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ABSTRACT 

The traditional trip based approach to transportation modeling has been employed for the 
past thirty years.  However, due to the limitations of traditional planning for short-term 
policy analysis, researchers have explored alternative paradigms for incorporating more 
behavioral realism in planning methodologies.  On the demand side, activity-based 
approaches have evolved as an alternative to traditional trip-based transportation demand 
forecasting.  On the supply side, dynamic traffic assignment models have been developed 
as an alternative to static assignment procedures.  Unfortunately, much of the research 
efforts in activity-based approaches (the demand side) and dynamic traffic assignment 
techniques (the supply side) have been undertaken relatively independently.  To 
maximize benefits from these advanced methodologies, it is essential to combine them 
via a unified framework.  The objective of the current paper is to develop a conceptual 
framework and explore practical integration issues for combining the two streams of 
research.  Technical, computational and practical issues involved in this demand-supply 
integration problem are discussed.  While the framework is general in nature, specific 
technical details related to the integration are explored by employing CEMDAP for 
activity-based modeling and VISTA for the dynamic traffic assignment modeling.  
Solution convergence properties of the integrated system, specifically examining 
different criteria for convergence, different methods of accommodating time of day and 
the influence of step size on the convergence are studied.  Further, the integrated system 
developed is empirically applied to two sample networks selected from the Dallas Fort 
Worth network. 
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1. INTRODUCTION 

For nearly thirty years, the traditional trip-based approach to transportation modeling has 
dominated the planning process.  The trip-based method includes: trip generation, trip 
distribution, modal split and trip assignment.  The first three steps of the trip-based 
method typically constitute the transportation demand side, while trip assignment 
normally represents the transportation supply side.  Thus, the trip-based method 
accommodates transportation demand and supply within a somewhat unified framework 
when executed with full feedback.  However, the trip-based approach is plagued with 
many limitations (for example, see (1), (2), (3), (4), (5) and (6)).  This has led to an active 
stream of research that examines alternative paradigms for predicting travel demand and 
supply by incorporating more behaviorally realistic methodologies. 

On the demand side, researchers have attempted to overcome the conceptual and 
behavioral inadequacy of the trip-based approach through the use of an activity-based 
modeling (ABM) paradigm. In this paradigm, it is recognized that travel is a derived 
demand and the need to travel arises from the more fundamental need to participate in 
activities.  Activity-based approaches to modeling travel demand are conceptually more 
appealing compared to the trip-based method for the following reasons: (1) Treatment of 
time as a continuum and a generally superior incorporation of the temporal dimension, 
(2) Focus on sequences and patterns of activities and travel (i.e., tours) rather than 
individual trips, (3) Recognition of linkages among various activity-travel decisions, (4) 
Incorporation of intra-household interactions, inter-personal and intra-personal 
consistency measures, (5) Consideration of space-time constraints on activities and travel, 
and (6) Emphasis on individual level travel patterns.  The potential benefits of the 
activity-based analysis and the resulting interest in operationalizing the activity-based 
approach have sparked an interest in micro-simulation based modeling systems.  A 
number of micro-simulation platforms that employ the activity-based paradigm of 
transportation demand forecasting have been developed recently, such as CEMDAP [see 
(5) and (7)], Portland METRO [see (8)], New York NYMTC [see (9)], Columbus 
MORPC [see (10)], Sacramento SACOG [see (11)] and the San Francisco SFCTA [see 
(12)]. 

On the supply side, conventional techniques of trip assignment based on static traffic 
assignment (STA) have been employed for decades.  The limitations of the static 
assignment procedures and the increase in computing capacity have allowed the field to 
move toward more behaviorally realistic dynamic traffic assignment (DTA) models.  
DTA techniques offer a number of advantages relative to the STA methods including: (1) 
Capturing time-dependent interactions of the travel demand and supply of the network, 
(2) Capability to capture traffic congestion build-up and dissipation, (3) Accommodating 
the affect of ramp-meters and traffic lights on the network are more straightforward, (4) 
Suited to model the effects of ITS technologies and (5) The network representation can 
be undertaken at a disaggregate level.  A number of simulation-based DTA modules have 
been developed in the recent past such as VISTA [see (13)], CONTRAM [see (14)], 
DynaMIT [see (15-17)] and DYNASMART-P [see (18)]. 

