
ria
and
are
to
e to
s and

rge
e
her-
ate
ven
ed
or to
d by
ster
y
spar-
isci-

[10],
iving
nce
A COMPARISON OF SIX LANGUAGES FOR
SYSTEM LEVEL DESCRIPTION OF TELECOM

APPLICATIONS

Axel Jantsch1, Shashi Kumar2, Ingo Sander1, Bengt Svantesson1,
Johnny Öberg1, Ahmed Hemani1, Peeter Ellervee3, Mattias O’Nils4

1 Royal Institute of Technology, Stockholm, Sweden
2 Jönköping University, Jönköping, Sweden

3 Tallinn Technical University,Tallinn, Estonia
4 Mid Sweden University, Sundsvall, Sweden

Abstract: Based on a systematic evaluation method with a large number of crite
we compare six languages with respect to the suitability as a system specification
description language for telecom applications. The languages under evaluation
VHDL, C++, SDL, Haskell, Erlang, and ProGram. The evaluation method allows
give specific emphasis on particular aspects in a controlled way, which we us
make separate comparisons for pure software systems, pure hardware system
mixed HW/SW systems.

1 INTRODUCTION
Language evaluation and comparison is difficult because of its la

number of influencing factors, many of which are difficult to quantify. Th
outcome of most evaluations is therefore a subjective judgement which in
its its credibility from the individuals involved. Moreover, an educated deb
about this judgement is rarely conclusive because of different priorities gi
by different people which are often not explicitly formulated and agre
upon. Thus, an argument by person X, stating that language A is superi
language B due to smaller synthesis results, would typically be countere
person Y by emphasising, that the simulator for language B is much fa
allowing higher design efficiency. Although it is very difficult to quantif
these and many other issues and to agree on defined priorities, more tran
ency and explicitness is absolutely necessary to make progress in the d
pline of language and tool evaluation.

Based on a systematic method which is described in detail elsewhere
we present a comparison between several languages and illustrate, how g
high or low importance to a particular aspect affects the relative performa
of a language.

ages

esign
quire-
tion
me

nally
and

able
and

, not
.
lec-
imi-

ons
tion

oc-
leads
, the

 to
ts

w-

for a

hich
ern
2 EVALUATION METHOD

2.1 Scope of the Method
The evaluation method is targeted towards system specification langu

for complex telecom applications. It is based on several assumptions:
• The design process defines separate phases for specification and d

and requires separate specification and design documents. Pure re
ments, functional or not, are also not considered part of the specifica
document. Hence, if requirements are explicitly formulated we assu
that this is done in a separate requirements definition document.

• It is assumed that the specification document should capture the exter
visible behaviour of the system and should avoid internal design
implementation decisions as much as possible.

• It is assumed to be an advantage if the specification document is amen
to analysis and synthesis tools. In fact, we assume that the more tools
methods can work with the document the better it is.

• As noted several times the target applications are complex systems
simple systems that can be coded directly by one person in one week

• The application area is telecommunication. We expect that complex e
tronic systems in other areas, e.g. in the automotive industry, exhibit s
lar characteristics, but we have not analysed other areas.
In the following two subsections we elaborate some of our assumpti

concerning the purpose of the specification document and the applica
area.

2.2 Requirements for a Specification Document
In a product development process the specification is typically the first d

ument, where the extensive discussion of many aspects of the problem
to a first proposal of a system which shall solve the given problem. Hence
purpose of the specification document is twofold:

1. It is a means to study if the proposed system will indeed be a solution
the posed problem with all its functional and non-functional requiremen
and constraints, i.e. to make sure to make the right system.

2. It defines the functionality and the constraints of the system for the follo
ing design and implementation phases.
From these two purposes we can derive several general requirements

specification method.

A. To support the specification process: To write a specification is an itera-
tive process. This process should be supported by a technique w
allows the engineer to add, modify and remove the entities of his conc

.g.

gh
del-

s
ects
itec-
d in
Ide-

tic
ict

ent
the
iffer-

ms.
ignal
with
per-
emo-

are

to
ons

es,
tart-
ting

m-
ess-

-

without a large impact on the rest of the specification.
B. Analysable: The specification should be analysable in various ways, e

by simulation, formal verification, performance analysis, etc.
C. High abstraction: The modelling concepts must be at a high enou

abstraction level. The system engineer should not be bothered with mo
ling details, which are not relevant at this stage.

