A COMPARISON OF SIX LANGUAGES FOR
SYSTEM LEVEL DESCRIPTION OF TELECOM
APPLICATIONS

Axel Jantsch, Shashi Kumat Ingo Sandér Bengt Svantesson
Johnny Oberly Ahmed Hemarli Peeter Ellervek Mattias O'Nilg
1 Royal Institute of Technology, Stockholm, Sweden
2 Jonkdping University, Jonkdping, Sweden
3 Tallinn Technical University, Tallinn, Estonia
4 Mid Sweden University, Sundsvall, Sweden

Abstract Based on a systematic evaluation method with a large number of criteria
we compare six languages with respect to the suitability as a system specification and
description language for telecom applications. The languages under evaluation are
VHDL, C++, SDL, Haskell, Erlang, and ProGram. The evaluation method allows to
give specific emphasis on particular aspects in a controlled way, which we use to
make separate comparisons for pure software systems, pure hardware systems and
mixed HW/SW systems.

1 INTRODUCTION

Language evaluation and comparison is difficult because of its large
number of influencing factors, many of which are difficult to quantify. The
outcome of most evaluations is therefore a subjective judgement which inher-
its its credibility from the individuals involved. Moreover, an educated debate
about this judgement is rarely conclusive because of different priorities given
by different people which are often not explicitly formulated and agreed
upon. Thus, an argument by person X, stating that language A is superior to
language B due to smaller synthesis results, would typically be countered by
person Y by emphasising, that the simulator for language B is much faster
allowing higher design efficiency. Although it is very difficult to quantify
these and many other issues and to agree on defined priorities, more transpar-
ency and explicitness is absolutely necessary to make progress in the disci-
pline of language and tool evaluation.

Based on a systematic method which is described in detail elsewhere [10],
we present a comparison between several languages and illustrate, how giving
high or low importance to a particular aspect affects the relative performance
of a language.

2 EVALUATION METHOD
2.1 Scope of the Method

The evaluation method is targeted towards system specification languages

for complex telecom applications. It is based on several assumptions:

The design process defines separate phases for specification and design
and requires separate specification and design documents. Pure require-
ments, functional or not, are also not considered part of the specification
document. Hence, if requirements are explicitly formulated we assume
that this is done in a separate requirements definition document.

Itis assumed that the specification document should capture the externally
visible behaviour of the system and should avoid internal design and
implementation decisions as much as possible.

It is assumed to be an advantage if the specification document is amenable
to analysis and synthesis tools. In fact, we assume that the more tools and
methods can work with the document the better it is.

As noted several times the target applications are complex systems, not
simple systems that can be coded directly by one person in one week.
The application area is telecommunication. We expect that complex elec-
tronic systems in other areas, e.g. in the automotive industry, exhibit simi-
lar characteristics, but we have not analysed other areas.

In the following two subsections we elaborate some of our assumptions

concerning the purpose of the specification document and the application
area.

2.2 Requirements for a Specification Document

In a product development process the specification is typically the first doc-

ument, where the extensive discussion of many aspects of the problem leads
to a first proposal of a system which shall solve the given problem. Hence, the
purpose of the specification document is twofold:

1.

It is a means to study if the proposed system will indeed be a solution to
the posed problem with all its functional and non-functional requirements
and constraints, i.e. to make sure to make the right system.

. It defines the functionality and the constraints of the system for the follow-

ing design and implementation phases.
From these two purposes we can derive several general requirements for a

specification method.

A. To support the specification processTo write a specification is an itera-

tive process. This process should be supported by a technique which
allows the engineer to add, modify and remove the entities of his concern

without a large impact on the rest of the specification.

B. Analysable The specification should be analysable in various ways, e.g.
by simulation, formal verification, performance analysis, etc.

C. High abstraction: The modelling concepts must be at a high enough
abstraction level. The system engineer should not be bothered with model-
ling details, which are not relevant at this stage.

D. Implementation independent The system specification should not bias
the design and implementation in undesirable ways. System architects
must be given as much freedom as possible to evaluate different architec-
ture and implementation alternatives. Products are frequently developed in
several versions with different performance and cost characteristics. lde-
ally the same functional specification should be used for all versions.

