
The Linux Development Platform

Configuring, Using, and Maintaining a 
Complete Programming Environment

9 780130 091154

99949
ISBN 013009115-4



 

B

 

RUCE

 

 P

 

ERENS

 

’ O

 

PEN

 

 S

 

OURCE

 

 S

 

ERIES

 

�

 

Implementing CIFS: The Common Internet File System

 

Christopher R. Hertel

 

�

 

Embedded Software Development with eCos

 

Anthony J. Massa

 

�

 

The Linux Development Platform: Configuring, Using, 
and Maintaining a Complete Programming 
Environment

 

Rafeeq Ur Rehman, Christopher Paul

 

elements from the cover to be added —
info to come from Jill and/or Mark

 

hp_perens_series.fm  Page 1  Monday, September 23, 2002  10:03 AM



SERIES PAGE INSERTS HERE



The Linux Development Platform

Configuring, Using, and Maintaining a 
Complete Programming Environment

Rafeeq Ur Rehman
Christopher Paul

Prentice Hall PTR
Upper Saddle River, New Jersey 07458

www.phptr.com



Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress.

Editorial/production supervision: Mary Sudul
Cover design director: Jerry Votta
Cover design: DesignSource
Manufacturing manager: Alexis Heydt-Long
Acquisitions editor: Jill Harry
Editorial assistant: Kate Wolf
Marketing manager: Dan DePasquale

© 2003 Pearson Education, Inc.
Publishing as Prentice Hall PTR
Upper Saddle River, New Jersey 07458

This material may be distributed only subject to the terms and conditions set forth in the Open 
Publication License, v1.0 or later (the latest version is presently available at 
<http://www.opencontent.org/openpub/>).

Prentice Hall books are widely used by corporations and government agencies for training, marketing, 
and resale.
The publisher offers discounts on this book when ordered in bulk quantities. For more information, 
contact Corporate Sales Department, Phone: 800-382-3419; FAX: 201-236-7141; 
E-mail: corpsales@prenhall.com
Or write: Prentice Hall PTR, Corporate Sales Dept., One Lake Street, Upper Saddle River, NJ 07458. 

Other product or company names mentioned herein are the trademarks or registered trademarks of their 
respective owners. 

All rights reserved. No part of this book may be
reproduced, in any form or by any means, 
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-009115-4

Pearson Education LTD. 
Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.
Pearson Education Canada, Ltd.
Pearson Educación de Mexico, S.A. de C.V.
Pearson Education — Japan 
Pearson Education Malaysia, Pte. Ltd.



To Asia, Afnan, and Faris for their love and support.
—Rafeeq Ur Rehman

To Cheryl, Rachel, and Sarah for the moral support and unending 
encouragement to complete this project. I’d be lost without you.

—Christopher Paul





C O N T E N T S
Acknowledgments xvii

 Chapter 1   Introduction to Software Development 1

1.1 Life Cycle of a Software Development Project 2
1.1.1 Requirement Gathering 2
1.1.2 Writing Functional Specifications 4
1.1.3 Creating Architecture and Design Documents 4
1.1.4 Implementation and Coding 5
1.1.5 Testing 6
1.1.6 Software Releases 8
1.1.7 Documentation 8
1.1.8 Support and New Features 9

1.2 Components of a Development System 10
1.2.1 Hardware Platform 10
1.2.2 Operating System 11
1.2.3 Editors 11
1.2.4 Compilers and Assemblers 12
1.2.5 Debuggers 12
1.2.6 Version Control Systems 12
1.2.7 E-mail and Collaboration 13
vii



viii Contents
1.2.8 X-Windows 13
1.3 Selection Criteria for Hardware Platform 13
1.4 Selection Criteria for Software Development Tools 14
1.5 Managing Development Process 14

1.5.1 Creating Deadlines 14
1.5.2 Managing the Development Team 15
1.5.3 Resolving Dependencies 15

1.6 Linux Development Platform Specifications (LDPS) and Linux 
Standard Base (LSB) 15

1.6.1 Libraries 15
1.6.2 Current Contributors to LSB 16

1.7 References 16

 Chapter 2   Working With Editors 17

2.1 What to Look for in an Editor 17
2.1.1 Extensibility 17
2.1.2 Understanding Syntax 18
2.1.3 Tag Support 18
2.1.4 Folding Code 18

2.2 Emacs 18
2.2.1 Using Emacs 19
2.2.2 Basic Emacs Concepts 20
2.2.3 Using Buffers and Windows 24
2.2.4 Language Modes 26
2.2.5 Using Tags 27
2.2.6 Compiling 30
2.2.7 Xemacs 32

2.3 Jed 32
2.3.1 Configuring Jed 33
2.3.2 Using Jed 34
2.3.3 Folding Code 35

2.4 VIM 37
2.4.1 VIM Concepts 38
2.4.2 Basic Editing 38
2.4.3 Using Tags with VIM 41
2.4.4 Folding Code 42

2.5 References and Resources 42



Contents ix
 Chapter 3   Compilers and Assemblers 43

3.1 Introduction to GNU C and C++ Compilers 44
3.1.1 Languages Supported by GCC 44
3.1.2 New Features in GCC 3.x 46

3.2 Installing GNU Compiler 48
3.2.1 Downloading 48
3.2.2 Building and Installing GCC 48
3.2.3 Environment Variables 54
3.2.4 Post-Installation Tasks 56
3.2.5 What Not to Do when Installing Development Tools 58

3.3 Compiling a Program 58
3.3.1 Simple Compilation 59
3.3.2 Default File Types 60
3.3.3 Compiling to Intermediate Levels 61
3.3.4 Compilation with Debug Support 63
3.3.5 Compilation with Optimization 64
3.3.6 Static and Dynamic Linking 65
3.3.7 Compiling Source Code for Other Languages 66
3.3.8 Summary of gcc Options 70

3.4 Linking a program 91
3.5 Assembling a Program 91
3.6 Handling Warning and Error messages 92
3.7 Include files 92
3.8 Creating Libraries 92
3.9 Standard Libraries 93

3.10 Compiling Pascal Programs 94
3.10.1 Using Free Pascal (fpc) 95
3.10.2 Using GNU Pascal 96

3.11 Compiling Fortran Programs 96
3.12 Other Compilers 98

3.12.1 Smalltalk 98
3.12.2 Oberon 98
3.12.3 Ruby 98

3.13 References and Resources 98

 Chapter 4   Using GNU make 101

4.1 Introduction to GNU make 102
4.1.1 Basic Terminology 103



x Contents
4.1.2 Input Files 105
4.1.3 Typical Contents of a Makefile 106
4.1.4 Running make 108
4.1.5 Shell to Execute Commands 109
4.1.6 Include Files 109

4.2 The make Rules 110
4.2.1 Anatomy of a Rule 110
4.2.2 A Basic Makefile 111
4.2.3 Another Example of Makefile 113
4.2.4 Explicit Rules 118
4.2.5 Implicit Rules 118

4.3 Using Variables 119
4.3.1 Defining Variables 120
4.3.2 Types of Variables 120
4.3.3 Pre-Defined Variables 121
4.3.4 Automatic Variables 121

4.4 Working with Multiple Makefiles and Directories 122
4.4.1 Makefile in The Top Directory 123
4.4.2 Makefile in common-dir Directory 125
4.4.3 Makefile in the ftp-dir Directory 126
4.4.4 Makefile in the tftp-dir Directory 127
4.4.5 Makefile in the dns-dir Directory 127
4.4.6 Building Everything 128
4.4.7 Cleaning Everything 129
4.4.8 Making Individual Targets 129

4.5 Special Features of make 130
4.5.1 Running Commands in Parallel 130
4.5.2 Non-Stop Execution 130

4.6 Control Structures and Directives 131
4.6.1 The ifeq Directive 132
4.6.2 The ifneq Directive 132
4.6.3 The ifdef Directive 132
4.6.4 The ifndef Directive 133
4.6.5 The for Control Structure 133

4.7 Getting the Latest Version and Installation 133
4.7.1 Compilation 133



Contents xi
4.7.2 Installation 134
4.8 References and Resources 134

 Chapter 5   Working with GNU Debugger 135

5.1 Introduction to GDB 136
5.2 Getting Started with GDB 136

5.2.1 Most Commonly Used gdb Commands 137
5.2.2 A Sample Session with gdb 138
5.2.3 Passing Command Line Arguments to the Program

Being Debugged 141
5.3 Controlling Execution 144

5.3.1 The step and finish Commands 144
5.4 Working with the Stack 146
5.5 Displaying Variables 151

5.5.1 Displaying Program Variables 151
5.5.2 Automatic Displaying Variables with Each Command 153
5.5.3 Displaying Environment Variables 154
5.5.4 Modifying Variables 155

5.6 Adding Break Points 156
5.6.1 Continuing from Break Point 158
5.6.2 Disabling Break Points 159
5.6.3 Enabling Break Points 159
5.6.4 Deleting Break Points 160

5.7 Debugging Optimized Code 160
5.8 Files and Shared Libraries 163
5.9 Using gdb With GNU Emacs 164

5.10 Debugging Running Processes 165
5.11 Installing GDB 168

5.11.1 Downloading and Building 168
5.11.2 Final Installation 168

5.12 Other Open Source Debuggers 169
5.12.1 The kdbg Debugger 169
5.12.2 The ddd Debugger 172
5.12.3 The xxgdb Debugger 173

5.13 References and Resources 174



xii Contents
 Chapter 6   Introduction to CVS 175

6.1 CVS Policies 176
6.2 Project Management and Communication 176
6.3 Installing and Managing CVS 176

6.3.1 Configuring CVS 177
6.3.2 Importing a Project into the Repository 179

6.4 Using the CVS Client 180
6.4.1 Local Repositories 181
6.4.2 Remote Repositories 182
6.4.3 Checking out a Project 182
6.4.4 Finding the Status of a Project 183
6.4.5 Finding Differences 184
6.4.6 Resolving Conflicts 185
6.4.7 Checking the Project Back In 186
6.4.8 Adding Files to a Project 186
6.4.9 Removing Files from a Project 187

6.4.10 Renaming Files within a Project 188
6.4.11 Removing your Working Copy 188
6.4.12 Tags and Releases 189

6.5 Introduction to jCVS 190
6.5.1 System Requirements 190
6.5.2 Installation Instructions 190
6.5.3 Using jCVS 191

6.6 Using Emacs with CVS 196
6.6.1 Installing pcl-cvs 197
6.6.2 Using pcl-cvs 197

6.7 Secure remote access with CVS 199
6.7.1 Secure Shell Access 199

6.8 References and Resources 201

 Chapter 7   Miscellaneous Tools 203

7.1 Using indent Utility 204
7.1.1 Getting Started with Indent 205
7.1.2 Selecting Coding Styles 206
7.1.3 Blank Lines and Comments 209
7.1.4 Formatting Braces 210
7.1.5 Formatting Declarations 211



Contents xiii
7.1.6 Breaking Long Lines 212
7.1.7 Summary of Options 213

7.2 Using sed Utility 215
7.3 Using diff Utility 215

7.3.1 Other Forms of diff Utility 218
7.4 Using cscope and cbrowser 219
7.5 Generating C Function Prototypes from C Source Code

Using cproto 222
7.6 Using ltrace and strace Utilities 223
7.7 Using GNU Binary Utilities 226

7.7.1 Using the ar Utility 226
7.7.2 Using the ranlib Utility 228
7.7.3 Using the nm Utility 228
7.7.4 Using the strip Utility 231
7.7.5 Using the objcopy Utility 231
7.7.6 Using the objdump Utility 232
7.7.7 Using the size Utility 236
7.7.8 Using the strings Utility 237
7.7.9 Using the addr2line Utility 237

7.8 Using the ldd Utility 238
7.9 References and Resources 238

 Chapter 8   Cross-Platform and Embedded Systems Development 239

8.1 Introduction to the Cross-Platform Development Process 240
8.1.1 Host Machine 240
8.1.2 Target Machine 240
8.1.3 Native and Cross Compilers 241
8.1.4 Cross Platform Development Cycle 241

8.2 What are Embedded Systems? 243
8.2.1 Embedded Systems and Moving Parts 244
8.2.2 Embedded Systems and Power Consumption 245
8.2.3 Embedded Operating Systems 245
8.2.4 Software Applications for Embedded Systems 246

8.3 How Development Systems Differ for Embedded Systems 246
8.3.1 Knowledge of Target System Hardware 246
8.3.2 Is the Target System Real-Time? 247



xiv Contents
8.3.3 Testing Methodology 247
8.4 Cross Compilations 247

8.4.1 Software Emulators 248
8.4.2 In-circuit emulators 249
8.4.3 Introduction to JTAG and BDM 249

8.5 Connecting to Target 250
8.5.1 Using gdbserver with GNU Debugger 250
8.5.2 Attaching to a Running Process Using gdbserver 255
8.5.3 Using Stubs with GNU Debugger 256
8.5.4 Debugging the Debug Session 256

8.6 Hardware Used for Cross Platform and Embedded Systems
Development 258

8.6.1 Arcom SBC-GX1 Board 258
8.6.2 Artesyn PM/PPC Mezzanine Card 260

8.7 References 261

 Chapter 9   Platform Independent Development with Java 263

9.1 How Java Applications Work 264
9.1.1 Java Compiler 264
9.1.2 Java Virtual Machine 264

9.2 Kaffe 264
9.3 The Jboss Java Development System 266
9.4 Java 2 SDK 267

9.4.1 Java 2 SDK Standard Edition 267
9.4.2 Getting and Installing Java SDK from Sun 269
9.4.3 Creating jar Files 269

9.5 Building Java Applications 270
9.5.1 Creating Source Code File 270
9.5.2 Compiling Java Code 270
9.5.3 Running Java Applications 271
9.5.4 Using gcj to Build Java Applications 271

9.6 Building Applets 271
9.7 Testing Applets with Netscape 272
9.8 Jikes for Java 272
9.9 Miscellaneous 274

9.9.1 Embedded Java 274
9.9.2 Real Time Java 274



Contents xv
9.9.3 Wireless Applications 275
9.10 References 275

 Appendix A   Typical Hardware Requirements for a Linux 
Development Workstation 277

Index 283





P R E F A C E
Setting up a complete development environment using open source tools has always
been a challenging task. Although all of the development tools are available in the open source,
no comprehensive development environment exists as of today. This book is an effort to enable
the reader to set up and use open source to create such an environment. Each chapter of the book
is dedicated to a particular component of the development environment.

Chapter 1 provides an introduction to the practical software development life cycle and
stages. The chapter also provides information about the documentation required for all serious
software development projects. Guidelines are provided about criteria for selecting hardware
and software platforms.

Chapter 2 is about using editors. Editors are essential components of any software devel-
opment system. Selection of a good editor saves time and money in the development life cycle.
This chapter provides information about commonly used editors like Emacs, Jed and vim (vi
Improved).

Chapter 3 is about the GNU set of compilers commonly known as GCC. The procedure
for installation and use of gcc with different languages is presented here.

Larger software projects contain hundreds or thousands of files. Compiling these files in
an orderly fashion and then building the final executable product is a challenging task. GNU
make is a tool used to build a project by compiling and linking source code files. Chapter 4 pro-
vides information on how to install and use this important tool.

Chapter 5 discusses debuggers. An introduction to commonly used debuggers is provided
in this chapter with an emphasis on the GNU debugger gdb.

Chapter 6 introduces CVS, which is the open source revision control system and is most
widely used in open source development. Setting up a CVS server is detailed in this chapter. You
will learn how to use remote the CVS server in a secure way.

There are tools other than compilers, debuggers and editors. These tools are discussed in
Chapter 7. These tools help in building good products.
xvii



xviii Preface
Open source tools are also widely used in embedded and cross-platform development.
Chapter 8 provides information using open source tools in such environments. Remote debug-
ging is an important concept and it is explained in this chapter.

Chapter 9 is the last chapter of the book and it provides a basic introduction to open source
Java development.

There is one important thing that you must keep in mind while reading this book. It is not
a tutorial on any language or programming techniques. It is about development tools and how to
use these. You need other books to learn programming languages and techniques.

The book explains the installation procedures of different tools. By the time you read this
book, new versions of these tools may be available. The installation procedures will not vary
drastically in these versions and you can use the steps explained in this book. In fact, most of the
open source tools employ the same compiling and installation procedure that you will note in
this book. This process has been consistent and is expected to remain the same in future as well.

After reading this book, we are very much hopeful that the reader will be able to under-
stand different components of a development system. You will also be able to create such a sys-
tem from scratch using open source tools.

Rafeeq Ur Rehman
Christopher Paul



A B O U T  T H E  CD
This book comes with a CD-ROM. The CD-ROM contains source code of all soft-
ware and utilities used in this book. You can compile and install these tools as explained in this
book. If you need latest versions of these tools, you can download these from the links provided
in the book.
xix





xvii

A CK N O W L E D G M E N T S

This is my third book and I have been very fortunate to get help from many people around
me in all of these projects. Professor Shahid Bokhari at the University of Engineering and Tech-
nology Lahore, Pakistan, provided valuable suggestions while I was creating table of contents
for this book. In fact he proposed a mini table of contents about what should be included in the
book to make it useful both for the developers and students of computer science and engineer-
ing. I am grateful for his continued support.

Mike Schoenborn, Amgad Fahmy, and Greg Ratcliff at Peco II Inc. continuously encour-
aged me during the time I was writing the manuscript and I am thankful to all of them. I am also
thankful to Victor Kean for providing his life experiences both in real social life and software
development.

I am also thankful to Jill Harry and Mary Sudul at Prentice Hall PTR for bearing with me
and pushing me to meet deadlines which really helped bring this book to the market in time.

Drew Streib did a great job in reviewing the manuscript and giving very useful suggestions
to improve it. Thanks Drew.

Jim Shappell at Arcom Control Systems provided x86 based board for testing embedded
development examples and remote debugging. Cole Creighton at Artesyn Communication Prod-
ucts provided PowerPC based board for cross-platform development testing purpose. I am
thankful to both of them for their help in developing the manuscript of this book.



xviii Acknowledgments

Bruce Parens gave valuable suggestions about what to include in the book. He also agreed
to print the book under his Open Source Series. I was excited to get his approval and I am thank-
ful to him.

And I am thankful to the open source community all over the world for putting such a
huge effort to build these open source tools. This book exists only because of the open source
products and tools.

Above all, I am thankful to my father, who taught me how to read and write and work
hard.

Rafeeq Ur Rehman
September 25, 2002



C H A P T E R 1
Introduction to 
Software 
Development
oftware development is a complicated process. It requires careful
planning and execution to meet the goals. Sometimes a developer

must react quickly and aggressively to meet everchanging market
demands. Maintaining software quality hinders fast-paced software devel-
opment, as many testing cycles are necessary to ensure quality products.

This chapter provides an introduction to the software development pro-
cess. As you will learn, there are many stages of any software develop-
ment project. A commercial software product is usually derived from
market demands. Sales and marketing people have first-hand knowledge
of their customers’ requirements. Based upon these market requirements,
senior software developers create an architecture for the products along
with functional and design specifications. Then the development process
starts. After the initial development phase, software testing begins, and
many times it is done in parallel with the development process. Documen-
tation is also part of the development process because a product cannot be
brought to market without manuals. Once development and testing are
done, the software is released and the support cycle begins. This phase
may include bug fixes and new releases.

After reading this chapter, you should understand how software develop-
ment is done and the components of a software development system. At

S

1



2 Chapter 1  •  Introduction to Software Development
the end of the chapter, you will find an introduction to Linux Standard
Base. This chapter is not specific to a particular hardware platform or
tools. You will start learning about components of an actual software
development platform in the next chapter.

1.1 Life Cycle of a Software Development Project

Software development is a complicated process comprising many stages. Each stage requires a
lot of paperwork and documentation in addition to the development and planning process. This
is in contrast to the common thinking of newcomers to the software industry who believe that
software development is just “writing code.” Each software development project has to go
through at least the following stages:

• Requirement gathering
• Writing functional specifications
• Creating architecture and design documents
• Implementation and coding
• Testing and quality assurance
• Software release
• Documentation
• Support and new features

Figure 1-1 shows a typical development process for  a new product.
There may be many additional steps and stages depending upon the nature of the software

product. You may have to go through multiple cycles during the testing phase as software testers
find problems and bugs and developers fix them before a software product is officially released.
Let us go into some detail of these stages.

1.1.1 Requirement Gathering

Requirement gathering is usually the first part of any software product. This stage starts
when you are thinking about developing software. In this phase, you meet customers or prospec-
tive customers, analyzing market requirements and features that are in demand. You also find out
if there is a real need in the market for the software product you are trying to develop.

In this stage, marketing and sales people or people who have direct contact with the cus-
tomers do most of the work. These people talk to these customers and try to understand what
they need. A comprehensive understanding of the customers’ needs and writing down features of
the proposed software product are the keys to success in this phase. This phase is actually a base
for the whole development effort. If the base is not laid correctly, the product will not find a
place in the market. If you develop a very good software product which is not required in the
market, it does not matter how well you build it. You can find many stories about software prod-
ucts that failed in the market because the customers did not require them. The marketing people



Life Cycle of a Software Development Project 3
usually create a Marketing Requirement Document or MRD that contains formal data represen-
tation of market data gathered.

Spend some time doing market research and analysis. Consider your competitors’ prod-
ucts (if any), a process called competitive analysis. List the features required by the product. You
should also think about the economics of software creation at this point. Is there a market? Can I
make money? Will the revenue justify the cost of development? 

Market research

Product
requirements

Product architecture and
functional specifications

Product Design

Coding and
implementation

Testing and
quality assurance

Software release

New featuresBug fixes

Support

Customer

Create functional specification

Add new features to existing product

Figure 1-1 Typical processes for software development projects.



4 Chapter 1  •  Introduction to Software Development
1.1.2 Writing Functional Specifications

Functional specifications may consist of one or more documents. Functional specification
documents show the behavior or functionality of a software product on an abstract level. Assum-
ing the product is a black box, the functional specifications define its input/output behavior.
Functional specifications are based upon the product requirements documentation put forward
by people who have contact with the enduser of the product or the customers.

In larger products, functional specifications may consist of separate documents for each
feature of the product. For example, in a router product, you may have a functional specification
document for RIP (Routing Information Protocol), another for security features, and so on.

Functional specifications are important because developers use them to create design doc-
uments. The documentation people also use them when they create manuals for end users. If dif-
ferent groups are working in different physical places, functional specifications and architecture
documents (discussed next) are also a means to communicate among them. Keep in mind that
sometimes during the product development phase you may need to amend functional specifica-
tions keeping in view new marketing requirements.

1.1.3 Creating Architecture and Design Documents

When you have all of the requirements collected and arranged, it is the turn of the techni-
cal architecture team, consisting of highly qualified technical specialists, to create the architec-
ture of the product. The architecture defines different components of the product and how they
interact with each other. In many cases the architecture also defines the technologies used to
build the product. While creating the architecture documents of the project, the team also needs
to consider the timelines of the project. This refers to the target date when the product is required
to be on the market. Many excellent products fail because they are either too early or late to mar-
ket. The marketing and sales people usually decide a suitable time frame to bring the product to
market. Based on the timeline, the architecture team may drop some features of the product if it
is not possible to bring the full-featured product to market within the required time limits.

Once components of the product have been decided and their functionality defined, inter-
faces are designed for these components to work together. In most cases, no component works in
isolation; each one has to coordinate with other components of the product. Interfaces are the
rules and regulations that define how these components will interact with each other. There may
be major problems down the road if these interfaces are not designed properly and in a detailed
way. Different people will work on different components of any large software development
project and if they don’t fully understand how a particular component will communicate with
others, integration becomes a major problem.

For some products, new hardware is also required to make use of technology advance-
ments. The architects of the product also need to consider this aspect of the product.

After defining architecture, software components and their interfaces, the next phase of
development is the creation of design documents. At the architecture level, a component is
defined as a black box that provides certain functionality. At the design documents stage, you



Life Cycle of a Software Development Project 5
have to define what is in that black box. Senior software developers usually create design docu-
ments and these documents define individual software components to the level of functions and
procedures. The design document is the last document completed before development of the
software begins. These design documents are passed on to software developers and they start
coding. Architecture documents and MRDs typically need to stay in sync, as sales and market-
ing will work from MRDs while engineering works from engineering documents.

1.1.4 Implementation and Coding

The software developers take the design documents and development tools (editors, com-
pilers, debuggers etc.) and start writing software. This is usually the longest phase in the product
life cycle. Each developer has to write his/her own code and collaborate with other developers to
make sure that different components can interoperate with each other. A revision control system
such as CVS (Concurrent Versions System) is needed in this phase. There are a few other open
source revision control systems as well as commercial options. The version control system pro-
vides a central repository to store individual files. A typical software project may contain any-
where from hundreds to thousands of files. In large and complex projects, someone also needs to
decide directory hierarchy so that files are stored in appropriate locations. During the develop-
ment cycle, multiple persons may modify files. If everyone is not following the rules, this may
easily break the whole compilation and building process. For example, duplicate definitions of
the same variables may cause problems. Similarly, if included files are not written properly, you
can easily cause the creation of loops. Other problems pop up when multiple files are included in
a single file with conflicting definitions of variables and functions.

Coding guidelines should also be defined by architects or senior software developers. For
example, if software is intended to be ported to some other platform as well, it should be written
on a standard like ANSI.

During the implementation process, developers must write enough comments inside the
code so that if anybody starts working on the code later on, he/she is able to understand what has
already been written. Writing good comments is very important as all other documents, no mat-
ter how good they are, will be lost eventually. Ten years after the initial work, you may find only
that information which is present inside the code in the form of comments.

Development tools also play an important role in this phase of the project. Good develop-
ment tools save a lot of  time for the developers, as well as saving money in terms of improved
productivity. The most important development tools for time saving are editors and debuggers. A
good editor helps a developer to write code quickly. A good debugger helps make the written
code operational in a short period of time. Before starting the coding process, you should spend
some time choosing good development tools.

Review meetings during the development phase also prove helpful. Potential problems are
caught earlier in the development. These meeting are also helpful to keep track of whether the
product is on time or if more effort is needed complete it in the required time frame. Sometimes
you may also need to make some changes in the design of some components because of new



6 Chapter 1  •  Introduction to Software Development
requirements from the marketing and sales people. Review meetings are a great tool to convey
these new requirements. Again, architecture documents and MRDs are kept in sync with any
changes/problems encountered during development.

1.1.5 Testing

Testing is probably the most important phase for long-term support as well as for the repu-
tation of the company. If you don’t control the quality of the software, it will not be able to com-
pete with other products on the market. If software crashes at the customer site, your customer
loses productivity as well money and you lose credibility. Sometimes these losses are huge.
Unhappy customers will not buy your other products and will not refer other customers to you.
You can avoid this situation by doing extensive testing. This testing is referred to as Quality
Assurance, or QA, in most of the software world.

Usually testing starts as soon as the initial parts of the software are available. There are
multiple types of testing and these are explained in this section. Each of these has its own
importance.

1.1.5.1 Unit Testing
Unit testing is testing one part or one component of the product. The developer usually

does this when he/she has completed writing code for that part of the product. This makes sure
that the component is doing what it is intended to do. This also saves a lot of time for software
testers as well as developers by eliminating many cycles of software being passed back and forth
between the developer and the tester.

When a developer is confident that a particular part of the software is ready, he/she can
write test cases to test functionality of this part of the software. The component is then for-
warded to the software testing people who run test cases to make sure that the unit is working
properly.

1.1.5.2 Sanity Testing
Sanity testing is a very basic check to see if all software components compile with each

other without a problem. This is just to make sure that developers have not defined conflicting or
multiple functions or global variable definitions.

1.1.5.3 Regression or Stress Testing
Regression or stress testing is a process done in some projects to carry out a test for a

longer period of time. This type of testing is used to determine behavior of a product when used
continuously over a period of time. It can reveal some bugs in software related to memory leak-
age. In some cases developers allocate memory but forget to release it. This problem is known as
memory leakage. When a test is conducted for many days or weeks, this problem results in allo-
cation of all of the available memory until no memory is left. This is the point where your soft-
ware starts showing abnormal behavior.



Life Cycle of a Software Development Project 7
Another potential problem in long-term operation is counter overflow. This occurs when
you increment a counter but forget to decrement, it resulting in an overflow when the product is
used for longer periods.

The regression testing may be started as soon as some components are ready. This testing
process requires a very long period of time by its very nature. The process should be continued
as more components of the product are integrated. The integration process and communication
through interfaces may create new bugs in the code.

1.1.5.4 Functional Testing
Functional testing is carried out to make sure that the software is doing exactly what it is

supposed to do. This type of testing is a must before any software is released to customers. Func-
tional testing is done by people whose primary job is software testing, not the developers them-
selves. In small software projects where a company can’t afford dedicated testers, other
developers may do functional testing also. The key point to keep in mind is that the person who
wrote a software component should not be the person who tested it. A developer will tend to test
the software the way he/she has written it. He/she may easily miss any problems in the software.

The software testers need to prepare a testing plan for each component of the software. A
testing plan consists of test cases that are run on the software. The software tester can prepare
these test cases using functional specifications documents. The tester may also get help from the
developer to create test cases. Each test case should include methodology used for testing and
expected results.

In addition to test cases, the tester may also need to create a certain infrastructure or envi-
ronment to test the functionality of a piece of code. For example, you may simulate a network to
test routing algorithms that may be part of a routing product.

The next important job of the tester is to create a service request if an anomaly is found.
The tester should include as much information in the service request as possible. Typical infor-
mation included in reporting bugs includes:

• Test case description
• How the test was carried out
• Expected results
• Results obtained
• If a particular environment was created for testing, a description of that environment

The service request should be forwarded to the developer so that the developer may cor-
rect the problem. Many software packages are available in the market to track bugs and fix prob-
lems in software. There are many web-based tools as well. For a list of freely available open
source projects, go to http://www.osdn.org or http://www.sourceforge.net and search for “bug
track”. OSDN (Open Source Developers Network) hosts many open source software develop-
ment projects. You can find software packages that work with CVS also. CVS is explained in
Chapter 6 of this book.



8 Chapter 1  •  Introduction to Software Development
1.1.6 Software Releases

Before you start selling any software product, it is officially released. This means that you
create a state of the software in your repository, make sure that it has been tested for functional-
ity and freeze the code. A version number is assigned to released software. After releasing the
software, development may continue but it will not make any change in the released software.
The development is usually carried on in a new branch and it may contain new features of the
product. The released software is updated only if a bug fixed version is released.

Usually companies assign incremental version numbers following some scheme when the
next release of the software is sent to market. The change in version number depends on whether
the new software contains a major change to the previous version or it contains bug fixes and
enhancement to existing functionality. Releases are also important because they are typically
compiled versions of a particular version of the code, and thus provide a stable set of binaries for
testing.

1.1.6.1 Branches
In almost all serious software development projects, a revision or version control system is

used. This version control system keeps a record of changes in source code files and is usually
built in a tree-like structure. When software is released, the state of each file that is part of the
release should be recorded. Future developments are made by creating branches to this state.
Sometimes special branches may also be created that are solely used for bug fixing. CVS is dis-
cussed in detail in Chapter 6.

1.1.6.2 Release Notes
Every software version contains release notes. These release notes are prepared by people

releasing the software version with the help of developers. Release notes show what happened in
this software version. Typically the information includes:

• Bug fixes
• New functionality
• Detail of new features added to the software
• Any bugs that are not yet fixed
• Future enhancements
• If a user needs a change in the configuration process, it is also mentioned in the release

notes

Typically a user should be given enough information to understand the new release
enhancements and decide whether an upgrade is required or not.

1.1.7 Documentation

There are three broad categories of documentation related to software development pro-
cesses.



Life Cycle of a Software Development Project 9
1. Technical documentation developed during the development process. This includes
architecture, functional and design documents.

2. Technical documentation prepared for technical support staff. This includes technical
manuals that support staff use to provide customer support.

3. End-user manuals and guides. This is the documentation for the end user to assist the
user getting started with the product and using it.

All three types of documents are necessary for different aspects of product support. Tech-
nical documents are necessary for future development, bug fixes, and adding new features. Tech-
nical documentation for technical support staff contains information that is too complicated for
the end user to understand and use. The support staff needs this information in addition to user
manuals to better support customers. Finally each product must contain user manuals.

Technical writers usually develop user manuals which are based on functional specifica-
tions. In the timelines of most software development projects, functional specifications are pre-
pared before code development starts. So the technical writers can start writing user manuals
while developers are writing code. By the time the product is ready, most of the work on user
manuals has already been completed.

1.1.8 Support and New Features

Your customers need support when you start selling a product. This is true regardless of
the size of the product, and even for products that are not software related. Most common sup-
port requests from customers are related to one of the following:

• The customer needs help in installation and getting started.
• The customer finds a bug and you need to release a patch or update to the whole

product.
• The product does not fulfill customer requirements and a new feature is required by the

customer.

In addition to that, you may also want to add new features to the product for the next
release because competitor products have other features. Better support will increase your cus-
tomer loyalty and will create referral business for you.

You may adopt two strategies to add new features. You may provide an upgrade to the cur-
rent release as a patch, or wait until you have compiled and developed a list of new features and
make a new version. Both of these strategies are useful depending how urgent the requirement
for new features is.



10 Chapter 1  •  Introduction to Software Development
1.2 Components of a Development System

Like any other system, a development system is composed of many components that work
together to provide services to the developer for the software development task. Depending upon
the requirements of a project, different types of components can be chosen. Many commercial
companies also sell comprehensive development tools. On Linux systems, all of the develop-
ment tools are available and you can choose some of these depending upon your level of exper-
tise with these tools and your requirements. Typically each development platform consists of the
following components:

• Hardware platform

• Operating system

• Editors

• Compilers and assemblers

• Debuggers

• Version control system

• Collaboration and bug tracking

Let us take a closer look on these components and what role they play in the development
cycle.

1.2.1 Hardware Platform

This is the tangible part of the development system. A hardware platform is the choice of
your hardware, PC or workstation, for the development system. You can choose a particular
hardware platform depending upon different factors as listed below:

Cost Depending upon budget, you may chose different types of hardware.
Usually UNIX workstations are costly to buy and maintain. On the
other hand, PC-based workstations are cheap and the maintenance
cost is also low.

Performance Usually UNIX workstations have high performance and stability as
compared to PC-based solutions.

Tools You also need to keep in mind availability of development tools on a
particular platform.

Development Type If the target system is the same as the host system on which develop-
ment is done, the development is relatively easy and native tools are
cheap as well, compared to cross-platform development tools.

Depending upon these factors, you may make a choice from the available hardware plat-
forms for development.



Components of a Development System 11
If hardware is part of the final product, selection of hardware platform also depends upon
customer/market requirement.

1.2.2 Operating System

Choice of a particular operating system may be made depending upon:

• Cost
• Availability of development tools
• Hardware platform
• Native or cross compiling

Some operating systems are cheaper than others. Linux is an excellent choice, as far as
cost is concerned. Linux is also a very good operating system as it has all of the development
tools available. Now you can install Linux on high-end workstations from Sun Microsystems,
HP, and IBM as well as commodity PC hardware available everywhere. It provides stability and
most of the people are familiar with development tools. You can also use the operating system
for cross-platform development using GNU tools.

1.2.3 Editors

Editors play an important role in the development work. Easy-to-use and feature rich edi-
tors, like Emacs, increase developers’ productivity. You should look at a few things while select-
ing editors. These features include:

• Understanding syntax of language
• Collapsing of context
• Support of tags
• Opening multiple files
• Easy editing for generally used editing functions like cut, copy, paste, search, replace

and so on
• Multiple windows
• Support of user defined functions and macros

If you look at the open source community, you can find a lot of good editors available to
developers. The most commonly used editors are Jed, Emacs and Xemacs. However, many other
variants of these editors are also available. You can also use X-Windows-based editors available
on Linux platform. A lot of people also edit in vi or vim, both of these have been very popular
historically.



12 Chapter 1  •  Introduction to Software Development
1.2.4 Compilers and Assemblers

Compilers and assemblers are the core development tools because they convert source
code to executable form. Quality of compilers does affect the output code. For example, some
compilers can do much better code optimization compared to others. If you are doing some
cross-platform development, then your compiler should support code generation for the target
machine as well.

GNU compilers collection, more commonly called GCC, is a comprehensive set of com-
pilers for commonly used languages including the following:

• C
• C++
• Java
• Fortran

In addition to GCC, you can find a lot of other open source compilers available for Linux.
Some of these are introduced in Chapter 3.

GNU utilities set, also known as binutils, includes GNU assembler and other utilities that
can be used for many tasks. GNU assembler is used whenever you compile a program using
GNU compiler.

1.2.5 Debuggers

Debuggers are the also an important part of all development systems. You can’t write a
program that is free of bugs. Debugging is a continuous part of software development and you
need good tools for this purpose. GNU debugger, more commonly known as GDB, is a common
debugger. Many other debuggers are also built on this debugger. The GNU debugger and some
other debuggers will be introduced later in this book.

1.2.6 Version Control Systems

The revision control system is a must for any serious development effort where multiple
developers work on a software product. The most popular version control system on Linux is
known as Concurrent Versions System or CVS. CVS allows many people to work on files at the
same time and provides a central repository to store files. Developers can check out files from
this repository, make changes and check the files back into the repository. CVS also works with
editors like GNU Emacs.

When multiple developers are modifying the same file at the same time, conflict may
occur between different changes made by multiple developers. When a conflict is detected in the
files being checked in, CVS provides a mechanism to merge the files appropriately.

CVS can be used over secure links as well. This is required when developers are not phys-
ically located at the same place. A server on the Internet can be used to provide secure access to
the central software repository.



Selection Criteria for Hardware Platform 13
There are other version control systems as well which are popular in the software develop-
ment community. Examples are Aegis, PRCS, RCS and SCCS.

1.2.7 E-mail and Collaboration

In any software development project, collaboration among developers, designers and
architects as well as marketing people is a must. The objective can be achieved in many ways.
Probably e-mail is the most efficient and cheapest way. Some collaboration tools provide more
functionality than just e-mailing.

1.2.8 X-Windows

X-Windows is much more than just a GUI interface on Linux, but for development pur-
poses, it provides a very good user interface. This is especially useful for editors like Emacs.

1.2.9 Miscellaneous Tools

Many miscellaneous tools are also important during the development process. Some of
these tools are listed below:

• The make utility
• The ar program
• The ranlib utility
• The hexdump utility

Information about these tools is provided later in this book.

1.3 Selection Criteria for Hardware Platform

The development process needs computers, networks, storage, printing and other hardware com-
ponents. However the important hardware decision is the selection of PCs and workstations for
developers. There is no hard and fast rule about how to select a particular hardware platform. It
depends upon the requirements of a development project. Some factors that you may keep in
mind are as follows:

• Cost of the hardware.
• Availability of desired operating system on the hardware. For example, you can’t run

HP-UX on PCs.
• Availability of development tools.
• Maintenance cost.



14 Chapter 1  •  Introduction to Software Development
There may be other factors as well and you are the best person to judge what you need.
However, keep in mind that reliability of hardware is one major factor that people usually over-
look. If you buy cheap systems that decrease productivity of developers, you lose a lot of money.

1.4 Selection Criteria for Software Development Tools

After selecting the hardware, software development tools are the next major initial expense in
terms of money and time to set these up. Selection of software development tools depends upon
the choice of hardware and operating system. In many cases GNU tools are very well suited.
Selection of development tools also has a major effect on the productivity of the whole develop-
ment team.

1.5 Managing Development Process

In large software development projects, management of the development process is a big task
and a dedicated person may be needed to take care of this aspect of the project. A development
manager usually acts as a binding and coordinating force among different parties with conflict-
ing interests. These parties include:

• Marketing and sales people who put forward requirements, change requirements and
come up with new requirements, usually when much of the work is already done!

• Architecture and design people.

• Software developers who always think that they always have less amount of time.

• Release management people.

• Software testers.

• Documentation writers.

• Senior managers who often push to complete the project earlier than the deadline.

Coordinating all of these parties is not an easy task. The manager has to convince senior
management that a new feature needs that much time for development. At the same time he has
to push developers to meet the deadlines. Some of the important tasks of software management
in a real-life project are as follows.

1.5.1 Creating Deadlines

The manager usually coordinates with the software developers to set reasonable dead-
lines for certain features. These deadlines must  conform to the product delivery time lines.
The manager may have to arrange additional resources to complete feature development in the
allotted time.

Project management software can help a manager to set and meet deadlines and track
completion of different components.



Linux Development Platform Specifications (LDPS) and Linux Standard Base (LSB) 15
1.5.2 Managing the Development Team

The manager has to keep track of how development among different parts of the software
is going on. If part of the product is behind schedule, she has to re-arrange resources to get it
back on track.. She may also need to hire new people to finish the development of a particular
component on schedule.

1.5.3 Resolving Dependencies

Usually software components are dependent on one another. If the development of one
component is lagging behind, it may affect development of other components. The develop-
ment manager needs to keep an eye on these dependencies and how these may affect the over-
all progress of the project. Well-known project management methods are usually helpful for
this task.

1.6 Linux Development Platform Specifications (LDPS) and Linux 
Standard Base (LSB)

Linux Development Platform Specifications or LDPS was an effort to design a common specifi-
cation so that programs developed on one Linux distribution could be easily ported to other dis-
tributions. The specifications define components and packages that must be present on Linux
development workstations. The latest version of the specifications at the time of writing this
book is available at http://www.freestandards.org/ldps/1.1/ldps-1.1.html web site.

Linux Standard Base or LSB (http://www.linuxbase.org) is the new forum to standardize
Linux distributions. LSB specifications 1.1.0 is available at the time of writing this book. LSB
compliant applications can run on any LSB compliant distribution without any modification or
recompilation process. Specifications are detailed and the latest version can be found at http://
www.linuxbase.org/spec/.

1.6.1 Libraries

The following libraries will be available on LSB compliant systems. While developing
applications for Linux, the developer can assume presence of these libraries on target machines,
provided the target is LSB compliant.

• libX11
• libXt
• libGL
• libXext
• libICE
• libSM
• libdl
• libcrypt



16 Chapter 1  •  Introduction to Software Development
• libz
• libncurses

1.6.2 Current Contributors to LSB

Major Linux vendors include:

• Caldera Inc.
• MandrakeSoft
• Red Hat Software
• The Debian Project
• TurboLinux Inc.
• SuSE
• VA Linux

References

1. LDPS web site at http://www.freestandards.org/ldps/
2. CVS web site at http://www.gnu.org/software/cvs/
3. Aegis at web site http://aegis.sourceforge.net/index.html
4. PRCS at its web site http://prcs.sourceforge.net/
5. GNU Software at http://www.gnu.org
6. Linux Standard Base at http://www.linuxbase.org
7. Open Source Developers Network at http://www.osdn.org



C H A P T E R 2
Working With 
Editors
ne of the most fundamental tools required for application develop-
ment on any platform is a text editor; and the Linux operating sys-

tem offers programmers a wide variety to choose from. These editors
offer a wide variety of functionality from simple editing features to syntax
highlighting and reading e-mail.

In this chapter, we will focus on a couple of editors that offer features that
will be of interest to developers, Jed, vim, and Emacs. All of these editors
offer extended features beyond simple text editing.

2.1 What to Look for in an Editor

While editors like pico or even ed may be useful for editing system files or writing quick notes,
programming editors have certain functions that permit the programmer to focus on the act of
creating code and helps to manage the process and keep an eye on syntax.

2.1.1 Extensibility

One useful feature of programming editors is the ability to extend the out-of-the-box func-
tionality with custom programming.

Emacs utilizes a full-featured Lisp language called Elisp to provide users with the ability
to add just about any functionality they might require to the editor. The original Lisp language
was written in the late 1950s as part of MIT’s research into artificial intelligence. Elisp is derived
from the original Lisp and provides surprising flexibility in extending Emacs for those who take
the time to learn it.

O

17



18 Chapter 2  •  Working With Editors
Jed extensibility is based on the s-lang libraries (www.s-lang.org) that were developed by
John E. Davis as a generic macro language that would become the basis for a number of differ-
ent programs. S-lang programs resemble C in syntax and layout.

2.1.2 Understanding Syntax

By understanding the syntax of the programming, the editor can perform a number of
functions that make it easier for the programmer to move through the code, locate bugs more
quickly and perform other common functions.

Such functions include jumping to the beginning of a stanza in the code, highlighting that
stanza, automatic indenting, highlighting syntax, and quickly inserting comments and comment-
ing on entire sections of code.

2.1.3 Tag Support

The ctags and etags utilities that come with Linux are able to build a list of the various
functions, classes, fragments, data blocks and other information within the various files that
make up the application. Not all information is available for all languages. For example, while
only subroutines are supported for the Perl language, support for the C/C++ languages includes:

• macros (names defined/undefined by #define / #undef)
• enumerators (enumerated values)
• function definitions, prototypes, and declarations
• class, enum, struct, and union names
• namespaces
• typedefs
• variables (definitions and declarations)
• class, struct, and union members

Both Emacs and vim provide the ability for the editor to understand standard tag files and
help the programmer quickly locate and edit the portion of code that he/she is working on.
Emacs uses the output from etags, while vi uses ctags.

2.1.4 Folding Code

Folding code refers to the ability of the editor to hide portions of code while they are not
needed. For example, all of the functions or subroutines in the code can be folded so that only
the names of the functions are seen until the programmer unfolds that routine to work on it.

2.2 Emacs

Emacs is a lisp-based editor that has been around in one form or another since the late 1970s;
despite its long history, it remains one of the most up-to-date and widely used editing environ-



Emacs 19
ments today. From within the editor a user can read and send mail, perform research on the Inter-
net, and even send out for coffee to RFC2324 compliant coffee makers.

Configuration of Emacs is accomplished via the .emacs file that can be created in each
user’s $HOME directory. If the configuration does not exist, Emacs will use its built-in
defaults. This file consists of a series of elisp expressions that the editor evaluates when the
application runs.

2.2.1 Using Emacs

Navigating and using Emacs may appear confusing and counter-intuitive for those just learning
how to use the editor, however the time taken to master this editor can prove well-spent when
one considers the time savings that such an integrated and flexible development environment can
provide.

If Emacs is started from within X-Windows, it will automatically open a new window in
the desktop. To prevent this behavior, you can use the –nw option from the command line. Alter-
nately, you can tell Emacs how large to make the window by specifying the size of the window,
in characters, that you wish to create. Examples are:

$ emacs –nw main.c
$ emacs –geometry 80x24 main.c &

Figure 2-1 shows the initial Emacs screen if it is invoked without an initial file name.

Figure 2-1 The initial Emacs screen.



20 Chapter 2  •  Working With Editors
For a complete tutorial in using Emacs, from within the application itself, type ^H-t1.
This tutorial covers many of the functions that are available within Emacs and takes you step-by-
step through them.

2.2.2 Basic Emacs Concepts

Emacs uses several keyboard keys to enter commands into the application. The primary
one is the Meta key. The Meta key is signified by M-. The Meta key is generally the ALT key
on the keyboard, although it may be the ESC key in certain circumstances. If the ALT key does
not work, try the ESC key. What works will depend on if you are logged in locally, accessing the
console directly or using X-Windows. The ALT key is used in the same manner as the CTRL key.
When using the ESC key, press and release the ESC key and then press the next indicated key.
In all cases, typing ^U may be used in place of the Meta key. Just type and release ^U and then
type the rest of the key sequence as you would for the ESC key.

Entering text into the buffer is accomplished in the default mode simply by typing on the
keyboard. To abort a command that’s currently running or asking for input, type ^G. This will
return you to the current buffer.

Simple commands can be repeated by prefacing them with the key sequence ESC #. By
pressing the escape key and typing any number, the next command that is issued will be repeated
that number of times. For example, typing ESC 75= is the same as pressing the equal key 75
times.

To exit Emacs, use the command sequence ^X^C.

Moving around
In additional to the basic functionality provided by the arrow keys on the keyboard, the

key combinations shown in Table 2-1 may be used to move the pointer one character at a time in
a given direction.

1. The caret symbol denotes a control character. To enter the key combination ^H-t, press and hold the CTRL key, 
and then press the ‘H’ key. Release both keys and then press the ‘t’ key.

Table 2-1 Simple Movement Commands.

Arrow Key Alternate Combination

Left Arrow ^F

Right Arrow ^B

Up Arrow ^P

Down Arrow ^N



Emacs 21
Movement can also be accomplished a word or a page at a time. This is accomplished by
referring to Table 2-2.

Deleting
Just as there are several ways to move around in the buffer, there are several ways to

quickly delete unwanted information. The <BACKSPACE> key or ^H can be used to delete the
character before the pointer. By using ^D you can delete the character at the pointer.

In addition, there are ways to delete words, lines and portions of lines. There are also
methods for blocking text and deleting entire sections of the buffer. For more information on
working with blocks of text, see Cutting and Pasting below.

Table 2-3 shows the various commands used to perform these functions.

Table 2-2 Movement Commands

Action Command

M-b Word Left

M-f Word Right

^A Beginning of Line

^E End of Line

M-c or Page-Up Page Up

^V or Page-Down Page Down

M-< Beginning of Buffer

M-> End of Buffer

Table 2-3 Movement Commands

Action Command

<BACKSPACE> or ^H Delete character to the left

^D Delete character to the right

M-DEL Delete word to the left

M-d Delete from pointer to end of current word

^A^K Delete current line excluding the EOL character 

^K Delete from pointer to end of line

^X u Undo previous command – may be used multiple times



22 Chapter 2  •  Working With Editors
File Operations
Editing within Emacs is done through a series of buffers. Each buffer may be edited sepa-

rately and the changes saved back to the disk. Files may also be opened into new or existing
buffers as shown in Table 2-4.

Search and Replace
There are two search and replace functions within Emacs. The first one simply does a sim-

ple search (case insensitive by default) for the character string provided by the user. The second,
more complex search function does a search and replace on regular expressions. See Table 2-5
for a list of these commands.

Table 2-4 File Commands

Action Command

^X ^F Open File

^X k Close File

^X i Insert File

^X ^S Save File

^X w Save File As

^X b Change Buffer

Table 2-5 Search and Replace Commands

Action Command

^S ENTER Search

^S Continue Forward Search

^R ENTER Search Backwards

^R Continue Backwards Search

M-% Search & Replace

M-X query-replace-regexp Regular Expression (regex) Search & Replace

M-X occur Find occurrences of a string in the current buffer



Emacs 23
By typing ^S <ENTER> you will be prompted to enter the string to search for. With the
search string still active, typing ^S again to search for the next occurrence of that string in the
current buffer.

Typing M-% (usually accomplished by ESC-% rather than ALT-% under Linux) will bring
up the same search function, but when you press RETURN after entering the search key, you will
be prompted for a replacement string. Type in the string that you wish to replace the search key
with and press RETURN. If the search string is found in the current buffer, you will be presented
with the options shown in Table 2-6.

The more complex search and replace feature is available by default, only from the prompt
and is not bound to a particular key combination. To access this feature, you need to type in the
name of the mode, which in this case is “query-match-regex”. The complete key sequence
for this is:

M-X query-replace-regex <RETURN>

This command brings up a similar series of prompts that allows you to search for regular
expressions in the current buffer and, using the same options shown in Table 2-5, replace them.

Emacs has an auto-completion option that you can use instead of typing the entire com-
mand shown above. By typing:

M-X que<ESC>

Emacs will search through its listing of modes and complete as much of the request as it
can. If there is a conflict and there are one or more modes that begin with the phrase that you

Table 2-6 Search and Replace Options

Action Command

y or SPACE Replace the string at the pointer with the replacement string and search for the next 
occurrence.

n or DEL Leave the string at the pointer as is and search for the next occurrence.

! Replace globally from the pointer forward in the buffer.

. Replace the string at the pointer and then exit search and replace mode.

^ Move point back to previous match.

u Undo the previous replacement.

q or ENTER Exit search and replace mode.

? Display help.



24 Chapter 2  •  Working With Editors
have typed in, pressing the <SPACEBAR> will cycle through the names. You can press
<RETURN> to select the one currently displayed.

Emacs supports the use of parenthetical statements in regex search and replace commands.
A portion of the search string may be used as part of the replacement string. The contents of the
first set of parenthesis in the search string may be referenced as \1 in the replacement string. The
second set would be referred to by \2.

For example:

Original string:The Dodo and the Griffin
Search string:\([Tt]h\)e \([a-zA-Z]*\)
Replacement string:\1ose \2s
New string:Those Dodos and those Griffins

Cutting and Pasting
Sections of the buffer may be marked and certain commands may be applied to those

regions. These commands include copying, cutting and pasting text. To select a region of text,
move the pointer to the beginning of the sections that you wish to select and press ^<SPACE-
BAR>. When the pointer is moved, the text from the marked point to the current pointer position
will be highlighted. Once the region is selected, issue the cut or copy command. To deselect the
text without issuing the copy or paste command, simply press ^<SPACEBAR> again.

Table 2-7 shows a list of the various selection commands.

2.2.3 Using Buffers and Windows

As mentioned, Emacs has multiple buffers that can be opened and edited simultaneously.
To navigate between buffers, press ^Xb and type the name of the buffer that you wish to switch
to. Buffers may be opened and closed by using the File Commands listed earlier in this chapter.
To see a list of buffers, use ^X^B.

As shown in Figure 2-2, each window may be split into two windows by using the ^X2
command. This will create a horizontal divide in the middle of the current window. The same
file will be present in each pane, but they may be scrolled separately. To move between win-
dows, press ^Xo. Windows may be split multiple times. To close all other buffer, use ^X1. The
current buffer may be closed with ^X0.

Table 2-7 Cut and Paste Commands

Action Command

^<SPACEBAR> Begin selection

^W Cut

M-W Copy

^Y Paste



Emacs 25
See Table 2-8 for a complete list of window commands and Figure 2-2 for an example of
using multiple buffers. These buffers are ‘main.c’ and ‘temp.c’.

Table 2-8 Window Commands

Action Command

^Xb Switch to buffer

^X^B List buffers

^X2 Split current window

^Xo Move to other window

^X0 Delete current window

^X1 Delete all over windows

Figure 2-2 Using multiple buffers in Emacs.



26 Chapter 2  •  Working With Editors
2.2.4 Language Modes

Emacs recognizes a number of different programming language files based on their exten-
sions. When you load a recognized source code file, Emacs will assume certain defaults and
enter the appropriate mode for editing that file.

For example, when you load a file with a .c extension for editing, Emacs sets the appropri-
ate mode and enables commands used to automatically and manually indent code, quickly move
though functions and insert comments.

When a language mode is on, Emacs can automatically indent code as you type. To turn
this mode on, type ^C^A. The same command is used to turn this mode back off.

With this mode active, auto-indenting takes place when certain characters are entered from
the keyboard. These characters are the semi-colon, curly braces, and under certain circum-
stances, the comma and colon.

For example, if auto-indent (or technically c-toggle-auto-state) is on and the following
code is typed into the buffer:

void main ( int argc, char **argv) { while (

it will be formatted by Emacs as follows:

void main ( int argc, char **argv) 
  {
    while (

Table 2-9 shows some of the common C-mode commands.

Table 2-9 C-mode Commands

Action Command

ESC ; Insert comment

ESC ^A Go to top of function

ESC ^E Go to bottom of function

ESC ^H Mark function

{ Insert bracket and return

} Return and insert bracket

^C^A Toggle Auto-indent mode

^\ Auto-indent selected region



Emacs 27
2.2.5 Using Tags

As an application grows in size, it also grows in complexity. As the number of subroutines,
variables, functions and files increases, it becomes much more difficult to keep track of every
piece and to quickly find the portion of code that one needs to work on. To address this issue,
Emacs has the ability to read a file that contains a table of tags that reference various parts of an
application.

