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Abstract 
Spatial continuous data (spatial continuous surfaces) play a significant role in 

planning, risk assessment and decision making in environmental management. They 

are, however, usually not readily available and often difficult and expensive to 

acquire, especially for mountainous and deep marine regions. As geographic 

information systems (GIS) and modelling techniques are becoming powerful tools in 

natural resource management and biological conservation, spatial continuous data of 

environmental variables are increasingly required. Environmental managers often 

require spatial continuous data over a region of interest to make effective and 

informed decisions and scientists need accurate data which are well-distributed across 

a region to make justified interpretations. However, spatial distribution data of natural 

phenomena are often collected from point sources. The marine environment in 

Australia is a typical case, where: seabed mapping, habitat classification, and 

prediction of marine biodiversity, essential for marine biodiversity conservation, need 

reliable spatial continuous data of the marine environment. In most of the Australian 

marine region, such data are not available, and only sparsely and unevenly scattered 

point samples have been collected. Therefore, spatial interpolation techniques are 

essential for estimating biophysical variables for the unsampled locations. 

The spatial interpolation methods, including geostatistics, have been developed for 

and applied to various disciplines. They are data-specific or even variable-specific. 

Many factors including sample size, sampling design and data properties affect the 

estimations of the methods. There are no consistent findings about how these factors 

affect the performance of the spatial interpolators. Therefore, it is difficult to select an 

appropriate spatial interpolation method for a given input dataset. This review aims to 

provide some guidelines and suggestions in relation to the application of the spatial 

interpolation methods to environmental data by comparing the features of the 

commonly applied spatial interpolators. 

Over 40 spatial interpolation methods are briefly described. They fall into three 

categories, namely: non-geostatistical interpolators (12), geostatistical interpolators 

(22) and combined methods (8). Many sub-methods or types are also included, for 

example, 8 stratified methods and 6 types of regression kriging. A list of the methods 

that are not commonly used is also provided for those readers interested. 
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The spatial interpolation methods were developed either for specific disciplines or 

even for specific variables based on the data properties modelled. Each method has its 

specific assumptions and features. These features, such as global versus local, exact 

versus inexact, deterministic versus stochastic, and gradual versus abrupt, are 

discussed. In total, 26 spatial interpolation methods are compared theoretically and 

their features are summarised. 

Commonly used assessment measures are summarised in relation to: 1) the 

performance of variogram models, 2) the performance of the spatial interpolation 

methods, and 3) the performance of a spatial interpolation method for datasets with 

different sample sizes. The criteria used to judge each measurement are also 

discussed. Two new measurements are proposed and a procedure is developed to 

compare the results of the performance of the spatial interpolation methods for 

different variables and from various disciplines. 

The spatial interpolation methods have been applied to many disciplines. The focus of 

this review is mainly on comparative studies in environmental sciences. For each of 

the 51 comparative studies considered, the following information, including the 

methods compared, sampling design, sample size, area of region studied and the 

results, is summarised. The performance of 62 methods and sub-methods in the 51 

comparative studies is compared. Four types of method groups are identified based on 

the frequency of their application.  

Several factors that affect the performance of the spatial interpolation methods are 

discussed, including sampling design, sample spatial distribution, data quality, 

correlation between the primary and secondary variables, and interaction among 

various factors. The impacts of sample density, variation in the data, sampling design 

and stratification on the estimations of the spatial interpolation methods are quantified 

using data from 77 cases in 17 reviewed comparative studies. The results show that 

variation within the data is a dominant factor and has tremendous impacts on the 

performance of the spatial interpolators. As the variation increases, the accuracy of all 

methods decreases. Irregular-spaced sampling design and stratification would 

improve the accuracy of estimation. There is no evidence of the effects of sampling 

density on the performance of the spatial interpolation methods in this comprehensive 

comparative study. 



 v

A total of 26 commonly used spatial interpolation methods are then classified based 

on their features to provide an overview of relationships among these methods. These 

features are quantified and a cluster analysis is conducted to show similarities among 

these spatial interpolators. They are classified into 10 groups. To provide guidelines 

for potential users, a decision tree for selecting an appropriate method from the 26 

spatial interpolation methods is developed according to the availability and nature of 

data. 

Finally, a list of available software packages for spatial interpolation is provided. 

Some important factors for spatial interpolation in marine environmental science are 

discussed, and recommendations are made for applying spatial interpolation methods 

to marine environmental data in Geoscience Australia. 
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Introduction 

 1

Chapter 1: Introduction 
Spatial continuous data (or spatial continuous surfaces) play a significant role in 
planning, risk assessment, and decision making in environmental management. They 
are, however, usually not always readily available and often difficult and expensive to 
acquire, especially for mountainous or deep marine regions. Environmental data 
collected on field surveys are typically from point sources. However, environmental 
managers often require spatial continuous data over the region of interest to make 
effective and confident decisions, and scientists need accurate spatial continuous data 
across a region to make justified interpretations.  

As geographic information systems (GIS) and modelling techniques are becoming 
powerful tools in natural resource management and biological conservation, spatial 
continuous data of environmental variables are increasingly required (Collins and 
Bolstad, 1996; Hartkamp et al., 1999). Thus, the values of an attribute at unsampled 
points need to be estimated, meaning that spatial interpolation from point data to 
spatial continuous data is necessary. It is also necessary when 1) the discretized 
surface has a different level of resolution, cell size or orientation from that required; 
2) a continuous surface is represented by a data model that is different from that 
required; and 3) the data we have do not cover the domain of interest completely 
(Burrough and McDonnell, 1998). In such instances, spatial interpolation methods 
provide tools to fulfil such task by estimating the values of an environmental variable 
at unsampled sites using data from point observations within the same region. 
Predicting the values of a variable at points outside the region covered by existing 
observations is called extrapolation (Burrough and McDonnell, 1998). In this study, 
extrapolation is regarded as part of interpolation because all spatial interpolation 
methods can be used to generate an extrapolation. 

In Australia, point biophysical data from the marine environment are collected for 
seabed mapping and habitat classification purposes, where biophysical data are 
sparsely and unevenly distributed, principally because of the high costs and 
difficulties associated with collecting samples from many regions of the marine 
environment. Spatial interpolation and extrapolation of the point data are required for 
such purposes and also for the prediction of marine biodiversity, biological 
conservation and ecosystem management. To support conservation and management 
of Australia’s marine biodiversity as part of the United Nations Convention on 
Biological Diversity (United Nations, 1993), Geoscience Australia has undertaken 
studies that also require the spatial interpolation of the point biophysical data. 

The spatial interpolation methods, including geostatistics, have been developed for 
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and applied in various disciplines (Zhou et al., 2007). They are proposed for specific 
data types or a specific variable. Many factors including sample size, sampling 
design, and the nature of the data affect the estimation of a spatial interpolator. There 
are no consistent findings about how these factors affect the performance of the 
spatial interpolators. Therefore, it is difficult to address the key issue in spatial 
interpolation that is how to select an appropriate spatial interpolation method for a 
given input dataset (Burrough and McDonnell, 1998). 

