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1. OVERVIEW

THIS DOCUMENT STUDIES the sensitivity of the optimal carbon tax formulation
derived by Golosov, Hassler, Krusell, and Tsyvinski (2014) (“GHKT”). GHKT
showed that, under certain assumptions, the optimal carbon tax–GDP ratio
can be solved for in closed form, and does not depend on the paths of future
output, consumption, and technological change. These assumptions include
logarithmic preferences and full depreciation of capital over the course of a
decade.

This document relaxes these assumptions and explores the numerical sensi-
tivity of the optimal carbon tax–GDP ratio to the structure of preferences, de-
preciation, and technological progress. It further proposes a slightly modified
version of GHKT’s central optimal carbon tax formulation that approximates
the optimal carbon tax in the case of non-logarithmic constant elasticity utility
and nonzero long-run productivity growth.

The remainder of this note is structured as follows. Section 2 reviews the
planner’s problem as presented in GHKT (2014), and then describes our nu-
merical implementation. Section 3 outlines the sensitivity analyses considered,
and presents the main quantitative results. Section 4 proposes a modification
of GHTK’s formula that approximates the optimal carbon tax in the case that
preferences are not logarithmic and productivity growth is positive. Finally,
Appendix A compares the numerical model’s benchmark case results with
those from the true, infinite-horizon problem as presented in GHTK (2014).

2. MODEL

2.1. Recap of GHKT Model

2.1.1. GHKT General Model

This section reviews the theoretical framework presented by GHKT. As we
abstract from uncertainty throughout this document, we present a simplified,
deterministic version of the GHKT model. A global representative household
has preferences over consumption Ct :

∞∑
t=0

βtU(Ct)�(1)
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There are I production sectors: I − 1 intermediate energy good producing sec-
tors, indexed by i = 1� � � � � I, and one final consumption-investment good sec-
tor, indexed by i = 0. The final-goods resource constraint is given by

Ct +Kt+1 = Yt + (1 − δ)Kt�(2)

where Kt denotes the (aggregate) capital stock. Final-good output Yt is pro-
duced from technology F0�t :

Yt = F0�t(K0�t �N0�t �E0�t� St)�(3)

where N0�t is labor allocated to the final-goods sector, and E0�t = (E0�1�t�E0�2�t�
� � � �E0�I�t) denotes a vector of energy inputs. Output further depends on the
state of the climate, St , taken here as the atmospheric carbon stock. All climate
change impacts are thus represented as production damages.

Energy input i is produced from technology:

Ei�t = Fi�t(Ki�t�Ni�t�Ei�tRi�t)≥ 0�(4)

For energy resources in finite supply—such as petroleum—Ri�t denotes the
stock of resource i still left at the beginning of period t. The resource stock
evolves according to

Ri�t+1 = Ri�t −Ei�t ≥ 0�(5)

Factors are assumed to be perfectly mobile across sectors, implying that

I∑
i=0

Ki�t =Kt�

I∑
i=0

Ni�t = Nt� and
I∑

i=0

Ei�j�t = Ej�t �(6)

Lastly, energy inputs i = 1� � � � � Ig −1 are assumed to be carbon-based, whereas
inputs i = Ig� � � � � I are “green” and not associated with carbon emissions. All
energy inputs are given in terms of carbon content (equivalent). Atmospheric
carbon concentrations St are thus a function S̃t of carbon-based energy inputs
dating back to the start of industrialization at time −T :

St = S̃t

(
Ig−1∑
i=1

Ei�−T �E
f
−T+1� � � � �E

f
t

)
�(7)

where E
f
t ≡ ∑Ig−1

i=1 Ei�t denotes the sum of fossil fuel inputs in tons of carbon.
The government’s problem is to maximize (1) subject to (2), (3), (4), (5), (6),
and (7). As demonstrated by GHKT, comparison of the planner’s first-order
conditions with the decentralized equilibrium conditions governing the behav-
ior of firms and households suggests that the optimal allocation is implemented
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by a Pigouvian carbon tax. This tax is equal to the marginal externality damages
of carbon emissions from energy input i, Λs

i�t :

Λs
i�t ≡

∞∑
j=0

βj U
′(Ct+j)

U ′(Ct)

∂F0�t+j

∂St+j

∂St+j

∂Ei�t

�(8)

Finally, since energy inputs Ei�t are all recorded in tons of carbon, it is moreover
the case that

∂St

∂Ei�t

= ∂St

∂Ej�t

∀i� j�∈ {1� � � � � Ig − 1}

⇒ Λs
i�t =Λs

j�t =Λs
t �

2.1.2. GHKT Benchmark Assumptions

GHKT derived a closed-form expression for the optimal carbon tax–GDP
ratio by imposing only the following assumptions:

ASSUMPTION 1: U(Ct)= ln(Ct).

ASSUMPTION 2: F0�t(K0�t �N0�t �E0�t� St) = (1 − Dt(St))F̃0�t(K0�t �N0�t �E0�t),
with

1 −Dt(St) = exp
(−γt(St − S)

)
�

and where S denotes pre-industrial carbon concentrations.