These tags are stored in a TAGS file that is created by the etags command. Once this file
is built, Emacs can read this table and use it to quickly locate a specific portion of code, regard-
less of whether it is in a currently open file or not.

From the command line the etags command is issued with a list of file names to be read:

$ etags *.[ch]

This command will read all files in the current directory that have a .c or .h extension
and build a tags table file in the current directory. The output file is, by default, called TAGS.

To build a single TAGS table for a project that has source code spread through any number
of subdirectories, the following command may be used:

$ find . –name \*.[ch] | xargs etags –

Just be aware if there are too many files, then this command may need to be run several
times with varying arguments in order to build a complete table. To do this, you must use the
–append option to the etags command as shown:

$ find . –name \*.c | xargs etags –
$ find . –name \*.h | xargs etags –-append –

Any of these commands may be issued from within Emacs itself by using the M-! com-
mand to issue a shell command. Simply type ESC ! <command name> and press return.

Once you have built a TAGS table, it must first be read into Emacs before you can use it to
search. To accomplish this, type M-x visit-tags-table, specify the location of the TAGS
file to be read in, and then the name of the TAGS file. The default value for the location is the
current working directory, and the default tags file name is “TAGS”.

Once the TAGS file has been read in, you may issue search commands against the table.
There are several commands that can be used. The one most commonly used is ESC . which
searches for a tag that matches the search parameter. The default search parameter is the word at
the current pointer position. For example, if the pointer were on the character string
search_function, the default search string that Emacs presents would be
search_function.

If you are not sure of the name of the function that you are looking for, you can type the
first few characters of the function name and press the TAB key. This invokes the completion
function of Emacs and, if the function is unique, it will display that function name. If the func-
tion name is not unique, Emacs will complete as much of the function name as it can and then
prompt you for the rest. Pressing TAB again after Emacs has completed as much of the function



28 Chapter 2  •  Working With Editors
name as it can and will display the matching functions in a new buffer. If, for example, you
wanted to edit the close_files function, Figure 2-3 shows the results of typing ESC .
c<TAB><TAB>.

If Emacs finds a function that matches your search string, it will replace the current buffer
with the contents of the first file in which it found the search string and the pointer will be posi-
tioned at the first line of that function. In the above example, completing the file name and press-
ing ENTER results in the file exit.c being opened and the pointer being positioned on the first
line of the close_files function. This is shown in Figure 2-4.

Alternatively, you can initiate the search with the command ESC x find-tag-

other-window and rather than replacing the current buffer with the found function, a new
buffer will be opened instead. Remember that Emacs has a completion function, so after typing
the first few characters of a function, you can press the TAB key and Emacs will fill in the rest
of the command if it is unique. If you are sure that a command is unique, pressing the ENTER
key will execute that command.

Rather than searching for functions by name, you can also search all of the files referenced
in the tags file for a regular expression. To accomplish this, type ESC x tags-search and
Emacs will prompt you for a regular expression to search for. If it finds a match, the first occur-
rence of the string found will be displayed in the current buffer. You can search for the next
occurrence of the string by issuing the ESC , command.     

Figure 2-3 Emacs tags-search function.



Emacs 29
Instead of searching for a specific regular expression, the command ESC tags-apro-
pos will create a new buffer entitled *Tags List* that contains a listing of all of the tags that
match that regular expression. By moving the pointer around this buffer, you can place it on the
function that you are looking for and use the ESC . command to open that function in the cur-
rent buffer. A list of TAGS commands is shown in Table 2-10.

Table 2-10 Emacs commands related to TAGS

Action Command

M-x visit-tags-table Load a tags file into Emacs

M- . Search for a function

M-x find-tag-other-window Search for a function and load the file in a new buffer

M-x tags-search Search for a regular expression in the files represented by the current 
tag list

M-, Repeat regular expression search

M-x tags-apropos Load a list of all tags into a new buffer

Figure 2-4 Finding the function.



30 Chapter 2  •  Working With Editors
2.2.6 Compiling

Emacs has the facility to call external compilers, parse their output and display the results
in a buffer. As the results are displayed, the programmer can then move forward and backward
through any error or warnings. As each error or warning is displayed, the appropriate line in the
code is displayed and may be edited.

To invoke the compiler from Emacs, type M-X compile; in response, Emacs will ask
you for the command to use to compile the program for application. You can either specify
make or the command line compiler with all the options. The default is to invoke make with the
–k option in order to continue as far into the make as it can when encountering errors.

For example, assume that the following (broken) bit of code is in a buffer entitled ‘main.c’.

#include <stdio.h>

int main ()
{
  printf(‘Hello World\n’);
}

The compiler may be invoked by typing:

M-X compile
Compile command: gcc –o main main.c

If the buffer being compiled has not been saved, the editor will prompt you to save it. The
results of the compilation will appear in the *compilation* buffer as seen in Figure 2-5.

Figure 2-5 The results of M-X compile.



Emacs 31
The main.c buffer is still the active buffer, but it is linked to the *compilation* buffer. As
indicated by Figure 2-6, typing ^X-` the first error in the bottom buffer is highlighted and the
pointer in the top buffer is positioned in the line of code that caused the error. Repeating that
command moves the pointer forward in the code to the next error.

While navigating through the *compilation* buffer, typing ^C^C will move the code in
the window to the line referenced by the error message. Table 2-11 lists the commands used to
aid in debugging compiled code.

Table 2-11 Compiling with Emacs

Action Command

M-X compile Compile a file or an entire project

^X-` Find the next error

^C^C Examine source code that created the error

Figure 2-6 Using the built-in functions to debug code.



32 Chapter 2  •  Working With Editors
2.2.7 Xemacs

Xemacs is a project that was spawned from the original source tree of the Emacs project.
In many ways it still resembles its ancestor, but when it is run it includes additional features that
make use of the X-Window interface. These include toolbars, font faces, image embedding and
editing, and similar features.

As you can see in Figure 2-7, the Xemacs interface has taken many commonly used func-
tions and created a tool bar across the top of the display that makes them accessible to the
mouse. In addition, most of the user interface is customizable.

2.3 Jed

Jed was designed as a small, lightweight editor. It has many of the functions required by applica-
tion programmers and can be set up with one of several different key bindings to aid people tran-
sitioning from other editors.

The main Jed configuration file is in JEDROOT/lib/jed.rc (/usr/share/jed/lib/jed.rc if the
RedHat RPM was used to install the application). This file contains the default values for all
users, but it is only read if the user does not have a local configuration file present in the home
directory.

Figure 2-7 The Xemacs interface.



Jed 33
2.3.1 Configuring Jed

Individual users may change their default setting by copying JEDROOT/lib/jed.rc to .jedrc
in their home directory:

$ cp /usr/share/jed/lib/jed.rc ~/.jedrc

This file may be edited to change the initial values and behavior of Jed. Lines beginning
with a percent symbol (%) are comments and are ignored when the file is read. Other than condi-
tional statements, all entries must end in a semi-colon (;).

One of the first options that a user may wish to change is the emulation mode of the editor.
By default Jed uses Emacs-like key bindings for entering commands. Some other emulation
modes available are IDE, CUA and even WordStar. To select a new emulation, edit the .jedrc in
the user’s home directory, comment out the current emulation and uncomment the one that you
wish to use.

Below, the user has changed the application to use the IDE mode instead of the default.
These key bindings resemble those used by in Borland’s IDE.

if (BATCH == 0)
{
%  () = evalfile("emacs");    % Emacs-like bindings
%  () = evalfile("edt");      % EDT emulation
   () = evalfile ("ide");     % Borland IDE 
%  () = evalfile ("brief");   % Brief Keybindings 
%  () = evalfile("wordstar"); % Wordstar (use ide instead)
%  () = evalfile ("cua");     % CUA-like key bindings
…
}

You will also notice that there is a conditional statement in the example above. This is
because Jed may also be run in batch mode for processing files unattended. Statements within
this block will only be processed if the application is run in interactive mode, not when run in
batch mode. While having the statements outside of this block would not effect the application
when run in batch mode, having them separated speeds up the load time of the application when
they are not needed.

There are many other configuration options available in the .jedrc file that control how the
program operates. Some of them are generic to all modes and others are used in only one mode.
For example, the variable CASE_SEARCH may be set to force case sensitivity in searches, or
C_BRA_NEWLINE may be set to force a newline character to be inserted prior to a curly-bracket
when in C-mode.

Jed also has the capability of calling a compiler directly and examining the output. The
standard compiler is assumed to be gcc. If you are using a different compiler, you will need to
set the Compile_Default_Compiler variable in the .jedrc file.



34 Chapter 2  •  Working With Editors
2.3.2 Using Jed

Jed is called from the command line with an argument telling it which file you would like
to edit. If Jed is called without an argument, it will prompt you for the name of the file before
you may do any editing. This behavior may be changed by modifying the
Startup_With_File variable in .jedrc to have a value of 0.

Jed may be called with one or more command line arguments. A –n argument forces Jed
to ignore the users’ local .jedrc file as well as the jedrc file.  There is also an X version of Jed
that allows you to use the mouse to select text and options from the menu. To start Jed, simply
type:

$ jed <filename>

or

$ xjed <filename>

Figure 2-8 shows the initial text-based Jed display when no command-line argument is
given. The menu across the top is accessed by pressing the F-10 key. This scratch buffer will dis-
appear when you begin to type and if a filename is given on the command line you will be taken
immediately to that buffer to begin editing.

The basic editing features of Jed will be dependent upon the emulation mode that is
selected. In this section, it is assumed that you will be using the Emacs emulation mode.

Figure 2-8 The Jed text interface.



Jed 35
2.3.3 Folding Code

The ability to fold buffers in order to view only the parts of a file that are necessary at the
time is quite useful when trying to understand program flow and how the application is put
together at a very high level.

In order for folding to be used, special markers must be put in the file at the appropriate
points. There are two markers, one to denote the beginning of a section to be folded and one to
denote the end. In plain text files, these markers must be in the leftmost column; but when an
application language that is recognized by Jed is used, they may be inserted in comments.

The opening marker is three left curly braces “{{{” and the closing is three of the right
“}}}” To insert marker into a C-language program, place the markers directly after the /* that
begins the comment:

/*{{{ Deep magic begins here. */
{
      x = n[i];
      a = ((a<<19)^(a>>13)) + n[(i+128)&255];
      n[i] = y = n[x&255] + a + b;
      r[i] = d = n[(y>>8)&255] + x;
      }
/*}}} */

When the file is folded up, the above section of code will appear as follows:

/*{{{ Deep magic begins here. */...

The ellipsis at the end of the line indicates that this line may be unfolded.
Figure 2-9 shows a section of Perl code with the fold markers in place. The comments are

placed before and after each section of code and a description of the code included in that fold
has been added. Figure 2-10 shows the same file folded.     

Figure 2-9 The file with the folding markers in place.



36 Chapter 2  •  Working With Editors
The entire program can be folded and unfolded at once, or individual sections of the file
may be unfolded. Several sections from different parts of the program may be unfolded at once.

Jed treats each folded section as a subroutine and it can be edited as such. By moving the
pointer to a folded section and pressing ^C> only that section of the program is displayed for
editing.

In order to use the folding mode, it must be activated from within Jed. In order to do this,
type M-X folding-mode <RETURN>. This will turn the folding mode on and immediately
fold up the current buffer.

See Table 2-12 for a list of the available commands in this mode.

Table 2-12 Folding Mode Commands

Action Command

^C^W Fold current buffer

^C^O Unfold current buffer

^C^X Fold current marked section

^C^S Unfold current marked section

^C^F Fold highlighted section

^C> Edit folded section

^C< Exit current section being edited

Figure 2-10 The same file folded.



VIM 37
2.4 VIM

VIM stands for Vi IMproved and was developed by Bram Moolenaar. It is based on the function-
ality of the original, non-open source vi editor. While most open source software is also free-
ware, VIM is distributed as Charityware. In exchange for using the program, the authors request
that users consider donating to the Kibaale Children’s Center (KCC), a charity providing food,
health care and education for the children in the area. For further information regarding this
donation program and the KCC, within VIM, type :help ifcc or visit http://www.vim.org/
ifcc.

2.4.1 Using VIM

VIM is available in both text-based and graphical modes. The graphical version, shown in Fig-
ure 2-11, has the same functionality as the text-based version, but also provides easy access to
many functions through pull-down menus and a button bar. To start the text-based version, use
the command vim. The graphical version is started by typing gvim. For example, to start VIM
and edit the file main.c, type the following:

$ vim main.c

Or, for the graphical version, type:

$ gvim main.c

Figure 2-11 gvim.



38 Chapter 2  •  Working With Editors
2.4.1 VIM Concepts

There are two basic modes within VIM that determine VIM’s behavior. These two modes
are Normal and Insert. In Normal mode, the editor expects the user to enter commands that per-
form a number of functions. In Insert mode, the editor inserts typed characters into the current
document.

The editor starts in Normal mode. To return to that mode from Insert mode, press the
ESC key.

2.4.2 Basic Editing

As previously noted, VIM is based on the vi editor and anyone familiar with vi’s editing
keys will immediately be at home with VIM.

VIM uses two methods of entering commands into the application. Simple commands
such as those used for navigation and entering Insert mode are one- or two-letter commands that
are case sensitive and are not echoed to the screen as they are typed. More complex commands
such as those used to perform searches and utilize the tags created by the ctags program are
entered and echoed into the last line of the application screen. A colon, slash or question mark
character is used to activate the last line mode and enter the command. The character used will
depend upon which command is being issued.

Most simple commands can be preceded by a number. When this occurs, the command
entered is treated as if it had been entered that many times. For example, the command to delete
a line in a buffer is dd. If this command preceded by the number 15, as in 15dd, the next 15
lines in the buffer will be deleted.

To exit VIM, type :q if the text has not been changed, :q! to abandon all changes made
to the file, or :wq! to save all changes and exit.

For help on any function, type:help <name> where <name> is the name of the func-
tion. Typing

:help tutor

will bring up information about VIMs built in tutor file. This file will walk you through the
basics of using VIM.

Navigation
If the terminal that is being used is set up correctly, the arrow keys on the keyboard will

often work for simple navigation commands that move the cursor around the screen. If the termi-
nal type is not properly configured, alternate keys may be used to navigate through the text.

The  “h”, “j”, “k”, and “l” keys can be used in place of the left, down, up and right arrow
keys respectively. Additionally, the cursor may be moved one word, sentence or paragraph at a
time by using the keys listed in Table 2-13.



VIM 39
It is also possible to scroll the text on the screen without moving the cursor from its current
position. Table 2-14 lists some of the more common commands.

Insert Mode

There are numerous ways to enter Insert mode depending on where in the buffer you
wish to insert text and how much of the text you wish to change. For example, it is possible to
insert text at the beginning of the current line, at the end of the line, to change only the letter
or word at the cursor, or to change text from the cursor to the end of the line. All of these com-
mands are accomplished by simple one- and two-letter commands. When you press the  “i”
key, VIM enters Insert mode and starts inserting the next typed characters at the current cursor
position. If  “a” (append) is used to enter Insert mode, the insertion point is the character fol-
lowing the cursor.

Pressing  “I” will insert characters at the beginning of the line, and “A” will append char-
acters to the end of the current line. The “o” character opens the line after the current one for
inserting text, and the “O” key creates a new line above the current one and positions the cursor
to enter new text.

Table 2-15 lists these commands.

Table 2-13 Navigating VIM

Action Command

Hjkl Left, down, up, right

W Move one word forward

E Move one word backward

( ) Move to previous, next sentence

{ } Move to previous, next paragraph

Table 2-14 Folding Mode Commands

Action Command

^F   ^B Scroll one screen forward, backward

^U   ^D Scroll one half screen up, down

^E   ^Y Scroll one line up, down



40 Chapter 2  •  Working With Editors
In addition to simply entering text into the buffer, vim can change text already in the docu-
ment. Table 2-16 lists the commands for changing text and their function.

Also of note are the deletion commands. They are entered from Normal mode and may be
used to delete a character, a word or a line at a time. These commands are listed in Table 2-17.

Automatic Indentation
There are several indenting options available with VIM. They are autoindent,

smartindent and cindent. The first, autoindent, simply copies the indentention from
the previous line and uses that as the default for all new lines entered into the buffer. Smartin-
dent and cindent are similar, but cindent is stricter in the way that it handles the format-
ting and may not be suitable for programming languages other than C.

Table 2-15 Entering Insert mode

Action Command

i   a Begin inserting characters at the cursor, after the cursor

I   A Begin inserting characters at the beginning, end of the line

o   O Open a new line after, before the current line

Table 2-16 Commands to change text

Action Command

cw Change from the current cursor position to the end of the word

cc Change the current line

r Replace the letter at the cursor

R Replace from cursor on

Table 2-17 Deletion commands

Action Command

x   X Delete the character at, before the cursor

dw Delete from the cursor to the end of the current word

dd Delete the current line

D Delete from cursor to end of the current line



VIM 41
To turn any of these indent modes on, with the application in Normal mode, type :set
<indent mode>. To turn off an indent mode, simply preface the mode name with the word
“no”. For example, to turn on cindent, type:

:set cindent

To turn cindent back off, type:

:set nocindent

2.4.3 Using Tags with VIM

The ctags program can be used to build a tags file that is readable by VIM and can be
used to quickly navigate among multiple source code files. Building the tags file is done in the
same way as described earlier in the chapter for Jed, but you must us the ctags program
instead of etags.

$ ctags *.[ch]

This builds the tags file in the current directory.

To build a tags file for an entire project that spans many subdirectories, from the main
project directory, issue the ctags command with the –R option to recurse the directories.

$ ctags -R

From within VIM, if you need to jump to a particular function that is in the current file,
place the cursor on the appropriate function and press ^]. This command uses the tags file to
locate the function and reads that file into the buffer.

To open a file and locate a function that is not present in the current buffer, type:

:tag <tagname>

where <tagname> is the name of the function that you are looking for. This will load the
file into the buffer and position the cursor at that appropriate tag.

To list the tags that you have jumped to in this editing session, type :tags. The output
from this command is shown below.

:tags

# TO tag         FROM line  in file/text

  1  1 main                1  ./arch/alpha/boot/tools/mkbb.c

  2  1 perror            116  ./arch/alpha/boot/tools/mkbb.c

>

By pressing the number listed in the left column, you can return to previously accessed tags.

In large projects, it would not be uncommon for one function to be referenced in several
places. In the event that multiple tags are created with the same name, you can select from the
list of similar tags by using the :tselect command. To select from a list functions, type
:tselect <tagname>. When the tselect command completes, you will be presented



42 Chapter 2  •  Working With Editors
with a list of matching functions from which to choose. When you type in the appropriate num-
ber from the left-hand column, that function will be opened in the buffer.

2.4.4 Folding Code

VIM can use several methods for folding code. The most useful of these for application
programming is the indent method. The variable foldmethod determines how the folding will
take place. To indent set the mode by typing:

:set foldmethod=indent

This command can also be set as a default by entering it in the ~/.vimrc configuration file. 
When this option is set and a file is opened, VIM will parse the file looking for initial tab

sequences in order to determine the various indent levels and fold the file automatically. In order
to open or unfold a section, use zo and to close or refold a section, use zc.

The commands zm and zr can also be used to increase and decrease the amount of folding
currently being done to a file. By issuing the zr command, the amount of folding being done is
reduced by one shiftwidth level. That is to say, one level of tabbing is revealed in the code. The
zm command reverses this and folds up one level of indentation every time that it is used.

2.5 References and Resources

1. Learning GNU Emacs, Second Edition, Debra Cameron, Bill Rosenblatt & Eric Ray-
mond, O’Reilly & Associates, Inc., ISBN:1-56592-152-6.

2. GNU Emacs home page, http://www.gnu.org/software/emacs/emacs.html
3. Jed home page, http://space.mit.edu/~davis/jed/
4. GNU Emacs Lisp Reference Manual, http://www.gnu.org/manual/elisp-manual-21-2.8/

html_chapter/elisp.html
5. Coffee.el, a fanciful elisp program to have Emacs make coffee, http://www.chez.com/

emarsden/downloads/coffee.el
6. Xemacs home page. http://www.xemacs.org/
7. VIM Home page. http://www.vim.org



C H A P T E R 3
Compilers and 
Assemblers
ll development systems are essentially a combination of many
tools. Compilers, assemblers and debuggers are integral parts of

these development tools. Fortunately Linux has a large number of tools
available for software developers. These tools have a very rich set of fea-
tures that we shall discuss in this and coming chapters. The basic reason
for including this chapter is to enable a reader to use compilers and
assembler in a development environment in a productive way. However
this chapter is not a tutorial on any language or programming technique.
Examples of code listings presented in this chapter are very simple and
are intended to demonstrate the function of development tools.

GNU C compiler, most commonly known as GCC, is the most important
part of this discussion. This compiler can be used to compile programs
written in the following languages:

• ANSI C
• Objective C
• C++ 
• Java
• Fortran
• Pascal, after converting Pascal code to C

GCC recently added the capability to generate object code from Java
source code. Work has also been done on Ada support.

A

43



44 Chapter 3  •  Compilers and Assemblers
GNU assembler is often needed in projects where you want to have tight
control over a particular part of code and want to write it in assembly lan-
guage. Most of the time people also write boot code for embedded sys-
tems in assembly language. The compiler uses assembler during the
compilation process to generate object code.

In addition to the most common compilers, we shall also discuss the use
of some less common languages in the Linux environment. These lan-
guages include the following:

• Oberon
• Smalltalk
• Ada

The compilation process is completed in different stages. These stages
are:

• Preprocessing
• Compiling to generate assembly language code
• Assembling to generate object code
• Linking to generate executable code

The GNU compiler takes help from many programs during this process
and can be used to generate intermediate files. For example, the compiler
can generate Assembly language code from a C source code file.

This chapter provides information about the GNU set of compilers and
how to build a software development environment using GNU tools. Dur-
ing this process you will also learn the building process for the GNU C
library, most commonly known as glibc.

3.1 Introduction to GNU C and C++ Compilers

The GNU compiler, most commonly known as GCC, is not a single program. It is a large set of
programs, libraries and other utilities that work together to build source code into executable
form. A user, however, mostly interacts with gcc command. The gcc program acts as sort of a
front end for compilers and other utilities. This section is an introduction to the compiler and its
capabilities. 

3.1.1 Languages Supported by GCC

GCC is a family of compilers, also known as the GNU Compiler Collection. GCC sup-
ports multiple languages, including:



Introduction to GNU C and C++ Compilers 45
• C 
• C++ 
• Fortran
• Objective C
• Java

Front-end preprocessors for many other languages also exist for GCC. For example, you
can use a Pascal language front end with GCC.

C is the primary language and GCC supports ANSI/ISO standards put forward in 1989-90
and 1995-96. These standards are also sometimes called C90 and C95, respectively. Another
revision of the ANSI/ISO C language standard was made in 1999 (known as C99), and GCC
does not yet fully support this revision. You can find out the current status of support for this
revision at http://gcc.gnu.org/gcc-3.0/c99status.html.

Support for these variations in standards can be selected using command line switches
when compiling programs. For example, to compile programs according to original 1989-90
standards, you can use one of the following command line switches:

-ansi
-std=c89
-std=iso9899:1990

The GCC compiler supports Objective C source code. Information on Objective C can be
found in different books and online resources. However there is no standard for Objective C yet.
Later in this chapter you will learn how to compile a simple program written in Objective C.

GCC supports GNU Fortran language and we shall discuss later in this chapter how to
compile programs written in Fortran.

Support for Java is a new addition to GCC and we shall see how GCC handles Java code
with the GCJ compiler. This compiler, which is a part of the GCC family of compilers, can cre-
ate an executable object from Java source code files.

Standard libraries are not part of the GCC compiler. You have to separately install librar-
ies. The most common library used with the compiler is the GNU C library and we shall see how
to get and install this library on Linux systems. The GNU C library (also known as glibc) pro-
vides support for:

• ANSI/ISO C
• POSIX
• BSD
• System V
• X/Open

For more information on languages supported by GCC, please see  http://gcc.gnu.org/
onlinedocs/gcc-3.0.2/gcc_2.html.



46 Chapter 3  •  Compilers and Assemblers
3.1.2 New Features in GCC 3.x

There are many new features in GNU compiler starting with version 3.0. Some of these
are discussed below briefly. In addition to that, version 3.0.x also includes many fixes for bugs
present in 2.x versions.

3.1.2.1 Optimization Improvements
A major improvement in this version is new optimization features. Some of these features

greatly improve compile and run-time performance. Important features are listed below.

• Basic block reordering pass is now optimized. In some cases, it improves performance
by eliminating a JMP instruction in assembly code. An explanation can be found at
http://www.gnu.org/software/gcc/news/reorder.html.

• A new register-renaming pass is included.
• Static Single Assignment or SSA is introduced in GCC. A dead code elimination pass

is included in new versions of GCC to improve optimization.
• A global Null pointer elimination test elimination pass is included. Information about

this enhancement can be found at http://www.gnu.org/software/gcc/news/null.html.
• New optimizations for stdio.h, string.h and old BSD functions are added. 

3.1.2.2 Support of new Languages
Support of Java is now added through GCJ compiler. It includes a run-time library having

non-GUI Java classes.

3.1.2.3 Language Improvements
There are some improvements in the support of different languages and these are listed

below.

• New C++ support library is added. Details are available at http://www.gnu.org/
software/gcc/libstdc++/.

• A new inliner is added that significantly reduces both memory utilization as well as
compile time. Details are present at http://www.gnu.org/software/gcc/news/
inlining.html.

• The C preprocessor is rewritten with many improvements. Details are available at http:/
/www.gnu.org/software/gcc/news/dependencies.html.

• More warning messages and a new warning option are added.
• There are many improvements in Fortran language support area and these are listed on

http://gcc.gnu.org/onlinedocs/g77_news.html.
• There are other improvements that are not listed here. Go to the GCC home page at

http://gcc.gnu.org/ for a complete list. 



Introduction to GNU C and C++ Compilers 47
3.1.2.4 Addition of New Targets
Support for the following platforms is added.

• HP-UX 11
• IA-64
• MCore 210
• MCore 340
• Xscale
• Atmel AVR Micro- controller
• D30V from Mitsubishi
• AM33 from Matsushita
• FR30 from Fujitsu
• 68HC11
• 68HC12
• picoJava from Sun Microsystems

3.1.2.5 Target Specific Improvements
Some of the improvements are as follows:

• New back end is added for x86 targets
• New back end for Arm and Strongarm
• Improvements in PowerPC code generation

3.1.2.6 Improved Documentation
Significant improvements in this area are:

• Many manuals are re-written.
• There are some improvements to man pages.  

3.1.2.7 Additional GCC Version 3.0.1 Improvements
This version includes some bug fixes in version 3.0. It also addresses some bugs for excep-

tion handling. A port to IBM S/390 is added and some improvements in cross-compiling are
made.

3.1.2.8 Additional GCC Version 3.0.2 Improvements
This version mostly contains some bug fixes.

3.1.2.9 GCC Version 3.0.3 Improvements
This version contains some more bug fixes as well as improvement in generation of

debugging information.
At the time of revision of this book, GCC 3.1 is released and it has all of these features,

among others.



48 Chapter 3  •  Compilers and Assemblers
3.2 Installing GNU Compiler

In most cases, GCC comes with all Linux distributions. However you can download the latest
version, and build and install it according to your requirements. You may also need to build your
compiler if you are building a cross-compiling development system. The best way to build a new
version of the compiler is to have some pre-installed and pre-configured Linux distribution on
your system that will be used to build the new compiler. For the purpose of writing this book, we
have used Red Hat 7.1 but the process is the same on any distribution of Linux.

The installation process is done in multiple steps. After downloading, you have to untar
the source code and build it in a directory. This directory should be separate from the source
code directory tree. The building process includes configuration and compiling stages. Once you
have successfully created the new compiler, you can install it in a directory of your choice. It is
advised to keep this installation directory separate from the location where the original compiler
is installed.

3.2.1 Downloading

You can download the latest version of GCC from ftp://ftp.gnu.org/gnu/gcc/. I down-
loaded GCC 3.0.4 and it is about 17.5 MB. You can also find a mirror site near you to get GCC.
A list of mirror sites is available on http://www.gnu.org/order/ftp.html.

3.2.2 Building and Installing GCC

The GCC installation process can be divided into four steps for simplicity and understand-
ing.

1. Download and extract
2. Configure
3. Build
4. Install

3.2.2.1 Download and Extract
First create a directory where you will unpack the source code. Use the tar command to

unpack the code. For our purpose, I have created a directory /gcc3 to compile and build the
GCC compiler. The untar process looks like the following and it creates a directory gcc-
3.0.4 under /gcc3 directory.

[root@laptop /gcc3]# tar zxvf gcc-3.0.4.tar.gz 
gcc-3.0.4/
gcc-3.0.4/INSTALL/
gcc-3.0.4/INSTALL/index.html
gcc-3.0.4/INSTALL/README
gcc-3.0.4/INSTALL/specific.html
gcc-3.0.4/INSTALL/download.html
gcc-3.0.4/INSTALL/configure.html



Installing GNU Compiler 49
gcc-3.0.4/INSTALL/build.html
gcc-3.0.4/INSTALL/test.html
gcc-3.0.4/INSTALL/finalinstall.html
gcc-3.0.4/INSTALL/binaries.html

gcc-3.0.4/INSTALL/gfdl.html
gcc-3.0.4/.cvsignore
gcc-3.0.4/COPYING
gcc-3.0.4/COPYING.LIB
gcc-3.0.4/ChangeLog

gcc-3.0.4/MAINTAINERS
gcc-3.0.4/Makefile.in
gcc-3.0.4/README

This is a partial output of the command. Most of the output is truncated to save space. 

3.2.2.2 Running configure Script
After uncompressing the source code, the first thing is to run the configure script. This

script is found in /gcc3/gcc-3.0.4 directory. You can specify three major things when you
run the configure script. 

1. Build machine. This is the machine where you compile and build the compiler.
2. Host machine. This is the machine where compiler will be installed. This is usually the

same as the build machine.
3. Target machine. This is the machine for which the newly built compiler will generate

executable code. If you are building a native compiler, this is the same machine as the
host machine. If you are building a cross-compiler, this machine will be different than
the host machine.

Each of these machines names are used in the following format:

CPUname-CompanyName-SystemName

For example, if you want to build a compiler that will run on a sparc processor made by
Sun Microsystems and on SunOS 4.1 operating system, the command line for configure
script will be as follows:

./configure –host=sparc-sun-sunos4.1

Please see a list of supported systems at http://gcc.gnu.org/onlinedocs/gcc-3.0.4/
gcc_4.html .

For a native compiler (a compiler that runs on the same machine where it is built and gen-
erates code for the same machine), you don’t need to specify any options on the command line
when you run the configure script. However, if you are building a cross-compiler, you must
specify the target machine. Similarly, if you are building a compiler that will be installed on
some other machine, you have to specify the host machine. 



50 Chapter 3  •  Compilers and Assemblers
It is recommended to run the configure script in a directory other than the source code
directory so that the source code tree is completely separate from the place where you build the
compiler. For the sake of this example, I have created a directory /gcc3/objdir and I ran the
configure script from that directory. As you already know, the source code tree is under the /
gcc3/gcc-3.0.4 directory. You may need to add a prefix for GCC installation files. The pre-
fix shows the directory where GCC files will be finally installed. The default prefix is /usr/
local. This means that GCC binary files will be installed in /usr/local/bin directory.
For installation purposes, I have selected /opt/gcc-3.0.4 directory as the prefix. In a typi-
cal development environment, you would do something similar to that. Just create a directory
under /opt and install all of your tools and applications under /opt. The following command
line will configure the GCC compilation process and will create many files under /gcc3/
objdir. These files will be used later on to build the compiler. When you start the config-
ure script, the following messages will start scrolling up.

[root@laptop objdir]# ../gcc-3.0.4/configure --prefix=/opt/
gcc-3.0.4

Configuring for a i686-pc-linux-gnu host.

Created "Makefile" in /gcc3/gcc-3.0.4 using "mt-frag"

Configuring libiberty...

creating cache ../config.cache

checking host system type... i686-pc-linux-gnu

checking build system type... i686-pc-linux-gnu

checking for ar... ar

checking for ranlib... ranlib

checking for gcc... gcc

checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking for POSIXized ISC... no

checking for working const... yes

checking for inline... inline

checking for a BSD compatible install... /usr/bin/install -c

checking how to run the C preprocessor... gcc -E

checking for sys/file.h... yes

checking for sys/param.h... yes

checking for limits.h... yes

checking for stdlib.h... yes

checking for string.h... yes

Most of the output is truncated from the configure script to save space. When the config-
ure script is completed, you will get back the command prompt. Now you may start building the
compiler.

N O T E There may be some other requirements when you are
building a non-native compiler.



Installing GNU Compiler 51
If you want to enable threads on Linux systems, you can use --enable-
threads=posix as a command line option.

3.2.2.3 Building GCC

It is recommended that you use GNU make for building purpose. Running the make
bootstrap command will build the compiler, libraries and related utilities. Following is part
of the output when you start the building process.

[root@laptop objdir]# make bootstrap

make[1]: Entering directory `/gcc3/objdir/libiberty'

if [ x"" != x ] && [ ! -d pic ]; then \

  mkdir pic; \

else true; fi

touch stamp-picdir

if [ x"" != x ]; then \

  gcc -c -DHAVE_CONFIG_H -g -O2 -I. -I../../gcc-3.0.4/
libiberty/../include  -W -Wall -Wtraditional -pedantic  ../../
gcc-3.0.4/libiberty/argv.c -o pic/argv.o; \

else true; fi

gcc -c -DHAVE_CONFIG_H -g -O2 -I. -I../../gcc-3.0.4/libiberty/
../include  -W -Wall -Wtraditional -pedantic ../../gcc-3.0.4/
libiberty/argv.c

if [ x"" != x ]; then \

  gcc -c -DHAVE_CONFIG_H -g -O2 -I. -I../../gcc-3.0.4/
libiberty/../include  -W -Wall -Wtraditional -pedantic  ../../
gcc-3.0.4/libiberty/choose-temp.c -o pic/choose-temp.o; \

else true; fi

gcc -c -DHAVE_CONFIG_H -g -O2 -I. -I../../gcc-3.0.4/libiberty/
../include  -W -Wall -Wtraditional -pedantic ../../gcc-3.0.4/
libiberty/choose-temp.c

if [ x"" != x ]; then \

  gcc -c -DHAVE_CONFIG_H -g -O2 -I. -I../../gcc-3.0.4/
libiberty/../include  -W -Wall -Wtraditional -pedantic  ../../
gcc-3.0.4/libiberty/concat.c -o pic/concat.o; \

else true; fi

gcc -c -DHAVE_CONFIG_H -g -O2 -I. -I../../gcc-3.0.4/libiberty/
../include  -W -Wall -Wtraditional -pedantic ../../gcc-3.0.4/
libiberty/concat.c

if [ x"" != x ]; then \

  gcc -c -DHAVE_CONFIG_H -g -O2 -I. -I../../gcc-3.0.4/
libiberty/../include  -W -Wall -Wtraditional -pedantic  ../../
gcc-3.0.4/libiberty/cplus-dem.c -o pic/cplus-dem.o; \

else true; fi

Again most of the output is truncated. The building process may take a long time depend-
ing upon how powerful a computer you are using for building GCC. The process is completed in



52 Chapter 3  •  Compilers and Assemblers
three stages. Stage 1 and stage 2 binaries are deleted as soon as they are no longer needed. Typi-
cally this building process will do the following:

• Build some basic tools like bison, gperf and so on. These tools are necessary to
continue the compilation process.

• Build target tools like gas, ld, binutils and so on.
• Perform a three-stage bootstrap of the compiler.
• Perform comparison of stage 2 and stage 3.
• Build run-time libraries.
• Remove unnecessary files.

You should have enough disk space to build GCC. If you are short of disk space, you can
use the bootstrap-lean option on the command line instead of bootstrap.

3.2.2.4 Final Install
The final installation process is necessary to move GCC binaries under the directory used

as a prefix during the configure script execution. We have used /opt/gcc-3.0.4 as the
prefix directory. Executing the following command in /gcc3/objdir will move GCC bina-
ries in a tree structure under /opt/gcc-3.0.4.

make install

A typical directory tree after installation is shown below.

[root@conformix gcc-3.0.4]# tree -d |more
.
|-- bin
|-- include
|   |-- g++-v3
|   |   |-- backward
|   |   |-- bits
|   |   |-- ext
|   |   `-- i686-pc-linux-gnu
|   |       `-- bits
|   |-- gcj
|   |-- gnu
|   |   |-- awt
|   |   |   `-- j2d
|   |   |-- classpath
|   |   |-- gcj
|   |   |   |-- awt
|   |   |   |-- convert
|   |   |   |-- io
|   |   |   |-- jni
|   |   |   |-- math
|   |   |   |-- protocol



Installing GNU Compiler 53
|   |   |   |   |-- file
|   |   |   |   |-- http
|   |   |   |   `-- jar
|   |   |   |-- runtime
|   |   |   |-- text
|   |   |   `-- util
|   |   `-- java
|   |       |-- beans
|   |       |   |-- editors
|   |       |   `-- info
|   |       |-- io
|   |       |-- lang
|   |       |   `-- reflect
|   |       |-- locale
|   |       `-- security
|   |           `-- provider
|   `-- java
|       |-- applet
|       |-- awt
|       |   |-- color
|       |   |-- datatransfer
|       |   |-- event
|       |   |-- geom
|       |   |-- image
|       |   `-- peer
|       |-- beans
|       |   `-- beancontext
|       |-- io
|       |-- lang
|       |   |-- ref
|       |   `-- reflect
|       |-- math
|       |-- net
|       |-- security
|       |   |-- cert
|       |   |-- interfaces
|       |   `-- spec
|       |-- sql
|       |-- text
|       `-- util
|           |-- jar
|           `-- zip
|-- info
|-- lib
|   `-- gcc-lib
|       `-- i686-pc-linux-gnu
|           `-- 3.0.4
|               `-- include



54 Chapter 3  •  Compilers and Assemblers
|                   |-- SDL
|                   |-- X11 -> root/usr/X11R6/include/X11
|                   |-- linux
|                   |-- mozilla
|                   |-- ncurses
|                   |-- objc
|                   |-- openssl
|                   |-- pcap
|                   |   `-- net
|                   |-- pgsql
|                   |   `-- utils
|                   |-- root
|                   |   `-- usr
|                   |       `-- X11R6
|                   |           `-- include
|                   |               `-- X11
|                   |-- schily
|                   |   `-- scg
|                   |-- slang
|                   |-- ucd-snmp
|                   |-- w3c-libwww
|                   |-- wnn
|                   `-- wnn6
|-- man
|   |-- man1
|   `-- man7
`-- share

95 directories
[root@conformix gcc-3.0.4]# 

3.2.3 Environment Variables

The GCC compiler relies on many environment variables for its operation. These vari-
ables are used for different purposes including location of library and header files, location of
helping programs and so on. Some important variables and their respective use are introduced
in this section.

N O T E Detailed instructions for compiling and installing GCC
are available at http://gcc.gnu.org/onlinedocs/gcc-3.0.4/gcc_4.html
as well as at http://gcc.gnu.org/install/. 

TMPDIR This variable shows location of temporary file location. GCC uses
this location to store temporary files during the compiling and
linking processes.



Installing GNU Compiler 55
There are other environment variables and settings that GCC uses while building a target.
You can display these using the –v command line switch with  the gcc command when you
compile a program. This will show you the path including files, programs used during the com-
pilation process, and command line arguments and switches passed to each of these programs.
The following is the output of the command when you compile the hello.c program.

[rr@conformix 4]$ gcc -v hello.c
Reading specs from /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-
gnu/3.0.4/specs
Configured with: ../gcc-3.0.4/configure --prefix=/opt/gcc-
3.0.4 --enable-threads=posix
Thread model: posix
gcc version 3.0.4
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/cc1 -lang-
c -v -D__GNUC__=3 -D__GNUC_MINOR__=0 -D__GNUC_PATCHLEVEL__=4 -
D__ELF__ -Dunix -Dlinux -D__ELF__ -D__unix__ -D__linux__ -
D__unix -D__linux -Asystem=posix -D__NO_INLINE__ -
D__STDC_HOSTED__=1 -Acpu=i386 -Amachine=i386 -Di386 -D__i386 -
D__i386__ -D__tune_i686__ -D__tune_pentiumpro__ hello.c -quiet 
-dumpbase hello.c -version -o /tmp/ccJsUmYa.s
GNU CPP version 3.0.4 (cpplib) (i386 Linux/ELF)
GNU C version 3.0.4 (i686-pc-linux-gnu)
compiled by GNU C version 3.0.4.
ignoring nonexistent directory "/opt/gcc-3.0.4/i686-pc-linux-
gnu/include"
#include "..." search starts here:
#include <...> search starts here:
 /usr/local/include

GCC_EXEC_PREFIX If this variable is set, GCC will look into the directory to find sub
programs.

COMPILER_PATH This is a colon-separated list of directories that GCC uses to find
out sub programs if search fails using GCC_EXEC_PREFIX vari-
able.

LIBRARY_PATH This is a colon-separated list of directories that is used to find out
libraries for linking process.

C_INCLUDE_PATH Colon separated list of directories to find out header files for C
programs.

OBJC_INCLUDE_PATH Colon separated list of directories to find out header files for
Objective C programs.

CPLUS_INCLUDE_PAT
H

Colon separated list of directories to find out header files for C++
programs.

LD_LIBRARY_PATH Path for shared libraries.



56 Chapter 3  •  Compilers and Assemblers
 /opt/gcc-3.0.4/include
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/include
 /usr/include
End of search list.
 as --traditional-format -V -Qy -o /tmp/ccn7wLgw.o /tmp/
ccJsUmYa.s
GNU assembler version 2.10.91 (i386-redhat-linux) using BFD 
version 2.10.91.0.2
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/collect2 -
m elf_i386 -dynamic-linker /lib/ld-linux.so.2 /usr/lib/crt1.o 
/usr/lib/crti.o /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/
3.0.4/crtbegin.o -L/opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-
gnu/3.0.4 -L/opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/
3.0.4/../../.. /tmp/ccn7wLgw.o -lgcc -lc -lgcc /opt/gcc-3.0.4/
lib/gcc-lib/i686-pc-linux-gnu/3.0.4/crtend.o /usr/lib/crtn.o
[rr@conformix 4]$

If you examine the output of this command, you can find out which helper programs gcc
uses and what command line switches are passed to these programs.

3.2.4 Post-Installation Tasks

There are a few tasks that you need to carry out after the installation process of the compilers. 

3.2.4.1 Setting PATH Variable
This is the first important task. Your PATH variable must include the directory where GCC

binaries are installed. We have installed these in /opt/gcc-3.0.4/bin directory because
we used /opt/gcc-3.0.4 as the prefix while running the configure script. This directory
should come before the directories where the old compiler is installed. A typical command to do
this in bash or other POSIX-compliant shells to include our installation location is as follows:

export PATH=/opt/gcc-3.0.4/bin:$PATH

where /opt/gcc-3.0.4/bin is the path to newly installed compilers.
It is also extremely important that you make sure the GCC in the path is the correct one.

The 'which gcc' command will provide this.

3.2.4.2 Setting the Location of Libraries
There are two steps to set up the location of libraries. First  edit /etc/ld/so.config

and add the path of any newly created libraries. This directory is /opt/gcc-3.0.4/lib
because we used –prefix=/opt/gcc-3.0.4 while building the compiler. Typical contents
of this file after adding the new directory are as follows:

/opt/gcc-3.0.4/lib
/usr/lib
/usr/kerberos/lib
/usr/X11R6/lib
/usr/lib/sane



Installing GNU Compiler 57
/usr/lib/qt-2.3.0/lib
/usr/lib/mysql
/usr/lib/qt-1.45/lib

After editing this file, execute the ldconfig program, which will configure dynamic
linker binding. You can use the –v command line option to get more information when you run
this command. Note that the order of commands  is important. 

The next step is to setup the LD_LIBRARY_PATH variable. You can do this by adding the
following line at the end of /etc/profile file so that it is set for all users at login time.

export LD_LIBRARY_PATH=/opt/gcc-3.0.4/lib

Again note that this is the path where new library files are installed. Please note that if you
make these changes, some older programs that are compiled for some other set of shared librar-
ies may not function properly.

3.2.4.3 Setting Location of include Files
The default search path for include files can be found by executing the following com-

mand:

[rr@conformix 4]$ gcc -v -E -
Reading specs from /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-
gnu/3.0.4/specs
Configured with: ../gcc-3.0.4/configure --prefix=/opt/gcc-
3.0.4 --enable-threads=posix
Thread model: posix
gcc version 3.0.4
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/cpp0 -
lang-c -v -D__GNUC__=3 -D__GNUC_MINOR__=0 -
D__GNUC_PATCHLEVEL__=4 -D__ELF__ -Dunix -Dlinux -D__ELF__ -
D__unix__ -D__linux__ -D__unix -D__linux -Asystem=posix -
D__NO_INLINE__ -D__STDC_HOSTED__=1 -Acpu=i386 -Amachine=i386 -
Di386 -D__i386 -D__i386__ -D__tune_i686__ -
D__tune_pentiumpro__ -
GNU CPP version 3.0.4 (cpplib) (i386 Linux/ELF)
ignoring nonexistent directory "/opt/gcc-3.0.4/i686-pc-linux-
gnu/include"
#include "..." search starts here:
#include <...> search starts here:
 /usr/local/include
 /opt/gcc-3.0.4/include
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/include
 /usr/include
End of search list.

The last part of the output shows that include files will be searched in the following direc-
tories by default.

/usr/local/include



58 Chapter 3  •  Compilers and Assemblers
/opt/gcc-3.0.4/include
/opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/
include
/usr/include

You can place include files in other directories if you have set the C_INCLUDE_PATH
environment variable. Setting this variable to /opt using the following command will include /
opt directory also in the search list. Also note that order is once again extremely important. 

export C_INCLUDE_PATH=/opt

If you again execute the gcc –v –E – command, /opt path will be included in the last
part of the output.

To set additional include paths permanently for all users, it is a good idea to add a line with
the export command in /etc/profile file.

3.2.4.4 Setting Manual Pages Path
To be able to use manual pages installed with GCC, you have to add a line in the /etc/

man.config file. This will enable the man command to also look into the /opt/gcc-
3.0.4/man directory when searching for manual pages. The line looks like the following:

MANPATH /opt/gcc-3.0.4/man

Location of this line with respect to other MANPATH entries is important. If you put this
line after other entries, you will still get the same old man pages. That is why it is recommended
to put this entry BEFORE any other line that starts with MANPATH keyword in this file.

3.2.5 What Not to Do when Installing Development Tools

When building GCC, don’t build it into the source directory. I would also recommend not
installing your development tools in the default location (under /usr/local). Instead use
some place under the /opt directory. This way if something goes wrong, you can just delete
this directory under /opt without making any other change in the system. If you install these
tools in the default location, you may overwrite some existing files and may not be able to
reverse the installation process.

3.3 Compiling a Program

The GCC compiler is commonly invoked using the gcc command. The command accepts many
command line switches that can be used to invoke different options for the compilation process.
You can use the same command line switch multiple times. For example, if you need to specify
multiple include paths, you can use –I option multiple times. However you can’t combine two
switches into one. For example –c and –o can’t be combined as –co. This section provides
information about different methods of compilation and things you need to consider in the com-
pilation process. Please note that in most of software development projects, you don’t invoke
gcc from the command line. Instead, the GNU make utility  that reads one or many Makefiles



Compiling a Program 59
is used. These Makefiles contain information about how the compiler will be invoked and what
command line switches will be used. Information about GNU make and Makefiles is presented
in Chapter 5.

3.3.1 Simple Compilation

Consider the following C source code file, which is named hello.c. We shall frequently
refer to this program in this as well as coming chapters.

#include <stdio.h>
main ()
{
  printf("Hello world\n");
}

To compile this file, you just need to run the following command.

[rr@conformix 4]$ gcc hello.c
[rr@conformix 4]$

By default, this command will generate an output file named a.out, which can be exe-
cuted on the command line as follows:

[rr@conformix 4]$ ./a.out
Hello world
[rr@conformix 4]$ 

Note that  regardless of the name of your source code file, the name of the output file is
always a.out. You may actually know what an ordinary a.out file is, but this isn't one of
them. It is an elf file, despite its name. If you want to create an output file with a different
name, you have to use the –o command line option. The following command creates an output
file with name hello.

gcc hello.c -o hello

As you may have noted, the above commands do both the compiling and linking processes
in a single step. If you don’t want to link the program, then simple compilation of hello.c file
can be done with the following command. The output file will be hello.o and will contain
object code.

gcc –c hello.c 

Note that both –c and –o command line switches can be used simultaneously. The follow-
ing command compiles hello.c and produces an output file test.o which is not yet linked.

gcc –c hello.c  -o test.o

Usually when you compile many files in a project, you don’t create a.out files. Either
you compile many files into object files and then link them together into an application or make
executables with the same name as the source code file.



60 Chapter 3  •  Compilers and Assemblers
3.3.2 Default File Types

GCC can recognize an input file by the last part of its name, sometimes called an exten-
sion. Table 3-1 shows file types and the extensions used with them. Depending upon a particular
extension, gcc takes appropriate action to build the output file.

Table 3-1 File types used with GCC

File 
Extension

File Type

.c C source code file.

.cc C++ source code file.

.cp C++ source code file.

.cxx C++ source code file.

.cpp C++ source code file.

.c+ C++ source code file.

.C C++ source code file.

.m Objective C source code file.

.F Fortran source code file.

.fpp Fortran source code file.

.FPP Fortran source code file.

.h C header file.

.i C source code file. GCC does not preprocess it.

.ii C++ source code file. GCC does not preprocess it.

.mi Objective C source code file. GCC does not preprocess it.

.f Fortran source code file. GCC does not preprocess it.

.for Fortran source code file. GCC does not preprocess it.

.FOR Fortran source code file. GCC does not preprocess it.

.s Assembler code. GCC does not preprocess it.

.S Assembler file.



Compiling a Program 61
This means that if you use command gcc hello.c, GCC will consider hello.c as a
C program and will invoke appropriate helper programs to build the output. However, if you use
gcc hello.cpp command, GCC will consider hello.cpp as a C++ program and will
compile it accordingly. You can also select a language type with a particular file using –x com-
mand line option. Table 3-2 lists languages that can be selected with this option.

Note that –x option applies to all the files that follow until you turn it off using the –x
none option on the command line. This is especially important when you use the GNU make
utility discussed in Chapter 5.

By default, the object file created by GCC has .o extension, replacing the original exten-
sion of the file. You can create output file with a particular name using –o command line option.
The following command creates test.o file from hello.c.

gcc –c hello.c –o test.o

3.3.3 Compiling to Intermediate Levels

The compilation process involves many steps like preprocessing, assembling and linking.
By default GCC carries out all of these processes and generates executable code as you have
seen earlier. However, you can force GCC not to do all of these steps. For example, using the –c
command line option, the gcc command will only compile a source code file and will not gen-
erate executable object code. As you already know, the following command compiles file
hello.c and creates an object file hello.o.

gcc –c hello.c

If you look at the type of the newly created object file using the file command, you can
see that this is not a linked file. This is shown in the following command output.

[root@conformix chap-03]# file hello.o
hello.o: ELF 32-bit LSB relocatable, Intel 80386, version 1, 
not stripped
[root@conformix chap-03]#

Table 3-2 Selecting languages with –x option.

Option Language

-x c (lowercase c) C language selection

-x c++ C++ file

-x objective-c Objective C

-x assembler Assembler file

-x f77 Fortran file

-x java Java language file



62 Chapter 3  •  Compilers and Assemblers
3.3.3.1 Creating Assembler Code
Using the –S (uppercase S) command line option, you can stop the GCC compiler just

before the assembler process. The output is an assembler file with a .s extension. The following
command creates an output file hello.s from source code file hello.c.

gcc –S hello.c

If you look at the output file, you can see the assembler code. Contents of the input file are
as follows:

#include <stdio.h>
main()
{
  printf ("Hello world\n");
}

The output assembler code is shown below:

[root@conformix chap-03]# cat hello.s
        .file   "hello.c"
        .version        "01.01"
gcc2_compiled.:
                .section        .rodata
.LC0:
        .string "Hello world\n"
.text
        .align 4
.globl main
        .type    main,@function
main:
        pushl   %ebp
        movl    %esp, %ebp
        subl    $8, %esp
        subl    $12, %esp
        pushl   $.LC0
        call    printf
        addl    $16, %esp
        leave
        ret
.Lfe1:
        .size    main,.Lfe1-main
        .ident  "GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.1 
2.96-81)"
[root@conformix chap-03]#

This assembler code may be used with some assembler, like GNU as. Here as is not word
“as” but name of the GNU Assembler which is often written as GNU as as, later on. It can also
be assembled and linked to create and execute. Please note that for the above command, the
compiler that is included in RedHat distribution was used.



Compiling a Program 63
3.3.4 Compilation with Debug Support

If you want to debug a program after compiling with gcc, you have to include debug
information in the compiled program. The debug information is included in object file using the
–g command line switch with gcc. The following command creates the hello.o file that con-
tains debug information.

[rr@conformix 4]$ gcc -g -c hello.c
[rr@conformix 4]$

Note that when you compile a program with debug information, the size may be quite
large as compared to a file compiled without debug information. In the example program of
hello.c, the size of hello.o is 908 bytes when compiled without debug information. The
size of hello.o is 10780 bytes when it is compiled with debug information.

You can use multiple debug levels with –g option. The default debug level is 2 which is
equivalent to using –g2 command line option. If you use –g3 command line option, information
about macros is also included which makes it easier to debug macros.

With the –a option on the command line, you can also include some profiling information
in the object code.

You can also use some command line switches to provide extra information. For example,
one useful thing is to print out a list of directories that the gcc command searches to find files.
The following command will print all directories that gcc uses to search libraries, programs and
so on.

[rr@conformix 4]$ gcc -print-search-dirs hello.c -o hello
install: /usr/lib/gcc-lib/i386-redhat-linux/2.96/
programs: =/usr/lib/gcc-lib/i386-redhat-linux/2.96/:/usr/lib/
gcc-lib/i386-redhat-linux/2.96/:/usr/lib/gcc-lib/i386-redhat-
linux/:/usr/lib/gcc/i386-redhat-linux/2.96/:/usr/lib/gcc/i386-
redhat-linux/:/usr/lib/gcc-lib/i386-redhat-linux/2.96/../../
../../i386-redhat-linux/bin/i386-redhat-linux/2.96/:/usr/lib/
gcc-lib/i386-redhat-linux/2.96/../../../../i386-redhat-linux/
bin/
libraries: =/usr/lib/gcc-lib/i386-redhat-linux/2.96/:/usr/lib/
gcc/i386-redhat-linux/2.96/:/usr/lib/gcc-lib/i386-redhat-
linux/2.96/../../../../i386-redhat-linux/lib/i386-redhat-
linux/2.96/:/usr/lib/gcc-lib/i386-redhat-linux/2.96/../../../
../i386-redhat-linux/lib/:/usr/lib/gcc-lib/i386-redhat-linux/
2.96/../../../i386-redhat-linux/2.96/:/usr/lib/gcc-lib/i386-
redhat-linux/2.96/../../../:/lib/i386-redhat-linux/2.96/:/lib/
:/usr/lib/i386-redhat-linux/2.96/:/usr/lib/
[rr@conformix 4]$

N O T E You can use the debug option with optimization
options. Optimization options are discussed later in this chapter.



64 Chapter 3  •  Compilers and Assemblers
Here I have used GCC version 2.96 that came with RedHat Linux 7.1 and you can see
directories and references to this version information also.

