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Abstract—We consider the problem of identifying the sparse
principal component of a rank-deficient matrix. We introduce
auxiliary spherical variables and prove that there exists a set
of candidate index-sets (that is, sets of indices to the nonzero
elements of the vector argument) whose size is polynomially
bounded, in terms of rank, and contains the optimal index-
set, i.e. the index-set of the nonzero elements of the optimal
solution. Finally, we develop an algorithm that computes the
optimal sparse principal component in polynomial time for any
sparsity degree.

I. INTRODUCTION

Principal component analysis (PCA) is a well studied, popu-
lar tool used for dimensionality reduction and low-dimensional
representation of data with applications spanning many fields
of science and engineering. Principal components (PC) of a
set of “observations” on some N variables capture orthog-
onal directions of maximum variance and offer a Euclidean-
distance-optimal, low-dimensional visualization that -for many
purposes- conveys sufficient amount of information. Without
additional constraints, the PCs of a data set can be computed
in polynomial time in N , using the eigenvalue decomposition.

One disadvantage of the classical PCA is that, in general, the
extracted eigenvectors are expected to have nonzero elements
in all their entries. However, in many applications sparse
vectors that maximize variance are more favorable. Sparse PCs
can be less complicated to interpret, easier to compress, and
cheaper to store. Thus, if the application requires it, then some
of the maximum variance property of a PC may be slightly
traded for sparsity. To mitigate the fact that PCA is oblivious
to sparsity requirements, an additional cardinality constraint
needs to be introduced to the initial variance maximization
objective. The sparsity aware flavor of PCA, termed sparse
PCA, inarguably comes at a higher cost: sparse PCA is an
NP-Hard problem [9].

To approximate sparse PCA various methods have been
introduced in the literature. Initially, factor rotation techniques
that extract sparse PCs were used in [7], [4]. Straightforward
thresholding of PCs was presented in [3] as a computationally
light means for obtaining sparsity. Then, a modified PCA
technique based on the LASSO was introduced in [5]. In [13]
an elaborate nonconvex regression-type optimization approach
combined with LASSO penalty was used to approximately

tackle the problem. A nonconvex technique, locally solv-
ing difference-of-convex-functions programs was presented
in [12]. Semidefinite programming (SDP) was used in [1],
[14], while [15] augmented the SDP approach with an extra
greedy step that offers favorable optimality guarantees under
certain sufficient conditions. The authors of [10] considered
greedy and branch-and-bound approaches, further explored in
[11]. Generalized power methods using convex programs were
also used to approximately solve sparse PCA [6]. A sparse-
adjusted deflation procedure was introduced in [8] and in
[2] optimality guarantees were shown for specific types of
covariance matrices under thresholding and SDP relaxations.

Our Contribution: In this work we prove that the sparse
principal component of a matrix C can be obtained in poly-
nomial time under a new sufficient condition: when C can be
written as a sum of a scaled identity matrix plus an update,
i.e. C = σIN + A, and the rank of the update A is not a
function of the problem size.1 Under this condition, we show
that sparse PCA is polynomially solvable, with the exponent
being only a linear function of the rank. This result is possible
after introducing auxiliary spherical variables that “unlock”
the low-rank structure of A. The low-rank property along with
the auxiliary variables enable us to scan a constant dimensional
space and identify a polynomial number of candidate sparse
vectors. Interestingly, we can show that the optimal vector
always lies among these candidates and a polynomial time
search can always retrieve it.

II. PROBLEM STATEMENT

We are interested in the computation of the real, unit-length,
and at most K-sparse principal component of the N × N
nonnegative definite matrix C, i.e.

xopt
4
= arg max

x∈SN
K

xT Cx (1)

where SN
K

4
=
{
x ∈ RN : ‖x‖ = 1, card(x) ≤ K

}
. Interest-

ingly, when C can be decomposed as a low-rank update of a
constant identity matrix, i.e. C = σIN + A where σ ∈ R, IN

is the N ×N identity, and A is a nonnegative definite matrix

1If σ = 0, then we simply have a low-rank matrix C.



with rank D, then xT Cx = σ‖x‖2 + xT Ax. Therefore, the
optimization (1) can always be rewritten as

xopt = arg max
x∈SN

K

xT Ax (2)

where the new matrix A has rank D. Since A is a nonnegative
definite matrix, it can be decomposed as A = VVT where
V

4
= [v1 v2 · · · vD] and problem (1) can be written as

xopt = arg max
x∈SN

K

xT VVT x = arg max
x∈SN

K

∥∥VT x
∥∥ . (3)

In the following, we show that when D is not a function of
N , (1) can be solved in time O (poly(N)).