This review aims to provide guidelines and suggestions useful to environmental 
scientists, especially in marine sciences, on the spatial interpolation of biophysical 
data by comparing the features of commonly applied spatial interpolators. This review 
covers several aspects of spatial interpolation, which are presented in eight chapters. 
Following this introduction, Chapter 2 contains brief descriptions of the commonly 
used spatial interpolation methods. Features of 26 spatial interpolation methods are 
discussed and theoretically compared in Chapter 3. Several measurements that are 
usually used to assess the performance of variogram models and the spatial 
interpolation methods are presented in Chapter 4; and also two new measurements are 
proposed to assess the performance of the spatial interpolation methods using the 
results from different disciplines and for different variables. Applications of the 
spatial interpolators in environmental sciences are briefly described and then the 
results from 51 comparative studies are compared in Chapter 5. Factors that affect the 
performance of the spatial interpolators are discussed and examined in Chapter 6. The 
26 methods discussed in Chapter 3 are then classified and a decision tree for selecting 
an appropriate interpolator according to the nature of input dataset is developed in 
Chapter 7. Finally, in Chapter 8, a list of software packages for spatial interpolation is 
provided, several important issues in applying the spatial interpolators are discussed 
in the context of marine environmental sciences and some recommendations are made 
for spatial interpolation in marine environmental sciences.  

Because this review is for environmental science researchers, jargon and 
mathematical and statistical formulas are avoided whenever possible. However, some 
mathematical and statistical nomenclature is provided to maintain a rigorous 
discussion of the methods. Explanations and/or definitions are provided for statistical 
terms, and equations are presented in a simplified, concise and easy-to-follow version. 
Relevant literature is also provided for further reference. 

Three significant challenges were encountered in this review, namely: 1) sometimes 
the same method is presented with different names in different references; 2) 
mathematical symbols often change with references although they represent the same 
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concept; and 3) methods are not described clearly in some references. Efforts have 
been made to match different names and symbols with the right methods and concepts 
and to assign the correct names to the methods used in various studies. In some cases, 
when it was impossible to find information on the method used in a reference, the 
reference is either discarded or a note is made to avoid confusion. 
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Chapter 2: Spatial Interpolation Methods 
Numerous methods have been developed for spatial interpolation in various 
disciplines and there are a number of different terms used to distinguish them, 
including: “interpolating” and “non-interpolating” methods or “interpolators” and 
“non-interpolators” (Laslett et al., 1987). In this review, all methods are referred to as 
spatial interpolation methods or spatial interpolators. The spatial interpolation 
methods covered in this review are only those commonly used or cited in 
environmental studies. As such, the list of the methods in this review is not an 
exhaustive one. 

In this chapter, a total of 42 spatial interpolation methods are briefly described. They 
fall into three categories: 1) non-geostatistical methods, 2) geostatistical methods, and 
3) combined methods (Table 2.1). In geostatistics, the methods that are capable of 
using secondary information (see section 2.1.5 for definition) are often referred to as 
“multivariate”, while the methods that do not use the secondary information are called 
“univariate” methods. Here, it must be noted that multivariate usually refers to more 
than one response variable, despite of the fact that in some references it also refers to 
more than one explanatory variable (usually referred to as multiple variables). A brief 
introduction to geostatistics is provided prior to the descriptions of the geostatistical 
methods. The level of description of each method depends on the nature of the 
method. If it is relatively simple and straightforward, a full description of the method 
is provided. If it is relatively complex, then a brief description is provided and 
relevant publications for further reading are cited. 

Estimations of nearly all spatial interpolation methods can be represented as weighted 
averages of sampled data. They all share the same general estimation formula, as 
follows: 

∑
=

=
n

i
ii xzxz

1
0 )()(ˆ λ                                      (1) 

where ẑ  is the estimated value of an attribute at the point of interest x0, z is the 
observed value at the sampled point xi, λi is the weight assigned to the sampled point, 
and n represents the number of sampled points used for the estimation (Webster and 
Oliver, 2001). The attribute is usually called the primary variable, especially in 
geostatistics. 
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Table 2.1. The spatial interpolation methods considered in this review. 
Geostatistical Non-geostatistical 

Univariate Multivariate 
Combined method 

Nearest neighbours Simple kriging Universal kriging Classification combined other interpolation methods 
Triangular irregular network related 

interpolations Ordinary kriging SK with varying local means Trend surface analysis combined with kriging 

Natural neighbours Block kriging Kriging with an external drift Lapse rate combined with kriging 
Inverse distance weighting Factorial kriging Simple cokriging Linear mixed model 

Regression models Dual kriging Ordinary cokriging Regression trees combined with kriging 

Trend surface analysis Indicator kriging Standardised OCK Residual maximum likelihood-empirical best linear 
unbiased predictor 

Splines and local trend surfaces Disjunctive kriging Principal component kriging Regression kriging 
Thin plate splines  Model-based kriging Colocated cokriging Gradient plus inverse distance squared 

Classification  Simulation Kriging within strata  
Regression tree   Multivariate factorial kriging  
Fourier series  Indicator kriging  

Lapse rate  Indicator cokriging  
  Probability kriging  
  Simulation  
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2.1. Non-Geostatistical Interpolators 
A total of 12 non-geostatistical interpolation methods are briefly described. 

2.1.1. Nearest Neighbours 

The nearest neighbours (NN) method predicts the value of an attribute at an 
unsampled point based on the value of the nearest sample by drawing perpendicular 
bisectors between sampled points (n), forming such as Thiessen (or 
Dirichlet/Voronoi) polygons (Vi, i=1,2,…, n). This produces one polygon per sample 
and the sample is located in the centre of the polygon, such that in each polygon all 
points are nearer to its enclosed sample point than to any other sample points (Isaaks 
and Srivastava, 1989; Ripley, 1981; Webster and Oliver, 2001). The estimations of 
the attribute at unsampled points within polygon Vi are the measured value at the 
nearest single sampled data point xi that is ẑ (x0) = z(xi). The weights are:  

⎩
⎨
⎧ ∈

=
.0
,1

otherwise
Vxif ii

iλ                                    (2) 

All points (or locations) within each polygon are assigned the same value (Ripley, 
1981; Webster and Oliver, 2001). A number of algorithms exist to generate the 
polygons (Gold and Condal, 1995), including pycnophylactic interpolation (Burrough 
and McDonnell, 1998).  

2.1.2. Triangular Irregular Network 

The triangular irregular network (TIN) was developed by Peuker and co-workers 
(1978) for digital elevation modelling that avoids the redundancies of the altitude 
matrix in the grid system (Burrough and McDonnell, 1998). In TIN, all sampled 
points are joined into a series of triangles based on a Delauney’s triangulation. Each 
triangle is empty so it does not contain any of the sampled points. TIN forms a 
different basis for making estimates in comparison with those used in NN. The value 
of a point within a triangle is estimated by linear or cubic polynomial interpolation 
(Ripley, 1981; R Development Core Team, 2007; Webster and Oliver, 2001). The 
advantages and disadvantages of TIN are discussed in Burrough and McDonnell 
(1998). 