You can also find the amount of time taken by each process during compilation. The fol-
lowing command displays time taken during each step of building the output file.

[rr@conformix 4]$ gcc -time hello.c -o hello
# cpp0 0.06 0.00
# cc1 0.08 0.01
# as 0.02 0.00
# collect2 0.12 0.03
[rr@conformix 4]$

It is also evident from the output of the above command that GCC has used four other pro-
grams (cpp0, cc1, as and collect2) during the compilation process.

3.3.5 Compilation with Optimization

The first objective of a compiler is to generate output code swiftly. The compiler does not
do any code optimization to make the compile time short. However you can instruct gcc to
compile code with code optimization. This is done using –O (uppercase O, not zero) on the com-
mand line. Different optimization levels can be designated by using a number suffix with this
option. For example, -O2 will do code optimization at level 2. If you specifically don’t want to
do any code optimization, you can use zero with option as –O0.

So what does optimization mean? Consider the following C source code file sum.c that
calculates the sum of two numbers and prints the result. Of course this is not the best code for
this purpose and it is used only to demonstrate a point.

     1  #include <stdio.h>
     2  main ()
     3  {
     4    int a, b, sum;
     5
     6    a=4;
     7    b=3;
     8    sum = a+b;
     9
    10    printf("The sum is: %d\n", sum);
    11  }

If you compile this program without any optimization, the compiler will generate code for
all lines starting from line number 6 to line number 10. This can be verified by loading the file in
a debugger and tracing through it. However, if you optimize the compilation process, lines 6 to
10 can be replaced by a single line as shown below. This can be done without affecting the out-
put of the program.

printf("The sum is: 7\n", );



Compiling a Program 65
This is because the compiler can easily determine that all of the variables are static and
there is no need to assign values and then calculate the sum at the run time. All of this can be
done at the compile time. You can also verify this fact in a debugger. The optimized code will
skip over assignment lines (lines 6 to 8) and will directly jump to the printf statement when
you step through.

However in the following code, the compiler can’t make such decisions because the num-
bers a and b are entered interactively.

     1  #include <stdio.h>
     2  main ()
     3  {
     4    int a, b, sum;
     5
     6    printf("Enter first number: ");
     7    scanf("%d", &a);
     8    printf("Enter second number: ");
     9    scanf("%d", &b);
    10
    11    sum = a+b;
    12
    13    printf("The sum is: %d\n", sum);
    14  }

If you compile this code with different levels of optimization (e.g., –O1 and –O2), and
then trace it through a debugger, you will see a difference in execution sequence because of the
way the compiler makes decisions at the compile time.

It may be mentioned that optimization is not always beneficial. For example, code optimi-
zation changes timings or clock cycles when the code is executed. This especially may create
some problems on embedded systems if you have debugged your code by compiling without
optimization. The rule of thumb is that you should create optimized code instead of relying on
the compiler to make optimization for you.

For a detailed list of optimization options, please see all options starting with –f command
line option. However options starting with –O are the most commonly used in the optimization
process.

3.3.6 Static and Dynamic Linking

A compiler can generate static or dynamic code depending upon how you proceed with the
linking process. If you create static object code, the output files are larger but they can be used as
stand-alone binaries. This means that you can copy an executable file to another system and it
does not depend on shared libraries when it is executed. On the other hand, if you chose dynamic
linking, the final executable code is much smaller but it depends heavily upon shared libraries. If
you copy the final executable program to another system, you have to make sure that the shared
libraries are also present on the system where your application is executed. Please note that ver-
sion inconsistencies in dynamic libraries can also cause problems. 



66 Chapter 3  •  Compilers and Assemblers
To create static binaries, you have to use –static command line option with gcc. To
created dynamically linked output binary files, use –shared on the command line.

For example, if we compile the hello.c program used earlier in this chapter with shared
libraries, size of the output executable file is 13644 bytes (this can be further reduced using the
strip utility discussed later in Chapter 7 of this book). However, if you compile it statically,
the size of the output binary file is 1625261 bytes, which is very large compared to the shared
binary. Note that this size can also be reduced using the strip utility.

To identify the dependencies of a dynamically linked binary file, you can use the ldd
command. The following command shows that linked output file hello depends upon two
dynamic libraries.

[rr@conformix 4]$ ldd hello
  libc.so.6 => /lib/i686/libc.so.6 (0x4002c000)
  /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
[rr@conformix 4]$

If you copy hello to some other host, you also need to make sure that libc.so.6 and
ld-linux.so.2 exist on the target system.

On most of the Linux systems, dynamic linking is done by default.

3.3.7 Compiling Source Code for Other Languages

As mentioned earlier, the GCC set of compilers supports many languages. It can be used
to compile programs other than C language. Following is an introduction to compiling programs
from other languages.

3.3.7.1 Compiling C++ Code
C++ source code files have suffixes such as .C, .cpp, .cc, .c++, .cxx or .cp. The gcc com-

piler recognizes these extensions and can compile C++ code.  However you can also use g++ or
c++ compilers, which are part of the GCC compilers family and are installed with it. These pro-
grams invoke gcc with appropriate options to compile C++ code and location of class files.
Using these programs, you can also compile C++ source code files that don’t have the standard
suffixes listed earlier.

3.3.7.2 Compiling Objective C Code
Objective files have suffixes such as .m and gcc recognizes Objective C files with that

suffix. When you compile Objective C code, you have to pass an option to the linker. This is
done using –lobjc. By this option, the linker uses Objective C libraries during the linking pro-
cess. Consider the following sample Objective C code (stored in hello.m file) to print “Hello
World” on the standard output.

#include "objc/Object.h"

@interface HelloWorld : Object
{



Compiling a Program 67
  STR msg;             
}

+ new;   
- print; 
- setMessage: (STR) str;

@end

@implementation HelloWorld

+ new
{
  self = [super new];
  [self setMessage : ""];
  return self;
}

- print
{
  printf("%s\n", msg);
  return self;
}

- setMessage: (STR) str
{
  msg = str;
  return self;
}

@end

int main(int argc, char**argv) {
  id msg;

  msg = [HelloWorld new];

  [msg setMessage: "Hello World"] ;
  [msg print];
  return 0;
}

You can compile and link it using the gcc hello.m –lobjc command. The output is
again a.out file that can be executed on the command line.

This is sort of a long  “Hello World” program. There are much shorter Objective C  “Hello
World” programs available on the Internet.



68 Chapter 3  •  Compilers and Assemblers
3.3.7.3 Compiling Java Code
Information about the GCC Java compiler gcj is available at http://gcc.gnu.org/java/.

Before you can build Java programs, you also need to have libgcj installed. With old compil-
ers, you had to install it separately from source code. When you build and install new versions of
GCC, libgcj is installed automatically. If you are still using an old compiler and want to have
libgcj installed, information is available at http://gcc.gnu.org/java/libgcj2.html. Briefly the
process is as follows:

Download libgcj from ftp://sourceware.cygnus.com/pub/java/ or another web site on
the Internet. Untar it in /opt directory and a new directory will be created under /opt which
will contain source code for libgcj. Create a directory /opt/libgcj-build and move
into this directory. After that you have to perform the following sequence of commands:

• ../libgcj/configure
• make
• make install

Note that your new compiler must be in PATH before you build libgcj.

Now let us see how to compile a Java program. Consider the following simple Java pro-
gram that prints the message “Hello World”. The source code filename is hello.java.

class HelloWorld {
  public static void main (String args[]) {
    System.out.print("Hello World ");
  }
}

Traditionally you have to invoke the javac program to build a byte code. After that you
have to run the byte code using the java program on Linux. However if you use gcj, you can
create a binary output file hello using the following command:

gcj –main=HelloWorld –o hello hello.java

The output file is hello, which is an executable binary. The –main switch is used for
the entry point when the program is executed.

The compiler uses some information to build Java code. This information includes reading
the gcj specification file and libraries. The following command displays this information.

[rr@conformix 4]$ gcj -v
Reading specs from /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-
gnu/3.0.4/specs
Reading specs from /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-
gnu/3.0.4/../../../libgcj.spec
rename spec lib to liborig
rename spec startfile to startfileorig



Compiling a Program 69
Configured with: ../gcc-3.0.4/configure --prefix=/opt/gcc-
3.0.4 --enable-threads=posix
Thread model: posix
gcc version 3.0.4
[rr@conformix 4]$ 

The compilation of Java programs is completed in many steps. Let us compile the
hello.java program to build a statically linked hello output binary using the following
command. The –v switch shows all of the steps during this process.

[rr@conformix 4]$ gcj hello.java --main=HelloWorld  -o hello -
static -v
Reading specs from /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-
gnu/3.0.4/specs
Reading specs from /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-
gnu/3.0.4/../../../libgcj.spec
rename spec lib to liborig
rename spec startfile to startfileorig
Configured with: ../gcc-3.0.4/configure --prefix=/opt/gcc-
3.0.4 --enable-threads=posix
Thread model: posix
gcc version 3.0.4
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/jc1 
hello.java -fuse-divide-subroutine -fuse-boehm-gc -fnon-call-
exceptions -quiet -dumpbase hello.java -g1 -version -o /tmp/
ccHj5WMY.s
GNU Java version 3.0.4 (i686-pc-linux-gnu)
  compiled by GNU C version 3.0.4.
 as --traditional-format -V -Qy -o /tmp/cchm92Nc.o /tmp/
ccHj5WMY.s
GNU assembler version 2.10.91 (i386-redhat-linux) using BFD 
version 2.10.91.0.2
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/jvgenmain 
HelloWorldmain /tmp/ccTlFcXz.i
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/cc1 /tmp/
ccTlFcXz.i -quiet -dumpbase HelloWorldmain.c -g1 -version -
fdollars-in-identifiers -o /tmp/ccHj5WMY.s
GNU CPP version 3.0.4 (cpplib) (i386 Linux/ELF)
GNU C version 3.0.4 (i686-pc-linux-gnu)
  compiled by GNU C version 3.0.4.
 as --traditional-format -V -Qy -o /tmp/ccBgJjpa.o /tmp/
ccHj5WMY.s
GNU assembler version 2.10.91 (i386-redhat-linux) using BFD 
version 2.10.91.0.2
 /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/collect2 -
m elf_i386 -static -o hello /usr/lib/crt1.o /usr/lib/crti.o /
opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/crtbegin.o -
L/opt/gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4 -L/opt/



70 Chapter 3  •  Compilers and Assemblers
gcc-3.0.4/lib/gcc-lib/i686-pc-linux-gnu/3.0.4/../../.. /tmp/
ccBgJjpa.o /tmp/cchm92Nc.o -lgcc -lgcj -lm -lgcjgc -lpthread -
lzgcj -ldl -lgcc -lc -lgcc /opt/gcc-3.0.4/lib/gcc-lib/i686-pc-
linux-gnu/3.0.4/crtend.o /usr/lib/crtn.o
[rr@conformix 4]$

As you can see, different programs have been executed to get the output binary file. These
programs include:

• The jcl program
• GNU assembler as. Again as is the name of the assembler. as
• The jvgenmain program
• The cc1 compiler
• The collect2 program

You can also see various command line switches used with these programs.

3.3.8 Summary of gcc Options

Hundreds of options can be used with gcc on command line. Explanation of all of these
options is beyond the scope of this book. However, following is a summary list of these options
as displayed by gcc man page (using man gcc command). Options are grouped in different
sections which will be helpful for you if you are looking for options related to a particular task.

3.3.8.1 Overall Options

-c  
-S  
-E  
-o file  
-pipe  
-pass-exit-codes  
-x language 
-v  
--target-help
--help

3.3.8.2 C Language Options

-ansi  
-std=standard  
-aux-info filename 
-fno-asm  
-fno-builtin 
-fhosted  
-ffree-standing 
-trigraphs  
-traditional  



Compiling a Program 71
-traditional-cpp 
-fallow-single-precision
-fcond-mismatch 
-fsigned-bitfields  
-fsigned-char 
-funsigned-bitfields  
-funsigned-char
 
-fwritable-strings  
-fshort-wchar

3.3.8.3 C++ Language Options

-fno-access-control  
-fcheck-new  
-fconserve-space 
-fno-const-strings  
-fdollars-in-identifiers 
-fno-elide-constructors 
-fno-enforce-eh-specs  
-fexternal-templates
 
-falt-external-templates 
-ffor-scope  
-fno-for-scope  
-fno-gnu-keywords
-fno-implicit-templates 
-fno-implicit-inline-templates 
-fno-implement-inlines
-fms-extensions 
-fno-nonansi-builtins  
-fno-operator-names 
-fno-optional-diags
-fpermissive 
-frepo  
-fno-rtti  
-fstats  
-ftemplate-depth-n 
-fuse-cxa-atexit
-fno-weak  
-nostdinc++ 
-fno-default-inline  
-Wctor-dtor-privacy 
-Wnon-virtual-dtor
-Wreorder 
-Weffc++  
-Wno-deprecated 
-Wno-non-template-friend  



72 Chapter 3  •  Compilers and Assemblers
-Wold-style-cast
-Woverloaded-virtual  
-Wno-pmf-conversions 
-Wsign-promo  
-Wsynth

3.3.8.4 Objective-C Language Options

-fconstant-string-class=class-name 
-fgnu-runtime  
-fnext-runtime  
-gen-decls
-Wno-protocol  
-Wselector

3.3.8.5 Language Independent Options

-fmessage-length=n 
-fdiagnostics-show-location=[once|every-line]

3.3.8.6 Warning Options

-fsyntax-only  
-pedantic  
-pedantic-errors 
-w  
-W  
-Wall  
-Waggregate-return
-Wcast-align  
-Wcast-qual  
-Wchar-subscripts  
-Wcomment 
-Wconversion  
-Wdisabled-optimization
 
-Werror 
-Wfloat-equal  
-Wformat  
-Wformat=2 
-Wformat-nonliteral
-Wformat-security 
-Wid-clash-len  
-Wimplicit 
-Wimplicit-int 
-Wimplicit-function-declaration 
-Werror-implicit-function-declaration 
-Wimport  
-Winline
-Wlarger-than-len  



Compiling a Program 73
-Wlong-long 
-Wmain  
-Wmissing-braces  
-Wmissing-declarations
-Wmissing-format-attribute  
-Wmissing-noreturn 
-Wmultichar  
-Wno-format-extra-args
-Wno-format-y2k 
-Wno-import  
-Wpacked  
-Wpadded 
-Wparentheses  
-Wpointer-arith
-Wredundant-decls 
-Wreturn-type  
-Wsequence-point  
-Wshadow 
-Wsign-compare
-Wswitch  
-Wsystem-headers 
-Wtrigraphs  
-Wundef  
-Wuninitialized 
-Wunknown-pragmas
-Wunreachable-code 
-Wunused  
-Wunused-function  
-Wunused-label  
-Wunused-parameter
-Wunused-value  
-Wunused-variable  
-Wwrite-strings

3.3.8.7 C-only Warning Options

-Wbad-function-cast  
-Wmissing-prototypes  
-Wnested-externs 
-Wstrict-prototypes
-Wtraditional

3.3.8.8 Debugging Options

-a  
-ax  
-dletters  
-dumpspecs  
-dumpmachine  



74 Chapter 3  •  Compilers and Assemblers
-dumpversion 
-fdump-unnumbered
-fdump-translation-unit[-n] 
-fdump-class-hierarchy[-n] 
-fdump-ast-original[-n]
-fdump-ast-optimized[-n] 
-fmem-report  
-fpretend-float 
-fprofile-arcs  
-ftest-coverage
  
-ftime-report -g  
-glevel  
-gcoff  
-gdwarf  
-gdwarf-1  
-gdwarf-1+
-gdwarf-2 
-ggdb  
-gstabs  
-gstabs+  
-gxcoff  
-gxcoff+ 
-p  
-pg
-print-file-name=library  
-print-libgcc-file-name 
-print-multi-directory
-print-multi-lib 
-print-prog-name=program  
-print-search-dirs  
-Q 
-save-temps
-time

3.3.8.9 Optimization Options

-falign-functions=n  
-falign-jumps=n 
-falign-labels=n  
-falign-loops=n
-fbranch-probabilities  
-fcaller-saves 
-fcse-follow-jumps  
-fcse-skip-blocks
-fdata-sections  
-fdce -fdelayed-branch  
-fdelete-null-pointer-checks 



Compiling a Program 75
-fexpensive-optimizations
  
-ffast-math  
-ffloat-store 
-fforce-addr  
-fforce-mem  
-ffunction-sections
 
-fgcse 
-finline-functions  
-finline-limit=n  
-fkeep-inline-functions
 
-fkeep-static-consts  
-fmove-all-movables 
-fno-default-inline
-fno-defer-pop 
-fno-function-cse  
-fno-guess-branch-probability 
-fno-inline
-fno-math-errno  
-fno-peephole  
-fno-peephole2 
-fomit-frame-pointer  
-foptimize-register-move
 
-foptimize-sibling-calls  
-freduce-all-givs 
-fregmove  
-frename-registers
 
-frerun-cse-after-loop  
-frerun-loop-opt 
-fschedule-insns  
-fschedule-insns2
 
-fsingle-precision-constant  
-fssa 
-fstrength-reduce  
-fstrict-aliasing
-fthread-jumps  
-ftrapv 
-funroll-all-loops  
-funroll-loops --param name=value -O
-O0  
-O1  
-O2  
-O3  
-Os



76 Chapter 3  •  Compilers and Assemblers
3.3.8.10 Preprocessor Options

-$  
-Aquestion=answer  
-A-question[=answer] 
-C  
-dD  
-dI  
-dM  
-dN 
-Dmacro[=defn]
-E  
-H 
-idirafter dir 
-include file  
-imacros file 
-iprefix file  
-iwithprefix dir
-iwithprefixbefore dir  
-isystem dir 
-M  
-MM  
-MF  
-MG  
-MP  
-MQ  
-MT  
-nostdinc
-P  
-remap 
-trigraphs  
-undef  
-Umacro  
-Wp,option

3.3.8.11 Assembler Option

-Wa,option

3.3.8.12 Linker Options

 object-file-name  
-llibrary 
-nostartfiles  
-nodefaultlibs  
-nostdlib 
-s  
-static
-static-libgcc  
-shared  



Compiling a Program 77
-shared-libgcc  
-symbolic 
-Wl,option  
-Xlinker option
 -u symbol

3.3.8.13 Directory Options

-Bprefix  
-Idir  
-I-  
-Ldir  
-specs=file

3.3.8.14 Target Options

-b machine  
-V version

3.3.8.15 Machine Dependent Options
M680x0 Options

-m68000  
-m68020  
-m68020-40  
-m68020-60  
-m68030  
-m68040 
-m68060  
-mcpu32 
-m5200
-m68881  
-mbitfield  
-mc68000  
-mc68020 
-mfpa  
-mnobitfield  
-mrtd  
-mshort
-msoft-float  
-mpcrel 
-malign-int  
-mstrict-align

M68hc1x Options

-m6811  
-m6812  
-m68hc11  
-m68hc12 
-mauto-incdec  



78 Chapter 3  •  Compilers and Assemblers
-mshort  
-msoft-reg-count=count

VAX Options

-mg  
-mgnu  
-munix

SPARC Options

-mcpu=cpu-type 
-mtune=cpu-type 
-mcmodel=code-model 
-m32  
-m64 
-mapp-regs  
-mbroken-saverestore
  
-mcypress 
-mepilogue  
-mfaster-structs 
-mflat 
-mfpu  
-mhard-float
-mhard-quad-float 
-mimpure-text  
-mlive-g0  
-mno-app-regs 
-mno-epilogue
-mno-faster-structs  
-mno-flat  
-mno-fpu 
-mno-impure-text  
-mno-stack-bias
-mno-unaligned-doubles 
-msoft-float  
-msoft-quad-float  
-msparclite  
-mstack-bias
-msupersparc  
-munaligned-doubles  
-mv8

Convex Options

-mc1  
-mc2  
-mc32  
-mc34  



Compiling a Program 79
-mc38 
-margcount  
-mnoargcount 
-mlong32  
-mlong64
-mvolatile-cache  
-mvolatile-nocache

AMD29K Options

-m29000  
-m29050  
-mbw  
-mnbw  
-mdw  
-mndw 
-mlarge  
-mnormal  
-msmall 
-mkernel-registers
  
-mno-reuse-arg-regs 
-mno-stack-check  
-mno-storem-bug
-mreuse-arg-regs  
-msoft-float  
-mstack-check 
-mstorem-bug  
-muser-registers

ARM Options

-mapcs-frame  
-mno-apcs-frame 
-mapcs-26  
-mapcs-32 
-mapcs-stack-check
-mno-apcs-stack-check 
-mapcs-float  
-mno-apcs-float 
-mapcs-reentrant
-mno-apcs-reentrant 
-msched-prolog  
-mno-sched-prolog 
-mlittle-endian
-mbig-endian  
-mwords-little-endian 
-malignment-traps  
-mno-alignment-traps
-msoft-float  



80 Chapter 3  •  Compilers and Assemblers
-mhard-float  
-mfpe 
-mthumb-interwork  
-mno-thumb-interwork
-mcpu=name  
-march=name  
-mfpe=name 
-mstructure-size-boundary=n 
-mbsd 
-mxopen
-mno-symrename 
-mabort-on-noreturn 
-mlong-calls  
-mno-long-calls 
-msingle-pic-base
-mno-single-pic-base 
-mpic-register=reg 
-mnop-fun-dllimport 
-mpoke-function-name
-mthumb  
-marm 
-mtpcs-frame  
-mtpcs-leaf-frame 
-mcaller-super-interworking
-mcallee-super-interworking

MN10200 Options

-mrelax

MN10300 Options

-mmult-bug  
-mno-mult-bug 
-mam33  
-mno-am33 
-mno-crt0  
-mrelax

M32R/D Options

-mcode-model=model-type  
-msdata=sdata-type -G num

M88K Options

-m88000  
-m88100  
-m88110  
-mbig-pic 
-mcheck-zero-division  



Compiling a Program 81
-mhandle-large-shift
-midentify-revision  
-mno-check-zero-division 
-mno-ocs-debug-info
-mno-ocs-frame-position 
-mno-optimize-arg-area  
-mno-serialize-volatile
-mno-underscores  
-mocs-debug-info 
-mocs-frame-position  
-moptimize-arg-area 
-mserialize-volatile
  
-mshort-data-num  
-msvr3 
-msvr4  
-mtrap-large-shift
-muse-div-instruction 
-mversion-03.00  
-mwarn-passed-structs

RS/6000 and PowerPC Options

-mcpu=cpu-type 
-mtune=cpu-type 
-mpower  
-mno-power  
-mpower2  
-mno-power2 
-mpowerpc
  
-mpowerpc64  
-mno-powerpc 
-mpowerpc-gpopt  
-mno-powerpc-gpopt 
-mpowerpc-gfxopt
  
-mno-powerpc-gfxopt 
-mnew-mnemonics  
-mold-mnemonics 
-mfull-toc   
-mminimal-toc
  
-mno-fop-in-toc  
-mno-sum-in-toc 
-m64  
-m32  
-mxl-call  
-mno-xl-call



82 Chapter 3  •  Compilers and Assemblers
-mthreads  
-mpe 
-msoft-float  
-mhard-float  
-mmultiple  
-mno-multiple 
-mstring
-mno-string  
-mupdate  
-mno-update 
-mfused-madd  
-mno-fused-madd  
-mbit-align
-mno-bit-align 
-mstrict-align  
-mno-strict-align  
-mrelocatable 
-mno-relocatable
-mrelocatable-lib  
-mno-relocatable-lib 
-mtoc  
-mno-toc 
-mlittle  
-mlittle-endian
-mbig  
-mbig-endian 
-mcall-aix 
-mcall-sysv 
-mcall-netbsd 
-mprototype  
-mno-prototype-
 
-msim  
-mmvme  
-mads  
-myellowknife  
-memb 
-msdata 
-msdata=opt  
-mvxworks –G num

RT Options

-mcall-lib-mul  
-mfp-arg-in-fpregs  
-mfp-arg-in-gregs 
-mfull-fp-blocks
-mhc-struct-return  
-min-line-mul 



Compiling a Program 83
-mminimum-fp-blocks  
-mnohc-struct-return

MIPS Options

-mabicalls  
-mcpu=cpu-type 
-membedded-data  
-muninit-const-in-rodata 
-membedded-pic-
  
-mfp32  
-mfp64  
-mgas  
-mgp32  
-mgp64 
-mgpopt  
-mhalf-pic  
-mhard-float
-mint64  
-mips1 
-mips2  
-mips3  
-mips4  
-mlong64  
-mlong32  
-mlong-calls  
-mmemcpy
-mmips-as  
-mmips-tfile  
-mno-abicalls 
-mno-embedded-data
-mno-uninit-const-in-rodata 
-mno-embedded-pic  
-mno-gpopt  
-mno-long-calls
-mno-memcpy  
-mno-mips-tfile  
-mno-rnames  
-mno-stats 
-mrnames  
-msoft-float
-m4650  
-msingle-float  
-mmad 
-mstats  
-EL  
-EB  
-G num  



84 Chapter 3  •  Compilers and Assemblers
-nocpp 
-mabi=32
-mabi=n32  
-mabi=64  
-mabi=eabi -mfix7000  
-mno-crt0

i386 Options

-mcpu=cpu-type  
-march=cpu-type 
-mintel-syntax 
-mieee-fp  
-mno-fancy-math-387
-mno-fp-ret-in-387  
-msoft-float  
-msvr3-shlib 
-mno-wide-multiply  
-mrtd
-malign-double 
-mreg-alloc=list  
-mregparm=num 
-malign-jumps=num
-malign-loops=num 
-malign-functions=num  
-mpreferred-stack-boundary=num 
-mthreads
-mno-align-stringops  
-minline-all-stringops 
-mpush-args  
-maccumulate-outgoing-args  

-m128bit-long-double 
-m96bit-long-double  
-momit-leaf-frame-pointer

HPPA Options

-march=architecture-type 
-mbig-switch  
-mdisable-fpregs  
-mdisable-indexing
-mfast-indirect-calls 
-mgas  
-mjump-in-delay 
-mlong-load-store  
-mno-big-switch
-mno-disable-fpregs 
-mno-disable-indexing  
-mno-fast-indirect-calls  



Compiling a Program 85
-mno-gas
-mno-jump-in-delay  
-mno-long-load-store 
-mno-portable-runtime  
-mno-soft-float
-mno-space-regs  
-msoft-float  
-mpa-risc-1-0 
-mpa-risc-1-1  
-mpa-risc-2-0
-mportable-runtime 
-mschedule=cpu-type  
-mspace-regs

Intel 960 Options

-mcpu-type  
-masm-compat  
-mclean-linkage 
-mcode-align  
-mcomplex-addr
-mleaf-procedures 
-mic-compat  
-mic2.0-compat  
-mic3.0-compat 
-mintel-asm
-mno-clean-linkage  
-mno-code-align 
-mno-complex-addr  
-mno-leaf-procedures
-mno-old-align  
-mno-strict-align  
-mno-tail-call 
-mnumerics  
-mold-align
-msoft-float  
-mstrict-align 
-mtail-call

DEC Alpha Options

-mfp-regs  
-mno-fp-regs  
-mno-soft-float  
-msoft-float 
-malpha-as  
-mgas 
-mieee
-mieee-with-inexact  
-mieee-conformant 



86 Chapter 3  •  Compilers and Assemblers
-mfp-trap-mode=mode  
-mfp-rounding-mode=mode
 
-mtrap-precision=mode  
-mbuild-constants 
-mcpu=cpu-type 
-mbwx
-mno-bwx  
-mcix  
-mno-cix  
-mmax  
-mno-max 
-mmemory-latency=time

Clipper Options

-mc300  
-mc400

H8/300 Options

-mrelax  
-mh  
-ms  
-mint32  
-malign-300

SH Options

-m1  
-m2  
-m3  
-m3e 
-m4-nofpu  
-m4-single-only  
-m4-single  
-m4 
-mb  
-ml  
-mdalign
-mrelax 
-mbigtable  
-mfmovd  
-mhitachi  
-mnomacsave 
-mieee  
-misize  
-mpadstruct
-mspace 
-mprefergot  
-musermode



Compiling a Program 87
System V Options

-Qy  
-Qn  
-YP,paths  
-Ym,dir

ARC Options

-EB  
-EL 
-mmangle-cpu  
-mcpu=cpu  

-mtext=text-section 
-mdata=data-section  
-mrodata=readonly-data-section

TMS320C3x/C4x Options

-mcpu=cpu  
-mbig  
-msmall  
-mregparm  
-mmemparm 
-mfast-fix  
-mmpyi  
-mbk  
-mti
-mdp-isr-reload -mrpts=count  
-mrptb  
-mdb  
-mloop-unsigned 
-mparallel-insns
-mparallel-mpy  
-mpreserve-float

V850 Options

-mlong-calls  
-mno-long-calls  
-mep  
-mno-ep 
-mprolog-function  
-mno-prolog-function  

-mspace 
-mtda=n  
-msda=n  
-mzda=n 
-mv850  
-mbig-switch



88 Chapter 3  •  Compilers and Assemblers
NS32K Options

-m32032  
-m32332  
-m32532  
-m32081  
-m32381 
-mmult-add  
-mnomult-add 
-msoft-float
-mrtd  
-mnortd 
-mregparam  
-mnoregparam  
-msb  
-mnosb 
-mbitfield  
-mnobitfield
-mhimem  
-mnohimem

AVR Options

-mmcu=mcu  
-msize  
-minit-stack=n  
-mno-interrupts 
-mcall-prologues  
-mno-table-jump
  
-mtiny-stack

MCore Options

-mhardlit  
-mno-hardlit  
-mdiv  
-mno-div  
-mrelax-immediates 
-mno-relax-immediates
-mwide-bitfields  
-mno-wide-bitfields 
-m4byte-functions  
-mno-4byte-functions
-mcallgraph-data 
-mno-callgraph-data  
-mslow-bytes  
-mno-slow-bytes  
-mno-lsim
-mlittle-endian  



Compiling a Program 89
-mbig-endian  
-m210  
-m340  
-mstack-increment

IA-64 Options

-mbig-endian  
-mlittle-endian  
-mgnu-as  
-mgnu-ld  
-mno-pic 
-mvolatile-asm-stop
-mb-step  
-mregister-names  
-mno-sdata 
-mconstant-gp  
-mauto-pic  
-minline-divide-min-latency
 
-minline-divide-max-throughput  
-mno-dwarf2-asm
-mfixed-range=register-range

S/390 and zSeries Options

-mhard-float  
-msoft-float  
-mbackchain  
-mno-backchain 
-msmall-exec
-mno-small-exec  
-mmvcle 
-mno-mvcle 
-m64 
-m31 
-mdebug 
-mno-debug

Xtensa Options

-mbig-endian 
-mlittle-endian 
-mdensity 
-mno-density 
-mmac16 
-mno-mac16 
-mmul16
-mno-mul16 
-mmul32 



90 Chapter 3  •  Compilers and Assemblers
-mno-mul32 
-mnsa 
-mno-nsa 
-mminmax 
-mno-minmax 
-msext 
-mno-sext
-mbooleans 
-mno-booleans 
-mhard-float 
-msoft-float 
-mfused-madd 
-mno-fused-madd
-mserialize-volatile 
-mno-serialize-volatile 
-mtext-section-literals
-mno-text-section-literals 
-mtarget-align 
-mno-target-align 
-mlongcalls 
-mno-long-calls

3.3.8.16 Code Generation Options

-fcall-saved-reg  
-fcall-used-reg 
-ffixed-reg 
-fexceptions 
-fnon-call-exceptions
-funwind-tables 
-finhibit-size-directive  
-finstrument-functions 
-fcheck-memory-usage
  
-fprefix-function-name 
-fno-common  
-fno-ident  
-fno-gnu-linker
-fpcc-struct-return  
-fpic  
-fPIC 
-freg-struct-return  
-fshared-data
-fshort-enums 
-fshort-double  
-fvolatile 
-fvolatile-global  
-fvolatile-static



Linking a program 91
-fverbose-asm  
-fpack-struct  
-fstack-check 
-fstack-limit-register=reg
-fstack-limit-symbol=sym 
-fargument-alias  
-fargument-noalias 
-fargument-noalias-global 
 
-fleading-underscore

3.4 Linking a program

As mentioned earlier, building an executable binary file from a source code file is a multi-stage
process.

The gcc compiler usually carries all these steps for you by default. However you can stop
gcc at any of these stages for various reasons. You have already seen how to create assembler
code from a C source code file. In most software projects, output binaries are built from many
source code files. For this purpose you have to compile these source code files to object files one
by one before you can generate the output binary file. After creating these object files, you can
link these files using gcc to the final executable.

The gcc compiler gets help from different programs during the four steps listed earlier in
this chapter. During the linking part, the ld program is invoked with appropriate arguments to
link one or many object files together with libraries to generate an executable. Command line
switches used with ld can be found using manual pages.

The linker is a part of GNU binary utilities package also known as binutils. You can down-
load and install the latest version of GNU linker if you need to do so.

3.5 Assembling a Program

GNU assembler is part of GNU binary utilities package. To get the latest binutils packages, you
can download it from ftp://ftp.gnu.org/gnu/binutils/. After downloading you have to use the tar
command to extract source code files. The latest version at the time of writing this chapter is
2.12 and the tar command will create a directory binutils-2.12 automatically. I have
extracted it in /opt directory, so the source code directory is /opt/binutils-2.12. I cre-
ated another directory /opt/binutils-build to build the package. Running the config-
ure script is the first step towards building binary utilities package. The following sequence of
commands does all of these steps.

[root@conformix /opt]# cd /opt
[root@conformix /opt]# tar zxvf binutils-2.12.tar.gz
[root@conformix /opt]# mkdir binutils-build
[root@conformix /opt]# cd binutils-build/
[root@conformix binutils-build]# ../binutils-2.12/configure --
prefix=/opt/gcc-3.0.4 --enable-shared



92 Chapter 3  •  Compilers and Assemblers
[root@conformix /opt]# make LDFLAGS=-all-static tooldir=/opt/
gcc-3.0.4
[root@conformix /opt]# make tooldir=/opt/gcc-3.0.4 install

Note that since we have used /opt/gcc/3.0.4 as a prefix and tooldir as the desti-
nation for installation, the binary utilities will be installed in /opt/gcc-3.0.4/bin direc-
tory. As you may have noted, I have installed all software under /opt/gcc-3.0.4 so that I
can use one directory for all of my tools.

3.6 Handling Warning and Error messages

The GNU compiler generates two types of messages when compiling source code. Warning
messages are non-critical messages and the compiler can build the output code even if there are
warning messages. Error messages are fatal messages and compiler is not able to generate out-
put files when an error occurs. By default, the compiler does not display many warning mes-
sages. You may like to see these messages, for example, when you want to get a release of a
software package. Usually the release version of software should be compiled without any warn-
ing message. Using options that start with –W, you can control which types of messages should
be displayed. It is a good idea to always use –Wall option in your Makefiles. The reason is that
warnings often signify problems in code that you will want to see. Please see gcc man pages to
get a feel of options controlling warning messages.

3.7 Include files

During the compilation process, the compiler should know where include files will be located.
This can be done in different ways. The compiler looks into some default locations when search-
ing for include files and you have already seen in this chapter how to display that information.
You can also use the –I command line switch with the gcc command to set additional paths to
locate include files. The third method is the use of environment variables. Please see the environ-
ment variables section earlier in this chapter for more information.

3.8 Creating Libraries

Libraries are files containing commonly used functions needed for all programs. For example,
printf() is a function used in most of the C programs. When the program is linked, the linker
must know where the code for the printf() function is located. Knowledge of location of
library files is a must at this stage. The location can be passed to the linker using command line
options or environment variables. In large software projects, this is done inside Makefiles. The
environment variable that shows the location of library files is LD_LIBRARY_PATH. Please see
the list of command line options in this chapter or use manual pages to find out which options
are appropriate.



Standard Libraries 93
3.9 Standard Libraries

In addition to the compiler, assembler, linker and other tools, you also need standard library
files. All Linux distributions come with the GNU C library which is installed as glibc. How-
ever, when you are building your development environment, you may need to get the library in
source code format and install the latest version. You may also need the library in source code
format in order to cross compile it when you are building a cross-compilation environment. The
standard GNU C library provides functions for the following major areas.

• Memory management
• Error handling
• Character handling
• Strings and arrays
• Locales and international specific things, like character handling and date and time

specific functions
• Searching
• Sorting
• Pattern matching
• Input and output
• File system support
• Pipes
• Fifos
• Sockets
• Terminal I/O
• Mathematics functions
• Date and time functions
• Signal and exception handling
• Process management
• Job control
• User and groups
• System related tasks

Information about glibc is available on http://www.gnu.org/software/libc/libc.html.
You can download it from ftp://ftp.gnu.org/gnu/glibc/ where you can find the latest as well as old
versions. The current version at the time of writing this book is 2.2.5.

After downloading the library, you have to untar it. For the sake of this book, I untarred the
library file in /opt directory. The following tar command extracts library files in /opt/
glibc-2.2.5 directory.

tar zxvf glibc-2.2.5.tar.gz

Now you have to extract any other components or add-ons of the library. I have added one
component, Linux threads. File glibc-linuxthreads-2.2.5.tar.gz can also be



94 Chapter 3  •  Compilers and Assemblers
downloaded from the same location from which you downloaded the main glibc-
2.2.5.tar.gz file. The following commands are used to extract files from these two
archives:

cd glibc-2.2.5
tar zxvf ../ glibc-linuxthreads-2.2.5.tar.gz

In old versions of glibc, you had to install add-ons like locale data and crypt library.
These are included in the latest version of glibc.

Now you have to configure the library after creating a build directory. Basically this is the
same process that you have done while installing GCC and binutils. This is done using the fol-
lowing set of commands:

[root@conformix glibc-2.2.5]# mkdir build
[root@conformix glibc-2.2.5]# cd build
[root@conformix build]# ../configure --enable-add-
ons=linuxthreads --prefix=/opt/gcc-3.0.4  

The actual compilation and testing is done using the following two commands:

make 
make check

The final install command is the following:

make install

This command will install components of GNU C library under /opt/gcc-3.0.4/
lib because we had chosen /opt/gcc/3.0.4 as our prefix when we ran the configure
script. Now you can set the appropriate paths in your Makefiles to use the new library. 

3.10 Compiling Pascal Programs

Pascal programs can be converted to C language programs and then compiled in the usual way.
The p2c command on Linux does this for you. Consider the following Pascal program
hello.pas.

(* Program to demonstrate Pascal compilation *)
program Hello ;
begin
   writeln ('Hello world')
end.

The following command will create a file hello.c which is the equivalent C version of
the hello.pas program.

[rr@conformix 4]$ p2c hello.pas
Hello

Translation completed.
[rr@conformix 4]$



Compiling Pascal Programs 95
The output hello.c file is shown below:

/* Output from p2c 1.21alpha-07.Dec.93, the Pascal-to-C 
translator */
/* From input file "hello.pas" */

/* Program to demonstrate Pascal compilation */

#include <p2c/p2c.h>

main(argc, argv)
int argc;
Char *argv[];
{
  PASCAL_MAIN(argc, argv);
  printf("Hello world\n");
  exit(EXIT_SUCCESS);
}

/* End. */

You may need some libraries with p2c program and C compiler to successfully complete
this process.

Many Pascal compilers are also available in the open source world. These compilers can
be used to generate executable code from Pascal source directly without any help from GCC.

3.10.1 Using Free Pascal (fpc)

The Free Pascal Project has created a 32-bit Pascal compiler which is available for Linux,
among other operating systems. You can download it from http://www.freepascal.org. This soft-
ware is licensed under GPL like other open source projects. At the time of writing this book ver-
sion 1.0.4 is available for download. After download, you can install the compiler  as follows on
a RedHat system:

[root@conformix rr]# rpm --install fpc-1.0.4.i386.rpm 
Write permission in /etc.
Found libgcc.a in /usr/lib/gcc-lib/i386-redhat-linux/2.96
Writing sample configuration file to /etc/ppc386.cfg
[root@conformix rr]#

The best thing about this compiler is that you don’t need to convert source code files to C
language and then compile these. The fpc compiler creates binary executable files. The follow-
ing command creates an executable file hello from hello.pas program listed earlier.



96 Chapter 3  •  Compilers and Assemblers
[rr@conformix 4]$ fpc hello.pas
Free Pascal Compiler version 1.0.4 [2000/12/18] for i386
Copyright (c) 1993-2000 by Florian Klaempfl
Target OS: Linux for i386
Compiling hello.pas
Assembling hello
Linking hello
6 Lines compiled, 0.1 sec
[rr@conformix 4]$

The output hello program can be executed like any other program.

3.10.2 Using GNU Pascal

A GNU Pascal compiler is available from http://agnes.dida.physik.uni-essen.de/~gnu-pas-
cal/ for download and can be installed on many platforms like gcc. The web site contains all
manuals and downloadable files for this compiler. This compiler also creates executable files
from Pascal source code.

3.11 Compiling Fortran Programs

The GCC family of compilers also includes g77 which acts as a front end to invoke gcc. The
gcc compiler is used to compile Fortran programs. Consider the following simple hello.for
Fortran program that write “Hello world” on standard output.

c This program is to display a string and then end
c Written to demonstrate Fortran program compilation
c
c Rafeeq Rehman, March 18, 2002

       program hello
       write (*,*) 'Hello world'
       stop
       end

Note that statements in Fortran start from column 7. All lines starting with c in column 1
are comment lines. You can compile this program using the following command:

g77 hello.for

The g77 compiler, like gcc, creates a.out as a default output executable. You can cre-
ate output file with a different name using –o command line option. The following command
creates “kaka” as output binary executable file.

g77 hello.for –o kaka

The g77 program uses many programs to generate output binary. You can display version
information by using g77 –v command. Output of this command is shown below.



Compiling Fortran Programs 97
[rr@conformix 4]$ g77 -v
g77 version 2.96 20000731 (Red Hat Linux 7.1 2.96-81) (from 
FSF-g77 version 0.5.26 20000731 (Red Hat Linux 7.1 2.96-81))
Driving: g77 -v -c -xf77-version /dev/null -xnone
Reading specs from /usr/lib/gcc-lib/i386-redhat-linux/2.96/
specs
gcc version 2.96 20000731 (Red Hat Linux 7.1 2.96-81)
 /usr/lib/gcc-lib/i386-redhat-linux/2.96/tradcpp0 -lang-
fortran -v -D__GNUC__=2 -D__GNUC_MINOR__=96 -
D__GNUC_PATCHLEVEL__=0 -D__ELF__ -Dunix -Dlinux -D__ELF__ -
D__unix__ -D__linux__ -D__unix -D__linux -Asystem(posix) -
Acpu(i386) -Amachine(i386) -Di386 -D__i386 -D__i386__ -
D__tune_i386__ /dev/null /dev/null
GNU traditional CPP version 2.96 20000731 (Red Hat Linux 7.1 
2.96-81)
 /usr/lib/gcc-lib/i386-redhat-linux/2.96/f771 -fnull-version -
quiet -dumpbase g77-version.f -version -fversion -o /tmp/
ccr29cz4.s /dev/null
GNU F77 version 2.96 20000731 (Red Hat Linux 7.1 2.96-81) 
(i386-redhat-linux) compiled by GNU C version 2.96 20000731 
(Red Hat Linux 7.1 2.96-81).
GNU Fortran Front End version 0.5.26 20000731 (Red Hat Linux 
7.1 2.96-81)
 as -V -Qy -o /tmp/ccqJAAN9.o /tmp/ccr29cz4.s
GNU assembler version 2.10.91 (i386-redhat-linux) using BFD 
version 2.10.91.0.2
 ld -m elf_i386 -dynamic-linker /lib/ld-linux.so.2 -o /tmp/
ccijxxjb /tmp/ccqJAAN9.o /usr/lib/gcc-lib/i386-redhat-linux/
2.96/../../../crt1.o /usr/lib/gcc-lib/i386-redhat-linux/2.96/
../../../crti.o /usr/lib/gcc-lib/i386-redhat-linux/2.96/
crtbegin.o -L/usr/lib/gcc-lib/i386-redhat-linux/2.96 -L/usr/
lib/gcc-lib/i386-redhat-linux/2.96/../../.. -lg2c -lm -lgcc -
lc -lgcc /usr/lib/gcc-lib/i386-redhat-linux/2.96/crtend.o /
usr/lib/gcc-lib/i386-redhat-linux/2.96/../../../crtn.o
 /tmp/ccijxxjb
__G77_LIBF77_VERSION__: 0.5.26 20000731 (prerelease)
@(#)LIBF77 VERSION 19991115
__G77_LIBI77_VERSION__: 0.5.26 20000731 (prerelease)
@(#) LIBI77 VERSION pjw,dmg-mods 19991115
__G77_LIBU77_VERSION__: 0.5.26 20000731 (prerelease)
@(#) LIBU77 VERSION 19980709
[rr@conformix 4]$

As you can see, it takes the help of gcc to compile programs. Note that Fortran programs
have .for or .f at the end of the name of the program file.

As with gcc, you can create intermediate assembled or object code with g77. See manual
pages of g77 for more information.



98 Chapter 3  •  Compilers and Assemblers
3.12 Other Compilers

A major benefit of using Linux as a development platform is that you have so many tools and
compilers available in the open source community that you can develop in virtually any standard
language. This section provides short information about a few more languages that can be easily
integrated into the Linux development platform.

3.12.1 Smalltalk

Smalltalk is an object oriented language and a GNU version of Smalltalk can be down-
loaded from ftp://ftp.gnu.org/gnu/smalltalk/. The latest version at the time of writing this book is
1.95.9. The compilation and installation is quite easy and is similar to other GNU tools. You can
also go to www.smalltalk.org for more information.

3.12.2 Oberon

Oberon is the successor to the Pascal and Modula languages and it is an object-oriented
language. It is mostly used in educational environments for teaching programming language
concepts. For detailed information, please refer to http://www.oberon.ethz.ch/.

3.12.3 Ruby

Ruby is an interpreted language. Information about this language can be found at http://
www.ruby-lang.org/en/.

3.13 References and Resources

1. GNU web site at http://www.gnu.org/
2. Languages supported by GCC at http://gcc.gnu.org/onlinedocs/gcc-3.0.2/gcc_2.html
3. Status of C99 support on GCC at http://gcc.gnu.org/gcc-3.0/c99status.html
4. Object Oriented Programming and Objective C at http://developer.apple.com/techpubs/

macosx/Cocoa/ObjectiveC/
5. Object Programming and Objective Language at http://www.toodarkpark.org/comput-

ers/objc/
6. The GNU C Library at http://www.delorie.com/gnu/docs/glibc/libc_toc.html
7. Using as at http://www.objsw.com/docs/as_toc.html
8. Using and porting GNU cc at http://www.delorie.com/gnu/docs/gcc/gcc_toc.html
9. GNU C++ Library at http://www.delorie.com/gnu/docs/libg++/libg++_toc.html

10. NetBSD Library source code at http://www.ajk.tele.fi/libc/code.html
11. Free Pascal project at http://www.freepascal.org
12. GNU Pascal at http://agnes.dida.physik.uni-essen.de/~gnu-pascal/
13. GNU Smalltalk download site at ftp://ftp.gnu.org/gnu/smalltalk/
14. Smalltalk information at http://www.smalltalk.org



References and Resources 99
15. Bob Nevlen, Linux Assembly Language Programming ISBN 0-13-0877940-1, Prentice
Hall PTR 2000.

16. Oberon Home page at http://www.oberon.ethz.ch/
17. Ruby Home Page at http://www.ruby-lang.org/en/





C H A P T E R 4
Using GNU make
ll serious software projects are built in pieces by many developers.
These pieces consist of source code and header files, libraries and

different tools. To combine these pieces into a product is a process com-
monly known as a build. The GNU make utility is one of the many avail-
able utilities used to build these software projects. Large software projects
often have hundreds and even thousands of files. Compiling these files
and linking them into final executable product files is done by a careful
and well-defined automated process. This automated process, also known
as the software build process, is controlled by the make utility through
makefiles. The make utility reads one or more of these makefiles contain-
ing information about how to build a project. Makefiles contain different
types of information, including variables, control structures and rules to
compile and link source files, build libraries and so on. In the most com-
mon makefiles, rules are present to remove object and executable files
from the source code directory to clean it up, if required. These rules are
enforced based upon time stamps on different files. For example, if an
existing object file is newer than the corresponding source code file, it is
not recompiled. However if the object file is older than the source file, it
shows that someone modified the source file after the object file was last
built. In such a case, make detects it and rebuilds the object file. Depend-
ing upon the requirements of a project, someone can create different types
of rules and commands to build software projects.

A

101



102 Chapter 4  •  Using GNU make
This chapter contains information on how to write makefiles for software
projects and provides sufficient information for a reader to write make-
files for fairly complex projects. You can also refer to the reference at the
end of this chapter for more comprehensive information about the make
utility.

To demonstrate the use of make, several examples are presented in this
chapter. These examples demonstrate how make can be used for different
objectives. These examples are simple and easy to understand and are
explained in the text. However you may write makefiles in many different
ways for the same object. Features of make that are discussed in this
chapter are those most commonly used. Make has many additional, less
commonly used, features that are not covered here and you may want to
use these as well while designing your makefiles.

4.1 Introduction to GNU make

The make utility has been used for a very long time in all types of software development
projects. There are open-source as well as commercial variants available from many vendors.
The most common and popular distribution of make is the GNU make, which is open source
and is available for almost all UNIX and Microsoft Windows platforms. All of the Linux distri-
butions have the GNU make as a standard package with the development system. If you have
installed development software from a distribution, you don’t need to install any additional soft-
ware for make to work. The version of make currently installed can be displayed using the fol-
lowing command.

[root@conformix make]# make -v
GNU Make version 3.79.1, by Richard Stallman and Roland 
McGrath.
Built for i386-redhat-linux-gnu
Copyright (C) 1988, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 
99, 2000
        Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS 
FOR A PARTICULAR PURPOSE.

Report bugs to <bug-make@gnu.org>.

[root@conformix make]#



Introduction to GNU make 103
Since this is one of the most widely used software packages in the development commu-
nity, there is a wealth of information available about it on the Internet. This chapter is intended
to provide sufficient information to use make in all types of software projects.

Simply put, make reads a text input file that contains information about how to compile,
link and build target files. Make uses commands and rules specified in this file to carry out its
operation. We shall discuss in detail the contents of these files, commonly known as makefiles.

4.1.1 Basic Terminology

Before we move ahead with more information about make and how to use it, let us get
familiar with some basic terminology about the software build process and the make utility. The
terms defined below will be used throughout this chapter as well as in the chapters that follow.

Input Files
The make utility uses input files to build software projects. These input files, also known

as makefiles, contain information about when and how to compile, assemble or link files. These
input files also contain commands and rules to carry out these tasks.

Rules
A rule in an input file provides information about how to build an individual target

(defined next). A rule has three parts:

1. The target
2. Dependencies
3. Commands

A target is rebuilt whenever a dependency file has a timestamp that is newer than the target.
A target may have no dependency, in which case it is always rebuilt. The commands in the rule are
executed to build the target from dependencies. The general format of a rule is as follows:

Target: Dependencies
  Commands

The commands part always starts with a TAB character. There are two types of rules that
will be explained later in this chapter. These are types are:

1. The explicit rules
2. The implicit rules

The rules defined above fall into explicit rules category. Implicit rules are predefined rules
that make uses when it does not find an implicit rule to build a target.



104 Chapter 4  •  Using GNU make
Target

A target is usually a file or set of files that is the result of some operation on one or more
other files. A target may be an object file, a final executable file or some intermediate file. Tar-
gets may be fake or phony, in which case no files are actually rebuilt. One such example is the
phony target to remove all object and executable files from the source files directory. This pro-
cess is often called a cleaning process. As a convention, all makefiles have a rule to clean the
source code so that everything can be rebuilt freshly.

Dependency

The dependencies are files that determine when to build a target. The decision to rebuild a
target is made if the timestamp on any dependency is newer than the target. This usually shows
that a dependency file has been modified after the target was built the last time. Consider the
example of an object file that was built from a C source file. After building the object file, if
someone modifies the source code file, we need to rebuild the object file because it is no longer
current. When the make utility scans the input files, it verifies this rule and rebuilds the object
file automatically if it finds a change in the source file.  If multiple machines are used, they need
to be in time sync. 

A target may have multiple dependencies separated by space characters. In case of multi-
ple dependencies, the target is rebuilt if any of the dependencies has changed. If the list of
dependencies is very long, you can write multiple lines for dependencies by using a backslash
character at the end of a line to continue to the next line. For example, the following lines show
that tftp.o has dependencies spanning three lines.

tftp.o: tftp.c tftp.h file1.c file2.c file3.c file4.c\

        file5.c file6.c file7.c file1.h file2.h file3.h\

        file4.h file5.h

Note that the starting character in the second and third line should not be a TAB character;
otherwise make will consider these lines as command lines and will try to execute these.

Default Goal

An input file (makefile) usually contains many rules. Each of these rules has a target.
However the make utility does not build all of these targets. It only tries to build the first target
specified in the input makefile. This target is called the default goal of the makefile. However,
note that if dependencies to this default goal are targets of some other rules, the make utility can
also build those targets in an effort to build the default goal. This happens when dependencies of
the default goal are out of date.

If you want to build a target that is not the default goal, you have to specify the target at the
command line when starting make. This will be explained later in this chapter.

Phony Target

Some targets may have no dependencies. A common example is the clean target that
removes some files from the source directory tree. A typical clean target is shown below:



Introduction to GNU make 105
clean:
  rm *.o

Whenever you invoke make to build this target, the rm command is always executed. This
is because the target has no dependency. These types of targets are called phony targets.

However there is a problem with such targets. Sometimes if there is a file with the same
name as the phony target, the make utility may get confused while building it and execute the
command in the phony target when it is not required to do so. To avoid this problem, you can
specify which targets are phony targets in the makefile. The following line in the makefile
defines clean as a phony target.

.PHONY: clean
clean:
  rm *.o

4.1.2 Input Files

The make command, when invoked without a command line argument, expects certain
file names as input. These files names are searched in the current directory in the following
order.

1. GNUmakefile
2. makefile
3. Makefile

If none of these files is present, make will not take any action and displays the following
error message:

[root@conformix make]# make
make: *** No targets specified and no makefile found.  Stop.
[root@conformix make]#

However there is a way to specify files with non-standard names as explained later. The
common practice is to use “Makefile” as the name of the input file because it easy to distinguish
from other files due to upper case M.

N O T E If you have multiple input files in the same directory
with names GNUmakefile, makefile and Makefile,
only the GNUmakefile will be used. As a rule of thumb, make
will use only the first available file in its priority list to build a
project. This means that if we have two files with names make-
file and Makefile, only the file named makefile will be
used.



106 Chapter 4  •  Using GNU make
You can specify any other filename using command line switch –f with the make com-
mand. For example, if you have a file named myrules.make, you can use it as input file to the
make utility as follows:

make –f myrules.make

From now on in this book, we shall use only “Makefile” as the name of the input file for
the make command. This is a usual convention in most of the software development projects.
Input files with any other name will be used as include files in the Makefile.  The common con-
ventional name for include file is Makefile.in.

4.1.3 Typical Contents of a Makefile

The makefiles that are used as input to the make command have similar types of contents.
Some of the typical contents of a makefile are as follows.

Variables
Variables are usually the first part of any makefile. Variables are used to associate a name

to a text string in the makefiles. These variables are then substituted into other targets, dependen-
cies or commands later in the makefile. A simple equal sign can associate a text string to a name.
The following line defines a variable targets in the makefile. This variable is equal to two target
files tftp.o and fto.o.

targets = tftp.o ftp.o

To use this variable later on, you enclose the variable name in parentheses and use a dollar
sign with it. The targets variable will be used as $(targets) in the makefile to refer to these
two object files. A typical use of this variable is shown in the following three lines.