D. Implementation independent: The system specification should not bia
the design and implementation in undesirable ways. System archit
must be given as much freedom as possible to evaluate different arch
ture and implementation alternatives. Products are frequently develope
several versions with different performance and cost characteristics.
ally the same functional specification should be used for all versions.

E. Base for implementation: The specification should support a systema
technique to derive an efficient implementation. This is in direct confl
with the requirements C and D.

2.3 Application Characteristics
Systems in a particular domain exhibit many characteristics to a differ

extent. In fact, the difference between different domains is usually not
absence or presence of characteristics but the degree of importance of d
ent characteristics.

Our evaluation is targeted towards digital telecommunication syste
Such systems consist of signal paths and a reactive control system. A s
path consists of dataflow functional blocks operating on streams of data
potential high data rates. The reactive control system has typically lower
formance constraints, is control dominated and has sometimes large m
ries for configuration data and system state. The following characteristics
important for this application domain:
• Stream processing: The system transforms streams of data according

simple protocol transformations or complex mathematical transformati
with sometimes high performance requirements.

• Complex control:The system can be in many different states and mod
e.g. some of them are responsible for the normal operation, some for s
up and configuration, some for testing and diagnosis, others for detec
and handling error conditions, etc.

• Well defined timing:Environment and requirements establish defined ti
ing constraints which are important for the control and the stream proc
ing part.

• Spatial distribution: An integrated functionality is sometimes imple
mented at spatially separated locations.

-

ng
quire

ing

the
ghts
work
avis
and
n the
the
rage
es
t has
given

ner
live-
nce,
had

t the

ia,
usa-
ssed

r dif-
ided
divi-
anal-

for
ite-
are

ould

lap
• Versatile interfaces:The system is typically connected with the environ
ment with various standardized interfaces and protocols.

• Large memory:The behaviour of both control and stream processi
depends on the system’s state and configuration, which sometimes re
large memories used in an irregular manner.
Different parts of a telecom system exhibit different characteristics rang

from pure signal processing to control dominated system management.

2.4 Evaluation Criteria
The definition of evaluation criteria is as difficult and as important as

evaluation of languages itself, because the criteria and their relative wei
basically determine the outcome of the evaluation process. We base our
on the studies described by Ardis et al. [1], Narayan and Gajski [2] and D
[3]. To a limited extent we also used the criteria discussed by Nordström
Pettersson [4]. In all these reports a set of criteria is selected based o
assumption, that if a criterion is fulfilled by a language to a high degree,
language can be more effectively used and the design process will on ave
result in a better product than when the criterion is not fulfilled. This exclud
the design process and the designer’s skill from the language evaluation. I
the disadvantage that the dependence of the end product quality on a
criterion could be misjudged.

An alternative in the selection of criteria is taken by Lewerentz and Lind
[5]. There, the main criteria are properties of the resulting model, such as
ness and correctness. Although these are the criteria of ultimate importa
they are influenced by many factors related to the design process, which
to be identified and filtered out before establishing valid conclusions abou
influence of the language on these properties.

Starting with the criteria discussed in [1, 2, 3, 4], we add new criter
divide them into four groups, namely modelling, analysis, synthesis, and
bility related aspects, as illustrated in figure 1. These groups are asse
independently from each other, which means a language is subject to fou
ferent assessments rather than one. The modelling group is further div
into aspects related to computation, communication, data and time. This
sion is based on the observation that these four modelling aspects can be
yses separately as discussed in [9].

This list of criteria is of course to some extent arbitrary, as is the case
any similar kind of evaluation. The list is perhaps not complete and the cr
ria are not orthogonal and independent from each other. Not all the criteria
on the same level, some could be merged into a single criterion. Others c
be refined and split into criteria covering certain aspects in more detail.

We have introduced weights for each criterion to account for over

tion,
tion.

than
but
he
ore

e it
of

may
suit-
uit-
s.

size,
licit

ign
ghts
entire

he
between criteria and to emphasise the particular purpose of the evalua
which is language evaluation as opposed to tool or design process evalua
Furthermore, the criteria weights reflect the focus on specification rather
implementation. The weights allow to define priorities among the criteria
avoid implicit preferences by selecting or dropping certain criteria. T
weight factors that we use in this comparison are listed in table 2. For m
details on the criteria and their weights see [10].