It is evident that significant advancements have occurred on the demand and supply 
sides.  However, the progress in the two streams has been achieved relatively 
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independently.  On the other hand, employing only one of these frameworks for travel 
demand modeling would yield inconsistent results and substantially fail to exploit the true 
potential of either approach.  At a basic level, activity-based approaches typically 
consider time as a continuum, and predict activity-travel patterns in continuous-time.  At 
the same time, DTA techniques are developed for the purpose of accommodating 
temporal dynamics of demand.  Thus, using an ABM with a static assignment process 
that does not consider temporal dynamics undoes much of the advantages of predicting 
travel patterns in continuous-time.  Similarly, using a trip-based approach that provides 
travel demands over an entire day or in 2-3 aggregate time periods of the day to develop 
the inputs for DTA does not exploit the very purpose for which DTA models have been 
developed.  Therefore, to realize the benefits of these behaviorally realistic frameworks 
and obtain consistent results, it is imperative to develop a conceptually unified 
framework to draw from the advantages of research in either stream. 

In this paper, we develop a conceptual framework for combining the progress made 
in the ABM and DTA areas of research, as well as explore the methodological, 
computational, and practical issues involved in integrating ABM demand systems with 
DTA-based supply systems. 

The remainder of the paper is organized as follows.  Section 2 reviews the research 
from earlier studies related to the current study.  Section 3 proposes the fixed point 
formulation of the demand-supply integration problem.  Section 4 describes the demand 
and supply system components and highlights the issues related to their integration.  
Section 5 presents empirical analysis undertaken with two sample networks.  Section 6 
concludes the paper. 

2. LITERATURE REVIEW 

The integration of transportation demand and supply has been of interest in recent years.  
Cantarella and Cascetta (19) discussed the theoretical results of the dynamic framework 
that processed the interaction between transportation demand and supply.  Antoniou et al. 
(20) presented a pre-trip demand simulator that estimated dynamic O-D matrices.  Lam 
and Huang (21) presented the mathematical formulations of both the time-dependent and 
dynamic activity choice to accurately represent the real time traffic conditions in dynamic 
or time-dependent traffic assignment.  While pioneering, the two research efforts 
reviewed above did not use the feedback from DTA to update the input information for 
the demand simulator. 

There have also been research efforts to address demand/supply integration by 
multi-agent simulation.  Esser and Nagel (22) developed a multi-agent micro-simulation 
module that implemented the interaction among activity generation, route assignment and 
network loading.  Raney et al. (23) developed an agent-based simulator that consisted of 
activity generation, modal and route choice, traffic simulation and learning/feedback 
modules.  Raney and Nagel (24) proposed a model that included user routes generation, 
micro-simulation and feedback module that corrected the process.  Rieser et al. (25) 
presented a model to couple activity-based demand generation with multi-agent traffic 
simulations.  Though the integration of transportation demand and supply has been 
proposed for years, much of the research is still at the conceptual stage.   
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Many transportation systems are based on some notion of equilibrium behavior, and 
thus can be formulated as variants of the basic fixed point problem.  Cantarella (26) 
studied the multi-mode and multi-user equilibrium assignment with elastic demand and 
presented a fixed point formulation of the problem.  Cascetta and Postorino (27) 
formulated the O-D count based estimation problem on congested network as a fixed 
point problem.  Bar-Gera and Boyce (28) proposed a fixed point formulation of the 
consistent transportation forecasting models that combined static travel demand and 
network assignment.  Estimation of O-D matrices from a partial set of traffic link 
volumes was studied in Sherali et al. (29).  They proposed a fixed point formulation and 
introduced the nonlinear cost function.  It was shown that the fixed point solution to the 
O-D matrices estimation from partial link volume information could be determined by 
successive linear programming approximation.  Zhao and Kockelman (30) examined the 
existence and uniqueness of random-utility-based multi-regional input-output solution 
and formulated the problem as a fixed point problem. 

