Journal of Machine Learning Research 3 (2003) 1157-1182 Submitted 11/02; Published 3/03

An Introduction to Variable and Feature Selection

Isabelle Guyon ISABELLE@CLOPINET.COM
Clopinet

955 Creston Road

Berkeley, CA 94708-1501, USA

Andr é Elisseeff ANDRE@TUEBINGEN.MPG.DE
Empirical Inference for Machine Learning and Perceptionp@agment

Max Planck Institute for Biological Cybernetics

Spemannstrasse 38

72076 Tbingen, Germany

Editor: Leslie Pack Kaelbling

Abstract

Variable and feature selection have become the focus of masdarch in areas of application for
which datasets with tens or hundreds of thousands of vasade available. These areas include
text processing of internet documents, gene expressiay amalysis, and combinatorial chemistry.
The objective of variable selection is three-fold: imprayihe prediction performance of the pre-
dictors, providing faster and more cost-effective pretfigtand providing a better understanding of
the underlying process that generated the data. The cotitriis of this special issue cover a wide
range of aspects of such problems: providing a better defindf the objective function, feature
construction, feature ranking, multivariate feature s, efficient search methods, and feature
validity assessment methods.

Keywords: Variable selection, feature selection, space dimenstgnalduction, pattern discov-
ery, filters, wrappers, clustering, information theorypgort vector machines, model selection,
statistical testing, bioinformatics, computational bigy, gene expression, microarray, genomics,
proteomics, QSAR, text classification, information retaie

1 Introduction

As of 1997, when a special issue on relevance including severatgapevariable and feature
selection was published (Blum and Langley, 1997, Kohavi and Jol@7) 18w domains explored
used more than 40 features. The situation has changed considerablypastifew years and, in
this special issue, most papers explore domains with hundreds to tensisétius of variables or
featurest New techniques are proposed to address these challenging tasks igvobiiy irrelevant
and redundant variables and often comparably few training examples.

Two examples are typical of the new application domains and serve us asititusthroughout
this introduction. One is gene selection from microarray data and the othet isategorization.
In the gene selection problem, the variables are gene expressionieogsficorresponding to the

1. We call “variable” the “raw” input variables and “features” variablmnstructed for the input variables. We use
without distinction the terms “variable” and “feature” when there is no imhpadahe selection algorithms, e.g., when
features resulting from a pre-processing of input variables are @kptiomputed. The distinction is necessary in
the case of kernel methods for which features are not explicitly cordfsée section 5.3).
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abundance of mRNA in a sample (e.g. tissue biopsy), for a number of patiartgical clas-
sification task is to separate healthy patients from cancer patients, basieeirogene expression
“profile”. Usually fewer than 100 examples (patients) are available altegébh training and test-
ing. But, the number of variables in the raw data ranges from 6000 to 605a00e initial filtering
usually brings the number of variables to a few thousand. Because thdaine of mMRNA varies
by several orders of magnitude depending on the gene, the variablesially standardized. In the
text classification problem, the documents are represented by a “hagrd$”, that is a vector of
dimension the size of the vocabulary containing word frequency courtgdpnormalization of the
variables also apply). Vocabularies of hundreds of thousands afsaare common, but an initial
pruning of the most and least frequent words may reduce the effeativder of words to 15,000.
Large document collections of 5000 to 800,000 documents are availablestarch. Typical tasks
include the automatic sorting of URLs into a web directory and the detectionsoliaited email
(spam). For a list of publicly available datasets used in this issue, see Tattleelend of the paper.

There are many potential benefits of variable and feature selection: taugitata visualization
and data understanding, reducing the measurement and storagememqis,ereducing training and
utilization times, defying the curse of dimensionality to improve prediction perfocga Some
methods put more emphasis on one aspect than another, and this is amathef plistinction
between this special issue and previous work. The papers in this issigerf@inly on constructing
and selectingubsets of featurebat areusefulto build a good predictor. This contrasts with the
problem of finding or ranking all potentially relevant variables. Selectiegrbst relevant variables
is usually suboptimal for building a predictor, particularly if the variablesedeindant. Conversely,
a subset of useful variables may exclude many redundant, but relgesiables. For a discussion
of relevancers. usefulness and definitions of the various notions of relevance, see/ibe egticles
of Kohavi and John (1997) and Blum and Langley (1997).

This introduction surveys the papers presented in this special issuedeplie of treatment of
various subjects reflects the proportion of papers covering them: thiepr@f supervised learning
is treated more extensively than that of unsupervised learning; classifigaoblems serve more
often as illustration than regression problems, and only vectorial inpuisiedasidered. Complex-
ity is progressively introduced throughout the sections: The first sestarts by describinlters
that select variables by ranking them with correlation coefficients (Segjiohimitations of such
approaches are illustrated by a set of constructed examples (SectiSat®et selection methods
are then introduced (Section 4). These includapper methodthat assess subsets of variables ac-
cording to their usefulness to a given predictor. We show how some emtb@dethods implement
the same idea, but proceed more efficiently by directly optimizing a two-ppetidke function with
a goodness-of-fit term and a penalty for a large number of variablesh& turn to the problem of
feature construction, whose goals include increasing the predictarpenfice and building more
compact feature subsets (Section 5). All of the previous steps bemefitréliably assessing the
statistical significance of the relevance of features. We briefly review hsetkction methods and
statistical tests used to that effect (Section 6). Finally, we conclude tres péth a discussion sec-
tion in which we go over more advanced issues (Section 7). Becausegdmazation of our paper
does not follow the work flow of building a machine learning application, we sutzmhe steps
that may be taken to solve a feature selection problem in a chetk list

2. We caution the reader that this check list is heuristic. The only recofatien that is almost surely valid is to try
the simplest things first.
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. Do you have domain knowledge?f yes, construct a better set of “ad hoc” features.
. Are your features commensurate?f no, consider normalizing them.

. Do you suspect interdependence of featured®Pyes, expand your feature set by constructing

conjunctive features or products of features, as much as your compatirces allow you
(see example of use in Section 4.4).

. Do you need to prune the input variables(e.g. for cost, speed or data understanding rea-

sons)? If no, construct disjunctive features or weighted sums ofre=afe.g. by clustering
or matrix factorization, see Section 5).

. Do you need to assess features individuallg.g. to understand their influence on the system

or because their number is so large that you need to do a first filtering§,ltige a variable
ranking method (Section 2 and Section 7.2); else, do it anyway to get basetinlts.

. Do you need a predictor?If no, stop.

. Do you suspect your data is “dirty” (has a few meaningless input patterns and/or noisy

outputs or wrong class labels)? If yes, detect the outlier examples usirtgghanking
variables obtained in step 5 as representation; check and/or discard them.

. Do you know what to try first? If no, use a linear predictérUse a forward selection method

(Section 4.2) with the “probe” method as a stopping criterion (Section 6)ethefy-norm
embedded method (Section 4.3). For comparison, following the rankingmbstnstruct
a sequence of predictors of same nature using increasing subsedsuoé$e Can you match
or improve performance with a smaller subset? If yes, try a non-lineaigpoedvith that
subset.

. Do you have new ideas, time, computational resources, and endugxamples? If yes,

compare several feature selection methods, including your new ideealatimm coefficients,
backward selection and embedded methods (Section 4). Use linear atide@rpredictors.
Select the best approach with model selection (Section 6).

Do you want a stable solution(to improve performance and/or understanding)? If yes, sub-
sample your data and redo your analysis for several “bootstrapstigge’.1).