$(targets): tftp.c tftp.h ftp.c ftp.h
  gcc –c tftp.c
  gcc –c ftp.c

This rule tells make command that if any of the four dependency files (tftp.c,
tftp.h, ftp.c, ftp.h) has a timestamp newer than the object files, the object files
should be rebuilt.

Now you may have noticed that this is not a wise rule. If only tftp.c is changed, then
we need to build only tftp.o but with this rule we are also building ftp.o which may not be
required. However this type of rule may be useful when a single dependency may affect many
targets. For example, both ftp.o and tftp.o may be dependent on common.h file and the
following rule will make sense.

$(targets): common.h
  gcc –c tftp.c
  gcc –c ftp.c

We shall discuss more about these things and how to write wiser and more comprehensive
rules in makefiles later in this chapter.



Introduction to GNU make 107
Rule to Build the Default Goal
After defining the variables, the first rule defines the default goal. This is usually used to

build one or more final executable from all of the source, object and library files.

Rules to Build Other Goals
After defining the default goal, you can define as many other rules as you like. These other

rules are used to build individual parts of a big project. For example, if a project consists of three
main parts, the FTP server, the TFTP server and the DNS resolver, you can have three individual
rules for all of these individual parts. The default goal may be used to build all of these three tar-
gets in a single step.

Rules to Build Individual Objects
In addition to defining rules to build goals, you may have to define rules to build individ-

ual objects or intermediate files. One example of these rules is to build object files from the
source files. These object files may then be used to build executable or library files.

Rules to Install
Some rules may be required to install the files into appropriate directories created by other

rules. For example, after building library files, you may want to install them into /lib or /
usr/lib directory. Similarly, after building executable files, you may want to install them into
/bin, /usr/bin or /sbin directory or any other directory of your choice. For this reason,
one or more rules may be defined in the makefiles so that make copies the appropriate files into
their target location.

Rules to Clean Previous Builds
As mentioned earlier, the rule to clean previous builds is usually a phony rule to clean up

the source code tree from the previously built intermediate and target files. This rule is useful
when you want to hand over a clean directory to someone or to force everything to be rebuilt,
perhaps with new options.

Comments and Blank Lines
As a good convention, you can insert some comment lines in makefiles so that you and

others can make sense of what is there. All comments start with a hash (#) symbol. You can also
put a comment after a command. The rule of thumb is that anything after the hash character will
be considered a comment. If this character is the first character in a line, all of the line is a com-
ment line.

C A U T I O N  Any empty line that begins with a TAB is not really
an empty line. It is considered an empty command. Empty com-
mands are sometimes useful  when you don’t want to take any
action for a particular dependency.



108 Chapter 4  •  Using GNU make
4.1.4 Running make

In its basic and most widely used form, simply entering “make” on the command line
invokes the make program. Upon invocation, it reads its input file, in a priority order as
explained earlier, and executes different commands in it to build the default goal. In this chapter,
we are using a hypothetical project that builds three applications: ftp, tftp and dnsre-
solver. Reference to this project will be used in many parts of the remaining chapter. See sec-
tion 4.4 for a complete listing of the makefiles used.

Building a Default Goal

If we have a Makefile in the current directory and the default goal is to build all of the
ftp, tftp, and dnsresolver, specified by “all” rule, a typical session will be as follows:

[root@rr2 test]# make

gcc -g -O2 -c ftp.c

gcc -g -O2 -c common.c

gcc -static ftp.o common.o -o ftp

gcc -g -O2 -c tftp.c

gcc -static tftp.o common.o -o tftp

gcc -g -O2 -c dnsresolver.c

gcc -static dnsresolver.o common.o -o dnsresolver

[root@rr2 test]# 

Building a Non-Default Goal

If you have multiple goals in a Makefile and you don’t want to build a default goal, you
have to specify the goal you want to build on the command line. The following line builds only
the ftp server.

[root@rr2 test]# make ftp

gcc -g -O2 -c ftp.c

gcc -g -O2 -c common.c

gcc -static ftp.o common.o -o ftp

[root@rr2 test]# 

When a Target is Updated

There are certain rules about when a target will be built or rebuilt. These are as listed below.

• Target is not present. If a target is not present and a rule is executed, the target will
always be rebuilt.

• Target is outdated. This means that one or more dependencies of a target are newer than
the target. This happens when someone changed a dependency after the target was built
last time.

• Target is forced to be rebuilt.  You can define rules to force a target to be rebuilt
whether a dependency has changed or not. This is also true for phony targets.



Introduction to GNU make 109
4.1.5 Shell to Execute Commands

All commands in a makefile are executed in a subshell invoked by the make command. It
is important to know which shell will be used to execute commands in the makefile. By default
the shell name is /bin/sh. However this can be changed using the SHELL variable in the
makefile. Please note that this is not the environment variable SHELL, but is set within the
makefile. This is to avoid conflict with someone’s personal preference of using a particular shell.

Each line that starts with TAB character represents a command and is executed by a single
instance of shell. So, for example, the following line will cause a directory change to tftp and
the command rm *.o to be executed from that directory. After executing this command, the
next command is executed in the original directory because a new subshell is invoked and the
effect of the cd tftp command is gone.

tftp: tftp/Makefile

  cd tftp; rm *.o

  @echo “Rebuilding . . .”

As mentioned earlier, one line can be split into multiple lines by placing a backslash at the
end of the line. The above three lines can be written as follows without any change in their
result:

tftp: tftp/Makefile

  (cd tftp;\

rm *.o)

  @echo “Makefile changed. Rebuilding …”

4.1.6 Include Files

In case of large projects, makefile rules can be split into many files. These smaller files can
then be included into a makefile. When the make utility is scanning through the makefile and it
finds an include file, it will go through the include file before going to the next line in the
makefile. Logically, you can think of contents of the include file being inserted into the
makefile at the place where the file is included.

Files can be included using the include directive inside a makefile. The following line
includes a file myrules.in in a makefile.

include myrules.in

Multiple files can be included into a makefile on the same line. The following line
includes two files myrules.in and bootarules.in into a makefile.

include myrules.in bootarules.in

When multiple files are included, these are read in the order they are present in the make-
file. In the above example, first myrules.in will be read by the make utility and then boot-
arules.in will be read.



110 Chapter 4  •  Using GNU make
You can also use wildcards and variables to specify file names with the include directives.
The following include directive includes all files with last part as “.in” and files specified by the
variable MKINCS.

include *.in $(MKINCS)

4.2 The make Rules

Rules are the most important part of a makefile. Rules control how a project should be built.
Each rule has a common structure which is discussed in this section. A typical makefile is intro-
duced as an example to show you how rules are written in makefiles.

4.2.1 Anatomy of a Rule

As mentioned earlier, a typical rule looks like the following:

Target: Dependencies

  Commands

A target is the objective of the rule that depends upon a list of dependencies. Commands
are used to build the target. The target name is followed by a colon. Commands start with a TAB
character.

Multiple Commands in the Same Line

A rule can have multiple commands to build target. These commands can be listed in mul-
tiple lines or in a single line. If commands are listed in a single line, they are separated by a
semicolon. It should be noted that the difference is whether or not they are executed in the same
subshell. Commands listed in one line are executed in the same subshell. If each command is
listed in a separate line, each line starts with a TAB character in the start of the line. The follow-
ing rule, used to remove some files from the current directory, has two commands. The first is
echo and the second is the rm command. 

clean:

  @echo "Deleting files ..."

  rm -f $(OBJS) *~

These two commands can also be listed as follows:

clean:

  @echo "Deleting files ..." ; rm -f $(OBJS) *~

C A U T I O N  Each line containing commands starts with a TAB
character. The TAB character distinguishes command lines from
other lines. A common error is to replace the TAB character with
a multiple space character. The result is that commands on this
line are not executed.



The make Rules 111
Command Echoing
By default all commands in the makefile are echoed to standard output as these are exe-

cuted. This provides information about the activity of make as it is going through the makefile.
However you can suppress the command echo by starting commands with the character @.

This is especially useful in printing information from within the makefile using the echo
command. For example, you can create a makefile that prints information before it starts execut-
ing. A typical rule in the makefile that displays information about the object before executing
any other command  follows. It displays a line showing that make is going to build FTP:

ftp: $(SRCS) $(HDRS)
        @echo "Building FTP"
        @$(CC) $(CFLAGS) $(INCLUDES) ftp.c
        @$(CC) $(LDFLAGS) $(COMMON) $(OBJS) -lcommon -o ftp

When make reads this file, it displays the following output:

[root@conformix ftp-dir]# make ftp
Building FTP
[root@conformix ftp-dir]#

If you don’t insert the @ characters in this file, the result will be as follows. You can easily
find the difference between this and the earlier output of the make command.

[root@conformix ftp-dir]# make ftp
echo "Building FTP"
Building FTP
gcc -g -O2 -c -I../common-dir ftp.c
gcc -static -L../common-dir  ftp.o  -lcommon -o ftp
[root@conformix ftp-dir]#

Rules with no Dependencies
Many rules are used with no dependencies. These rules are used to execute commands

without looking into any dependencies. Commands in these rules are guaranteed to be executed.

4.2.2 A Basic Makefile

Let us start with a simple makefile shown below. This makefile is used to build ftp,
which is the default target. 

N O T E There are other ways to suppress the command
echo. One of these is the use of –s or –silent flag on the
command line. However the most common method is the use of
the @ character.



112 Chapter 4  •  Using GNU make
###################################################
# Makefile created to demonstrate use of the make
# utility in the "Linux Development Platform" book.
#
# Author: Rafeeq Ur Rehman
#         rr@conformix.net
###################################################

# Variable definition
OBJS = ftp.o common.o
HDRS = ftp.h common.h
CFLAGS = -g -O2
TARGETS = ftp 
CC = gcc

# Default Target

ftp: $(OBJS) $(HDRS)
  $(CC) $(OBJS) -o ftp

ftp.o: ftp.c $(HDRS)
  $(CC) $(CFLAGS) -c ftp.c

common.o: common.c common.h
  $(CC) $(CFLAGS) -c common.c

clean:
  rm -f $(TARGETS) $(OBJS)

This makefile has initial comments that show information about the file. After that, vari-
ables are defined. The rule to build default target is listed next. This rule has two dependencies
which are defined by variables $(OBJS) and $(HDRS). Rules to build the object files are
listed after the default rule. The last rule, clean, is used to remove files created during the
make process so that the directory contains only the initial source code files when you invoked
this rule for the first time. This rule has no dependency, so the rm command is guaranteed to be
executed.

When building the default target ftp, make checks the dependencies. For this it expands
two variables $(OBJS) and $(HDRS). After expansion, make finds out that the target is
dependent upon the following four files.

1. ftp.o
2. ftp.h
3. common.o
4. common.h



The make Rules 113
Now make also finds out that there are other rules to build ftp.o and common.o files.
If these two files are not up-to-date, make rebuilds these object files using corresponding rules.
For example, if common.c file has been changed since make built common.o last time, make
will rebuild it. After checking dependencies, make will build ftp if any of the dependency is
newer than the ftp file or ftp file does not exist.

If you want to remove the target file and the object files, you can use the make clean
command that invokes the clean rule. This rule has no dependency so the rm command will
always execute, removing the ftp and any object files.

4.2.3 Another Example of Makefile

The following Makefile is a little bit bigger and is used to build three targets. These are as
follows:

1. The ftp server
2. The tftp server
3. The dnsresolver

Before going into detail of how it is done, let us look at the Makefile itself. It is listed
below.

###################################################
# Makefile created to demonstrate use of the make
# utility in the "Linux Development Platform" book.
#
# Author: Rafeeq Ur Rehman
#         rr@conformix.com
###################################################

# Variable definition
SRCS = ftp.c tftp.c dnsresolver.c common.c
OBJS = ftp.o tftp.o dnsresolver.o common.o
FTPOBJS = ftp.o common.o
FTPHDRS = ftp.h common.h
TFTPOBJS = tftp.o common.o
TFTPHDRS = tftp.h common.h
DNSRESOLVEROBJS =  dnsresolver.o common.o
DNSRESOLVERHDRS =  dnsresolver.h common.h
CC = gcc
CFLAGS = -g -O2
LDFLAGS = -static
TARGETS = ftp tftp dnsresolver
INSTALLDIR = /root

# Default Target



114 Chapter 4  •  Using GNU make
all: $(TARGETS)

# Rule to build object files

$(OBJS): $(SRCS)
  $(CC) $(CFLAGS) -c $(@:.o=.c)

# Rules to build individual targets

ftp: $(FTPOBJS) $(FTPHDRS)
  $(CC) $(LDFLAGS) $(FTPOBJS) -o ftp

tftp: $(TFTPOBJS) $(TFTPHDRS)
  $(CC) $(LDFLAGS) $(TFTPOBJS) -o tftp

dnsresolver: $(DNSRESOLVEROBJS) $(DNSRESOLVERHDRS)
  $(CC) $(LDFLAGS) $(DNSRESOLVEROBJS) -o dnsresolver

clean:
  rm -f $(TARGETS) $(OBJS)

install:
  cp $(TARGETS) $(INSTALLDIR)
# Additional Dependencies

ftp.o: $(FTPHDRS) tftp.o: $(TFTPHDRS)
dnsresolver.o: $(DNSRESOLVERHDRS)

After comments in the start of the makefile, the first part of the file defines variables used
in this file. As you shall see, defining variables is very helpful if you need any modification in
the Makefile or want to add or remove more files later on. After defining variables, the default
target is defined with the name "all" as follows:

all: $(TARGETS)

 This in turn has dependencies on the three targets that we want to make. Please note that
we don't have any command to build this default target. When make reaches the default target, it
tries to meet dependencies to make sure that these are up-to-date. If any of these dependencies is
not up-to-date, make will try to recreate it.

The three dependencies to the default target (ftp, tftp and dnsresolver) have their
own rules to build. For example, the following ftp rule shows that it depends upon two variables
$(FTPOBJS) and $(FTPHDRS). 

ftp: $(FTPOBJS) $(FTPHDRS)
  $(CC) $(LDFLAGS) $(FTPOBJS) -o ftp

This means that if any of the files listed in these two variables has changed, the ftp tar-
get will be rebuilt. These files defined in the two variables are as follows:



The make Rules 115
• ftp.o
• common.o
• ftp.h
• common.h

We have another rule to build object files from source files. This rule is as follows:

$(OBJS): $(SRCS)
  $(CC) $(CFLAGS) -c $(@:.o=.c)

It will build any of the .o object file, which is not up-to-date from its corresponding .c
source code file. The @ sign is used to substitute the name of the target by replacing .o with .c
so that if we want to build the target common.o, the @ symbol will replace .o with .c in the
target, making it common.c. This way the compiler gets the correct argument after the -c
switch in the command line. This technique is especially useful if you are dealing with files with
different extensions. For example, if the source code files are C++ files ending with .cpp, the
above rule may be written as follows:

$(OBJS): $(SRCS)
  $(CC) $(CFLAGS) -c $(@:.o=.cpp)

Now the @ will replace .o with .cpp for each file in the target.
The clean rule will delete all of the object and executable files. The install rule will copy

files into the /root directory. Both of these rules have no dependency. This means that the com-
mands in these rules don't depend on anything and will always be executed whenever this rule is
invoked.

The last part of the makefile lists some additional dependencies not covered by earlier rules.
Note that these three rules in the end have no command to execute. You can have as many rules to
build a target as you like, but only one of these rules should contain commands to build it.

Now you can see how the use of variables is useful in this Makefile. If you add or remove
some files or dependencies, you need to modify only the upper part of the makefile where vari-
ables are defined, without worrying about the rest of the makefile. For example, if you add a
new header file to the dependency list of ftp, you just need to modify the variable FTPHDRS.
Similarly to add a new source code file common.c that is being used by ftp, you need to add it
to the following two variables:

1. FTPOBJS
2. OBJS

By modifying these two variables, this will automatically be used by ftp, $(OBJS) and
clean rules.

Now is the time to use this makefile and see how the make program executes different
commands. The output of the make command is shown below that needs some attention to
understand how the make program checks dependencies and builds different targets.



116 Chapter 4  •  Using GNU make
[root@rr2 test]# make
gcc -g -O2 -c ftp.c
gcc -g -O2 -c common.c
gcc -static ftp.o common.o -o ftp
gcc -g -O2 -c tftp.c
gcc -static tftp.o common.o -o tftp
gcc -g -O2 -c dnsresolver.c
gcc -static dnsresolver.o common.o -o dnsresolver
[root@rr2 test]# 

The default target is "all" which has dependency upon the variable $(TARGETS). This
variable has three words: ftp, tftp and dnsresolver. First make tries to verify that ftp
is up-to-date. For this it finds that ftp file does not exist so it tries to build it using some other
rule. It finds the following rule to build ftp:

ftp: $(FTPOBJS) $(FTPHDRS)
  $(CC) $(LDFLAGS) $(FTPOBJS) -o ftp

Now it tries to find if dependencies of this rule are up-to-date. The object files are not
present, so first it tries to build the object file. To build the object files, it looks for another rule
and finds the following rule to build two object files (ftp.o and common.o) in the depen-
dency list.

$(OBJS): $(SRCS)
  $(CC) $(CFLAGS) -c $(@:.o=.c)

When make executes the command in this rule, you see the following two lines in the out-
put of the make command.

gcc -g -O2 -c ftp.c
gcc -g -O2 -c common.c

Now it has all of the dependencies for the ftp target up-to-date and it builds ftp using
the corresponding rule. At this point you see the following line in the output of the make com-
mand:

gcc -static ftp.o common.o -o ftp

By building ftp, make has satisfied one dependency in the default goal. Now it will try to
meet the second dependency, which is tftp. Since the tftp file is not present, it will locate a
rule that can be used to build tftp. In the tftp rule dependencies, the common.o file is
already up-to-date, so it will not recompile it. However since it does not find tftp.o, it will
rebuild tftp.o. At this point you see the following line in the output:

gcc -g -O2 -c tftp.c

Now it has successfully built dependencies for tftp and it will build the tftp target and
display the following line in the output:

gcc -static tftp.o common.o -o tftp



The make Rules 117
The same process is repeated for the dnsresolver and the following two lines are dis-
played:

gcc -g -O2 -c dnsresolver.c
gcc -static dnsresolver.o common.o -o dnsresolver

After building dnsresolver, nothing is left in the default target rule “all,” so make will
stop at this point.

Now let us see what happens if you modify the ftp.h file and run make again. The out-
put will be as follows:

[root@rr2 test]# make
gcc -g -O2 -c ftp.c
gcc -static ftp.o common.o -o ftp
[root@rr2 test]# 

This time make only rebuilt ftp because ftp.h is a dependency only for the target ftp.
However if you modify common.h, it will rebuild ftp, tftp and dnsresolver as follows:

[root@rr2 test]# make
gcc -g -O2 -c ftp.c
gcc -static ftp.o common.o -o ftp
gcc -g -O2 -c tftp.c
gcc -static tftp.o common.o -o tftp
gcc -g -O2 -c dnsresolver.c
gcc -static dnsresolver.o common.o -o dnsresolver 
[root@rr2 test]#

Modifying common.c will cause rebuilding of all object files as well. This result of
make after modification in common.c is as follows:

[root@rr2 test]# make
gcc -g -O2 -c ftp.c
gcc -g -O2 -c common.c
gcc -static ftp.o common.o -o ftp
gcc -g -O2 -c tftp.c
gcc -static tftp.o common.o -o tftp
gcc -g -O2 -c dnsresolver.c
gcc -static dnsresolver.o common.o -o dnsresolver
[root@rr2 test]# 

You can also use rules to build individual targets. For example, if you want to build only
ftp, you use the following command line instead:

[root@rr2 test]# make ftp
gcc -g -O2 -c ftp.c
gcc -g -O2 -c common.c
gcc -static ftp.o common.o -o ftp
[root@rr2 test]# 



118 Chapter 4  •  Using GNU make
Now let us clean the files we have created using the following rule.

clean:
  rm -f $(TARGETS) $(OBJS)

The result of running the command make clean will be as follows:

[root@rr2 test]# make clean
rm -f ftp tftp dnsresolver ftp.o tftp.o dnsresolver.o common.o
[root@rr2 test]# 

As you can see from the above output, make has replaced variables with values present in
the variables before running the rm command. This is what is done every time make invokes a
command.

4.2.4 Explicit Rules

There are two types of rules: explicit rules and implicit rules. All of the rules that we have
been using in this chapter until now are explicit rules. An explicit rule has three parts: target,
dependencies and commands. Explicit rules are defined in detail and they perform exactly as
they are written. In general, all rules present in a makefile are explicit rules.

4.2.5 Implicit Rules

Implicit rules are used by make to build certain targets by itself. These rules are usually
language-specific and operate depending upon file extension. For example, make can build .o
files from .c files using an implicit rule for C language compilation. Consider the basic make-
file we used earlier in this chapter as shown below:

# Variable definition
OBJS = ftp.o common.o
HDRS = ftp.h common.h
CFLAGS = -g -O2
TARGETS = ftp 
CC = gcc

# Default Target

ftp: $(OBJS) $(HDRS)
  $(CC) $(OBJS) -o ftp

ftp.o: ftp.c $(HDRS)
  $(CC) $(CFLAGS) -c ftp.c

common.o: common.c common.h
  $(CC) $(CFLAGS) -c common.c

clean:
  rm -f $(TARGETS) $(OBJS)



Using Variables 119
You can modify this file so that it uses implicit rules to build object files. The modified file
is shown below:

# Variable definition

OBJS = ftp.o common.o

HDRS = ftp.h common.h

CFLAGS = -g -O2

TARGETS = ftp 

CC = gcc

# Default Target

ftp: $(OBJS) $(HDRS)

  $(CC) $(OBJS) -o ftp

clean:

  rm -f $(TARGETS) $(OBJS)

Note that we have completely taken out two rules that are used to build the object files.
Now when make needs to build these object files, it uses its implicit rule for this purpose. Run-
ning make on this makefile produces the following result.

[root@conformix make]# make

gcc -g -O2   -c -o ftp.o ftp.c

gcc -g -O2   -c -o common.o common.c

gcc ftp.o common.o -o ftp

[root@conformix make]#

Note that the first two lines of the output create object files using implicit rules. You may
also have noted that the CFLAGS variable is also used in this process. Like CFLAGS, implicit
rules use other variables while building targets. For a more detailed discussion, please see the
reference at the end of this chapter.

While using implicit rules, you should be careful about the process, because make can
build a target using explicit rule depending upon which source files are available. For example,
make can produce an object file from a C source code file as well as Pascal source code file. In
the above example, if common.c file is not present but common.p (Pascal source code file) is
present in the current directory, make will invoke Pascal compiler to create common.o file,
which may be wrong. You also have less control over options on implicit rules. 

4.3 Using Variables

Variables are an important part of all makefiles used in a project. Variables are used for many
purposes; the most important of which is to have structured and easily understandable makefiles.
This section contains more information about variables used in makefiles.



120 Chapter 4  •  Using GNU make
4.3.1 Defining Variables

Variables can be defined in a usual way by typing in the variable name, followed by an
equal sign. The equal sign is followed by the value that is assigned to the variable. Note that
there may be space characters on one or both sides of the equal sign. A typical variable assign-
ment may be as follows:

CFLAGS = -g –O2

Another example of defining the C compiler name is as follows:

CC = gcc

This variable than can be used in other parts of the makefile by placing a $ sign and a pair
of parenthesis or braces. The following line in a makefile is used to compile a file tftp.c and
create an object file tftp.o with the help of above two variables;

$(CC) $(CFLAGS) –o tftp.o  tftp.c

This line can also be written as follows:

${CC} ${CFLAGS} –o tftp.o  tftp.c

4.3.2 Types of Variables

There are two types of variables. Variables defined using the = sign are recursively
expanded variables. This means that a variable may be expanded depending upon value of a
variable at a later stage in the makefile. Consider the following lines in a makefile.

OBJ1 = ftp.o
OBJ2 = common.o
OBJS = $(OBJ1) $(OBJ2)
printobjs:
  @echo $(OBJS)
OBJ1 = ftp.o tftp.o

Variable OBJS will contain a list of three files, ftp.o, tftp.o and common.o,
although tftp.o was added after the echo command. Output of this makefile is as follows.

[root@conformix make]# make 
ftp.o tftp.o common.o
[root@conformix make]#

This is because make used the default target rule and executed the echo command.
Before printing out the value of the OBJS variable, it scanned the makefile to the end to re-eval-
uate the value of the OBJ1 variable and hence the OBJS variable.

The other types of variables are simply expanded variables and the value of these variables
is determined at the time of their definition. These variables are defined using the := symbol

N O T E Variables are case sensitive in makefiles. A variable
$(OUTFILES) is different from a variable $(OutFiles).



Using Variables 121
instead of just the = symbol. If we change the OBJS line in the above makefile to this type of
variable, the value printed by the makefile will be as follows:

[root@conformix make]# make 
ftp.o common.o
[root@conformix make]#

Now make did not take into consideration the changed value of the OBJ1 variable later in
the makefile.

There are advantages and disadvantages to both types of variables. You can decide which
type of variable to use in a particular situation.

4.3.3 Pre-Defined Variables

The make utility can also take variables from the shell environment. For example, the
CFLAGS variable can be set through shell startup file (e.g. /etc/profile). If this variable is
not redefined inside the makefile, its value will be taken from the environment.

4.3.4 Automatic Variables

Some variables are pre-defined and are called automatic variables. They are usually very
short in length but play a very important role in the decision-making process. The most com-
monly used automatic variables are listed below.

• The $@ variable contains the value of the target of a rule.
• The $< variable always contains the first dependency of a rule.
• The $? variable contains a list of modified files in the dependency list. If the target is

being built for the first time, it contains a list of all dependencies. Consider the
following makefile.

# Variable definition
OBJS = ftp.o common.o
HDRS = ftp.h common.h

CFLAGS = -g -O2
TARGETS = ftp 
CC = gcc

# Default Target

ftp: $(OBJS) $(HDRS)
  @echo $?
  @echo $@
  @echo $<
  $(CC) $(OBJS) -o ftp



122 Chapter 4  •  Using GNU make
Let’s try to build the default target for the first time and see the output of these echo
commands.

[root@conformix make]# make 
gcc -g -O2   -c -o ftp.o ftp.c
gcc -g -O2   -c -o common.o common.c
ftp.o common.o ftp.h common.h
ftp
ftp.o
gcc ftp.o common.o -o ftp
[root@conformix make]#

The first two lines in the output use implicit rules to build object files. The third line in the
output is generated by the first echo command and it has a list of all the dependencies. The sec-
ond echo command displays the fourth line in the output, which is just the name of the target, i.e.
ftp. The last echo command prints the first dependency in the fifth line of the output.

Now let us modify the common.c file and run make once again. The output will be as
follows:

[root@conformix make]# make
gcc -g -O2   -c -o common.o common.c
common.o
ftp
ftp.o
gcc ftp.o common.o -o ftp
[root@conformix make]#

This time make used an implicit rule to build common.o. The important thing to note is
the second line in the output, which is displayed by the first echo command in the makefile.
This time it displayed only one file in the dependency list because common.o is the only file
that is changed in the dependencies.

Automatic variables are very useful in control structures and in the decision-making pro-
cess when you carry out an operation based upon the result of some comparison.

4.4 Working with Multiple Makefiles and Directories

Until now we have used simple makefiles to build projects or targets. We used only one makefile
in the project and all of the source files were present in the same directory. In real-life software
development projects, we have multiple directories containing different parts of a software prod-
uct. For example, one directory may contain all library files, another header files and a third one
common files used by different parts. Similarly every part of the software project may have its
own subdirectory.

This section deals with the same source files and targets that we used earlier in this chap-
ter. The project contains three targets to be built. These targets are ftp, tftp and dnsre-
solver. We are using the same set of source files. However to demonstrate the use of multiple
directories and multiple makefiles, we have created each component in a separate directory. This



Working with Multiple Makefiles and Directories 123
may not be the best example for a real-life situation, but it is well suited to demonstrate one of
many possible ways to handle such a situation. The following directory tree shows the arrange-
ment of these files in different directories.

 [root@conformix make]# tree
.
|-- Makefile
|-- common-dir
|   |-- Makefile
|   |-- common.c
|   `-- common.h
|-- dns-dir
|   |-- Makefile
|   |-- dnsresolver.c
|   `-- dnsresolver.h
|-- ftp-dir
|   |-- Makefile
|   |-- ftp.c
|   `-- ftp.h
`-- tftp-dir
    |-- Makefile
    |-- tftp.c
    `-- tftp.h

4 directories, 13 files
[root@conformix make]#

As you can see, you have four directories, each having its own makefile as well as source
files. There is a makefile in the top directory that is used with the make command. This top-
level makefile used makefiles in sub-directories. We can carry out the common tasks of building,
installing and cleaning different targets while sitting in the top directory. Let’s have a look at
makefile in each directory.

4.4.1 Makefile in The Top Directory

Makefile in the top directory is used to build all of the targets using different rules. To
build a particular target, we move to the directory where source files for that target are present
and run make in that directory. This makefile is shown below.

###################################################
# Makefile created to demonstrate use of the make
# utility in the "Linux Development Platform" book.
#
# Author: Rafeeq Ur Rehman
#         rr@conformix.com
###################################################

# Variable definition



124 Chapter 4  •  Using GNU make
FTPDIR = ftp-dir
TFTPDIR = tftp-dir
DNSDIR = dns-dir
COMDIR = common-dir

SUBDIRS = $(COMDIR) $(FTPDIR) $(TFTPDIR) $(DNSDIR) 

# Default Target

all:
  @echo 
  @echo "#######################################"
  @echo "###        BUILDING ALL TARGETS     ###"
  @echo "#######################################"
  @echo 
  for i in $(SUBDIRS) ; do   \
         ( cd $$i ; make ) ;       \
  done

# Rules to build individual targets

libs: 
  @cd $(COMDIR) ; make

ftp: 
  @cd $(FTPDIR) ; make

tftp: 
  @cd $(TFTPDIR) ; make

dnsresolver: 
  @cd $(DNSDIR) ; make

clean:
  rm -f *~
  for i in $(SUBDIRS) ; do   \
         ( cd $$i ; make clean) ;  \
        done

install:
  for i in $(SUBDIRS) ; do   \
         ( cd $$i ; make install); \
  done



Working with Multiple Makefiles and Directories 125
After defining variables, we have a rule for each target. This rule basically has two com-
mands on the same line. The first command, cd, is used to change the directory where source
files for that target are located. In the second command, make uses makefile in that directory to
build that target. Please note that we can also use the $(MAKE) variable for this purpose.

In the clean and install rules, we use the for loop to go into each directory and exe-
cute some commands. The for loop is explained later in this chapter.

4.4.2 Makefile in common-dir Directory

The files in the common-dir directory are used to build a simple library that is used by
other targets at link time. The makefile in this directory is listed below:

# Variable definition
SRCS = common.c 
OBJS = common.o 
HDRS = common.h 
LIBCOMMON = libcommon.a
INSTALLDIR = /root

CC = gcc
CFLAGS = -g -O2 -c

# Default Target

$(LIBCOMMON): $(SRCS) $(HDRS)
  $(CC) $(CFLAGS) common.c
  ar -cr $(LIBCOMMON) $(OBJS)
  ranlib $(LIBCOMMON) 

N O T E Please note that the following lines:

ftp: 
  @cd $(FTPDIR) ; make

are not equal to the following three lines:

ftp: 
  @cd $(FTPDIR) 
make

In the first case, make changes the directory to $(FTPDIR)
and then executes the make command in that directory, which is
the right thing to do. However in the second case, the cd com-
mand is executed and after that the next make command is again
executed in the current directory. The effect of the cd command is
lost when make goes to the next line to execute the next com-
mand. This is because of a new instance of sub-shell. that exe-
cutes commands in each line as discussed earlier in this chapter.



126 Chapter 4  •  Using GNU make
install:
  cp $(LIBCOMMON) $(INSTALLDIR)
clean:
  rm -f $(OBJS) $(LIBCOMMON) *~

This makefile builds an archive library file libcommon.a, which is the default target.
Note that this makefile can also be used as a standalone in this directory so that if someone is
working only on the library part of the project, he/she can use this makefile to test only the com-
pilation and library building process. This is useful because each developer can stay in his/her
own directory without building all parts of the project from the main makefile in the top direc-
tory.

4.4.3 Makefile in the ftp-dir Directory

The makefile in the ftp-dir directory builds the ftp target. It compiles and then stati-
cally links the object files using the library we built in common-dir directory. This makefile is
shown below.

# Variable definition
SRCS = ftp.c 
OBJS = ftp.o 
HDRS = ftp.h 

CC = gcc
CFLAGS = -g -O2 -c
INCLUDES = -I../common-dir
LDFLAGS = -static -L$(LIBSDIR)
LIBSDIR = ../common-dir
INSTALLDIR = /root

# Default Target

ftp: $(SRCS) $(HDRS)
  $(CC) $(CFLAGS) $(INCLUDES) ftp.c
  $(CC) $(LDFLAGS) $(COMMON) $(OBJS) -lcommon -o ftp

install:
  cp ftp $(INSTALLDIR)

clean:
  @echo "Deleting files ..."
  rm -f ftp $(OBJS) *~



Working with Multiple Makefiles and Directories 127
4.4.4 Makefile in the tftp-dir Directory

The makefile in the tftp-dir directory builds the tftp target. It compiles and then
statically links the object files using the library we built in the common-dir directory. This
makefile is shown below. It also has rules to install the target and clean the directory.

# Variable definition
SRCS = tftp.c 
OBJS = tftp.o 
HDRS = tftp.h 

CC = gcc
CFLAGS = -g -O2 -c
INCLUDES = -I../common-dir
LIBSDIR = ../common-dir
LDFLAGS = -static -L$(LIBSDIR)
INSTALLDIR = /root

# Default Target

tftp: $(SRCS) $(HDRS)
  $(CC) $(CFLAGS) $(INCLUDES) tftp.c
  $(CC) $(LDFLAGS) $(COMMON) $(OBJS) -lcommon -o tftp

install:
  cp tftp $(INSTALLDIR)

clean:
  @echo "Deleting files ..."
  rm -f tftp $(OBJS) *~

4.4.5 Makefile in the dns-dir Directory

The makefile in the dns-dir directory builds the dnsresolver target. It compiles and
then statically links the object files using the library we built in the common-dir directory.
This makefile is shown below.

# Variable definition
SRCS = dnsresolver.c 
OBJS = dnsresolver.o 
HDRS = dnsresolver.h 

CC = gcc
CFLAGS = -g -O2 -c
INCLUDES = -I../common-dir
LIBSDIR = ../common-dir
LDFLAGS = -static -L$(LIBSDIR)
INSTALLDIR = /root



128 Chapter 4  •  Using GNU make
# Default Target

dnsresolver: $(SRCS) $(HDRS)
  $(CC) $(CFLAGS) $(INCLUDES) dnsresolver.c
  $(CC) $(LDFLAGS) $(COMMON) $(OBJS) -lcommon -o dnsresolver

install:
  cp dnsresolver $(INSTALLDIR)

clean:
  @echo "Deleting files ..."
  rm -f dnsresolver $(OBJS) *~

4.4.6 Building Everything

After going through these makefiles, you are ready to build the targets.  Go to the top
directory and run the make command from there. It will read the makefile in the top directory
and will try to build all targets. A typical output of this action is as follows:

[root@conformix make]# make

#######################################
###        BUILDING ALL TARGETS     ###
#######################################

for i in common-dir ftp-dir tftp-dir dns-dir  ; do   \
         ( cd $i ; make ) ;       \
done
make[1]: Entering directory `/root/make/common-dir'
gcc -g -O2 -c common.c
ar -cr libcommon.a common.o 
ranlib libcommon.a 
make[1]: Leaving directory `/root/make/common-dir'
make[1]: Entering directory `/root/make/ftp-dir'
gcc -g -O2 -c -I../common-dir ftp.c
gcc -static -L../common-dir  ftp.o  -lcommon -o ftp
make[1]: Leaving directory `/root/make/ftp-dir'
make[1]: Entering directory `/root/make/tftp-dir'
gcc -g -O2 -c -I../common-dir tftp.c
gcc -static -L../common-dir  tftp.o  -lcommon -o tftp
make[1]: Leaving directory `/root/make/tftp-dir'
make[1]: Entering directory `/root/make/dns-dir'
gcc -g -O2 -c -I../common-dir dnsresolver.c
gcc -static -L../common-dir  dnsresolver.o  -lcommon -o 
dnsresolver
make[1]: Leaving directory `/root/make/dns-dir'
[root@conformix make]#



Working with Multiple Makefiles and Directories 129
During the process of building all targets, you can see how make enters and leaves each
directory and builds targets in each directory.

4.4.7 Cleaning Everything

The cleaning process is done the same way as we built all targets. Output of this process is
shown below. Again you can see that make enters each directory, runs the make clean com-
mand and then leaves the directory. The clean rule in makefiles present in each subdirectory is
used to remove files.

[root@conformix make]# make clean
rm -f *~
for i in common-dir ftp-dir tftp-dir dns-dir  ; do   \
         ( cd $i ; make clean) ;  \
        done
make[1]: Entering directory `/root/make/common-dir'
rm -f common.o  libcommon.a *~
make[1]: Leaving directory `/root/make/common-dir'
make[1]: Entering directory `/root/make/ftp-dir'
Deleting files ...
rm -f ftp ftp.o  *~
make[1]: Leaving directory `/root/make/ftp-dir'
make[1]: Entering directory `/root/make/tftp-dir'
Deleting files ...
rm -f tftp tftp.o  *~
make[1]: Leaving directory `/root/make/tftp-dir'
make[1]: Entering directory `/root/make/dns-dir'
Deleting files ...
rm -f dnsresolver dnsresolver.o  *~
make[1]: Leaving directory `/root/make/dns-dir'
[root@conformix make]#

The make clean command finishes its operation after going through all subdirectories.

4.4.8 Making Individual Targets

Instead of using a single big makefile, you can also build individual targets using smaller
makefiles. While building only one target, make will go into only that directory and build that
target. The following output shows the output of the make command when you build only the
ftp target.

[root@conformix make]# make ftp
make[1]: Entering directory `/root/make/ftp-dir'
gcc -g -O2 -c -I../common-dir ftp.c
gcc -static -L../common-dir  ftp.o  -lcommon -o ftp
make[1]: Leaving directory `/root/make/ftp-dir'
[root@conformix make]#



130 Chapter 4  •  Using GNU make
4.5 Special Features of make

In addition to the normal use of the make utility, it has some special features. Two of these fea-
tures are discussed here that may be of interest for a common user of make. These features are
running make commands in parallel and running make in non-stop mode.

Running multiple commands in parallel enhances the efficiency of make. Running make
in non-stop mode is useful for very large projects where you want make to go through every-
thing while running a command without stopping, even in case of errors.  You can redirect the
output of make to a log file which can be viewed later to find out what error occurred during the
make processes of the whole project.

4.5.1 Running Commands in Parallel

Usually make runs commands in serial fashion. This means that one command is exe-
cuted and when that command is finished, the next command is executed. You can ask make to
run many commands in parallel. This is especially useful in multi-processor systems to make
execution fast. The only problem with this is that when multiple commands are running in paral-
lel, output from different commands is displayed simultaneously and can get mixed up. To run
multiple commands in parallel, use the –j (jobs) command line switch with make.

If you want to specify a maximum number of concurrent commands, a number with the
–j switch may be specified. For example, -j5 on the command line will force make to
invoke at the maximum five commands simultaneously. It is useful to note that in general the
most efficient builds can be done with -j equal to one or two times the total number of proces-
sors on the system. Also note that make rules are followed such that all dependencies are sat-
isfied before a target is built. This means you won't always have the maximum number of jobs
running simultaneously, depending upon the way makefile is written.

4.5.2 Non-Stop Execution

The make utility executes each command while building a target. After executing the
command, it checks the result of that command. If the command was executed successfully, it
goes to the next command and executes it. However if the command does not execute success-
fully, make exits without executing any further commands. It displays an error message to show
that the target can’t be built.

Sometime, however, it is not important that each command should succeed. As an exam-
ple, look at the following lines in the clean rule.

clean:
  rm ftp 
  rm ftp.o common.o

If the ftp file is not there, the rm command will return a failure code. However we still
want to remove other files using the rm command in the next line. If the rule is listed in this way
and the ftp file is not present, the output of the make clean will be as follows:



Control Structures and Directives 131
[root@conformix make]# make clean

rm ftp  

rm: cannot remove `ftp': No such file or directory

make: *** [clean] Error 1

[root@conformix make]#

Now you can see that make did not attempt to execute the second rm command. To over-
come this situation, you can use a hyphen at the start of the command whose result code should
not be checked. This way make displays an error message but continues to the next command.
The same rule with hyphen added to the first rm command will be as follows:

clean:

  -rm ftp 

  rm ftp.o common.o

Now when you invoke this rule and ftp file is not present, make will do something like
the following:

[root@conformix make]# make clean

rm ftp  

rm: cannot remove `ftp': No such file or directory

make: [clean] Error 1 (ignored)

rm ftp.o common.o

[root@conformix make]#

As you can see from the above output, make ignored the error and continued to the next
line to remove object files.

There are other ways to ignore errors during the make process. You can also use the –i
command line switch to ignore errors during the make process. Another method is to use
.IGNORE special built-in rule to ignore errors.

4.6 Control Structures and Directives

Control structures inside makefiles enable you to make some logical decisions depending upon
certain conditions. Make supports four types of decision-making directives as listed below:

1. The ifeq directive

2. The ifneq directive

3. The ifdef directive

4. The ifndef directive

These directives are explained next. In addition to these directives, you can also use the
for control structure to execute a loop a specified number of times. Let us have a look at each
of these.



132 Chapter 4  •  Using GNU make
4.6.1 The ifeq Directive

The ifeq directive is used to compare two values and make a decision based upon the
result. The general format of this directive is as follows:

ifeq (value1, value2)

  block if value 1 is equal to value2

else

  block if value 1 is not equal to value2

endif

The else part is optional and may not be present. This structure is useful if you want to
make a decision on the basis of some criteria. For example, based upon the value of type of build
(temporary or final) you want to use different levels of optimization. The following code in a
makefile does that.

ifeq ($(BUILD), final)

  $(CC) -c -O2 ftp.c

else

  $(CC) -c -O1 ftp.c

endif

Please note that there is no TAB character before ifeq, else and endif words.

4.6.2 The ifneq Directive

The ifneq directive is similar to ifeq directive. The only difference is that sense of
equality is reversed. The general syntax is as follows:

ifneq (value1, value2)

  block if value 1 is not equal to value2

else

  block if value 1 is equal to value2

endif

4.6.3 The ifdef Directive

The ifdef directive checks if the value of the variable is empty or not. If the variable is
not empty, the ifdef block is executed, otherwise the else part is executed. The general struc-
ture of the directive is as follows:

ifdef  variable

  block if variable is non-empty

else

  block if variable is empty

endif

This directive is useful to verify if a variable is defined or not. The else part is optional.



Getting the Latest Version and Installation 133
4.6.4 The ifndef Directive

The ifndef directive is similar to the ifdef directive. However selection of a block of
commands is reversed as compared to ifdef directive. Its format is as follows:

ifndef  variable
  block if variable is empty
else
  block if variable is not empty
endif

4.6.5 The for Control Structure

You have already used the for directive in the example of using make with multiple
directories. This directive is used to perform repeated operation on multiple items. The follow-
ing rule in the makefile is used to go into multiple directories and remove object files in each of
these directories:

SUBDIRS = ftp-dir tftp-dir common-dir
clean:
  for dir in $(SUBDIRS) ; do  \
         ( cd $$dir ; rm *.o) ;  \
done

Each time a new value is assigned to variable dir from the values listed by the SUBDIRS
variable until all of the values are used.

4.7 Getting the Latest Version and Installation

Almost all of the Linux distributions come with make. The Red Hat 7.1 distribution that we
have used for this book already has the latest version of make. However if you want to get the
latest version of GNU make, it is available at the following FTP site.

ftp://ftp.gnu.org/pub/gnu/make/

This FTP site has multiple versions of the make utility. Download the latest version,
which will be a zipped tar file. The latest version at the time of writing this book is 3.79.1 and
the filename is make-3.79.1.tar.gz.

4.7.1 Compilation

After downloading this file, just un-tar it into a directory using the following command:

tar zxvf make-3.79.1.tar.gz 

The source files will be extracted into directory make-3.79.1. Change to this directory
and run the configure script. It will create the makefiles appropriate for you. You should
have some previous version of make in order to build the latest version. Use the make com-
mand; the default rule contains information about how to build make. Use the following com-



134 Chapter 4  •  Using GNU make
mand to verify that the build process for make was successful. This command will show a long
list of tests and the output is truncated to save space.

[root@conformix make-3.79.1]# ./make check
Making check in i18n
make[1]: Entering directory `/opt/make-3.79.1/i18n'
make[1]: Nothing to be done for `check'.
make[1]: Leaving directory `/opt/make-3.79.1/i18n'
make[1]: Entering directory `/opt/make-3.79.1'
/opt/make-3.79.1/./make  check-local
make[2]: Entering directory `/opt/make-3.79.1'
cd tests && perl ./run_make_tests.pl -make ../make 
--------------------------------------------------------
   Running tests for GNU make on Linux conformix.net 2.4.2-2 
i686
                           GNU Make version 3.79.1
--------------------------------------------------------

Clearing work...
Finding tests...

features/comments ............................. ok
features/conditionals ......................... ok
features/default_names ........................ ok
features/double_colon.......................... ok
features/echoing .............................. ok
features/errors ............................... ok
features/escape ............................... ok
features/include .............................. ok

If these tests are successful, you have created the latest and greatest make utility. If some
of the tests fail, it is an indication that some of the features are missing from this build of make.

4.7.2 Installation

You can install the newly created make utility using the following command.

make install

The command should be executed in the same directory in which you did the build pro-
cess.

4.8 References and Resources

1. GNU Make, Richard M. Stallman and Ronald McGrath, Free Software Foundation,
ISBN:1-8822114-80-9. It is also available on many websites in Postscript form.

2. GNU make web site at http://www.gnu.org/software/make/make.html
3. GNU make manual at http://www.gnu.org/manual/make/index.html



C H A P T E R 5
Working with GNU 
Debugger
he debugger is one of the most important components of any devel-
opment system. No programmer writes a code that works on the first

attempt or that does not have any bugs in it. Most of the time you have to
go through debugging processes of your programs time and again. There-
fore no development system is complete without a debugger. The GNU
compiler, Emacs editor and other utilities work very closely with GNU
debugger, also known as gdb, which is the debugger of choice of all open
source developers community as well as for many commercial products.
Many commercial debuggers are also built on top of GNU debugger.

In addition to command line debugging features, you can find many GUI
front ends to the GNU debugger. These front ends include the famous
xxgdb.

There are many other debuggers available in the open source community.
Some of these debuggers are also introduced at the end of this chapter.
This chapter provides a comprehensive working knowledge of gdb and
how to use it. The text is accompanied by many examples to elaborate
concepts presented here. After going through this chapter you should be
able to debug many types of programs.

T

135



136 Chapter 5  •  Working with GNU Debugger
5.1 Introduction to GDB

GNU debugger or more commonly known as GDB is the most commonly used debugger in open
source as well as commercial development on UNIX type platforms. It can be used as a native as
well as cross debugger. GNU debugger supports many object file formats. The most commonly
used formats are as follows:

• ELF

• a.out

• S-record

It is part of almost all of the Linux distributions available these days. In its command line
form, it is started using the gdb command. The command provides an interactive text based
prompt for the user. The default prompt for the debugger is (gdb). You can use commands avail-
able on this command prompt. Most of the commands can be abbreviated as long as they are not
confused with any other command. For example, the next command can be used as single char-
acter n. This abbreviation will be more clear when you go through examples in this book.

All examples in this book use the GNU debugger that came with RedHat 7.1. The chapter
also includes information about how to get the latest version of the debugger and install it on
your system.

5.2 Getting Started with GDB

The GNU debugger is started using the gdb command. Upon startup, it displays initial informa-
tion about the platform. It stops at the (gdb) command prompt where GDB commands can be
used. A typical GDB screen is as shown below:

[rrehman@laptop gdb]$ gdb
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux".
(gdb) 

General help about GDB commands can be displayed using the help command on
(gdb) prompt  as shown below:

(gdb) help
List of classes of commands:



Getting Started with GDB 137
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping 
the program
user-defined -- User-defined commands
Type "help" followed by a class name for a list of commands in 
that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.
(gdb) 

You can stop gdb using quit command on (gdb) prompt. You can also stop gdb or the
current running command by pressing the Ctrl and C keys simultaneously.

You need to open a file for debugging after starting gdb using file command. You can
also start gdb by providing a file name on the command line. The following command starts
gdb and uses a.out file for debugging purpose. 

gdb a.out

Please note that a.out must be compiled using the –g command line switch with gcc
compiler. If you don’t use the command line switch –g, no debug information will be stored in
the a.out file. The typical command line to compile a file with debug support is as follows:

gcc –g hello.c –o hello

The above command creates an output file hello that can be used to debug hello.c
program using the following command:

gdb hello

If you have started gdb without any command line argument, you can load a file into gdb
at any time using file command at the (gdb) prompt.

5.2.1 Most Commonly Used gdb Commands

The most commonly used GDB commands are listed in Table 5-1. These commands are
used to start and stop gdb debugging, executing a program and displaying results. Note that you
start gdb using the gdb [filename] command and then you get the (gdb) prompt where
you can use these commands.

Note that there is a difference between the next and the step commands. The next
command will move you to the next line in the current function. If the current line is a function



138 Chapter 5  •  Working with GNU Debugger
call, it will not go into the function code and you will not see what happens inside the function
code. This is equivalent to the step over action used in many debuggers. On the other hand if you
use the step command, it will move to the next line but if the current line is a function call, it
will go into the function code and will take you to the first line inside the function. This is also
called a step into action in some debuggers.

5.2.2 A Sample Session with gdb

In this section you go through a sample gdb session. You will use the following C code in
this session and will step through the code from top to bottom. This code is saved in a file
sum.c and the output executable file is sum. The sum.c file is listed below.

#include <stdio.h>
main ()
{
  int num1, num2, total ;

  printf("Enter first number : ");
  scanf("%d", &num1);
  printf("Enter second number : ");
  scanf("%d", &num2);

  total = num1 + num2;

  printf("\nThe sum is : %d\n", total);
}

As you can see, the sum.c file takes two numbers as input. It then calculates the sum and
displays it as standard output. The compilation is done using the following command.

gcc –g sum.c –o sum

Table 5-1 Common gdb commands

Command Description

run Start a program execution inside gdb from the beginning

quit Quit gdb

print expr Print expression, where expression may be a variable name

next Go to next line

step Step into next line

continue Continue from the current place until end of program reaches or you find a break 
point



Getting Started with GDB 139
Now let us debug the output file. Note that when starting gdb, you use the output file sum
on the command line and gdb will automatically find out the source code file name (sum.c)
from the information stored inside the executable file. An explanation of different gdb com-
mands is provided at the end of this debug session. Note that the next command is abbreviated
as n in this session.

[rr@conformix 5]$ gdb sum
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) list
1  #include <stdio.h>
2  main ()
3  {
4    int num1, num2, total ;
5
6    printf("Enter first number : ");
7    scanf("%d", &num1);
8    printf("Enter second number : ");
9    scanf("%d", &num2);
10
(gdb) list
11    total = num1 + num2;
12  
13    printf("\nThe sum is : %d\n", total);
14  }
(gdb) list 1,14
1  #include <stdio.h>
2  main ()
3  {
4    int num1, num2, total ;
5  
6    printf("Enter first number : ");
7    scanf("%d", &num1);
8    printf("Enter second number : ");
9    scanf("%d", &num2);
10 
11   total = num1 + num2;
12 
13   printf("\nThe sum is : %d\n", total);



140 Chapter 5  •  Working with GNU Debugger
  }
(gdb) list 5
1  #include <stdio.h>
2  main ()
3  {
4    int num1, num2, total ;
5  
6    printf("Enter first number : ");
7    scanf("%d", &num1);
8    printf("Enter second number : ");
9    scanf("%d", &num2);
10 
(gdb) list 9
4    int num1, num2, total ;
5  
6    printf("Enter first number : ");
7    scanf("%d", &num1);
8    printf("Enter second number : ");
9    scanf("%d", &num2);
10 
11   total = num1 + num2;
12 
13   printf("\nThe sum is : %d\n", total);
gdb) break sum.c:6
Breakpoint 1 at 0x8048496: file sum.c, line 6.
(gdb) run
Starting program: /home/rr/5/sum 

Breakpoint 1, main () at sum.c:6
6    printf("Enter first number : ");
(gdb) n
7    scanf("%d", &num1);
(gdb) n
Enter first number : 45
8    printf("Enter second number : ");
(gdb) n
9    scanf("%d", &num2);
(gdb) n
Enter second number : 56
11   total = num1 + num2;
(gdb) n
13   printf("\nThe sum is : %d\n", total);
(gdb) n

The sum is : 101
14 }
(gdb) n



Getting Started with GDB 141
Program exited with code 022.
(gdb) quit
[rr@conformix 5]$

Here are some observations  about this session.

• The list command lists lines in the source code file and moves the pointer for listing.
So the first list command lists lines from 1 to 10. The next list command lists
lines from 11 to 14 where 14 is the last line.

• You can use a number with the list command. The list command displays the line
with the number in the middle. So the command list 9 will list lines from 4 to 13
trying to keep line number 9 in the middle.

• To list a range of lines, you can specify that range as an argument to the list
command using a comma. For example, list 1,14 will list lines from line number 1
to line number 14. 

• You can set a break point using the break command at a particular line number. When
you use the run command, the execution will stop at the break point. It is important
that you create at least one break point before using the run command. If you don’t do
so, the program will continue to run until it reaches the end and you may not be able to
debug it. More on break points will be discussed later.

• After setting a break point, you can use the run command to start execution of the
program. Note that simply loading a file into gdb does not start execution. When gdb
comes across a break point, it will stop execution and you will get a(gdb) command
prompt. At this point you can start tracing the program line by line or using some other
method.

• The next command (or simply n) executes the current line and moves execution
pointer to the next line. Note that the line number and the contents of line are displayed
each time you use the next command.

• When the running program needs an input, gdb will stop and you can enter the
required value. For example, I have entered 45 and 56 as values for num1 and num2.

• gdb will print any output when a command is executed that prints something on the
output device. You can see the result of addition printed.

• When gdb reaches the end of execution, it will print the exit code. After that you can
use the quit command to end gdb session.

This was a simple gdb session. In next sections, you will go through more examples of
how to use gdb.

5.2.3 Passing Command Line Arguments to the Program Being Debugged

Many program need command line arguments to be passed to them at the time of execu-
tion. There are multiple ways to pass these command line arguments when you debug a pro-



142 Chapter 5  •  Working with GNU Debugger
gram. Let us look at the following program that prints two command line arguments. The
program prints a message if exactly two command line arguments are not specified. Note that
this may not be the best program for this purpose and is used only to demonstrate a debugging
process. The program name is arg.c and it is listed below.

#include <stdio.h>
#include <string.h>
main (int argc, char **argv)
{
  if (argc != 3) {
    printf("You have to use two command line arguments\n");
    exit(-1);
  }
  printf("This program prints two command line arguments\n");
  printf("The first argument is : %s\n", argv[1]);
  printf("The second argument is : %s\n", argv[2]);
}

You have to create an executable file, arg, from arg.c source code file. If you run this
program in gdb using the run command, it complains about command line arguments and ter-
minates as expected. This is shown below.