2.5 Evaluation Mechanism
The objective of the evaluation is to get quantitative parameters to mak

possible to compare the suitability of various languages for specification
systems in a given application domain. It is possible that the evaluation
conclude that language A is better than language B, language A is highly
able for description but difficult to synthesize, or that language A is more s
able for large systems and language B is more suitable for small system

The method uses evaluation functionsΦ, which produce a suitability index
depending on the evaluated language, the application area, the system
and the design objectives, as illustrated in figure 2. Some factors are imp
in this scheme and therefore not explicitly visible in figure 2. The des
phase affects the selection of criteria, the criteria weights, the context wei
and perhaps even the language weights. For a different design phase the
evaluation must be thought over again.

C, K, and L are numerical vectors with one element for each criterion. T

Modelling
Concepts

Analysis
Related

Synthesis
Related

Usability
Related

TimeDataComm.Comp.

- Concurrency
- Control Flow

- Data Flow

- Computation
 abstractions

- Comm. mechanism
- Synchronization
- Exception Handling
- Run-time

- Time modelling of delays

- Timing Constraints
- Time abstractions

- Data Modelling

- Data Abstraction
- Typing System

-

- Simulatability
- Soundness

- Verifiability

- Looseness

- Locality of

- Implementability HW

- Language maturity
- Tools maturity

- Modifiability

- Maintainability
- Checkability

- Learning Curve
- Discipline
- Industrial

- Run-time safety

- Tools Maturity

- Tools Maturity

- Library construction
 support

 information - Modularity

- Behavioural
 hierarchy

- Comm. abstractions
 error handling

- Timer concept

- Implementability SW
- Structural details

- Locality of
 information

- Reusability

 Acceptance

Figure 1. Evaluation criteria

n-
eta-
g of

ctive
.
ors
asier
of
typ-
for
lex
come

on is
confi-
d the
functionΦ and the suitability indexσ is defined by the following formulas:

By restricting the range to and the method guara
tees a desirable metric as discussed in detail in [10]. To facilitate interpr
tion of these vectors and of the results the method uses following mappin
symbols to numbers:

The purpose of these formulas is not to make the evaluation more obje
but to make it moretransparentby separating different influencing factors
The hope is that the identification and isolation of different influencing fact
makes the assignment of proper weight factors easier. For instance it is e
to give a good answer to the question: “How important is the criterion
soundness for small sized control oriented applications during rapid proto
ing?”, than it is to answer: “How important is the criterion of soundness
my company or my department?”. Thus, by splitting the large comp
assessment into many smaller assessments the individual decisions be
easier and the process of merging many small factors into one big decisi
made more transparent and can be fine-tuned, rejected or accepted with
dence. It is needless to say, however, that the assignments of weights an
formula for computing the suitability index is still very subjective.

Evaluation
Language

LanguageL
Application Area

System Size

Suitability Indexσ

Functions
Design
Objectives

Figure 2. Suitability Vector is a four tuple

Criteria ΦM, ΦA, ΦS, ,ΦU
ContextK

Criteria

and overlap
dependency

weights C

Φ C L K, ,()

l iciki
i 1=

n

∑

ciki
i 1=

n

∑
----------------------= σ ΦM ΦA ΦS ΦU, , ,〈 〉=

Ki Ci, 0 1[,]∈ Li 1 1,–[]∈

K : IRRELEVANT(IRR) 0.0↔ UNIMPORTANT(UNI) 0.25↔
RELEVANT(REL) 0.5↔ IMPORTANT(IMP) 0.75↔ ESSENTIELL(ESS) 1.0↔

, ,
, ,

(
)

L : VERY POOR (VEP) 1.0–↔ POOR 0.5–↔
FAIR 0.0↔ GOOD 0.5↔ EXCELLENT (EXC) 1.0↔

, ,
, ,

(
)

Φ : UNACCEPTABLE (UNA) 1– 0.5–),[↔ UNSUITABLE (UNS) 0.5– 0),[↔
SUITABLE (SUI) 0 0.5),[↔ PROPER (PRO) 0.5 1.0],[↔

, ,
,

(
)

[6],
3 LANGUAGES UNDER EVALUATION
The languages under evaluation represent different paradigms. Erlang

