respectively, in the

sorted list of the elements of . Clearly, starting from posi-
tion the next sequences have probability . Thus,
the average code length can be computed as follows:

(76)

(77)

(78)

(79)

where with . We
now proceed to justify (78) and (79). Noticing that for

(80)
we conclude that We first estimate the second sum on the left
side of (81). In (101) and (103) below, we establish that

(83)

which along with enables us to
conclude that the second sum in (81) is of order .

In order to verify (78), we shall use a multinomial sum para-
digm of the following form:

(84)

where is a function of at most polynomial growth. In our
case, , where . In [11]
and [16], it is proven that such a sum grows asymptotically as

. For the reader’s convenience, we offer a streamlined jus-
tification for functions of polynomial growth; in particular when

has an analytic continuation to a complex cone around the
real positive axis [16], [30].

In general, Taylor’s expansion of around is as shown in
(85), at the bottom of the page, for some in the vicinity of ,
where we use the same simplified notations as before. Observe
now that

(86)

(87)

(88)

where is a multinomial distribution with parameters and
and is the second derivative with respect to and .
Observe that in (87), we use the fact that variance of is of
order . The above asymptotic result is useful as long as
the first term dominates the second term , as is the
case in our situation. One can argue that has an analytic con-
tinuation in a cone around the real positive axis and polyno-
mial growth (cf. (105) below). By [15, Lemma 3] or [30], we
conclude that and . Thus,
(78)–(79) follow.

Let now

(89)

for . Then, by (72) , is equivalent to

(90)

Thus

(91)

(92)

where

(93)

(94)

(81)

(82)

(85)
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The next step is to use Stirling’s formula

(95)

to estimate the summands in (92). This leads to (96), also shown
at the bottom of the page. Applying now Taylor’s expansion
to (96), we get (97)–(99), as shown at the bottom of the page,
and we arrive at (100)–(101), as shown at the bottom of the
page, where is an appropriately chosen invertible covariance
matrix.

We are now in the position to evaluate the sum (92). We need
to sum over which we split by summing over hy-
perplanes for of dimension . We de-
note such a hyperplane by . Noting

that the Gaussian kernel of (101) when summed over the hy-
perplane is of order we arrive at our final
result. More precisely, plugging (101) into (92) yields

(102)

(103)

Noting now that [13]

(104)

(96)

(97)

(98)

(99)

(100)

(101)
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where is of at most polynomial growth of (in fact,
). Combining (103) and (104), we finally arrive

at

(105)

where is a constant. Observe that the right order of can
be obtained by considering only the hyperplane . In
view of (79), this completes the proof of Theorem 4.

Example: To illustrate our methodology, we explain it first
for and then we give some details for the case of
symbols with probability . For , we have

, shown in (106) and (107) at the bottom of the page.
Observe again that the order of growth of is determined by

. The summation of the geometric series contributes to the
constant.

Let’s now focus on the case . With
and , we need to evaluate

(108)

As before, we denote and to arrive
at (109), also shown at the bottom of the page. In Fig. 1, we
show the behavior of the above multinomial coefficient on the

Fig. 1. Illustration for� � �. The value of the multinomial coefficient (109) is
shown as the third dimension: The normal distribution is along the line � � �

� � � �� � � �� � , while away from this line the multinomial coeffi-
cient decays exponentially.

critical line and below it. On the critical line
the coefficient is well approximated by the normal distribution
(curve labelled “normal”) around the point , while for

(or equivalently for ) away from the critical line
the coefficient decays exponentially. This leads to (110)–(113),
as shown at the bottom of the page, where (112) follows from
the normal approximation on the line .

(106)

(107)

(109)

(110)

(111)

(112)

(113)
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