[rr@conformix 5]$ gdb arg
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) run
Starting program: /home/rr/5/arg 
You have to use two command line arguments

Program exited with code 0377.
(gdb)

Note that no break point is set as we are not interested in stepping through the program
line by line at this point.

The following lines of another gdb session output show that you can specify command
line arguments with the run command. Any arguments for the run command are considered as
program arguments. These arguments are “test1” and “test2” and are printed on the screen
when you run the program.



Getting Started with GDB 143
[rr@conformix 5]$ gdb arg
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) run test1 test2
Starting program: /home/rr/5/arg test1 test2
This program prints two command line arguments
The first argument is : test1
The second argument is : test2

Program exited with code 037.
(gdb)

Another method is to set the arguments using the set command as done in the following
gdb session. You can display current arguments using the show command, which is also
present in this gdb session. After setting the arguments, you can use the run command to start
executing the program.

[rr@conformix 5]$ gdb arg
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) set args test1 test2
(gdb) show args
Argument list to give program being debugged when it is 
started is "test1 test2".
(gdb) run
Starting program: /home/rr/5/arg test1 test2
This program prints two command line arguments
The first argument is : test1
The second argument is : test2

Program exited with code 037.
(gdb)



144 Chapter 5  •  Working with GNU Debugger
5.3 Controlling Execution

Now you are already familiar with some of the gdb commands used for controlling execution of
a program. The commands you have already used are run, quit and next commands. In this
section you will learn some more commands that can be used to control execution of the program.
The most commonly used commands to control execution of a program in gdb are as follows:

• The run command is used to start execution of a program. If the program is already
running, you can restart the execution right from the beginning using the run
command.

• The quit command will quit the debugger.
• The kill command stops debugging but does not quit the debugger.
• The continue command starts executing program from the current position. The

difference between the continue and run commands is that the run commands
starts execution from the entry point of the program while the continue command
starts execution from the current location.

• The next command goes to the next line in the code. If the current line is a function
call, it completes the function call without going into the function code.

• The step command goes to the next line in the code. If the current line is a function
call, it goes to the first line inside that function.

• The finish command takes you out of the function call, if you are already inside one.
• The return command returns to the caller of the current frame in the stack. This

means that you can return from a function without actually completing the function
code execution.

There are many ways to control execution of a program. Mastery of these methods is nec-
essary to debug a program more efficiently.

5.3.1 The step and finish Commands

Here we have a short demonstration of how to use finish and step commands when
you are dealing with a function. Consider the following sumf.c program that adds two num-
bers and prints the result of addition. The addition is completed inside a function called sum().

#include <stdio.h>

int sum(int num1, int num2);

main ()
{
  int num1, num2, total ;

  printf("Enter first number : ");
  scanf("%d", &num1);



Controlling Execution 145
  printf("Enter second number : ");
  scanf("%d", &num2);

  total = sum(num1, num2);
  printf("\nThe sum is : %d\n", total);
}

int sum(int num1, int num2)
{
  int result;
  result = num1 + num2 ;
  printf("\nCalculation complete. Returning ...\n");
  return (result);
}

Let us create an executable sumf from this source code using the gcc compiler. This exe-
cutable then can be debugged using GNU debugger as shown in the next session. Note that we
use the step command (abbreviated as s) to step into the function code. We use the finish
command to complete execution of code in the function sum() instead of tracing it line by line.
After the finish command is executed, you go to the next line in the main() function just
after the call to the sum() function.

[rr@conformix 5]$ gdb sumf
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) bre main
Breakpoint 1 at 0x8048496: file sumf.c, line 9.
(gdb) run
Starting program: /home/rr/5/sumf 

Breakpoint 1, main () at sumf.c:9
9  printf("Enter first number : ");
(gdb) n
10  scanf("%d", &num1);
(gdb) n
Enter first number : 4
11  printf("Enter second number : ");
(gdb) n
12  scanf("%d", &num2);
(gdb) n



146 Chapter 5  •  Working with GNU Debugger
Enter second number : 5
14  total = sum(num1, num2);
(gdb) s
sum (num1=4, num2=5) at sumf.c:21
21  result = num1 + num2 ;
(gdb) finish
Run till exit from #0  sum (num1=4, num2=5) at sumf.c:21

Calculation complete. Returning ...
0x080484ec in main () at sumf.c:14
14  total = sum(num1, num2);
Value returned is $1 = 9
(gdb) n
15  printf("\nThe sum is : %d\n", total);
(gdb) n

The sum is : 9
16}
(gdb) n

Program exited with code 020.
(gdb)

As you can see from the above example, all gdb commands can be abbreviated as long as
they can’t be confused with any other command. You can use n for next, bre for the break
command and s for the step command. Also note that when you return from the function call,
the return value of the function is displayed.

5.4 Working with the Stack

One of the most important tasks during the debugging process is to deal with the stack. The
stack provides a lot of information about what happened in the past. You can backtrace to higher
levels in the stack using gdb. Using the backtrace feature, you can move step-by-step backward
to find out how you reached the current position. To demonstrate some of the commands used
with stack, let us take the example of sumf.c program that you used in the last section. The
program takes two numbers as input and then calls a function to sum() to add these two num-
bers. The function returns the result back to the main function.

When you start debugging this program, first you set up a break point right at the begin-
ning of the main function and then use the next command repeatedly until you reach the line
where the function is called. At this point you use the step command instead of the next com-
mand to move into the function code. After entering the function code, some other commands
related to stack are used in the following gdb session. These commands are explained at the end
of this session listing.



Working with the Stack 147
[rr@conformix 5]$ gdb sumf
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) break main
Breakpoint 1 at 0x8048496: file sumf.c, line 9. 
(gdb) run
Starting program: /home/rr/5/sumf 

Breakpoint 1, main () at sumf.c:9
9  printf("Enter first number : ");
(gdb) next
10  scanf("%d", &num1);
(gdb) next
Enter first number : 30
11  printf("Enter second number : ");
(gdb) next
12  scanf("%d", &num2);
(gdb) next
Enter second number : 40
14  total = sum(num1, num2);
(gdb) step
sum (num1=30, num2=40) at sumf.c:21
21  result = num1 + num2 ;
(gdb) next
22  printf("\nCalculation complete. Returning ...\n");
(gdb) frame
#0  sum (num1=30, num2=40) at sumf.c:22
22  printf("\nCalculation complete. Returning ...\n");
(gdb) info frame
Stack level 0, frame at 0xbffffa08:
 eip = 0x804851b in sum (sumf.c:22); saved eip 0x80484ec
 called by frame at 0xbffffa38
 source language c.
 Arglist at 0xbffffa08, args: num1=30, num2=40
 Locals at 0xbffffa08, Previous frame's sp is 0x0
 Saved registers:
  ebp at 0xbffffa08, eip at 0xbffffa0c
(gdb) info args
num1 = 30
num2 = 40



148 Chapter 5  •  Working with GNU Debugger
(gdb) info locals
result = 70
(gdb) info reg
eax            0x4670
ecx            0x00
edx            0x401548e01075136736
ebx            0x401569e41075145188
esp            0xbffffa000xbffffa00
ebp            0xbffffa080xbffffa08
esi            0x40016b641073834852
edi            0xbffffaac-1073743188
eip            0x804851b0x804851b
eflags         0x312786
cs             0x2335
ss             0x2b43
ds             0x2b43
es             0x2b43
fs             0x00
gs             0x00
fctrl          0x37f895
fstat          0x00
ftag           0xffff65535
fiseg          0x2335
fioff          0x404b42151078673941
foseg          0x2b43
fooff          0x404c69681078749544
fop            0x2e9745
(gdb) info all-reg
eax            0x4670
ecx            0x00
edx            0x401548e01075136736
ebx            0x401569e41075145188
esp            0xbffffa000xbffffa00
ebp            0xbffffa080xbffffa08
esi            0x40016b641073834852
edi            0xbffffaac-1073743188
eip            0x804851b0x804851b
eflags         0x312786
cs             0x2335
ss             0x2b43
ds             0x2b43
es             0x2b43
fs             0x00
gs             0x00
st0            0(raw 0x00000000000000000000)
st1            0(raw 0x00000000000000000000)
st2            0(raw 0x00000000000000000000)
st3            0(raw 0x00000000000000000000)



Working with the Stack 149
st4            0(raw 0x00000000000000000000)
st5            0(raw 0x00000000000000000000)
st6            1.147239263803680981573807073914395(raw 
0x3fff92d8bc775ca99ea0)
st7            3(raw 0x4000c000000000000000)
fctrl          0x37f895
fstat          0x00
ftag           0xffff65535
fiseg          0x2335
fioff          0x404b42151078673941
foseg          0x2b43
fooff          0x404c69681078749544
fop            0x2e9745
(gdb) backtrace
#0  sum (num1=30, num2=40) at sumf.c:22
#1  0x080484ec in main () at sumf.c:14
#2  0x40048177 in __libc_start_main (main=0x8048490 <main>, 
argc=1, ubp_av=0xbffffaac, init=0x8048308 <_init>, 
    fini=0x8048580 <_fini>, rtld_fini=0x4000e184 <_dl_fini>, 
stack_end=0xbffffa9c)
    at ../sysdeps/generic/libc-start.c:129
(gdb) info frame
Stack level 0, frame at 0xbffffa08:
 eip = 0x804851b in sum (sumf.c:22); saved eip 0x80484ec
 called by frame at 0xbffffa38
 source language c.
 Arglist at 0xbffffa08, args: num1=30, num2=40
 Locals at 0xbffffa08, Previous frame's sp is 0x0
 Saved registers:
  ebp at 0xbffffa08, eip at 0xbffffa0c
(gdb) up
#1  0x080484ec in main () at sumf.c:14
#2  0x40048177 in __libc_start_main (main=0x8048490 <main>, 
argc=1, ubp_av=0xbffffaac, init=0x8048308 <_init>, 
    fini=0x8048580 <_fini>, rtld_fini=0x4000e184 <_dl_fini>, 
stack_end=0xbffffa9c)
    at ../sysdeps/generic/libc-start.c:129
(gdb) info frame
Stack level 0, frame at 0xbffffa08:
 eip = 0x804851b in sum (sumf.c:22); saved eip 0x80484ec
 called by frame at 0xbffffa38
 source language c.
 Arglist at 0xbffffa08, args: num1=30, num2=40
 Locals at 0xbffffa08, Previous frame's sp is 0x0
 Saved registers:
  ebp at 0xbffffa08, eip at 0xbffffa0c
(gdb) up
#1  0x080484ec in main () at sumf.c:14



150 Chapter 5  •  Working with GNU Debugger
14  total = sum(num1, num2);
(gdb) info frame
Stack level 1, frame at 0xbffffa38:
 eip = 0x80484ec in main (sumf.c:14); saved eip 0x40048177
 called by frame at 0xbffffa78, caller of frame at 0xbffffa08
 source language c.
 Arglist at 0xbffffa38, args: 
 Locals at 0xbffffa38, Previous frame's sp is 0x0
 Saved registers:
  ebp at 0xbffffa38, eip at 0xbffffa3c
(gdb) down
#0  sum (num1=30, num2=40) at sumf.c:22
22  printf("\nCalculation complete. Returning ...\n");
(gdb) info frame
Stack level 0, frame at 0xbffffa08:
 eip = 0x804851b in sum (sumf.c:22); saved eip 0x80484ec
 called by frame at 0xbffffa38
 source language c.
 Arglist at 0xbffffa08, args: num1=30, num2=40
 Locals at 0xbffffa08, Previous frame's sp is 0x0
 Saved registers:
  ebp at 0xbffffa08, eip at 0xbffffa0c
(gdb) down
Bottom (i.e., innermost) frame selected; you cannot go down.
(gdb) n

Calculation complete. Returning ...
23  return (result);
(gdb) n
24}
(gdb) n
main () at sumf.c:15
15  printf("\nThe sum is : %d\n", total);
(gdb) n

The sum is : 70
16}
(gdb) n

Program exited with code 021.
(gdb) quit
[rr@conformix 5]$

• The frame command shows the current frame of execution for the program. In simple
terms, you can consider a frame as a block of commands. For example, commands in
one function are a frame. When you use the frame command, it displays the current
frame starting point, the file name and current execution pointer.



Displaying Variables 151
• The info frame command shows more information about the current frame,
including some register values. It also shows the stack pointer for the previous frame.
These values are taken from the stack.

• The info args command displays arguments passed to this frame. This is also taken
from the stack.

• The info locals command displays the values of local variables. These variable
have a scope limited to the current frame.

• The info reg command displays values of register values.
• The info all-reg command displays register values, including math registers.
• The up command takes you one level up in the stack. This means if you are inside a

function call, the up command will take you to the function that called the current
function. The down command is opposite to the up command.

• You can use backtrace, up and down commands to move around in different
frames. These commands are useful for looking into stack data.

A combination of all of these commands used with other execution control command can
be used to display a lot of information. If you want to effectively use GNU debugger, knowledge
of commands related to stack is a must.

5.5 Displaying Variables

Using the GNU debugger, you can display environment variables as well as your program vari-
ables during the program execution. You can control display of some variables so that the value
of these variables is displayed with each command. Using this feature you can easily track
changes taking place to these variables when you step through the program. You can also modify
the program as well as environment variables. This section shows examples of  how to carry out
these tasks.

5.5.1 Displaying Program Variables

The following session uses the sum.c program that you already used earlier in this chap-
ter. Go through the following gdb session and then see the discussion at the end of this session
about actions taking place.

[rr@conformix 5]$ gdb sum
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.



152 Chapter 5  •  Working with GNU Debugger
This GDB was configured as "i386-redhat-linux"...
(gdb) break main
Breakpoint 1 at 0x8048496: file sum.c, line 6.
(gdb) run
Starting program: /home/rr/5/sum 

Breakpoint 1, main () at sum.c:6
6  printf("Enter first number : ");
(gdb) print num2
$1 = 134518424
(gdb) print total
$2 = 134513777
(gdb) n
7  scanf("%d", &num1);
(gdb) n
Enter first number : 45
8  printf("Enter second number : ");
(gdb) n
9  scanf("%d", &num2);
(gdb) n
Enter second number : 33
11  total = num1 + num2;
(gdb) print num2
$3 = 33
(gdb) n
13  printf("\nThe sum is : %d\n", total);
(gdb) n

The sum is : 78
14}
(gdb) n

Program exited with code 021.
(gdb)

• First set a break point where function main starts.
• Start the program execution using the run command.
• Print values of num2 and total variables. Since these variables are not yet initialized,

random numbers are present at these two locations.
• Execute the program line by line and enter values of num1 and num2 variables and

then calculate the value of total.
• Print the value of num2 variable which is now exactly what you have entered.

Note that in this session, gdb does not display the values of variables automatically when
a value changes. You have to use the print command again and again to display variable val-
ues. In the next section, you will see how to display these values automatically.



Displaying Variables 153
5.5.2 Automatic Displaying Variables with Each Command

The display command displays the value of a variable and keeps a record of the vari-
able so that its value is displayed after each command. The following session shows how this
feature works. This is an easy way to closely watch the value of variables with the execution of
each line of code. It is especially useful when you are tracing through a loop where you need to
know the values of some variables in each cycle.

[rr@conformix 5]$ gdb sum
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) break main
Breakpoint 1 at 0x8048496: file sum.c, line 6.
(gdb) run
Starting program: /home/rr/5/sum 

Breakpoint 1, main () at sum.c:6
6  printf("Enter first number : ");
(gdb) display num1
1: num1 = 134518424
(gdb) disp total
2: total = 134513777
(gdb) n
7  scanf("%d", &num1);
2: total = 134513777
1: num1 = 134518424
(gdb) n
Enter first number : 3
8  printf("Enter second number : ");
2: total = 134513777
1: num1 = 3
(gdb) n
9  scanf("%d", &num2);
2: total = 134513777
1: num1 = 3
(gdb) n
Enter second number : 67
11  total = num1 + num2;
2: total = 134513777
1: num1 = 3



154 Chapter 5  •  Working with GNU Debugger
(gdb) n
13  printf("\nThe sum is : %d\n", total);
2: total = 70
1: num1 = 3
(gdb) n

The sum is : 70
14}
2: total = 70
1: num1 = 3
(gdb) n

Program exited with code 021.
(gdb)

 You can use the following commands to control the display of variables and get informa-
tion about variables that are being displayed.

• The undisplay command removes a variable from the list of displayed items.
• The disable display command keeps the variable in the display list but disables

its continuous display.
• The enable display command enables display of a variable that was previously

disabled.
• The info display command displays a list of expressions or variables currently in

the display list.

5.5.3 Displaying Environment Variables

Environment variables play a significant role in debugging a program. They are used to
locate files and other tasks related to the file system as well as shell command execution. The
following command displays the value of the PATH variable:

(gdb) show path
Executable and object file path: /usr/kerberos/bin:/bin:/usr/
bin:/usr/local/bin:/usr/bin/X11:/usr/X11R6/bin

The following command shows the current directory:

(gdb) pwd
Working directory /home/rr/5.

All environment variables can be displayed using the following command:

(gdb) show environment
PWD=/home/rr/5
HOSTNAME=conformix.conformix.net
PVM_RSH=/usr/bin/rsh
QTDIR=/usr/lib/qt-2.3.0
LESSOPEN=|/usr/bin/lesspipe.sh %s



Displaying Variables 155
XPVM_ROOT=/usr/share/pvm3/xpvm
KDEDIR=/usr
USER=rr
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:bd=4
0;33;01:cd=40;33;01:or=01;05;37;41:mi=01;05;37;41:ex=01;32:*.c
md=01;32:*.exe=01;32:*.com=01;32:*.btm=01;32:*.bat=01;32:*.sh=
01;32:*.csh=01;32:*.tar=01;31:*.tgz=01;31:*.arj=01;31:*.taz=01
;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.b
z2=01;31:*.bz=01;31:*.tz=01;31:*.rpm=01;31:*.cpio=01;31:*.jpg=
01;35:*.gif=01;35:*.bmp=01;35:*.xbm=01;35:*.xpm=01;35:*.png=01
;35:*.tif=01;35:
MACHTYPE=i386-redhat-linux-gnu
OLDPWD=/home/rr
MAIL=/var/spool/mail/rr
INPUTRC=/etc/inputrc
BASH_ENV=/home/rr/.bashrc
LANG=en_US
DISPLAY=192.168.2.115:1
LOGNAME=rr
SHLVL=1
SHELL=/bin/bash
HOSTTYPE=i386
OSTYPE=linux-gnu
HISTSIZE=1000
LAMHELPFILE=/etc/lam/lam-helpfile
PVM_ROOT=/usr/share/pvm3
TERM=xterm
HOME=/home/rr
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
PATH=/usr/kerberos/bin:/bin:/usr/bin:/usr/local/bin:/usr/bin/
X11:/usr/X11R6/bin
_=/usr/bin/gdb
(gdb)

You can also use the set env command and the unset env command to modify envi-
ronment variables or to create or delete variables.

5.5.4 Modifying Variables

Using the set command, you can modify any program variable during the debugging
process. The following session shows an example where you entered a value 34 for program
variable num1 but modified it to 11 using set command before the sum was calculated. You
can see that the sum calculation process takes into account the new value.

Enter first number : 34
11  printf("Enter second number : ");
(gdb) n
12  scanf("%d", &num2);



156 Chapter 5  •  Working with GNU Debugger
(gdb) n
Enter second number : 12
14  total = sum(num1, num2);
(gdb) print num1
$1 = 34
(gdb) set num1=11
(gdb) print num1
$2 = 11
(gdb) print num2
$3 = 12
(gdb) n

Calculation complete. Returning ...
15  printf("\nThe sum is : %d\n", total);
(gdb) n

The sum is : 23
16 }
(gdb)

5.6 Adding Break Points

When you start debugging a program, you use the run command. This command executes the
program until the end of the program or a break point is met. A break point is a place in your
source code file where you temporarily want to stop execution of the program being debugged.

Break points in GNU debugger can be placed using the break command. Look at the fol-
lowing list of the source code file sum.c which you already have used:

(gdb) list
1  #include <stdio.h>
2  main ()
3  {
4    int num1, num2, total ;
5  
6    printf("Enter first number : ");
7    scanf("%d", &num1);
8    printf("Enter second number : ");
9    scanf("%d", &num2);
10 
(gdb)

To place a break point at line number 6 in file sum.c (displayed above), you can use the
following command:

(gdb) break sum.c:6
Breakpoint 1 at 0x8048496: file sum.c, line 6.
(gdb)



Adding Break Points 157
As you can see from the above lines, when you set a break point, GNU debugger will dis-
play its information in the next line. This information contains the number of the breakpoint,
memory address, file name and line number. You can also see a list of currently set break points
using the following command:

(gdb) info break
Num Type           Disp Enb Address    What
1   breakpoint     keep y   0x08048496 in main at sum.c:6
(gdb)

Break points can also be set on function names. The following command sets a break point
where function main starts:

(gdb) break main
Breakpoint 1 at 0x8048496: file sum.c, line 6.
(gdb)

Note that although the function main() starts at line number 2, the break point is set at
line number 6. This is because the first executable instruction of the function main is located at
this line number.

You can also set a break point at a particular line number in the currently loaded file. The
following command creates a break point at line number 8:

(gdb) break 8
Breakpoint 2 at 0x80484ba: file sum.c, line 8.
(gdb) 

In a multi-source file project, you set up a break point by including the file name and line
number on the command line. The following command sets up a break point at line number 9 in
file sum.c.

(gdb) break sum.c:9
Breakpoint 3 at 0x80484ca: file sum.c, line 9.
(gdb) 

You can also use an offset value to set up a break point. For example if the execution
pointer is on line number 6, you can set up a break point at line number 9 using the following
command. Note that you can also use a minus symbol to specify an offset.

6  printf("Enter first number : ");
(gdb) break +3
Note: breakpoint 3 also set at pc 0x80484ca.
Breakpoint 4 at 0x80484ca: file sum.c, line 9.
(gdb)

All break points can be displayed using the info command. The following command dis-
plays three break points that we have specified:

(gdb) info break
Num Type           Disp Enb Address    What



158 Chapter 5  •  Working with GNU Debugger
1   breakpoint     keep y   0x08048496 in main at sum.c:6
2   breakpoint     keep y   0x080484ba in main at sum.c:8
3   breakpoint     keep y   0x080484ca in main at sum.c:9
(gdb)

If you want to disable all break points, use the disable command without any argument.
Similarly if you want to enable all disabled break points, use the enable command without any
argument. Normal arguments allow you to specify which break point to enable and disable.

5.6.1 Continuing from Break Point

You can continue execution of your program when you reach a break point in many ways.
You can start tracing the program line by line using next or step commands. You can also use
the continue command that will run the program from its current location until the program
reaches its end or you find another break point on the way. You have already seen how to use the
step and next commands. The following session creates a break point in the start of the main
function and then uses the continue command to start execution from there.

[rr@conformix 5]$ gdb sum
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) break main
Breakpoint 1 at 0x8048496: file sum.c, line 6.
(gdb) run
Starting program: /home/rr/5/sum 

Breakpoint 1, main () at sum.c:6
6  printf("Enter first number : ");
(gdb) continue
Continuing.
Enter first number : 34
Enter second number : 45

The sum is : 79

Program exited with code 021.
(gdb) quit
[rr@conformix 5]$



Adding Break Points 159
5.6.2 Disabling Break Points

Break points can be disabled temporarily. You can disable a break point using the dis-
able command with a number as its argument. These numbers can be displayed using the
info break command. The following command lists currently available break points. As you
can see under the Enb column heading, all lines contain a y which shows that all break points
are currently enabled.

(gdb) info break
Num Type           Disp Enb Address    What
1   breakpoint     keep y   0x08048496 in main at sum.c:6
breakpoint already hit 1 time
2   breakpoint     keep y   0x080484ba in main at sum.c:8
3   breakpoint     keep y   0x080484ca in main at sum.c:9
6   breakpoint     keep y   0x08048496 in main at sum.c:5

To disable break point number 3 at line number 9 in file sum.c and then display the status
of break points again, use the following two commands:

(gdb) dis 3
(gdb) info break
Num Type           Disp Enb Address    What
1   breakpoint     keep y   0x08048496 in main at sum.c:6
breakpoint already hit 1 time
2   breakpoint     keep y   0x080484ba in main at sum.c:8
3   breakpoint     keep n   0x080484ca in main at sum.c:9
6   breakpoint     keep y   0x08048496 in main at sum.c:5
(gdb)

Note that you can disable all break points in a single step if you don’t mention any number
as an argument to the disable command.

5.6.3 Enabling Break Points

You can enable previously disabled break points using the enable command. The fol-
lowing command shows that breakpoint at line number 9 is currently disabled because it shows
an n under the Enb column.

(gdb) info break
Num Type           Disp Enb Address    What
1   breakpoint     keep y   0x08048496 in main at sum.c:6
    breakpoint already hit 1 time
2   breakpoint     keep y   0x080484ba in main at sum.c:8
3   breakpoint     keep n   0x080484ca in main at sum.c:9
6   breakpoint     keep y   0x08048496 in main at sum.c:5

The following two commands enable the break point number 3 and display the status of all
break points.



160 Chapter 5  •  Working with GNU Debugger
(gdb) enab 3
(gdb) info break
Num Type           Disp Enb Address    What
1   breakpoint     keep y   0x08048496 in main at sum.c:6
breakpoint already hit 1 time
2   breakpoint     keep y   0x080484ba in main at sum.c:8
3   breakpoint     keep y   0x080484ca in main at sum.c:9
6   breakpoint     keep y   0x08048496 in main at sum.c:5
(gdb)

Enabling and disabling break points is useful when you want to cycle quickly through
loops for a certain number of times and then start tracing once again.

5.6.4 Deleting Break Points

You can also delete break points using the delete command. The following session
shows that you have four break points present. You delete two of these and then you can again
display break points to make sure that these break points are actually deleted.

(gdb) info break
Num Type           Disp Enb Address    What
1   breakpoint     keep y   0x08048496 in main at sum.c:6
    breakpoint already hit 1 time
2   breakpoint     keep y   0x080484ba in main at sum.c:8
3   breakpoint     keep y   0x080484ca in main at sum.c:9
6   breakpoint     keep y   0x08048496 in main at sum.c:5
(gdb) del 1
(gdb) del 2
(gdb) info break
Num Type           Disp Enb Address    What
3   breakpoint     keep y   0x080484ca in main at sum.c:9
6   breakpoint     keep y   0x08048496 in main at sum.c:5
(gdb)

Note that there is a difference between deleting and disabling a break point. The disabled
break point stays there although it has no impact on execution of the program being debugged.
The deleted break point is gone forever and you have to create it again if needed.

5.7 Debugging Optimized Code

You can use multiple levels of optimization while building the output binaries. The generated exe-
cutable code may be different for each level of optimization. If you step through the optimized
code in gdb, the gdb may not step as you expected in some cases. Let us compile the sumopt.c
program and see how optimization does affect. Listing below is the program source code:

#include <stdio.h>
main ()
{



Debugging Optimized Code 161
  int num1, num2, total ;

  num1 = 4;
  num2 = 6;
  total = num1 + num2;

  printf("\nThe sum is : %d\n", total);
}

Now let us compile the code without optimization using the following command and then
step through it.

gcc -g sumopt.c -o sumopt

Following is the gdb session to step through the code. As you can see, it is quite straight-
forward. gdb executes all lines in order until it reaches end of the program.

[rr@conformix 5]$ gdb sumopt
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) break main
Breakpoint 1 at 0x8048466: file sumopt.c, line 6.
(gdb) run
Starting program: /home/rr/5/sumopt 

Breakpoint 1, main () at sumopt.c:6
6  num1 = 4;
(gdb) n
7  num2 = 6;
(gdb) n
8  total = num1 + num2;
(gdb) n
10  printf("\nThe sum is : %d\n", total);
(gdb) n

The sum is : 10
11}
(gdb) n

Program exited with code 021.
(gdb)



162 Chapter 5  •  Working with GNU Debugger
Now let us compile the program using the –O2 option for optimization. The command line
for this is shown below:

gcc –O2 -g sumopt.c -o sumopt

Now let us trace through the optimized program. The gdb session for this purpose is listed
below:

[rr@conformix 5]$ gdb sumopt
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) break main
Breakpoint 1 at 0x8048466: file sumopt.c, line 10.
(gdb) run
Starting program: /home/rr/5/sumopt 

Breakpoint 1, main () at sumopt.c:10
10  printf("\nThe sum is : %d\n", total);
(gdb) n

The sum is : 10
11 }
(gdb) n

Program exited with code 021.
(gdb)

This is quite different from what you may have expected. The first difference is in setting
up the break point. We used the same command to set up the break point but now gdb set it up at
line number 10 instead of line number 6 as it had done before. When we started execution of the
program, it jumped to line number 10 and did not go to any line before that. This is because
when we optimized code at the compile time, the compiler was smart enough to know that all
values are static so there is no need to assign two static numbers to variables at the run time and
then calculate their sum. All this can be done at the compile time, which results in shorter code
and better execution time.

The bottom line is that if you find that gdb is not executing some lines when you debug
a program, it may be due to the optimization level used when compiling a program. A fun
trick might be to look at the variable values during such a debug session as well, but it’s not
necessary!



Files and Shared Libraries 163
5.8 Files and Shared Libraries

You can find out information about the currently loaded file, its type, ELF segments, memory
addresses and other things. The following command displays such information about the sum
program.

(gdb) info files
Symbols from "/home/rr/5/sum".
Unix child process:
  Using the running image of child process 1860.
  While running this, GDB does not access memory from...
Local exec file:
  `/home/rr/5/sum', file type elf32-i386.
  Entry point: 0x8048390
  0x080480f4 - 0x08048107 is .interp
  0x08048108 - 0x08048128 is .note.ABI-tag
  0x08048128 - 0x08048160 is .hash
  0x08048160 - 0x080481f0 is .dynsym
  0x080481f0 - 0x0804828b is .dynstr
  0x0804828c - 0x0804829e is .gnu.version
  0x080482a0 - 0x080482d0 is .gnu.version_r
  0x080482d0 - 0x080482d8 is .rel.got
  0x080482d8 - 0x08048308 is .rel.plt
  0x08048308 - 0x08048320 is .init
  0x08048320 - 0x08048390 is .plt
  0x08048390 - 0x08048540 is .text
  0x08048540 - 0x0804855e is .fini
  0x08048560 - 0x080485aa is .rodata
  0x080495ac - 0x080495bc is .data
  0x080495bc - 0x080495c0 is .eh_frame
  0x080495c0 - 0x080495c8 is .ctors
  0x080495c8 - 0x080495d0 is .dtors
  0x080495d0 - 0x080495f8 is .got
  0x080495f8 - 0x08049698 is .dynamic
  0x08049698 - 0x080496b0 is .bss

You can also display information about shared libraries used by the sum program using
the following command:

(gdb) info share
From        To          Syms Read   Shared Object Library
0x40047fa0  0x40140a9b  Yes         /lib/i686/libc.so.6
0x40001db0  0x4001321c  Yes         /lib/ld-linux.so.2
(gdb)

The command shows that the program is using libc.so.6 and ld-linux.so.2 dur-
ing the debug session. The ld-linux.so is the dynamic loader, and will always be present in
dynamically linked files.



164 Chapter 5  •  Working with GNU Debugger
5.9 Using gdb With GNU Emacs

If you use GNU Emacs to edit your programs, you can also create a debug window within
Emacs using the M-x gdb command. Let us suppose that you are editing sumf.c program in
GNU Emacs as shown in Figure 5-1.

Now when you use M-x gdb command, you will see that the Emacs window is split and
the bottom part is used as the gdb window. The screen shot in Figure 5-2 shows this new Emacs
window. You can also see that new menus appear in the menu bar at the top of the screen. You
can use these menus for the usual debugging functions like creating break points, starting and
stopping the debug process and so on. The Gud menu is especially of interest for program
debugging.  

Figure 5-1 Editing sumf.c program in GNU Emacs.



Debugging Running Processes 165
5.10 Debugging Running Processes

In addition to stand-alone programs, running processes can also be debugged using GNU debug-
ger. The procedure is as follows:

1. Start the process that you want to debug.

2. Use the ps command to find the process ID of the running process.
3. Start gdb.
4. Load the file containing the symbol table into gdb.

5. Use the attach command to attach to the running process to gdb.
6. Continue debugging as usual.

In this section we shall attach to a process created by executing the sumf program that we
created earlier in this chapter. This program requires input of two numbers. After starting, the
process waits for the user to input these two numbers. You can open a new terminal window at

Figure 5-2 The gdb split window inside GNU Emacs.



166 Chapter 5  •  Working with GNU Debugger
this point and start gdb in the new window to attach the process. The following command starts
the process which is waiting for the user to enter the first number.

[rr@conformix 5]$ ./sumf
Enter first number :

 Open a new terminal window and find out the process ID of the sumf process. This can
be easily done using the ps command as follows:

[rr@conformix 5]$ ps –a|grep sumf
4272 pts/4    00:00:00 sumf
[rr@conformix 5]$

The process ID for the running process is 4272. After getting this information, you can
start gdb and load the sumf file that contains the symbol table. This is done using the file
command. The following sequence of commands shows this process:

[rr@conformix 5]$ gdb
GNU gdb 5.0rh-5 Red Hat Linux 7.1
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i386-redhat-linux".
(gdb) file sumf
Reading symbols from sumf...done.
(gdb)

Now you can attach to the program with ID 4272. Note that the program is waiting for
user input and there are many functions calls from loaded shared libraries. To come back to this
point in the main source file, you have to make a number of finish commands. 

 (gdb) attach 4272
Attaching to program: /home/rr/5/sumf, process 4272
Reading symbols from /lib/i686/libc.so.6...done.
Loaded symbols for /lib/i686/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
0x40105f44 in __libc_read () from /lib/i686/libc.so.6
(gdb) n
Single stepping until exit from function __libc_read, 
which has no line number information.
_IO_file_read (fp=0x401548e0, buf=0x40019000, size=1024) at 
fileops.c:764
764  fileops.c: No such file or directory.
  in fileops.c



Debugging Running Processes 167
(gdb) finish
Run till exit from #0  _IO_file_read (fp=0x401548e0, 
buf=0x40019000, size=1024) at fileops.c:764
0x400a68dd in _IO_new_file_underflow (fp=0x401548e0) at 
fileops.c:467
467  in fileops.c
Value returned is $1 = 2
(gdb) finish
Run till exit from #0  0x400a68dd in _IO_new_file_underflow 
(fp=0x401548e0) at fileops.c:467
_IO_default_uflow (fp=0x401548e0) at genops.c:389
389  genops.c: No such file or directory.
  in genops.c
Value returned is $2 = 52
(gdb) finish
Run till exit from #0  _IO_default_uflow (fp=0x401548e0) at 
genops.c:389
0x400a7f52 in __uflow (fp=0x401548e0) at genops.c:345
345  in genops.c
Value returned is $3 = 52
(gdb) finish
Run till exit from #0  0x400a7f52 in __uflow (fp=0x401548e0) 
at genops.c:345
0x4008bee5 in _IO_vfscanf (s=0x401548e0, format=0x80485d6 
"%d", argptr=0xbffff9f4, errp=0x0)
    at vfscanf.c:610
610  vfscanf.c: No such file or directory.
  in vfscanf.c
Value returned is $4 = 52
(gdb) finish
Run till exit from #0  0x4008bee5 in _IO_vfscanf 
(s=0x401548e0, format=0x80485d6 "%d", 
    argptr=0xbffff9f4, errp=0x0) at vfscanf.c:610
scanf (format=0x80485d6 "%d") at scanf.c:40
40  scanf.c: No such file or directory.
  in scanf.c
Value returned is $5 = 1
(gdb) finish
Run till exit from #0  scanf (format=0x80485d6 "%d") at 
scanf.c:40
0x080484b7 in main () at sumf.c:10
10    scanf("%d", &num1);
Value returned is $6 = 1
(gdb) n
11    printf("Enter second number : ");
(gdb) n
12    scanf("%d", &num2);
(gdb)



168 Chapter 5  •  Working with GNU Debugger
With every finish command, you can see the function that you were into and the return
value of that function. When you are back in the main function, you can use the next com-
mand to start tracing the execution line by line. Note that when you trace through, the output of
the process will appear in the window where you started the program. You will also enter the
input values in the same window. All those functions we had to finish were just part of the stan-
dard C libraries, and you could actually step into them anytime from this program as well, but
you normally wouldn't.

5.11 Installing GDB

GNU debugger is included in all Linux distributions in the development package. In certain
cases, you may want to get a new copy in the source code form and build and install it manually.
The compilation and building process is similar to other GNU development tools. By this time
you have already built and installed the GNU compiler and the C library. With that experience,
you should not find the compilation and installation of GNU debugger  difficult.

5.11.1 Downloading and Building

You can download the latest version from ftp://ftp.gnu.org/gnu/gdb directory. The current
version at the time of writing this book is 5.1.1. The source code is available in the compressed
tar format. The file name is gdb-5.1.1.tar.gz. You have to uncompress it using the fol-
lowing command.

tar zxvf gdb-5.1.1.tar.gz

I have untarred this file in /opt directory. The tar program will create /opt/gdb-
5.1.1 directory and uncompress all source code tree under this directory. Move into this direc-
tory using the cd command. Run the configure script and the make command to build and
install the debugger. This is a similar process as with all other GNU tools. The following com-
mands will build gdb.

cd /opt/gdb-5.1.1
./configure –-prefix=/opt/gcc-3.0.4
make

Note that –-prefix shows the directory where the gdb binary and other files will be
installed. Usually this is the same directory where your other development tools are installed.

5.11.2 Final Installation

The following command places the gdb binary and other files in the proper location. After
running this command, you can start using the new debugger.

make install



Other Open Source Debuggers 169
5.12 Other Open Source Debuggers

In addition to gdb, there are many other debuggers available to the open source community.
Many of these debuggers are built on top of the GNU debugger or they use gdb concepts. Some
of these debuggers are introduced in this section. The most popular of these is the ddd debugger.
xxgdb is a GUI interface to gdb and many people also use it. The kdbg comes with KDE on
Linux. All of these debuggers use the same concepts as used by the gdb debugger.

5.12.1 The kdbg Debugger

KDE debugger comes with KDE desktop development utilities. It is a GUI based upon
GNU debugger. You can start it using the kdbg command or from a KDE menu. Using icons in
the tool bar or menus, you can open files to be debugged. Once a file is loaded in the debugger
window, you can click on a line to set or remove break points. To find out the purpose of an icon,
you can move your cursor over the icon on the toolbar to display a short description.

The kdbg is a simple debugger but keep in mind that you may not find it as powerful as a
native GNU debugger is. The window that appears when you start the debugger is shown in Figure
5-3. In this window the pointer is on the first printf statement where we have a break point set.

You can add a variable to the watch list using the watch window. This window can be
opened by selecting the  “Watched Expressions” option from the View menu. The window is
shown in Figure 5-4 where two variables num1 and num2 are added to the watch list. You can
click on a variable and then press the “Del” button to remove a variable from the watch list.

The kdbg also has an output window that is used to display any output from the program.
This output window is actually an input window as well. You can enter input for the program in
this window. The output window is started when you start the kdbg debugger. The output win-
dow is shown Figure 5-5.        



170 Chapter 5  •  Working with GNU Debugger
Figure 5-3 The kdbg window.



Other Open Source Debuggers 171
Figure 5-4 Watch window of kdbg debugger.

Figure 5-5 Output window for kdbg.



172 Chapter 5  •  Working with GNU Debugger
5.12.2 The ddd Debugger

The Data Display Debugger or ddd is a popular GUI front end to the GNU debugger. It
has many additional features that are not present in native gdb. The main window of ddd
debugger is shown in Figure 5-6. A complete discussion of this debugger is beyond the scope of
this book.

Figure 5-6 Main window of ddd debugger.



Other Open Source Debuggers 173
5.12.3 The xxgdb Debugger

The xxgdb debugger is a GUI interface to the GNU debugger. You can use the command
line window as well as GUI buttons with this debugger. The main screen is shown in Figure 5-7.
The bottom part of the screen can be used to enter gdb commands while the top part can be used
to scroll through source code and set or remove break points.

Figure 5-7 The xxgdb debugger main window.



174 Chapter 5  •  Working with GNU Debugger
For example, you can bring the cursor to a particular line and then press the break button
to set up a break point at that line. Similarly you can use other buttons in the middle part of the
window to carry out other tasks related to debugging a program.

5.13 References and Resources

1. GNU web site at http://www.gnu.org/
2. GNU debugger download web site ftp://ftp.gnu.org/gnu/gdb
3. DDD home page at http://www.gnu.org/software/ddd/
4. The gdb manual at http://www.gnu.org/manual/gdb/html_mono/gdb.html. You can find

a detailed list of all commands and their explanation on this web site.



C H A P T E R 6
Introduction to CVS
he Concurrent Versions System, or CVS, is a source code control
application that permits developers to work in parallel on software

development projects without the fear of overwriting someone else’s
work. In addition, it provides a complete project history that includes the
ability to review previous versions of the code, and to compare old code
with new code.

CVS can be used for any development project, including assembly and
machine language to C and C++ and even the code and images necessary
to maintain a web site.

The source code is set up in a software repository by the administrator.
Each repository is identified by a unique location. A repository may be
on a local machine or maintained on the network and accessed remotely.
Many Open Source developers utilize anonymous CVS access in order
to distribute development snapshots of the source code instead of (or in
addition to) tarballs, RPM and other methods of distribution. Each
repository many contain multiple projects and many versions of each
project. The current version of a project may be checked out, as may
older versions. Versions may also be compared to one another to deter-
mine specific changes and help to identify bugs that may have crept into
a piece of software.

T

175



176 Chapter 6  •  Introduction to CVS
6.1 CVS Policies

In addition to the technical aspects of setting up CVS and granting users access to the system,
there are certain operational procedures that need to be set forth prior to opening up a CVS
repository for access.

One of the more important aspects deals with users checking in or committing a change
into the repository.

Every time a source file is checked into the system, the version number of that file is incre-
mented. This version is separate from the version number of the software project. The differ-
ences will be described later.

Each team or project will have to develop guidelines as to when a source file should be
checked in, how long one may be checked out prior to committing it, and similar items. Check-
ing a file out for a long period of time, making modifications and then checking it back in may
result in conflicts that will have to be addressed. CVS will let you check the file in if your
changes conflict with someone else's work, but someone will have to be responsible for ensuring
that these conflicts are resolved.

Another policy might state that a file may not be checked back into the repository until it
compiles cleanly with the rest of the project, until it has been reviewed, or until other bench-
marks are met. These policies will vary from project to project, and while CVS can maintain the
source code repository, it has no method of enforcing these policies. It is the role of the project
owner and manager(s) to ensure that the policies are implemented and followed by the team
members.

6.2 Project Management and Communication

While CVS has many tools to help you manage a software project, it has no inherent ability to
manage the project on its own. There are e-mail notifications available that let individuals keep
an eye on particular files for changes. There are reports available that can determine who
changed which file when, as well as complete logs that describe what those changes did (or at
least, were supposed to have done).

As mentioned previously, even using a version control system such as CVS will not pre-
vent conflicts of code from arising. Communication between developers is absolutely necessary
in order to ensure that projects proceed smoothly and on time.

6.3 Installing and Managing CVS

In order to install CVS, the first step is to obtain either the CVS source code or, if you are using
RedHat, the RPM.

The latest source code is available at http://www.cvshome.org. As of this writing, the cur-
rent CVS version is 1.11.1p1. RPM may be downloaded via RPMFind at http://rpmfind.net/
linux/rpm2html/search.php?query=cvs. Follow the instructions for your preferred installation
method.



Installing and Managing CVS 177
6.3.1 Configuring CVS

Once CVS is installed on the server, the next step is to configure the machine properly to
use CVS. The first step is to create a user and group to be the owners of the repositories. For pur-
poses of example, assume that the user and the group are both named  “cvs”. This example
shows how to set up CVS for local and remote  “pserver” access. This method of setting up CVS
is not the most secure method and does not provide a secure method for accessing the CVS
repository remotely; but it is necessary if a project intends to provide remote, anonymous access
to the CVS repository. For details on setting up a secure method of accessing the repository, see
Section 6.7.1.

To accomplish this, as root, issue the useradd command listed below. Under RedHat
Linux, this will create the cvs user and the cvs group. All of the following commands must be
issued as the root user.

# useradd -r -c "CVS user" cvs

As initialized, this account will have no password and will not be able to be logged into.
You can either leave it this way and, in the event that maintenance is necessary, log in as root and
resolve issues, or assign a password and use that account. Leaving the account with no password
is probably the most secure, but in the event that a password is necessary, simply assign one.

# passwd cvs
Changing password for user cvs
New UNIX password: <type cvs password>
Retype new UNIX password: <type cvs password>
passwd: all authentication tokens updated successfully

The next step is to create a CVS repository. For this example, assume that the CVS root is
/usr/local/cvsroot. Additional repositories may be set up at this time, simply issue the
CVS init command as many times as necessary; while changing the –d option to reflect the
additional repositories.

# cvs –d /usr/local/cvsroot init

This will create the file structure necessary for CVS to function and will initialize all nec-
essary files.

Once the user and repositories have been created, the ownership of the repositories needs
to be changed.

# chmod –R cvs:cvs /usr/local/cvsroot [additional repositories here]

The next step is to add users to the repositories. Each repository has a password file in the
$CVSROOT/CVSROOT directory. There are three fields in this file separated by colons. The first
field is the user name that may or may not be the same as the user’s login id. The second field is
the user’s encrypted password. This password is encrypted with the crypt() function. The
final field is the name of the user whose request will be performed. This is the owner of the CVS
repository and in our example, the owner is ‘cvs’.



178 Chapter 6  •  Introduction to CVS
The easiest way to generate encrypted passwords for the password file is by using a simple
perl script. An example is presented below. Simply type this script into a file using a text editor
and make the file executable. Then run the program with two arguments, the username and the
password. 

#!/usr/bin/perl
#
# Simple script to take a username and password and
# return a line suitable for pasting into the CVS
# password file.
# 

($u, $p)=@ARGV;
@d=(A..Z,a..z);
$s=$d[rand(52)].$d[rand(52)];
print $u.":".crypt($p, $s).":cvs\n";

If you have saved the file under the name ‘cvspassgen’ and set the permission properly,
simple run the application as follows:

# ./cvspassgen username password
username:mU7OltQzHySmY:cvs

As you can see, the information is returned  in the format that CVS requires. (Note: since a
random salt is used to generate the password, your output will vary from what is presented here.)

You can simply cut and paste the line into the password file. Another option is to redirect
the output of the script directly into the password file.

# ./cvspassgen username password >> $CVSROOT/CVSROOT/passwd

This assumes that the $CVSROOT environmental variable is set to the proper directory.
Next, the services file must be updated in order for the CVS server to respond to network

requests. The following line will append to the /etc/services file. Just be sure that there
are  two “greater than” symbols or you will erase whatever is already in your services file.

# echo “cvspserver 2401/tcp” >> /etc/services

Next, the inetd server needs to know which service to start when requests come in.
RedHat 7.x uses the xinetd server and so a file needs to be created in /etc/xinetd.d
named cvspserver.

Using your favorite text editor, edit /etc/xinetd.d/cvspserver to include the fol-
lowing information:

# Description: cvspserver: version control system
service cvspserver
{
        socket_type = stream
        wait        = no
        user        = cvs



Installing and Managing CVS 179
        passenv     =
        server      = /usr/bin/cvs
        server_args = --allow-root=/usr/local/cvsroot pserver
}

If you have installed multiple repositories, they need to be specified on the
server_args line. To do this, simply insert additional –allow-root= commands. Please
note that these additional arguments must appear on the same line.

In order for xinetd to acknowledge this change, it needs to reread its configuration files.
To do this, send the server a HUP signal with the killall command.

# killall –HUP xinetd

At this point, the repository should be up and running.

To quickly review the steps for installing CVS:

1. Install the CVS application (RPM or source code)
2. Create CVS user and group
3. Create CVS repositories
4. Change the owner and group of the repositories
5. Add users to $CVSROOT/CVSROOT/passwd
6. Change file permissions on the password file(s)
7. Edit /etc/services to ensure that cvspserver is present
8. Configure /etc/xinetd.d to acknowledge CVS requests
9. Restart xinetd

6.3.2 Importing a Project into the Repository

Once you have CVS installed and configured, the next step is to import a project into the
repository. This creates a directory for the project, copies the files into the repository and sets up
the information that will be used to track the project as it gets modified during the development
process.

Assuming that the directory /home/lcp/fuzion holds the source code and the files of
the project, to import the project you need to change to that directory and issue the CVS import
command. 

The options for the import command include the name of the project, the vendor tag, and
the release tag(s).  The vendor tag is not currently used by CVS, and can contain any information
that you care to put in. The release tag can be used to designate specific releases, but the source
code can also be checked out by the numeric release designation. Any information that you care
to put in these fields may be used, but they must be included with the import command.

# cd /home/lcp/fuzion
# cvs import Fuzion OSS_Software release_0_1



180 Chapter 6  •  Introduction to CVS
At this stage, you will be presented with your preferred editor (as defined by the environ-
ment variables $CVSEDITOR or $EDITOR). This will allow you to create a log entry that
describes the project, the initial state that it is in, and anything else of importance.

When you save that file, the information, along with the imported files, will be saved in the
repository.

To avoid having the editor displayed, you can include a log entry on the command line
with the –m option. Log entries with spaces or other special characters in them should be
enclosed in quotes.

# cvs import –m “Initialized the project” Fuzion \

OSS_Software release_0_1

To ensure that the files have been imported, issue the following command from the server
that holds the repository:

# ls –l $CVSROOT/Fuzion

You should see a copy of each file in your project with a ‘,v’ appended to the filename.

At this point, you should remove the original directory (after ensuring that you have a
backup) and check out the project with CVS so that any modification can be committed to the
repository.

# cd /home/lcp

# rm –rf fuzion

# cvs co Fuzion

# cd Fuzion

At this point you are ready to continue development on this project with CVS.

6.4 Using the CVS Client

There are several methods of accessing a CVS repository. The first is local access. This can be
accomplished by a user logging in at the terminal or logging in remotely over the network.
Either way, the developer must have a local account on the machine, a home directory, and the
repository to be accessed via the local session.

N O T E Special care must be taken if you are importing binary
data into a CVS repository. This can be the case if you are
importing files from a Windows platform, or if you use CVS to
manage the files necessary for maintaining a web site. Graphic
files and dlls will not import correctly unless special care is taken.

One way to do this is with the wrapper function of CVS. To

import a project and treat all files with a .jpg extension as binary
data, issue the following command:

cvs import -I ! -W "*.jpg -k 'b'" Pname V_tag R_tag



Using the CVS Client 181
Remote access can take several forms. This can be a remote connection from a user’s
machine to the cvspserver that runs on port 2401. Another method would be to have CVS
connect via a remote shell (rsh) when the repository needs to be accessed.  

CVS access takes place in clear text over the network with no inherent facility to prevent
passwords and data from being intercepted and used by unauthorized persons to access the
server. Several options later in the chapter describe a more secure method of access. One of
those methods is similar to the rsh method, but the CVS_RSH environment variable is set to the
ssh instead of the insecure rsh command.

6.4.1 Local Repositories

In order to work easily and efficiently with CVS, it is necessary to set up a series of envi-
ronmental variables that tell CVS where your CVS repository is, which editor you prefer, etc.
These variables can be set in either the system-wide or user specific files that are read when the
user logs in, or each user may set or change them manually.

The first variable is CVSROOT and it tells CVS which repository that you wish to work
with. Assuming that your CVS repository is located on the local machine, simply set the CVS-
ROOT variable to the location of the repository.

If your repository resides at “'/usr/local/cvsroot”' and you are using sh, bash,
ksh or a similar shell, simply insert the following line into your startup file (.profile,
.bash, etc.)

export CVSROOT=/usr/local/cvsroot

If you are using csh or tcsh, insert the following line into your .cshrc or .tcshrc
file:

setenv CVSROOT /usr/local/cvsroot

Should you wish to temporarily work with a different repository, the path to the repository
can be supplied on the command line with the -d option, as in this example:

$ cvs -d /usr/local/cvsother checkout BigProject

Once a project has been checked out of the repository, this information is also kept in the
CVS/Root file in the project directory, as shown below:

$ cat CVS/Root
/usr/local/cvsroot

The information in the CVS/Root file takes precedence over the CVSROOT variable in
order to ensure that the files are checked back into the same repository that they were checked
out from.

The CVS/Root file may be overridden by the -d command line option. This allows you
to specifically place the file into a repository other than the one from which it was checked out.

To sum up, which checking a file back into the repository, the CVS root is determined the
following order:



182 Chapter 6  •  Introduction to CVS
1. The -d command line option
2. The CVS/Root file
3. The CVSROOT environment variable

6.4.2 Remote Repositories

As mentioned earlier, there are several methods of accessing a remote CVS server. The
first one we will discuss is the built-in functionality. This method utilizes a network connection
from the developer’s desktop to port 2401/tcp on the server. It requires that all of the intermedi-
ate networking equipment (routers, firewalls, etc.) permit this traffic to pass.

Accessing a repository using the pserver method requires additional information when
compared to the local access in order to determine the name of the remote host, the user name to
be used, and the remote connection method.

For example, in order to log into a remote CVS repository, you would need to specify the
following:

# export CVSROOT=:pserver:user@hostname:/usr/local/cvsroot 

Where user is your CVS username on the machine hostname. This may be used in the
CVSROOT variable or on the command line with the -d option.

Prior to checking out, committing, importing or performing any other actions against a
CVS server, the user is required to authenticate himself first by issuing a login command.  With
the $CVSROOT variable set as indicated, type the following:

# cvs login
Logging in to :pserver:user@hostname:2401/usr/local/cvsroot
CVS password:

Type in your CVS password, which will then be stored in a file in your home directory
(.cvspass) for future use.

At that point you should be able to check out and commit software from the repository.

6.4.3 Checking out a Project

In order to begin work on a project contained in a CVS repository, you must first check the
package out. This brings your working directory up-to-date (creating it if necessary) and creates
a CVS directory in your working directory where CVS keeps information about the project
locally.

To check out a project that is in the repository, simply issue the cvs command with the
checkout option and the name of the project. For example, to check out the Fuzion project
that was imported into the repository earlier, type:

# cvs checkout Fuzion
cvs server: Updating fuzion
U Fuzion/1.0.fuzion.pl
U Fuzion/em.dat



Using the CVS Client 183
U Fuzion/fuzion.pl
U Fuzion/sk.dat
U Fuzion/tl.dat
U Fuzion/test.dat

CVS checks any existing copies of the project with the ones in the repository and updates
all of the files on the user’s machine.

The option co is an alias for the checkout option and they may be used interchangeably.

6.4.4 Finding the Status of a Project 

After working on a project for a time, it may be necessary for you to determine which files
in your working directory and which files in the repository have changed.

In order to accomplish this, you may use the status option of the CVS command. If this
command is issued from the working directory without a project name, that project will be
examined. If it is issued from another directory, you should include the project name to prevent
CVS from trying to examine all of the subdirectories of the current directory for project informa-
tion.