2 Variable Ranking

Many variable selection algorithms include variable ranking as a principauwitiary selection

mechanism because of its simplicity, scalability, and good empirical sucomas.abpapers in this
issue use variable ranking as a baseline method (see, e.g., Bekkerntare@®3% Caruana and
de Sa, 2003, Forman, 2003, Weston et al., 2003). Variable ranking regessarily used to build
predictors. One of its common uses in the microarray analysis domain is to elisteet of drug

leads (see, e.g., et al., 1999): A ranking criterion is used to find genedifitaiiminate between
healthy and disease patients; such genes may code for “drugableihpraie proteins that may

3. By “linear predictor” we mean linear in the parameters. Feature canistn may render the predictor non-linear in
the input variables.

1159



GUYON AND ELISSEEFF

themselves be used as drugs. Validating drug leads is a labor intensblerprim biology that is
outside of the scope of machine learning, so we focus here on buildidgcfmes. We consider in
this section ranking criteria defined for individual variables, indepetiglef the context of others.
Correlation methods belong to that category. We also limit ourselves to ssgetgarning criteria.
We refer the reader to Section 7.2 for a discussion of other techniques.

2.1 Principle of the Method and Notations

Consider a set ofn examples{x, Yk} (k= 1,...m) consisting ofn input variables; (i = 1,...n)
and one output variablg. Variable ranking makes use of a scoring funct®&n computed from
the valuesx; andyy, k= 1,..m. By convention, we assume that a high score is indicative of a
valuable variable and that we sort variables in decreasing ord&i JofTo use variable ranking to
build predictors, nested subsets incorporating progressively mormaredvariables of decreasing
relevance are defined. We postpone until Section 6 the discussion ciirsglan optimum subset
size.

Following the classification of Kohavi and John (1997), variable ranidrafilter method: it is
a preprocessing step, independent of the choice of the predictor. &diélr aertain independence or
orthogonality assumptions, it may be optimal with respect to a given predktoinstance, using
Fisher’s criteriofi to rank variables in a classification problem where the covariance matrixgs dia
onal is optimum for Fisher’s linear discriminant classifier (Duda et al., 0Bten when variable
ranking is not optimal, it may be preferable to other variable subset selenttimods because of
its computational and statistical scalability: Computationally, it is efficient sinegjitires only the
computation oh scores and sorting the scores; Statistically, it is robust against overbgirause
it introduces bias but it may have considerably less variance (Hastie 2061.)°

We introduce some additional notation: If the input vectoan be interpreted as the realization
of a random vector drawn from an underlying unknown distribution, @ote byX; the random
variable corresponding to th#® component ok. Similarly,Y will be the random variable of which
the outcomey is a realization. We further denote kxy the m dimensional vector containing all
the realizations of th&" variable for the training examples, and pythe m dimensional vector
containing all the target values.

2.2 Correlation Criteria
Let us consider first the prediction of a continuous outcgmé&he Pearson correlation coefficient
is defined as:

cov(X;,Y)

()= var(X)var(Y) ’ @)

wherecovdesignates the covariance arat the variance. The estimate &fi) is given by:

: Skt (Xi — %) (Yk—Y)
R(i) = , )
Y TS 3 U @)

4. The ratio of the between class variance to the within-class variance.

5. The similarity of variable ranking to the ORDERED-FS algorithm (Ng, }988icates that its sample complexity
may be logarithmic in the number of irrelevant features, compared tavargaw for “wrapper” subset selection
methods. This would mean that variable ranking can tolerate a humbeelgvant variables exponential in the
number of training examples.

1160



AN INTRODUCTION TOVARIABLE AND FEATURE SELECTION

where the bar notation stands for an average over the ikdéhis coefficient is also the cosine
between vectorg; andy, after they have been centered (their mean subtracted). Althoudrtithe

is derived fromZR (i) it may be used without assuming that the input values are realizations of a
random variable.

In linear regression, the coefficient of determination, which is the sqpfdRé ), represents the
fraction of the total variance around the mean valtleat is explained by the linear relation between
x; andy. Therefore, usindR(i)? as a variable ranking criterion enforces a ranking according to
goodness of linear fit of individual variablés.

The use ofR(i)? can be extended to the case of two-class classification, for which eash cla
label is mapped to a given value nfe.g.,41. R(i)2 can then be shown to be closely related to
Fisher’s criterion (Furey et al., 2000), to the T-test criterion, and oshrailar criteria (see, e.g.,
et al., 1999, Tusher et al., 2001, Hastie et al., 2001). As further deselmm Section 6, the link
to the T-test shows that the scd®é) may be used as a test statistic to assess the significance of a
variable.

Correlation criteria such &g(i) can only detect linear dependencies between variable and tar-
get. A simple way of lifting this restriction is to make a non-linear fit of the target sitigle
variables and rank according to the goodness of fit. Because of thaf wsterfitting, one can alter-
natively consider using non-linear preprocessing (e.g., squaririggtile square root, the log, the
inverse, etc.) and then using a simple correlation coefficient. Correlaiteni@rare often used for
microarray data analysis, as illustrated in this issue by Weston et al. (2003).

2.3 Single Variable Classifiers

As already mentioned, usirR(i)? as a ranking criterion faegressiorenforces a ranking according
to goodness of linear fit of individual variables. One can extend toltssificationcase the idea of
selecting variables according to their individual predictive power, ussgyiterion the performance
of a classifier built with a single variable. For example, the value of the Jaritse|f (or its negative,
to account for class polarity) can be used as discriminant function. Aifiexss obtained by setting
a threshold on the value of the variable (e.g., at the mid-point between the center dafygothe
two classes).

The predictive power of the variable can be measured in terms of erroBatevarious other
criteria can be defined that involve false positive classificationfratand false negative classifi-
cation ratefnr. The tradeoff betweefpr andfnr is monitored in our simple example by varying
the threshol®. ROC curves that plot “hit” rat€l-fpr) as a function of “false alarm” rater are
instrumental in defining criteria such as: The “Break Even Point” (the tetfix a threshold value
corresponding tépr=fnr) and the “Area Under Curve” (the area under the ROC curve).

In the case where there is a large number of variables that separataahmedactly, ranking
criteria based on classification success rate cannot distinguish betveetptranking variables.
One will then prefer to use a correlation coefficient or another statistic l&kenrgin (the distance
between the examples of opposite classes that are closest to one anoéhgiven variable).

6. A variant of this idea is to use the mean-squared-error, but, if theblas are not on comparable scales, a comparison
between mean-squared-errors is meaningless. Another variantssRiilito rank variables, ndR(i)2. Positively
correlated variables are then top ranked and negatively correlatiedblesrbottom ranked. With this method, one
can choose a subset of variables with a given proportion of positivelyhagatively correlated variables.
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The criteria described in this section extend to the case of binary variabtesnan (2003)
presents in this issue an extensive study of such criteria for binaryolesiwith applications in text
classification.

2.4 Information Theoretic Ranking Criteria

Several approaches to the variable selection problem using informatiometicecriteria have been
proposed (as reviewed in this issue by Bekkerman et al., 2003, Dhilldn 2083, Forman, 2003,
Torkkola, 2003). Many rely on empirical estimates of the mutual informatitwésen each variable
and the target:
. P(%i,Y)
1= [ pos o0y ©

wherep(x;) and p(y) are the probability densities &f andy, and p(x;,y) is the joint density. The
criterion I(i) is a measure of dependency between the density of vartabled the density of the
targety.