E. Base for implementation The specification should support a systematic
technique to derive an efficient implementation. This is in direct conflict
with the requirements C and D.

2.3 Application Characteristics

Systems in a particular domain exhibit many characteristics to a different
extent. In fact, the difference between different domains is usually not the
absence or presence of characteristics but the degree of importance of differ-
ent characteristics.

Our evaluation is targeted towards digital telecommunication systems.
Such systems consist of signal paths and a reactive control system. A signal
path consists of dataflow functional blocks operating on streams of data with
potential high data rates. The reactive control system has typically lower per-
formance constraints, is control dominated and has sometimes large memo-
ries for configuration data and system state. The following characteristics are
important for this application domain:

e Stream processingrhe system transforms streams of data according to
simple protocol transformations or complex mathematical transformations
with sometimes high performance requirements.

* Complex controlThe system can be in many different states and modes,
e.g. some of them are responsible for the normal operation, some for start-
up and configuration, some for testing and diagnosis, others for detecting
and handling error conditions, etc.

* Well defined timingEnvironment and requirements establish defined tim-
ing constraints which are important for the control and the stream process-
ing part.

e Spatial distribution: An integrated functionality is sometimes imple-
mented at spatially separated locations.

* \ersatile interfacesThe system is typically connected with the environ-
ment with various standardized interfaces and protocols.

* Large memory:The behaviour of both control and stream processing
depends on the system’s state and configuration, which sometimes require
large memories used in an irregular manner.

Different parts of a telecom system exhibit different characteristics ranging
from pure signal processing to control dominated system management.

2.4 Evaluation Criteria

The definition of evaluation criteria is as difficult and as important as the
evaluation of languages itself, because the criteria and their relative weights
basically determine the outcome of the evaluation process. We base our work
on the studies described by Ardis et al. [1], Narayan and Gajski [2] and Davis
[3]. To a limited extent we also used the criteria discussed by Nordstrom and
Pettersson [4]. In all these reports a set of criteria is selected based on the
assumption, that if a criterion is fulfilled by a language to a high degree, the
language can be more effectively used and the design process will on average
result in a better product than when the criterion is not fulfilled. This excludes
the design process and the designer’s skill from the language evaluation. It has
the disadvantage that the dependence of the end product quality on a given
criterion could be misjudged.

An alternative in the selection of criteria is taken by Lewerentz and Lindner
[5]. There, the main criteria are properties of the resulting model, such as live-
ness and correctness. Although these are the criteria of ultimate importance,
they are influenced by many factors related to the design process, which had
to be identified and filtered out before establishing valid conclusions about the
influence of the language on these properties.

Starting with the criteria discussed in [1, 2, 3, 4], we add new criteria,
divide them into four groups, namely modelling, analysis, synthesis, and usa-
bility related aspects, as illustrated in figure 1. These groups are assessed
independently from each other, which means a language is subject to four dif-
ferent assessments rather than one. The modelling group is further divided
into aspects related to computation, communication, data and time. This divi-
sion is based on the observation that these four modelling aspects can be anal-
yses separately as discussed in [9].

This list of criteria is of course to some extent arbitrary, as is the case for
any similar kind of evaluation. The list is perhaps not complete and the crite-
ria are not orthogonal and independent from each other. Not all the criteria are
on the same level, some could be merged into a single criterion. Others could
be refined and split into criteria covering certain aspects in more detail.