ASSUMPTION 3: The function S̃t is linear with the following depreciation struc-
ture:

St − S =
t+T∑
s=0

(1 − ds)E
f
t−s�

and ds ∈ [0�1] for all s.

ASSUMPTION 4: Full depreciation: δ= 1.

Given Assumptions 1–4, GHKT demonstrated that the optimal carbon tax
is a simple formulation that depends only on discounting, the climate damage
parameter γt , and the carbon depreciation structure:

Λs
t = Yt

[ ∞∑
j=0

γt+j(1 − dj)

]
�(9)
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GHKT’s quantitative analysis parameterized the carbon depreciation struc-
ture as follows:

1 − ds = φL + (1 −φL)φ0(1 −φ)s�(10)

where φL denotes the share of carbon emissions that remains permanently in
the atmosphere, fraction (1 − φ0) of emissions exit the atmosphere immedi-
ately (through absorption in the biosphere and upper ocean), and the remain-
der of emissions decays at geometric rate φ. Given (10), we finally arrive at the
“Benchmark formulation” for the optimal carbon tax–GDP ratio:

Λ̂s
t ≡ Λs

t

Yt

= γt

(
φl

1 −β
+ (1 −φl)φ0

1 − (1 −φ)β

)
�(11)

The central objective of this note is to study the sensitivity of (11) to relax-
ing Assumptions 1 and 4. In that case, Λ̂s

t depends also on the future paths of
output and consumption (8). We thus also study the sensitivity of Λ̂s

t to general
assumptions about future technological change in the more general environ-
ment without Assumptions 1 and 4.

2.1.3. GHKT Benchmark Full Model

GHKT provided a full characterization and quantitative results for optimal
carbon taxes and allocations for the following version of the general model
outlined above. Note that Assumptions 1–4 are maintained throughout.

Energy Sector. There are three energy sectors: oil, coal, and clean energy.
Oil inputs, indexed by i = 1, are assumed to be in finite supply R0. Oil extrac-
tion is assumed to be costless:

E1�t = Rt −Rt+1�(12)

Coal and clean energy, indexed by i = 2 and i = 3, respectively, are produced
using only labor inputs. Constraint (4) thus becomes

Ei�t =Ai�tNi�t for i = 2�3�(13)

Final-Goods Sector. The final-goods production technology is assumed to
be Cobb–Douglas:

Yt = e−γt (St−S)A0�tK
α
t N

1−α−v
0�t Ev

t �(14)

Here, the energy composite Et is given by

Et =
(
κ1E

ρ
1�t + κ2E

ρ
2�t + κ3E

ρ
3�t

)1/ρ
�(15)

with
∑3

i=1 κi = 1.
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Carbon Cycle. The history of carbon emissions prior to period zero is dealt
with as follows. Stock S1 denotes the carbon that remains in the atmosphere
forever, whereas stock S2 denotes depreciating atmospheric carbon. These and
the total atmospheric carbon stock then evolve according to

S1�t = S1�t−1 +φlE
f
t �(16)

(S2�t − S)=φ(S2�t − S)+φ0(1 −φL)E
f
t �

St = S1�t + S2�t �

Given (12)–(16), GHKT analytically characterized and numerically solved
for optimal allocations and energy input paths in particular.

Quantitative Implementation. GHKT solved for optimal allocations by com-
bining the planner’s optimality conditions from the infinite-horizon problem
(as discussed above) with the assumption that all oil is used up over the course
of a finite time horizon T considered:

T∑
t=0

E1�t = R0�(17)

Since oil usage goes to zero as T approaches infinity, (17) should serve as a
decent approximation for sufficiently large values of T <∞.

Another key feature of the Benchmark case that enables GHKT’s algorithm
is that the optimal carbon tax–GDP ratio Λ̂s

t is exogenous and constant given
Assumptions 1–4. That is, the formulation (11) captures the infinite-horizon
present value of climate damages without the need to actually compute out-
put or consumption over an infinite time horizon. However, this simplification
no longer holds in the more general case without Assumptions 1 and 4. In
the more general case (8), one needs to know {Yt}∞

t=0 and {Ct}∞
t=0 to compute

the optimal carbon tax–GDP ratio Λ̂s
t . The next section thus describes our nu-

merical approximation to the planner’s problem that we use to explore the
sensitivity of Λ̂s

t .

2.2. Numerical Model for Sensitivity Analysis

Our numerical model generally maintains the functional forms of the Bench-
mark GHKT model (12)–(16), with a few modifications as discussed below.
Given the high number of state variables in the problem, we do not employ
value function iteration. Instead, we construct a direct optimization program
that seeks to approximate the planner’s true, infinite-horizon problem as fol-
lows. First, the program directly optimizes over all allocations for T <∞ peri-
ods. After period T , a continuation value VT is computed as a function of the
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last direct optimization period’s carbon stock ST , capital stock KT , savings rate
θT−1, oil extraction rate ΘT−1, and the shares of labor devoted to the production
of coal, clean energy, and final output, respectively. As discussed below, this
continuation value assumes that a balanced growth path is eventually reached.