# cd fuzion
# cvs status

A partial example of the output is presented here:

============================================================
File: 1.0.fuzion.pl     Status: Up-to-date

   Working revision:    1.1.1.1
   Repository revision: 1.1.1.1 /usr/local/cvsroot/fuzion/
1.0.fuzion.pl,v
   Sticky Tag:          (none)
   Sticky Date:         (none)
   Sticky Options:      (none)
============================================================
File: fuzion.pl         Status: Locally Modified

   Working revision:    1.1.1.1
   Repository revision: 1.1.1.1 /usr/local/cvsroot/fuzion/
fuzion.pl,v
   Sticky Tag:          (none)
   Sticky Date:         (none)
   Sticky Options:      (none)
============================================================
File: test.dat          Status: Needs Patch

   Working revision:    1.2
   Repository revision: 1.3     /usr/local/cvsroot/fuzion/
test.dat,v



184 Chapter 6  •  Introduction to CVS
   Sticky Tag:          (none)
   Sticky Date:         (none)
   Sticky Options:      (none)

As you can see, there are two files here that are out of sync with the repository. The first
one is fuzion.pl that has been modified, but not checked back in; and the other is
test.dat, which someone else has modified and returned to the repository.

At this point, you can use diff to determine the extent of the changes and determine the
appropriate course of action.

If your local copy of a file has changed, and the version in the repository has changed from
the last time that you checked it out, you will  receive a message indicating that the files needed
to be merged. 

File: test.dat          Status: Needs Merge

   Working revision:    1.2
   Repository revision: 1.3     /usr/local/cvsroot/fuzion/
test.dat,v
   Sticky Tag:          (none)
   Sticky Date:         (none)
   Sticky Options:      (none)

Again, you will want to determine the extent of the changes to the files and merge the two
so that no changes will be lost when the file is checked back into the repository. Should you
attempt to commit a change on a file when a newer version of the file exists on the server, CVS
will complain and refuse to update the file.

cvs server: Up-to-date check failed for `test.dat'
cvs [server aborted]: correct above errors first!
cvs commit: saving log message in /tmp/cvsa15396

In the event of conflicts, you can use the diff option to examine the differences in the
file and the update option to merge them. Both of these options are covered below.

6.4.5 Finding Differences

CVS can be used to determine the difference between a file in the repository and a file in
the working directory. This is accomplished by using the diff option.

# cvs diff fuzion.pl
Index: fuzion.pl
============================================================
RCS file: /usr/local/cvsroot/fuzion/fuzion.pl,v
retrieving revision 1.1.1.1
diff -r1.1.1.1 fuzion.pl
134c134
< print "=" x 40 ;
---
> print "=" x 80 ;



Using the CVS Client 185
If you are familiar with the UNIX diff command, you will recognize the output of this
command. See Section 7.3 for more information on the output of the diff command.

As you can see, CVS checked the repository for the latest copy of the file and compared it
with the one in the working directory. This output indicates that one line has been changed at
line 134 (a formatting change to the print statement).

6.4.6 Resolving Conflicts

The update option will merge two conflicting files into one file and insert special mark-
ers into the file that help you determine where the differences are and resolve them.

# cvs update test.dat
RCS file: /usr/local/cvsroot/fuzion/test.dat,v
retrieving revision 1.4
retrieving revision 1.5
Merging differences between 1.4 and 1.5 into test.dat
rcsmerge: warning: conflicts during merge
cvs server: conflicts found in test.dat
C test.dat

The resulting test.dat file is shown below, clipped for brevity;

# cat test.dat
aerosol
aerosolize
aerosols
aerospace
aesthetic
aesthetically
aesthetics
<<<<<<< test.dat
zebras
zenith
=======
zebras
zenith
zoological
zoologically
zoom
zooms
zoos
>>>>>>> 1.5

The <<<<<<< and >>>>>>> markers indicate which version of the file has had which
edits made to it. The text between “<<<<<<< test.dat” and  “=======” indicate text that
was added from the time that the file was checked out until the time when the merge was done.

The text between the  “=======” marker and the  “>>>>>>> 1.5” exists in version 1.5
of the file (in the repository) but not in the local working copy.



186 Chapter 6  •  Introduction to CVS
The final merged and edited file is shown below and is ready to be checked back into the
repository.

# cat test.dat
aerosol
aerosolize
aerosols
aerospace
aesthetic
aesthetically
aesthetics
zebras
zenith
zoological
zoologically
zoom
zooms
zoos

6.4.7 Checking the Project Back In

Once you have made changes to a file, it is ready to be checked back into the repository.
This is done with the commit option. The checkin and ci options are similar to the commit
option, but instead of simply synchronizing the working file with the one in the repository,
commit also releases the file and sets certain flags that can be used if the watch functions of
CVS are being used.

# cvs commit -m "Added information to test.dat" test.dat

If there are any further conflicts, CVS will notify you that the files need to be changed.

6.4.8 Adding Files to a Project

Files may be added to a project after it has been imported. This is done by specifying the
add option name of the file or files to be added to the project. 

For example:

# cvs add index.html
cvs server: scheduling file `index.html' for addition
cvs server: use 'cvs commit' to add this file permanently
# cvs commit -m "new file" index.html
RCS file: /usr/local/cvsroot/fuzion/index.html,v
done
Checking in index.html;
/usr/local/cvsroot/fuzion/index.html,v  <--  index.html
initial revision: 1.1
done



Using the CVS Client 187
If the file is a binary file you must specify the –kb option in order for it to be properly
imported into the project. 

# cvs add -kb banner.jpg

6.4.9 Removing Files from a Project

If you no longer wish a file to be a part of a project, you can use CVS’s remove option to
rid yourself of that file. Prior to removing the file, however, it must be deleted from the working
directory.

# cvs remove index.html
cvs server: file `index.html' still in working directory
cvs server: 1 file exists; remove it first
# rm index.html
# cvs remove index.html
cvs server: scheduling `index.html' for removal
cvs server: use 'cvs commit' to remove this file permanently
# cvs ci -m "Removed index.html" index.html
Removing index.html;
/usr/local/cvsroot/fuzion/index.html,v  <--  index.html
new revision: delete; previous revision: 1.3
done

If you wish to delete a file and remove it from the project in one step, you may add the –f
flag to the remove option. 

# cvs remove -f index.html
cvs server: scheduling `index.html' for removal
cvs server: use 'cvs commit' to remove this file permanently
# ls index.html
/bin/ls: index.html: No such file or directory
# cvs commit -m "Removed old files"
cvs commit: Examining .
Removing index.html;
/usr/local/cvsroot/fuzion/index.html,v  <--  index.html
new revision: delete; previous revision: 1.5
done

Prior to committing a remove to the repository, the file may be resurrected by issuing the
add command.

# rm index.html
# cvs remove index.html
cvs server: scheduling `index.html' for removal
cvs server: use 'cvs commit' to remove this file permanently
# cvs add index.html
U index.html
cvs server: index.html, version 1.7, resurrected



188 Chapter 6  •  Introduction to CVS
Additionally, if you have not yet issued the remove command, you can retrieve a copy of
the file from the repository by issuing an update command.

# rm index.html
# cvs update index.html
U index.html

6.4.10 Renaming Files within a Project

There is no direct method of renaming files within the CVS repository. In order to rename
a file, you must remove the old name and add in the new one. Here is an example of renaming a
file from oldfile to newfile.

# cvs status oldfile
============================================================
File: oldfile           Status: Up-to-date

   Working revision:    1.1
   Repository revision: 1.1     /usr/local/cvsroot/fuzion/
oldfile,v
   Sticky Tag:          (none)
   Sticky Date:         (none)
   Sticky Options:      (none)

# mv oldfile newfile
# cvs remove oldfile
cvs server: scheduling `oldfile' for removal
cvs server: use 'cvs commit' to remove this file permanently
# cvs add newfile
cvs server: scheduling file `newfile' for addition
cvs server: use 'cvs commit' to add this file permanently
# cvs commit -m "Ren oldfile newfile" oldfile newfile
Removing oldfile;
/usr/local/cvsroot/fuzion/oldfile,v  <--  oldfile
new revision: delete; previous revision: 1.1
done
RCS file: /usr/local/cvsroot/fuzion/newfile,v
done
Checking in newfile;
/usr/local/cvsroot/fuzion/newfile,v  <--  newfile
initial revision: 1.1
done

6.4.11 Removing your Working Copy

Once you have committed your changes to the repository, or if you wish to abandon your
changes, you can release the working copy prior to deleting it. If you have any files checked out



Using the CVS Client 189
that have not been updated with the repository, CVS will inform you and give you the option of
releasing the working directory. 

# cd /home/lcp

# cvs release fuzion

A banner.jpg

M fuzion.pl

You have [2] altered files in this repository.

Are you sure you want to release directory `fuzion': Y

# rm –r fuzion

6.4.12 Tags and Releases

One of the strengths of CVS is its ability to create a release of a particular project. A
release is a snapshot of a project at a specific point in time and is generally referred to by a
numeric designation. When we refer to CVS version 1.1.11p1, we are talking about a specific
release of the application that will always remain the same. If changes are made to that version
of the software, the version number will change by indicating either a patch level or an incre-
ment in the major or minor version number.

This designation can be accomplished with CVS by assigning a tag to a project. Tags
may be named in any fashion, symbolically with a numerical system as mentioned, or by code
names, etc. It is important, however, that once a methodology for naming releases is established
that it be abided by in order to prevent confusion in the future.

To apply a tag to a project, issue the following command from within the project directory:

# cvs tag Release_1_1 .

cvs server: Tagging .

T 1.0.fuzion.pl

T banner.jpg

T em.dat

T fuzion.pl

T index.html

T newfile

T sk.dat

T tal.dat

T test.dat

This does not change any information in the files; it simply places symbolic tags in the
CVS repository so that when Release_1_1 of the Fuzion project is requested, these versions of
the files will be retrieved from the repository.

To check a specific release back out of the repository, issue the checkout command
with the –r option and the name of the release.

# cvs checkout –r Release_1_1 fuzion



190 Chapter 6  •  Introduction to CVS
6.5 Introduction to jCVS

For those more comfortable working with a GUI rather than a command line CVS client,
there is a Java client available that uses Java that enables you to access off of the functionality of
the CVS repository with a few clicks.

jCVS was written by Timothy Gerard Endres and has been released under the GNU Public
License (GPL) and may be found at http://www.jcvs.org.

6.5.1 System Requirements

As previously mentioned, jCVS will run on any platform supported by Java. The current
release runs on Java version 1.2 or higher. The installed application is a little over 6MB with
source code, so any computer capable of running Java and X should have not problems installing
and running jCVS.

6.5.2 Installation Instructions

In order to run jCVS, you must first install the Java Runtime Environment. The latest and
most complete runtime libraries available from Sun are http://java.sun.com/j2se/1.4/down-
load.html and can be found for Linux, Solaris and Windows.

Download the installer for your platform and follow the instructions provided. This gener-
ally consists of running an installer. In the example provided below, the jre was installed in /
usr/local/jre.

Next, locate the latest jCVS tarball application archive. These are available at http://
www.jcvs.org/download.html for download. For the purpose of these examples, assume that the
application will be installed in /usr/local/jcvs.

# cd /tmp
# wget http://www.jcvs.org/download/jcvs/jcvs-522.tgz
--14:14:46--  http://www.jcvs.org/download/jcvs/jcvs-522.tgz
           => `jcvs-522.tgz'
Connecting to www.jcvs.org:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 1,976,228 [application/x-tar]

[snip]
14:14:55 (226.81 KB/s) - `jcvs-522.tgz' saved [1976228/
1976228]
# cd /usr/local
# tar xzf /tmp/jcvs-522.tgz
# ln -s  jCVS-5.2.2 jcvs
# /usr/local/jre/bin/java -jar \
/usr/local/jcvs/jars/jcvsii.jar



Introduction to jCVS 191
6.5.3 Using jCVS

At this point you should be faced with the main jCVS screen. (See Figure 6-1.) The tabs
along the top permit you to perform various CVS commands against one or more repositories. If
you have problem accessing a repository, the Test tab will allow you to check basic connectiv-
ity and access rights.

Once you have checked projects out from a repository, you may transfer them to the Work-
Bench in order to have easy access to them. This is simply an area where all of your current
projects can reside.

6.5.3.1 Configuring the jCVS Client

To begin, you will want to set up a few configuration options before beginning work on a
project. Select File | Edit Preferences … from the main menu. Select Global |
Temp Directory in order to specify a place on the computer to store temporary files.

6.5.3.2 Checking Out a Project

To begin working with jCVS, click on the Checkout tab. The screen shown in Figure 6-
2 will appear and you will be able to checkout a project from your repository. 

Figure 6-1 The jCVS WorkBench.



192 Chapter 6  •  Introduction to CVS
As you can see, the fields presented map to the command line arguments that are required
in order to check out a project from a repository. In the example presented, I am checking out a
project entitled jCVSii from the dev server.

The Arguments field can be used to enter any command arguments or options that do not
have a specific entry on the form. The entry above would be equivalent to the following com-
mands:

# cd /home/lcp

# export CVSRROOT=:pserver:lcp@dev:/usr/local/cvsroot/

# cvs login

# cvs checkout jCVSii

When the checkout is complete, a project window will be presented displaying the file
structure of the project. See Figure 6-3.

The Project Window allows you full access to the entire range of CVS commands and
option. Files may be edited and committed back to the repository, the entire project may be
updated, you can view the difference between the project file and the same file in the repository,
view the project log, and even resurrect files as we did earlier with the remove and update com-
mands.

Figure 6-2 Checking out a Project from a CVS Repository.



Introduction to jCVS 193
6.5.3.3 Setting up the Server Definitions File
Since, in a development environment, you will be accessing one or more CVS repositories

on a regular basis, you can set them up so that some of the information is retained by the system
and saves you some effort if you have to switch between repositories.

To do this, create a file in your home directory entitled .jcvsdef with the following format:

Figure 6-3 The Project Window.



194 Chapter 6  •  Introduction to CVS
server.myserver=true
param.myserver.method=pserver
param.myserver.name=My CVS Server
param.myserver.module=fuzion
param.myserver.host=dev.mynetwork.net
param.myserver.user=lcp
param.myserver.repos=/usr/local/cvsroot
param.myserver.desc= \
My Server Name goes here.\
As well as a description of the \
available projects.

In this example, you would substitute the name of your CVS repository for myserver.
Use a short nickname, not a fully qualified domain name (FQDN). Don’t use periods in this
name. The entry for param.myserver.host should be the FQDN for the CVS repository,
or the IP Address.

If you are working on multiple projects, you can leave the param.myserver.module
blank and it will not be filled in automatically. This works for all of the fields.

6.5.3.4 Actions and Verbs
Prior to actually editing the files in the project, you must associate each file type with the

application that will be used to Open or Edit the file.
From the WorkBench screen, re-open the preferences. (File | Edit Preferences

…) Then select Actions | Verb Commands from the menu on the left. This will present
the screen shown in Figure 6-4.

Click on the New … button. This displays a dialog button asking for a key. The key is a
combination of the file extension and an action that may be used with that type of file. For exam-
ple, a C Language source code file is designated by the .c extension and may be edited or
opened. The key to edit any C source code file would be  “.c.edit”.

The key to open a .jpeg graphic file would be  “.jpeg.open”.
To create a key to edit a file with a .java extension, enter .java.edit into the field in

the dialog box. Click the OK button.
Default actions can be defined by adding a key with the definition of  ‘._DEF_.verb’.

For example, to create a default editing action for all files not specifically associated with
another action, use the key ‘._DEF_.edit’.

In the Command field, type the command line that you would use to perform the action
associated with the key that you have just entered. The name of the file to be edited is substituted
on the command line for the variable $FILE.

 If, for example, you wished to use gedit, a simple Gnome editor, enter

/usr/bin/gedit $FILE 

in the Command field.



Introduction to jCVS 195
6.5.3.5 Editing Projects
Once you have associated various file extensions with specific actions and helper applica-

tions, you are ready to begin working with your project.
By highlighting a file and right-clicking on it, you will display a menu of options for that

file. If you select Edit from the menu that is displayed, jCVS will launch the application that
you have defined for that action as shown in Figure 6-5.

The icons of files that have been modified after being checked out of the repository are
shown in red for easy identification.

Running a diff of a file, or updating it, is as simple as selecting the appropriate option
from the menu.

Figure 6-4 Adding verbs to jCVS.



196 Chapter 6  •  Introduction to CVS
6.5.3.6 Working with the WorkBench

In order to save a project to the WorkBench, you must first select a folder to save it in. You
can organize your projects by adding additional folders to the WorkBench as needed. These can
be divided by Vendor, Client or any other method that you choose.

When you have selected a folder for the project, in the Project Window, select File |
Add to WorkBench… Then fill in the details of the project and press OK.

Opening a project on the WorkBench is accomplished by double-clicking on the name of
the project. This opens the local copy.

To remove a project from the WorkBench, you will want to release the project from the
Project screen (Project | Release) and then delete the project from the WorkBench.

6.6 Using Emacs with CVS

Until recently, (version 1.10) CVS has shipped with pcl-cvs, an interface that allowed Emacs
users to integrate CVS into the Emacs environment. The latest version of pcl-cvs (2.9) is

Figure 6-5 Editing source code.



Using Emacs with CVS 197
dated 4/15/2000 and is available at ftp://rum.cs.yale.edu/pub/monnier/pcl-cvs/pcl-cvs-
2.9.9.tar.gz You will also need to retrieve the elib library found at ftp://ftp.lysator.liu.se/pub/
emacs/elib-1.0.tar.gz.

6.6.1 Installing pcl-cvs

The elib library must be installed first. To do this, unpack the tarball:

# tar xvzf elib-1.0.tar.gz

Change directories into the newly created file and edit the Makefile to reflect the RedHat
environment. Changes need to be made to two lines in the Makefile under RedHat 7.2. Other
versions of Linux may or may not require any changes. The original lines and the correction are
given below:

Original:

prefix = /usr/local
infodir = $(prefix)/info

Edited:

prefix = /usr
infodir = $(prefix)/share/info

Once these changes are made, you may compile the elib library by issuing the following
commands as root:

# make
# make install

Once you have installed the elib library, you may install the pcl-cvs application the
exact same way, by making the above changes to the Makefile and then compiling with make.

6.6.2 Using pcl-cvs

Complete documentation for pcl-cvs is available with the installed appliations in
.info and .tex formats. It is also available on the World Wide Web at http://www.delo-
rie.com/gnu/docs/cvs/pcl-cvs_toc.html.

While you will still have to check out the project from the command line, pcl-cvs pro-
vides you with the ability to compare files, commit changes and perform many other CVS func-
tions from within Emacs.

If you are unfamiliar with Emacs, please refer to Chapter 2 for more detailed information
about working with this editor.

As an introduction to working the CVS through Emacs, change into a CVS project directory
and start Emacs. Make sure that you have the CVSROOT environment variable set up properly.

To begin with, let’s get the status on our current project. Type in M-x cvs-status and
press enter to accept the directory information that Emacs presents. After checking with CVS,
Emacs should display something similar to Figure 6-6.



198 Chapter 6  •  Introduction to CVS
Files listed in the status screen may be edited by moving the cursor to the appropriate line
and pressing the o key. This will load the file in question into another window for editing. Press-
ing f instead of o will result in the file being opened in the current window and replacing the
status information.

When the edited file is saved with changes, the status window will be updated to reflect
this and the file will be shown as being modified.

To check a file back into the repository from Emacs, you need to move the cursor to the
line with the file name on it, and press the c key. This will open a new window in which you can
type the log information that reflects the changes that you have made to the file. Press C-c twice
(C-c C-c) to save the log information and continue checking the file in. You will be asked to
confirm the action prior to the file being updated in the repository.

Figure 6-6 CVS Project status in Emacs with pcl-cvs.



Secure remote access with CVS 199
The m key will mark multiple files (indicated by an asterisk) so that they can be committed or
have other actions taken on them at the same time. The u key can remove the mark from a file.

There are more options available within pcl-cvs, but this should give you enough infor-
mation to begin using the application productively.

6.7 Secure remote access with CVS

The main goal of CVS is to provide a central repository for the storage of development projects
and to provide access to and management tools for those projects. CVS by its nature is not a
secure protocol.

Passwords, source code files and project data are transmitted across the network in clear
text and available to anyone along the data path that cares to eavesdrop and analyze the data
collected.

Various developers, aware of the inherent insecurity of the CVS protocol, have started
using Secure Shell (ssh) to provide an additional layer of security to the development process.
This chapter describes how to set up ssh on the clients and the server in order to ensure that
code, data and authentication information are handled in a secure manner.

6.7.1 Secure Shell Access

When describing remote access methods to use for CVS earlier, the method for setting up
rsh access to the server was intentionally omitted. The protocol used by rsh is inherently inse-
cure in that it transmits all information across the network in plain text and encourages trust rela-
tionships to be set up between computers that can lead to system compromises.

Secure Shell (ssh) is a replacement for rsh that uses client and server authentication as well
as strong cryptography. It is a little more difficult to set up ssh access to a CVS repository than to
set up rsh access, but the security advantages outweigh any additional time and effort in setting
up the server.

The first step is to ensure that the CVS server has ssh installed and properly configured.
Ssh may be obtained from several sources. OpenSSH (http://www.openssh.org) is an open
source implementation of the protocol that is widely used. This is also what ships with RedHat
Linux.

Using ssh with CVS uses RSA Authentication and you need to make sure that this is
turned on in the ssh configuration file. This configuration file is /etc/ssh/sshd_config.

Locate the RSA Authentication and configuration and make sure that it is turned on. It
should read:

RSAAuthentication yes

This should complete the ssh configuration on the server.

Now log into the client machines that are going to be accessing the CVS repository. Each
user that wishes to access the repository must:



200 Chapter 6  •  Introduction to CVS
1. Have a shell account on the CVS server.

2. Create a public/private key pair on the client.

3. Transfer the public portion of the key to the CVS server.

4. Set up the CVS client to use this new method.

Depending on how the CVS server is configured, it may be possible to set up ssh to bypass
the requirement of typing in your password every time that you interact with the CVS repository.

Assuming that the accounts have already been set up on the CVS server, the next step is to
generate the public/private key pair. This is accomplished by using the ssh-keygen program. 

To generate the key pair, issue the following command (this may result in a DSA key with
openssh3.):

# ssh-keygen –N “”

Generating public/private rsa1 key pair.

Enter file in which to save the key (/root/.ssh/identity): 
<CR>

Your identification has been saved in /root/.ssh/identity.

Your public key has been saved in /root/.ssh/identity.pub.

The key fingerprint is:

32:66:ea:74:4a:7d:23:78:57:bc:90:12:a3:da:78:20 lcp@client

The –N “” option tells the program to uses a null passphrase to protect the keys.

As indicated by the program messages, this creates two files in the user’s $HOME/.ssh
directory. The first one, identity, is your private key. This should be kept secure and should
not be shared. The second, identity.pub, as you may have guessed, is the public key. The
contents of this file need to be distributed to every machine that you wish to log into and access
via ssh.

To accomplish this, you can use ssh itself to copy the file between machines as follows:

# cd ~/.ssh

# scp identity.pub user@cvsserver:.ssh/`hostname`.pub

Replace user@cvsserver with your username on the CVS server. For example if your
username were jon and the CVS server was named dev, you would replace this with
jon@dev. You could also use the FQDN or IP Address in place of cvsserver. Also note that
the punctuation marks surrounding the hostname are backticks.

N O T E The key to logging in without having to type in the
passphrase each time is to specify a blank password during the
key generation process. While this does permit you to log into the
server without supplying a passphrase, anyone who has access
to your account will be able to do the same. Make sure never to
leave your workstation unlocked and unattended.



References and Resources 201
Next, you need to log into the CVS server and append the newly created .pub files to a
file called authorized_keys. The authorized_keys holds the authentication keys for
each user/machine combination that is permitted to use RSA Authentication to log in.

# ssh –l username cvsserver
# cd .ssh
# cat client.pub >> authorized_keys

While username and cvsserver are the same as before, client.pub should be
replaced with the name of the machine that you generated the keys on.

At this point ssh should be set up and you should be able to move ssh into the CVS repos-
itory without having to enter a password or passphrase.

The next step is to set up CVS to use this new method of connecting to the repository. This
is accomplished by set two environment variables. The first you should already be familiar with;
that is CVSROOT.

When using ssh instead of accessing the server locally or via pserver, the command to
set up the CVSROOT variable should look something like this:

# export CVSROOT=:ext:user@hostname:/usr/local/cvsroot

The second environment variable that needs to be set up is CVS_RSH. This is used with
the :ext: method to specify which command should be used to log into the remote server. This
should be set to ssh. You may need to specify the full path to the ssh application if ssh is not in
your $PATH. 

# export CVS_RSH=ssh

At this point you should be able to use CVS via ssh.
You should be aware that each project, when it is checked out, keeps track of the method

that it used to check out that project. This is kept in the CVS directory of the project in a file
called Root. If you have any projects checked out when switching access methods, you will
want to check the projects back in and release them before switching; or manually edit the files
for each project to inform CVS of the change in access.

Supplying the –d option on the command line to change the access method would also
work. 

6.8 References and Resources

1. The CVS home page at http://www.cvshome.org
2. Complete CVS documentation at http://www.cvshome.org/docs/manual/
3. The jCVS home page at http://www.jcvs.org
4. The OpenSSH home at http://www.openssh.org





C H A P T E R 7
Miscellaneous Tools
n addition to the standard development tools used in software develop-
ment projects, many other utilities are also helpful. Most of the time

these utilities are not directly related to the software development process
but are used as helping aids. This chapter provides an introduction to
some of these utilities that are extremely helpful in the software develop-
ment process. Some of the more common uses of these utilities are pre-
sented and readers are encouraged to experiment with them. If properly
utilized, they may save time and increase productivity.

The indent utility is helpful in implementing a common programming
style scheme to all source code files in a project. The sed utility is useful
for searching and replacing text across multiple files. The diff command
is used to display difference between two or more files. The cscope and
cbrowser are used to locate symbols in a software source code tree.
The strace and ltrace utilities are useful to find out system and
library calls when a program is executed. GNU binary utilities are a set of
utilities that is often used for different needs. Information about GNU util-
ities is presented in this chapter as well.

I

203



204 Chapter 7  •  Miscellaneous Tools
7.1 Using indent Utility

One major objective of every software development project is that the code be well organized,
structured and easy to understand for other members of the team. Proper indentation plays an
important role in achieving these objectives. Most of the editors used in software development
can do automatic indentation if they are configured to do so. The Emacs editor is the best exam-
ple as it understands different programming languages and does indentation according to lan-
guage rules and style. However you can come across code written by others that is poorly
indented and you may like to re-indent it according to your own requirements or preferences. In
large software development projects, you may try to enforce a particular coding style, but be
assured that not everyone will follow it. The indent program is your tool to handle the situa-
tion and reformat all files in the project according to the style adopted for the project. You can do
it by creating a script that goes into each directory of the project and reformats all files. In this
section we shall explore some of its features and how to utilize it.

By default, the indent program uses the GNU style of coding and applies these rules to
input files. It creates a backup file with original contents of the file. The reformatted file is cre-
ated with the same name. The backup file ends with a tilde character ~. Note that the same
scheme of creating backup files is used by the Emacs editor.

Let us see how indent works. We will take a poorly indented file and apply the indent
program to it. Following is a listing of the poorly indented file hello.c.

     1  /**************************************
     2   * hello.c
     3   *
     4   * This file is used to demonstrate use 
     5   * of indent utility
     6     *************************************/
     7  #include <stdio.h>
     8
     9  main () {
    10      char string[25] ;
    11     printf ("Enter a string of characters : ") ;
    12       scanf ("%s", string);
    13     printf ("The entered string is : %s\n ", string);
    14  }

Line numbers are added to the listing using the “cat –n hello.c” command to
explain changes. They are not part of the hello.c file. To properly indent the file hello.c,
the following command is executed:

indent hello.c

The resulting hello.c file is shown below. Note how the indent program has modi-
fied the file. Lines 10 to 14 are indented to two characters (depending upon default settings). 



Using indent Utility 205
     1  /**************************************
     2   * hello.c
     3   *
     4   * This file is used to demonstrate use 
     5   * of indent utility
     6     *************************************/
     7  #include <stdio.h>
     8
     9  main ()
    10  {
    11    char string[25];
    12    printf ("Enter a string of characters : ");
    13    scanf ("%s", string);
    14    printf ("The entered string is : %s\n ", string);
    15  }

However line 6 is still not properly indented. By default the indent program does not
modify comment lines. 

To find out which version of the indent program you are using, use the following com-
mand.

[root@boota ftp-dir]# indent --version
GNU indent 2.2.6
[root@boota ftp-dir]#

7.1.1 Getting Started with Indent

The indent program may be used as a command or as a pipe. In the command mode, the
program has a general format as shown below:

indent [options] [input filename] [-o output filename]

The following two lines show the simplest use of the indent program. It takes
hello.c as input file and creates hello.c as output file and hello.c~ as backup file.

[root@boota indent]# indent hello.c
[root@boota indent]#

If you want to create an output file with a different name without modifying the original
file, you can use the –o option with indent. When multiple input files are specified,
indent reformats each file and creates a backup file for each input file. Wild card characters
can also be used with indent so that you can indent all C source code files with the
“indent *.c” command.

The output of another command can also be piped into the indent command. The fol-
lowing command does the same thing as indent hello.c but writes the output on STDOUT
instead of writing it to a file.

cat hello.c | indent



206 Chapter 7  •  Miscellaneous Tools
This is sometimes useful if you just want to test the behavior of indent without modify-
ing a file.

The most efficient use of indent is through a shell script that goes into each directory of
the source code tree and indents each and every file in the project. You may also create a rule in
the makefile of a project to indent all files in one or all directories. A typical makefile rule may
look like the following:

indent:
  indent *.c
  indent *.cpp
  indent *.h

In the case of a project with multiple subdirectories, you can have a more sophisticated
rule. Taking an example from Chapter 4, where we have four subdirectories, you can use the fol-
lowing rule to go into each directory and indent all C source code files.

SUBDIRS = $(COMDIR) $(FTPDIR) $(TFTPDIR) $(DNSDIR) 
indent:
  for i in $(SUBDIRS) ; do   \
         ( cd $$i ; indent *.c) ;  \
        done

Keep in mind that after indenting all of the files, you may have to build the whole project
because source code files have been modified. In big projects this process may take a while.

Indent uses a configuration file called .indent.pro, which should be present in the
current directory or in your home directory. You can use this file to set options that you always
use. If the file is present in the current directory, it is used instead of the file in the home direc-
tory of the user. By creating a different .indent.pro file in different directories of a project,
you can apply different indentation rules in different directories. This is especially useful when a
project uses multiple languages. For example, indentation rules may be different for C, C++ and
assembly language files.

7.1.2 Selecting Coding Styles

Different coding styles are in use by programmers. Some common styles are defined in
indent program and these may be invoked by a single option at the command line. The most
common style of coding in the open source is the GNU style. This style can be applied using –gnu
option at the command line. Options, which are used with the GNU style, are listed below:

-nbad 

-bap 

-nbc 

-bbo 

-bl 

-bli2 



Using indent Utility 207
-bls 

-ncdb 

-nce 

-cp1 

-cs 

-di2

-ndj 

-nfc1 

-nfca 

-hnl 

-i2 

-ip5 

-lp 

-pcs 

-nprs 

-psl 

-saf 

-sai

-saw 

-nsc 

-nsob

A list of all the options and their meanings are presented later in this chapter. You can
override a particular option in a style by explicitly typing it on the command line.

The other commonly used style is Kernighan and Ritchie style, also known as K&R style.
This style is applied using the –kr option at the command line and it sets the following options.

-nbad 

-bap 

-bbo 

-nbc 

-br 

-brs 

-c33 

-cd33 



208 Chapter 7  •  Miscellaneous Tools
-ncdb 

-ce 

-ci4 

-cli0

-cp33 

-cs 

-d0 

-di1 

-nfc1 

-nfca 

-hnl 

-i4 

-ip0 

-l75 

-lp 

-npcs

-nprs 

-npsl 

-saf 

-sai 

-saw 

-nsc 

-nsob 

-nss

Again, you can override some of these options by specifying them on the command line. 
The Berkley style is used by –orig option at the command line and it sets the following

options.

-nbad 

-nbap 

-bbo 

-bc 

-br 

-brs 



Using indent Utility 209
-c33 

-cd33 

-cdb 

-ce 

-ci4 

-cli0

-cp33 

-di16 

-fc1 

-fca 

-hnl 

-i4 

-ip4 

-l75 

-lp 

-npcs 

-nprs 

-psl

-saf 

-sai 

-saw 

-sc 

-nsob 

-nss 

-ts8

7.1.3 Blank Lines and Comments

Blank lines can be used in the source code files to add clarity. The indent program
allows you to add or remove blank lines from the source code files. Most commonly used
options to handle blank lines are as follows:

-bad This option adds a blank line after declarations.

-bap This option is used to add a blank line after a procedure body. Using this option 
will create a blank line after each function.



210 Chapter 7  •  Miscellaneous Tools
By adding n in the start of these options, their effect may be reversed. For example, the
-nbad option will not add any blank line after declaration.

7.1.4 Formatting Braces

People have different tastes about how braces should be formatted in C language. Using
indent you can specify different ways of formatting braces. Let us consider a poorly formatted
piece of C source code and see different ways of formatting it. The input segment of source code
is shown below:

if (counter > 0)

{

counter-- ;

printf ("Counter value is: %d \n");

}

else

{

printf("Counter reached zero. Resetting counter\n");

counter = 100;

}

The default indentation of this segment of code is shown below. This is the default GNU
indentation when you use no command line switches with indent.

if (counter > 0)

  {

    counter--;

    printf ("Counter value is: %d \n");

  }

else

  {

    printf ("Counter reached zero. Resetting counter\n");

    counter = 100;

  }

-bbb This option is used to add a blank line before a boxed comment. An example of a 
boxed comment is shown below.

/**************************************
 * hello.c
 *
 * This file is used to demonstrate use 
 * of indent utility
 *************************************/

-sob This option is used to remove unnecessary blank lines from the source code.



Using indent Utility 211
Among other things, note that indent has placed a space after the second printf func-
tion call. This is the default style of putting braces in C code.  Since the GNU formatting style is
used with GNU indent by default, and it uses the –bl option, the result is as shown above. To
put the starting brace on the same line, you can use the –br command line switch and the result
is as follows:

if (counter > 0) {
  counter--;
  printf ("Counter value is: %d \n");
}
else {
  printf ("Counter reached zero. Resetting counter\n");
  counter = 100;
}

Other forms of indent can be used with different statements. See the manual pages of
indent for a detailed list of all options.

7.1.5 Formatting Declarations

You can tell indent to handle the variable declarations in other ways by using different
options to separate the declaration lines from other code. The most common method is to
place a blank line after the declaration’s end. As an example, if you use the –bad option
(blank line after declarations), indent will place a blank line wherever it finds end of the
declaration part. In the previous example of hello.c program, the result of using this option
will be as follows:

     1  /**************************************
     2   * hello.c
     3   *
     4   * This file is used to demonstrate use 
     5   * of indent utility
     6     *************************************/
     7  #include <stdio.h>
     8
     9  main ()
    10  {
    11    char string[25];
    12
    13    printf ("Enter a string of characters : ");
    14    scanf ("%s", string);
    15    printf ("The entered string is : %s\n ", string);
    16  }

Note that line number 12 is inserted into the file. You can also use the –di option with
indent to align an identifier to a particular column. For example, using –di8 will align all
identifiers to column number 8. Consider the following two lines in a C source code file.



212 Chapter 7  •  Miscellaneous Tools
int i;
char c;
long boota ;

After using indent with –di8 option, the output will be as follows:

int     i;
char    c;
long    boota;

You can also force creation of a new line for each identifier, using the –bc option. Con-
sider the following code segment:

int i, j, k;
char c;
long boota ;

After using the “indent –di8 –bc” command on these three lines, the result will be
as follows:

int     i,
        j,
        k;
char    c;
long    boota;

In addition to these common methods, there are other ways to arrange identifiers in decla-
ration sections.

7.1.6 Breaking Long Lines

Long lines can be broken using indent at a defined length. The –l option controls this
behavior. Consider the following line of code:

printf ("This is example of a long line.");

This line is 43 characters long. If we set the line limit to 40 characters using –l40 com-
mand line option, the line will be broken as follows:

printf
  ("This is example of a long line.");

Lines with conditional operators may be broken more intelligently. Consider the following
if statement:

if(((counter == 100) && (color == RED)) || (string[0] == 'S'))

Using options “–l30 –bbo” (break before Boolean operator) will be as follows:

if (((counter == 100)
     && (color == RED))
    || (string[0] == 'S'))



Using indent Utility 213
Using the –nbbo option results in the following output.

if (((counter == 100) &&
     (color == RED)) ||
    (string[0] == 'S'))

The indent utility may also be used to handle new line characters in a special way using
the –hnl option. You are encouraged to experiment with this option.

7.1.7 Summary of Options

Options with the indent program can be used in two ways: the long way that starts with
two hyphen characters and the short way that starts with a single hyphen character. Options used
with the indent command are listed below. These are taken from the manual page of the
indent command. The long method also describes the meaning of an option.

 -bc            --blank-lines-after-commas
 -bad           --blank-lines-after-declarations
 -bap           --blank-lines-after-procedures
 -bbb           --blank-lines-before-block-comments
 -bl            --braces-after-if-line
 -bli           --brace-indent
 -bls           --braces-after-struct-decl-line
 -br            --braces-on-if-line
 -brs           --braces-on-struct-decl-line
 -nbbo          --break-after-boolean-operator
 -bbo           --break-before-boolean-operator
 -bfda          --break-function-decl-args
 -clin          --case-indentation
 -cbin          --case-brace-indentation
 -cdb           --comment-delimiters-on-blank-lines
 -cn            --comment-indentation
 -cin           --continuation-indentation
 -lp            --continue-at-parentheses
 -cdw           --cuddle-do-while
 -ce            --cuddle-else
 -cdn           --declaration-comment-column
 -din           --declaration-indentation
 -nbfda         --dont-break-function-decl-args
 -npsl          --dont-break-procedure-type
 -ncdw          --dont-cuddle-do-while
 -nce           --dont-cuddle-else
 -nfca          --dont-format-comments
 -nfc1          --dont-format-first-column-comments
 -nlp           --dont-line-up-parentheses
 -nss           --dont-space-special-semicolon
 -nsc           --dont-star-comments
 -cpn           --else-endif-column



214 Chapter 7  •  Miscellaneous Tools
 -fca           --format-all-comments
 -fc1           --format-first-column-comments

 -gnu           --gnu-style
 -hnl           --honour-newlines
 -nhnl          --ignore-newlines
 -npro          --ignore-profile

 -in            --indent-level
 -kr             --k-and-r-style
 -nsob           --leave-optional-blank-lines

 -lps            --leave-preprocessor-space
 -dn             --line-comments-indentation
 -ln             --line-length

 -nbc            --no-blank-lines-after-commas
 -nbad           --no-blank-lines-after-declarations
 -nbap           --no-blank-lines-after-procedures
 -nbbb           --no-blank-lines-before-block-comments

 -ncdb           --no-comment-delimiters-on-blank-lines
 -ncs            --no-space-after-casts
 -nip            --no-parameter-indentation

 -nsaf           --no-space-after-for
 -npcs           --no-space-after-function-call-names
 -nsai           --no-space-after-if

 -nprs           --no-space-after-parentheses
 -nsaw           --no-space-after-while
 -nut            --no-tabs
 -nv             --no-verbosity

 -orig           --original
 -ipn            --parameter-indentation
 -pin            --paren-indentation

 -pmt            --preserve-mtime
 -psl            --procnames-start-lines
 -cs             --space-after-cast
 -saf            --space-after-for

 -sai            --space-after-if
 -prs            --space-after-parentheses
 -pcs            --space-after-procedure-calls

 -saw            --space-after-while
 -ss             --space-special-semicolon
 -st             --standard-output

 -sc             --start-left-side-of-comments
 -sbin           --struct-brace-indentation
 -sob            --swallow-optional-blank-lines
 -tsn            --tab-size

 -ut             --use-tabs
 -v              --verbose



Using sed Utility 215
7.2 Using sed Utility

The sed utility is a stream editor that can be used for different file editing purposes when used
as a filter. The most common task for software development purposes is the use of sed to search
and replace text in source code files.  Let us take the example of the following C source code file
hello.c.

#include <stdio.h>

main ()
{
  char string[25];

  printf ("Enter a line of characters : ");
  scanf ("%s", string);
  printf ("The entered string is : %s\n ", string);
}

In order to replace every occurrence of word string with the word STRING, you can use
sed. The sed filter command and its result on this file are shown below.

[root@boota]# cat hello.c | sed s/string/STRING/
#include <stdio.h>

main ()
{
  char STRING[25];

  printf ("Enter a line of characters : ");
  scanf ("%s", STRING);
  printf ("The entered STRING is : %s\n ", string);
}
[root@boota indent]#

The sed command understands UNIX regular expressions. Regular expressions can be
used for a higher level of stream editing. You can also use sed in shell scripts as well as make-
files to carry out tasks in the entire source code directory tree. You can also use – f options fol-
lowed by a filename. The filename contains sed commands. Please refer to the sed man pages
for a complete set of options.

7.3 Using diff Utility

The diff utility is another useful tool that developers may need. It is used to find out the differ-
ences between two files. If you are using CVS, differences between different versions of a file in
the CVS repository can be found using the cvs (cvs diff) command as well. However, if
you want to find out the difference between two files that are not in the CVS repository, the
diff utility may be quite handy. One common use may be to find out the difference between
the working copy and the backup copy of a source code file. This will enable you to find out



216 Chapter 7  •  Miscellaneous Tools
what changes have been made in the working copy of the file. The output of the diff utility fol-
lows similar rules to those used in the CVS diff command. The following command shows
that files hello.c and hello.c~ are different at line number 11. The line starting with the
less-than symbol is taken from the first file (hello.c) and the line starting with the greater-
than symbol is taken from the file hello.c~.

[root@boota]# diff hello.c hello.c~

11c11

<   char string[30];
---

>   char string[25];

[root@boota]#

The first line of the output contains the character c (changed) that shows that line 11 in the
first file is changed to line 11 in the second file.

You can also use “unified diff” that tells you additional information about the file
and displays a few lines before and after the lines that are different. See the following output of
the unified diff command:

[root@boota]# diff hello.c hello.c~ -u

--- hello.cTue Jun 25 14:43:30 2002

+++ hello.c~Tue Jun 25 14:43:38 2002
@@ -8,7 +8,7 @@

 

 main ()
 {

-  char string[30];

+  char string[25];
 

   printf ("Enter a line of characters : ");
   scanf ("%s", string);

[root@boota]#

You can also use the –p option with the command to display the name of the function in
which the modified line(s) exist.

 If you add a line after line 15 in hello.c file and run the diff command once again,
the result will be as follows:

[root@boota]# diff hello.c hello.c~

11c11

<   char string[30];
---

>   char string[25];

16d15
<   printf ("End of program\n");

[root@boota]#



Using diff Utility 217
The first part of the output is familiar. The second part shows that line 16 in the first file,
which is printed next, is not present in the second file. Sometimes it is useful to display two files
being compared in side-by-side format. This can be done by using the –y option. The following
command shows how to use side-by-side output. The CVS rules of displaying output are used
here to show modified, added or removed lines.

[root@boota]# diff -y --width 60 hello.c hello.c~
/***************************    /***************************
 * hello.c                       * hello.c
 *                               *
 * This file is used to demo     * This file is used to demo
 * of indent utility             * of indent utility
 ***************************     ***************************
#include <stdio.h>              #include <stdio.h>

main ()                         main ()
{                               {
  char string[30];           |    char string[25];

  printf ("Enter a string of      printf ("Enter a string of
  scanf ("%s", string);           scanf ("%s", string);
  printf ("The entered strin      printf ("The entered strin
  printf ("End of program\n" <
}                               }
[root@boota]#

The --width option is used to specify width of columns in the output. As you can see
the | symbol is used to show a modified line and < or > symbols are used to show added or
deleted lines.

The diff utility can also be used on directories. When comparing directories, diff com-
pares files of the same name in the two directories. Directories can also be compared recursively.

Many options are used with the diff command, the most common are listed in Table 7-1.
All these options start with a hyphen character.

Table 7-1 Common options used with the diff command

Option Description

-b Ignore changes in white spaces

-B Ignore changes that are related to insertion of deletion of blank lines

-i Ignore changes in case

-u Unified output

-p Used with –u option. Shows the function name also.



218 Chapter 7  •  Miscellaneous Tools
7.3.1 Other Forms of diff Utility

There are two other important forms of the diff utility. These are diff3 and sdiff.
The diff3 utility is used to compare three files and its general format is shown below.

diff3 [options] mine older yours

Suppose you and your colleague start working on a file simultaneously. The original file is
the older file. Now you have your copy of the file (the mine file) and your colleague has his own
copy of the file (the yours file). If you want to compare both of these modified copies of the file
with the original older file, diff3 is a useful tool. See man pages of the diff3 command for
more details.

Another important utility is sdiff that finds difference between two files and merges
these two files into a third file. The general format of sdiff is as follows.

sdiff –o outfile [options] file1 file2

The sdiff is useful when you want to interactively merge two files. This is the case
when two people have made changes to a source file and at some point  you want to merge these
changes into a single file. The sdiff utility is interactive and it displays two files being com-
pared in side-by-side fashion. It stops on each difference with a % sign prompt. On this sign you
can press different characters to make a decision. Common responses on the % prompt are
shown in Table 7-2.

-c Context output

-n RCS style of output

-r Compare directories recursively

-y Use side-by-side format

Table 7-2 Commands used on % prompt of sdiff

Command Description

L Use the left side of the version

R Use the right side of the version

e l Edit and then use the left side

e r Edit and use the right side

Q Quit

Table 7-1 Common options used with the diff command (Continued)

Option Description



Using cscope and cbrowser 219
7.4 Using cscope and cbrowser

The cscope is a very useful utility to browse through the source code tree of a large project. It
was originally written by Santa Cruz Operations and made public later on. You can download it
from http://cscope.sourceforge.net. For Linux, it is available in RPM format as well.

It is a text-mode screen-oriented utility. When you start it using the cscope command,
the initial screen looks like the one shown in Figure 7-1.

When invoked, cscope first creates its symbol file cscope.out in the current direc-
tory that contains a reference to symbols in source code files. This reference is generated from
files with the extensions .c and .h. You can also use command line options to create this sym-
bol file from a particular type of source code files.

The bottom part of the screen shows options that can be used to look up a symbol in the
source code. The cursor is blinking at the first option and can be moved to other options using
arrow keys. For example, if you want to look up symbol “msg” in all source code files, just type
it in at the first line and press the Enter key. You will see a listing of files containing this symbol
as shown in Figure 7-2.   

Figure 7-1 The cscope initial screen.



220 Chapter 7  •  Miscellaneous Tools
As you can see, there are five files listed in the top part of the screen that contain this sym-
bol. This listing contains five columns as below:

1. Number of row, starting with zero.
2. File name that contains the symbol.
3. Function name where symbol is used. If the symbol is not inside a function, it is

marked as global.
4. Line number where symbol is present in that file.
5. The line showing the definition or use of the symbol.

You can move the cursor to a particular line and press the Enter key to edit that file. By
default the file is opened in vi editor. However, you can configure to use an editor of your choice.
To move back to the bottom part of the screen to search for another symbol, you can use the Tab
key. Use the Ctrl+D key combination to quit the program.

The utility is also very useful if you want to find non-utilized code in a software project.
For example, if a function is present in the source code but never used anywhere in the project, it
can be detected using cscope. It is also useful when you want to modify a particular symbol
throughout the source code tree. Common options used with cscope are listed in Table 7-3.

Figure 7-2 List of files with symbol msg.



Using cscope and cbrowser 221
Use the manual pages of cscope to view a complete list of options. Its web site is also a
good reference for updates and new features.

The cbrowser is a GUI interface to cscope and can be downloaded from its web site,
http://cbrowser.sourceforge.net.

At the time of writing this book, version 0.8 of this utility is available. When you invoke
cbrowser, it displays its initial window where you can select a cscope symbol reference file
and use the same type of queries as are available on cscope text window. The cbrowser win-
dow is shown in Figure 7-3.

To use a particular cscope symbol file, use the “Selected Database” drop-down menu  in
the GUI.  Click the “Symbols” button to pull down a menu of different options used with
cscope. The box next to this button is used to type in the symbol for which you want to search.
When you press the “Submit” button after typing in the symbol name, cbrowser displays a list
of files where this symbol is used or defined as shown in Figure 7-3. An additional benefit of
using cbrowser is that the bottom part of the window also shows the contents of the selected
file. You can use cursor keys to select a different file. You can also edit these files by using
options in the “File” menu. You can use syntax highlighting and other helping tools with
cbrowser using menus.

Table 7-3 Options used with cscope

Option Description

-b Build only the cross-reference file

-C Ignore case when searching

-f reffile Use reffile as reference file instead of default cscope.out reference file. This is 
useful when you create a global reference file for the entire source code tree.

-R Recursively search source code tree for input files



222 Chapter 7  •  Miscellaneous Tools
7.5 Generating C Function Prototypes from C Source Code Using cproto

The cproto utility is used to create function prototypes from C source code files. It can also con-
vert function definition style. The latest version can be downloaded from http://sourceforge.net/
projects/cproto/.

At the time of writing this book, version 4.6 is available in source code form. You can
download the file, untar it and compile it using the following sequence of commands.

tar zxvf cproto-4.6.tar.gz
cd cproto-4.6
./configure
make
make install

Figure 7-3 The cbrowser window.



Using ltrace and strace Utilities 223
It can read existing C files or take its input from standard input. This utility is not exten-
sively used in C software development but may be useful in some cases.

7.6 Using ltrace and strace Utilities

The ltrace program is a tracing utility for library function calls. It runs a program and logs all
library function calls by that program. You can also use this utility to log system calls made by a
program. The utility can also monitor child processes created by fork() or clone() system calls.
This utility is very useful to quickly trace the failure point of an executable program. The utility
may also print the time at which a particular function call or system call is executed with a reso-
lution of microseconds.

Consider the simple single-line program that prints  the string “Hello world” and then
exits. Using ltrace with the executable of this program produces the following result.

[root@boota ltrace]# ltrace -S -tt ./a.out
22:21:48.325970 SYS_uname(0xbffff3b4)             = 0
22:21:48.327037 SYS_brk(NULL)                     = 0x080495f8
22:21:48.327511 SYS_mmap(0xbffff104, 0xcccccccd, 0x400165f8, 
4096, 640) = 0x40017000
22:21:48.328212 SYS_open("/etc/ld.so.preload", 0, 010) = -2
22:21:48.329000 SYS_open("/etc/ld.so.cache", 0, 00) = 3
22:21:48.329657 SYS_197(3, 0xbfffea64, 0, 0xbfffea64, 0) = 0
22:21:48.331719 SYS_mmap(0xbfffea34, 0, 0x400165f8, 1, 3) = 
0x40018000
22:21:48.332460 SYS_close(3)                      = 0
22:21:48.332908 SYS_open("/lib/i686/libc.so.6", 0, 
027777765514) = 3
22:21:48.333620 SYS_read(3, "\177ELF\001\001\001", 1024) = 
1024
22:21:48.334256 SYS_197(3, 0xbfffeaa4, 3, 0xbfffeaa4, 0) = 0
22:21:48.334917 SYS_mmap(0xbfffe994, 0x0012f728, 0x400165f8, 
0xbfffe9c0, 5) = 0x4002c000
22:21:48.335584 SYS_mprotect(0x40152000, 38696, 0, 0x4002c000, 
0x00126000) = 0
22:21:48.336209 SYS_mmap(0xbfffe994, 24576, 0x400165f8, 
0xbfffe9cc, 3) = 0x40152000
22:21:48.336953 SYS_mmap(0xbfffe994, 0xbfffe9cc, 0x400165f8, 
0x40158000, 14120) = 0x40158000
22:21:48.337642 SYS_close(3)                      = 0
22:21:48.340431 SYS_munmap(0x40018000, 77871)     = 0
22:21:48.341060 SYS_getpid()                      = 32540
22:21:48.341562 __libc_start_main(0x08048460, 1, 0xbffff88c, 
0x080482e4, 0x080484c0 <unfinished ...>
22:21:48.342232 __register_frame_info(0x08049508, 0x080495e0, 
0xbffff828, 0x0804838e, 0x080482e4) = 0x401575e0
22:21:48.343064 printf("Hello world\n" <unfinished ...>



224 Chapter 7  •  Miscellaneous Tools
22:21:48.343813 SYS_197(1, 0xbfffeff0, 0x401569e4, 0x40154a60, 
0x40154a60) = 0
22:21:48.344450 SYS_192(0, 4096, 3, 34, -1)       = 0x40018000
22:21:48.345154 SYS_ioctl(1, 21505, 0xbfffef20, 0xbfffef80, 
1024) = 0
22:21:48.345890 SYS_write(1, "Hello world\n", 12Hello world
) = 12
22:21:48.346542 <... printf resumed> )            = 12
22:21:48.346878 __deregister_frame_info(0x08049508, 
0x4000d816, 0x400171ec, 0x40017310, 7) = 0x080495e0
22:21:48.347746 SYS_munmap(0x40018000, 4096)      = 0
22:21:48.348235 SYS_exit(12)                      = <void>
22:21:48.348706 +++ exited (status 12) +++
[root@boota ltrace]#

The first column in each row shows the current time followed by a number that shows
microseconds. The remaining part of the line shows the system call of the library call used. By
comparing the time in two consecutive lines, you can find out the time taken by a particular sys-
tem call. By looking at the output, you can also find out if a program fails during a particular
system call. This may be especially helpful when testing device drivers and reading or writing to
these drivers fails for some reason.

The most common options used with this utility are shown in Table 7-4.

The command can also read options either from its configuration file /etc/
ltrace.conf or from .ltrace.conf in the home directory of the user.

The strace utility is a more comprehensive tool and it can be used to separate different
system calls. For example, it can be used to display information about network related system

Table 7-4 Common options used with the ltrace utility

Option Description

-d Debug. Displays extra information about trace.

-f Trace child processes.

-S Display system calls and library calls.

-r Display time difference between successive lines.

-tt Display time stamp with each line with a resolution to microseconds.

-o filename Record output to a file.

-V Display version.

-h Display help.



Using ltrace and strace Utilities 225
calls or for IPC related systems calls only. It displays arguments for all functions calls and their
return values. A typical output from the execution of the same single line function  follows:

[root@boota ltrace]# strace  ./a.out

execve("./a.out", ["./a.out"], [/* 44 vars */]) = 0

uname({sys="Linux", node="boota.boota.net", ...}) = 0

brk(0)                                  = 0x80495f8

old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40017000
open("/etc/ld.so.preload", O_RDONLY)    = -1 ENOENT (No such 
file or directory)

open("/etc/ld.so.cache", O_RDONLY)      = 3

fstat64(3, {st_mode=S_IFREG|0644, st_size=77871, ...}) = 0

old_mmap(NULL, 77871, PROT_READ, MAP_PRIVATE, 3, 0) = 
0x40018000

close(3)                                = 0

open("/lib/i686/libc.so.6", O_RDONLY)   = 3

read(3, 
"\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\200\302"..., 
1024) = 1024

fstat64(3, {st_mode=S_IFREG|0755, st_size=5634864, ...}) = 0

old_mmap(NULL, 1242920, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 
0) = 0x4002c000
mprotect(0x40152000, 38696, PROT_NONE)  = 0

old_mmap(0x40152000, 24576, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_FIXED, 3, 0x125000) = 0x40152000

old_mmap(0x40158000, 14120, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x40158000

close(3)                                = 0

munmap(0x40018000, 77871)               = 0

getpid()                                = 32610

fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 3), 
...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40018000

ioctl(1, TCGETS, {B38400 opost isig icanon echo ...}) = 0

write(1, "Hello world\n", 12Hello world

)           = 12

munmap(0x40018000, 4096)                = 0
_exit(12)                               = ?