We have introduced weights for each criterion to account for overlap

Modelling Analysis Synthesis Usability
Concepts Related Related Related
- Simulatability \
- Soundness Implementability HWt Locality of
- Verifiability Implementability SW| information
- Locality of Structural details Modifiability
information Library construction | Modularity
- Tools Maturity LSUPPO“ writy | Maintainability
anguage matrity | cpecyability
Comp. Comm. Da Tools maturity [Reusability
.) . I Run-time safe
- Concurrency] o mechanism) Data Modelling |- Time modelling of delays. Learning Curv;y
Control Flow [Synchronization |- Typing System |- Timer concept Discipline
| Data Flow Exception Handling- Data Abstraction |- Timing Constraints Industrial
- Behavioural | Run-time - Time abstractions Acceptance
i error handling - Tools Maturity
hierarchy .
Comm. abstractions
- Looseness
I Computation
abstractions

Figure 1. Evaluation criteria
between criteria and to emphasise the particular purpose of the evaluation,
which is language evaluation as opposed to tool or design process evaluation.
Furthermore, the criteria weights reflect the focus on specification rather than
implementation. The weights allow to define priorities among the criteria but
avoid implicit preferences by selecting or dropping certain criteria. The
weight factors that we use in this comparison are listed in table 2. For more
details on the criteria and their weights see [10].

2.5 Evaluation Mechanism

The objective of the evaluation is to get quantitative parameters to make it
possible to compare the suitability of various languages for specification of
systems in a given application domain. It is possible that the evaluation may
conclude that language A is better than language B, language A is highly suit-
able for description but difficult to synthesize, or that language A is more suit-
able for large systems and language B is more suitable for small systems.

The method uses evaluation functieinsvhich produce a suitability index
depending on the evaluated language, the application area, the system size,
and the design objectives, as illustrated in figure 2. Some factors are implicit
in this scheme and therefore not explicitly visible in figure 2. The design
phase affects the selection of criteria, the criteria weights, the context weights
and perhaps even the language weights. For a different design phase the entire
evaluation must be thought over again.

C, K, and L are numerical vectors with one element for each criterion. The

Application Area

Language.
ystem Size
Language
Evaluation \
/ Criteria unctions ContextK
- weights C _ Pm: Pa Ps Py Design

Criteria Objectives

dependency

and overlap

Suitability Indexo
Figure 2. Suitability Vector is a four tuple
functione and the suitability indexis defined by the following formulas:

n
> licik
®(C, LK) = =— o = [y, Py, Og PO
> cik;
i=1
By restricting the range t&, c;J[01] andO[-1,1] the method guaran-

tees a desirable metric as discussed in detail in [10]. To facilitate interpreta-
tion of these vectors and of the results the method uses following mapping of
symbols to numbers:

K : (IRRELEVANT(IRR) « 0.0, UNIMPORTANT(UNI) « 0.25
RELEVANT(REL) « 0.5 IMPORTANT(IMP) « 0.75 ESSENTIELL(ESS) - 1.0)

L : (VERY POOR (VEP) « -1.0,POOR « -0.5,
FAIR « 0.0, GOOD « 0.5 EXCELLENT (EXC) - 1.0)

® : (UNACCEPTABLE (UNA) « [-1,-0.5), UNSUITABLE (UNS) - [-0.5, 0),
SUITABLE (SUI) - [0, 0.5), PROPER (PRO) - [0.5, 1.0])

The purpose of these formulas is not to make the evaluation more objective
but to make it mordransparentby separating different influencing factors.
The hope is that the identification and isolation of different influencing factors
makes the assignment of proper weight factors easier. For instance it is easier
to give a good answer to the question: “How important is the criterion of
soundness for small sized control oriented applications during rapid prototyp-
ing?”, than it is to answer: “How important is the criterion of soundness for
my company or my department?”. Thus, by splitting the large complex
assessment into many smaller assessments the individual decisions become
easier and the process of merging many small factors into one big decision is
made more transparent and can be fine-tuned, rejected or accepted with confi-
dence. It is needless to say, however, that the assignments of weights and the
formula for computing the suitability index is still very subjective.