We consider a constant elasticity formulation of preferences which nests the
Benchmark case of logarithmic preferences when σ = 1. The planner’s prob-
lem is thus

max
X

T−1∑
t=0

βt

(
Ct(X)1−σ − 1

1 − σ

)
+βTVT (X)�(18)

where the vector of choice variables X is given by

X = [{θt}T−1
t=0 � {Rt+1}T−1

t=0 � {π2t}Tt=0� {π3t}Tt=0

]
�(19)

Here, θt denotes the gross savings rate in period t, and πit is the share of la-
bor devoted to sector i at time t. For each guess of X̂, the implied sequence
of consumption {Ct(X̂)}Tt=0 can be computed as described below, along with
continuation value VT(X̂).

2.2.1. Bounds and Constraints

We impose the following lower and upper bounds on the choice variables in
(19):

0 ≤ θt ≤ 1�

0 ≤Rt+1 ≤ R0�

0 ≤ π2t ≤ 1�

0 ≤ π3t ≤ 1�

For all t = {0� � � � � T }, we further impose a nonnegativity constraint on con-
sumption. For numerical optimization purposes, this constraint is actually im-
plemented as requiring slightly positive consumption:

Ct > 0�00001�

2.2.2. Objective Function: Computation of {Ct(X̂)}Tt=0

This section describes how {Ct(X̂)}Tt=0 is computed (within the objective func-
tion) for a given guess of the direct optimization choice variables (19).

Energy Inputs. For periods t = {0� � � � � T − 1}, total energy inputs Et can be
inferred by substituting oil stocks and labor shares into the energy production
functions (12), (13), and (15):

Et =
{
κ1(Rt −Rt+1)

ρ + κ2(A2tπ2tN)ρ + κ3(A3tπ3tN)ρ
}1/ρ

�(20)
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To compute oil consumption during and after period T , we treat oil extraction
rates in period T − 1 as steady-state values that are continued thereafter. That
is, define the period T − 1 oil extraction rate ΘT−1 as the fraction of oil in the
ground at the beginning of period T − 1 that is extracted during period T − 1:

ΘT−1 ≡ E1�T−1

RT−1
= RT−2 −RT−1

RT−1
�

Period T oil consumption and the oil stock at time T + 1 are then given by

RT+1 = RT · (1 −ΘT−1)�(21)

E1�T =ΘT−1 ·RT �

Note that this approach differs from the GHKT Benchmark Numerical Model
approximation that all oil is used up over the course of T < ∞ period (17).
We should thus expect to see marginally different oil extraction paths when
comparing this model’s results with those of the GHKT Benchmark Numerical
Model.

Given (21), along with π2T and π3T from X̂, we can back out period T energy
inputs, ET :

ET = {
κ1E

ρ
1�T + κ2(A2Tπ2TN)ρ + κ3(A3Tπ3TN)ρ

}1/ρ
�(22)

Carbon Emissions and Concentrations. The amounts of carbon-based fos-
sil fuel inputs implied by X̂ can be easily computed by substituting into the
energy production functions (12) and (13), as applied in (20). In contrast to
the standard GHKT model, however, we introduce a form of technological
progress that reduces the emissions intensity of coal usage over time. Specifi-
cally, let ϑt denote the fraction of coal’s carbon-equivalent energy content that
ends up emitted from combustion at time t. Carbon emissions Em

t for periods
t = {0� � � � � T } can then be computed from X̂ via

E
f
t = (Rt −Rt+1)+ϑt(A2tπ2tN)�(23)

The introduction of ϑt is motivated by the need to assume a balanced growth
path at some point in time. If ϑt goes to zero as t approaches infinity, then
carbon emissions will go to zero as well, since oil usage is continually declining.
In this setting, assuming stabilized carbon concentrations after time T should
be an acceptable approximation to the true model for sufficiently large T .

Intuitively, declining emissions intensity ϑt can also be motivated as reflect-
ing increasingly cost-competitive abatement possibilities. The seminal DICE
climate-economy model (e.g., Nordhaus (2010)) assumes that the economy
becomes slightly less carbon-intensive over time even without climate policy
interventions, and that carbon emissions abatement costs likewise decrease
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FIGURE S.1.—Coal emissions coefficient.

over time due to technological progress. While the representation of energy
inputs and carbon emissions is quite different in the DICE and GHKT mod-
els, we nonetheless argue that a gradually declining coal emissions intensity ϑt

is broadly in line with similar concepts from the literature. As a first pass, we
assume a logistic functional form for ϑt , with parameters a and b:

ϑt = 1
1 + exp(−(a+ b(t))

�(24)

Figure S.1 displays the ϑt function over time for the parameters we maintain
throughout this note.

For our calibration, the emissions intensity of coal only begins to substan-
tially decrease after the year 2100.

Output and Consumption. Finally, given {Et}Tt=0, {St}Tt=0, and X̂, we can com-
pute output, consumption, and capital for periods t = {0� � � � � T − 1} from pro-
duction function (14) and the aggregate resource constraint (2):

Yt = e−γ(St−S)AtK
α
t

{
(1 −π2�t −π3�t)N

}1−α−v
Ev

t �(25)

Ct = (1 − θt)Yt�(26)

Kt+1 = θtYt + (1 − δ)Kt�(27)

For periods T and thereafter, we treat the savings rate in period T − 1 as a
steady-state value that is subsequently maintained. For consumption in period
t = T , we thus have that

CT = (1 − θT−1)YT �
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2.2.3. Objective Function: Computation of VT (X̂)

After period T , based on the values of KT , ST , RT , and the “steady-state”
choice variables ΘT−1, θT−1, π2T , and π3T , the continuation value VT(X̂) is com-
puted as follows.