III. RANK-1 AND RANK-2 OPTIMAL SOLUTIONS

Prior to presenting the main result for the general rank D
case, in this section we provide insights as to why sparse PCA
of rank deficient matrices can be solved in polynomial time,
along with the first nontrivial case of polynomial solvability
for rank-2 matrices A.

A. Rank-1: A motivating example

In this case, A has rank 1, V = v, and (3) becomes

xopt = arg max
x∈SN

K

∣∣vT x
∣∣ = arg max

x∈SN
K

∣∣∣∣∣
N∑

i=1

vixi

∣∣∣∣∣ . (4)

It is trivial to observe that maximizing (4) can be done by
distributing the K nonzero loadings of x to the K absolutely
largest values of v, indexed by set I . Then, the optimal
solution xopt has the following K nonzero loadings

xopt,I =
vI

‖vI ‖
. (5)

where xopt,I denotes the set of elements of xopt indexed by I
and xopt,i = 0 for all i /∈ I .

The leading complexity term of this solution is determined
by the search for the K largest element of v, which can
be done in time O(N) [16]. Therefore, the rank-1-optimal
solution can be attained in time that is linear in N .

B. Rank-2: Introducing spherical variables

In this case, V is an N × 2 matrix. A key tool used in
our subsequent developments is a set of auxiliary spherical
variables. For the rank-2 case, we introduce a single phase
variable φ ∈

(
−π

2 , π
2

]
and define the polar vector

c(φ)
4
=
[
sinφ
cos φ

]
(6)

which lies on the surface of a radius 1 circle. Then, from
Cauchy-Schwartz Inequality we obtain∣∣cT (φ)VT x

∣∣ ≤ ‖c(φ)‖‖VT x‖ = ‖VT x‖ (7)

with equality if and only if c(φ) is parallel to VT x. Therefore,
finding x that maximizes ‖VT x‖ in (3) is equivalent to
obtaining x of the (x, φ) pair that maximizes

∣∣cT (φ)VT x
∣∣.

Initially, this rewriting of the problem might seem unmoti-
vated, however in the following we show that the use of c(φ)

unlocks the low-rank structure of V and allows us to compute
the sparse PC of A by solving a polynomial number of rank-1
instances of the problem.

We continue by restating the problem in (3) as

max
x∈SN

K

‖VT x‖ = max
x∈SN

K

max
φ∈(−π

2 , π
2 ]

∣∣cT (φ)VT x
∣∣

= max
φ∈(−π

2 , π
2 ]

max
x∈SN

K

| cT (φ)VT︸ ︷︷ ︸
vT (φ)

x|. (8)

If we fix φ, then the internal maximization problem

max
x∈SN

K

∣∣vT (φ)x
∣∣ (9)

is a rank-1 instance, for which we can determine in time O(N)
the optimal index-set I (φ) corresponding to the indices of the
K absolutely largest elements of v(φ) = Vc(φ).

However, why should φ simplify the computation of a
solution? The intuition behind the polar vector concept is that
every element of

Vc(φ) =

 V1,1 sinφ + V1,2 cos φ
...

VN,1 sinφ + VN,2 cos φ

 (10)

is actually a continuous function of φ, i.e. a curve in φ.
Hence, the K absolutely largest elements of Vc(φ) at a
given point φ are functions of φ. Due to the continuity of
the curves, we expect that the index set I (φ) will retain the
same elements in an area “around” φ. Therefore, we expect
the formation of regions, or “cells” on the φ domain, within
which the indices of the K absolutely largest elements of
v(φ) remain unaltered. A sorting (i.e., an I -set) might change
when the sorting of the amplitudes of two element in v(φ)
changes. This occurs at points φ, where these two absolute
values become equal, that is, points where two curves intersect.
Finding all these intersection points, is sufficient to determine
cells and construct all possible candidate I -sets. Among all
candidate I -sets, lies the set of indices corresponding to the
optimal K-sparse PC. Exhaustively checking the I -sets of
all cells, suffices to retrieve the optimal. Surprisingly, the
number of these cells is exactly equal to number of possible
intersections among the amplitudes of v(φ), which is exactly
equal to 2