3 LANGUAGES UNDER EVALUATION
The languages under evaluation represent different paradigms. Erlang [6],

Table 1.Language assessment vectors

L (Erlang) L (C++) L(Haskell) | L(VHDL) L(SDL) | L(ProGram
Structural hierarchy GOOD POOR VEP EXC EXC GOOD
Concurrency EXC VEP FAIR EXC EXC GOOD
Static processes EXC VEP VEP EXC EXC EXC
Dynamic processes EXC VEP VEP VEP EXC VEP
Control flow EXC EXC EXC GOOD EXC EXC
State machines FAIR FAIR FAIR GOOD EXC GOOD
Programming constructs EXC EXC EXC EXC GOOD POOR
Data flow EXC GOOD EXC EXC POOR POOR
Behavioural hierarchy GOOD GOOD EXC EXC GOOD GOOD
Looseness GOOD POOR EXC FAIR GOOD FAIR
Computation abstractions GOOD GOOD EXC GOOD GOOD VEP
Communication FAIR VEP VEP POOR GOOD GOOD
Synchronization FAIR VEP VEP GOOD GOOD GOOD
Exception handling GOOD FAIR VEP POOR GOOD GOOD
Run time error handling EXC FAIR POOR FAIR FAIR FAIR
Communication abstractions POOR VEP POOR POOR EXC FAIR
Data modelling VEP EXC EXC GOOD GOOD POOR
Typing system VEP FAIR EXC GOOD GOOD FAIR
Data abstractions VEP EXC EXC GOOD GOOD POOR
Timing modelling of delays VEP VEP VEP EXC VEP POOR
Timer concept EXC VEP VEP FAIR GOOD POOR
Timing constraints POOR VEP VEP POOR POOR POOR
Time abstraction POOR VEP POOR POOR GOOD POOR
Testability/gimulation EXC EXC EXC EXC GOOD POOR
Soundness GOOD VEP EXC POOR GOOD POOR
Verifiability GOOD FAIR EXC FAIR GOOD GOOD
Locality of information GOOD EXC GOOD GOOD GOOD POOR
Tools maturity- analysis EXC EXC POOR EXC POOR VEP
Implementabrity HW VEP POOR VEP EXC VEP EXC
Implementability SW EXC EXC FAIR FAIR FAIR GOOD
Structural details VEP VEP VEP EXC VEP FAIR
Library construction support EXC EXC EXC EXC GOOD VEP
Language maturity GOOD EXC GOOD EXC GOOD POOR
Tools maturity - synthesis GOOD EXC POOR EXC FAIR POOR
Locality of information GOOD EXC GOOD GOOD GOOD POOR
Modifiability FAIR GOOD GOOD GOOD GOOD GOOD
Modularity GOOD GOOD GOOD GOOD GOOD GOOD
Maintainability GOOD FAIR GOOD FAIR FAIR FAIR
Checkability GOOD POOR GOOD POOR GOOD EXC
Reusability FAIR GOOD GOOD GOOD GOOD GOOD
Run-time safety GOOD POOR POOR POOR FAIR POOR
Learning curve GOOD GOOD FAIR FAIR GOOD GOOD
Discipline FAIR FAIR EXC FAIR GOOD FAIR
Industrial acceptance GOOD EXC VEP EXC GOOD POOR
Tools maturity - usability EXC EXC VEP EXC EXC POOR

VHDL, SDL[12], and ProGram [13] have explicit concurrency; VHDL, C++,
and SDL are imperative languages; Haskell [14], Erlang, and ProGram are
declarative languages; C++ and SDL are object oriented languages; C++,
SDL, Erlang, and Haskell have mostly been used for software development;

VHDL and ProGram have been used for hardware development. One motiva-

tion for this selection was to cover different paradigms and aspects. Another

practical reason was that these languages are well known by the authors.

In order to put the comparison on a solid foundation a realistic system has
been modelled with all the languages, which contributes significantly to our
confidence that the evaluation method is sound and the comparison is fair
with respect to the given application domain.

The application example as supplied by Ericsson Telecom is an operation
and maintenance system of an ATM network. ATM is an ITU-specified com-
munication and switching technology for broadband services [7]. Operation
and Maintenance (OAM) is part of ATM specifications that is responsible for
detection of errors and performance degradation in the ATM network at
switch level and to report it further [8]. A significant part of the OAM func-
tionality in the ATM layer has been modeled in all languages [10]. The size of
the models range from several hundred to a few thousand lines of code. How-
ever, the different OAM models cannot be compared with each other in a sim-
ple way due to several differences:

* The OAM models do not implement exactly the same functionality, even
though they are very similar;

* The modelling style and the concepts used differ because the models have
been developed by different persons with different objectives. This differ-
ences go far beyond what is induced by the use of different languages. For
instance, the VHDL model uses bitvectors to represent ATM cells while
the C++ model uses more abstract symbols; the Erlang model uses only
static processes while the SDL model makes heavy use of dynamically
created processes.

