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ABSTRACT

Amputee locomotion can benefit from recent advances in

robotic prostheses, but their control systems design poses chal-

lenges. Prosthesis control typically discretizes the nonlinear gait

cycle into phases, with each phase controlled by different lin-

ear controllers. Unfortunately, real-time identification of gait

phases and tuning of controller parameters limit implementa-

tion. Recently, biped robots have used phase variables and vir-

tual constraints to characterize the gait cycle as a whole. Al-

though phase variables and virtual constraints could solve issues

with discretizing the gait cycle, the virtual constraints method

from robotics does not readily translate to prosthetics because of

hard-to-measure quantities, like the interaction forces between

the user and prosthesis socket, and prosthesis parameters which

are often altered by a clinician even for a known patient. We use

the simultaneous stabilization approach to design a low-order,

linear time-invariant controller for ankle prostheses independent

of such quantities to enforce a virtual constraint. We show in sim-

ulation that this controller produces suitable walking gaits for a

simplified amputee model.
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INTRODUCTION

The fields of prosthetics [1,2] and orthotics [3,4] are begin-

ning to benefit from recent advances in the field of robotics for

the purpose of restoring mobility after lower-limb amputation or

stroke. Such wearable robotic devices possess the potential of

improving the quality of life for individuals with physical impair-

ments. However, critical obstacles in the control methodologies

employed in these devices limit their clinical use. One such hur-

dle is the time and effort necessary to tune the control system to a

particular individual. This usually arises because an individual’s

gait cycle is discretized into several discrete “phases” with each

phase having its own control model [5, 6]. In addition to this,

multi-joint prostheses have independent control models for each

joint. It requires a team of clinicians and researchers multiple

days to tune, by trial and error, several parameters of the control

system of an above-knee powered prosthesis to an individual’s

gait cycle [6]. There is also the additional challenge of real-time

distinction and identification of each phase of gait, which varies

from individual to individual. This difficulty in distinguishing

the phases of gait translates into the control system struggling to

“keep up” with the rapidly occurring gait cycle.

The challenges posed by discretizing the gait cycle into

phases can be partially addressed by borrowing ideas from recent

successes in biped robot locomotion. To generate stable walking

gaits in biped robots, a “phase variable” is used to continuously

represent the phase of gait, which leads to “virtual constraints”

that characterize gait kinematics as a whole [7, 8] instead of dis-

cretizing the gait cycle into pieces. For prosthesis control system
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design, a phase variable can be viewed as a mechanical represen-

tation of an individual’s progression through a gait cycle, with

the advantage that a single variable continuously parametrizes

the entire gait cycle with no need for discretization. This idea has

been used with some success in the design of control systems for

above-knee prostheses [9, 10]. The drawback of this approach is

that the control input to the prosthesis is largely dependent on the

accuracy of the dynamical model of the prosthesis coupled to the

human, the measurements of the prosthesis states, and the loads

exerted by the subject on the prosthesis socket. In this way, mod-

eling and measurement inaccuracies pose challenges with regard

to clinical viability of such control systems.

Although both approaches of designing control systems for

prostheses and orthoses have drawbacks, they have certain merits

as well. One employs linear controllers to control the gait which

would be easy to implement, if not for the many discrete phases

of gait. The other uses a virtual constraint based on a continuous

parametrization of the gait’s phase to characterize the entire gait

cycle. This constraint when enforced by a nonlinear controller is

known to produce suitable walking gaits in amputees [11]. Out-

put Proportional-Derivative (PD) control has been used as a lin-

ear approximation of this nonlinear controller but the PD control

gains are sensitive to model parameters [11]. All this inspires the

question: Can linear controllers be used to enforce virtual con-

straints for an ankle prosthesis to produce suitable walking gaits

in amputees regardless of variations in model parameters? In this

work we design such a controller. Our controller is a linear time-

invariant (LTI), single-input single-output (SISO) transfer func-

tion of only second-order, and requires sensor measurements of

only the prosthesis states.