Table 1.Language assessment vectors
L (Erlang) L (C++) L(Haskell) L(VHDL) L(SDL) L(ProGram)

Structural hierarchy GOOD POOR VEP EXC EXC GOOD

Concurrency EXC VEP FAIR EXC EXC GOOD

Static processes EXC VEP VEP EXC EXC EXC

Dynamic processes EXC VEP VEP VEP EXC VEP

Control flow EXC EXC EXC GOOD EXC EXC

State machines FAIR FAIR FAIR GOOD EXC GOOD

Programming constructs EXC EXC EXC EXC GOOD POOR

Data flow EXC GOOD EXC EXC POOR POOR

Behavioural hierarchy GOOD GOOD EXC EXC GOOD GOOD

Looseness GOOD POOR EXC FAIR GOOD FAIR

Computation abstractions GOOD GOOD EXC GOOD GOOD VEP

Communication FAIR VEP VEP POOR GOOD GOOD

Synchronization FAIR VEP VEP GOOD GOOD GOOD

Exception handling GOOD FAIR VEP POOR GOOD GOOD

Run time error handling EXC FAIR POOR FAIR FAIR FAIR

Communication abstractions POOR VEP POOR POOR EXC FAIR

Data modelling VEP EXC EXC GOOD GOOD POOR

Typing system VEP FAIR EXC GOOD GOOD FAIR

Data abstractions VEP EXC EXC GOOD GOOD POOR

Timing modelling of delays VEP VEP VEP EXC VEP POOR

Timer concept EXC VEP VEP FAIR GOOD POOR

Timing constraints POOR VEP VEP POOR POOR POOR

Time abstraction POOR VEP POOR POOR GOOD POOR

Testability/Simulation EXC EXC EXC EXC GOOD POOR

Soundness GOOD VEP EXC POOR GOOD POOR

Verifiability GOOD FAIR EXC FAIR GOOD GOOD

Locality of information GOOD EXC GOOD GOOD GOOD POOR

Tools maturity- analysis EXC EXC POOR EXC POOR VEP

Implementability HW VEP POOR VEP EXC VEP EXC

Implementability SW EXC EXC FAIR FAIR FAIR GOOD

Structural details VEP VEP VEP EXC VEP FAIR

Library construction support EXC EXC EXC EXC GOOD VEP

Language maturity GOOD EXC GOOD EXC GOOD POOR

Tools maturity - synthesis GOOD EXC POOR EXC FAIR POOR

Locality of information GOOD EXC GOOD GOOD GOOD POOR

Modifiability FAIR GOOD GOOD GOOD GOOD GOOD

Modularity GOOD GOOD GOOD GOOD GOOD GOOD

Maintainability GOOD FAIR GOOD FAIR FAIR FAIR

Checkability GOOD POOR GOOD POOR GOOD EXC

Reusability FAIR GOOD GOOD GOOD GOOD GOOD

Run-time safety GOOD POOR POOR POOR FAIR POOR

Learning curve GOOD GOOD FAIR FAIR GOOD GOOD

Discipline FAIR FAIR EXC FAIR GOOD FAIR

Industrial acceptance GOOD EXC VEP EXC GOOD POOR

Tools maturity - usability EXC EXC VEP EXC EXC POOR

,
are
++,

ent;
tiva-
ther
.
has
our
fair

tion
m-
tion
for

at
-
of
ow-
im-

en

have
er-
. For
ile
only
ally

uous
ain

an-
tion
he

the
ent
VHDL, SDL[12], and ProGram [13] have explicit concurrency; VHDL, C++
and SDL are imperative languages; Haskell [14], Erlang, and ProGram
declarative languages; C++ and SDL are object oriented languages; C
SDL, Erlang, and Haskell have mostly been used for software developm
VHDL and ProGram have been used for hardware development. One mo
tion for this selection was to cover different paradigms and aspects. Ano
practical reason was that these languages are well known by the authors

In order to put the comparison on a solid foundation a realistic system
been modelled with all the languages, which contributes significantly to
confidence that the evaluation method is sound and the comparison is
with respect to the given application domain.