A non-convex combined travel forecasting model was constructed by Bar-Gera and 
Boyce (31).  Different step sizes in the method of successive averages for fixed-point 
problems were discussed in that work.  Friesz and Mookherjee (32) investigated the 
infinite dimensional variational inequality formulation of dynamic user equilibrium 
(DUE) and differential variational inequality version of DUE.    Martinez and Henriquez 
(33) investigated the static equilibrium in the real estate market and proposed a fixed-
point algorithm to solve the equilibrium. 

This paper introduces the fixed point formulation of the integrated ABM and DTA 
when a variational inequality formulation of the dynamic user equilibrium traffic 
assignment is also incorporated in the model to capture user behavior.  Following the 
formulation, a solution method is proposed to investigate the benefits of combining two 
behaviorally realistic frameworks. 

3. MATHEMATICAL FORMULATION 

Level-of-service (LOS) values are one of the critical inputs for the ABM system.  The O-
D trip tables generated from the ABM system are loaded onto the network using DTA to 
obtain the LOS values.  However, the LOS values obtained from DTA can be 
inconsistent with the LOS values used in the ABM system.  Ideally, the assignment of 
trip tables onto the network should result in the “same” LOS values used in finding the 
trip tables.  This consistency can be achieved by the iterating of the integrated ABM and 
DTA.  To this end, we formulate the problem as a fixed point problem and propose an 
iterative algorithm in later sections.  We first introduce the following notation: 

Ξ    = vector that represents any feasible DTA 
*Ξ    = vector that represents the “optimal” DTA 

)(ΞΨ    = vector that represents the path cost resulting from the DTA Ξ  

))(( ΞΨZ   = dynamic trip table resulting from the path cost vector )(ΞΨ  

)))((( ΞΨZP   = user paths vector from assigning trip tables ))(( ΞΨZ  
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))))(((( ΞΨZPS  = path cost vector obtained from simulating user  
   paths )))((( ΞΨZP  

The integration of ABM and DTA can be formulated as equation (3.1) and (3.2). 

0)()( ** ≥Ξ−ΞΞΨ T    D∈Ξ∀     (3.1) 

))))(((()( ΞΨ=ΞΨ ZPS   D∈Ξ∀     (3.2) 

Equation (3.1) is a variational inequality (VI) formulation of the Wardrop-type 
dynamic user equilibrium traffic assignment (Chang, see (34)).  It can be observed that 
the user equilibrium DTA *Ξ always results in lower total route cost than other feasible 
assignments by rearranging equation (3.1) to *** )()( ΞΞΨ≥ΞΞΨ TT . 

Equation (3.2) is the fixed point formulation of the interaction between ABM and 
DTA.  Function Z corresponds to the ABM system.  It takes the LOS values as its input 
and outputs the O-D trip tables after the function evaluation.  Function P  and 
S correspond to the path-finding module and simulation module respectively in DTA.  
We input the O-D trip tables into function P  and it determines the time-dependent user 
paths.  Function S  then simulates those paths and obtains the LOS values )(ΞΨ .  Ideally, 
the function evaluation with input vector )(ΞΨ  on the right-hand-side of equation (3.2) 
should give the identical )(ΞΨ on the left-hand-side of the equation.  The fixed point 
formulation with the VI constraint can be solved in an iterative manner. 

4. SYSTEM 

In this section, the integrated framework is introduced.  First the two primary components 
of the framework CEMDAP (ABM module) and VISTA (DTA module) will be 
overviewed.  Integration issues will then be discussed. 