We begin by reviewing a nonlinear continuous-time ankle

prosthesis model from [12] for which we design a control sys-

tem. Then we explain a virtual constraint, which uses the center

of pressure (COP) as a phase variable, that our controller must

enforce to produce suitable walking gaits. Next, we proceed to

linearizing the nonlinear prosthesis model and the virtual con-

straint to obtain an LTI plant. From this linearization we de-

fine a finite set of plants to be stabilized in order to account for

uncertainties in various prosthesis and human subject parame-

ters. Then we design a second-order, SISO, LTI controller that

simultaneously stabilizes all these plants. Finally, we simulate

the prosthesis control system with the full biped to show a sym-

metric stable walking gait. In the section on simulations, we also

compare the results from the feedback linearizing controller de-

signed in [12].

A NONLINEAR MODEL OF AN ANKLE-FOOT PROS-
THESIS

In this section we review a nonlinear dynamical model of

an ankle prosthesis in a manner pertinent to our control system

design. Refer to [12] for more details.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Kinematic model of a compass-gait biped with rocker feet [12].

We employ a simple dynamical model with no knees to re-

duce the state-space dimensions of the model. In the late stance

period the function of the human ankle is plantarflexion of the

foot to propel the individual forward. In the swing period the

ankle merely lifts the foot to facilitate ground clearance. There-

fore, our objective is to design a control system that produces

suitable walking gaits in human subjects with emphasis on the

control of a prosthetic ankle bearing the human subject weight

during stance. The planar biped model shown in Fig. 1 has a hip

joint, and ankle joints with constant-curvature rocker feet. These

rocker feet approximate the deformation of human feet during

walking [13]. The stance leg is shown in solid gray to represent a

prosthesis attached to the subject’s body (shown in dashed black)

at the hip. First, only the stance leg is modeled for the control

system design. Then the full biped model of the human subject

wearing the prosthesis is simulated to show periodic locomotion.

We now review the continuous dynamics of the ankle pros-

thesis. It is modeled as a kinematic chain with respect to the

COP. After reviewing the prosthesis dynamics we explain a kine-

matic foot constraint, which forces the COP to move along the

rocker foot. This kinematic constraint is not to be confused with

the virtual constraint that mimics the human effective shape. We

conclude this modeling section with a discussion of this virtual

constraint.

Dynamics

In this section we review a continuous time dynamical

model of the ankle prosthesis in the stance period. A simplify-

ing assumption in the modeling is that the ankle is defined at the

heel. Using the rocker foot shown in Fig. 1, we assume rolling

point contact between the foot and ground. Since a rolling con-

tact point has zero velocity at any instant [14], we can treat this
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contact point as stationary and model movement of the kinematic

chain around it, i.e., the COP is defined at the inertial reference

frame. With the COP as the origin, Cartesian coordinates x,y rep-

resent the position of the ankle center with respect to the COP.

The stance leg angle is defined with respect to the vertical and

is denoted by θs. Then the configuration of the stance leg, viz.,

the ankle prosthesis, is denoted as q = (x,y,θs)
T ; the state of the

system is given by the vector z = (qT , q̇T )T , where q̇ = (ẋ, ẏ, θ̇s)
T

denotes the prosthesis joint velocities. During the continuous

single-support stance period, the state trajectory evolves accord-

ing to the set of differential equations

M(q)q̈+C(q, q̇)q̇+N(q)+AT (q)λ = τ, (1)

where M is the inertia matrix, C is the matrix of Coriolis terms, N

is the vector of gravitational torques, A is the kinematic foot con-

straint vector for the rocker foot, and λ is the Lagrange multiplier

providing the forces to enforce the kinematic foot constraint. The

vector of external forces τ = Bu+ JT(q)F is composed of actu-

ator torques and interaction forces F = [Fx,Fy,Mxy]
T from the

subject’s body, respectively. Ankle actuation is provided by the

scalar torque input u and mapped into the leg’s coordinate sys-

tem by B = [0,0,1]T . For more details on the interaction force

vector F and Jacobian J refer to [12].