The application example as supplied by Ericsson Telecom is an opera
and maintenance system of an ATM network. ATM is an ITU-specified co
munication and switching technology for broadband services [7]. Opera
and Maintenance (OAM) is part of ATM specifications that is responsible
detection of errors and performance degradation in the ATM network
switch level and to report it further [8]. A significant part of the OAM func
tionality in the ATM layer has been modeled in all languages [10]. The size
the models range from several hundred to a few thousand lines of code. H
ever, the different OAM models cannot be compared with each other in a s
ple way due to several differences:
• The OAM models do not implement exactly the same functionality, ev

though they are very similar;
• The modelling style and the concepts used differ because the models

been developed by different persons with different objectives. This diff
ences go far beyond what is induced by the use of different languages
instance, the VHDL model uses bitvectors to represent ATM cells wh
the C++ model uses more abstract symbols; the Erlang model uses
static processes while the SDL model makes heavy use of dynamic
created processes.

• The experience of the developers with the used languages varied.
For these reasons we do not attempt to compare the models in a superfl

way, like listing line numbers and development time. In a sense, the m
result from the modelling activities is not the models but the analysis of l
guage features with respect to a specific application domain. The applica
domain and the experience with the OAM functionality was always in t
back of our minds when we analysed and discussed language concepts.

4 THE COMPARISON
We compare the languages in five different contexts. Table 1 shows

assessment vectorsL for the languages. These are the results of the judgm

rsons
r

of one or several persons for each language. In particular there were 2 pe
to evaluate Erlang, 3 for C++, 2 for Haskell, 4 for VHDL, 2 for SDL and 2 fo
ProGram. Table 2 shows the criteria vectorC in the second column and the

Table 2.Context vectors with different objectives

CriteriaC K(control SW)
K(mixed
HW/SW)

K(pure
functional)

K(pure
HW)

K(simple
HW)

Structural hierarchy 0.75 UNI UNI IRR UNI UNI

Concurrency 0.75 ESS ESS IRR ESS ESS

Static processes 0.5 ESS IMP IRR IMP IMP

Dynamic processes 0.5 ESS UNI IRR IRR IRR

Control flow 0.5 ESS ESS ESS ESS ESS

State machines 0.5 IMP IMP IMP ESS ESS

Programming constructs 0.5 ESS IMP IMP IMP IRR

Data flow 1.0 ESS ESS ESS ESS ESS

Behavioural hierarchy 1.0 ESS ESS ESS ESS UNI

Looseness 0.25 REL ESS ESS ESS UNI

Computation abstractions 1.0 ESS ESS ESS ESS IMP

Communication 0.75 ESS ESS IRR ESS IMP

Synchronization 0.5 ESS ESS IRR ESS ESS

Exception handling 0.75 ESS ESS UNI ESS IMP

Run time error handling 0.5 ESS UNI IRR IRR IRR

Communication abstractions 1.0 UNI ESS IRR ESS IMP

Data modelling 1.0 IRR ESS ESS ESS IMP

Typing system 1.0 REL ESS ESS IMP UNI

Data abstractions 1.0 IRR ESS ESS ESS UNI

Timing modelling of delays 0.75 IRR IMP IRR IMP IMP

Timer concept 0.75 ESS IMP IRR IRR IRR

Timing constraints 1.0 UNI ESS ESS ESS ESS

Time abstraction 1.0 UNI ESS ESS ESS UNI

Testability/Simulation 1.0 ESS ESS ESS ESS ESS

Soundness 1.0 IMP ESS ESS ESS IMP

Verifiability 0.75 ESS ESS ESS ESS ESS

Locality of information 1.0 ESS ESS ESS ESS UNI

Tools maturity- analysis 0.25 ESS ESS IRR ESS IMP

Implementability HW 1.0 IRR IMP IMP IMP IMP

Implementability SW 1.0 ESS IMP IMP IRR IRR

Structural details 0.5 IRR IRR IRR IRR IMP

Library construction support 1.0 ESS ESS ESS ESS ESS

Language maturity 0.5 ESS ESS IRR ESS ESS

Tools maturity - synthesis 0.25 ESS ESS IRR ESS ESS

Locality of information 1.0 ESS ESS ESS ESS IMP

Modifiability 1.0 ESS ESS ESS ESS IMP

Modularity 0.25 ESS ESS ESS ESS IMP

Maintainability 0.25 ESS ESS ESS ESS IMP

Checkability 0.5 ESS ESS ESS ESS IMP

Reusability 1.0 ESS ESS ESS ESS IMP

Run-time safety 1.0 ESS UNI IRR IRR IRR

Learning curve 0.25 REL REL IRR REL IMP

Discipline 1.0 REL ESS IRR ESS REL

Industrial acceptance 0.25 ESS ESS IRR ESS IMP

Tools maturity - usability 0.25 ESS ESS IRR ESS IMP

p-

r
s:
n.
eci-
on

e are

for
for

ural

lan-
per-

re
any

ext.
erv-
context vectorsK for the different objectives:
Control SW: Specification of large and complex control software as it is ty