4.1 CEMDAP Framework 

The Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns 
(CEMDAP) is a micro-simulation implementation of a continuous-time activity-travel 
modeling system.  CEMDAP takes as input information on the aggregate socioeconomics 
and the activity-travel environment characteristics in the urban study region for the base 
year, as well as policy actions being considered for future years (the activity-travel 
environment includes the land-use, urban form, and transportation LOS characteristics).  
The aggregate-level base year socioeconomic data are first fed into the  synthetic 
population generator (SPG) to produce a disaggregate-level synthetic dataset describing a 
subset of the socioeconomic characteristics of the households and individuals residing in 
the study area (see (35) for information on the SPG module).  Additional base-year 
socioeconomic attributes related to mobility, schooling, and employment at the individual 
level, and residential/vehicle ownership choices at the household level, that are difficult 
to synthesize (or cannot be synthesized) directly from the aggregate socioeconomic data 
for the base year are simulated by the Comprehensive Econometric Microsimulator for 
SocioEconomics, Land-use, and Transportation System (CEMSELTS), (see (36) for more 
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details).  The base year socioeconomic data, along with the activity-travel environment 
attributes, are then run through the CEMDAP to obtain individual-level activity-travel 
patterns (see (5) and (7) for details).  The activity-travel patterns are subsequently passed 
through a dynamic traffic micro-assignment scheme to determine path flows, link flows, 
and transportation system LOS by time of day.  In the framework, the initial iteration of 
CEMDAP needs the LOS values as inputs.  However, the values used in the iteration 
need not be the “true” LOS values.  So it is necessary to rerun the CEMDAP module with 
the new LOS variables obtained. 

4.2 VISTA Framework 

Visual Interactive System for Transport Algorithms (VISTA) is a comprehensive DTA 
system that integrates data warehousing and traffic analysis for transport applications via 
a client-server implementation.  VISTA was originally outlined in Waller and 
Ziliaskopoulos (13).  As with many contemporary simulation-based DTA approaches, 
VISTA is comprised of three primary modules: traffic simulation, time-dependent routing 
algorithms, and path assignment. 

The traffic simulator in VISTA is RouteSim [see (37)], a route-based traffic 
simulator based on the Cell Transmission Model [see (38-39)].  RouteSim takes a 
network (nodes, links and controls) as well as the spatial path assignment as input and 
outputs the spatio-temporal trajectories of travelers.  The time-dependent shortest path 
(TDSP) module is implemented according to Ziliaskopoulos and Mahmassani [see (40, 
41)] and has substantial potential for distributed and parallel implementations 
(Ziliaskopoulos and Kotzinos, (42)) which is critical for large-scale deployments. 

Path assignment in VISTA is handled through multiple means.  The traditional MSA 
approach is employed for early iterations, but gap function based methods are employed 
to obtain meaningful convergence in later iterations.  For the latter a variety of gap 
functions are employed which are based on the variational inequality formulation as 
detailed in Chang (34). 

VISTA typically employs time-scales of approximately 6 seconds for traffic 
dynamics (for simulation, time-dependent routing, and trip departure times).  A scale of 
approximately 5 minutes is common for path choice behavior (i.e., travelers departing 
within 5 minutes of each other between the same origin-destination pair will observe 
similar conditions).  It should be noted that this minor 5-minute aggregation occurs after 
TDSPs have been found based on the 6 second scale. 

The path assignment and TDSP modules were reengineered into an efficient module 
that can handle large data sets in Ziliaskopoulos and Waller (43).  Ziliaskopoulos et al. 
(44) developed an Internet-based geographic information system (GIS) and incorporated 
it into the system framework.  This equipped VISTA with the unique feature of being 
accessed over the Internet via web browser, CORBA interface or Java GIS.  The feature 
eliminates the need for software installation/upgrade and allows users to conveniently 
access the consistent analysis without spatial limitation. 

4.3 Integration  
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The integration of CEMDAP and VISTA poses methodological and technical challenges.  
In the current section, we discuss how these challenges are addressed in the proposed 
approach. 

The ABM requires the LOS values (primarily travel time) as inputs to generate 
activity travel patterns.  However, it is possible that these input values do not correspond 
to the actual travel times.  Therefore, the activity patterns generated need to be translated 
into O-D matrices by time of day and loaded onto the network (through the DTA model) 
to produce the travel times.  This clearly highlights the necessity of an iterative procedure 
between the ABM and the DTA model.  An important consideration here would be to 
determine the convergence criterion to stop the iterations.  In the integrated model we 
generate trip tables that form the input to obtain the travel times and vice versa.  After 
every iteration, O-D matrices of the current and the previous iteration can be compared.  
Similarly travel time from the current and previous iterations can be compared.  
Potentially, two measures of convergence exist: (1) Trip table convergence and (2) Travel 
time convergence.  The convergence criterion is based on the attribute that is averaged 
after the iteration (with MSA techniques) and the attribute that needs to converge (across 
iterations).  In trip table convergence, travel time values are averaged after the iteration 
and trip table convergence is then checked, while in the trip table convergence, travel 
time and trip tables are used in the opposite roles.  If the average of difference is less than 
predefined stopping criterion, we stop the integration and treat the results as the 
converged solution.  To be specific, the equations employed to measure the convergence 
are outlined below: 