Kinematic Foot Constraint

We now review the kinematic constraint which forces the

COP to move along the rocker foot as in [12]. Recall that the

COP is defined as the origin. The rocker foot is modeled by con-

straining the heel point (x,y) to an arc that has radius R f with

center of rotation Pf and intersecting the COP. The center of ro-

tation Pf is defined in a moving reference frame such that the

vector between Pf and the COP is always normal to the ground

with radius ||Pf −COP||= R f . Define

ρ = γ+ 2arcsin(
d

2R f

), (2)

where γ is the slope angle of the walking surface, and d =√
x2 + y2 is the distance between the COP and the heel. Then the

kinematic constraint is given in model coordinates by k(q) = 0,

where

k(q) = (x−R f sin(ρ))2 +(y+R f cos(ρ))2 −R2
f . (3)

Following the method in [12, 15], the constraint vector A = ∇qk

and Lagrange multiplier λ = λ̂+ λ̃u+ λ̄F are derived, where

λ̂ = (AM−1AT )−1(Ȧq̇−AM−1(Cq̇+N)),

λ̃ = (AM−1AT )−1AM−1B,

λ̄ = (AM−1AT )−1AM−1JT . (4)

It is highlighted here that the rocking constraint k(q) = 0

only restricts the motion of the COP to be along the foot, whereas

the virtual constraint discussed in the following section charac-

terizes the pendular trajectory of the stance leg about the ankle-

foot complex.

Virtual Constraint
To design an ankle-foot prosthesis control system we use the

method of virtual constraints to mimic the effective shape of the

human ankle-foot complex for walking. Since amputees often

struggle to adapt to varying conditions like gait speed and shoe

symmetry [16], we use the invariant property of effective shape

explained in [17, 18] as a virtual constraint. This shape charac-

terizes how the ankle moves as the COP travels from heel to toe

during walking. For the model used in this work, where the heel

and ankle are combined for simplicity, the resulting trajectories

of the stance leg angle θs differ from the ankle trajectories seen

in the biomechanics literature. Reviewed here is a virtual con-

straint from [12], which when satisfactorily enforced by control

action mimics the effective shape of the stance leg even though

the joints modeled are not analogous to the physiological joints.

The effective shape is the COP trajectory mapped into a

shank-based reference frame, which is shown with axes x̂s, ŷs in

Fig. 1. Able-bodied humans have effective shapes specific to

activities such as walking or stationary swaying [18], and each

shape can be characterized by the curvature of the COP trajec-

tory with respect to a point Ps = (Xs,Ys)
T attached to the shank

reference frame. This can be expressed as the coordinate-free

distance relationship

||Ps −COP||= Rs, (5)

where the radius of curvature Rs is a constant for walking. At

heel strike the COP is co-linear with the dynamical model’s

stance leg and the condition in Eqn. (5) is necessarily satisfied,

so the Ys-component of Ps is given by Ys =
√

R2
s −X2

s . In model

coordinates Eqn. (5) is given by the virtual holonomic constraint

h(q) = 0 where

h(q) = (x+Xs cos(θs)−Ys sin(θs))
2 + (6)

(y+Xs sin(θs)+Ys cos(θs))
2 −R2

s .
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The virtual constraint defined by Eqn. (6) represents the desired

behavior of the prosthetic ankle. Our attempt is to enforce this

nonlinear virtual constraint with a SISO, LTI controller.