2.1.3. Natural Neighbours 

The natural neighbours (NaN) method was introduced by Sibson (1981). It combines 
the best features of NN and TIN (Webster and Oliver, 2001). The first step is a 
triangulation of the data by Delauney’s method, in which the apices of the triangles 
are the sample points in adjacent Thiessen polygons. This triangulation is unique 
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except where the data are on a regular rectangular grid. To estimate the value of a 
point, it is inserted into the tessellation and then its value is determined by sample 
points within its bounding polygons. For each neighbour, the area of the portion of its 
original polygon that became incorporated in the tile of the new point is calculated. 
These areas are scaled to sum to 1 and are used as weights for the corresponding 
samples (Webster and Oliver, 2001).  

2.1.4. Inverse Distance Weighting 

The inverse distance weighting or inverse distance weighted (IDW) method estimates 
the values of an attribute at unsampled points using a linear combination of values at 
sampled points weighted by an inverse function of the distance from the point of 
interest to the sampled points. The assumption is that sampled points closer to the 
unsampled point are more similar to it than those further away in their values. The 
weights can be expressed as: 

∑
=

= n

i

p
i

p
i

i

d

d

1
/1

/1λ                                         (3) 

where di is the distance between x0 and xi, p is a power parameter, and n represents the 
number of sampled points used for the estimation. The main factor affecting the 
accuracy of IDW is the value of the power parameter (Isaaks and Srivastava, 1989). 
Weights diminish as the distance increases, especially when the value of the power 
parameter increases, so nearby samples have a heavier weight and have more 
influence on the estimation, and the resultant spatial interpolation is local (see section 
3.1.1 for definition) (Isaaks and Srivastava, 1989).  

The choice of power parameter and neighbourhood size is arbitrary (Webster and 
Oliver, 2001). The most popular choice of p is 2 and the resulting method is often 
called inverse square distance or inverse distance squared (IDS). The power parameter 
can also be chosen on the basis of error measurement (e.g., minimum mean absolute 
error, resulting the optimal IDW) (Collins and Bolstad, 1996). The smoothness of the 
estimated surface increases as the power parameter increases, and it was found that 
the estimated results become less satisfactory when p is 1 and 2 compared with p is 4 
(Ripley, 1981). IDW is referred to as “moving average” when p is zero (Brus et al., 
1996; Hosseini et al., 1993; Laslett et al., 1987), “linear interpolation” when p is 1 
and “weighted moving average” when p is not equal to 1 (Burrough and McDonnell, 
1998).  
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2.1.5. Regression Models 

This method is essentially a linear regression model (LM) and assumes that the data 
are independent of each other, normally distributed and homogeneous in variance. 
Regression methods explore a possible functional relationship between the primary 
variable and explanatory variables (e.g., geographical coordinates, elevation) that are 
easy to measure (Burrough and McDonnell, 1998). These explanatory variables are 
usually referred to as secondary variables, auxiliary variables or ancillary variables. 
The information provided by these variables is called secondary information. The 
final model can be selected by a thorough understanding of the relationships between 
the primary variable and secondary variables and/or by using Akaike information 
criteria (AIC) or Bayesian information criteria (BIC).  

2.1.6. Trend Surface Analysis 

The trend surface analysis (TSA) is a special case of LM, which only uses 
geographical coordinates to predict the values of the primary variable. TSA separates 
the data into regional trends and local variations (Collins and Bolstad, 1996). TSA 
shares the same assumption as LM, and always contains all variables. It has also been 
extended to include other variables (Collins and Bolstad, 1996), in which case, it 
should be classified as LM. 

2.1.7. Splines and Local Trend Surfaces 

The splines consist of polynomials with each polynomial of degree p being local 
rather than global. The polynomials describe pieces of a line or surface (i.e., they are 
fitted to a small number of data points exactly) and are fitted together so that they join 
smoothly (Burrough and McDonnell, 1998; Webster and Oliver, 2001). The places 
where the pieces join are called knots. The choice of knots is arbitrary and may have a 
dramatic impact on the estimation (Burrough and McDonnell, 1998). For degree p = 
1, 2, or 3, a spline is called linear, quadratic or cubic respectively. Typically the 
splines are of degree 3 and they are cubic splines (Webster and Oliver, 2001).  

The local trend surfaces (LTS) fit a polynomial surface for each predicted point using 
the nearby samples (Venables and Ripley, 2002). There are two approaches in LTS. 
The first is a local polynomial regression fitting that is detailed by Cleveland et al. (in: 
Chambers and Hastie, 1992) and Cleveland and Devlin (1988). The second is a 
bilinear or bicubic spline that was developed to implement bivariate interpolation onto 
a grid for irregularly spaced point data (Akima, 1978; Akima, 1996). This method is 
also known as Akima’s interpolator (AK). Both approaches are unable to choose the 
smoothness (Venables and Ripley, 2002). 
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2.1.8. Thin Plate Splines 

Thin plate splines (TPS), formally known as “laplacian smoothing splines”, were 
developed principally by Wahba and Wendelberger (1980) for climatic data. The 
smoothing parameter is calculated by minimising the generalised cross validation 
function (GCV). This method is relatively robust because the minimisation of GCV 
directly addresses the predictive accuracy and is less dependent on the veracity of the 
underlying statistical model (Hutchinson, 1995). TPS provides a measure of spatial 
accuracy (Hutchinson, 1995; Wahba and Wendelberger, 1980). 

2.1.9. Classification  

The classification method (Cl) uses easily accessible soft information (e.g., soil types, 
vegetation types, or administrative areas) to divide the region of interest into sub-
regions that can be characterised by the moments (i.e., mean, variance) of the attribute 
measured at locations within the region of interest (Burrough and McDonnell, 1998). 
The model for classification is:  

εαμ ++= kxz )(ˆ 0                                      (4) 

where ẑ  is the estimated value of the attribute at location x0, μ is the general mean of 
the attribute over the region of interest, αk is the deviation between μ and the mean of 
unit (type) k, and ε is the residual (pooled within-unit) error (Burrough and 
McDonnell, 1998). Cl can be computed using the analysis of variance (ANOVA) 
method or LM by specifying the attribute as a response variable and the soft 
information as an explanatory factor with k classes. This method shares the same 
assumptions as LM.  

2.1.10. Regression Tree 

The regression tree (CART), also known as binary decision trees, uses binary 
recursive partitioning whereby the data of the primary variable are successively split 
along the gradient of the explanatory variables into two descendent subsets or nodes. 
These splits occur so that at any node the split is selected to maximise the difference 
between two split groups or branches (Breiman et al., 1984). The mean value of the 
primary variable in each terminal node can then be used to map the variable across the 
region of interest (Balk and Elder, 2000).  