First, we simulate the continuation of the economy for n periods after T .
Specifically, for periods T + j, j ∈ {1�2� � � � � n}, we have that oil continues to be
extracted at rate ΘT−1 as in (21):

E1�T+j = ΘT−1 · [RT+j]
= ΘT−1 · [RT(1 −ΘT−1)

j
]
�

Coal and clean energy inputs grow at the long-term rate of labor productivity
growth, gZ:

E2�T+j = (A2�T+j)π2�TN

= (1 + gZ)
jE2�T �

E3�T+j = (A3�T+j)π3�TN

= (1 + gZ)
jE3�T �

Energy inputs continue to follow (20):

ET+j = {
κ1(E1�T+j)

ρ + κ2(E2�T+j)
ρ + κ3(E3�T+j)

ρ
}1/ρ

�(28)

For large enough T , coal emissions intensity ϑT+j will be close to zero, and
oil usage E1�T+j should be low. We thus impose that carbon concentrations have
reached their new steady-state value by period T :

ST+j = ST �

Given (28), KT , and X̂, we can compute YT+j , KT+j , and CT+j analogously to
(25)–(27):

YT+j = AT+j

(
e−γT (ST −S)

)(
Kα

T+j

){
(1 −π2T −π3T )N

}1−α−v
Ev

T+j�

KT+j = (θT−1)YT+j−1 + (1 − δ)KT+j−1�

and

CT+j = (1 − θT−1)YT+j�

After period T +n, we assume that the economy has reached a balanced growth
path, and that consumption grows at constant rate (1 + gBGP):

CT+n+j = (1 + gBGP)
j(CT+n+j)�
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Finally, the continuation value of the objective function is thus given by

VT(X̂) =
T+n∑
j=0

βT+j

(
CT+j(X̂)1−σ − 1

1 − σ

)
(29)

+βT+n

(
CT+n(X̂)1−σ − 1

1 − σ

)[
1

1 −β(1 + gBGP)1−σ

]
�

3. CALIBRATION AND RESULTS

3.1. Calibration

Table S-I provides GHKT’s Benchmark quantitative analysis parameters as
well as the alternative values considered in this sensitivity analysis.

Here, the “DICE” value for gTFPt represents the time-varying TFP growth
rates to which the 2010 DICE Model (Nordhaus (2010)) is calibrated. This
growth rate, gANH

t , is given by

gANH
t = gANH

0 exp
(−γ0 · t · exp(−γ1 · t))�

TABLE S-I

CALIBRATION PARAMETERS

Parameter Benchmark Alt1 Alt2 Alt3

σ 1 1�5 2 0�5
gTFPt (% per year) 0�0% 1�3% 1�5% DICE
δ (% per decade) 100% 65%
β (annual) 0�985 0�990 0�995 0�999

gA2t , gA3t (% per year) 2�0%
ρ −0�058
κ1 0�5429
κ2 0�1015
κ3 0�3556
A2�0 7693
A3�0 1311
R0 (GtC) 253�8
N 1
φ 0�0228
φL 0�2
φ0 0�393
S (GtC) 581
S1�−1 (GtC) 103
S2�−1 (GtC) 699
γ 0�000023793
α 0�3
v 0�04
N (normalized) 1
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where t is time in the number of years (i.e., t for the first period is t = 10), and
where

gANH
0 = 0�160023196685654�

γ0 = 0�00942588385340332�

γ1 = 0�00192375245926376�

Here, γ0 ∼ rate of decline in productivity growth rate (percent per year), γ1 ∼
rate of decline of decline in productivity growth rate (percent per year), and
gANH

0 ∼ initial rate of productivity growth per decade. After period T , we im-
pose that gANH

T+j = gANH
T = 3�27% ∀j. That is, long-run TFP growth is assumed

to remain at ∼0�32% per year. Figure S.2 depicts the annual TFP growth rate
implied by gANH

t .
Several further parameters do not have a counterpart in the GHKT Bench-

mark case, and/or are unimportant for the computation of optimal carbon
taxes and energy paths. These include parameters from Table S-II.