LINEAR TIME-INVARIANT PLANT FOR THE ANKLE-

FOOT PROSTHESIS MODEL
To design an LTI controller for the continuous system in

Eqn. (1), we first linearize this nonlinear model of the ankle

prosthesis. A fixed point of the system is

x = y = θs = ẋ = ẏ = θ̇s = 0, (7)

which corresponds to the prosthesis in a vertically upright posi-

tion. We develop a linear approximation of the ankle prosthe-

sis model at this unstable fixed point. We begin by defining the

states

z1 = x, z2 = y, z3 = θs, z4 = ẋ, z5 = ẏ, z6 = θ̇s, (8)

and inputs u, Fx, Fy and Mxy. Then the nonlinear system in Eqn.

(1) can be rewritten as a set of first-order ordinary differential

equations of the form

ż = f (z)+ g(z)û, (9)

where z = [z1, z2, z3, z4, z5, z6]
T and û = [u, Fx, Fy, Mxy]

T . Lin-

earizing the system in Eqn. (9) at the equilibrium point in Eqn.

(7), we get LTI state-space equations of the form

ż = Az+Bû, (10)

where

A =

[
03×3 I3×3

A3 03×3

]
, B =

[
03×4

B2

]
, (11)

with

A3 =
mgℓ

2Ix




0 0
ℓ

2
0 0 0

0 0 1


 , B2 =




ℓ

2Ix

1

m
−

ℓ2

4Ix

0
ℓ

2Ix

0 0
1

m
0

1

Ix

−ℓ

2Ix

0
1

Ix



, (12)

where m, ℓ and Ix are the mass, length and moment of inertia

of the ankle prosthesis, respectively, and g is the acceleration

due to gravity taken to be 9.81 m-s−2. The pair (A, B) is fully

controllable. However, the interaction forces Fx,Fy and Mxy do

not represent control inputs from the ankle prosthesis, but rather

from the human subject. Define

Bu := [0, 0, 0,
ℓ

2Ix

, 0,
1

Ix

]T , (13)

which represents the input-matrix for the control torque from the

ankle prosthesis. The Popov-Belevitch-Hautus Test (see [19])

shows the pair (A, Bu) to be controllable with respect to all states

except z5 = ẏ. This state corresponds to the vertical velocity of

the ankle/heel center with respect to the COP. It is noted that the

prosthesis can influence this state through the controllable states

in the foot contact constraint k(q) = 0, with k(q) as given by Eqn.

(3). In addition to this, the human subject can also exert control

over this state through the interaction forces Fx,Fy and Mxy.
To obtain an LTI plant G(s) = C̃(sI −A)−1Bu we need an

output-matrix C̃. For this we use the virtual constraint h(q) = 0

with h(q) in Eqn. (6) as the output function. We have earlier

stated that driving the virtual constraint to zero would mimic

walking in able-bodied humans. So the function h(q) can be

thought of as an output that is to be zeroed by the LTI controller

we design. To this effect we derive an output-matrix C̃ by lin-

earizing h(q) about the equilibrium point in Eqn. (7); we get

C̃ = [2Xs, 2Ys, 0, 0, 0, 0]. (14)

Then the LTI plant of the ankle prosthesis is

G(s) =
ℓXs

Ix(s2 −
mgℓ

2Ix

)

. (15)

LINEAR CONTROLLER DESIGN FOR THE LINEARIZED

PROSTHESIS PLANT

In this section we design a controller for the LTI plant G(s)
in Eqn. (15). It is known that clinicians often make adjustments

to the length and weight of the prosthesis to satisfy the chang-

ing demands of the human subject, which means the prosthesis

parameters are far from being fixed quantities. Moreover, the

quantity Xs in the LTI plant G(s) is a human subject parame-

ter normalized by the subject’s height, and it varies for different

slopes of walking surface [17]. Therefore, our objective is to de-

sign a controller that gives due consideration to these uncertain-

ties. Our approach to accounting for these is by defining several

different LTI plants for different values of prosthesis and subject

parameters and then designing just one, common controller that

stabilizes all these plants. Such an approach of stabilizing a fi-

nite number of LTI plants with the use of one controller is called
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Simultaneous Stabilization (see [20]), which we merge with the

method of virtual constraints. Along similar lines a compass-

gait biped model with point feet was simultaneously stabilized

to account for parameter uncertainties in [21].