* The experience of the developers with the used languages varied.

For these reasons we do not attempt to compare the models in a superfluous
way, like listing line numbers and development time. In a sense, the main
result from the modelling activities is not the models but the analysis of lan-
guage features with respect to a specific application domain. The application
domain and the experience with the OAM functionality was always in the
back of our minds when we analysed and discussed language concepts.

4 THE COMPARISON

We compare the languages in five different contexts. Table 1 shows the
assessment vectosfor the languages. These are the results of the judgment

Table 2.Context vectors with different objectives

CriteriaC K(control SW) IE\(/U}?\?\?) fulrfg)ig:]eal) K'_(Ipwu)re K(:‘Ivn\;)p le
Structural hierarchy 0.75 UNI UNI IRR UNI UNI
Concurrency 0.75 ESS ESS IRR ESS ESS
Static processes 0.5 ESS IMP IRR IMP IMP
Dynamic processes 0.5 ESS UNI IRR IRR IRR
Control flow 0.5 ESS ESS ESS ESS ESS
State machines 0.5 IMP IMP IMP ESS ESS
Programming constructs 0.5 ESS IMP IMP IMP IRR
Data flow 1.0 ESS ESS ESS ESS ESS
Behavioural hierarchy 1.0 ESS ESS ESS ESS UNI
Looseness 0.25 REL ESS ESS ESS UNI
Computation abstractions 1.0 ESS ESS ESS ESS IMP
Communication 0.75 ESS ESS IRR ESS IMP
Synchronization 0.5 ESS ESS IRR ESS ESS
Exception handling 0.75 ESS ESS UNI ESS IMP
Run time error handling 0.5 ESS UNI IRR IRR IRR
Communication abstractions 1.0 UNI ESS IRR ESS IMP
Data modelling 1.0 IRR ESS ESS ESS IMP
Typing system 1.0 REL ESS ESS IMP UNI
Data abstractions 1.0 IRR ESS ESS ESS UNI
Timing modelling of delays 0.75 IRR IMP IRR IMP IMP
Timer concept 0.75 ESS IMP IRR IRR IRR
Timing constraints 1.0 UNI ESS ESS ESS ESS
Time abstraction 1.0 UNI ESS ESS ESS UNI
Testabritylsimulation 1.0 ESS ESS ESS ESS ESS
Soundness 1.0 IMP ESS ESS ESS IMP
Verifiability 0.75 ESS ESS ESS ESS ESS
Locality of information 1.0 ESS ESS ESS ESS UNI
Tools maturity- analysis 0.25 ESS ESS IRR ESS IMP
Implementability HW 1.0 IRR IMP IMP IMP IMP
Implementability SW 1.0 ESS IMP IMP IRR IRR
Structural details 0.5 IRR IRR IRR IRR IMP
Library construction support 1.0 ESS ESS ESS ESS ESS
Language maturity 0.5 ESS ESS IRR ESS ESS
Tools maturity - synthesis 0.25 ESS ESS IRR ESS ESS
Locality of information 1.0 ESS ESS ESS ESS IMP
Modifiability 1.0 ESS ESS ESS ESS IMP
Modularity 0.25 ESS ESS ESS ESS IMP
Maintainability 0.25 ESS ESS ESS ESS IMP
Checkability 0.5 ESS ESS ESS ESS IMP
Reusability 1.0 ESS ESS ESS ESS IMP
Run-time safety 1.0 ESS UNI IRR IRR IRR
Learning curve 0.25 REL REL IRR REL IMP
Discipline 1.0 REL ESS IRR ESS REL
Industrial acceptance 0.25 ESS ESS IRR ESS IMP
Tools maturity - usability 0.25 ESS ESS IRR ESS IMP

of one or several persons for each language. In particular there were 2 persons
to evaluate Erlang, 3 for C++, 2 for Haskell, 4 for VHDL, 2 for SDL and 2 for
ProGram. Table 2 shows the criteria vect®in the second column and the

context vectorK for the different objectives:

Control SW: Specification of large and complex control software as it is typ-
ical for the operation, control and management of telecom networks;

Mixed HW/SW: Specification of complex mixed HW/SW systems;

Pure functional: Specification of complex mixed HW/SW systems is similar
to the “mixed HW/SW” context but with two distinguishing assumptions:

(1) Explicit process level concurrency is irrelevant for the specification.
One can argue that the partitioning into processes is in fact a design deci-
sion and should not be part of the specification [11]. (2) The focus is on
research and factors such as tools maturity and industrial acceptance are
considered to be irrelevant.

Pure HW: Specification of complex hardware systems;

Simple HW: Specification of smaller hardware systems. It is assumed that for
smaller systems the need for high abstraction levels and constructs for
complexity management is reduced. Thus, criteria such as behavioural
hierarchy, looseness, and abstraction are deemphasized.

Tables 3 through 7 give the result of the comparison. Table 8 lists the lan-
guages which are suitable in each context, meaning, that the language per-
formssuiTaBLE or better in all four groups.

Table 3.Language comparison for large control SW

L (Erlang) | L (C++) L(Haskell) | L(VHDL) L(SDL) | L(ProGram
Dy, PRO UNS UNS sul PRO sul
Pricomputation PRO sul sul PRO PRO UNS
DPyicommunication sul UNA UNA UNS sul sul
Pypata UNA sul PRO PRO PRO sul
DyiTime sul UNA UNA UNS sul UNS
Dy PRO sul PRO sul sul UNS
Dg PRO PRO sul PRO sul UNS;
Dy sul sul sul sul sul sul

Table 4.Language comparison for complex, mixed HW/SW
L (Erlang) | L (C++) | L(Haskell)| L(VHDL) | L(SDL) [L(ProGram

Dy sul UNS sul sul sul UNS
Pricomputation PRO sul PRO PRO PRO sul
Dyicommunication sul UNA UNA UNS PRO sul,
Pypata UNA PRO PRO PRO PRO UNS
Dyrrime UNS UNA UNA UNS UNS UNS
Dy PRO sul PRO sul sul UNS

[0 sul PRO sul PRO sul UNS

G} sul sul sul sul sul sul

At first it is surprising that C++ performs so poorly for control software
applications. However, C++ neither supports concurrent processes nor any
kind of timing, but both concepts are deemed to be important in this context.
For C++ implementations typically the operating system provides these serv-

Table 5.Language comparison for complex, mixed HW/SW with low
emphasis on concurrency

L (Erlang) | L (C++) L(Haskell) | L(VHDL) L(SDL) | L(ProGram

Dy UNS sul PRO sul sul UNS
<DMCOmpma“0n PRO PRO PRO PRO sul UNS
Dpicommunication PRO sul UNA UNS PRO PRO
Dypata UNA PRO PRO PRO PRO UNS
DyiTime UNS UNA UNA UNS sul UNS
Dy PRO sul PRO sul PRO UNS

g sul PRO sul PRO UNS sul

Dy sul sul PRO sul sul sul

Table 6.Language comparison for complex pure HW systems
L (Erlang) | L (C++) L(Haskell) | L(VHDL) L(SDL) | L(ProGram

Dy UNS UNS sul sul sul UNS
Byicomputation PRO sul PRO PRO PRO sul
Pyicommunication UNS UNA UNA UNS PRO sul,
Pypata UNA PRO PRO PRO PRO UNS
Dyrime UNA UNA UNA UNS UNS UNS
Dy PRO sul PRO sul sul UNS

Dg sul PRO sul PRO sul UNS

Dy sul sul sul sul PRO sul

Table 7.Language comparison for simple pure HW systems
L (Erlang) | L (C++) L(Haskell) | L(VHDL) L(SDL) | L(ProGram