[root@boota ltrace]# 

As you can see, it gives you a complete picture of what happens from the execution of a
program to its end. See the manual pages of strace for a complete list of command line
options. The strace utility can also be used for performance-gathering activities, and can log
times spent in each function in a program. Refer to the man page for more information. 



226 Chapter 7  •  Miscellaneous Tools
7.7 Using GNU Binary Utilities

GNU binutils is a package of many utilities that are related to manipulating library files or get-
ting information about different types of binary files. These utilities range from finding strings in
a binary file, creating library files, displaying information about binary files, assembling and dis-
assembling files, and so on. This section contains an introduction to most commonly used binary
utilities.

7.7.1 Using the ar Utility

Files can be stored into a single file using the ar utility. The file into which multiple files
are stored is called an archive. The ar program retains file permissions, ownerships and other
properties of the original files. These files can be extracted from the archive later on, if required.
The program also creates an index within the archive file that is used to speed up locating a com-
ponent (or members) of the archive.

From the development point of view, the ar program is used to create libraries of func-
tions. These libraries are then used with other object files to link an executable file. The conven-
tional name of these library files is lib{name}.a where name is any string used as a library
name. For example, a library named common will be stored in a file called libcommon.a. 

The ar program performs one of the following tasks depending upon options used on the
command line.

• Delete a file from the archive (option d)
• Move files in the archive (option m)
• Print a list of files in the archive (option p)
• Append files to the archive (option q)
• Insert new files in the archive by replacing if a file already exists in the archive (option r)
• Displaying contents of an archive (option t)
• Extracting files from an archive (option x)

More options can be used in combination with these options to perform additional tasks.
In this section we shall use some very common options to show you how the ar program is used
in a software development environment.

We have used ar version 2.10.91 in this book. You can display a current version of the
program on your system using –V option as shown below. The ar utility is usually used because
of its compatibility with ld, the dynamic loader.

[root@boota ar]# ar -V
GNU ar 2.10.91
Copyright 1997, 98, 99, 2000, 2001 Free Software Foundation, 
Inc.
This program is free software; you may redistribute it under 
the terms of the GNU General Public License.  This program has 
absolutely no warranty.
[root@boota ar]#



Using GNU Binary Utilities 227
Let us create an archive of simple text files. The following command creates an archive
test.a from files /etc/hosts and /etc/resolv.conf.

ar -r test.a /etc/resolv.conf /etc/hosts

This command creates a file test.a that contains the contents of the other two files. To
display the contents of the file, you can use the –t option on the command line.

[root@boota ar]# ar -t test.a
resolv.conf
hosts
[root@boota ar]#

Using –x option, you can extract one or more files from the archive. The following com-
mand extracts the file hosts from the archive.

ar -x test.a hosts

Now let us create a real library file from two object files common.o and ftp.o. The fol-
lowing command creates a file libcommon.a from these two object files.

ar -r libcommon.a common.o ftp.o

Functions or variables in these two files can be linked to any other object file using the –l
command line option with gcc compiler. The following command line creates an executable file
project from this library and project.o file.

gcc project.o –lcommon –o project

Note that libcommon.a is not used with the –l option when linking functions in this
library to an executable file. Instead we used common as the library name by stripping the lead-
ing lib part and .a trailing part.

Files can be inserted into the archive in a particular order. Similarly you can also use a pol-
icy when replacing existing files using different command line options. Other options that can be
used with the ar command can be listed by executing the command without an argument as
shown below.

[root@boota /root]# ar
Usage: ar [-X32_64] [-]{dmpqrstx}[abcfilNoPsSuvV] [member-
name] [count] archive-file file...
       ar -M [<mri-script]
 commands:
  d            - delete file(s) from the archive
  m[ab]        - move file(s) in the archive
  p            - print file(s) found in the archive
  q[f]         - quick append file(s) to the archive
  r[ab][f][u]  - replace existing or insert new file(s) into 
the archive
  t            - display contents of archive
  x[o]         - extract file(s) from the archive



228 Chapter 7  •  Miscellaneous Tools
 command specific modifiers:
  [a]          - put file(s) after [member-name]
  [b]          - put file(s) before [member-name] 
                 (same as [i])
  [N]          - use instance [count] of name
  [f]          - truncate inserted file names
  [P]          - use full path names when matching
  [o]          - preserve original dates
  [u]          - only replace files that are newer than 
                 current archive contents
 generic modifiers:
  [c]          - do not warn if the library had to be 
                 created
  [s]          - create an archive index (cf. ranlib)
  [S]          - do not build a symbol table
  [v]          - be verbose
  [V]          - display the version number
  [-X32_64]    - (ignored)
ar: supported targets: elf32-i386 a.out-i386-linux efi-app-
ia32 elf32-little elf32-big srec symbolsrec tekhex binary ihex 
trad-core
[root@boota /root]# 

7.7.2 Using the ranlib Utility

The ranlib command is used to create index entries inside an archive file. This can also
be done using –s command with the ar command while creating or updating an archive library
file. The following command creates index inside libcommon.a file. Note that these index
entries are stored inside the archive file and no other file is created.

ranlib libcommon.a

Most of the time you don’t need to run ranlib, as the latest version of the ar command
creates an index by itself. Index entries can be displayed using the nm command.

7.7.3 Using the nm Utility

The nm utility is used to list symbols used in an object file. If no object file is provided on
the command line, the utility assumes the a.out file in the current directory as the default
object file and lists its symbols. A common use of the utility is listing functions defined in a
library. The following command displays object file names and functions defined in the library
file created with ar command in the previous section.

[root@boota]# nm -s libcommon.a

Archive index:
msg in common.o
main in ftp.o



Using GNU Binary Utilities 229
common.o:
00000000 T msg
         U printf

ftp.o:
00000000 T main
         U msg
         U printf
[root@boota make]#

For each symbol, nm displays three properties of the symbol.

1. Value
2. Type
3. Name

The value of the symbol is displayed in hexadecimal by default. Type is a character, either
uppercase or lowercase. The uppercase character shows that the symbol is global and the lower-
case character shows that the symbol is local. The following line shows that the symbol value is
00000000, its type is T which shows that the symbol is in code section and its name is msg.

00000000 T msg

Type U in the above output of nm command shows that the symbol is undefined and no
value is displayed. Note that function msg is defined in common.o but undefined in the ftp.o
member of the archive. This is because of the fact that the function was defined in common.c
file and it is used in ftp.c file.

Usually, the list of symbols is very long in executable files. Consider the following simple
file that displays the string “Hello world”.

#include <stdio.h>
main()
{
  printf ("Hello world\n");
}

Let us compile this file to create an executable a.out file. A list of symbols in the
a.out executable file is shown below:

[root@boota]# nm -s a.out      
08049540 ? _DYNAMIC
0804951c ? _GLOBAL_OFFSET_TABLE_
080484e4 R _IO_stdin_used
08049510 ? __CTOR_END__
0804950c ? __CTOR_LIST__
08049518 ? __DTOR_END__
08049514 ? __DTOR_LIST__



230 Chapter 7  •  Miscellaneous Tools
08049508 ? __EH_FRAME_BEGIN__
08049508 ? __FRAME_END__
080495e0 A __bss_start
         w __cxa_finalize@@GLIBC_2.1.3
080494f8 D __data_start
         w __deregister_frame_info@@GLIBC_2.0
08048480 t __do_global_ctors_aux
080483b0 t __do_global_dtors_aux
         w __gmon_start__
         U __libc_start_main@@GLIBC_2.0
         w __register_frame_info@@GLIBC_2.0
080495e0 A _edata
080495f8 A _end
080484c0 ? _fini
080484e0 R _fp_hw
080482e4 ? _init
08048360 T _start
08048384 t call_gmon_start
08049504 d completed.1
080494f8 W data_start
08048410 t fini_dummy
08049508 d force_to_data
08049508 d force_to_data
08048420 t frame_dummy
08048384 t gcc2_compiled.
080483b0 t gcc2_compiled.
08048480 t gcc2_compiled.
080484c0 t gcc2_compiled.
08048460 t gcc2_compiled.
08048450 t init_dummy
080484b0 t init_dummy
08048460 T main
080495e0 b object.2
08049500 d p.0
         U printf@@GLIBC_2.0
[root@boota make]# 

7.7.3.1 Listing Line Numbers in Source Files
Use of –l option is very useful with this command. This option also displays filenames

and line numbers where these symbols are used. The following command lists symbols in lib-
common.a file in more detail. Note that it displays the path to the source code file and the line
number. This information is used in the debugging process.

[root@boota]# nm -s libcommon.a -l 

Archive index:
msg in common.o
main in ftp.o



Using GNU Binary Utilities 231
common.o:
00000000 T msg  /root/make/common.c:6
         U printf       /root/make/common.c:7

ftp.o:
00000000 T main /root/make/ftp.c:7
         U msg  /root/make/ftp.c:12
         U printf       /root/make/ftp.c:11
[root@boota make]#

7.7.3.2 Listing Debug Symbols
When you compile a program with a debug option, many symbols are inserted in the files

that are used for debugging purposes. Using the –a option with the nm command also shows the
debug symbols.

Please see the manual pages of the nm command for a detail description of all options.

7.7.4 Using the strip Utility

The strip command is used to remove symbols from an object or library file. This is use-
ful to reduce the size of the shipped product as these symbols are not required in enduser execut-
able code. Using the command, you can also remove symbols partially. For example, you can
remove only debug symbols, local symbols or all symbols with the help of command line options.

At least one object file must be provided at the command line. Note that the strip utility
modifies the object files; it does not create new files. To get an idea of the difference in size of
object file before and after using the strip command, let us take the example of a C file that
prints the “Hello world” string only. The size of the executable a.out file with symbols on my
computer is 13640 bytes. After using the following command, the size is reduced to 3208 bytes.

strip a.out

This is a considerable reduction in size. However,  in some time-sensitive and embedded sys-
tems, stripping files may cause timing problems and code may behave differently in some cases.

7.7.5 Using the objcopy Utility

The basic function of the objcopy utility is to copy one object file to another. This func-
tionality can be used to change the format of an object file. A common use is to create S-record
or binary files from ordinary object files. S-record or binary files can be used to burn ROM in
embedded systems. The following command converts the ftp file (which is a statically linked
file) to an S-record file ftp.S, which may be downloaded to a ROM/PROM using the EPROM
programmer.

objcopy -O srec ftp ftp.S

You can see types of both input and output files by using the file command as follows.
The output file is of type S-record.



232 Chapter 7  •  Miscellaneous Tools
[root@boota]# file ftp 
ftp: ELF 32-bit LSB executable, Intel 80386, version 1, 
statically linked, not stripped
[root@boota]# 
[root@boota make]# file ftp.S
ftp.S: Motorola S-Record; binary data in text format
[root@boota]#

The S-record file is in ASCII hex format and first few lines can be displayed using head
command as shown below:

[root@boota]# head ftp.S
S00800006674702E532C
S31508048094040000001000000001000000474E5500CB
S315080480A400000000020000000200000005000000B1
S315080480B45589E583EC08E84500000090E8DB0000F0
S30D080480C400E836610400C9C393
S315080480E031ED5E89E183E4F05054526880E2080871
S315080480F068B4800408515668E0810408E80B010056
S3150804810000F489F65589E55350E8000000005B81C0
S31508048110C3826C05008B830C00000085C07402FFC3
S31508048120D08B5DFCC9C389F69090909090909090FE
[root@boota]#

The following command creates a binary image of the ftp file. The binary output is a
memory image of the executable and all symbols are removed.

objcopy -O binary ftp ftp.bin

Here is how you display a type of the new binary file.

[root@boota]# file ftp.bin
ftp.bin: X11 SNF font data, LSB first
[root@boota]#

It is a good idea to strip object files before converting them to S-record or binary files.
Start addresses can be set using the command line options --set-start and --adjust-
start.

7.7.6 Using the objdump Utility

The objdump command displays information about an object file. It can also be used to
disassemble an object file. You can use different command line options to display particular
information about an object file.

7.7.6.1 Displaying Header Information
The following command displays the header information of the binary file a.out.

[root@boota]# objdump -f a.out



Using GNU Binary Utilities 233
a.out:     file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x08048360

[root@boota]#

7.7.6.2 Displaying Section Headers
The following command displays information about all section headers in the a.out file.

[root@boota]# objdump -h a.out|more

a.out:     file format elf32-i386

Sections:
Idx Name          Size      VMA       LMA       File off  Algn
  0 .interp       00000013  080480f4  080480f4  000000f4  2**0
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  1 .note.ABI-tag 00000020  08048108  08048108  00000108  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  2 .hash         00000034  08048128  08048128  00000128  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  3 .dynsym       00000080  0804815c  0804815c  0000015c  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  4 .dynstr       00000095  080481dc  080481dc  000001dc  2**0
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  5 .gnu.version  00000010  08048272  08048272  00000272  2**1
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  6 .gnu.version_r 00000030  08048284  08048284  00000284  
2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  7 .rel.got      00000008  080482b4  080482b4  000002b4  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  8 .rel.plt      00000028  080482bc  080482bc  000002bc  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
  9 .init         00000018  080482e4  080482e4  000002e4  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
 10 .plt          00000060  080482fc  080482fc  000002fc  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
 11 .text         00000160  08048360  08048360  00000360  2**4
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
 12 .fini         0000001e  080484c0  080484c0  000004c0  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
 13 .rodata       00000015  080484e0  080484e0  000004e0  2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
 14 .data         00000010  080494f8  080494f8  000004f8  2**2
                  CONTENTS, ALLOC, LOAD, DATA
 15 .eh_frame     00000004  08049508  08049508  00000508  2**2



234 Chapter 7  •  Miscellaneous Tools
                  CONTENTS, ALLOC, LOAD, DATA
 16 .ctors        00000008  0804950c  0804950c  0000050c  2**2
                  CONTENTS, ALLOC, LOAD, DATA
 17 .dtors        00000008  08049514  08049514  00000514  2**2
                  CONTENTS, ALLOC, LOAD, DATA
 18 .got          00000024  0804951c  0804951c  0000051c  2**2
                  CONTENTS, ALLOC, LOAD, DATA
 19 .dynamic      000000a0  08049540  08049540  00000540  2**2
                  CONTENTS, ALLOC, LOAD, DATA
 20 .sbss         00000000  080495e0  080495e0  000005e0  2**0
                  CONTENTS
 21 .bss          00000018  080495e0  080495e0  000005e0  2**2
                  ALLOC
 22 .stab         00000f9c  00000000  00000000  000005e0  2**2
                  CONTENTS, READONLY, DEBUGGING
 23 .stabstr      00002ec6  00000000  00000000  0000157c  2**0
                  CONTENTS, READONLY, DEBUGGING
 24 .comment      00000144  00000000  00000000  00004442  2**0
                  CONTENTS, READONLY
 25 .note         00000078  00000000  00000000  00004586  2**0
                  CONTENTS, READONLY
[root@boota]#

7.7.6.3 Disassembling a File
Perhaps the major advantage of this utility is its ability to disassemble object files. Usually

the disassembly code is quite long but still you can make sense of  it. The following is a segment
of  disassembly code from the a.out file.

[root@boota]# objdump -d a.out|more

a.out:     file format elf32-i386

Disassembly of section .init:

080482e4 <_init>:
 80482e4:55                   push   %ebp
 80482e5:89 e5                mov    %esp,%ebp
 80482e7:83 ec 08             sub    $0x8,%esp
 80482ea:e8 95 00 00 00       call   8048384 <call_gmon_start>
 80482ef:90                   nop    
 80482f0:e8 2b 01 00 00       call   8048420 <frame_dummy>
 80482f5:e8 86 01 00 00       call   8048480 
<__do_global_ctors_aux>
 80482fa:c9                   leave  
 80482fb:c3                   ret    
Disassembly of section .plt:

080482fc <.plt>:



Using GNU Binary Utilities 235
 80482fc:ff 35 20 95 04 08    pushl  0x8049520
 8048302:ff 25 24 95 04 08    jmp    *0x8049524
 8048308:00 00                add    %al,(%eax)
 804830a:00 00                add    %al,(%eax)
 804830c:ff 25 28 95 04 08    jmp    *0x8049528
 8048312:68 00 00 00 00       push   $0x0
 8048317:e9 e0 ff ff ff       jmp    80482fc <_init+0x18>
 804831c:ff 25 2c 95 04 08    jmp    *0x804952c
 8048322:68 08 00 00 00       push   $0x8
 8048327:e9 d0 ff ff ff       jmp    80482fc <_init+0x18>
 804832c:ff 25 30 95 04 08    jmp    *0x8049530
 8048332:68 10 00 00 00       push   $0x10
 8048337:e9 c0 ff ff ff       jmp    80482fc <_init+0x18>
 804833c:ff 25 34 95 04 08    jmp    *0x8049534
 8048342:68 18 00 00 00       push   $0x18
 8048347:e9 b0 ff ff ff       jmp    80482fc <_init+0x18>
 804834c:ff 25 38 95 04 08    jmp    *0x8049538
 8048352:68 20 00 00 00       push   $0x20
 8048357:e9 a0 ff ff ff       jmp    80482fc <_init+0x18>
Disassembly of section .text:

08048360 <_start>:
 8048360:31 ed                xor    %ebp,%ebp
 8048362:5e                   pop    %esi
 8048363:89 e1                mov    %esp,%ecx
 8048365:83 e4 f0             and    $0xfffffff0,%esp
 8048368:50                   push   %eax
 8048369:54                   push   %esp
 804836a:52                   push   %edx
 804836b:68 c0 84 04 08       push   $0x80484c0
 8048370:68 e4 82 04 08       push   $0x80482e4
 8048375:51                   push   %ecx

7.7.6.4 Disassembling with Source Code
The command can also be used to disassemble an object file so that the source code is also

displayed along with assembly output. This is done using the –S option. Following is output of
disassembly for code that is used to display string the “Hello world”. You can see the assembly
language instructions used for this purpose.

08048460 <main>:
#include <stdio.h>
main()
{
 8048460:55                   push   %ebp
 8048461:89 e5                mov    %esp,%ebp
 8048463:83 ec 08             sub    $0x8,%esp
  printf ("Hello world\n");
 8048466:83 ec 0c             sub    $0xc,%esp



236 Chapter 7  •  Miscellaneous Tools
 8048469:  68 e8 84 04 08       push   $0x80484e8
 804846e:  e8 c9 fe ff ff       call   804833c <_init+0x58>
 8048473:  83 c4 10             add    $0x10,%esp
}

7.7.6.5 Displaying Information about Library Files
The command can also be used to display information about library files. The following

command displays information about the library file libcommon.a and shows the object file
names from which this library is built.

[root@boota]# objdump -a libcommon.a 
In archive ../../chap-04/make/libcommon.a:

common.o:     file format elf32-i386
rw-r--r-- 0/0  11668 Nov 13 19:48 2001 common.o

ftp.o:     file format elf32-i386
rw-r--r-- 0/0  11824 Nov 13 19:53 2001 ftp.o

[root@boota ltrace]#

Common options that are used with this command are listed in Table 7-5.

7.7.7 Using the size Utility

The size utility displays sizes of each section in an object file. The following command dis-
plays sizes for the object file a.out.

[root@boota]# size a.out
   text   data    bss    dec    hex    filename
   1015    232     24   1271    4f7    a.out
[root@boota]#

Table 7-5 Common options used with objdump command

Option Description

-a Display information about library files

--debugging Show debugging information

-d Disassemble an object file

-f Show file headers summary

-S Display source code with disassembly information

-t Display symbol table entries



Using GNU Binary Utilities 237
7.7.8 Using the strings Utility

The strings utility displays printable strings in an object file. By default it displays
strings only in initialized and loaded sections of the object file. The object file may be a library
file as well. The following command displays strings in the a.out file.

[root@boota]# strings a.out
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
printf
__cxa_finalize
__deregister_frame_info
_IO_stdin_used
__libc_start_main
__register_frame_info
GLIBC_2.1.3
GLIBC_2.0
PTRh
QVh`
Hello world
[root@boota]#

A complete list of all strings in a file can be displayed with the –a option on the command
line. Multiple filenames or wild cards can be used on the command line. Using the –f option in
this case will display each filename associated with a symbol.

7.7.9 Using the addr2line Utility

The addr2line utility maps an address in the object file to a line in the source code file.
Consider the following output section of the “objdump –S a.out” command that shows
addresses and source codes.

08048460 <main>:
#include <stdio.h>
main()
{
 8048460:55                   push   %ebp
 8048461:89 e5                mov    %esp,%ebp
 8048463:83 ec 08             sub    $0x8,%esp
  printf ("Hello world\n");
 8048466:83 ec 0c             sub    $0xc,%esp
 8048469:68 e8 84 04 08       push   $0x80484e8
 804846e:e8 c9 fe ff ff       call   804833c <_init+0x58>
 8048473:83 c4 10             add    $0x10,%esp
}

The a.out file is generated from the following a.c file.

     1  #include <stdio.h>



238 Chapter 7  •  Miscellaneous Tools
     2  main()
     3  {
     4    printf ("Hello world\n");
     5  }

Now you can display the line number of the source code file corresponding to address
8048466 in the object file with the following command:

[root@boota]# addr2line -e a.out 8048466
/root/chap-07/ltrace/a.c:4
[root@boota]#

This is the line where the printf function is called in a.c file. The add2line com-
mand is useful in debuggers where you need to map addresses to a line in source code file.

7.8 Using the ldd Utility

The ldd utility is very useful in finding out the dependencies of an executable on shared librar-
ies. This is necessary when you are copying executable files from one computer to another to
make sure that required libraries are present on the destination computer also. The following
command shows that libc.so.6 must be present to execute a.out file on a computer.

[root@boota]# ldd a.out
  libc.so.6 => /lib/i686/libc.so.6 (0x4002c000)
  /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
[root@boota]#

So if you copy a.out to another computer, make sure that this library is also present on
the destination computer.

7.9 References and Resources

1. GNU web site at http://www.gnu.org/
2. The cbrowser home page at http://cbrowser.sourceforge.net
3. The cscope home page at http://cscope.sourceforge.net



C H A P T E R 8
Cross-Platform and 
Embedded Systems 
Development
s you have already learned in Chapter 3, development systems con-
sist of many tools. The discussion in Chapter 3 was about native

software development, which means that the host system on which the
software is developed and the target system on which the software runs
are the same. This chapter provides information about embedded and
cross-platform software development where the host system and the target
system are different.  The issues in this type of development are slightly
different although basic programming methods and techniques remain the
same. 

In this chapter I have used a single board computer from Arcom
(www.arcomcontrols.com) and a processor mezzanine card from Artesyn
(www.artesyn.com). I am thankful to both of these vendors. The Arcom
board is based upon a x86 compatible CPU and has four serial ports, an
Ethernet port and a number of other ports. The Artesyn board is PowerPC
based and it can be plugged into a Compact PCI career card. Information
about these boards can be obtained from the respective company web site.
I have listed some features at the end of this chapter.

Before reading this chapter, you should  become familiar with a few con-
cepts related to cross-platform development. The most important terms
used in this chapter are cross and native. The term cross is used for tools

A

239



240 Chapter 8  •  Cross-Platform and Embedded Systems Development
that run on one type of machine but are used to carry out some service for
another type of machine. For example, a cross compiler is a compiler that
creates executable code for a machine which is different than the machine
on which the compiler is running. Similar is the case with cross assem-
blers, cross debuggers and so on. On the other hand, a native tool provides
a service to the same machine on which it is running. For example, a
native compiler generates output code that is executable on the same
machine on which the compiler runs.

8.1 Introduction to the Cross-Platform Development Process

You need a general-purpose computer for software development. This computer hosts develop-
ment tools. In most cases, the computer also hosts some debugging tools. The executable code
may be generated for the same computer on which you develop software or for some other
machine that is not capable of running development tools (editors, compilers, assemblers,
debuggers etc.).  Most of the time host and target machines differ so that programs built on the
host machine can’t be run on the target machine. These differences may take many forms. Some
common differences between host and target machines are different operating system, different
system boards or a different CPU.

It’s necessary to understand some basic concepts and terminology related to cross-plat-
form development. These basic concepts are explained in the following subsections.

8.1.1 Host Machine

The host machine is the machine on which you write and compile programs. All of the
development tools are installed on this machine. Most of the time this is your PC or workstation.
Your compiler is built to run on this machine. When you are satisfied with your code, the execut-
ables are built and transferred to the target machine. If the host and target machines are different,
the final executable can’t be executed on the host machine where you built it.

8.1.2 Target Machine

A target machine may be another general-purpose computer, a special-purpose device
employing a single-board computer or any other intelligent device. Usually the target machine is
not able to host all the development tools. That is why a host computer is used to complete
development work.

Debugging is an important issue in cross-platform development. Since you are usually not
able to execute the binary files on the host machine, they must be run on the target machine. The
debugger, which is running on the host machine, has to talk to the program running on the target
machine. GNU debugger is capable of connecting to remote processes. Some CPUs have a
JTAG or BDM connector, which can also be used to connect to processes on remote systems.



Introduction to the Cross-Platform Development Process 241
8.1.3 Native and Cross Compilers

A native compiler generates code for the same machine on which it is running. A cross
compiler generates code for a machine different from the one on which it is running.

8.1.4 Cross Platform Development Cycle

The cross-platform development cycle consists of at least four stages. These stages are: 

• Writing code

• Cross compilation

• Transferring binaries to the target

• Debugging 

The steps may be different in some cases depending upon the type of product you are build-
ing. Figure 8-1 shows these processes and machines on which a particular process is carried out.

Let us take a closer look on these steps.

8.1.4.1 Writing Code

When you write code for cross compilation, you have to keep few things in mind. The
CPU architecture of the target machine may be different from that of the host machine. This
means that you have to consider word lengths, byte order and so on. For example, length of inte-
ger may be different on the target machine. Similarly, organization of memory may play an
important role. As an example, the organization of bytes inside a 32-bit integer is different in
Intel CPUs as compared to Motorola CPUs. This is a typical network-byte-order problem and
must be considered when developing network protocols.

Some libraries’ routines may be different for cross compilers than for native compilers.

8.1.4.2 Building on the Host Machine

After writing the code, you need to compile it on the host machine. In addition to a cross
compiler and cross assembler that can generate code for the target machine, you need libraries
that are linked to your code. These libraries are usually specific to the target machine and are
cross-compiled.

If you are writing code according to some standard, your porting process is usually very
quick. For example, if you have written libraries strictly using the ANSI standard, it will be rela-
tively easy for you to port these libraries from one platform to another. In most  large software
development projects, it is important that you stick to some standard. This is because ultimately
you may wish to port and sell the product for many platforms.

You have learned the difference between static and dynamic linking earlier in this book.
Usually in cross compiling, you have to build the executable code with static linking because
you may not have shared libraries available on the target system. This is especially true for
embedded systems where  you usually don’t have a large secondary storage device.



242 Chapter 8  •  Cross-Platform and Embedded Systems Development
During the development phase, most of the time you compile code with debug information
enabled. The size of the output files is usually quite large but this is acceptable. A different
approach is to create multiple files, one built without debug information or stripped and at least
one other file containing all symbols information. You can load the latter file into the debugger
before connecting the debugger to the executable.

8.1.4.3 Transfer to the Target Machine
After building executable code for a cross-platform development project, you have to

transfer it to the target machine. There are several ways to do so depending upon the target
machine. If the target machine has a JTAG interface, you can use that interface to transfer the file

Write Code

Compile and Link

Download to the
Target

Debug on the
Target

Burn a ROM or copy to
any other permanent
storage medium like

Compact Falsh

Run on the target

Works OK ?

Processes with
this color need
both host and

target machines

Processes with
this color need

only host machine

Processes with
this color need
target machine

only

Legends

Figure 8-1 Flow chart of cross-platform development.



What are Embedded Systems? 243
and then use the same interface to debug it. If the target does not have a JTAG interface, you can
transfer using a serial or Ethernet link. Sometimes the target machine is already running an oper-
ating system and you have to transfer an application to the target machine. In some other circum-
stances you may have to build and transfer a single packaged file that contains the operating
system as well as applications. If the target system is already running the operating system, you
can transfer you application using a network interface very easily. If you have a single packaged
file, you can have a boot routine on the target machine that may download this file from a TFTP
server as well.

The bottom line is that there are many methods used by developers depending upon the
nature of the files to be transferred, availability of special hardware on the target machine, avail-
ability of boot routines on the target machine and the operating system used. You can select a
method that best suits your needs.

8.1.4.4 Remote Debugging

In the case of cross-platform development and embedded systems, you have to debug your
code remotely. There are multiple reasons for that including:

• The target machine is different from the host machine so that you can’t execute the
code on your host machine.

• The target system is connected to some special hardware and the software interacts
with that special hardware. To debug in a real-world situation, you have to debug it
remotely.

• The target system itself has some special hardware that is different from the host
machine. For example, the target system may have the same CPU as the host machine
but has different hardware interrupts.

There may be other reasons in addition to the ones mentioned here. In this chapter you will
learn how to attach to a process running on a target machine using GNU debugger. You will use
a local file that contains all of the symbol table information. Before you connect to the target
machine, you will load this symbol table information into gdb and then start a debug session
remotely on the target machine.

8.2 What are Embedded Systems?

There are many definitions of embedded system but all of these can be combined into a single
concept. An embedded system is a special-purpose computer system that is used for a particular
task. The special computer system is usually less powerful than general-purpose systems,
although some exceptions do exist where embedded systems are very powerful and complicated.
Usually a low power consumption CPU with a limited amount of memory is used in embedded
systems. Many embedded systems use very small operating systems; most of these provide very
limited operating system capabilities. However as memory and CPU power is becoming cheap,



244 Chapter 8  •  Cross-Platform and Embedded Systems Development
many modern operating systems are also being used in embedded systems these days. Embed-
ded Linux products are becoming more and more popular.

Since embedded systems are used for special purpose tasks, there is usually no need to add
new applications to the system once it is built. Therefore programs and operating systems are
usually loaded only once into read-only memory. The read-only memory is available in many
forms these days and includes some type of ROM, flash chips and flash cards. In case an
upgrade is required, a new ROM chip replaces the old one.

If you look at your surroundings, you will find tiny computers everywhere. They are
present even in places  where you rarely notice them. Some of the most common embedded sys-
tems used in everyday life are:

• Refrigerators
• Microwave ovens
• TV, VCR, DVD players
• Cameras
• Cars (Antilock brakes, engine control, sun roof, climate control, automatic

transmission and so on)
• Personal digital assistants
• Printers

Complicated and more sophisticated embedded systems include routers and switches
where high performance CPUs are used.

8.2.1 Embedded Systems and Moving Parts

Most of the embedded systems are supposed to be used for a long period of time and with-
out any maintenance. This is the very nature of embedded systems applications, to manufacture
a system and then leave it to run independently for its intended life. For this reason, most
embedded systems usually don’t have moving components because any moving or mechanical
part experiences wear and tear and needs replacement periodically. Typical examples of moving
components include fans, disk drives and so on. Fans are used for cooling in power supplies and
CPU heat sinks in desktop computers. Disk drives (both floppy and hard disk drives) are used as
a storage medium for operating systems, applications and data.

In embedded systems, ROM is used for storage of operating system and application data
to eliminate the need for disk drives. These days, flash cards are also common and you can
update a system just by replacing the flash memory card. In embedded systems you have to use
special types of power supplies that don’t need any fan for cooling. Many different types of
power supplies are available on the market that don’t heat up when used continuously for long
periods of time.



What are Embedded Systems? 245
8.2.2 Embedded Systems and Power Consumption

Power consumption is also an important issue in embedded systems. This is also related to
the moving parts issue in a sense. Components that consume more power need cooling, so some
type of fan must be attached to the system. For this reason people always prefer CPUs and other
components that use less power and generate less heat. It is also beneficial for systems that run
on  batteries to use less power. High power-consuming components drain batteries quickly.

8.2.3 Embedded Operating Systems

Since embedded systems are usually not general-purpose systems, they need not be as
sophisticated as commercial general-purpose systems. These operating systems are smaller in
size. Most of these operating systems also offer real-time capabilities, which are missing in gen-
eral-purpose systems. Although there are hundreds of operating systems available for the
embedded market, some of the most commonly used ones are:

• VxWorks

• pSOS

• Embedded Linux

• QNX

• Windows CE

When you use Linux as an embedded operating system, you can take out many parts of the
kernel that are required in the general-purpose Linux systems. Which parts should be excluded
from the kernel depends upon the requirements of a particular system. For example, you can
take out  the entire networking code if the embedded system is not going to be networked. Simi-
larly, you can take out most of the secondary storage related drivers and file systems support.
Kernel parts that are the most likely candidates for removal from the embedded Linux are:

• Disk drivers

• CD-ROM drivers

• Most of the networking code. Even if an embedded system is intended to be networked,
you may not need all of the routing code and drivers for all types of network adapters.

• Sound and multimedia related drivers and components. However you may need these
components if the embedded system is used as a computer game.

• Most of the file system support

• Any other thing that is not required. You can go through the kernel configuration
process to determine what is not necessary.

The trimmed version of the Linux kernel will be much smaller compared to the kernels
you find in most  Linux distributions.



246 Chapter 8  •  Cross-Platform and Embedded Systems Development
8.2.4 Software Applications for Embedded Systems

Embedded applications are tightly integrated with each other and often with the operating
system as well. In many cases you will find only one big file that is loaded by the system at the
time you power it up that contains all of the operating and applications data. Since resources are
sparse on embedded systems, applications are usually highly optimized to take the least amount
of memory and storage space.  Embedded systems programmers don’t have the luxury of even
one extra line of code. In addition, embedded software needs to be solid because there is nobody
to restart a crashed application. Watchdog timers are used to recover from any system lock.

8.3 How Development Systems Differ for Embedded Systems

Development for embedded systems is different from common practices in many ways. For new
developers in the embedded systems world, there is a learning curve to understand which  con-
ventional practices are no longer valid in this new environment. To be an embedded systems
developer, you need to know many things about the hardware on which your software will be
executed. Often embedded systems are connected to some sort of control system (wheel rotation
in an automobile anti-lock braking system, for example) and the developer also needs knowl-
edge of that system as well. If the CPU and/or the operating system are different on the target
embedded platform, you have to do cross-platform development which has its own issues. There
are different testing techniques as well because in most of the embedded systems you don’t have
a monitor screen where you can display error messages or test results. All of these issues make
embedded systems development much more complicated than writing a program on a UNIX
machine and then executing it.

This section provides information on some of these issues but should not be considered
comprehensive. This is just a starting point to give you an idea that you should expect new chal-
lenges when you start embedded systems programming.

8.3.1 Knowledge of Target System Hardware

The embedded system is usually different from the system on which you develop software
(the host machine). For example, usually the target computer has many input and output lines,
different interrupts and probably a different type of CPU. It may also have memory constraints
because these systems usually have a low amount of RAM and no virtual memory because of the
absence of secondary storage media. To develop software for the target, you need to know all of
these things.

As mentioned earlier, most of the embedded systems are connected to some other sort of
hardware. The main job of these systems is to control the connected hardware or systems using
some policy. As an embedded system programmer, if you don’t have knowledge of these addi-
tional system or hardware, you will not be able to program the embedded system well. Usually
embedded systems have some sort of digital and analog I/O connected to this external hardware
where you have to exchange data.



Cross Compilations 247
8.3.2 Is the Target System Real-Time?

If the target system is running a real-time operating system, you have to keep in mind
many other issues as well. Usually these issues don’t come into the picture when you are devel-
oping code for general-purpose machines. System scheduling is important and you need to know
what type of scheduling is available on the target system. Almost all  real-time systems have pri-
ority-based scheduling. However, if two processes have the same priority, then scheduling may
be different depending upon the operating system. Some systems implement round-robin sched-
uling for equal priority tasks. On the other hand some systems run a task to completion. You
need to know what happens when a process or task is scheduled on a particular real-time sched-
uler. Time slices for running equal priority processes on round-robin schedulers can also be
changed on some real-time schedulers.

To complicate the situation, some systems also allow processes to increase or decrease
their priority levels at run time.

Interrupts and their service routine are usually critical in real-time systems. If your embed-
ded target platform is real-time, you should keep in mind limitations in this area and tolerance of
critical tasks in constrained environment. You should not miss a critical event in a real-time sys-
tem because that may result in disaster. If a packet is dropped in a router, it may be tolerated, but
if a robot reacts to some event late, it may result in major loss. Even dropped packets aren't par-
ticularly acceptable  in modern routers.

8.3.3 Testing Methodology

The testing methodology is also different in the case of embedded systems. In typical
cases, an embedded system is connected to some other device or system for control purposes.
These connections are not available on the host system where you are developing the software.
This is true even if the operating system and CPU on the host and target systems are the same.
For example, a Linux-based embedded system running an x86 family of processors may be con-
trolling some security system. It is difficult to simulate that security system on a PC and test
your software. So even if the platform is the same, you have to test and debug your programs on
the target system.

In some cases testing of embedded systems may be quite complicated as you need to get
results of the functionality testing sent or stored somewhere. In small embedded systems, not
connected to a network or a user-friendly output device, getting these results is difficult. In such
circumstances you may need to build special testing techniques or special code in your embed-
ded system to produce test results. I would recommend a thorough knowledge of  how to write
testable code.

8.4 Cross Compilations

Cross compilation tools are very important for successful product development. Selection of
these tools should be made based upon the embedded system itself as well as features to test and
debug software remotely. Since you are developing software on a Linux platform, your cross-



248 Chapter 8  •  Cross-Platform and Embedded Systems Development
platform development tools should be compatible with Linux as a host machine. Depending
upon CPU family used for the target system, your toolset must be capable of generating code for
the target machine. In the case of GNU development tools, you need to have a number of things
to work together to generate executable code for the target. For example, you must have at least
the following available on your Linux machine.

• Cross compiler
• Cross assembler
• Cross linker
• Cross debugger
• Cross-compiled libraries for the target host.
• Operating system-dependent libraries and header files for the target system.

 These components will enable you to compile, link and debug code for the target environ-
ment. In this section, you will learn how to develop a cross-compilation environment on your
Linux machine.

You have already built a native GCC compiler in Chapter 3. Conceptually, building a cross
compiler is not much different from building a native compiler. However there are additional
things that you should keep in mind while building a cross compiler. The most significant of
these is the command line listing of the target when running the configure script. The whole pro-
cess may be slightly different depending upon targets. The best resource to find out detailed
information about how to build a cross compiler is the CrossGCC FAQ and mailing list. The
FAQ is found at http://www.objsw.com/CrossGCC/ and using information in this FAQ, you can
subscribe to and search the CrossGCC mailing list. I would suggest getting a cross compiler
from a vendor instead of building it yourself. Many companies, including RedHat (http://
www.redhat.com) and Monta Vista Inc. (http://www.mvista.com), provide development tools for
embedded Linux development of different CPU families.

8.4.0.1 Cross Debugging
There are multiple methods of debugging that you can use in the cross-platform develop-

ment environment. Most commonly you can use emulators, JTAG, and remote debugging over
serial or network links. Some of these methods are discussed in this section.

8.4.1 Software Emulators

Software emulators are software tools that can emulate a particular CPU. Using a software
emulator you can debug through your code and find out CPU register values, stack pointers and
other information without having a real CPU. Software emulators are useful when you don’t
have the real hardware available for testing and debugging and want to see how the CPU will
behave when a program is run on it.  Keep in mind that these are not very useful tools to simulate
real hardware because there are many other hardware components that are built onto the target
machine.



Cross Compilations 249
8.4.2 In-circuit emulators

In-circuit emulators are devices that are used to emulate a CPU. You can plug in this
device in place of a CPU on your circuit board. The device has the same number of pins and the
same package type as the CPU and fits into the CPU socket. The other side is connected to a PC
or a workstation where a debugger is running. Using an in-circuit emulator, you can start and
stop execution of a program as you wish. This is in contrast to a software emulator, where the
CPU emulator is a program running on your machine, isolated from the circuit board on which
you want to test your software. An in-circuit emulator provides you access to real hardware for
testing purpose.

Usual arrangement of in-circuit emulator is shown in Figure 8-2. The emulator is plugged
into the actual embedded system on one side and connected to your PC on the other side.

8.4.3 Introduction to JTAG and BDM

JTAG or Joint Test Action Group is a method of accessing memory and CPU resources
without having an application running on the target. BDM or background debugging mode also
achieves this objective. Many CPUs provide JTAG or BDM port/connection to connect  a serial
or parallel port on your host to the target CPU board using a cable. There are a few open source
projects that give you information, utilities and hardware diagrams about the procedure.

Using JTAG or BDM, you don’t need an in-circuit emulator and a debugger running on
your host machine can connect to a target board. But keep in mind that not all CPUs provide this
facility. Most  Motorola controllers and PowerPC CPUs have this interface. 

Target Device

In-circuit
emulator
hardware

Host workstation

Figure 8-2 In-circuit emulator connection diagram.



250 Chapter 8  •  Cross-Platform and Embedded Systems Development
8.4.3.1 Building Cross Debugger

Building a cross debugger is similar to the building process of a native debugger. When
you configure gdb, you need to mention the target CPU on the command line of the configure
script. You also need the required libraries for the target.

8.5 Connecting to Target

Using gdb, there are two basic methods of connecting to the target machine when you debug a
program. These are:

• Using gdbserver program
• Using a stub

In this section we shall discuss the gdbserver method in detail because it is the same
for all platforms. The stub method differs from platform to platform and you need to create stub
file(s) for your target and tailor these into your code.

8.5.1 Using gdbserver with GNU Debugger

The gdbserver utility comes with GNU debugger. I have used gdb version 5.1.1 and
you can compile the gdbserver after you compile your debugger. If the host machine is dif-
ferent from the target machine, you must cross-compile the gdbserver program. This utility
can run a program on a remote target and can communicate to gdb running on host.

When you build gdb from the source code, the gdbserver is not compiled during this
process. This is what happened when I compiled gdb version 5.1.1 on my RedHat 7.1 machine.
You have to compile it separately by going into the gdb/gdbserver directory. You can run
the following two commands to build and install it:

make

make install

You may choose to build a static binary of the gdbserver program if you don’t have
dynamic libraries installed on your target board. For the purpose of this book, I used the Arcom
board, which is introduced later in this chapter, and which has dynamic libraries installed. After
compiling, you can strip down symbols from the binary to reduce size because embedded sys-
tems usually have small storage areas.

The gdbserver program may display some error messages when you connect to the
server as it needed /etc/protocols files on the target Arcom board, which I copied manually.

The step-by-step process of using gdbserver is as follows:

• Compile a program on the host machine using the –g option.

• Transfer a stripped version of the output to the target machine. You can use a stripped
version because you don’t need symbols on the target.



Connecting to Target 251
• Run gdbserver on the target machine. It will control your application program. It is
explained later in this section.

• Run gdb on the host machine.
• Connect gdb to the remotely running gdbserver process.
• Start debugging.

You can connect gdb on the host to the gdbserver running on the target over the net-
work or using the serial port. Both of these methods are described here.

8.5.1.1 Running gdbserver On Target Using TCP/IP
When you have transferred the executable binary to the target, you can start the gdbserver

process. The example below shows that the program being debugged is /tmp/sum, IP address of
the host machine is 192.168.1.3 and we are using TCP port 2000 for connection between the host
and the target machine. Note that the debugger will be running on the host machine.

In the following session, the gdbserver waits for connection from the debugger after
starting up. When you step through the program on the debugger side, you can enter values of
two numbers on the target machine. I used a Telnet session to open a window on the target. This
window was used to start gdbserver and enter values of two numbers.

root@SBC-GXx /bin# gdbserver 192.168.1.3:2000 /tmp/sum
Process /tmp/sum created; pid = 154
Remote debugging using 192.168.1.3:2000
Enter first number : 5
Enter second number : 7

The sum is : 12
Killing inferior
root@SBC-GXx /bin# 

Note that the gdbserver terminates when you disconnect the debugger on the host side.
Source code of the program sum.c used in this example is as follows:

#include <stdio.h>
main ()
{
  int num1, num2, total ;

  printf("Enter first number : ");
  scanf("%d", &num1);
  printf("Enter second number : ");
  scanf("%d", &num2);

  total = num1 + num2;

  printf("\nThe sum is : %d\n", total);
}



252 Chapter 8  •  Cross-Platform and Embedded Systems Development
It is the same program that was used in Chapter 5 for different examples.

8.5.1.2 Running gdb on Host Using TCP/IP
After starting gdbserver on the target, now you can start the GNU debugger on host.

The host and target must be connected over a TCP/IP network for this example. In the following
session on the host machine, file sum is a non-stripped version of the program that you uploaded
to the target machine as it provides the symbol table to the debugger. After starting the debugger,
you use the “target remote 192.168.1.10:2000” command to connect to the gdb-
server running on the target machine 192.168.1.10. After that you can continue with normal
debugging process.

[rrehman@desktop 5]$ gdb sum
GNU gdb 5.1.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i686-pc-linux-gnu"...
(gdb) target remote 192.168.1.10:2000
Remote debugging using 192.168.1.10:2000
0x40001930 in ?? ()
(gdb) break main
Breakpoint 1 at 0x8048496: file sum.c, line 6.
(gdb) continue
Continuing.

Breakpoint 1, main () at sum.c:6
6         printf("Enter first number : ");
(gdb) n
7         scanf("%d", &num1);
(gdb) n
8         printf("Enter second number : ");
(gdb) n
9         scanf("%d", &num2);
(gdb) n
11        total = num1 + num2;
(gdb) n
13        printf("\nThe sum is : %d\n", total);
(gdb) n
14      }
(gdb) n
warning: Cannot insert breakpoint 0:
Cannot access memory at address 0x1



Connecting to Target 253
(gdb) quit
The program is running.  Exit anyway? (y or n) y
[rrehman@desktop 5]$ 

Note that after each scanf statement, you have to enter the input value on the target. This
is because the program is actually running on the target machine. Since both host and target are
connected over a network, you can open a Telnet window on the target for input and output.

8.5.1.3 Running gdbserver on Target Using Serial Port
You can also use gdbserver to connect a host and target machine over a serial port link.

In the following example, you start gdbserver to communicate to the debugger over serial
port /dev/ttyS1. GNU debugger uses its own serial port protocol to exchange information
between host and target machines. The program being debugged is stored as /tmp/sum on the
target machine. This example session is completed on an Arcom single-board computer running
embedded Linux.

root@SBC-GXx /bin# gdbserver /dev/ttyS1 /tmp/sum
Process /tmp/sum created; pid = 180
Remote debugging using /dev/ttyS1
Enter first number : 3
Enter second number : 8

The sum is : 11
Killing inferior
root@SBC-GXx /bin#

Note that if you are running any other program on the serial port, it should be stopped. In
most cases a getty process is running on serial ports. You can edit the /etc/inittab file to
stop the getty process from using the serial port.

8.5.1.4 Running gdb on Host Using Serial Port
To connect to a target over a serial port /dev/ttyS0, you can use “target remote

/dev/ttyS0” command after starting GNU debugger. A typical session to debug the sum.c
program is shown below.

[root@desktop /root]# gdb sum
GNU gdb 5.1.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i686-pc-linux-gnu"...
(gdb) break main
Breakpoint 1 at 0x8048496: file sum.c, line 6.



254 Chapter 8  •  Cross-Platform and Embedded Systems Development
(gdb) target remote /dev/ttyS0
Remote debugging using /dev/ttyS0
0x40001930 in ?? ()
(gdb) continue
Continuing.

Breakpoint 1, main () at sum.c:6
6         printf("Enter first number : ");
(gdb) n
7         scanf("%d", &num1);
(gdb) n
8         printf("Enter second number : ");
(gdb) n
9         scanf("%d", &num2);
(gdb) n
11        total = num1 + num2;
(gdb) n
13        printf("\nThe sum is : %d\n", total);
(gdb) n
14      }
(gdb) n
warning: Cannot insert breakpoint 0:
Cannot access memory at address 0x1
 (gdb) quit
The program is running.  Exit anyway? (y or n) y
[root@desktop /root]#

You do not use the run command in this session because the program has already been
started by the gdbserver running on the target machine.

8.5.1.5 Serial Cable
You can use a null modem cable to connect serial ports on the host and target machines.

Connections for the null modem cable for a DB-9 connector are as shown in Table 8-1. How-
ever, I hope that most people can simply go out and buy a null modem cable, without worrying
about pinouts.



Connecting to Target 255
For a DB-25 connector, the cable connections are as listed in Table 8-2.

8.5.2 Attaching to a Running Process Using gdbserver

Using the gdbserver program, you can also connect to a running process on the target.
For example, the following command can be executed on the target to connect to a process with
process ID equal to 375.

gdbserver /dev/ttyS1 375

You can also use the TCP/IP connection by replacing the /dev/ttyS1 with host-
name:port number as you have seen earlier.

Table 8-1 Null modem connection for DB-9 connector serial cable

DB-9 pin number (Host) DB-9 pin number (Target)

TXD (3) RXD (2)

RXD (2) TXD (3)

RTS (7) CTS (8)

CTS (8) RTS (7)

Signal Ground (5) Signal Ground (5)

DSR (6) DTR (4)

DTR (4) DSR (6)

Table 8-2 Null modem connection for DB-25 connector serial cable

DB-25 pin number (Host) DB-25 pin number (Target)

Frame Ground (1) Frame Ground (1)

TXD (2) RXD (3)

RXD (3) TXD (2)

RTS (4) CTS (5)

CTS (5) RTS (4)

Signal Ground (7) Signal Ground (7)

DSR (6) DTR (20)

DTR (20) DSR (6)



256 Chapter 8  •  Cross-Platform and Embedded Systems Development
8.5.3 Using Stubs with GNU Debugger

Stubs are software routines that you can link with your program. Using a stub, you can
connect the process created by the program to the GNU debugger from a remote target, eliminat-
ing the need for the gdbserver program.

Stubs are different for different targets. The GNU debugger contains some stubs by default
in the source code tree. For example, the i386-stub.c file can be used for targets that use
Intel CPUs. However you have to customize your stub depending on the target. Some instruc-
tions are included in the example source code files for the stub.

8.5.4 Debugging the Debug Session

If you are not successful in connecting to the target machine using GDB, you can get help
from the remote debug mode of GNU debugger. After turning this mode ON, you will see a lot
on information on your screen when gdb establishes or tries to establish connection to a remote
target. This information shows packets sent and received by gdb. The following session shows
that we set the baud rate to 9600 using the remotebaud command, turn the remote debug
mode ON and then connect to the remote target on serial port /dev/ttyS0.

[root@desktop /root]# gdb sum
GNU gdb 5.1.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public 
License, and you are
welcome to change it and/or distribute copies of it under 
certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" 
for details.
This GDB was configured as "i686-pc-linux-gnu"...
(gdb) break main
Breakpoint 1 at 0x8048496: file sum.c, line 6.
(gdb) set remotebaud 9600
(gdb) set debug remote 1
(gdb) target remote /dev/ttyS0
Remote debugging using /dev/ttyS0
Sending packet: $Hc-1#09...Ack
Packet received: OK
Sending packet: $qC#b4...Ack
Packet received: 
Sending packet: $qOffsets#4b...Ack
Packet received: 
Sending packet: $?#3f...Ack
Packet received: T0508:30190040;05:00000000;04:f8fdffbf;
Sending packet: $m40001930,8#62...Ack
Packet received: 54e8520000005b89
Sending packet: $m40001930,7#61...Ack



Connecting to Target 257
Packet received: 54e8520000005b
0x40001930 in ?? ()
Sending packet: $qSymbol::#5b...Ack
Packet received: 
Packet qSymbol (symbol-lookup) is NOT supported
(gdb) continue
Continuing.
Sending packet: $Z0,8048496,1#8a...Ack
Packet received: 
Packet Z0 (software-breakpoint) is NOT supported
Sending packet: $m8048496,1#41...Ack
Packet received: 83
Sending packet: $X8048496,0:#65...Ack
Packet received: 
binary downloading NOT supported by target
Sending packet: $M8048496,1:cc#21...Ack
Packet received: OK
Sending packet: $m4000e060,1#89...Ack
Packet received: 8b
Sending packet: $M4000e060,1:cc#69...Ack
Packet received: OK
Sending packet: $Hc0#db...Ack
Packet received: OK
Sending packet: $c#63...Ack
Packet received: T0508:97840408;05:a8fdffbf;04:90fdffbf;
Sending packet: $Hg0#df...Ack
Packet received: OK
Sending packet: $g#67...Ack
Packet received: 
f830114090840408384f1140ac40114090fdffbfa8fdffbfa0b60040fcfdff
bf9784040886020000230000002b0000002b0000002b000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
Sending packet: $P8=96840408#6c...Ack
Packet received: 
Sending packet: 
$Gf830114090840408384f1140ac40114090fdffbfa8fdffbfa0b60040fcfd
ffbf9684040886020000230000002b0000002b0000002b0000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000



258 Chapter 8  •  Cross-Platform and Embedded Systems Development
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000#9
2...Ack
Packet received: OK
Sending packet: $M8048496,1:83#c6...Ack
Packet received: OK
Sending packet: $M4000e060,1:8b#3d...Ack
Packet received: OK

Breakpoint 1, main () at sum.c:6
6         printf("Enter first number : ");
(gdb)

All of this information is very useful to resolve problems in establishing connection
between a host and a target machine.

8.6 Hardware Used for Cross-Platform and Embedded Systems 
Development

During development of this book, especially this chapter, I have used two single board comput-
ers. This was done to create examples and test functionality of code for cross and embedded sys-
tems development. Arcom (http://www.arcomcontrols.com) and Artesyn (http://
www.artesyn.com) are the two companies that provided these systems for experimentation.
Information about these two boards is provided here for reference.

8.6.1 Arcom SBC-GX1 Board

The Arcom people were very helpful in providing their SBC-GX1board development kit.
This kit includes the SBC-GX1 board, cables, and adapter for supplying power to the board,
documentation and software CDs. It also includes a PS/2 mouse that can be connected to the
board during experimentation. Everything is enclosed in a box to carry the kit.

The CPU used on this board is an x86 compatible processor from National Semiconduc-
tor’s Geode GX1 processor family. It is a low voltage, low power consumption CPU that can
be used in application where long batter life and low power consumption are important factors.
If you recall the earlier discussion in this chapter, both of these factors are very important in
embedded systems applications. The CPU contains additional hardware components that are not
part of x86 class CPUs. These components are:

• Integrated VGA controller, which has graphic acceleration features. Can be used to
connect to CRT or TFT flat panel video devices.

• A PCI host controller.
• Additional features for graphics and audio applications.
• Integrated I/O lines.



Hardware Used for Cross-Platform and Embedded Systems Development 259
A complete list of features can be found in the accompanying Arcom CD. The CPU on the
board I received has a clock speed of 333 MHz with no fans or requirement of any other cooling
method. This is a cool CPU board.

The Arcom board has the following features that make it suitable for many applications.
All of this is integrated to a small sized board.

• Floppy disk controller
• Hard disk controller to which you can connect hard drives or CD/DVD drives.
• Sound Blaster
• Four serial ports
• Parallel port
• VGA connector for CRT monitors
• Interface for flat panel monitor
• PC/104 bus
• PCI bus
• 16 MB flash that can be used as a disk
• 64 MB RAM
• Ethernet controller to connect to a LAN
• PS/2 mouse and keyboard connectors
• Compact flash socket that can be used to increase storage space in case you need large

applications

The board comes with Linux kernel 2.4.4 pre-installed with many features that are impor-
tant for embedded systems. Arcom embedded Linux is optimized for space but has all of the
commonly used applications and utilities. These include:

• A Telnet server and client
• NFS support
• FTP server and client that can be used to transfer files from host computer to the target

computer
• HTTP server. You can start using the HTTP server right from the beginning. A default

page is already present on the board.
• X-Windows support
• The inetd daemon that can be used to launch network applications on demand

In addition to these, Arcom embedded Linux has the following features that may be of
interest to the developers of embedded applications.