Define the parameters

k :=
ℓXs

Ix

, p2 =
mgℓ

2Ix

, (16)

which are not fixed quantities for the reasons just explained. Re-

call that m, ℓ and Ix are physical parameters of the prosthesis,

while Xs is a human subject parameter. Then the LTI plant in

Eqn. (15) becomes

G(s) =
k

(s2 − p2)
. (17)

At this point our objective is to design a SISO, LTI controller that

stabilizes G(s) even when k and p are not accurately known.

Based on values for an average human subject used in [12],

we define a nominal plant Go with ko and po given by ℓ= 0.865

m, Xs = 0.005 m, Ix = 0.2 kg-m2, and m = 13.5 kg. We now

define more plants G1, G2, . . . , G11 within physiological ranges

from [12] in the following manner: First, in order to account for

uncertainties in the measurement of ℓ, we define G1, G2, and G3

when ℓ equals 0.7, 0.8 and 0.9 m, respectively, keeping the val-

ues of other parameters the same as that in the nominal plant

Go. Next, to account for the uncertainty in Xs, we define G4

and G5 when Xs equals 0.1 and 0.3 m, respectively, maintain-

ing the values of all other parameters as in Go. In similar fash-

ion, we define G6 and G7 when Ix equals 0.1 and 0.3 kg-m2,
respectively, G8 and G9 when m equals 12.5 and 14.5 kg, respec-

tively. To illustrate that more than one parameter can be varied

at a time, we define G10 when ℓ = 0.75 m, Xs = 0.015 m and

Ix = 0.15 kg-m2, and define G11 when ℓ = 0.95 m, Xs = 0.025

m, Ix = 0.25 kg-m2 and m = 15 kg. Note that there is no limit to

the number of such plants that can be simultaneously stabilized

using the design procedure we describe. Our goal now is to de-

sign one SISO, LTI controller that stabilizes all plants in the set

G = {Go, G1, G2, . . . , G11}.

We now design a simultaneously stabilizing controller based

on the design procedure developed in [22]. Let gc = 2, zc = 3.
For each G j in G define

Ψ j(s) := s[
1

(s+ gc)(s+ zc)
G−1

j ko −
ko

k j

], (18)

Φ j(s) := s[(1+
s

α(s+ g)(s+ z)
G−1

j ko)
−1

(
g

α(s+ gc)(s+ zc)
G−1

j ko − 1)]. (19)

We choose α = 120 and β = 120 such that

α > max
G j∈G

||Ψ j(s)||, (20)

β > max
G j∈G

||Φ j(s)||. (21)

Then the SISO, LTI controller that simultaneously stabilizes all

plants in G is

C(s) =
αβ(s+ gc)(s+ zc)

ko s(s+ g+β)

=
105 (3.364s2 + 16.82s+ 20.19)

s(s+ 122)
. (22)

This controller is only second-order and provides integral-action.

Also highlighted is the fact that there are infinitely many con-

trollers that stabilize the set G for different values of gc,zc > 0,
and α and β satisfying the conditions in (20) and (21), respec-

tively. In addition to these, the controller C(s) is independent of

the interaction forces exerted by the human subject on the pros-

thesis, which is not the case for the partial feedback linearizing

controller derived in [12].

Note that there is no limit in the choice and number of plants

Go, G1, G2, . . . ,G11. More such plants can be generated and

simultaneously stabilized by choosing different values for the

prosthesis and subject parameters. Since there is no limit to the

number of plants that can be simultaneously stabilized, doing so

with more plants takes greater care of the uncertainties in pros-

thesis and subject parameters.