The difficulty is that the densitiep(X;), p(y) and p(x,y) are all unknown and are hard to
estimate from data. The case of discrete or nominal variables is probamgeaecause the integral
becomes a sum:

PX=x,Y=Yy)

1) =2 > PX=X.Y =y)loggr— 57—y} )
Xy |

The probabilities are then estimated from frequency counts. For exampéethree-class
problem, if a variable takes 4 valueB(Y =y) represents the class prior probabilities (3 fre-
quency counts)P(X = x;) represents the distribution of the input variable (4 frequency counts),
andP(X = x;,Y =) is the probability of the joint observations (12 frequency counts). Ttimas
tion obviously becomes harder with larger numbers of classes and varabés.

The case of continuous variables (and possibly continuous targets) matbest. One can
consider discretizing the variables or approximating their densities with ga@metric method
such as Parzen windows (see, e.g., Torkkola, 2003). Using the ndistabution to estimate
densities would bring us back to estimating the covariance betweandY, thus giving us a
criterion similar to a correlation coefficient.

3 Small but Revealing Examples

We present a series of small examples that outline the usefulness and the Inwitz#tieariable
ranking techniques and present several situations in which the variapendencies cannot be
ignored.

3.1 Can Presumably Redundant Variables Help Each Other?

One common criticism of variable ranking is that it leads to the selection of adeaht subset. The
same performance could possibly be achieved with a smaller subset of coempéey variables.
Still, one may wonder whether adding presumably redundant variablagsalhin a performance
gain.
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Figure 1:Information gain from presumably redundant variables. (a) A two class problem with
independently and identically distributed (i.i.d.) variables. Each class hasissi@a distribution
with no covariance. (b) The same example after a 45 degree rotation ghthsitna combination
of the two variables yields a separation improvement by a fa¢®rl.i.d. variables are not truly
redundant.

Consider the classification problem of Figure 1. For each class, we atreesndomm = 100
examples, each of the two variables being drawn independently acctodimgprmal distribution of
standard deviation 1. The class centers are placed at coordinatdg &dd (1; 1). Figure 1.a shows
the scatter plot in the two-dimensional space of the input variables. Wetalaoos the same figure
histograms of the projections of the examples on the axes. To facilitate itsge#dirscatter plot is
shown twice with an axis exchange. Figure 1.b shows the same scatter otsfafty five degree
rotation. In this representation, the x-axis projection provides a bettaratigmn of the two classes:
the standard deviation of both classes is the same, but the distance betnts m projection is
now 2/2 instead of 2. Equivalently, if we rescale the x-axis by dividingJ® to obtain a feature
that is the average of the two input variables, the distance between cisrgfis2, but the within
class standard deviation is reduced by a fagf@r This is not so surprising, since by averaging
i.i.d. random variables we will obtain a reduction of standard deviation bytarfaf \/n. Noise
reduction and consequently better class separation may be obtaéd by adding variables that
are presumably redundant. Variables that are independently and identically distributed are not
truly redundant.

3.2 How Does Correlation Impact Variable Redundancy?

Another notion of redundancy is correlation. In the previous exampleite ef the fact that the
examples are i.i.d. with respect to the class conditional distributions, the eriate correlated
because of the separation of the class center positions. One may womdeatiable redundancy
is affected by adding within-class variable correlation. In Figure 2, tresalanters are positioned
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Figure 2:Intra-class covariance.In projection on the axes, the distributions of the two variables are
the same as in the previous example. (a) The class conditional distributiana héyh covariance

in the direction of the line of the two class centers. There is no significantya@paration by using
two variables instead of just one. (b) The class conditional distributioves &digh covariance in
the direction perpendicular to the line of the two class centers. An importpatag@n gain is
obtained by using two variables instead of one.

similarly as in the previous example at coordinates (-1; -1) and (1; 1) bubave added some
variable co-variance. We consider two cases:

In Figure 2.a, in the direction of the class center line, the standard devidtiba olass condi-
tional distributions isy/2, while in the perpendicular direction it is a small valae=(1/10). With
this construction, as goes to zero, the input variables have the same separation power as in the
case of the example of Figure 1, with a standard deviation of the class disinibwf one and a
distance of the class centers of 2. But the feature constructed as thef suennput variables has
no better separation power: a standard deviatioff@fnd a class center separation ¢f2(a sim-
ple scaling that does not change the separation power). Therefdhe limit of perfect variable
correlation (zero variance in the direction perpendicular to the classrderd} single variables
provide the same separation as the sum of the two variaBledectly correlated variables are
truly redundant in the sense that no additional information is gainedby adding them.

In contrast, in the example of Figure 2.b, the first principal direction of dvaigance matrices
of the class conditional densities is perpendicular to the class center lineisloate, more is
gained by adding the two variables than in the example of Figure 1. One nibtatess spite of their
great complementarity (in the sense that a perfect separation can beegdhithe two-dimensional
space spanned by the two variables), the two variables are (antilgted.eMore anti-correlation
is obtained by making the class centers closer and increasing the ratio @fritveces of the class
conditional distributions.Very high variable correlation (or anti-correlation) does not mean
absence of variable complementarity.
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The examples of Figure 1 and 2 all have variables with the same distributiommofptes (in
projection on the axis). Therefore, methods that score variables indilydand independently of
each other are at loss to determine which combination of variables woultestgerformance.

3.3 Can a Variable that is Useless by Itself be Useful with O#rs?

One concern about multivariate methods is that they are prone to overfittiegoroblem is aggra-
vated when the number of variables to select from is large compared to higenwf examples.
It is tempting to use a variable ranking method to filter out the least promisingolesibefore us-
ing a multivariate method. Still one may wonder whether one could potentially ¢tose galuable
variables through that filtering process.

We constructed an example in Figure 3.a. In this example, the two class coaddistmibu-
tions have identical covariance matrices, and the principal directiongiarded diagonally. The
class centers are separated on one axis, but not on the other. By iitselfnable is “useless”.
Still, the two dimensional separation is better than the separation using thel"usefable alone.
Thereforea variable that is completely useless by itself can provide a significantgpformance
improvement when taken with others.

The next question is whether two variables that are useless by themsaivpsovide a good
separation when taken together. We constructed an example of suah nspsred by the famous
XOR problem’ In Figure 3.b, we drew examples for two classes using four Gaussiarespta
the corners of a square at coordinates (0; 0), (0; 1), (1; 0), Ent)( The class labels of these four
“clumps” are attributed according to the truth table of the logical XOR funcfi@:0)=0, f(0; 1)=1,
f(1; 0)=1; f(1; 1)=0. We notice that the projections on the axes pronmlelass separation. Yet,
in the two dimensional space the classes can easily be separated (allvdithretiinear decision
function)® Two variables that are useless by themselves can be useful togeth

7. The XOR problem is sometimes referred to as the two-bit parity problemisageneralizable to more than two
dimensions (n-bit parity problem). A related problem is the chessbaatolgm in which the two classes pave
the space with squares of uniformly distributed examples with alternating kelasls. The latter problem is also
generalizable to the multi-dimensional case. Similar examples are usedenalggapers in this issue (Perkins et al.,
2003, Stoppiglia et al., 2003).