2.1.11. Fourier Series 

The Fourier series (FS) method is used to estimate the values of an attribute by 
interpolating the samples using a linear combination of sine and cosine waves in two-
dimensional space (Davis, 1973), as follows: 
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where ijẐ is the value estimated at a point with coordinate Xi and Yj, α, β, γ and δ are 

coefficients, and λx and λy are the wavelength along x and y axis. The FS method has 
been proved useful in sedimentary geology in relation to periodic features such as 
spatial distribution of sand dunes, ripple marks and gilgai (Burrough, 1991; Davis, 
1973). This method is only applicable to strict periodic variables. Given its rare 
application, this method will not be considered any further. 

2.1.12. Lapse Rate 

The lapse rate (LR) was developed to estimate air temperature in relation to 
elevation/altitude. It uses the temperature value of the nearest weather station and the 
difference in elevation to estimate air temperature at the unsampled point on the basis 
of the relationship between air temperature and elevation for a region. It is also 
termed smart interpolation (Vicente-Serrano et al., 2003; Willmott and Matsuura, 
1995). It makes the assumption that the lapse rate is constant across the study region 
(Collins and Bolstad, 1996). Several variants of LR have been proposed for air 
temperature (Stahl et al., 2006). Given it is limited to only predicting temperature 
using elevation, this method will not be discussed any further. 

2.2. Geostatistics  
A brief introduction to geostatistics is initially provided for reference before the 
description of geostatistical interpolators. Most of the information about geostatistics 
in this section and in the next section is from Goovaerts (1997), and other relevant 
references are also cited when necessary.  

2.2.1. Introduction of Geostatistics  

Geostatistics is usually believed to have originated from the work in geology and 
mining by Krige (1951), but it can be traced back to the early 1910s in agronomy and 
1930s in meteorology (Webster and Oliver, 2001). It was developed by Matheron 
(1963) with his theory of regionalised variables (Wackernagel, 2003). “A mineralized 
phenomenon can be characterized by the spatial distribution of a certain number of 
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measurable quantities called regionalized variables (page 10)”; and this concept is 
termed regionalisation (Journel and Huijbregts, 1978). Other key concepts of 
geostatistics include: “When a variable is distributed in space, it is said to be 
regionalized (page 27)” and “geostatistical theory is based on the observation that the 
variabilities of all regionalized variables have a particular structure (page 10)” 
(Journel and Huijbregts, 1978). Geostatistics includes several methods that use 
kriging algorithms for estimating continuous attributes. Kriging is a generic name for 
a family of generalised least-squares regression algorithms, used in recognition of the 
pioneering work of Danie Krige (1951). 

2.2.2. Semivariance and Variogram 

Semivariance (γ) of Z between two data points is an important concept in geostatistics 
and is defined as: 

)]()(var[
2
1)(),( 00 xZxZhxx ii −== γγ                           (6) 

where h is the distance between point xi and x0 and γ(h) is the semivariogram 
(commonly referred to as variogram) (Webster and Oliver, 2001).  

A plot of )(ˆ hγ against h is known as the experimental variogram (Figure 2.1), which 

displays several important features (Burrough and McDonnell, 1998). The first is the 
“nugget”, a positive value of )(ˆ hγ  at h close to 0, which is the residual reflecting the 

variance of sampling errors and the spatial variance at shorter distance than the 
minimum sample spacing. The “range” is a value of distance at which the “sill” is 
reached. Samples separated by a distance larger than the range are spatially 
independent because the estimated semivariance of differences will be invariant with 
sample separation distance. If the ratio of sill to nugget is close to 1, then most of the 
variability is non-spatial (Hartkamp et al., 1999). The range provides information 
about the size of a search window used in the spatial interpolation methods (Burrough 
and McDonnell, 1998). 
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Figure 2.1. An example of a semivariogram as illustrated by an exponential model, 
with range, nugget (C0) and sill (C0+C1).  

The semivariance can be estimated from the data, as follows: 
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where n is the number of pairs of sample points separated by distance h (Burrough 
and McDonnell, 1998). Variogram modelling and estimation is extremely important 
for structural analysis and spatial interpolation (Burrough and McDonnell, 1998). The 
variogram models may consist of simple models, including: Nugget, Exponential, 
Spherical, Gaussian, Linear, and Power model or the nested sum of one or more 
simple models (Burrough and McDonnell, 1998; Pebesma, 2004; Webster and Oliver, 
2001). Four commonly used variogram models are illustrated in Figure 2.2 based on 
equations in Burrough and McDonnell (1998).  
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Figure 2.2. Examples of four commonly used variogram models: (a) spherical; (b) 
exponential; (c) linear; and (d) Gaussian. 

2.2.3. Kriging Estimator 

All kriging estimators are variants of the basic equation (8), which is a slight 
modification of equation (1), as follows:  

[ ])()()(ˆ
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0 xxZx i

n

i
i μλμ −=−Ζ ∑

=

                             (8) 

where μ is a known stationary mean, assumed to be constant over the whole domain 
and calculated as the average of the data (Wackernagel, 2003). The parameter λi is 
kriging weight; n is the number of sampled points used to make the estimation and 
depends on the size of the search window; and μ(x0) is the mean of samples within the 
search window. 

The kriging weights are estimated by minimising the variance, as follows: 
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where Z(x0) is the true value expected at point x0, n represents the number of 
observations to be included in the estimation, and C(xi-xj) = Cov[Z(xi), Z(xj)] (Isaaks 
and Srivastava, 1989).  

The step by step procedures for finding equation (9) and linking it to γ are given by 
Clark and Harper (2001). The assumptions of kriging are stationarity of difference 
between x and x+h and variance of differences, which define the requirements for the 
intrinsic hypothesis (Burrough and McDonnell, 1998; Journel and Huijbregts, 1978). 
This means that semivariance does not depend on the location of samples and only 
depends on the distance between samples, thus the semivariance is isotropic. 

2.3. Geostatistical Interpolators  
In this section 22 geostatistical interpolators are briefly described. Geostatistical 
approaches are used to: 1) describe spatial patterns and interpolate the values of the 
primary variable at unsampled locations; and 2) model the uncertainty or error of the 
estimated surface. 

2.3.1. Simple Kriging 

The estimation of simple kriging (SK) is based on equation (7) and a slightly modified 
equation (8), leading to equation (10) as: 
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where μ is a known stationary mean. The parameter μ is assumed constant over the 
whole domain and calculated as the average of the data (Wackernagel, 2003). SK is 
used to estimate residuals from this reference value μ given a priori and is therefore 
sometimes referred to as “kriging with known mean” (Wackernagel, 2003). The 
parameter μ(x0) in equation (8) is replaced by the stationary mean μ in equation (10). 
The number of sampled points used to make the estimation in equation (10) is 
determined by the range of influence of the semivariogram (Burrough and 

McDonnell, 1998). Because SK does not have a non-bias condition, ∑
=

−
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i
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1
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necessarily 0; the greater the value of ∑
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1 λ , the more the estimator will be drawn 
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toward the mean; and in general the value of ∑
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−
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1 λ  increases in relative poorly 

sampled regions (Boufassa and Armstrong, 1989). SK assumes second-order 
stationary that is constant mean, variance and covariance over the domain or the 
region of interest (Wackernagel, 2003; Webster and Oliver, 2001). Because such an 
assumption is often too restrictive, ordinary kriging (no a priori mean) is most often 
used (Burrough and McDonnell, 1998). 