A notable challenge in the calibration of initial final-good sector productivity
A0 and the initial capital stock K0 is the decision whether or not to recalibrate
these values when we change the assumed capital depreciation rate, δ. Our
general approach to calibrating K0 and A0 is to match a representative net
rate of return on capital of 5% per year (as in, e.g., the 2010 DICE Model,
Nordhaus (2010)), corresponding to a net decadal return of r̃ = 62�89%. That

FIGURE S.2.—2010 DICE model annual TFP growth.
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TABLE S-II

OTHER PARAMETERS

Parameter Benchmark Alternative

a 8
b −0�05
A0 17,887 16,640
K0 (US$ bil.) 128,920 164,030

is, given world GDP in the calibration period t = −1 (calendar year 2009), we
solve for K0 via

K0 = α(Y2009 · 10)
r

= α(Y2009 · 10)
r̃ + δ

�(30)

where r = (̃r+δ) equals the gross return on capital, and Y2009 is annual GDP in
the calibration year 2009. For a given net rate of return on capital, the main is-
sue is thus that the decadal gross return r differs depending on whether we
assume a decadal depreciation rate of δ = 1, or δ = �65 (corresponding to
an annual depreciation rate of 10%). This question of recalibration matters
both because it determines how far the economy is from its balanced growth
path capital-output ratio, and because GDP levels will grow more rapidly with
higher initial TFP, which grows at an assumed, exogenous rate.1 On the other
hand, recalibration requires changing multiple parameters at once, thus ren-
dering the interpretation of differences in results across experiments more dif-
ficult. We deal with this issue by reporting results for both recalibrated and
non-recalibrated values when changing the depreciation rate.

3.2. Computation

The computation is performed in Matlab using the “Active Set” algorithm in
fmincon. The direct optimization time horizon is set to T = 30 periods = 300
years. The subsequent simulation horizon for the computation of the continu-
ation value VT is set to n = 100 periods = 1000 years. To maintain numerical
precision, aggregate consumption is recorded in quadrillions of dollars for the
evaluation in the objective function, and the convergence tolerance is set to
1 · e−12.

1For a given K0, we infer initial TFP based on

A0 = (Y2009 · 10)
e−γ(S0−S)Kα

0 {(1 −π2�0 −π3�0)N}1−α−vEv
0

�

where π2�0 and π3�0 are normalized to zero to match the GHKT Benchmark calibration underly-
ing the energy production technologies.
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FIGURE S.3.—Carbon tax/GDP ratio.

3.3. Main Results

First, Figure S.3 plots Λ̂t over time for the main cases considered with β =
0�985 in order to provide a broad sense for the order of magnitude of variations
in Λ̂t observed.

The GHKT benchmark case (σ = 1, δ = 100%) has a constant optimal car-
bon tax–GDP ratio of 8�07 × 10−5. The results in Figure S.3 suggest that con-
sideration of higher curvature in the utility function, coupled with positive TFP
growth, can decrease the optimal carbon tax–GDP ratio by up to 50 percent in
the case of (σ = 2, gTFP = 1�5%). As discussed below in Section 4, with a slight
tweak, GHKT’s benchmark optimal carbon tax formulation (11) can predict
these differences in Λ̂t well. Section 4 further demonstrates that adjusting β to
approximately maintain the effective discount factor from the benchmark case
when changing σ and gTFP produces Λ̂t close to the benchmark as well. The
main results in Figure S.3 further suggest that the optimal carbon tax–GDP
ratio is essentially constant in most cases considered. The main exception oc-
curs when σ > 1 and with the time-varying TFP growth rates from the DICE
model (Nordhaus (2010)). As discussed below, this is because agents’ effective
discount rate keeps on changing along with gTFP in this case.
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FIGURE S.4.—Carbon tax/GDP ratio, σ = 1.

Next, in order to zoom in on the impacts of depreciation rates and productiv-
ity growth, Figures S.4, S.5, and S.6 show Λ̂t over time for fixed combinations
of the intertemporal preference parameters σ and β.

With logarithmic preferences (σ = 1), we see that differences in TFP growth
rates do not affect the optimal carbon tax relative to GDP, as expected. Consid-
eration of less-than-full depreciation introduces transitional dynamics which
lead to a temporary deviation from the benchmark Λ̂t . However, the impact of

FIGURE S.5.—Carbon tax/GDP ratio, σ = 1�5.
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FIGURE S.6.—Carbon tax/GDP ratio, σ = 2.

depreciation is quantitatively modest, and transitional dynamics are predicted
to be fast.

Next, with more than logarithmic curvature in the representative agent’s util-
ity function, we find that higher TFP growth decreases the optimal carbon–
GDP ratio. Time-varying TFP growth rates (gTFP = DICE) moreover lead to
changes in Λ̂t over time. However, similarly to the benchmark case, consid-
eration of less-than-full depreciation has only a brief and quantitatively small
impact on Λ̂t .

The previous results all focus on a pure rate of social time preference of
1�5% per year. Figure S.7 displays the optimal carbon tax–GDP ratios in 2010
across different values of β.

The results suggest that the optimal carbon tax–GDP ratio is most sensitive
to the discount factor with logarithmic preferences. As seen above, changes
in the TFP growth rate do not affect Λ̂t in this case. In contrast, with higher
curvature in the utility function, TFP growth greatly diminishes the sensitivity
of the optimal carbon tax–GDP ratio to changes in β.

Finally, Figure S.8 shows changes in the optimal year 2010 carbon tax–GDP
ratio as a function of σ , the inverse intertemporal elasticity of substitution.
Without TFP growth, Λ̂t appears quite robust to changes in σ . However, with
TFP growth, the optimal carbon tax–GDP ratio is decreasing in σ , as seen in
Figure S.8.
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FIGURE S.7.—2010 carbon tax/GDP ratio and discount factor.