8. Incidentally, the two variables are also uncorrelated with one another.
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(a)
Figure 3: A variable useless by itself can be useful together with othergia) One variable has
completely overlapping class conditional densities. Still, using it jointly with therothdable
improves class separability compared to using the other variable aloneO@)liXe or chessboard-
like problems. The classes consist of disjoint clumps such that in projeatitinecaxes the class
conditional densities overlap perfectly. Therefore, individual véegihave no separation power.
Still, taken together, the variables provide good class separability .

4 Variable Subset Selection

In the previous section, we presented examples that illustrate the usefolnsslecting subsets

of variables that together have good predictive power, as opposemkong variables according

to their individual predictive power. We now turn to this problem and outlirgertfain directions

that have been taken to tackle it. They essentially divide into wrapperssfiiad embedded
methods. Wrappers utilize the learning machine of interest as a black box to score subsets of
variable according to their predictive poweiilters select subsets of variables as a pre-processing
step, independently of the chosen prediciEmbeddedmethods perform variable selection in the
process of training and are usually specific to given learning machines.

4.1 Wrappers and Embedded Methods

The wrapper methodology, recently popularized by Kohavi and Job@7(] offers a simple and
powerful way to address the problem of variable selection, regardfeb& chosen learning ma-
chine. In fact, the learning machine is considered a perfect black bothanmdethod lends itself
to the use of off-the-shelf machine learning software packages. In itsgansral formulation, the
wrapper methodology consists in using the prediction performance oka tgarning machine to
assess the relative usefulness of subsets of variables. In practeceeeds to define: (i) how to
search the space of all possible variable subsets; (ii) how to assesthetipn performance of
a learning machine to guide the search and halt it; and (iii) which predictoretoArs exhaustive

search can conceivably be performed, if the number of variables tvaddrge. But, the problem
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is known to be NP-hard (Amaldi and Kann, 1998) and the search beagunedy computationally
intractable. A wide range of search strategies can be used, includiifregdranch-and-bound,
simulated annealing, genetic algorithms (see Kohavi and John, 1997 rdégiesv). Performance
assessments are usually done using a validation set or by cross-valigato8ection 6). As il-
lustrated in this special issue, popular predictors include decision traigs, Bayes, least-square
linear predictors, and support vector machines.

Wrappers are often criticized because they seem to be a “brute for¢ceddequiring massive
amounts of computation, but it is not necessarily so. Efficient seardbgitta may be devised. Us-
ing such strategies does not necessarily mean sacrificing predictiammparfce. In fact, it appears
to be the converse in some cases: coarse search strategies may alle\pabbldma of overfitting,
as illustrated for instance in this issue by the work of Reunanen (200&ed@rsearch strategies
seem to be particularly computationally advantageous and robust agaenfitiog. They come in
two flavors: forward selectiorandbackward elimination In forward selection, variables are pro-
gressively incorporated into larger and larger subsets, whereaskwaal elimination one starts
with the set of all variables and progressively eliminates the least promisiegf Both methods
yield nested subsetsf variables.

By using the learning machine as a black box, wrappers are remarkaigrsal and simple.
But embedded methods that incorporate variable selection as part ofithiegnarocess may be
more efficient in several respects: they make better use of the availablbydaot needing to split
the training data into a training and validation set; they reach a solution fasé@oling retraining
a predictor from scratch for every variable subset investigated. Eteldechethods are not new:
decision trees such as CART, for instance, have a built-in mechanismftorperariable selection
(Breiman et al., 1984). The next two sections are devoted to two families oédaeld methods
illustrated by algorithms published in this issue.

4.2 Nested Subset Methods

Some embedded methods guide their search by estimating changes in the efijediion value
incurred by making moves in variable subset space. Combined with greadshsstrategies (back-
ward elimination or forward selection) they yield nested subsets of vari&bles

Let us calls the number of variables selected at a given algorithm step)&)dhe value of
the objective function of the trained learning machine using such a variabses Predicting the
change in the objective function is obtained by:

1. Finite difference calculation: The difference betweed(s) andJ(s+ 1) or J(s— 1) is com-
puted for the variables that are candidates for addition or removal.

2. Quadratic approximation of the cost function: This method was originally proposed to
prune weights in neural networks (LeCun et al., 1990). It can be imduackward elimi-
nation of variables, via the pruning of the input variable weightsA second order Taylor
expansion of] is made. At the optimum ad, the first-order term can be neglected, yield-

9. The name greedy comes from the fact that one never revisits faleesions to include (or exclude) variables in
light of new decisions.
10. The algorithms presented in this section and in the following generalgfibélm variable normalization, except if
they have an internal normalization mechanism like the Gram-Schmidtgamiadization procedure .
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ing for variablei to the variationDJ; = (1/2)$(Dwi)2. The change in weighdw; = w;
corresponds to removing variable

3. Sensitivity of the objective function calculation: The absolute value or the square of the
derivative ofJ with respect tog (or with respect tav;) is used.

Some training algorithms lend themselves to using finite differences (methodd)dmeexact
differences can be computed efficiently, without retraining new modelsdicn candidate variable.
Such is the case for the linear least-square model: The Gram-Schmidt@rtiizgtion procedure
permits the performance of forward variable selection by adding at ¢éaghhe variable that most
decreases the mean-squared-error. Two papers in this issue ateddevthis technique (Stoppiglia
et al., 2003, Rivals and Personnaz, 2003). For other algorithms likek®ethods, approximations
of the difference can be computed efficiently. Kernel methods are lgamathines of the form
f(x) = Y, 0kK(x,xk), whereK is the kernel function, which measures the similarity between
andxg (Schoelkopf and Smola, 2002). The variationJ{is) is computed by keeping the values
constant. This procedure originally proposed for SVMs (Guyon et@D2pis used in this issue as
a baseline method (Rakotomamonjy, 2003, Weston et al., 2003).

The “optimum brain damage” (OBD) procedure (method 2) is mentioned in thig issthe
paper of Rivals and Personnaz (2003). The case of linear presiicgtor=w-x+ b is particularly
simple. The authors of the OBD algorithm advocate udidyinstead of the magnitude of the
weights|w;| as pruning criterion. However, for linear predictors trained with an abgefunction
J that is quadratic inv; these two criteria are equivalent. This is the case, for instance, for tla line
least square model usinh= S ;(W- Xk +b—yk)? and for the linear SVM or optimum margin
classifier, which minimizes = (1/2)||w||?, under constraints (Vapnik, 1982). Interestingly, for
linear SVMs the finite difference method (method 1) and the sensitivity methothdohé&) also
boil down to selecting the variable with smallést| for elimination at each step (Rakotomamonjy,
2003).

The sensitivity of the objective function to changesn(method 3) is used to devise a forward
selection procedure in one paper presented in this issue (Perkins &048), 2pplications of this
procedure to a linear model with a cross-entropy objective functionrasepted. In the formulation
proposed, the criterion is the absolute valueg,‘%vé;f: Skeq %g—vp;, wherepy = yk f(xk). In the case
of the linear modeff (x) = w- x + b, the criterion has a simple geometrical interpretation: it is the
the dot product between the gradient of the objective function with ct$péhe margin values and

the vectoﬂg—\‘,’v‘: = X Yk]k=1..m- For the cross-entropy loss function, we hag-é%k‘:: H—lepf

An interesting variant of the sensitivity analysis method is obtained by replaleenobjective
function by theleave-one-outross-validation error. For some learning machines and some ob-
jective functions, approximate or exact analytical formulas of the leageent error are known.