2.3.2. Ordinary Kriging 

The ordinary kriging (OK) is similar to SK and the only difference is that OK 
estimates the value of the attribute using equations (7) and (8) by replacing μ with a 
local mean μ(x0) that is the mean of samples within the search window, and forcing 
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(Clark and Harper, 2001; Goovaerts, 1997). Therefore, OK essentially uses equations 
(7) and (1) to make the estimation. OK estimates the local constant mean, then 
performs SK on the corresponding residuals, and only requires the stationary mean of 
the local search window (Goovaerts, 1997). 

2.3.3. Kriging with a Trend 

The kriging with a trend (KT) is normally called universal kriging (UK) that was 
proposed by Matheron (1969). It is an extension of OK by incorporating the local 
trend within the neighbourhood search widow as a smoothly varying function of the 
coordinates. UK estimates the trend components within each search neighbourhood 
window and then performs SK on the corresponding residuals.  

2.3.4. Block Kriging 

The block kriging (BK) is a generic name for estimation of average values of the 
primary variable over a segment, a surface, or a volume of any size or shape 
(Goovaerts, 1997). It is an extension of OK and estimates a block value instead of a 
point value by replacing the point-to-point covariance with the point-to-block 
covariance (Wackernagel, 2003). Essentially, BK is block OK and OK is “point” OK. 

2.3.5. Factorial Kriging 

The factorial kriging (FK) is designed to determine the origins of the value of a 
continuous attribute (Goovaerts, 1997). It models the experimental semivariogram as 
a linear combination of a few basic structure models to represent the different factors 
operating at different scales (e.g., local and regional scales). FK can decompose the 
kriging estimates into different components such as nugget, short-range, long-range, 
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and trend, and such components could be filtered in mapping if considered as noise. 
For example, the nugget component at sampled points could be filtered to remove 
discontinuities (peaks) at the sampled points, while the long-range component could 
be filtered to enhance the short-range variability of the attribute. FK assumes that 
noise and the underlying signal are additive and that the noise is homoscedastic. 
Given the nature of this method, it will not be further considered in this review. 

2.3.6. Dual Kriging 

The dual kriging (DuK) estimates the covariance values instead of data values to 
elucidate the filtering properties of kriging (Goovaerts, 1997). It also reduces the 
computational cost of kriging when used with a global search neighbourhood. It 
includes dual SK, dual OK, and dual FK. Given its restricted application, it will not be 
given further consideration in this review. 

2.3.7. Simple Kriging with Varying Local Means 

The SK with varying local means (SKlm) is an extension of SK by replacing the 
stationary mean with known varying means at each point that depend on the 
secondary information (Goovaerts, 1997). If the secondary variable is categorical, the 
primary local mean is the mean of the primary variable within a specific category of 
the secondary variable. If it is continuous, the primary local mean is a function of the 
secondary variable or can be acquired by discretising it into classes. SK is then used 
to produce the weights and estimates. 

2.3.8. Kriging with an External Drift 

The kriging with an external drift (KED) is similar to UK but incorporates the local 
trend within the neighbourhood search window as a linear function of a smoothly 
varying secondary variable instead of as a function of the spatial coordinates 
(Goovaerts, 1997). The trend of the primary variable must be linearly related to that of 
the secondary variable. This secondary variable should vary smoothly in space and is 
measured at all primary data points and at all points being estimated. KED is also 
called UK or external drift kriging in Pebesma (2004). KED could be extended to 
include both secondary variables and coordinate information if gstat is used (personal 
communication with Edzer Pebesma, at useR! 2008, Dortmund, Germany, August 13, 
2008). 

2.3.9. Cokriging 

Unlike SK within strata (see section 2.3.15), SKlm and KED that require the 
availability of information of secondary variables at all points being estimated, 
cokriging (CK) is proposed to use non-exhaustive secondary information and to 



Spatial Interpolation Methods 

 17

explicitly account for the spatial cross correlation between the primary and secondary 
variables (Goovaerts, 1997). Equation (8) can be extended to incorporate the 
additional information to derive equation (11), as follows: 

[ ] ∑∑∑
= ==

−+−=−
v j

j

jjj

n

j

n

i
ijijiii

n

i
i xxZxxZxZ

2 1
11

1
101 )]()([)()()(ˆ

11

1

1

1
μλμλμ           (11) 

where μ1 is a known stationary mean of the primary variable, )(
11 ixZ  is the data of the 

primary variable at point i1, )(
11 ixμ  is the mean of samples within the search window, 

n1 is the number of sampled points within the search window for point x0 used to 
make the estimation, (

1i
λ ) is the weight selected to minimise the estimation variance 

of the primary variable, nv is the number of secondary variables, nj is the number of jth 
secondary variable within the search widow, 

jiλ  is the weight assigned to ij
th point of 

jth secondary variable, )(
jij xZ  is the data at ij

th point of jth secondary variable, and 

)(
jij xμ is the mean of samples of jth secondary variable within the search widow.  

The cross-semivariance (or cross-variogram) can be estimated from data using the 
following equation: 
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where n is the number of pairs of sample points of variable z1 and z2 at point xi, x1+h 
separated by distance h (Burrough and McDonnell, 1998). Cross-semivariances can 
increase or decrease with h depending on the correlation between the two variables 
and the Cauchy-Schwartz relation must be checked to ensure a positive CK estimation 
variance in all circumstances (Burrough and McDonnell, 1998). 

2.3.10. Simple Cokriging 
Replacing )(

11 ixμ  with the stationary mean (μ1) of the primary variable, and replacing 

)(
jij xμ with the stationary mean μj of the secondary variables in equation (11) will 

give the linear estimator of simple cokriging (SCK) (Goovaerts, 1997) as:  
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If the primary and secondary variables are not correlated, the SCK estimator reverts to 
the SK estimator (Goovaerts, 1997). The weights generally decrease as the 
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corresponding data points get farther away from the point of interest. When the point 
of interest is beyond the correlation range of both the primary and secondary data, the 
SCK estimator then reverts to the stationary mean of the primary variable. If all 
secondary variables are recorded at every sampled point, it is referred to as “equally 
sampled” or “isotopic”. If the primary variable is undersampled relative to the 
secondary variables, it is referred to as “undersampled” or “heterotopic”. When the 
secondary variables are linearly dependent, one should be kept and other correlated 
variables discarded, and multivariate analysis such as principal component analysis 
(PCA) may be used to eliminate such dependency. The sill of the cross semivariogram 
model is the correlation coefficient between the primary and secondary variables. 

2.3.11. Ordinary Cokriging 

The ordinary cokriging (OCK) is similar to SCK (Goovaerts, 1997). The only 
difference is that OCK estimates the value of the primary variable using equation (13) 
by replacing μ1 and μj with a local mean μ1(x0) and μj(x0) (i.e., the mean of samples 

within the search window), and forcing 1
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OCK amounts to estimating the local primary and secondary means and applying the 
SCK estimator (equation 13) with these estimates of the means rather than the 
stationary means (Goovaerts, 1997).  