Dy, sul UNS UNS sul sul UNS
Prcomputation PRO sul sul PRO PRO sul
Pyicommunication UNS UNA UNA UNS PRO sul
Pyipata UNA PRO PRO PRO PRO UNS
Dptime UNA UNA UNA UNS UNA UNS

Dy PRO sul PRO sul sul UNS

[GS sul sul sul PRO UNS UNS

Py sul sul sul sul PRO sul

ices. Hence, if one wants to evaluate C++ in combination with a particular
operating system or if a particular aspect is not considered important, the vec-
torsL andK have to be adjusted. In general the usage of particular tools or
versions of a language will change the assessment, which makes apparent that
it is difficult to draw general conclusions from specific evaluations. However,
the evaluation method used here allows to analyse evaluation results and devi-
ations from intuitive judgement.

Table 8.Comparison result

Context suitable languages
Control software Erlang, VHDL, SDL
mixed HW/SW Erlang, Haskell, VHDL, SDL
pure functional C++, Haskell, VHDL

pure HW Haskell, VHDL, SDL

simple HW Erlang, VHDL

5 CONCLUSION

We have presented a language comparison for specification of telecom sys-
tems. The main difficulty of such a task comes from the huge number of influ-
encing factors and underlying assumptions and from the inherent subjectivity
of the assessment by humans. We have not eliminated subjectivity and we
cannot suggest a final conclusion but we have analysed different strengths and
weaknesses of the languages and we have established causal relations
between assumptions and evaluation results due to a systematic evaluation
method. Each evaluation can still only be valid in a particular context and with
respect to specific demands and objectives. However, we have shown a way to
make an evaluation transparent and subject to detailed analysis and discussion
by making all the assumptions and priorities as explicit as possible.

6 REFERENCES

[1] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G. Staskauskas, J.
Von Olnhausen, “A Framework for Evaluating Specification Methods for Reactive Systems
- Experience ReportlEEE Transactions on Software Engineeridgne 1996.

[2] Sanjiv Narayan and Daniel D Gajski, “Features Supporting System-Level Specification in
HDLs", pp. 540 - 545European Design Automation ConferenSeptember 1993.

[3] Alan M. Davis, “A Comparison of Techniques for the Specification of External System
behaviour”,Communications of the ACNp. 1098 - 1115, September 1988.

[4] A.Nordstrom, H.PetterssprAn Evaluation of Graphical HDL Tools with Aspects on
Design Methodology and Reusabilirjicsson, Sweden, Report JR/M-97:1676, 1997.

[5] Claus Lewerentz and Thomas Lindner, &iase Study “Production Cell”: A Comparative
Study in Formal Software DevelopmgRbrschungszentrum Informatik, Universitat Karl-
sruhe, report no. FZI-Publication 1/94, Karlsruhe, Germany, 1994.

[6] J.Armstrong, R.Virding, M.WilliamsConcurrent Programming in Erland’rentice Hall,
1993.

[7] M. De Prycker,Asynchronous Transfer Mode solutions for broadband ISBB#ries in
Computer Communications and Networking, Ellis Horwood 1991.

[8] ITU-T Telecommunication Standardization sector of ITU Recommendation 1.150, 1.211,
1.311, 1.321, 1.327, 1.361, 1.362, 1.363, 1.413, 1.432, 1.610.

[9] A. Jantsch, S. Kumar, A. Hemani, “The Rugby Model: A Framework for the Study of
Modelling, Analysis, and Synthesis Concepts in Electronic Systesiceedings of
Design Automation and Test in Europe (DATE99.

[10]A. Jantsch, S. Kumar, I. Sander, B. Svantesson, J. Oberg, and A. Hdevahiation of
Languages for Specification of Telecom Systeeprt no. TRITA-ESD-1998-04, Depart-
ment of Electronics, Royal Institute of Technology, Stockholm, Sweden, 1998.

[11]A. Jantsch and I. Sander, "On the Roles of Functions and Objects in System Specification”,
Proceedings of the International Workshop on Hardware/Software Codesign, 2000.