In this issue, the case of the linear least-square model (Rivals andnRazs®003) and SVMs
(Rakotomamonjy, 2003) are treated. Approximations for non-linear |leastrss have also been
computed elsewhere (Monari and Dreyfus, 2000). The propos@b&btomamonjy (2003) is to
train non-linear SVMs (Boser et al., 1992, Vapnik, 1998) with a reguksiniing procedure and
select features with backward elimination like in RFE (Guyon et al., 2002¢ vEhniable ranking
criterion however is not computed using the sensitivity of the objectivetifumd, but that of a
leave-one-out bound.

1168



AN INTRODUCTION TOVARIABLE AND FEATURE SELECTION

4.3 Direct Objective Optimization

A lot of progress has been made in this issue to formalize the objective fulnétiraniable selection
and find algorithms to optimize it. Generally, the objective function consists ofdmmos that com-
pete with each other: (1) thlgpoodness-of-fit(to be maximized), and (2) theumber of variables
(to be minimized). This approach bears similarity with two-part objective funstamnsisting of
a goodness-of-fit term and a regularization term, particularly when fheteff the regularization
term is to “shrink” parameter space. This correspondence is formallplissted in the paper of
Weston et al. (2003) for the particular case of classification with lineatiqgias f (X) = w- X+ b,
in the SVM framework (Boser et al., 1992, Vapnik, 1998). Shrinkingulagzers of the type
[lwl[p = (TP, wP)Y/P (¢p-norm) are used. In the limit a8 — 0, the,-norm is just the number
of weights, i.e., the number of variables. Weston et al. proceed with shawaighe/o-norm
formulation of SVMs can be solved approximately with a simple modification of thélassVM
algorithm:

1. Train aregular linear SVM (using-norm or/z-norm regularization).

2. Re-scale the input variables by multiplying them by the absolute values cbthponents of
the weight vectow obtained.

3. lterate the first 2 steps until convergence.

The method is reminiscent of backward elimination procedures based om#iflest|w;|. Variable
normalization is important for such a method to work properly.

Weston et al. note that, although their algorithm only approximately minimize&gtherm, in
practice it may generalize better than an algorithm that really did minimiz&therm, because the
latter would not provide sufficient regularization (a lot of variance resiagtause the optimization
problem has multiple solutions). The need for additional regularization issaisssed in the paper
of Perkins et al. (2003). The authors use a three-part objectiveidunthat includes goodness-
of-fit, a regularization term/¢-norm or ¢,-norm), and a penalty for large numbers of variables
(¢o-norm). The authors propose a computationally efficient forward sefeoiethod to optimize
such objective.

Another paper in the issue, by Bi et al. (2003), uéesorm SVMs, without iterative multi-
plicative updates. The authors find that, for their application/{heorm minimization suffices to
drive enough weights to zero. This approach was also taken in the tohteast-square regression
by other authors (Tibshirani, 1994). The number of variables canrtfeefureduced by backward
elimination.

To our knowledge, no algorithm has been proposed to directly minimize thearuohlyari-
ables for non-linear predictors. Instead, several authors hagtitstdd for the problem of variable
selection that of variable scaling (Jebara and Jaakkola, 2000, Wesabn 2000, Grandvalet and
Canu, 2002). The variable scaling factors are “hyper-parametdjsstad by model selection. The
scaling factors obtained are used to assess variable relevance. At\agirtae method consists
of adjusting the scaling factors by gradient descent on a bound of the-teee-out error (Weston
et al., 2000). This method is used as baseline method in the paper of Westoi2€03) in this
issue.
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4.4 Filters for Subset Selection

Several justifications for the use of filters for subset selection have fngeforward in this special
issue and elsewhere. It is argued that, compared to wrappers, fikeimster. Still, recently pro-
posed efficient embedded methods are competitive in that respect. Anggbereant is that some
filters (e.g. those based on mutual information criteria) provide a genéeictism of variables, not
tuned for/by a given learning machine. Another compelling justification is tettifig can be used
as a preprocessing step to reduce space dimensionality and overcafitgéray.e

In that respect, it seems reasonable to use a wrapper (or embedded)wégtha linear pre-
dictor as a filter and then train a more compi®n-linearpredictor on the resulting variables. An
example of this approach is found in the paper of Bi et al. (2003): a lifieaorm SVM is used for
variable selection, but a non-line&r-norm SVM is used for prediction. The complexity of linear
filters can be ramped up by adding to the selection process products dbivammbles (monomi-
als of a polynomial) and retaining the variables that are part of any selpwiedmial. Another
predictor, e.g., a neural network, is eventually substituted to the polynonpairform predictions
using the selected variables (Rivals and Personnaz, 2003, Stoppiglia 2003). In some cases
however, one may on the contrary want to reduce the complexity of lineas fiti@vercome over-
fitting problems. When the number of examples is small compared to the numlzeiaifles (in the
case of microarray data for instance) one may need to resort to seleatiaflgs with correlation
coefficients (see Section 2.2).

Information theoretic filtering methods such as Markov blahkatgorithms (Koller and Sa-
hami, 1996) constitute another broad family. The justification for classificatioblems is that the
measure of mutual information does not rely on any prediction procesgrdnides a bound on the
error rate using any prediction scheme for the given distribution. We thawe any illustration of
such methods in this issue for the problem of variable subset selectioref&véhre interested reader
to Koller and Sahami (1996) and references therein. However, thef nsgtual information criteria
for individual variable ranking was covered in Section 2 and applicatideature construction and
selection are illustrated in Section 5.

5 Feature Construction and Space Dimensionality Reduction

In some applications, reducing the dimensionality of the data by selecting et sflike original
variables may be advantageous for reasons including the expenseinfinstiring and processing
measurements. If these considerations are not of concern, other wfegpace dimensionality
reduction should also be considered.

The art of machine learning starts with the design of appropriate datesespations. Better
performance is often achieved using features derived from the drigipat. Building a feature
representation is an opportunity to incorporate domain knowledge into thamttzan be very ap-
plication specific. Nonetheless, there are a number of generic featusgwction methods, includ-
ing: clustering; basic linear transforms of the input variables (PCA/SMDA);. more sophisticated
linear transforms like spectral transforms (Fourier, Hadamard), welvatesforms or convolutions
of kernels; and applying simple functions to subsets of variables, likauptedb create monomials.

11. The Markov blanket of a given variablgis a set of variables not including that renderx; “unnecessary”. Once
a Markov blanket is foundy can safely be eliminated. Furthermore, in a backward elimination proeetwvill
remain unnecessary at later stages.
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Two distinct goals may be pursued for feature construction: achievisigéeonstruction of the
data or being most efficient for making predictions. The first problem isreuipervised learning
problem. Itis closely related to that of data compression and a lot of algorérenssed across both
fields. The second problem is supervised. Are there reasons to fegaetes in an unsupervised
manner when the problem is supervised? Yes, possibly several: Soblermpsp e.g., in text pro-
cessing applications, come with more unlabelled data than labelled data. Adspeuvised feature
selection is less prone to overfitting.

In this issue, four papers address the problem of feature construtiaf them take an infor-
mation theoretic approach to the problem. Two of them illustrate the use of ahgsterconstruct
features (Bekkerman et al., 2003, Dhillon et al., 2003), one providesvenmatrix factorization al-
gorithm (Globerson and Tishby, 2003), and one provides a supdriisans of learning features
from a variety of models (Torkkola, 2003). In addition, two papers wehosin focus is directed
to variable selection also address the selection of monomials of a polynomial amadihe hidden
units of a neural network (Rivals and Personnaz, 2003, Stoppiglia, @083), and one paper ad-
dresses the implicit feature selection in non-linear kernel methods for @olah kernels (Weston
et al., 2003).