SIMULATING THE FULL BIPED WITH ANKLE PROS-

THESIS

The simultaneous controller C(s) in Eqn. (22) is now simu-

lated with a nonlinear hybrid biped model. We cover two cases

in our simulations: downslope walking with γ = 0.0075 radians,

and flat ground walking with γ = 0.
First, we simulate the case of the biped walking down a

slope with γ = 0.0075 radians. In this case the biped has an ex-

isting passive walking gait; we add our ankle prosthesis control

system to the biped and observe how well this controller enforces

the virtual constraint h(q) = 0 to achieve biomimetic walking.

This is also studied to draw performance comparisons with the

partial feedback linearizing controller designed in [12].
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Next we simulate the full biped walking on level ground,

i.e., when the slope γ of the walking surface is zero. This case

was not covered in the feedback linearizing design in [12]. Since

the biped does not have a passive walking gait on flat surface, we

add an input at the hip of the human subject to move appropri-

ately the human subject’s swing leg to generate a walking gait.

The input we provide at the hip is based on the idea of controlled

symmetries and passive walking, which is discussed in [23]. The

method of controlled symmetries exploits passive gaits in bipeds

to generate a ‘pseudo-passive’ gravity based human like gait in-

put, which is conjectured to represent the energy-efficient walk-

ing gaits in humans.

Now we briefly explain a full biped model from [12] be-

fore discussing the results of our simulations. The configura-

tion vector of the full biped is denoted by q̂ = (qT ,θns)
T , where

θns is the hip (i.e., non-stance) angle as defined in Fig. 1. The

biped’s dynamics during single support are governed by a dif-

ferential equation of the form (1) until the swing foot contacts

the ground, which initiates the transition into the next step cy-

cle. We define a function Hγ(q̂) to give the height of the heel of

the swing foot above ground with slope angle γ, so heel strike

occurs when the state trajectory intersects the switching surface

G = {q̂ | Hγ(q̂) = 0}. The subsequent double-support transi-

tion is modeled as an instantaneous impact event with a perfectly

plastic (inelastic) collision as in [7]. The state trajectory is there-

fore subjected to the impact map ∆ (which also changes the val-

ues of θs,θns to re-label the stance and swing legs) in the hybrid

dynamical system:

M̂(q̂) ¨̂q+ Ĉ(q̂, ˙̂q) ˙̂q +N̂(q̂)+ ÂT (q̂)λ̂ = τ for q̂ /∈ G

(q̂+, ˙̂q+) = ∆(q̂−, ˙̂q−) for q̂ ∈ G, (23)

where the superscripts +/− denote the post- and pre-impact

states, respectively, the input vector τ is given by

τ =




0 0

0 0

1 0

0 1



[

u

uh

]
, (24)

where u represents the control input from the prosthesis, and uh

represents the input at the human hip from controlled symme-

tries. The input uh is zero for downslope walking. For level

ground walking it is given by

uh = 0.5mgℓ(sin(θs +θns)− sin(θs +(γact − γvir)+θns)), (25)

where γact is the slope of walking surface on which a walking

gait is to be achieved, and γvir is a choice of virtual slope of the

walking surface. For our full biped model we take γvir = 0.0325

rad. Since we wish to achieve flat ground walking, we must have

γact = 0 rad. For full details on the other terms associated with

the full biped model in Eqn. (23), see [12]. The state of the

full biped system is given by the vector ẑ = (q̂T , ˙̂qT )T . Since the

controller C(s) in Eqn. (22) is second-order, it adds two further

states to the full biped system. The controller C(s) is written in

state-space form as

[
ẋc1

ẋc2

]
=

[
−122 0

1 0

][
xc1

xc2

]
+

[
1

0

]
e(t),

u = [−3935800 2019000]

[
xc1

xc2

]
+ 336400e(t), (26)

where xc1
and xc2

are the states of the controller, e(t) is the error

in the virtual constraint to be zeroed, i.e., e(t) = 0−h(q(t)), and

u is the ankle torque generated by the ankle prosthesis controller

on the stance leg to help produce stable walking gaits. When

simulating we determine the error e(t) from the nonlinear form

of h(q) as in Eqn. (6) although the simultaneous controller C(s)
is designed for h(q) linearized at the fixed point in Eqn. (7).