ical for the operation, control and management of telecom networks;
Mixed HW/SW: Specification of complex mixed HW/SW systems;
Pure functional: Specification of complex mixed HW/SW systems is simila

to the “mixed HW/SW” context but with two distinguishing assumption
(1) Explicit process level concurrency is irrelevant for the specificatio
One can argue that the partitioning into processes is in fact a design d
sion and should not be part of the specification [11]. (2) The focus is
research and factors such as tools maturity and industrial acceptanc
considered to be irrelevant.

Pure HW: Specification of complex hardware systems;
Simple HW: Specification of smaller hardware systems. It is assumed that

smaller systems the need for high abstraction levels and constructs
complexity management is reduced. Thus, criteria such as behavio
hierarchy, looseness, and abstraction are deemphasized.
Tables 3 through 7 give the result of the comparison. Table 8 lists the

guages which are suitable in each context, meaning, that the language
formsSUITABLE or better in all four groups.

At first it is surprising that C++ performs so poorly for control softwa
applications. However, C++ neither supports concurrent processes nor
kind of timing, but both concepts are deemed to be important in this cont
For C++ implementations typically the operating system provides these s

Table 3.Language comparison for large control SW
L (Erlang) L (C++) L(Haskell) L(VHDL) L(SDL) L(ProGram)

ΦM PRO UNS UNS SUI PRO SUI

ΦMComputation PRO SUI SUI PRO PRO UNS

ΦMCommunication SUI UNA UNA UNS SUI SUI

ΦMData UNA SUI PRO PRO PRO SUI

ΦMTime SUI UNA UNA UNS SUI UNS

ΦA PRO SUI PRO SUI SUI UNS

ΦS PRO PRO SUI PRO SUI UNS;

ΦU SUI SUI SUI SUI SUI SUI

Table 4.Language comparison for complex, mixed HW/SW
L (Erlang) L (C++) L(Haskell) L(VHDL) L(SDL) L(ProGram)

ΦM SUI UNS SUI SUI SUI UNS

ΦMComputation PRO SUI PRO PRO PRO SUI

ΦMCommunication SUI UNA UNA UNS PRO SUI,

ΦMData UNA PRO PRO PRO PRO UNS

ΦMTime UNS UNA UNA UNS UNS UNS

ΦA PRO SUI PRO SUI SUI UNS

ΦS SUI PRO SUI PRO SUI UNS

ΦU SUI SUI SUI SUI SUI SUI

lar
vec-
or

nt that
er,
devi-
ices. Hence, if one wants to evaluate C++ in combination with a particu
operating system or if a particular aspect is not considered important, the
tors L andK have to be adjusted. In general the usage of particular tools
versions of a language will change the assessment, which makes appare
it is difficult to draw general conclusions from specific evaluations. Howev
the evaluation method used here allows to analyse evaluation results and
ations from intuitive judgement.

Table 5.Language comparison for complex, mixed HW/SW with low
emphasis on concurrency

L (Erlang) L (C++) L(Haskell) L(VHDL) L(SDL) L(ProGram)

ΦM UNS SUI PRO SUI SUI UNS

ΦMComputation PRO PRO PRO PRO SUI UNS

ΦMCommunication PRO SUI UNA UNS PRO PRO

ΦMData UNA PRO PRO PRO PRO UNS

ΦMTime UNS UNA UNA UNS SUI UNS

ΦA PRO SUI PRO SUI PRO UNS

ΦS SUI PRO SUI PRO UNS SUI

ΦU SUI SUI PRO SUI SUI SUI

Table 6.Language comparison for complex pure HW systems
L (Erlang) L (C++) L(Haskell) L(VHDL) L(SDL) L(ProGram)