Let TT denotes the travel time, k denotes the current number of iterations, N denotes 
the total number of O-D pairs and NT denotes the number of trips.  We define: 

Average Travel Time for O-D = 111 −×
−

+× k
od

k
od TT

k
kTT

k
   (4.1) 

Average Difference of Trip (%) = 100||1 1

×
−

× ∑
∈

−

ODod
k

od

k
od

k
od

NT
NTNT

N
  (4.2) 

Average Trip for O-D = 111 −×
−

+× k
od

k
od NT

k
kNT

k
    (4.3) 

Average Difference of Travel Time (%) = 100||1 1

×
−

× ∑
∈

−

ODod
k

od

k
od

k
od

TT
TTTT

N
 (4.4) 

Based on the definitions of convergence described earlier, if we average travel times 
between O-D pairs (equation (4.1)), we employ difference of trips (equation (4.2)) as the 
convergence criterion.  If we average O-D trips (equation (4.3)) after the iteration, we use 
average difference in travel time (equation (4.4)) as the convergence criterion.  The final 
framework developed for the integration is presented in FIGURE 1.  The framework suits 
the application of both methods of convergence for integration of CEMDAP and VISTA. 

It should be noted here that although MSA is one of the most practical measures and 
drives the solution towards convergence, it is not without its share of limitations.  For 
instance, individual behaviors are averaged during the process and it does not guarantee 
convergence to the right point.  However, an important aspect of this research is to 
develop a conceptual structure and to find a pragmatic approach.  Advanced approaches 
such as gap function based methods should be developed for convergence and realistic 
behaviors in the future. 
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In addition to the conceptual challenges, we must address technical issues related to 
integration.  For the trip table convergence procedure, CEMDAP generates activity travel 
patterns in continuous time.  These activity patterns need to be converted into dynamic 
O-D matrices.  These matrices are provided to the VISTA framework to load the network 
with these trips.  Within VISTA, the network assignment undertakes traffic simulation, 
optimal routing and path assignment to obtain the traffic link volumes and speeds.  The 
travel times obtained from VISTA are appropriately processed and provided as input to 
CEMDAP (travel times are provided by time of day in CEMDAP).  With these new 
inputs CEMDAP generates new activity travel patterns.  These are again converted into 
O-D trip tables by time of day.  At this juncture, we check if the O-D trip tables generated 
in the current iteration are close to the O-D trip values generated in the last iteration.  If 
the O-D matrices converge, the process is terminated and the O-D trip tables with the 
corresponding link volumes and speeds are provided for analysis.  If the O-D matrices 
have not converged, the iteration continues.  The procedure highlighted, is very similar 
for the travel time convergence methodology. 

One more technical challenge is the communication between the CEMDAP and 
VISTA models.  CEMDAP is designed to work on a Windows platform while VISTA is 
designed to work on a Linux platform.  To effectively address this, the two modules 
installed on two separate machines are connected via a local area network.  The activity 
travel patterns generated from CEMDAP are converted to the dynamic O-D matrices, 
copied to Linux machine, and uploaded to VISTA’s PostgreSQL database.  The time of 
day LOS values generated from VISTA are copied to Windows machine and uploaded to 
CEMDAP’s PostgreSQL database.  The copy and uploading are implemented in Java 
programming language using Secure Shell protocol (SSH). 

5. NUMERICAL EXPERIMENTS 

The proposed integration is tested on two sample networks.  The demographic 
information required for CEMDAP is obtained by sampling the Dallas Fort Worth 
demographic data generated using SPG and CEMSELTS (refer to (36) for more details).   
The network data essential for VISTA are obtained by sampling data sets provided by 
North Central Texas Council of Government.    The running environment of VISTA is 
Linux with an Intel 3.00GHz CPU and 32 GB memory; while the environment of 
CEMDAP is Windows XP with Intel 3.4 GHz CPU and 2 GB memory. 