(
N
2

)
= O

(
N2
)
, counting all possible combinations

of element pairs and sign changes.
Before we proceed, in Fig. 1 we illustrate the cell partition-

ing of the φ domain, where we set N = 4 and K = 2 and
plot the magnitudes of the 4 curves that originate from the
4 rows of Vc(φ). Cells (intervals) are formed, within which
the sorting of the curves does not change. The borders of
cells are denoted by vertical dashed lines at points of curve
intersections. Our approach creates 12 cells which exceeds the
total number of possible index-sets, however this is not true for
greater values of N . Moreover, we use Ri regions to denote
the sorting changes with respect to only the K-largest curves.
These regions is an interesting feature that might yet decrease
the number of cells we need to check. However, due to lack
of space we are not exploiting this interesting feature here.
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Fig. 1. N = 4, K = 2, rank-2 case: Cells on the φ domain.

C. Algorithmic Developments and Complexity

Our goal is the construction of all possible candidate K-
sparse vectors, determined by the index-sets of each cell on
the φ domain. This is a two step process. First we need to
identify cell borders, and then we have to determine the index
sets associated with these cells.

Algorithmic Steps: We first determine all possible inter-
sections of curve pairs in v(φ). Any pair {i, j} of distinct
elements in v(φ) is associated with two intersections: vi(φ) =
vj(φ) and vi(φ) = −vj(φ). Solving these two equations with
respect to φ, determines a possible point where a new sorting
of the K-largest values of v(φ) might occur.

Observe that at an intersection point, the two values
vi(φ), vj(φ) are absolutely the same. Exactly on the point
of intersection, all but 2 (the ith and jth) coordinates of a
candidate K sparse vector can be determined by solving a
rank 1 instance of the problem. However, we are left with
ambiguity with respect to 2 coordinates i and j that needs
to be resolved. To resolve this ambiguity, we can visit the
“outermost” point of the φ domain, that is, π

2 . There, due to
the continuity of vi(φ) and ±vj(φ), the sortings within the two
cells defined by the two intersections, will be the identical,
or opposite sortings of vi

(
π
2

)
and ±vj

(
π
2

)
, depending on

whether vi(φ) and ±vj(φ) are both positive, or negative at
the intersection point, respectively.

Having described how to resolve ambiguities, we have fully
described a way to calculate the I -set at any intersection point.
Apparently, all intersection points, that is, all

(
N
2

)
pairwise

combinations of elements in v(φ), have to be examined to
yield a corresponding I -set.

Computational Complexity: A single intersection point can
be computed in time O(1). At a point of intersection, we have
to determine the K-th order element of the absolute values of
v(φ) and the K − 1 elements larger than that, which can be
done in time O(N). Resolving an ambiguity costs O(1). So
in total, finding a single I -set costs O(N). Constructing all
candidate I -sets requires examining all 2

(
N
2

)
points, implying

a total construction cost of 2
(
N
2

)
×O(N) = O

(
N3
)
.

IV. THE RANK-D OPTIMAL SOLUTION

In the general case, V is a N × D matrix. In this section
we present our main result where we prove that the problem
of identifying the K-sparse principal component of a rank-D
matrix is polynomially solvable if the rank D is not a function
of N . The statement is true for any value of K (that is, even
if K is a function of N ). Our result is presented in the form
of the following proposition. The rest of the section contains
a constructive proof of the proposition.