[12]A. Olsen, O Feergemand, B. Mgller-Pedersen, R. Reed, and J.R.W Syitiems Engi-
neering with SDL-92North Holland, 1995.

[13]J. ObergProGram: A Grammar-Based Method for Specification and Hardware Synthesis
of Communication Protocal$hD thesis, Dep. of Electronics, Royal Institute of Technol-
ogy, TRITA-ESD-1999-03, 1999.

[14]J. Peterson and K. Hammond, editbétaskell Report 1.4nttp://haskell.org/.

	A COMPARISON OF SIX LANGUAGES FOR SYSTEM LEVEL DESCRIPTION OF TELECOM APPLICATIONS
	Axel Jantsch1, Shashi Kumar2, Ingo Sander1, Bengt Svantesson1, Johnny Öberg1, Ahmed Hemani1, Peet...
	1 Royal Institute of Technology, Stockholm, Sweden 2 Jönköping University, Jönköping, Sweden 3 Ta...
	1 INTRODUCTION
	2 EVALUATION METHOD
	2.1 Scope of the Method
	2.2 Requirements for a Specification Document
	1. It is a means to study if the proposed system will indeed be a solution to the posed problem w...
	2. It defines the functionality and the constraints of the system for the following design and im...
	A. To support the specification process: To write a specification is an iterative process. This p...
	B. Analysable: The specification should be analysable in various ways, e.g. by simulation, formal...
	C. High abstraction: The modelling concepts must be at a high enough abstraction level. The syste...
	D. Implementation independent: The system specification should not bias the design and implementa...
	E. Base for implementation: The specification should support a systematic technique to derive an ...

	2.3 Application Characteristics
	2.4 Evaluation Criteria
	Figure 1. Evaluation criteria

	2.5 Evaluation Mechanism
	Figure 2. Suitability Vector is a four tuple

	3 LANGUAGES UNDER EVALUATION
	Table 1. Language assessment vectors

	4 THE COMPARISON
	Table 2. Context vectors with different objectives
	Control SW
	Mixed HW/SW
	Pure functional
	Pure HW
	Simple HW
	Table 3. Language comparison for large control SW
	Table 4. Language comparison for complex, mixed HW/SW
	Table 5. Language comparison for complex, mixed HW/SW with low emphasis on concurrency
	Table 6. Language comparison for complex pure HW systems
	Table 7. Language comparison for simple pure HW systems
	Table 8. Comparison result

	5 CONCLUSION
	6 REFERENCES
	[1] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G. Staskauskas, J. Von ...
	[2] Sanjiv Narayan and Daniel D Gajski, “Features Supporting System-Level Specification in HDLs”,...
	[3] Alan M. Davis, “A Comparison of Techniques for the Specification of External System behaviour...
	[4] A.Nordström, H.Pettersson, An Evaluation of Graphical HDL Tools with Aspects on Design Method...
	[5] Claus Lewerentz and Thomas Lindner, ed., Case Study “Production Cell”: A Comparative Study in...
	[6] J.Armstrong, R.Virding, M.Williams, Concurrent Programming in Erlang, Prentice Hall, 1993.
	[7] M. De Prycker, Asynchronous Transfer Mode solutions for broadband ISDN, Series in Computer Co...
	[8] ITU-T Telecommunication Standardization sector of ITU Recommendation I.150, I.211, I.311, I.3...
	[9] A. Jantsch, S. Kumar, A. Hemani, “The Rugby Model: A Framework for the Study of Modelling, An...
	[10] A. Jantsch, S. Kumar, I. Sander, B. Svantesson, J. Öberg, and A. Hemani, Evaluation of Langu...
	[11] A. Jantsch and I. Sander, "On the Roles of Functions and Objects in System Specification", P...
	[12] A. Olsen, O Færgemand, B. Møller-Pedersen, R. Reed, and J.R.W Smith, Systems Engineering wit...
	[13] J. Öberg, ProGram: A Grammar-Based Method for Specification and Hardware Synthesis of Commun...
	[14] J. Peterson and K. Hammond, editors, Haskell Report 1.4, http://haskell.org/.