Related primary information, such as constraint intervals (indicating the intervals of 
the primary variable) or categorical information (indicating occurrence of a particular 
facies), is referred to as soft information rather than secondary information because 
they relate directly to the primary variable (Goovaerts, 1997). OCK can also be used 
for interval-type soft information by replacing )(

jij xz  with indicator data. However, 

all soft information is treated as secondary information in this review. 

2.3.12. Standardised Ordinary Cokriging 

The OCK has two drawbacks by calling for the secondary data weights to sum to zero 
(Goovaerts, 1997). The first is that some of the weights are negative, thus increasing 
the risk of getting unacceptable estimates. The second is that most of the weights tend 
to be small, thus reducing the influence of the secondary data. To overcome these 
drawbacks, the standardised OCK (SOCK) estimator was introduced, which calls for 
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knowledge of the stationary means of both the primary and secondary variables. 
These means can be estimated from the sample means. SOCK still accounts for the 
local departures from the overall means as OCK.  

2.3.13. Principal Component Kriging 

The principal component kriging (PCK) applies PCA to a few (nv) secondary 
variables to generate nv orthogonal or uncorrelated PCA components (Goovaerts, 
1997). OK is then applied to each of the components to get principal component 
estimates. The final estimate is then generated as a linear combination of the principal 
component estimates weighted by their loadings and plus the local attribute mean.  

2.3.14. Colocated Cokriging 

The colocated cokriging (CCK) is a variant of CK (Goovaerts, 1997). It only uses the 
single secondary datum of any given type closest to the point being estimated. Like 
CK, CCK can also have several variants like simple colocated cokriging (SCCK), and 
ordinary colocated cokriging (OCCK). CCK is proposed to overcome problems, such 
as screening effects of samples of the secondary variables close to or colocated with 
the point of interest. This situation arises when the sample densities of the secondary 
variables are much higher than that of the primary variable. OCCK is also the 
preferred method for categorical soft information.  

2.3.15. Kriging within Strata 

The kriging within strata (KWS) is characterised by 1) stratifying the study region 
based on secondary information, 2) calculating experimental semivariogram within 
each stratum, and 3) estimating the primary variable within each specific stratum 
using the semivariogram model and the closest primary data samples within the 
stratum (Goovaerts, 1997). It may include simple KWS (SKWS), ordinary KWS 
(OKWS), simple cokriging within strata (SCKWS) and ordinary cokriging within 
strata (OCKWS).  

2.3.16. Multivariate Factorial Kriging 

The multivariate factorial kriging (MFK), also called factorial kriging analysis, 
analyses the relationships between variables at the spatial scales detected and 
modelled from experimental semivariograms (Goovaerts, 1997). Given that, it will 
not be further considered in this review. 

2.3.17. Indicator Kriging 

The indicator kriging (IK) and all its extensions below are proposed mainly to assess 
the uncertainty about the unknown rather than to estimate the unknown (Goovaerts, 
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1997), so these methods will only be briefly described here. IK may also be applied to 
the spatial generalisation for categorical data (Jerosch et al., 2006). Besides IK, the 
multiGaussian (MG) approach and local uncertainty models (e.g., conditional 
variance, local entropy, and interquartile range) are also proposed for this purpose, 
and are not described in this review. 

In IK, the original data are transformed from a continuous to a new scale and different 
indicator coding types are proposed depending on the nature of the local information 
available (Goovaerts, 1997). For hard data (a precise measurement of the primary 
variable) a binary indicator scale is resulted by scoring it as 1 if it is less than or equal 
to a specified threshold, and 0 otherwise. This is the most commonly used indicator 
coding type. Indicator coding is also used for other data types like constraint intervals, 
soft categorical data, soft continuous data and colocated sources of information. IK 
may include simple IK (SIK) and ordinary IK (OIK). They are similar to SK and OK, 
but vary by only replacing the values of continuous attribute with the indicator values. 
IK is exact as SK and OK. Like OK, IK can also be extended to kriging over a block, 
and like SK, SIK can be extended to SIK with local prior means. IK can also be 
combined with KED by applying the KED framework for each indicator, resulting in 
IK with external drift (IKED) (Haberlandt, 2007).  

2.3.18. Indicator Cokriging 

SIK and OIK ignore indicator data at the thresholds that are different from that being 
estimated (Goovaerts, 1997). Information from all thresholds can be accounted for 
using the cokriging method introduced in section 2.3.9. The primary and secondary 
variables in CK are replaced by indicator values at each threshold, resulting in 
indicator cokriging (ICK). In short, ICK is the sum of IK over all thresholds. 

IK and ICK estimators become identical when all indicator data are intrinsically 
correlated (i.e., all indicator direct- and cross- semivariogram models are proportional 
to a common semivariogram, and all vectors of hard indicator data are equally 
sampled; Goovaerts, 1997). The resultant estimator is called median indicator kriging 
(MIK) because the common model is usually inferred from the indicator 
semivariogram at the median threshold value.  

When hard and soft indicator data are used as the primary and secondary variables in 
ICK, the resultant estimator is called soft cokriging, in which the soft information 
needs no longer to be exhaustive (Goovaerts, 1997). The demanding computation of 
soft cokriging can be alleviated by a Markov-Bayes algorithm. When soft data are 
much more numerous than hard data, only the datum closest to the point being 
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estimated (e.g., the colocated soft indicator datum) is retained in the ICK, resulting 
colocated ICK.  

2.3.19. Probability Kriging 

The probability kriging (PK) is the cokriging of the indicator data using the rank-
order transform as a secondary variable (Goovaerts, 1997). The indicator data are 
values of 0 or 1. The rank-order transform is the standardised ranks that are the rank-
order of each datum of the primary variable divided by sample size. Replacing the 
values of the primary variable in CK by indicator data and using the rank-order 
transform as the secondary variable in CK would result in a PK estimator. 

2.3.20. Disjunctive Kriging 

The disjunctive kriging (DK) is used for the primary variable that the conventional 
transformations (e.g., logarithm or square-rooting) cannot yield a near-normal 
distribution. In DK, the primary variable is transformed into Hermite polynomials, 
which are a series of normally distributed sub-variables that are kriged separately. The 
resultant estimates are summed to give the DK estimator (Gaus et al., 2003). DK also 
provides an estimate of the conditional probability that a random variable located at a 
point, or averaged over a block in two-dimensional space, exceeds certain thresholds. 
DK produces a nonlinear unbiased, distribution-dependent estimator with the 
characteristics minimum variance of errors (Burrough and McDonnell, 1998; Yates et 
al., 1986). The theory of disjunctive kriging and examples of its practical application 
are described by Armstrong and Matheron (1986a; 1986b), Rendu (1980) and Oliver 
et al. (1996). 

Methods for uncertainty assessment at unsampled points will not be discussed any 
further in this review. For those interested in application of these approaches, further 
information could be found in the following studies. Lark and Ferguson (2004) 
compared IK and DK for mapping risk of soil nutrient deficiency or excess. Emery 
(2006) used ordinary multiGaussian kriging, ordinary DK, ordinary IK and 
conditional expectation for assessing the risk of deficiency or excess of a soil property 
at unsampled locations. Carr and Deng (1987) compared DK and IK using earthquake 
ground motion data.  