Proposition 1: Consider a N × N matrix C that can be
written as a rank-D update of the identity matrix, that is,

C = σIN + A (11)

where σ ∈ R and A is a rank-D symmetric positive semidef-
inite matrix. Then, for any K = 1, 2, . . . , N , the K-sparse
principal component of A that maximizes

xT Cx (12)

subject to the constraints ‖x‖ = 1 and card(x) ≤ K can be
obtained with complexity O(ND+1). 2

We begin our constructive proof by introducing the spherical
coordinates φ1, φ2, . . . , φD−1 ∈ (−π

2 , π
2 ] and defining the

spherical coordinate vector

φi:j
M= [φi, φi+1, . . . , φj ]

T
, (13)

the hyperpolar vector

c(φ1:D−1)
4
=



sinφ1

cos φ1 sinφ2

cos φ1 cos φ2 sinφ3

...
cos φ1 cos φ2 . . . sinφD−1

cos φ1 cos φ2 . . . cos φD−1


, (14)

and set Φ
4
=
(
−π

2 , π
2

]
. Then, similarly with (8) and due to

Cauchy-Schwartz Inequality, our optimization problem in (3)
is restated as

max
x∈SN

K

‖VT x‖ = max
x∈SN

K

max
φ1:D−1∈ΦD−1

∣∣xT Vc(φ1:D−1)
∣∣ . (15)

Hence, to find x that maximizes ‖VT x‖ in (3), we can equiv-
alently find the (x,φ) pair that maximizes

∣∣xT Vc(φ1:D−1)
∣∣.

We interchange the maximizations in (15) and obtain

max
x∈SN

K

‖VT x‖ = max
φ1:D−1∈ΦD−1

(
max
x∈SN

K

|xT Vc(φ1:D−1)︸ ︷︷ ︸
v′ (φ1:D−1)

|
)
.

(16)
For a given point φ1:D−1, Vc(φ1:D−1) is a fixed vector and
the internal maximization problem

max
x∈SN

K

∣∣xT Vc(φ1:D−1)
∣∣ = max

x∈SN
K

∣∣∣xT v
′
(φ1:D−1)

∣∣∣ (17)

is a rank-1 instance. That is, for any given point φ1:D−1,
we can determine the optimal set I (φ1:D−1) of the nonzero
elements of x as the set of the indices of the K largest
elements of vector |Vc(φ1:D−1)|.



To gain some intuition into the purpose of inserting
the second variable φ1:D−1, notice that every element of
±Vc(φ1:D−1) is actually a continuous function of φ1:D−1,
a D-dimensional hypersurface and so are the elements of
|Vc(φ1:D−1)|. When we sort the elements of |Vc(φ1:D−1)|
at a given point φ1:D−1, we actually sort the hypersurfaces
at point φ1:D−1 according to their magnitude. The key ob-
servation in our algorithm, is that due to the continuity of
the hypersurfaces in the ΦD−1 hypercube, we expect that in
an area “around” φ1:D−1 the hypersurfaces will retain their
magnitude-sorting. So we expect the formation of cells in the
ΦD−1 hypercube, within which the magnitude-sorting of the
hypersurfaces will remain unaltered, irrespectively of whether
the magnitude of each hypersurface changes. Moreover, even if
the sorting of the hypersurfaces changes at some point around
φ1:D−1 it is possible that the I does not change. So we expect
the formation of regions in the ΦD−1 hypercube which expand
over more than one cells and within which the I -set remains
unaltered, even if the sorting of the hypersurfaces changes.
If we can efficiently determine all these cells (or even better
regions) and obtain the corresponding I -sets, then the set of all
candidate index-sets may be significantly smaller than the set
of all

(
N
K

)
possible index-sets. Once all the candidate I -sets

have been collected, Iopt and xopt will be determined through
exhaustive search among the candidate sets.

In (17) we observed that at a given point φ1:D−1 the maxi-
mization problem resembles the rank-1 case and consequently,
the I -set at φ1:D−1 consists of the indices of the K largest
elements of |Vc(φ1:D−1)|. Motivated by this observation, we
define a labeling function I(·) that maps a point φ1:D−1 to an
index-set

I(VN×D;φ1:D−1)
M= arg max

I

∑
i∈I

|
(
Vc(φ1:D−1)

)
i
|. (18)

Then, each point φ1:D−1 ∈ ΦD−1 is mapped to a candidate
index-set and the optimal index-set Iopt belongs to

I tot(VN×D) M=
⋃

φ1:D−1∈ΦD−1

{
I(VN×D; φ1:D−1)

}
. (19)

In the following, we (i) show that the total
number of candidate index-sets is |I(VN×D)| ≤
bD−1

2 c∑
d=0

(
N

D − 2d

)(
D − 2d⌊
D
2

⌋
− d

)
2D−1−2d = O(ND) and

(ii) develop an algorithm for the construction of I(VN×D)
with complexity O(ND+1).