• Kernel 2.2.4
• Journaling Flash File System (JFFS2), which is a compressed file system used on flash

storage.



260 Chapter 8  •  Cross-Platform and Embedded Systems Development
• Glibc 2.1.3, which allows dynamically linked programs to run on the embedded
platform.

• X-Free version 4.0.2
• Ncruses library
• Bash shell
• Busybox which is a Swiss army knife of generally used UNIX utilities
• Networking suite and utilities
• Use management utilities
• Modules handling utilities
• Syslogd/klogd
• Terminal handling

Onboard flash memory is divided into three parts. Partition mounted on / is read-only at
the boot time and contains Linux system. Two other file systems /var and /var/tmp are
mounted as read-write at the boot time and can be used to store temporary files. In addition to
that, you can also use the removable flash card to store files. Bundled utilities on accompanying
disks can be used to re-install the operating system or add new components. In networked sys-
tems, you can also use a NFS server to add more storage space.

Arcom also provides RedHat 6.2 CD that you can use to install Linux on a PC. This PC
will be used as the development system or a host machine. The Arcom embedded Linux board
will act as the target system. This means that in addition to the single board computer with
Embedded Linux installed on it, you also get the Linux operating system to use as a develop-
ment platform.

8.6.2 Artesyn PM/PPC Mezzanine Card

The other embedded system used in the development of this book is Artesyn PM/PPC
mezzanine card that can be plugged into a carrier card. Artesyn also supplied the carrier card for
this purpose. It is a PowerPC 750 based card and provides the Ethernet and serial interfaces to
the outside world directly from the PMC (PCI Mezzanine Card). It contains 64 Mbytes of RAM,
I2C bus, general purpose timers, real-time clock, LEDs and so on. The board also contains flash
memory that can be used to store the operating system and utilities. It has a real-time clock and
PLD used to setup memory map The CPU runs at 333 MHz. Boot flash is used to store the oper-
ating system. The optional JTAG connector can be used to download and debug code.

As mentioned earlier, you need a career card to power up the PMC and Artesyn provides
you with a CC1000 PMC carrier card that can host up to two PMC. CC1000 can be placed into a
Compact PCI chassis that allows 6U cards to be plugged in.

More information can be found on the Artesyn web site http://www.artesyncp.com or by
sending an email to info@artesyncp.com.



References 261
8.7 References

1. Arcom web site at http://www.arcomcontrols.com
2. Artesyn web site at http://www.artesyncp.com
3. Embedded Linux web site at http://www.linux-embedded.org
4. Busybox for Embedded Linux at http://www.busybox.net/





C H A P T E R 9
Platform 
Independent 
Development with 
Java
n previous chapters most of the discussion centered around GNU devel-
opment tools and programming in C and C++ languages. This chapter

is devoted to Java development and describes how to use some Java tools
and a Java virtual machine.

As many of the readers already know, Java is a different language com-
pared to other compile-and-execute languages in that it needs a Java vir-
tual machine (JVM) to execute what is called byte code. Each platform
has its own implementation of the Java virtual machine. There are many
JVMs available on Linux platform in free and open source as well as com-
mercial domains. Some virtual machines are also available for embedded
Linux platforms that are very small in size and need little memory to exe-
cute. You can select a virtual machine based upon your requirements. Java
virtual machines are built on Java Language Specifications (JLS). Infor-
mation about JLS and books in downloadable format can be found at
http://java.sun.com/docs/books/jls/.

This chapter provides some information about how to use different devel-
opment tools on Linux. The most commonly available tools are Sun SDK
and GNU gcj compiler. Kaffe and Jboss are other very popular open
source development tools on Linux and these are introduced in this chap-
ter. However please note that this chapter is not a tutorial on Java lan-

I

263



264 Chapter 9  •  Platform Independent Development with Java
guage and if you are new to the language, you get help from many other
resources on the Internet as well as in print media.  Some of the most pop-
ular include Sun Java SDK, IBM Java SDK, Kaffe, and gcj. 

9.1 How Java Applications Work

Java is a sort of interpreted language. Any program you write in Java is first compiled to generate
byte code. Depending upon type of output, the byte code may be in the form of a Java application
or a Java applet. In the case of Java applications, you can directly invoke the Java virtual machine
to execute it. If the output type is an applet, it is usually loaded into a browser for execution.

9.1.1 Java Compiler

The Java compiler is used to build Java applications or applets from source code files. In
most of the cases, the compiler is invoked as javac command. It also uses standard class librar-
ies that are usually part of the Java distributions.

9.1.2 Java Virtual Machine

The purpose of the Java virtual machine is to execute Java code. In most cases, the virtual
machine is available as the command java. To run any application, you can just invoke the
java command with the application name as the command line argument.

9.2 Kaffe

Kaffe is one of the popular freely available implementations of the Java virtual machine. You
can download it from its web site http://www.kaffee.org. At the time of writing this book, ver-
sion 1.0.6 is available from the web site. I am using RedHat 7.1 for the development of this book
and this version is also part of the distribution. Most of the binaries are installed in /usr/bin
directory. The following command displays version information for Kaffe:

[root@desktop Java]# java -version
Kaffe Virtual Machine
Copyright (c) 1996-2000
Transvirtual Technologies, Inc.  All rights reserved
Engine: Just-in-time v3   Version: 1.0.6   
Java Version: 1.1
[root@desktop Java]#

Note that the actual Kaffe Virtual machine is present as /usr/bin/kaffe and /usr/
bin/java is simply a shell script like the following to invoke Kaffe.

#! /bin/sh
# Pretend Kaffe is Java
prefix=/usr
exec_prefix=/usr
exec /usr/bin/kaffe ${1+"$@"}



Kaffe 265
Kaffe also include class libraries associated with the Virtual machine. However, Kaffe is
not official Java, which is a registered trademark of Sun Microsystems. The open source nature
of Kaffe provides you with information about the internal implementation and workings of the
Java virtual machine.

Basic help on using the Kaffe virtual machine is available using the java or kaffe com-
mand without any argument. The kaffe command produces the following output.

[root@desktop /root]# kaffe

usage: kaffe [-options] class

Options are:

        -help                   Print this message

        -version                Print version number

        -fullversion            Print verbose version info

        -ss <size>              Maximum native stack size

        -mx <size>              Maximum heap size

        -ms <size>              Initial heap size

        -as <size>              Heap increment

        -classpath <path>       Set classpath

        -verify *               Verify all bytecode

        -verifyremote *         Verify bytecode loaded from 

                                network

        -noverify               Do not verify any bytecode

        -D<property>=<value>    Set a property

        -verbosegc              Print message during 

                                garbage collection

        -noclassgc              Disable class garbage 

                                collection

        -v, -verbose            Be verbose

        -verbosejit             Print message during JIT 

                                code generation

        -verbosemem             Print detailed memory 

                                allcation statistics

        -nodeadlock             Disable deadlock detection

        -prof                   Enable profiling of Java 

                                methods

        -debug *                Trace method calls

        -noasyncgc *            Do not garbage collect 

                                asynchronously

        -cs, -checksource *     Check source against class 

                                files

        -oss <size> *           Maximum java stack size

        -jar                    Executable is a JAR

  * Option currently ignored.

[root@desktop /root]#



266 Chapter 9  •  Platform Independent Development with Java
9.3 The Jboss Java Development System

The Jboss is probably the most popular open source Java development products suite and it pro-
vides services similar to Sun’s Java 2 Enterprise Edition (J2EE). You can download it from free
from http://www.jboss.org. The best thing about Jboss is that it is open source and free for use.
At the time of writing this book Jboss version 2.4.4 is the stable release. Since J2EE is a big plat-
form and this is not a programming tutorial text, you will learn only how to install the Jboss
package here.

Following is a step-by-step outline how to build Jboss on Linux system.

• Download the latest version jboss-all.tgz from its web site.
• Unpack it using the tar zxvf jboss-all.tgz command
• You must have Java SDK installed to build it and JAVA_HOME variable properly set. Use

the “export JAVA_HOME=/usr/java/j2sdk1.4.0/” command if you have
SDK version 1.4 installed. If you have any other environment, use appropriate command.

• Go to jboss-all directory.
• Run the following command and it should display a result like the one shown.

[root@conformix jboss-all]# ./build/build.sh -version
Ant version 1.4 compiled on September 3 2001
[root@conformix jboss-all]#

• Execute the build/build.sh init command.
• Run the build/build.sh command.
• Run Jboss using the following command. It will show a list of message as it starts

different processes.

[root@conformix jboss-all]# ./build/build.sh run-jboss
Searching for build.xml ...
Buildfile: /opt/jboss-all/build/build.xml

_buildmagic:init:

_buildmagic:init:local-properties:

_buildmagic:init:buildlog:

configure:
     [echo] groups:  default
     [echo] modules: 
jmx,common,system,j2ee,naming,management,server,security,messa
ging,pool,connector,cluster,admin,jetty,varia,jboss.net,iiop

init:

run-jboss:



Java 2 SDK 267
     [echo] Starting JBoss (redirected /opt/jboss-all/build/
run.log) 

run-jboss-check-os:

_buildmagic:init:

_buildmagic:init:local-properties:

_buildmagic:init:buildlog:

configure:
     [echo] groups:  default
     [echo] modules: 
jmx,common,system,j2ee,naming,management,server,security,messa
ging,pool,connector,cluster,admin,jetty,varia,jboss.net,iiop

init:

run-jboss-unix:

If everything goes well, the startup will be successful. You can see a log of messages in the
build/run.log file. You can also run Jboss using the run.sh script.

9.4 Java 2 SDK

Java SDK is distributed by Sun Microsystems. There are two main versions of the SDK. The
Standard Edition or J2SE is introduced in this book. The Enterprise Edition or J2EE is the pre-
mier product and it is comparable to Jboss discussed in this book. Please note that neither of
J2SE nor J2EE are open source products. You have a limited license to use these. Please go
through the license terms and conditions if you are inclined towards using Java SDK.

At the time of writing this book, Version 1.4 of the SDK is available.

9.4.1 Java 2 SDK Standard Edition

The latest version of Java SDK released by Sun Microsystems is 1.4 at the time of writ-
ing this book. There are some new features added to this version. Some important features are
listed here.

9.4.1.1 Non-blocking I/O
After a long waiting period, a non-blocking I/O library is finally added to the SDK as

java.nio package. Non-blocking I/O is important when you don’t want to create threads for
each connection in large network application. Creation of threads is very expensive compared to
non-blocking I/O where you can open many I/O streams and use mechanisms similar to
poll() and select() which are available with C language since long. Using this mecha-
nism one thread may handle several connections, for example in the case of a web server.



268 Chapter 9  •  Platform Independent Development with Java
It is interesting to note that a non-blocking I/O library was available in the open source
before it is included in SDK version 1.4. You can find more information about this open source
implementation at http://www.cs.berkeley.edu/~mdw/proj/java-nbio/.

9.4.1.2 Security Enhancements

Many new features have been added for security enhancements to the SDK and some
existing features are refined. These features include Java Certification Path API, Cryptography,
Java Authentication and Authorization Service security extensions, GSS-API with Kerberos
support and so on.

9.4.1.3 Web Services

J2SE version 1.4 lays foundation for XML-based web services. Now the XML is part of
the core platform which allows building interoperable web applications and services.

Different building blocks for Java platform standard edition version 1.4 are shown in Fig-
ure 9-1 taken from the Sun Microsystems web site.

Figure 9-1 Building blocks of J2SE version 1.4.



Java 2 SDK 269
9.4.2 Getting and Installing Java SDK from Sun

You can download the current version from http://java.sun.com. The file is available as
j2sdk-1_4_0-linux-i386-rpm.bin. The best way is to copy this file to a temporary
directory and then install it from there. I have copied this file into the /download directory
where the first step is to make it executable using the following command:

chmod a+x j2sdk-1_4_0-linux-i386-rpm.bin

Then you can execute this file just by typing in the following command:

./j2sdk-1_4_0-linux-i386-rpm.bin

It will display the license agreement and you have to type in  “yes” to agree to this
license agreement. After that the self-extracting file will extract j2sdk-1_4_0-fcs-
linux-i386.rpm file that you can install using the rpm package with the help of the fol-
lowing command:

rpm --install j2sdk-1_4_0-fcs-linux-i386.rpm

If you have any previous version of SDK installed on your system, you should un-install it
first. To list files installed by the rpm package, you can use the following command.

rpm --query -l j2sdk-1.4.0-fcs|more

By default, files are installed under the /usr/java/j2sdk1.4.0/ directory. The /
usr/java/j2sdk1.4.0/bin directory contains all binary files for the SDK.

9.4.3 Creating jar Files

The jar utility is used to create Java-class archives. It can take multiple class files, com-
press these and put them into a single .jar file. The syntax for using the jar utility is similar
to the tar program widely used on Linux and other UNIX systems. The following command
creates a file myclasses.jar from two class file first.class and second.class.

jar cvf myclasses.jar first.class second.class

You can also add or extract classes from the existing .jar files. The following command
adds third.class to myclasses.jar archive.

jar uf myclasses.jar third.class

The following command will extract second.class from the myclasses.jar file.

jar x second.class

You can also use wild cards with the jar command. If you use directory names, all files
in that directory are added to the .jar file.

To list all files in a .jar file, use t command line option. The following command lists all
files in myclasses.jar file.

jar tf myclasses.jar



270 Chapter 9  •  Platform Independent Development with Java
9.5 Building Java Applications

A Java application is a compiled Java program that can be executed using a Java virtual machine.
There are three basic steps to create a Java application. These steps are:

1. Create source code.
2. Compile it.
3. Run it using the virtual machine.

Let’s see how you can go through these steps.

9.5.1 Creating Source Code File

Like any other programming language, Java source code files are created using an editor.
These source code files contain Java instructions. The simplest source code file contains an
instruction to print the message “Hello World”, similar to your first C program. Please note that
Java examples in this chapter are just to demonstrate how to use development tools.

The program that prints the “Hello World” message is shown below:

class HelloWorld {
 public static void main(String[] args) {

 System.out.println("Hello World!"); 
 }

}

The program must have a function main(), like C programs. The program may be saved
as HelloWorld.java text file.

Note that you can use any editor to create the source code file. I would recommend using
Emacs which you have already learned in Chapter 2. Emacs understands Java programming lan-
guage syntax. There are other GUI editors and integrated development environment (IDE) pack-
ages that you can use to create Java source code.

9.5.2 Compiling Java Code

The Java compiler will compile the Java code into an executable. The following command
creates an output file HelloWorld.class from source code file HelloWorld.java.

/usr/java/j2sdk1.4.0/bin/javac HelloWorld.java

Note that the output file name is the same as the name of the class that contains function
main().

You can check the type of the output file type by using the file command. The following
command shows type of the output file as compiled class data.

[root@desktop /root]# file HelloWorld.class
HelloWorld.class: compiled Java class data, version 46.0
[root@desktop /root]#



Building Applets 271
Note that in large projects, there may be many source code files, class files and other
object code files to generate the output executables. In such cases, you usually don’t use the Java
compiler on the command line to compile individual files. The best way to carry out such tasks
is to use the make utility that you have already learned previously in this book.

9.5.3 Running Java Applications

Java applications run on the top of Java virtual machine. The “Hello World” application
that you created in the previous section can be executed using the Java virtual machine. 

[root@desktop /root]# java HelloWorld

Hello World!
[root@desktop /root]#

Note that when you run this application, you don’t use HelloWorld.class on the
command line. If you do, the Java virtual machine will not be able to execute the command. I
have seen many messages in mailing lists and newsgroups from people who make this mistake
and then wonder why they get error messages.

9.5.4 Using gcj to Build Java Applications

The gcj compiler is part of the GCC compiler suite. It is able to compile the Java lan-
guage programs. One benefit of compiling Java programs with gcj is that you can create binary
executable applications instead of Java byte code. These applications can be executed on Linux
without the need of Java virtual machine. The downside is that you can execute applications
built this way only on the platform for which you compiled. This is in contrast to the basic Java
notion of compile once, run everywhere. Detailed information about using gcj is present at its
web site http://gcc.gnu.org/java/.

You can use GNU debugger for programs compiled with gcj, which is a big advantage
for many programmers who are familiar with gdb. To be able to compile a program with gcj,
you must have libgcj available on your system. The libgcj provides class libraries, byte
code interpreter and garbage collector at the runtime. Latest version of libgcj is available
from ftp://sourceware.cygnus.com/pub/java/ and method of its compilation and installation is
discussed in Chapter 3. Refer to Chapter 3 for a description of how to compile programs with
gcj compiler.

9.6 Building Applets

Like any Java applications, applets are also compiled using the Java compiler. The only differ-
ence is that a Java applet is not like a standard application and can be run only inside a browser.
Following is a source code for the applet HelloWorld.java that is used as an example here.
The applet, when compiled with the Java compiler results in HelloWorld.class file, which
is Java byte code.



272 Chapter 9  •  Platform Independent Development with Java
import java.applet.*;
import java.awt.*;

public class HelloWorld extends java.applet.Applet {

    public void paint (java.awt.Graphics gc) {
  gc.drawString("Hello World", 100, 90);
    }
}

The main thing to note here is that compiling Java applets is not different in any way from
compiling Java applications. The only difference between a Java application and a Java applet is
in the source code.

9.7 Testing Applets with Netscape

As mentioned earlier, a Java applet must run inside a browser. For this you have to write an
HTML file. The following HTML file incorporates the applet and can be loaded to a browser
like Netscape.

<html>
<head>
</head>
<body>

   <applet code=HelloWorld width=400 height=300>
   </applet>
</body>
</html>

When you load this file in the browser, the browser will execute the Java code and you can
see the “Hello World” message printed in the browser window. Applets can also be viewed by
applet viewers.

9.8 Jikes for Java

Jikes is an open source compiler for Java from IBM. It is fully compatible with the Java Lan-
guage Specifications. You can download it from its web site at http://oss.software.ibm.com/
developerworks/opensource/jikes/. Jikes version 1.15 is available right now. You have to down-
load and install it the usual way. Typical steps are:

• Download it from its web site.
• Uncompress it using tar –zxvf jikes-1.15.tar.gz command.
• Go to jikes-1.15 directory.
• Run the configure script using the ./configure command.
• Run the make command.
• Run the make install command.



Jikes for Java 273
The Jikes FAQ can also be found on the above-mentioned web site. Since Jikes is a com-
mand line compiler, it can be used in Makefiles for large projects. The compiler is invoked using
the jikes command. The following command lists available options with Jikes:

[root@conformix jikes-1.15]# jikes

Jikes Compiler
(C) Copyright IBM Corp. 1997, 2001.
- Licensed Materials - Program Property of IBM - All Rights 
Reserved.

use: jikes [-bootclasspath path][-classpath path][-d dir][-
debug][-depend|-Xdepend][-deprecation][-encoding encoding][-
extdirs path][-g][-nowarn][-nowrite][-O][-sourcepath path][-
verbose][-
Xstdout][++][+B][+c][+OLDCSO][+D][+DR=filename][+E][+F][+Kname
=TypeKeyWord][+M][+P][+Td...d][+U][+Z] file.java...

-bootclasspath path prepend path to CLASSPATH
-classpath path     use path for CLASSPATH
-d dir              write class files in directory dir
-debug              no effect (recognized for 
                    compatibility)
-depend | -Xdepend  recompile all used classes
-deprecation        report uses of deprecated features
-encoding encoding  use specified encoding to read source
                    files
-extdirs path       prepend all zip files in path to
                    CLASSPATH
-g                  debug (generate LocalVariableTable)
-nowarn             do not issue warning messages
-nowrite            do not write any class files
-O                  do not write LineNumberTable
-sourcepath path    also search for source files in path
-verbose            list files read and written
-Xstdout            redirect output listings to stdout
++                  compile in incremental mode
+B                  do not invoke bytecode generator
+c                  do not discard comments from lexer 
                    output
+OLDCSO             perform original Jikes classpath order
                    for compatibility
+D                  report errors immediately in emacs-form 
                    without buffering
+DR=filename        generate dependence report in filename
+E                  list errors in emacs-form
+F                  do full dependence check except for Zip 
                    and Jar files



274 Chapter 9  •  Platform Independent Development with Java
+Kname=TypeKeyWord  map name to type keyword

+M                  generate makefile dependencies

+P                  pedantic compilation - issues lots of 

                    warnings

+Td...d             set value of tab d...d spaces; each d 

                    is a decimal digit

+U                  do full dependence check including Zip 

                    and Jar files

+Z                  treat cautions as errors

Version 1.15 - 26 Sept 2001

Originally written by Philippe Charles and David Shields 

of IBM Research, Jikes is now maintained and refined by the

Jikes Project at:

http://ibm.com/developerworks/opensource/jikes

Please consult this URL for more information and to learn 

how to report problems.

[root@conformix jikes-1.15]#         

The following command will compile the hello.java program to create the
hello.class output.

jikes hello.java -classpath /usr/java/j2sdk1.4.0/jre/lib/
rt.jar

Note that you must have core classes installed on you system to use the compiler. In the
above example, the classpath is mentioned on the command line.

9.9 Miscellaneous

This section contains a brief summary of information and links to some other fields related to
Java. With major industry players like Sun and IBM behind Java technologies, it is being pushed
in many different areas.

9.9.1 Embedded Java

Sun has introduced Java Embedded Server, which enables developers to build embedded
applications based upon the Java platform. In addition to other things, it includes a Java imple-
mentation of SSL. Information about Embedded Java is available at http://java.sun.com/prod-
ucts/embeddedjava/.

9.9.2 Real Time Java

Efforts are being made to implement a real-time Java virtual machine. Specifications for
real-time Java can be found at http://www.rtj.org/. The specifications include information about
how to manage memory, interrupts, scheduling, garbage collection and so on.



References 275
9.9.3 Wireless Applications

Java 2 Micro Edition or J2ME from Sun Microsystems introduces Wireless Java Technol-
ogy. Information about using Java technology in wireless applications can be found at http://
java.sun.com/products/embeddedjava/ .

9.10 References

1. Kaffe is available from its web site http://www.kaffe.org
2. Most of the Sun Java information is available from http://java.sun.com
3. Non-blocking library at http://www.cs.berkeley.edu/~mdw/proj/java-nbio/
4. The Jboss at its web site http://www.jboss.org/
5. The Jboss information at sourceforge.net http://sourceforge.net/projects/jboss/
6. Java Language Specifications at http://java.sun.com/docs/books/jls/
7. The Jikes compiler at http://oss.software.ibm.com/developerworks/opensource/jikes/
8. Information about gcj compiler at http://gcc.gnu.org/java/
9. The libgcj library from ftp://sourceware.cygnus.com/pub/java/

10. Real-time Java specifications at http://www.rtj.org/
11. Embedded Java at http://java.sun.com/products/embeddedjava/





A P P E N D I X  A
Typical Hardware 
Requirements for a 
Linux Development 
Workstation
here are many factors that go into selecting an appropriate hardware specification for any
given task; and the final specification will vary greatly depending on a particular environ-

ment, budget and time available to accomplish the task. In general, however, the things that need
to be considered are: the speed of the processor, the amount of memory, size of the local hard
drives, network connectivity, the video card and the display. Depending on the development
projects to be undertaken, additional devices such as modems, sounds cards and the like will
also need to be considered.

The three situations that we will consider are a single developer working on a project
alone, a distributed environment in which multiple developers are accessing a single machine via
remote log-on (telnet, ssh or X-Windows), and a distributed environment utilizing a software
repository.

A.1 Parts of a Workstation

Computers consist of many parts working in conjunction with each other to turn fluctuations in
current into meaningful output on the display screen. Much of the work of the computer takes
place using the motherboard, the processor(s) and the computer’s memory. These components
provide the “horsepower” that largely determines how fast the computer runs.

Working in conjunction with these parts are things like the hard disk drive that provides
the internal long-term storage. There is also the video card that is used to convert the information
in the computer into something that is readily usable to us mere mortals and the modem or net-
work interface card that permit computers to communicate with one another.

T

277



278 Appendix A  •  Typical Hardware Requirements for a Linux Development Workstation
Externally there are things such as the keyboard and the mouse that permit the user to
enter data into the system, and the monitor which enables the computer to present information in
a way that the operator can easily understand.

When evaluating a new computer system, remember that the motherboard, the processor
and the memory determine how fast your computer will be able to perform the tasks required of
it.

The hard disk drives, the network and video cards, etc. determine what and how much
your computer will be able to do. However, speed of hard drive is also a major factor in overall
speed of compilation in case your computer is low on memory.

Lastly, the input and output devices determine how much style your computer will have
while it goes about doing whatever it was told to do.

While there is some overlap in function, these definitions provide a general outline of the
parts of the computer and can give us a basis for determining a base-line system.

A.2 Section 1—The Processor and Memory

Systems are available with one or multiple processors. Random Access Memory (RAM) is pres-
ently cheap and easy to find. Processor speed seems to double every eighteen months and almost
as soon as a new system is purchased, it  becomes obsolete.

The speed and the number of processors will determine the sheer raw power that a com-
puter has. Speed is measured in megahertz (MHz) and more is always better.

The memory that a system has installed will also effect the overall speed of the computer.
If the system runs out of physical memory, it will, if the space has been set aside for it, start pag-
ing memory to disk. This is the process of writing a portion of memory that has not been used
recently (in computer terms that could mean milliseconds) to the disk in order to free the mem-
ory up for more immediate usage. When the information on the disk is required again, the com-
puter frees up physical memory and reads the data from the disk into that area.

As the hard disk drive is several orders of magnitude slower than simply reading the infor-
mation from memory, this slows down the entire computer as it waits for the information to be
written and read from the drive. If your computer sits idle while there are large amounts of
access to the disks, it is possible that the computer is low on memory and swapping to the disk.
Adding more memory to the system should speed it up.

A.3 Section 2—The Disk Drive

At present, there are two main types of drives available on the market for personal computers:
IDE and SCSI (pronounced “scuzzy”). The first and most common is the IDE drive. This is the
type sold with most off-the-shelf workstations. A standard computer will be able to support up to
four IDE drives at a time. These drives may be hard drives, CD-ROMs, DVD drives or even tape
drives. Once the maximum of four devices has been installed into the computer, no more may be
added until one is removed. This and the fact that IDE drives have traditionally been slower than



Sizing the Task 279
SCSI drives are the main limitations in using this type of device. They are however, cheaper and
somewhat easier to install than SCSI drives.

SCSI devices may also be used for mass storage, CD-ROM and DVD drives, but SCSI
devices can also include scanners, printers and other devices as well.

Up to seven devices may be attached to a single SCSI interface card inside the computer
and a computer may have more than one interface card. The total number of SCSI devices
installed on one computer is limited to the number of available interface slots on the mother-
board, times seven. On most modern workstations and servers this will allow a total number of
SCSI devices ranging from seven to over thirty. New SCSI standards allow more devices to be
connected to a single SCSI adapter.

SCSI drives are often configured in a Redundant Array of Inexpensive Disks (RAID)  that
can be used to increase the reliability or the speed of the system. The trade-off in this configura-
tion is a loss of available drive space. The decrease in available space may be anywhere from
negligible to 50% of the total space on the drives depending on the RAID level used.

A.4 Sizing the Task

When developing requirements for any computer system, it is important to understand exactly
what the system will be used for and how it will be used. Once the purpose of the computer is
understood, potential bottlenecks can be located and the potential for these to cause problems
can be minimized or eliminated.

A.5 Stand Alone Development Workstation

In this configuration a workstation will be used to develop applications locally. The source code
will be kept on the local hard drive and the editing and compiling will take place on the same
machine.

The main concern with this configuration would be in the area of processor and memory,
and in having a backup system in place to ensure that data is not lost in the even of a hardware
failure.

A typical developer’s machine will have a processor in the 800+ MHz range and, depend-
ing on the scope of the application being developed, may have more than one processor. The
available memory will again depend on the type of application be written with typical machines
having in excess of 256 MB of memory and, in the event that large amounts of data have to be
manipulated, more than a gigabyte of memory.

The Linux OS, with development tools, can be installed utilizing approximately 1
gigabyte (GB) of disk space. The source code for the OS, which represents a decade of work
from people all over the globe, can be installed in less than 50 megabytes of space. A single
developer working full-time would have to be very productive in order to fill up most drives
available today as these typically come in 60GB sizes. Hard drive space is more often used for
development libraries and tools, separate runtime environments, etc. 



280 Appendix A  •  Typical Hardware Requirements for a Linux Development Workstation
Again, disk size may have to be increased if large volumes of data are being used in the
testing of the application.

These estimates for simply generic in nature and would be a good starting place for new
equipment purchases. It is entirely possible for productive development to take place on older,
used equipment in the sub 300 MHz range. It depends entirely upon the application being devel-
oped and the time available to accomplish the task.

However, with the cost of equipment constantly falling, it is often well worth the invest-
ment in newer equipment in order to reduce the compile time of the application.

A.6 Distributed Development—Remote Access

This example supposes that multiple developers will be accessing a remote server and develop-
ing on that platform. The source code will reside on the server and the server will be used to
compile the programs.

In this instance, the requirements for the workstations will be modest compared to the pre-
vious example, but the need for central server is added. This server will need to be far more pow-
erful than the previously specified workstation.

The server should be as fast as the budget and circumstances permit, and the number of
simultaneous developers using the platform should be considered. You will almost certainly
want a server with several processors.

It will require more disk space, preferably with RAID enabled and the most utilized file
systems spread out over several physical disks. A complete backup strategy should be in place
and tested on a regular basis in order to ensure that the data is secure and can be restored in the
event that any problems should arise.

This server will require a large amount of memory as well. Several gigabytes is not unrea-
sonable for a small number of developers. Several developers trying to compile at once can
quickly drain the system’s resources.

If the remote access strategy includes using a secure shell (ssh) to connect to the server,
additional processing power will be required due to the encryption overhead.

On the other hand, the actual workstation in this example would be comparatively modest.
Most workstations capable of handling word processing and e-mail tasks should be up to han-
dling this type of load with little difficulty. All of the storage, access and intensive processor use
will take place on the server.

A.7 Distributed Development—Source Code Repository

This last example is a combination of the other two designs, and has probably supported more
Open Source developers than any other model. In this design, a relatively small-scale server is
used as a software repository and individual workstations similar to the one in the first example
are used to provide the actual processing power.

The main requirement for the server is a large disk storage space and a modest amount of
memory. CVS, the source code control application used in this book, as well as others, can use



Summing Up 281
quite a bit of memory while comparing old and new versions of files with one another. As a
result, the server should have at least 256 MB of memory and potentially much more if you
expect to use large source code files.

The server will not be responsible for compiling the application, so a fast processor is not
necessary.

What would be helpful, however, would be to ensure that the server has a well-tuned net-
working subsystem, and possibly some redundancy in that area as well. Additionally, if required
by a particularly active source code repository, multiple NICs (Network Interface Cards) may be
set up on different subnets to help reduce any network congestion that might arise.

As previously mentioned, individual workstations will resemble the ones listed in the first
example in this section—the stand-alone developer workstation.

A.8 Summing Up

While there is no way to accurately give minimal and optimal recommendations for any and all
software development projects, these guidelines should give you an understanding of some of
the issues that arise in selecting the servers and workstations necessary to provide development
support.





I N D E X
A

-a option:
nm utility, 230–31
objdump utility, 235–36
strings utility, 237

Actions, jCVS, 194–95

Ada, 44
add option, CVS, 186–87

Adding break points, 156–58
Aegis, 13
Applets:

building, 271–72
testing with Netscape, 272

Applications, Java:
building, 270–71
running, 271
using gcj compiler to build, 271

ar utility, 13, 226–28
Architecture, creating, 4

Archive, 226
Arcom SBC-GX1 board, 258–60
Artesyn PM/PPC mezzanine card, 260

Assembler code, creating, 62
Assemblers, 10, 12, 43–44, 91–92, See also 

Compilers
GNU assembler, 44

Automatic indentation, VIM, 40–41

B

-b option:
cscope , 221
diff command, 217

-B option, diff command, 217
-bad option, indent program, 209
-bap option, indent program, 209
-bbb option, indent program, 210
Berkley style, 208–9
Block reordering pass, 46
Branches, 8
break command, GDB, 141, 146, 156–58
Break points, GDB:

adding, 156–58
continuing from, 158
deleting, 160
disabling, 159
enabling, 159–60

Build process, 101

C

C language, and GCC, 45
283



284 Index
-c option:
cscope, 221
diff command, 218

C++ code, compiling, 66
C++ language, and GCC, 45
C90/C95/C99, 45
Caldera Inc., 16
cbrowser utility, 203, 221
ccl compiler, 70
C_INCLUDE_PATH environment variable, 

55, 58
clean target, 104–5
collect2 program, 70
commit option, CVS, 186
Compilation:

assembling a program, 91–92
compiling a program, 53–91
compiling to intermediate levels, 61–62

creating assembler code, 62
with debug support, 63–64
of Fortran programs, 96–97
include files, 92
libraries:

creating, 92
standard libraries, 93–94

linking a program, 91
with optimization, 63–64
of Pascal programs, 94–96

Free Pascal (fpc), 95–96
GNU Pascal, 96

simple, 59
of source code for languages other than C, 

66–70
C++ code, 66
Java code, 68–70
Objective C code, 66–67

static and dynamic linking, 65–66
warning and error messages, handling, 92

COMPILER_PATH environment variable, 
55

Compilers, 10, 12, 43–91, See also Assem-
blers

compilation process, stages in, 44

default file types, 60–61
g77 compiler, 96–97
GCC (GNU Compiler Collection), 47

GCC 3.x new features, 46–47
GNU C library, 45
languages supported by, 44–45
and standard libraries, 45

GNU C compiler, 43, 135
installing, 48–58
languages supported by, 43

Oberon, 98
Ruby, 98
Smalltalk, 98

Concurrent Versions System (CVS), 7, 12, 
175–201

add option, 186–87
checkout command, with -r option, 189
client, using, 180–81
commit option, 186
configuring, 177–79
conflict resolution, 185–86
diff option, 184–85
differences, determining, 184–85
installing, 176–80
jCVS, 190–96

actions/verbs, 194–95
checking out a project, 191–93
client, configuring, 191
editing projects, 195–96
installing, 190
server definitions file, setting up, 

193–94
using, 191–96
WorkBench, 196

local repositories, 181–82
managing, 176–80
policies, 176
project:

adding files to, 186–87
checking back in, 186
checking out, 182–83
finding the status of, 183–84
importing into the repository, 179–

80
removing files from, 187–88
renaming files within, 188



Index 285
project management and communication, 
176

remote repositories, 182
remove option, 187–88
secure remote access with, 199–201
Secure Shell (ssh) access, 199–201
status option, 183
tags and releases, 189
update option, 185–86, 188
using Emacs with, 196–99

pcl-cvs, 197–99
working copy:

removing, 188–89
configure script, GCC, 49, 52
continue command, GDB, 138, 144, 158
CPLUS_INCLUDE_PATH environment 

variable, 55
cproto utility, 222–23
Cross compilation tools, 247–50

BDM (background debugging mode), 
249–50

cross debugger, 248
building, 250

in-circuit emulators, 249
JTAG (Joint Test Action Group), 249–50
software emulators, 248

Cross-platform development, 239–61
Arcom SBC-GX1 board, 258–60
Artesyn PM/PPC mezzanine card, 260
development cycle, 241–43

building on the host machine, 241–
42

remote debugging, 243
transfer to the target machine, 242–

43
writing code, 241

hardware used for, 258–60
host machine, 240
native and cross compilers, 241
target machine, 240

cscope utility, 203, 219–21
cscope.out symbol file, 219
initial screen, 219
options used with, 221
using, 219–21

ctags utilities, 18
Cut and paste commands, Emacs, 24
CVS, See Concurrent Versions System

(CVS)
cvs diff command, 215
$CVSEDITOR environment variable, 180
CVSROOT variable, 181–82
CVS_RSH environment variable, 181

D

-d option:
ltrace utility, 224
objdump utility, 236

Davis, John E., 18
ddd debugger, 172
Dead code elimination pass, 46
Deadlines, creating, 14
Debian Project, 16
Debuggers, 5, 10, 12

ddd debugger, 172
KDE debugger, 169
xxgdb debugger, 173–74

--debugging option, objdump utility, 236
Default goal, 104
delete command, GDB, 160
Deletion commands, Emacs, 21
Dependencies, resolving, 15
Development team, managing, 14, 15
diff option, CVS, 184–85
diff utility, 203, 215–18

defined, 215
diff3 utility, 218
oher forms of, 218
options used with, 217–18
sdiff utility, 218
using, 215–18

Directives, make utility, 131–33
ifdef directive, 132
ifeq directive, 132
ifndef directive, 133
ifneq directive, 132

disable command, GDB, 159



286 Index
disable display command, GDB, 154
display command, GDB, 153–54
Documentation, 1
Dynamic linking, 65–66

E

e l command, sdiff utility, 218
E-mail and collaboration, 13
e r command, sdiff utility, 218
echo command, suppression of, 111
$EDITOR environment variable, 180
Editors, 10, 11

Emacs, 11, 17–32, 135
extensibility, 17–18
folding code, 18
Jed, 11, 18, 32–36
syntax, 18
tag support, 18
VIM, 37–42
what to look for in, 17–18

Elisp, 17
Emacs, 11, 17–32, 135

auto-completion option, 23
basic concepts, 20–24
buffers, 24–25
c-mode commands, 26
commands related to TAGS, 29
compiling with, 30–31

commands, 31
cut and paste commands, 24
defined, 18–19
deletion commands, 21
file commands, 22
initial screen, 19
language modes, 26
movement commands, 20–21
search and replace commands, 22–24

options, 23
starting from within X-Windows, 19
tags, 27–29
tags-search function, 28
tutorial, 20
using with CVS, 196–99

pcl-cvs, 196–99

windows, 24–25
commands, 25

Xemacs, 32
Embedded Linux, 245
Embedded systems, 239, 243–61

Arcom SBC-GX1 board, 258–60
Artesyn PM/PPC mezzanine card, 260
defined, 243–44
development systems for, 246–47
everyday examples of, 244
and moving parts, 244
operating systems, 245
and power consumption, 245
software applications for, 246
target system hardware, 246–47

real-time, 247
testing methodology, 247
and timing/clock-cycle changes due to 

code optimization, 65
Empty commands, 107
enable command, GDB, 159–60
enable display command, GDB, 154
End-user manuals/guides, 9
Environment variables, GNU C compiler:

C_INCLUDE_PATH, 55
COMPILER_PATH, 55
CPLUS_INCLUDE_PATH, 55
GCC_EXEC_PREFIX, 55
LD_LIBRARY_PATH, 55
LIBRARY_PATH, 55
OBJC_INCLUDE_PATH, 55
TMPDIR, 54

etags command, 27
etags utilities, 18
Explicit rules, make utility, 118

F

-f option:
ltrace utility, 224
objdump utility, 236
sed utility, 215
strings utility, 237

-f reffile option, cscope , 221
file command, GDB, 137, 166



Index 287
File commands, Emacs, 22
finish command, GDB, 144–46, 166–68
Folding code, 18
Fortran programs:

compilation of, 96–97
and GCC, 45, 45–46

FQDN (fully qualifed domain name), 194, 
200

frame command, GDB, 146
Free Pascal (fpc), 95–96
Functional testing, 7

G

g77 compiler, 96–97
gcc command, 55–56

machine dependent options, 77–90
AMD29K options, 79
ARC options, 87
ARM options, 79–80
AVR options, 88
Clipper options, 86
Convex options, 78–79
DEC Alpha options, 85–86
H8/300 options, 86
HPPA options, 84–85
i386 options, 84
IA-64 options, 89
Intel 960 options, 85
M32R/D options, 80
M68hclx options, 77–78
M88K options, 80–81
M680x0 options, 77
MCore options, 88–89
MIPS options, 83–84
MN10200 options, 80
MN10300 options, 80
NS32K options, 88
RS/6000 and PowerPC options, 81–

82
RT options, 82–83
S/390 and zSeries options, 89
SH options, 86
SPARC options, 78
System V options, 87
TMS320C3x/C4x options, 87

V850 options, 87
VAX options, 78
Xtensa options, 89–90

options, 68–70
assembler option, 76
C language options, 70–71
C-only warning options, 73
C++ language options, 71–72
code generation options, 90–91
debugging options, 73–74
directory options, 77
language independent options, 72
linker options, 76–77
machine dependent options, 77–90
Objective-C language options, 72
optimization options, 74–75
overall options, 70
preprocessor options, 76
target options, 77
warning options, 72–73

GCC (GNU Compiler Collection), 12, 47
file types used with, 60–61
GCC 3.x new features, 46–47

GCC version 3.0.1 improvements, 47
GCC version 3.0.2 improvements, 47
GCC version 3.0.3 improvements, 47
improved documentation, 47
language improvements, 46
new language support, 46
new targets, addition of, 47
optimization improvements, 46
target specific improvements, 47

GCC_EXEC_PREFIX environment vari-
able, 55

gdb, See also GNU debugger
common commands, 137–38
downloading/building, 168
final installation, 168
installing, 168
running on host using serial port, 253–54
sample gdb session, 138–41
using with GNU Emacs, 164–65

gdbserver program, 250–58, 253
attaching to a running process using, 255
running on host using TCP/IP, 252–53



288 Index
running on target using serial port, 253
running on target using TCP/IP, 251–52
serial cable, 254
step-by-step procedures, 250–51
using with GNU debugger, 250–55

glibc, 45
Global Null pointer elimination test elimina-

tion pass, 46
GNU assembler, 44
GNU binary utilities, 203, 226–38

addr2line utility, 237–38
ar utility, 226–28
ldd utility, 238
nm utility, 228–31

listing debug symbols, 231
listing line numbers in source files, 

230–31
objcopy utility, 231–32
objdump utility, 232–36
ranlib utility, 228
size utility, 236
strings utility, 237
strip utility, 228–31

GNU C compiler, 43, 135
building/installing, 48–54

configure script, running, 49–51
final install, 52
make bootstrap command, 51
make install command, 52
typical directory tree after installa-

tion, 52–54
unpacking source code, 48–49

and development tools installations, 58
downloading the latest version, 48
environment variables, 54–56

C_INCLUDE_PATH, 55
COMPILER_PATH, 55
CPLUS_INCLUDE_PATH, 55
GCC_EXEC_PREFIX, 55
LD_LIBRARY_PATH, 55
LIBRARY_PATH, 55
OBJC_INCLUDE_PATH, 55
TMPDIR, 54

installing, 48–58
languages supported by, 43

location of include files, setting, 57–58
location of libraries, setting, 56–57
manual pages path, setting, 58
PATH variable, setting, 56
post-installation tasks, 56–58

GNU debugger (GDB), 12, 135–74
break command, 141, 146, 156–58
break points:

adding, 156–58
continuing from, 158
deleting, 160
disabling, 159
enabling, 159–60

continue command, 138, 144, 158
controlling execution, 144–46
defined, 136
delete command, 160
disable command, 159
disable display command, 154
display command, 153–54
enable command, 159–60
enable display command, 154
file command, 137
files and shared libraries, 163
finish command, 144–46, 166–68
frame command, 146
getting started with, 136–43

common gdb commands, 137–38
passing command-line arguments to 

program being debugged, 
141–43

sample gdb session, 138–41
info display command, 154
kill command, 144
list command, 141
next command, 137–38, 141, 144, 146
object file formats supported by, 136
optimized code:

debugging, 160–62
print expr command, 138
pwd command, 154
quit command, 137–38, 141, 144
return command, 144
run command, 138, 142-44
running processing:

debugging, 165–68



Index 289
set command, 155–56
set env command, 155
show command, 143
show environment command, 154–55
show path command, 154
stack, dealing with, 146–51
step command, 137–38, 144–46
sum.c program, 151
undisplay command, 154
unset env command, 155
using stubs with, 256
variables:

automatically displaying with each 
command, 153–54

displaying, 151–56
environment variables, 154–55
modifying, 155–56
program, 151–52

GNU Emacs, 12
GNU make utility, See make utility
GNU Pascal, 96
GNU Public License (GPL), 190
GNU style, 206–7

H

-h option:
ltrace utility, 224
objdump utility, 233–34

Hardware platform, 10–11
selection criteria for, 13–14

hexdump utility, 13

I

-i option, diff command, 217
IDE drives, 278–79
ifdef directive, 132
ifeq directive, 132
ifndef directive, 133
ifneq directive, 132
Implicit rules, make utility, 118–19
indent utility, 203, 204–14

blank lines/comments, 209–10
braces, formatting, 210–11
coding styles, selecting, 206–9

declarations, formatting, 211–12
efficient use of, 206
getting started with, 205–6
long lines, breaking, 212–13
options summary, 213–14

.indent.pro, 206
info break command, 159–60
info display command:

GDB, 154

J

Java:
applets:

building, 271–72
testing with Netscape, 272

applications:
building, 270–71
running, 271
using gcj compiler to build, 271

compiler, 264
Embedded Java, 274
and GCC, 45
Java 2 Micro Edition (J2ME), 275
Java 2 SDK, 267–69
Java code, compiling, 270–71
Java Virtual Machine (JVM), 263–64
Jboss, 266–67
Jikes, 272–74
Kaffe, 264–65
platform independent development with, 

263–75
real-time, 274
source code file:

creating, 270
wireless applications, 275

Java 2 Micro Edition (J2ME), 275
Java 2 SDK, 267–69

Enterprise Edition, 267
getting/installing from Sun Microsys-

tems, 269
jar files, creating, 269
Standard Edition, 267–68

non-blocking I/O, 267–68
security enhancements, 268
Web services, 268



290 Index
Java code, compiling, 68–70
Java Runtime Environment, 190
Java Virtual Machine (JVM), 263–64
Jboss, 266–67
jcl program, 70
jCVS, 190–96

actions/verbs, 194–95
checking out a project, 191–93
client, configuring, 191
editing projects, 195–96
installing, 190
Project Window, 192–93
server definitions file, setting up, 193–94
using, 191–96
WorkBench, 196

Jed, 11, 18, 32–36
configuring, 33
folding code, 35–36

commands, 36
text interface, 34
using, 34

Jikes, 272–74
jvgenmain program, 70

K

K&R style, 207–8
Kaffe, 264–65
kdbg, 169–71
KDE debugger, 169–71
Kibaale Children’s Center (KCC), 37
kill command, 144
killall command, 179

L

L command, sdiff utility, 218
-l option:

ar utility, 227
nm utility, 230–31

ldconfig program, 57
LD_LIBRARY_PATH environment vari-

able, 55, 57
Libraries:

creating, 92

GNU C library, 45
location of, 163
shared, 163
standard libraries, 45, 93–94

LIBRARY_PATH environment variable,
55

Linux:
configuring X-Windows on, 13
as operating system, 11

Linux Development Platform Specifications 
(LDPS), 15

Linux development workstation, 277–82
disk drive, 278–79
distributed development:

remote access, 280
source code repository, 280–81

memory, 278
parts of, 277–78
processor, 278
sizing the task, 279
standalone development workstation, 

279–80
Linux Standard Base (LSB), 15–16

current contributors to, 16
libraries, 15–16

list command, GDB, 141
ltrace utility, 203, 223–24

options used with, 224

M

make bootstrap command, 51
make utility, 13, 101–34

basic terminology, 103–5
control structures, 131–33

for control structure, 133
default goal, 104
default goal, building, 108
dependencies, 104
directives, 131–33

ifdef directive, 132
ifeq directive, 132
ifndef directive, 133
ifneq directive, 132

include files, 109–10
input files, 103, 105–6



Index 291
latest distribution:
compilation, 133–34
installation, 134
obtaining, 133

makefile contents, 106–7
comments and blank lines, 107
rule to build the default goal, 107
rules to build individual objects, 107
rules to build other goals, 107
rules to clean previous builds, 107
rules to install, 107
variables, 106

multiple makefiles/directories, working 
with, 122–29

building targets, 128–29
cleaning process, 129
individual targets, making, 129
makefile in common-dir directory, 

125–26
makefile in dns-dir directory, 127–

28
makefile in ftp-dir directory, 126
makefile in tftp-dir directory, 127
makefile in the top directory, 123–

25
non-default goal, building, 108
phony target, 104–5
rules, 103, 110–19

anatomy of, 110–11
basic makefile, 111–13
command echoing, 111
example makefiles, 111–18
explicit, 118
implicit, 118–19
multiple commands in the same line, 

110
with no dependencies, 111

running, 108
shell to execute commands, 109
special features, 130–31

non-stop execution, 130–31
running commands in parallel, 130

target, 104
updating a target, rules for, 108
variables, 119–22

automatic, 121–22

defining, 120
pre-defined, 121
types of, 120–21

Makefile.in, 106
MandrakeSoft, 16
Marketing Requirement Document (MRD), 3, 5
Marketing/sales, 1–3
Members, archive, 226
Memory leakage, 6
Meta key, 20
Miscellaneous tools, 13, 203–38, 219–21

cbrowser utility, 203, 221
cproto utility, 222–23
cscope utility, 203, 219–21

cscope.out symbol file, 219
initial screen, 219
options used with, 221
using, 219–21

diff utility, 203, 215–18
defined, 215
diff3 utility, 218
oher forms of, 218
options used with, 217–18
sdiff utility, 218
using, 215–18

GNU binary utilities, 203, 226–38
addr2line utility, 237–38
ar utility, 226–28
ldd utility, 238
nm utility, 228–31
objcopy utility, 231–32
objdump utility, 232–36
ranlib utility, 228
size utility, 236
strings utility, 237
strip utility, 228–31

indent utility, 203, 204–14
blank lines/comments, 209–10
braces, formatting, 210–11
coding styles, selecting, 206–9
declarations, formatting, 211–12
efficient use of, 206
getting started with, 205–6
long lines, breaking, 212–13
options summary, 213–14



292 Index
ltrace utility, 203, 223–24
options used with, 224

sed utility, 203, 215
strace utility, 203, 224–25

Moolenaar, Bram, 37
Movement commands, Emacs, 20–21

N

-n option, diff command, 218
-nbad option, indent program, 210
next command, GDB, 137–38, 141, 144, 146
nm utility, 228–31

debug symbols, listing, 231
line numbers, listing in source files, 230–

31

O

-o filename option, ltrace utility, 224
Oberon, 44, 98
OBJC_INCLUDE_PATH environment 

variable, 55
objcopy utility, 231–32
objdump utility, 232–36

file dissassembly, 234–35
header information, displaying, 232–33
library files, displaying information 

about, 236
section headers, displaying, 233–34
source code disassembly, 235–36

Objective C, and GCC, 45
Objective C code, 45

compiling, 66–67
OpenSSH, 199
Operating system, 10, 11
OSDN (Open Source Developers Network), 7

P

-p option:
diff command, 217
unified diff command, 216

Pascal programs:
compilation of, 94–96

Free Pascal (fpc), 95–96
GNU Pascal, 96

pcl-cvs, 196–99
installing, 197
using, 197–99

Phony targets, 104–5
PRCS, 13
print expr command, GDB, 138
printf() function, 92
Project management software, 14
ps command, GDB, 166
pserver method, 182
pSOS, 245
pwd command, GDB, 154

Q

Q command, sdiff utility, 218
QNX, 245
Quality Assurance (QA), 6
quit command, GDB, 137–38, 141, 144

R

R command, sdiff utility, 218
-r option:

diff command, 218
ltrace utility, 224

-R option, cscope , 221
ranlib utility, 13, 228
RCS, 13
Red Hat Software, 16
Register-renaming pass, 46
Regression (stress) testing, 6–7
Release notes, 8
remove option, CVS, 187–88
return command, GDB, 144
Review meetings, 5–6
RIP (Routing Information Protocol), 4
Ruby, 98
Rules, make utility, 103, 110–19

anatomy of, 110–11
basic makefile, 111–13
command echoing, 111
example makefiles, 111–18
explicit, 118



Index 293
implicit, 118–19
multiple commands in the same line, 110
with no dependencies, 111

run command, GDB, 138, 142, 143, 144

S

-s option:
ltrace utility, 224
nm utility, 228

-S option, objdump utility, 235, 236
Sanity testing, 6
Santa Cruz Operations, 218
SCCS, 13
SCSI drives, 278–79
Search and replace commands, Emacs, 22–24

options, 23
sed utility, 203, 215
set command, GDB, 155–56
set env command, GDB, 155
show command, GDB, 143
show environment command, GDB, 154–55
show path command, GDB, 154
-silent flag, 111
Smalltalk, 44, 98
-sob option, indent program, 210
Software build process, 101
Software development:

complexity of, 1
components of a development system, 

10–13
assemblers, 12
compilers, 12
debuggers, 12
editors, 11
e-mail and collaboration, 13
hardware platform, 10–11
operating system, 11
version control systems, 12–13
X-Windows, 13

hardware platform, selection criteria for, 
13–14

Linux Development Platform Specifica-
tions (LDPS), 15

Linux Standard Base (LSB), 15–16
current contributors to, 16
libraries, 15–16

managing the development process, 14–
15

deadlines, creating, 14
dependencies, resolving, 15
development team, managing, 15

miscellaneous tools, 13
software development tools, selection cri-

teria for, 14
Software development project life cycle, 2–9

architecture, creating, 4
coding, 5–6
design documents, creating, 4–5
documentation, 8–9
functional specifications, writing, 4
implementation, 5–6
new features, 9
requirement gathering, 2–3
software releases, 8

branches, 8
release notes, 8

support, 9
testing, 6–7

functional testing, 7
regression (stress) testing, 6–7
sanity testing, 6
unit testing, 6

Software development tools, and GNU C 
compiler, 58

Software testing, 1
Static linking, 65–66
Static Single Assignment (SSA), 46
status option, CVS, 183
step command, GDB, 137–38, 144–46, 146
Step into actions, debuggers, 138
Step over actions, debuggers, 138
strace utility, 203, 224–25
Stress testing, 6–7
strip utility, 228–31
sum.c program, GDB, 151
Support cycle, 1



294 Index
SuSE, 16
Syntax, editors, 18

T

-t option:
ar utility, 227
objdump utility, 236

TAB character, 103, 107, 110
Tag support, editors, 18
:tags Command, VIM, 41–42
Tags-search function, Emacs, 28
tar command, 48
Target machine connection, 250–58

debugging the debug session, 256–58
gdb, running on host using serial port, 

253–54
gdbserver program, 250–58, 253

attaching to a running process using, 
255

running on host using TCP/IP, 252–
53

running on target using serial port, 
253

running on target using TCP/IP, 
251–52

serial cable, 254
step-by-step procedures, 250–51
using with GNU debugger, 250–55

using stubs with GNU debugger, 256
Technical documentation, 9
Testing, 6–7

functional testing, 7
regression (stress) testing, 6–7
sanity testing, 6
unit testing, 6

TMPDIR environment variable, 54
:tselect Command, VIM, 41
-tt option, ltrace utility, 224
TurboLinux Inc., 16

U

-u option, diff command, 217

undisplay command, GDB, 154
unified diff command, 216
Unit testing, 6
unset env command, GDB, 155
update option, CVS, 185–86, 188
User manuals, 9

V

-V option:
ar utility, 226
ltrace utility, 224

VA Linux, 16
Verbs, jCVS, 194–95
Version control systems, 10, 12–13
VIM, 37–42

automatic indentation, 40–41
basic concepts, 38
basic editing, 38–42

navigation, 38–39
defined, 37
folding code, 42

commands, 39
gvim, 37
indenting options, 40–41
insert mode, 39–40
:tags command, 41–42
:tselect command, 41
using tags with, 41–42

vim (vi) editor, 11
VxWorks, 245

W

Windows CE, 245

X

-x option, ar utility, 227
X-Windows, 13
Xemacs, 11, 32
xxgdb debugger, 135, 173–74

Y

-y option, diff command, 217, 218