When simulating the full biped model in Eqn. (23) in

closed-loop with the control system in Eqn. (26), we only con-

sider walking gaits corresponding to stable periodic solutions of

the hybrid biped model. Such solutions define isolated orbits in

the state space known as hybrid limit cycles, which correspond

to fixed points of the Poincarè return map P : G → G. We ver-

ify exponential stability of periodic walking gaits by ensuring

the eigenvalues of the discritized Poincarè return map, linearized

about its fixed point corresponding to the periodic solution, lie

within the unit circle. This procedure is explained in [7].

Downslope Walking

In this section we compare the performance of the LTI si-

multaneous controller designed in this work to the feedback lin-

earizing controller designed in [12]. A PD controller is also de-

signed in [12]. Since our simultaneous controller outperforms

that PD controller, we only compare our simultaneous controller

with the feedback linearizing controller. Broadly speaking, the

performances of the simultaneous controller and the feedback

linearizing controller in simulation are almost evenly matched

for downslope walking with the slope of walking surface γ being

0.0075 radians.

Note that for this slope the biped exhibits a passive gait and

the only input to the biped is at the prosthesis, i.e., uh = 0 in

Eqn. (24), and u is either the input given by the LTI, simultane-

ous controller in Eqn. (26), or the input given by the feedback

linearizing controller in [12], as the case may be.
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Figures 2 and 3 show the angular positions of the biped with

feedback linearizing control and simultaneous control, respec-

tively, for three consecutive steps. Since our modeling simpli-

fication assumes the heel and ankle to coincide, the angle θs is

not the physiological ankle angle seen in the biomechanics liter-

ature. Hence, it is not expected that θs match those typical ankle

trajectories seen in biomechanics data. Figures 4 and 5, com-

pare the phase portraits for both controllers. It can be seen from

Figures 6 and 7 that the COP moves almost just as far from the

ankle for both controllers. In Fig. 8 we see that the simultaneous

controller exerts lower torque than the feedback linearizing con-

troller. However, the enforcement of the virtual constraint from

the feedback linearizing controller is better than the simultane-

ous controller as can be inferred from Fig. 9.
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Figure 2. ANGULAR POSITIONS OF THE FEEDBACK LINEARIZA-

TION CONTROLLED BIPED WITH PROSTHESIS WALKING DOWNS-

LOPE.
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Figure 3. ANGULAR POSITIONS OF THE SIMULTANEOUSLY CON-

TROLLED BIPED WITH PROSTHESIS WALKING DOWNSLOPE.

When comparing the two controllers the important factors

are the ankle torques experienced by the human subject and the

enforcing of the virtual constraint h(q) = 0. The simultaneous
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Figure 4. PHASE PORTRAIT OF THE FEEDBACK LINEARIZATION

CONTROLLED BIPED WITH PROSTHESIS WALKING DOWNSLOPE.
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Figure 5. PHASE PORTRAIT OF THE SIMULTANEOUS CON-

TROLLED BIPED WITH PROSTHESIS WALKING DOWNSLOPE.
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Figure 6. ANKLE POSITIONS OF THE FEEDBACK LINEARIZATION

CONTROLLED BIPED WITH PROSTHESIS WALKING DOWNSLOPE.

controller exerts lower ankle torques on the human subject than

the feedback linearizing controller. This also reduces expecta-

tions from the actuators in the prosthesis when the simultaneous

controller is implemented. However, the enforcement of the vir-

tual constraint is done better by the feedback linearizing design,

which should be no surprise because of the linear nature of the

proposed simultaneous controller. It is again noted that the feed-

back linearizing controller, which needs real-time measurement

of the interaction forces Fx, Fy and Mxy and a model of the pros-
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Figure 7. ANKLE POSITIONS OF THE SIMULTANEOUS CON-