5.1 Clustering

Clustering has long been used for feature construction. The idea isl&@eepgroup of “similar”
variables by a cluster centroid, which becomes a feature. The most p@hgdaithms include
K-means and hierarchical clustering. For a review, see, e.g., the téttb@uda et al. (2001).

Clustering is usually associated with the idea of unsupervised learninganlbe useful to
introduce some supervision in the clustering procedure to obtain more disaninfeatures. This
is the idea of distributional clustering (Pereira et al., 1993), which is dpedln two papers of this
issue. Distributional clustering is rooted in the information bottleneck (IB)rthebTishby et al.
(1999). If we callX the random variable representing the constructed features, the 1B neetiksl
to minimize the mutual informatioh(X,X), while preserving the mutual informatidiiX,Y). A
global objective function is built by introducing a Lagrange multiped = I (X, X) — Bl (X,Y). So,
the method searches for the solution that achieves the largest possiblessioip, while retaining
the essential information about the target.

Text processing applications are usual targets for such techniqatterr® are full documents
and variables come from a bag-of-words representation: Each leaisadissociated to a word and
is proportional to the fraction of documents in which that word appeargappication to feature
construction, clustering methods group words, not documents. In tegarézation tasks, the su-
pervision comes from the knowledge of document categories. It is inteador replacing variable
vectors containing document frequency counts by shorter variabiersemntaining document cat-
egory frequency counts, i.e., the words are represented as distribatiendocument categories.

The simplest implementation of this idea is presented in the paper of Dhillon e08B)
this issue. It uses K-means clustering on variables represented byoa ¥€document category
frequency counts. The (non-symmetric) similarity measure used is the KkHlbler divergence
K(Xj,Xi) = exp(—B kX jIn(% j/%i)). Inthe sum, the indek runs over document categories. A
more elaborate approach is taken by Bekkerman et al. (2003) who ssét’aversion of K-means
(allowing words to belong to several clusters) and who progressiwélyedclusters by varying the
Lagrange multiplief monitoring the tradeoff betweeriX, X) andl (X,Y). In this way, documents
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are represented as a distribution over word centroids. Both methodsrpevell. Bekkerman et al.
mention that few words end up belonging to several clusters, hinting taad™kluster assignment
may be sufficient.

5.2 Matrix Factorization

Another widely used method of feature construction is singular value dexsitigqn (SVD). The
goal of SVD is to form a set of features that are linear combinations of tiggnal variables,
which provide the best possible reconstruction of the original data in tkedgaare sense (Duda
et al.,, 2001). It is an unsupervised method of feature construction. idnssue, the paper of
Globerson and Tishby (2003) presents an information theoretic ungsgperfeature construction
method: sufficient dimensionality reduction (SDR). The most informativieifea are extracted by
solving an optimization problem that monitors the tradeoff between data iteactien and data
compression, similar to the information bottleneck of Tishby et al. (1999);ahtufes are found
as Lagrange multipliers of the objective optimized. Non-negative matricesdifnginsion (m, n)
representing the joint distribution of two random variables (for instancedh@currence of words
in documents) are considered. The features are extracted by inforntlad¢ioretic I-projections,
yielding a reconstructed matrix of special exponential fd?m: (1/Z)exp(®W). For a set ofd
features® is a(m,d -+ 2) matrix whose(d + 1)™" column is ones an@ is a(d + 2, n) matrix whose
(d +2)”‘ column is ones, and is a normalization coefficient. Similarly to SVD, the solution shows
the symmetry of the problem with respect to patterns and variables.

5.3 Supervised Feature Selection

We review three approaches for selecting features in cases whareegeahould be distinguished
from variables because both appear simultaneously in the same system:

Nested subset methodsA number of learning machines extract features as part of the learn-
ing process. These include neural networks whose internal nodefeature extractors. Thus,
node pruning techniques such as OBD LeCun et al. (1990) are festieetion algorithms. Gram-
Schmidt orthogonalization is presented in this issue as an alternative to OBppi@ia et al.,
2003).

Filters. Torkkola (2003) proposes a filter method for constructing featuregy@smutual in-
formation criterion. The author maximizégp,y) for m dimensional feature vectorgand target
vectorsy.1? Modelling the feature density function with Parzen windows allows him to compute
derivativesdl /0@ that are transform independent. Combining them with the transform-depend
derivativesd@ /0w, he devises a gradient descent algorithm to optimize the paranvetefshe
transform (that need not be linear):

al dl d@
Wt+1—Wt+nﬁ*Wt+n%M- (5)
Direct objective optimization. Kernel methods possess an implicit feature space revealed by
the kernel expansiork(x,x’) = @(x).@(x"), where@(x) is a feature vector of possibly infinite di-
mension. Selecting these implicit features may improve generalization, buthdoesange the

12. In fact, the author uses a quadratic measure of divergencedndtéege usual mutual information.
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running time or help interpreting the prediction function. In this issue, Westah é€2003) pro-
pose a method for selecting implicit kernel features in the case of the polynienied!, using their
framework of minimization of thég-norm.

6 Validation Methods

We group in this section all the issues related to out-of-sample performaadietpn (generaliza-
tion prediction) and model selection. These are involved in various aspiedasiable and feature
selection: to determine the number of variables that are “significant”, to guidehalt the search
for good variable subsets, to choose hyperparameters, and to evhrifiteal performance of the
system.

One should first distinguish the problem of model selection from that dfiaiiag the final
performance of the predictor. For that last purpose, it is important taside an independent
test set. The remaining data is used both for training and performing modeticeleAdditional
experimental sophistication can be added by repeating the entire expeiomasteral drawings of
the test set3

To perform model selection (including variable/feature selection andrpgpEmeter optimiza-
tion), the data not used for testing may be further split between fixed traamdgsalidation sets,
or various methods of cross-validation can be used. The problem is tbeght back to that of
estimating the significance of differences in validation errors. For a fiatidation set, statistical
tests can be used, but their validity is doubtful for cross-validation lsecendependence assump-
tions are violated. For a discussion of these issues, see for instancerthefvDietterich (1998)
and Nadeau and Bengio (2001). If there are sufficiently many exaniipheay not be necessary to
split the training data: Comparisons of training errors with statistical testseasdd (see Rivals
and Personnaz, 2003, in this issue). Cross-validation can be exteriil®eé-series data and, while
i.i.d. assumptions do not hold anymore, it is still possible to estimate generalizatiocenfidence
intervals (see Bengio and Chapados, 2003, in this issue).

Choosing what fraction of the data should be used for training and fatat®@n is an open
problem. Many authors resort to using the leave-one-out cross-traliqaocedure, even though it
is known to be a high variance estimator of generalization error (Vapn82)1&nd to give overly
optimistic results, particularly when data are not properly independentlydemtically sampled
from the "true” distribution. The leave-one-out procedure consistemioving one example from
the training set, constructing the predictor on the basis only of the remaininipgaata, then test-
ing on the removed example. In this fashion one tests all examples of the trdatemgnd averages
the results. As previously mentioned, there exist exact or approximanelfas of the leave-one-out
error for a number of learning machines (Monari and Dreyfus, 280@&ls and Personnaz, 2003,
Rakotomamonjy, 2003).