The labeling function is based on pair-wise comparisons
of the elements of Vc(φ1:D−1) while each element of
|VN×Dc(φ1:D−1)| is a continuous function of φ1:D−1, a D-
dimensional hypersurface, and any point φ1:D−1 is mapped
to an index-set I which is determined by comparing the
magnitudes of these hypersurfaces at φ1:D−1. Due to the
continuity of hypersurfaces, the index-set I does not change
in the “neighborhood” of φ1:D−1. A necessary condition for
the I set to change is two of the hypersurfaces to change their
magnitude ordering. The switching occurs at the intersection

of two hypersurfaces where we have
∣∣(Vc(φ1:D−1)

)
i

∣∣ =∣∣(Vc(φ1:D−1)
)
j

∣∣, i 6= j, which yields

φ1 = tan−1

(
−

(Vi,2:D ∓Vj,2:D)T c(φ2:D−1)
Vi,1 ∓Vj,1

)
. (20)

Functions φ1 = tan−1
(
− (Vi,2:D−Vj,2:D)T c(φ2:D−1)

Vi,1−Vj,1

)
and

φ1 = tan−1
(
− (Vi,2:D+Vj,2:D)T c(φ2:D−1)

Vi,1+Vj,1

)
determine (D−1)-

dimensional hypersurfaces S(Vi,: ; Vj,:) and S(Vi,: ; −Vj,:),
respectively. Each hypersurface partitions ΦD−1 into two
regions.

For convenience, in the following we use a pair {i, j} to
denote the rows of matrix VN×D, that originate hypersurface
S
(

i
|i|V|i|,: ;

j
|j|V|j|,:

)
. Moreover, we allow i and j to be

negative in order to encapsulate the information about the
sign with which each row participates in the generation of
hypersurface S, i.e.

{i, j} 7→ S

(
i

|i|
V|i|,: ;

j

|j|
V|j|,:

)
, (21)

where i, j ∈ {−N, . . . ,−1, 1, . . . , N}, |i| 6= |j|.
Let {i1, i2, . . . , iD} ⊂ {1, 2, . . . , N} where {i1, i2, . . . , iD}

is one among the
(
N
D

)
size-D subsets of {1, 2, . . . , N}.

Then, by keeping i1 fixed (where i1 is arbitrarily selected,
say i1 is the minimum among i1, i2, . . . , iD) and assign-
ing signs to i2, i3, . . . , iD we can generate 2D−1 sets of
the form {i1,±i2, . . . ,±iD}. Hence, we can create totally(
N
D

)
2D−1 such sets which we call J1, J2, . . . , J(N

D)2D−1 .
We can show (the proof is omitted due to lack of space)
that, for any l = 1, 2, . . . ,

(
N
D

)
2D−1, the

(
D
2

)
hypersurfaces

S
(

i
|i|V|i|,: ;

j
|j|V|j|,:

)
that we obtain for {i, j} ⊂ Jl have a

single common intersection point φ̂(Jl) which “leads” at most(
D
bD

2 c
)

cells. Each such cell is associated with an index-set in
the sense that I(VN×D;φ1:D−1) is maintained for all φ1:D−1

in the cell. In other words, the I -set associated with all points
φ1:D−1 in the interior of the cell is the same as the I -set at the
leading vertex. In fact, the actual sorting of |Vc(φ1:D−1)| for
all points in the interior of the cell is the same as the sorting
at the leading vertex and the I -set may characterize a greater
area that includes many cells. In addition, we can show that
examination of all such cells is sufficient for the computation
of all index-sets that appear in the partition of ΦD−1 and have
a leading vertex.