2.3.21. Model-based Kriging 

Model-based kriging (MBK) was developed by Diggle et al. (1998). This method 
embeds the linear kriging methodology within a more general distributional 
framework that is characteristically similar to the structure of a generalized linear 
model. A Bayesian approach is adopted and implemented via the Markov chain 
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Monte Carlo (MCMC) methodology, to predict arbitrary functionals of an unobserved 
latent process whilst making a proper allowance for the uncertainty in the estimation 
of any model parameters (Moyeed and Papritz, 2002). This method was further 
illustrated in Diggle and Ribeiro Jr. (2007). Given its heavy computational demanding 
(Moyeed and Papritz, 2002), this method will not be considered further in this review 
as it is not applicable to large dataset such as those for the Australian marine region. 

2.3.22. Simulation  

The MG and indicator-based algorithms provide only models of local uncertainty in 
that each conditional cumulative distribution function is specific to one single location 
(Goovaerts, 1997). Stochastic simulation models the spatial uncertainty about 
attribute values at several locations taken together by generating multiple realisations 
of the joint distribution of attribute values in space. It is heavy computationally 
demanding and its interpolated surface should be very similar to OK interpolation if 
enough realisations are used (>500) (Burrough and McDonnell, 1998). Given the 
nature of this approach, it will not be described further and detailed information of 
stochastic simulation can be found in Goovaerts (1997). There is also brief description 
of procedures of simulation in Burrough and McDonnell (1998). 

2.4. Combined Procedures 
A range of combined procedures could be developed to generate the estimation based 
on the above spatial interpolation methods and other statistical approaches. Here, 
eight methods identified in the literature are listed. Within each method there may be 
several sub-methods or types.  

2.4.1. Classification Combined with Other Spatial Interpolation Methods 

A significant explanatory secondary categorical variable, such as vegetation classes or 
geomorphic units, can be used as prior information to stratify the data into subsets for 
each category. Other spatial interpolation methods are then applied within each 
stratum, resulting in various combinations, such as:  

1) “SK within classes” (Stein et al., 1988; Voltz and Webster, 1990) or “stratified 
SK” (StSK) (Brus et al., 1996);  

2) “Stratified OK” (OK with classes, i.e., StOK) (Hernandez-Stefanoni and 
Ponce-Hernandez, 2006; Stein et al., 1988);  

3) “Stratified OCK” (StOCK) (Hernandez-Stefanoni and Ponce-Hernandez, 
2006);  
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4) “Stratified TPS” (StTPS) (Brus et al., 1996); 

5) “Stratified NN” (StNN) (Brus et al., 1996); 

6) “Stratified moving average” (a special case of IDW with limited number of 
neighbourhoods and a zero distance power) (StIDW-0) (Brus et al., 1996);  

7) “Stratified global mean (GM)” (StGM) (Brus et al., 1996); and  

8) “Stratified IDW” (StIDW) (Hernandez-Stefanoni and Ponce-Hernandez, 2006) 
and “stratified IDS” (StIDS) (Brus et al., 1996). 

Separate variograms could be derived for each class if there are enough samples 
(Stein et al., 1988), otherwise a single pooled variogram within classes can be used if 
separate variograms require too many samples (Voltz and Webster, 1990) or, in other 
words, if the sample size is too small. The first three methods in the list above are 
variants of KWS.  

2.4.2. Trend Surface Analysis Combined with Kriging 

The TSA is fitted to the data, which describes the large scale (global) spatial 
variability; the residuals from the TSA are then modelled using OK and OCK; and the 
final estimates are the sum of the kriged residuals and the estimated trend surface 
(Wang et al., 2005). 

2.4.3. Lapse Rate Combined with Kriging 

Wang et al. (1996), cited by (Li et al., 2005), proposed LR combined with kriging. 
The data are corrected using LR to the same altitude. OK is then applied to the 
corrected data that no longer contain any altitude information. Lastly, the estimations 
are the sum of the kriged values and the corrections of altitude effect by using LR of 
air temperature. 

2.4.4. Linear Mixed Model 

An approach, similar to TSA combined with kriging, was proposed in the context of 
the linear mixed model (LMM) (Gilmour et al., 2004; Welham et al., 2004). The 
global trend that accounts for changes with coordinates was fitted as the fixed effects; 
local trend that is the difference between the observed values was estimated through a 
covariance structure; and both global and local trends were estimated using the 
residual maximum likelihood method (REML) in a single analysis. The resultant 
surface is the sum of global trend and local trend.  
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2.4.5. Regression Tree Combined with Kriging  

Regression tree (CART) is fitted to the data to produce a tree with optimal tree size; 
the residuals produced by the tree regression analysis are then analysed using OK 
(Balk and Elder, 2000; Bishop and McBratney, 2001; Erxleben et al., 2002) or OCK 
(Balk and Elder, 2000; Erxleben et al., 2002). The final estimations are the sum of the 
CART estimates and the kriged residuals. 

2.4.6. Residual Maximum Likelihood-empirical Best Linear Unbiased 
Predictor 

Residual maximum likelihood-empirical best linear unbiased predictor (REML-
EBLUP) is implemented in the context of the linear mixed model that comprises fixed 
effects (such as a trend model), random effects (i.e., spatially dependent random 
variables) and an independent random variable (Lark et al., 2006). It consists of these 
three computations to generate the EBLUP estimate for an unsampled point. The first 
is the estimation of a variance structure (e.g., a variogram) for some specified linear 
mixed model using REML. This is then used to obtain estimates of the model 
coefficients for the fixed and random effects that we need to form the EBLUP. The 
estimated variance model is then used to compute the EBLUP estimates or predictions 
at unsampled points. The predicted value consists of two components, namely: 1) a 
prediction based on the polynomial trend model or external drift variables and 2) a 
kriging estimate of the spatially dependent random effect. 

2.4.7. Regression Kriging 

Several types of regression kriging (RK) have been proposed (Hengl, 2007; Minasny 
and McBratney, 2007; Odeh et al., 1994; Odeh et al., 1995): 

1) RK-A, type A (Odeh et al., 1994), called “kriging combined with (linear) 
regression” (Ahmed and De Marsily, 1987; Knotters et al., 1995), performs 
regression and then kriges the regressed values; 

2) RK-B, type B (Odeh et al., 1994), called “kriging with a guess field” (Ahmed and 
De Marsily, 1987), involves regression, then kriges the predicted values and the 
residuals separately, and sums both values to generate the final prediction;  

3) RK-C, type C (Odeh et al., 1995), variously called “regression with residual 
simple kriging” (Asli and Marcotte, 1995), “detrended kriging” (Jef et al., 2006; 
Nalder and Wein, 1998), “modified residual kriging and cokriging” (Erxleben et 
al., 2002; Martínez-Cob, 1996) or “residual kriging” (Mardikis et al., 2005), is 
similar to type B, but only kriges the residuals and then sums the predicted values 
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and the kriged values to obtain the final prediction;  

4) RK-D, is similar to RK-C, but uses generalised least squares (GLS) instead. GLS 
is fitted to the data, the GLS residuals are interpolated using SK, and then the final 
estimates are the sum of the kriged residuals and the GLS surface (Hengl, 2007);  

5) RK-E is a mixture of RK-C and RK-A. The key feature is that points with either 
measured or predicted values (values estimated using RK-C, i.e., the sum of the 
predicted values by regression and the kriged values from residuals) are treated as 
equivalent in the interpolation process (Li et al., 2007); and 

6) RK-F, a further type of RK, is similar to RK-C, but uses generalised additive 
model (GAM) instead. GAM is fitted to the data, the GAM residuals are 
interpolated using OK, and then the final estimates are the sum of the kriged 
residuals and the GAM surface (Bishop and McBratney, 2001). 