FIGURE S.8.—2010 carbon tax/GDP ratio and sigma.
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FIGURE S.9.—Optimal carbon tax levels.

3.4. Optimal Carbon Tax Levels

The analysis has thus far focused on the optimal carbon tax–GDP ratio.
However, as GDP during the initial decade responds endogenously to changes
in preferences and technological progress, it is also potentially interesting to
consider changes in optimal carbon tax levels due to the parameter variations
considered.

Figure S.9 depicts optimal carbon tax levels in USD ($2000) per metric ton
carbon over the course of the next 100 years (for a pure rate of social time pref-
erence β = 0�985). The results suggest that the optimal carbon tax level in the
year 2100 is sensitive to assumptions made about the structure of preferences
and TFP growth. However, the optimal carbon tax as of 2010 ranges only from
$28 to $55/mtC (given β = 0�985). Figures S.10 and S.11 focus separately on
the evolution of optimal carbon tax levels across TFP growth rates for σ = 1
and σ = 2. The results suggest that uncertainty about future TFP growth has
larger implications for optimal carbon tax levels later on in the century if utility
is logarithmic. Conversely, if σ = 2, we see that uncertainty about future TFP
growth plays a relatively larger role in determining optimal carbon tax levels in
the near future.

Finally, to evaluate the importance of recalibration of the initial capital stock
when changing the depreciation rate, Figure S.12 compares optimal carbon
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FIGURE S.10.—Optimal carbon tax levels, σ = 1.

taxes with and without recalibration. The results suggest that recalibration af-
fects optimal carbon tax levels only slightly. In contrast, considerably larger
differences arise due to changes in assumed output growth rates and utility
function curvature.

FIGURE S.11.—Optimal carbon tax levels, σ = 2.
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FIGURE S.12.—Optimal carbon tax levels.

4. ANALYTIC APPROXIMATION

GHKT provided an analytic, closed-form solution for the optimal carbon
tax–GDP ratio in the Benchmark case (11). In the alternative cases considered,
Λ̂t deviates from its Benchmark value for two reasons: transitional dynamics in
the savings rate, and changes to effective discounting. For the functional forms
considered, GHKT’s general optimal carbon tax formulation (8) becomes:

Λ̂t ≡ Λt

Yt

=
∞∑
j=0

βj

(
Ct+j

Ct

)−σ(
Yt+j

Yt

)
(−γ)(1 − dj)(31)

=
∞∑
j=0

βj (Cσ
t /Yt)

(Cσ
t+j/Yt+j)

(−γ)(1 − dj)�

Once the economy has reached the point where savings rates are stabilized,
one can rewrite (31) using the fact that

Ct+j

Yt+j

= θ ∀j
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and hence

Cσ
t+j

Yt+j

= (Yt+jθ)
σ

Yt+j

= θ
σ
Yσ−1

t+j �

yielding

Λ̂t =
∞∑
j=0

βj (Cσ
t /Yt)

(Cσ
t+j/Yt+j)

(−γ)(1 − dj)(32)

=
∞∑
j=0

βj

(
Yt

Yt+j

)σ−1

(−γ)(1 − dj)�

If the economy exhibits a constant growth rate, gy , equation (32) becomes

Λ̂t =
∞∑
j=0

[
β(1 + gy)

1−σ
]j · (−γ)(1 − dj)(33)

= γ

(
φL

1 −β(1 + gy)(1−σ)
+ (1 −φL)φ0

1 − (1 −φ)β(1 + gy)(1−σ)

)
�

Expression (33) represents a slightly modified version of the GHKT bench-
mark formulation (11). In the benchmark case, with σ = 1, equation (33) re-
duces to the standard (11). When σ > 1, formulation (33) approximates the
optimal carbon tax–GDP ratio, and represents it exactly if savings rates and
GDP growth rates are constant.

Figure S.13 compares actual estimates of Λ̂t against the corresponding ap-
proximations based on equation (33). All cases in Figure S.13 assume an an-
nual discount factor of β = 0�985 and full depreciation over the course of a
decade (δ = 100%). Note that the long-run growth rate of labor productivity
was used to estimate output growth gy , as would be appropriate for an econ-
omy on a balanced growth path.2 Given that oil inputs are decreasing over
time, however, this procedure over-estimates the true long-run growth rate
of the economy, which is actually gradually decreasing over time. Appendix B
provides a comparison of output growth rates and corresponding labor produc-
tivity growth rates across model scenarios. Overall, however, expression (33)
arguably approximates Λ̂t well.

The two main shortcomings of the approximation are (i) that it does not
capture transitional dynamics, and (ii) that it tends to slightly underestimate Λ̂t

because it overestimates gy . For example, for the case of σ = 1�5, gTFP = 1�3%

2Given the Cobb–Douglas formulation for final-goods production, one can find a labor pro-
ductivity growth rate gz that is equivalent to a given TFP growth rate gTFP via gz = (1 +
gTFP)

1/(1−α−v) − 1.
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FIGURE S.13.—Carbon tax/GDP ratio approximation.

per year, δ= 100%, and β= 0�985, the decadal growth factor of final-good sec-
tor labor productivity is 1�2190, but the realized average output growth factor
between the years 2060 and 2410 is only 1�1991 (see Appendix B). Figure S.14
zooms in on this case to highlight its implications for the carbon tax–GDP ratio
approximation. The results in Figure S.14 suggest that both concerns surround-
ing the approximation (33) are of modest magnitude.