TROLLED BIPED WITH PROSTHESIS WALKING DOWNSLOPE.
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Figure 8. ANKLE TORQUES FROM THE FEEDBACK LINEARIZ-

ING AND SIMULTANEOUS CONTROLLED BIPED WITH PROSTHESIS

WALKING DOWNSLOPE.
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Figure 9. VIRTUAL CONSTRAINT ENFORCEMENT COMPARI-

SON FOR FEEDBACK LINEARIZING AND SIMULTANEOUS CON-

TROLLERS.

thesis properties, is harder to implement than the simultaneous

controller.

Flat Ground Walking

In this section we present the results for flat ground walking

of the full biped with ankle prosthesis. This case has not been

studied in [12]. Since the biped does not possess a passive gait

for γ = 0, we use uh as shown in Eqn. (25). Figures 10, 11, 12,

13 and 14 show the angular positions, phase portrait, ankle po-

sitions, ankle torques and the output function h(q), respectively,

for the simultaneously controlled biped walking on flat ground.
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Figure 10. ANGULAR POSITIONS OF THE SIMULTANEOUS CON-

TROLLED BIPED WITH PROSTHESIS WALKING ON FLAT GROUND.
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Figure 11. PHASE PORTRAIT OF THE SIMULTANEOUS CON-

TROLLED BIPED WITH PROSTHESIS WALKING ON FLAT GROUND.

The simulations show us that the ankle prosthesis controller

designed using the simultaneous stabilization approach produces

flat ground walking given a suitable input at the human subject’s

hip for motion of the swing leg. As one would expect, Fig. 13

suggests that flat ground walking requires greater ankle torque

than downslope walking that permits passive gaits for the biped.

Figure 12 suggests that the COP does not move as much on flat
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Figure 12. ANKLE POSITIONS OF THE SIMULTANEOUS CON-

TROLLED BIPED WITH PROSTHESIS WALKING ON FLAT GROUND.
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Figure 13. ANKLE TORQUE FROM THE SIMULTANEOUS CON-

TROLLED BIPED WITH PROSTHESIS WALKING ON FLAT GROUND.

ground walking as it does for downslope walking, which again

is in line with our intuition. Since the output function h(q) has

very small values across the gait cycle in Fig. 14, our simultane-

ous controller seems to maintain the human effective shape for

walking on flat surfaces.

CONCLUSIONS

Despite recent developments in technology, lower-limb

prosthesis control systems design faces several challenges. Pros-

thesis control systems have traditionally relied on a time-varying

linear control scheme that struggles to “keep up” with respect to

the phases of a rapidly occurring gait cycle. In this work, ideas

such as phase variables and virtual constraints from the field of

bipedal robotics were exploited to design a SISO, LTI controller

which does not have to adapt for different phases of a gait cy-

cle. In addition, the closed loop system formed by the human

subject and the prosthesis is autonomous in nature. This con-

troller also accounts for uncertainties in prosthesis and human

subject parameters, and relies on sensor measurements of only

the prosthesis states. Most importantly, this linear controller sat-
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Figure 14. VIRTUAL CONSTRAINT ENFORCEMENT FOR THE SI-

MULTANEOUS CONTROLLED BIPED WITH PROSTHESIS WALKING

ON FLAT GROUND.

isfactorily enforces a nonlinear virtual constraint to maintain the

human effective shape for biomimetic walking of amputees with

ankle prostheses. Since the linear controller employs high gains,

lower values of gain may be explored in implementation on an

ankle prosthesis. In future, higher degree of freedom models of

transfemoral amputees using prostheses will be considered for

simultaneous control.
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