In the experiments, we employ two measures of convergence presented in previous 
section: (1) Trip table convergence and (2) Travel time convergence.  In addition to the 
convergence criterion we also adopt a maximum number of iterations based on the 
computational burden.  Further, in the current analysis we employ two different partitions 
of time of day for the purpose of the empirical analysis.  In the first category the entire 
day is treated as a single partition.  In the second category we split the day into five 
periods - AM peak (6:30-9:00), PM peak (16:00-18:30) and off peak periods (0:00-6:30, 
9:00-16:00 and 18:30-24).  It is evident that in the first category we do not differentiate 
between peak and off peak periods.  The travel times and trips obtained are averaged over 
each time period.  The empirical results are presented in the following subsections. 

5.1 Grid Network 
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The grid network presented in FIGURE 2 composes of 69 nodes/zones and 218 links.  
The total number of O-D pairs is 4,761 ( 6969× ).  The maximum iteration is set to 200 
for the experiments on this network.  On average, it takes about five hours to complete 
200 iterations for this network.  As the number of households, size of the network and 
total number of O-D pairs are relatively small, we set a strict convergence criterion for 
the analysis (convergence criterion is set to 0.0001%).  We conduct five experiments with 
this network.  The results are summarized in FIGURE 3 and FIGURE 4 respectively. 

5.1.1 Experiment 1: Single Time-interval and Trip Table Convergence 

For the first experiment, a single time-interval partition and trip table convergence 
are employed.  The computational results are summarized in the first chart of FIGURE 3.  
The test converges after 140 iterations.  The average differences of both the trip table and 
travel time are 0% in the end.  It can be observed from the figure that the average 
difference in the trip table falls rapidly in the initial stages of the iteration.  After the 10th 
iteration the average difference of trips remains below 5% until convergence.  Therefore, 
potentially choosing 5% of the average difference as the stopping criterion might be 
effective in practice. 

5.1.2 Experiment 2: Single Time-interval and Travel Time Convergence 

In the second test we employ a single time interval and travel time convergence.  
The results are summarized in the second chart in FIGURE 3. 

The test converges after iteration 76; the average difference of the trip table is 1.50% 
and the difference of travel time reaches 0% in the end.  The average trip difference 
decreases monotonously since we use the MSA-type of equation (4.3) to average trips.  
However, as can be seen from FIGURE 3, the average difference of travel time fluctuates 
significantly during the iterative process.  The average travel time difference does not 
drops below 5% until iteration 47.  Even after that, the difference oscillates in later 
iterations.  In this experimental setup, it would not be beneficial to adopt a relaxed 
convergence criterion to achieve convergence earlier.  It should be noted that if the 
convergent values were slightly perturbed at iteration 76, the iteration may start 
oscillating again.  This brings up a broader issue about convergence. Arriving at a stricter 
definition of convergence might allow us to address this issue. Currently, averaging travel 
time and trip table convergence in the first experiment is the appropriate convergence 
criterion. 

5.1.3 Experiment 3: Multiple time-intervals and Trip Table Convergence 

In the subsequent test, we employ multiple time-intervals and a trip table 
convergence criterion.  This test converges at iteration 64 (see the third chart of FIGURE 
3) while the average difference of both travel time and trips reach 0%.  Compared to the 
corresponding single time-interval case, the multiple time-intervals test converges faster; 
both in terms of CPU time and number of iterations (64 versus 140).  This is expected 
because partitioning the day allows for more accurate predictions of travel time thereby 
leading to smaller differences across iterations.  In a single time period case, peak and 
off-peak travel are averaged to arrive at the average time for the entire period.  However, 



Lin, Eluru, Waller and Bhat 

 

11

in the multiple time-intervals case different averages for different intervals are evaluated 
leading to better estimates of travel time. 