4.1. Sensitivity With Adjusted Discount Factors

The sensitivity analysis above changes the intertemporal elasticity parameter
σ and the long-term growth rate of consumption while maintaining a constant
discount factor β. Effective discount rates thus differ across the scenarios con-
sidered. This section presents an alternative sensitivity analysis that adjusts β
when changing σ and gz so as to maintain consistency with the benchmark case.
More specifically, this section focuses on parameter combinations of σ , gz , and
β for which the approximated carbon tax–GDP ratio as defined in (33) remains
at the benchmark value of Λ̂t = 0�0000807. That is, for a given combination of
σ and gz , we consider what the pure rate of social time preference would have
to be such that the effective discount factor remains at the benchmark value of
β= (0�985)10:

β̂(1 + gz)
1−σ = (0�985)10 = βBenchmark� β̂= (0�985)10

(1 + gz)1−σ
�(34)
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FIGURE S.14.—Carbon tax/GDP ratio approximation.

Figure S.15 displays values of β̂ that will maintain the benchmark optimal car-
bon tax approximation for a given combination of (σ�gz) as per (34) in annual
levels.

Next, Figure S.16 displays actual and approximated optimal carbon tax–
GDP ratios for a range of parameter values with β adjusted as in Fig-

FIGURE S.15.—Annual discount factor for benchmark carbon tax/GDP approximation.
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FIGURE S.16.—Carbon tax/GDP ratio approximation.

ure S.15. 

3 With the discount factor set as in (34), the approximated optimal
carbon tax–GDP ratio is, by construction, identical to the benchmark value. As
expected, the actual optimal carbon tax–GDP ratio thus lies close to the bench-
mark value in all cases considered. The actual values of Λ̂t deviate slightly from
the approximation only for two reasons: (1) transition dynamics, and (2) the
fact that the actual long-term output growth rate gy falls short of the long-term
labor productivity growth rate gz due to declining oil inputs. For example, in
the scenario σ = 2, gTFP = 1%, δ = 100%, and β = 1, the average output
growth factor between the years 2060 and 2410 is 1�1517, but the decadal labor
productivity growth factor is 1�1627 (see Appendix B).

Finally, to put the results from Figure S.16 in further perspective, Figure S.17
compares actual and approximated carbon tax–GDP ratios in the case where
σ = 1�5, both with and without adjustments to β to keep effective discount
rates close to the benchmark. As expected, the optimal carbon tax–GDP ratio
remains close to the benchmark value and its approximation when the discount
factor is adjusted along with σ and gz . In contrast, bigger deviations from the
benchmark occur when σ and gz are changed and β is held constant. However,
even in those cases, the modified optimal carbon tax formulation (33) arguably
captures the optimal carbon tax–GDP ratio well.

3Scenarios that would require β> 1 were not considered.
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FIGURE S.17.—Carbon tax/GDP ratio approximation for σ = 1�5.

APPENDIX A: MATCHING GHKT’S BENCHMARK QUANTITATIVE RESULTS

This appendix compares quantitative results for energy inputs in the bench-
mark case (σ = 1, δ = 1, gTFP = 0) obtained by GHKT to those obtained by
the alternative numerical model used throughout this supplement. The alter-
native Matlab model replicates GHKT’s results for the benchmark case, as
desired, see Figures S.18–S.20.

FIGURE S.18.—Coal use comparison: GHKT benchmark vs. alternative model.
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FIGURE S.19.—Oil use comparison: GHKT benchmark vs. alternative model.

FIGURE S.20.—Wind use comparison: GHKT benchmark vs. alternative model.

APPENDIX B: OUTPUT GROWTH FACTORS

This appendix details three measures of output growth factors for the cen-
tral model scenarios: averaged across all periods between years zero and 400
(Gy

t=400

t=0 ) (calendar years 2010–2410), between years 50 and 400 (Gy

t=400

t=50 ), and
in the decade between 2110 and 2120 (Gy�100). Excluding the early periods
helps provide a cleaner comparison between actual output growth and labor
productivity growth rates in the final-goods production sector, eliminating dif-
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ferences in growth rates due to transitional dynamics early on. Labor produc-
tivity in the energy production sector is assumed to grow at 2% per year in all
scenarios. See Tables S.B-I–S.B-XI.