We collect all index-sets into I(VN×D) and observe that
I(VN×D) can only be a subset of the set of all possible

(
N
K

)
index-sets. In addition, since the cells are defined by a leading
vertex, we conclude that there are at most

(
N
D

)(
D
bD

2 c
)
2D−1

cells. We finally note that there exist cells that are not associ-
ated with an intersection-vertex. We can show that such cells
can be ignored unless they are defined when φD−2 = π

2 . In the
latter case, we just have to identify the cells that are determined
by the reduced-size matrix VN×(D−2) over the hypercube
ΦD−3. Hence, I tot(VN×D) = I(VN×D) ∪ I tot(VN×(D−2))



and, by induction,

I tot(VN×d) = I(VN×d) ∪ I tot(VN×(d−2)), 3 ≤ d ≤ D,

which implies that

I tot(VN×D)
= I(VN×D) ∪ I(VN×(D−2)) ∪ . . . ∪ I(VN×(D−2bD−1

2 c))

=
bD−1

2 c⋃
d=0

I(VN×(D−2d)). (22)

As a result, the cardinality of I tot(VN×D) is

|I tot(VN×D)|
≤ |I(VN×D)|+ |I(VN×(D−2))|+ . . . + |I(V

N×(D−2bD−1
2 c))|

≤
“N

D

”“ Dj
D
2

k”
2D−1 +

“ N

D − 2

”“ D − 2j
D
2

k
− 1

”
2D−3 + . . .

+
“ N

D − 2bD−1
2

c

”“ D − 2bD−1
2

cj
D
2

k
−

j
D−1

2

k”
2D−1−2bD−1

2 c

=

j
D−1

2

kX
d=0

“ N

D − 2d

”“ D − 2dj
D
2

k
− d

”
2D−1−2d = O(ND). (23)

It remains to show how I(VN×D) is constructed.
As already mentioned, there are in total

(
N
D

)
2D−1 inter-

section points which can all be blindly examined. For any
l = 1, 2, . . . ,

(
N
D

)
2D−1, the cell leading vertex φ̂(Jl) is

computed efficiently as the intersection of D−1 hypersurfaces,
i.e. the unique solution of Vi1, 1:D∓Vi2, 1:D

...
Vi1, 1:D∓ViD, 1:D

 c(φ1:D−1) = 0(D−1)×1, (24)

which is obtained in time O(1) with respect to N . After
φ̂(Jl) has been computed, we have to identify the index-sets
associated with the cells that originate at φ̂(Jl) by calling the
labeling function I(VN×D ; φ̂(Jl)) which marks the K ele-
ments of the I -set, i.e. the indices of the K largest elements of
|Vc(φ̂(Jl))|, l = 1, 2, . . . ,

(
N
D

)
2D−1. Since φ̂(Jl) constitutes

the intersection of D hypersurfaces that correspond to the D
elements of φ̂(Jl), the corresponding values in |Vc(φ̂(Jl))|
equal each other. If the K largest values in |Vc(φ̂(Jl))|
contain Dl values that correspond to the D elements of Jl,
then we can blindly examine all

(
D
Dl

)
cases of index-sets to

guarantee that all actual index-sets are included. The term
(

D
Dl

)
is maximized for Dl =

⌊
D
2

⌋
, hence at most

(
D
bD

2 c
)

index-sets

correspond to intersection point φ̂(Jl).
The complexity to build I(VN×D) results from the parallel

examination of
(
N
D

)
2D−1 intersection points while worst-

case complexity O(N) +
(

D
bD

2 c
)

is required at each point
for the identification of the corresponding index-sets. The
term O(N) corresponds to the cost required to determine
the Kth-order element of |Vc(φ̂(Jl))| in an unsorted array.
Consequently, the worst-case complexity to build I(VN×D)
becomes

(
N
D

)
2D−1×

(
O(N) +

(
D
bD

2 c
))

= O(ND+1). Finally,

we recall that the cardinality of I tot(VN×D) is upper bounded
by O(ND) and conclude that the overall complexity of our
algorithm for the evaluation of the sparse principal component
of VVT is upper bounded by O(ND+1).

V. CONCLUSIONS

We considered the problem of identifying the sparse prin-
cipal component of a rank-deficient matrix. We introduced
auxiliary spherical variables and proved that there exists a set
of candidate index-sets whose size is polynomially bounded,
in terms of rank, and contains the optimal index-set, i.e. the
index-set of the nonzero elements of the optimal solution.
Finally, we developed an algorithm that computes the optimal
sparse principal component in polynomial time. Our proposed
algorithm stands as a constructive proof that the computation
of the sparse principal component of a rank-deficient matrix
is a polynomially solvable problem.
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