5.1.4 Experiment 4: Multiple Time-intervals and Travel Time Convergence 

In the next test, we still consider multiple time-interval case.  However, we use 
travel time convergence.  The test converges at iteration 34; the average difference of trip 
is 1.50% at the last iteration (see the fourth chart of FIGURE 3).  The difference of travel 
time reaches 0% in the end.  It can be observed that the fluctuation of average travel time 
difference is slightly larger than the fluctuation in Experiment 3.  However, fewer 
iterations are required for this process to converge.  Also, comparing with Experiment 2, 
the multiple time-interval case still converges faster than the single time-interval case.  
The same reasoning provided for the previous test applies here. 

From the experiments conducted we can make the following observations: (1) Trip 
table convergence results in a rapid fall in the trip table difference in the first few 
iterations, (2) Travel time convergence results in a slower initial drop in travel time 
difference but reaches final convergence in fewer iterations, (3) Partitioning the day into 
multiple time periods improves convergence for both means of convergence.  Based on 
these observations we employ multiple time intervals and trip table convergence for all 
subsequent tests. 

5.1.5 Experiment 5: Step-Size Tests 

In the following experiments, we examine the significance of step-sizes in 

convergence.  Instead of using the step size
k
1 in Equation (4.1), we use the fixed step size 

1, 5, 10 and 20 respectively.  The results are depicted in FIGURE 4. 
It can be seen from FIGURE 4, when the step size is small (1, 5 and 10), the 

integration does not converge before the maximum iteration is reached.  However, it 
converges when step size is increased to 20.  The test with step size of 20 converges at 
iteration 129 with 0.01% average difference of travel time and 0% average difference of 
trips.  The crucial role of step size in the convergence can be observed from these results.  
It is evident that only suitably chosen step sizes can lead to better convergence in the 
integrated modeling of transportation demand and transportation LOS measures. Also, 
from the figure it can be observed that large step size results in larger fluctuation of 
average trip table difference. 

5.2 Ring Roadway Network 

The second sample network FIGURE 5 is a grid network surrounded by a ring roadway 
system.  The network composes of 358 nodes/zones and 650 links. Only the households 
and trips generated within the network are considered in the numerical experiment.  To 
obtain the results within reasonable computational time, the maximum iteration is set to 
15 in this experiment. 

The CPU time required for 15 full-feedback iterations on this ring roadway network 
is 85 hours.  It should be noted that, both components of the framework have the 
capability for substantially scalable distribution.  However, distributed capabilities were 
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not employed for these tests to ease the technical aspects of integration.  The convergence 
of the ring roadway network test is presented in FIGURE 6. 

The average travel time difference is 319.96% at the first iteration and decreases to 
0.40% at iteration 15.  The average trip difference begins from 76.88% and decreases to 
3.75% at the end of the test.  The difference in trip table values reduces rapidly and 
reaches an acceptable value within 15 iterations.  Also, the difference across iteration is 
monotonously reducing and relatively stable. 

6. CONCLUSION 

The traditional trip-based approach to transportation modeling is plagued with numerous 
limitations.  This paper examines an alternative solution of predicting travel demand and 
supply by incorporating more behaviorally realistic methodologies.  The problem is 
formulated as a fixed point problem with a VI DTA constraint (equation (3.2)).  On the 
demand side, we employ ABM instead of trip-based approach for travel demand 
forecasting.  On the supply side, we apply behaviorally more realistic DTA instead of 
static traffic assignment.  In this paper, CEMDAP serves as the tool in the demand side 
analysis while VISTA is the tool for supply side analysis.  An integrated system is 
developed for combining the progress made in the two streams of research in a unified 
framework.  The technical, computational and practical issues involved in this demand-
supply integration problem have been extensively discussed. 

In particular, the paper examines the convergence properties of the unified tool 
towards modeling transportation demand and transportation LOS measures.  In the 
empirical application, we examine different criterion for convergence, different means of 
partitioning the day and influence of step size on the convergence.  From the results, it is 
evident that trip table convergence criterion, multiple time interval portioning and 
varying step size yield faster and more stable convergence results. 
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FIGURE 3: Convergence with Different Criteria 
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FIGURE 4: Convergence with Different Step Sizes 
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FIGURE 5: Ring Roadway Network 
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FIGURE 6: Multiple Time-intervals and Trip Table Convergence 

 