Leave-one-out formulas can be viewed as corrected values of thangrarror. Many other
types of penalization of the training error have been proposed in the Itterédee, e.g., Vapnik,
1998, Hastie et al., 2001). Recently, a new family of such methods calledi¢rbeised methods”
have been proposed (Schuurmans, 1997). The paper of BengiBhaphdos (2003) in this issue

13. In the limit, the test set can have only one example and leave-ousobeccarried out as an “outer loop”, outside the
feature/variable selection process, to estimate the final performatioe pfedictor. This computationally expensive
procedure is used in cases where data is extremely scarce.
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illustrates their application to variable selection. The authors make use ofellathidata, which
are readily available in the application considered, time series prediction widhzoh. Consider
two modelsfa and fg trained with nested subsets of variabfes B. We calld(fa, fg) the discrep-
ancy of the two models. The criterion involves the radid fa, fg) /dr (fa, fg), wheredy (fa, fg) is
computed with unlabelled data adg( fa, fg) is computed with training data. A ratio significantly
larger than one sheds doubt on the usefulness of the variables it Buhatare not irA.

For variable ranking or nested subset ranking methods (Sections 2.2nddother statisti-
cal approach can be taken. The idea is to introduce a probe in the dats ghandom variable.
Roughly speaking, variables that have a relevance smaller or equal wf tihe probe should be
discarded. Bi et al. (2003) consider a very simple implementation of that tleg introduce in
their data three additional “fake variables” drawn randomly from a Ganssstribution and submit
them to their variable selection process with the other “true variables”.e§ubstly, they discard
all the variables that are less relevant than one of the three fake var{ablmording to their weight
magnitude criterion). Stoppiglia et al. (2003) propose a more sophisticatiadnir the Gram-
Schmidt forward selection method. For a Gaussian distributed probe, theile an analytical
formula to compute the rank of the probe associated with a given risk optiecgean irrelevant
variable. A non-parametric variant of the probe method consists in credisikg variables” by
randomly shuffling real variable vectors. In a forward selection mecthe introduction of fake
variables does not disturb the selection because fake variables cé@tarldd when they are en-
countered. At a given step in the forward selection process, let uf tadl fraction of true variables
selected so far (among all true variables) dpndhe fraction of fake variables encountered (among
all fake variables). As a halting criterion one can place a threshold oratiwefg / f;, which is an
upper bound on the fraction of falsely relevant variables in the suleéstted so far. The latter
method has been used for variable ranking (Tusher et al., 2001) réspaic version for Gaussian
distributions using the T statistic as ranking criterion is nothing but the T-test.

7 Advanced Topics and Open Problems

7.1 Variance of Variable Subset Selection

Many methods of variable subset selection are sensitive to small pertmdbafithe experimental
conditions. If the data has redundant variables, different subsegtriables with identical predic-
tive power may be obtained according to initial conditions of the algorithm, rahtmaddition of
a few variables or training examples, or addition of noise. For some appfisatime might want
to purposely generate alternative subsets that can be presented tequerit stage of processing.
Still one might find this variance undesirable because (i) variance is oféesythptom of a “bad”
model that does not generalize well; (ii) results are not reproducibbkianone subset fails to
capture the “whole picture”.

One method to “stabilize” variable selection explored in this issue is to useas&iveotstraps”
(Bi et al., 2003). The variable selection process is repeated with snplss of the training data.
The union of the subsets of variables selected in the various bootstrakerisasthe final “stable”
subset. This joint subset may be at least as predictive as the best &paisiset. Analyzing the
behavior of the variables across the various bootstraps also provdbsrfinsight, as described
in the paper. In particular, an index of relevance of individual varg&bbn be created considering
how frequently they appear in the bootstraps.
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Related ideas have been described elsewhere in the context of Bayas#oie selection (Je-
bara and Jaakkola, 2000, Ng and Jordan, 2001, Vehtari and Lam@0@2). A distribution over
a population of models using various variable subsets is estimated. Variabldgen ranked ac-
cording to the marginal distribution, reflecting how often they appear in imposgabsets (i.e.,
associated with the most probable models).

7.2 Variable Ranking in the Context of Others

In Section 2, we limited ourselves to presenting variable ranking methods asiriterion com-
puted from single variables, ignoring the context of others. In Sectionwkedntroduced nested
subset methods that provide a useful ranking of subsets, not ofdndiwariables: some variables
may have a low rank because they are redundant and yet be highlgrelBootstrap and Bayesian
methods presented in Section 7.1, may be instrumental in producing a gdatdesaanking incor-
porating the context of others.

The relief algorithm uses another approach based on the nearestaresddrrithm (Kira and
Rendell, 1992). For each example, the closest example of the same elases(rhnit) and the closest
example of a different class (nearest miss) are selected. TheXtooétheit" variable is computed
as the average over all examples of magnitude of the difference betweedistance to the nearest
hit and the distance to the nearest miss, in projection oiithvariable.

7.3 Unsupervised Variable Selection

Sometimes, no targstis provided, but one still would want to select a set of most significant
variables with respect to a defined criterion. Obviously, there are as orédayia as problems
can be stated. Still, a number of variable ranking criteria are usefulsaap@ications, including
saliency entropy smoothnessiensityandreliability. A variable is salient if it has a high variance
or a large range, compared to others. A variable has a high entropy ifstnduation of examples
is uniform. In a time series, a variable is smooth if on average its local cuevetunoderate. A
variable is in a high-density region if it is highly correlated with many other W& A variable is
reliable if the measurement error bars computed by repeating measuremneesitsadl compared to
the variability of the variable values (as quantified, e.g., by an ANOVA statistic)

Several authors have also attempted to perform variable or featuréieeliee clustering ap-
plications (see, e.g., Xing and Karp, 2001, Ben-Hur and Guyon, 20@Breferences therein).

7.4 Forward vs. Backward Selection

Itis often argued that forward selection is computationally more efficientlaakward elimination
to generate nested subsets of variables. However, the defendexskefdrd elimination argue that
weaker subsets are found by forward selection because the impoofavenrgéables is not assessed
in the context of other variables not included yet. We illustrate this latter anguinyethe example
of Figure 4. In that example, one variable separates the two classediyatssif than either of the
two other ones taken alone and will therefore be selected first by fdsedection. At the next step,
when it is complemented by either of the two other variables, the resulting epasasion in two
dimensions will not be as good as the one obtained jointly by the two variablesdhaudiscarded
at the first step. A backward selection method may outsmart forward seldstieliminating at
the first step the variable that by itself provides the best separation to tie¢aiwo variables that
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Figure 4:Forward or backward selection? Of the three variables of this example, the third one
separates the two classes best by itself (bottom right histogram). It i$dfestiee best candidate in
a forward selection process. Still, the two other variables are better taggethéw than any subset
of two including it. A backward selection method may perform better in this case.

together perform best. Still, if for some reason we need to get down to ke siagable, backward
elimination will have gotten rid of the variable that works best on its own.

7.5 The Multi-class Problem

Some variable selection methods treat the multi-class case directly rather twempabesing it into
several two-class problems: All the methods based on mutual informatioriacat¢end naturally
to the multi-class case (see in this issue Bekkerman et al., 2003, Dhillon et @8, Bérkkola,
2003). Multi-class variable ranking criteria include Fisher’s criterion (#i® of the between class
variance to the within-class variance). It is closely related to the F statisticinisiee ANOVA test,
which is one way of implementing the probe method (Section 6) for the multi-class Yé&appers
or embedded methods depend upon the capability of the classifier useddie tta multi-class
case. Examples of such classifiers include linear discriminant analysfs) (BDnulti-class version
of Fisher’s linear discriminant (Duda et al., 2001), and multi-class SVMs,(s.g., Weston et al.,
2003).