ΦM UNS UNS SUI SUI SUI UNS

ΦMComputation PRO SUI PRO PRO PRO SUI

ΦMCommunication UNS UNA UNA UNS PRO SUI,

ΦMData UNA PRO PRO PRO PRO UNS

ΦMTime UNA UNA UNA UNS UNS UNS

ΦA PRO SUI PRO SUI SUI UNS

ΦS SUI PRO SUI PRO SUI UNS

ΦU SUI SUI SUI SUI PRO SUI

Table 7.Language comparison for simple pure HW systems
L (Erlang) L (C++) L(Haskell) L(VHDL) L(SDL) L(ProGram)

ΦM SUI UNS UNS SUI SUI UNS

ΦMComputation PRO SUI SUI PRO PRO SUI

ΦMCommunication UNS UNA UNA UNS PRO SUI

ΦMData UNA PRO PRO PRO PRO UNS

ΦMTime UNA UNA UNA UNS UNA UNS

ΦA PRO SUI PRO SUI SUI UNS

ΦS SUI SUI SUI PRO UNS UNS

ΦU SUI SUI SUI SUI PRO SUI

Table 8.Comparison result
Context suitable languages

Control software Erlang, VHDL, SDL

mixed HW/SW Erlang, Haskell, VHDL, SDL

pure functional C++, Haskell, VHDL

pure HW Haskell, VHDL, SDL

simple HW Erlang, VHDL

sys-
flu-
ivity

we
s and
ations
ation
ith
ay to
ssion

as, J.
ms

n in

m

-

11,

of

tion",

sis
l-
5 CONCLUSION
We have presented a language comparison for specification of telecom

tems. The main difficulty of such a task comes from the huge number of in
encing factors and underlying assumptions and from the inherent subject
of the assessment by humans. We have not eliminated subjectivity and
cannot suggest a final conclusion but we have analysed different strength
weaknesses of the languages and we have established causal rel
between assumptions and evaluation results due to a systematic evalu
method. Each evaluation can still only be valid in a particular context and w
respect to specific demands and objectives. However, we have shown a w
make an evaluation transparent and subject to detailed analysis and discu
by making all the assumptions and priorities as explicit as possible.

6 REFERENCES
[1] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G. Staskausk

Von Olnhausen, “A Framework for Evaluating Specification Methods for Reactive Syste
- Experience Report”,IEEE Transactions on Software Engineering, June 1996.

[2] Sanjiv Narayan and Daniel D Gajski, “Features Supporting System-Level Specificatio
HDLs”, pp. 540 - 545,European Design Automation Conference, September 1993.

[3] Alan M. Davis, “A Comparison of Techniques for the Specification of External Syste
behaviour”,Communications of the ACM, pp. 1098 - 1115, September 1988.

[4] A.Nordström, H.Pettersson, An Evaluation of Graphical HDL Tools with Aspects on
Design Methodology and Reusability,Ericsson, Sweden, Report JR/M-97:1676, 1997.

[5] Claus Lewerentz and Thomas Lindner, ed.,Case Study “Production Cell”: A Comparative
Study in Formal Software Development, Forschungszentrum Informatik, Universität Karl
sruhe, report no. FZI-Publication 1/94, Karlsruhe, Germany, 1994.

[6] J.Armstrong, R.Virding, M.Williams,Concurrent Programming in Erlang, Prentice Hall,
1993.

[7] M. De Prycker,Asynchronous Transfer Mode solutions for broadband ISDN, Series in
Computer Communications and Networking, Ellis Horwood 1991.

[8] ITU-T Telecommunication Standardization sector of ITU Recommendation I.150, I.2
I.311, I.321, I.327, I.361, I.362, I.363, I.413, I.432, I.610.

[9] A. Jantsch, S. Kumar, A. Hemani, “The Rugby Model: A Framework for the Study
Modelling, Analysis, and Synthesis Concepts in Electronic Systems”,Proceedings of
Design Automation and Test in Europe (DATE), 1999.

[10]A. Jantsch, S. Kumar, I. Sander, B. Svantesson, J. Öberg, and A. Hemani,Evaluation of
Languages for Specification of Telecom Systems, report no. TRITA-ESD-1998-04, Depart-
ment of Electronics, Royal Institute of Technology, Stockholm, Sweden, 1998.