TABLE S.B-I

AVERAGE GROWTH FACTORS BETWEEN YEARS 0–G400 FOR 0% TFP GROWTH,
Gdec

z = 1�000, Gy

t=400

t=0

β

0�985

σ δ = 1 δ = 0�65, no Rec. δ = 0�65, Rec. 0�990 0�995 0�999

0�5 1�0023
1 1�0022 1�0064 1�0035 1�0047 1�0070 1�0089
1�5 1�0022 1�0062 1�0035 1�0046 1�0069 1�0088
2 1�0022 1�0062 1�0034 1�0046 1�0068 1�0086

TABLE S.B-II

AVERAGE GROWTH FACTORS BETWEEN YEARS 50–400 FOR 0% TFP GROWTH,
Gdec

z = 1�000, Gy

t=400

t=50

β

0�985

σ δ = 1 δ = 0�65, no Rec. δ = 0�65, Rec. 0�990 0�995 0�999

0�5 0�9986
1 0�9986 0�9989 0�9988 1�0007 1�0027 1�0048
1�5 0�9987 0�9991 0�9989 1�0007 1�0027 1�0047
2 0�9988 0�9993 0�9991 1�0008 1�0027 1�0046

TABLE S.B-III

GROWTH FACTOR BETWEEN 2110–2120 FOR 0% TFP GROWTH, Gdec
z = 1�000, Gy�100

β

0�985

σ δ = 1 δ = 0�65, no Rec. δ = 0�65, Rec. 0�990 0�995 0�999

0�5 0�9986
1 0�9987 0�9988 0�9988 1�0005 1�0021 1�0033
1�5 0�9988 0�9990 0�9989 1�0005 1�0021 1�0032
2 0�9988 0�9993 0�9992 1�0005 1�0021 1�0032
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TABLE S.B-IV

AVERAGE GROWTH FACTORS BETWEEN YEARS 0–400 FOR 2% LABOR PRODUCTIVITY

GROWTH, Gdec
z = 1�2190, Gy

t=400

t=0

β

σ 0�985 0�990 0�995 0�999 0�9753 0�9948

0�5 1�2108 1�2051
1 1�2054 1�2084 1�2112 1�2134
1�5 1�1999 1�2030 1�2059 1�2082 1�2058
2 1�1945 1�1975 1�2005 1�2029

TABLE S.B-V

AVERAGE GROWTH FACTORS BETWEEN YEARS 50–400 FOR 2% LABOR PRODUCTIVITY

GROWTH, Gdec
z = 1�2190, Gy

t=400

t=50

β

σ 0�985 0�990 0�995 0�999 0�9753 0�9948

0�5 1�2082 1�2033
1 1�2036 1�2061 1�2085 1�2110
1�5 1�1991 1�2016 1�2041 1�2060 1�2040
2 1�1945 1�1971 1�1996 1�2016

TABLE S.B-VI

GROWTH FACTOR BETWEEN 2110–2120 FOR 2% LABOR PRODUCTIVITY GROWTH,
Gdec

z = 1�2190, Gy�100

β

σ 0�985 0�990 0�995 0�999 0�9753 0�9948

0�5 1�2076 1�2035
1 1�2038 1�2058 1�2078 1�2092
1�5 1�2000 1�2021 1�2041 1�2057 1�2039
2 1�1962 1�1983 1�2004 1�2021
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TABLE S.B-VII

AVERAGE GROWTH FACTORS BETWEEN YEARS 0–400 FOR 1�5% TFP GROWTH,
Gdec

z = 1�2531, Gy

t=400

t=0

β

0�985

σ δ= 1 δ = 0�65, no Rec. δ = 0�65, Rec. 0�974 0�9962

0�5 1�2364
1 1�2368 1�2406 1�2373
1�5 1�2304 1�2337 1�2305 1�2372
2 1�2240 1�2269 1�2238

TABLE S.B-VIII

AVERAGE GROWTH FACTORS BETWEEN YEARS 50–400 FOR 1�5% TFP GROWTH,
Gdec

z = 1�2531, Gy

t=400

t=50

β

0�985

σ δ= 1 δ = 0�65, no Rec. δ = 0�65, Rec. 0�974 0�9962

0�5 1�2349
1 1�2353 1�2354 1�2354
1�5 1�2299 1�2301 1�2300 1�2357
2 1�2245 1�2247 1�2245

TABLE S.B-IX

GROWTH FACTOR BETWEEN 2110–2120 FOR 1�5% TFP GROWTH, Gdec
z = 1�2531, Gy�100

β

0�985

σ δ= 1 δ = 0�65, no Rec. δ = 0�65, Rec. 0�974 0�9962

0�5 1�2351
1 1�2354 1�2355 1�2355
1�5 1�2310 1�2311 1�2310 1�2357
2 1�2266 1�2267 1�2266
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TABLE S.B-X

GROWTH FACTORS FOR 1% TFP GROWTH, Gdec
z = 1�1627

Gy
t=400
t=0 Gy

t=400
t=50 Gy�100

(σ = 0�5, β = 0�9776) 1�1532 1�1509 1�1510
(σ = 1�5, β = 0�9925) 1�1537 1�1514 1�1515
(σ = 2�0, β = 1�000) 1�1540 1�1517 1�1517

TABLE S.B-XI

GROWTH FACTORS FOR 2% TFP GROWTH, Gdec
z = 1�3499

Gy
t=400
t=0 Gy

t=400
t=50 Gy�100

(σ = 0�5, β = 0�9703) 1�3251 1�3246 1�3248
(σ = 1�5, β = 0�9999) 1�3263 1�3257 1�3257
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