One may wonder whether it is advantageous to use multi-class methodsifdni@aelection.
On one hand, contrary to what is generally admitted for classification, the oads- setting is
in some sense easier for variable selection than the two-class case. Téisis®é the larger the
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number of classes, the less likely a “random” set of features providecgsgparation. To illustrate
this point, consider a simple example where all features are drawn indamgnttom the same
distribution P and the first of them is the targgt Assume that all these features correspond to
rolling a die withQ facesntimes fis the number of samples). The probability that one fixed feature
(except the first one) is exactlyis then(1/Q)". Therefore, finding the feature that corresponds to
the targety when it is embedded in a sea of noisy features is easier @Whsrarge. On the other
hand, Forman (2003) points out in this issue that in the case of unevebutisins across classes,
multi-class methods may over-represent abundant or easily separasiescla possible alternative

is to mix ranked lists of several two-class problems. Weston et al. (2008ppe one such mixing
strategy.

7.6 Selection of Examples

The dual problems of feature selection/construction are those of paglentisn/construction. The
symmetry of the two problems is made explicit in the paper of Globerson andyT{&03) in
this issue. Likewise, both Stoppiglia et al. (2003) and Weston et al. (2008} out that their
algorithm also applies to the selection of examples in kernel methods. Othersln@ady pointed
out the similarity and complementarity of the two problems (Blum and Langley,)189particular,
mislabeled examples may induce the choice of wrong variables. Convéfrfeiylabeling is highly
reliable, selecting wrong variables associated with a confounding factobenavoided by focusing
on informative patterns that are close to the decision boundary (Guyn 2002).

7.7 Inverse Problems

Most of the special issue concentrates on the problem of finding a (smiadi¢sof variables useful
to build a good predictor. In some applications, particularly in bioinformatiésjshmot necessarily
the only goal of variable selection. In diagnosis problems, for instancejntportant to identify
the factors that triggered a particular disease or unravel the chaineatsefrom the causes to
the symptoms. But reverse engineering the system that produced the datsoig challenging
task than building a predictor. The readers interested in these issuesrwauitdhe literature on
gene networks in the conference proceedings of the pacific symposiimocomputing (PSB) or
intelligent systems for molecular biology conference (ISMB) and the d¢iyusserence literature
(see, e.g., Pearl, 2000). At the heart of this problem is the distinction beteerrelation and
causality. Observational data such as the data available to machine leasd@agchers allow us
only to observe correlations. For example, observations can be madecaialations between
expression profiles of given genes or between profiles and symptaitng,léap of faith is made
when deciding which gene activated which other one and in turn triggeees/thptom.

In this issue, the paper of Caruana and de Sa (2003) presents intplidsts about using
variables discarded by variable selection as additional outputs of al metwaork. They show im-
proved performance on synthetic and real data. Their analysis sappeiidea that some variables
are more efficiently used as outputs than as inputs. This could be a stef thstarguishing causes
from consequences.
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Data set Description patterns variables | classes| References
Linea®? Artificial linear 10-1200 100-240 reg-2 SWBe
Multi-clustef | Artificial non-linear | 1000-1300| 100-500 2 PS
QSAK Chemistry 30-300 500-700 reg Bt
ucie ML repository 8-60 500-16000| 2-30 | ReBnToPC
LVQ-PAK Phoneme data 1900 20 20 T
Raetch bencB. | UCI/Delve/Statlog | 200-7000 8-20 2 Ra
Microarray? Cancer classif. 6-100 2000-4000 2 WRa
Microarray? Gene classification 200 80 5 w
Aston UniV" Pipeline transport 1000 12 3 T
NIPS 2000 Unlabeled data | 200-400 5-800 reg Ri
20 Newsgroup® News postings 20000 300-15000| 2-20 GBkD
Text filtering® TREC/OSHUMED | 200-2500 | 3000-30000, 6-17 F
IR dataset$ MED/CRAN/CISI 1000 5000 30-225 G
Reuters-21578° newswire docs. 21578 300-15000| 114 BkF
Open Dir. Proj! Web directory 5000 14500 50 D

Table 1: Publicly available data sets used in the special issué&\pproximate numbers or ranges
of patterns, variables, and classes effectively used are provided.“Classes” column indicates
“reg” for regression problems, or the number of queries for InforrmaRetrieval (IR) problems.
For artificial data sets, the fraction of variables that are relevant safinge 2 to 10. The initial of
the first author are provided as reference: Bk=Bekkerman, BngiBeBt=Bennett, C=Caruana,
D=Dhillon, F=Forman, G=Globerson, P=Perkins, Re=Reunanen, &atBmamonjy, Ri=Rivals,
S=Stoppiglia, T=Torkkola, W=Weston. Please also check the JMLR welfositater additions
and preprocessed data.

a. http://lwww.kyb.tuebingen.mpg.de/bs/people/westordpt 10)

b. http://lwww.clopinet.com/isabelle/Projects/NIPS2001/Artificial.zip

c. http://nis-www.lanl.govtsimes/data/jmir02/

d. http://www.rpi.edu/-bij2/featsele.html

e. http://www.ics.uci.edutmlearn/MLRepository.html

f. http://www.cis.hut.fi/research/software.shtml

g. http://ida.first.gmd.defraetsch/data/benchmarks.htm

h. http://www.nerg.aston.ac.uk/GTM/3PhaseData.html

i. http://g.cis.uoguelph.ca/ skremer/NIPS2000/

j- http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.htmi
k. http:/itrec.nist.gov/data.html (Filtering Track Collection)

[. http://www.cs.utk.edutlsi/

m. http://www.daviddlewis.com/resources/testcollections/reuters21578/
n. http://dmoz.org/ and http://www.cs.utexas.edu/users/manyam/dmoz.txt
0. http://www.cs.technion.ac.#/ronb/thesis.html
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8 Conclusion

The recent developments in variable and feature selection have asttitbgsproblem from the
pragmatic point of view of improving the performance of predictors. Treyelmet the challenge
of operating on input spaces of several thousand variables. Soptestisrapper or embedded
methods improve predictor performance compared to simpler variable ramigtigpds like corre-
lation methods, but the improvements are not always significant: domains vgthnambers of
input variables suffer from the curse of dimensionality and multivariate ndstinmay overfit the
data. For some domains, applying first a method of automatic feature cditstryields improved
performance and a more compact set of features. The methods pitdpdkis special issue have
been tested on a wide variety of data sets (see Table 1), which limits the possihifigking com-
parisons across papers. Further work includes the organizatiorenichimark. The approaches are
very diverse and motivated by various theoretical arguments, but gingitheoretical framework
is lacking. Because of these shortcomings, it is important when starting wiv @amoblem to have
a few baseline performance values. To that end, we recommend using@agirelictor of your
choice (e.g. alinear SVM) and select variables in two alternate ways: ifi Jawariable ranking
method using a correlation coefficient or mutual information; (2) with a nestddet selection
method performing forward or backward selection or with multiplicative ugdateurther down
the road, connections need to be made between the problems of variatiéatmd selection and
those of experimental design and active learning, in an effort to move faara observational data
toward experimental data, and to address problems of causality inference
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