[11]A. Jantsch and I. Sander, "On the Roles of Functions and Objects in System Specifica
Proceedings of the International Workshop on Hardware/Software Codesign, 2000.

[12]A. Olsen, O Færgemand, B. Møller-Pedersen, R. Reed, and J.R.W Smith,Systems Engi-
neering with SDL-92, North Holland, 1995.

[13]J. Öberg,ProGram: A Grammar-Based Method for Specification and Hardware Synthe
of Communication Protocols, PhD thesis, Dep. of Electronics, Royal Institute of Techno
ogy, TRITA-ESD-1999-03, 1999.

[14]J. Peterson and K. Hammond, editors,Haskell Report 1.4, http://haskell.org/.

	A COMPARISON OF SIX LANGUAGES FOR SYSTEM LEVEL DESCRIPTION OF TELECOM APPLICATIONS
	Axel Jantsch1, Shashi Kumar2, Ingo Sander1, Bengt Svantesson1, Johnny Öberg1, Ahmed Hemani1, Peet...
	1 Royal Institute of Technology, Stockholm, Sweden 2 Jönköping University, Jönköping, Sweden 3 Ta...
	1 INTRODUCTION
	2 EVALUATION METHOD
	2.1 Scope of the Method
	2.2 Requirements for a Specification Document
	1. It is a means to study if the proposed system will indeed be a solution to the posed problem w...
	2. It defines the functionality and the constraints of the system for the following design and im...
	A. To support the specification process: To write a specification is an iterative process. This p...
	B. Analysable: The specification should be analysable in various ways, e.g. by simulation, formal...
	C. High abstraction: The modelling concepts must be at a high enough abstraction level. The syste...
	D. Implementation independent: The system specification should not bias the design and implementa...
	E. Base for implementation: The specification should support a systematic technique to derive an ...

	2.3 Application Characteristics
	2.4 Evaluation Criteria
	Figure 1. Evaluation criteria

	2.5 Evaluation Mechanism
	Figure 2. Suitability Vector is a four tuple

	3 LANGUAGES UNDER EVALUATION
	Table 1. Language assessment vectors

	4 THE COMPARISON
	Table 2. Context vectors with different objectives
	Control SW
	Mixed HW/SW
	Pure functional
	Pure HW
	Simple HW
	Table 3. Language comparison for large control SW
	Table 4. Language comparison for complex, mixed HW/SW
	Table 5. Language comparison for complex, mixed HW/SW with low emphasis on concurrency
	Table 6. Language comparison for complex pure HW systems
	Table 7. Language comparison for simple pure HW systems
	Table 8. Comparison result

	5 CONCLUSION
	6 REFERENCES
	[1] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G. Staskauskas, J. Von ...
	[2] Sanjiv Narayan and Daniel D Gajski, “Features Supporting System-Level Specification in HDLs”,...
	[3] Alan M. Davis, “A Comparison of Techniques for the Specification of External System behaviour...
	[4] A.Nordström, H.Pettersson, An Evaluation of Graphical HDL Tools with Aspects on Design Method...
	[5] Claus Lewerentz and Thomas Lindner, ed., Case Study “Production Cell”: A Comparative Study in...
	[6] J.Armstrong, R.Virding, M.Williams, Concurrent Programming in Erlang, Prentice Hall, 1993.
	[7] M. De Prycker, Asynchronous Transfer Mode solutions for broadband ISDN, Series in Computer Co...
	[8] ITU-T Telecommunication Standardization sector of ITU Recommendation I.150, I.211, I.311, I.3...
	[9] A. Jantsch, S. Kumar, A. Hemani, “The Rugby Model: A Framework for the Study of Modelling, An...
	[10] A. Jantsch, S. Kumar, I. Sander, B. Svantesson, J. Öberg, and A. Hemani, Evaluation of Langu...
	[11] A. Jantsch and I. Sander, "On the Roles of Functions and Objects in System Specification", P...
	[12] A. Olsen, O Færgemand, B. Møller-Pedersen, R. Reed, and J.R.W Smith, Systems Engineering wit...
	[13] J. Öberg, ProGram: A Grammar-Based Method for Specification and Hardware Synthesis of Commun...
	[14] J. Peterson and K. Hammond, editors, Haskell Report 1.4, http://haskell.org/.