In RK, the regression can have any form, such as generalised linear models (GLM) 
(Gotway and Stroup, 1997; Pebesma et al., 2005) or non-linear models, which 
provides a possibility to include more ancillary variables (Li et al., 2007). A generic 
framework for RK was proposed by Hengl et al. (2004) 

2.4.8. Gradient Plus Inverse Distance Squared 

Gradient plus inverse distance squared (GIDS) is proposed by Nalder and Wein 
(1998). It performs LM using spatial coordinates and elevation data as secondary 
information and then the developed model is used to predict the primary variable. The 
predicted values are then used to derive the estimation for the unsampled points using 
IDS. 

Several other methods have been proposed by various authors and applied to 
environmental data in addition to those described above. These methods are not 
described in this review because they are either relatively straightforward or have 
been rarely used. These methods include: 

1) LM combined with IDW (Jarvis and Stuart, 2001; Jef et al., 2006; Vicente-
Serrano et al., 2003);  

2) LM combined with partial TPS (Jarvis and Stuart, 2001) and with splines 
(Vicente-Serrano et al., 2003);  

3) Kriging combined with Q-mode factor analysis (Juang and Lee, 1998);  
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4) IK combined with PCK, resulting in “indicator principal component kriging” 
(Suro-Perez and Journel, 1991); 

5)  Density estimation (Silverman, 1981); 

6)  A “moving window regression residual cokriging” (MWRCK) (Sun, 1998); 

7) LSZ or “Bayesian multivariate interpolation with data missing-by-design” 
(Sun, 1998); 

8) A radial basis function network (RBFN, a variant of neural network) and an 
improved RBFN by Lin and Chen (2004);  

9) General regression neural network (GRNN) (Kanevski et al., 2008); and 

10) “A consistently well behaved method of interpolation” (Stineman, 1980). 

Geographically weighted regression (GWR) (Fotheringham et al., 2002) has immense 
potential for the spatial interpolation of the environmental data. The advantages of 
this method are that it: 1) is based on the traditional regression framework, and 2) 
incorporates local spatial relationships into the framework in an intuitive and explicit 
manner (Fotheringham et al., 2002). Although no reference on the application of this 
method has been acquired in this review, many unpublished applications are available 
online. 

The field of geostatistics reached its peak around 1996-1998 in terms of the annual 
total citation of articles, but the total number of annually published articles is still 
growing (Zhou et al., 2007). The development of hybrid methods is certainly not over 
and the methods will continue to evolve both from theoretical and practical aspects 
(Hengl, 2007). Five developments are anticipated in the near future in geostatistics 
according to Hengl (2007): 1) design of more sophisticated prediction models, 2) 
derivation of local regression-kriging, 3) development of user-friendly sampling 
optimisation packages, 4) intelligent data analysis reports generation, and 5) 
introduction of multi-temporal, multi-variate prediction models.  

In short, the spatial interpolation methods are developed for specific types of 
environmental data or even specific environmental variable. They each have their 
specific assumptions, data requirements and properties and will be compared in the 
next chapter. 
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Chapter 3: Features and Theoretical Comparison of 
Spatial Interpolation Methods 
The spatial interpolation methods described in Chapter 2 were developed either for 
specific disciplines or even for specific variables according to the nature of the data. 
Therefore, each of the methods has its specific assumptions and features. In this 
chapter, a few important features, such as global versus local, exact versus inexact, 
deterministic versus stochastic, and gradual versus abrupt, are discussed. The features 
of each of the individual methods are then summarised and compared. 

3.1. Features of Spatial Interpolation Methods 

3.1.1. Global versus Local 

The spatial interpolation methods can be classified as either global or local methods. 
Global methods use all available data of the region of interest to derive the estimation 
and capture the general trend. Local methods operate within a small area around the 
point being estimated (i.e., use samples within a search window) and capture the local 
or short-range variation (Burrough and McDonnell, 1998). 

3.1.2. Exactness 

The spatial interpolation methods can be either “exact’ or “inexact”. A method that 
generates an estimate that is the same as the observed value at a sampled point is 
called an exact method. All other methods are inexact, which means that their 
predicted value at the point differs from its known value (Burrough and McDonnell, 
1998). 

3.1.3. Deterministic versus Stochastic  

Stochastic methods incorporate the concept of randomness and provide both 
estimations (i.e., deterministic part) and associated errors (stochastic part, i.e., 
uncertainties represented as estimated variances). All other methods are deterministic 
because they do not incorporate such errors and only produce the estimations. In other 
words, deterministic methods have no assessment of errors with the predicted values, 
while stochastic methods provide an assessment of the errors associated with the 
predicted values.  

3.1.4. Gradual versus Abrupt 

Some methods (e.g., NN) produce a discrete and abrupt surface, while some other 
methods (e.g., distance-based weighted averages) produce a smooth and gradual 
surface. The smoothness depends on the criteria used in the selection of the weight 
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values in relation to the distance. Criteria include simple distance relations (e.g., 
IDW), minimisation of variance (e.g., SK, OK and CK), and minimisation of 
curvature and enforcement of smoothness (e.g., splines).  

3.1.5. Linear Kriging versus Nonlinear Kriging 

Kriging methods are often classified as linear and nonlinear (Moyeed and Papritz, 
2002; Papritz and Moyeed, 1999). There are no formal definitions for linear and 
nonlinear kriging. Linear kriging can be defined as kriging methods that derive the 
estimation using observed values by assuming a normal distribution of the samples. 
Non-linear kriging are those methods that derive predictions based on the transformed 
values of the observed data. Linear kriging may include SK, OK and UK. Nonlinear 
kriging methods consist of DK, IK, multiGaussian kriging, lognormal OK and MBK. 
Nonlinear kriging methods have two major advantages over linear kriging, namely: 1) 
they were developed to model the conditional distribution of the primary variable 
(i.e., to give an estimate of its probability distribution conditional on the available 
information); and 2) their estimations should theoretically be more precise when a 
Gaussian random process is inappropriate to model the observations. 

3.1.6. Univariate versus Multivariate 

The spatial interpolation methods that only use samples of the primary variable in 
deriving the estimation are termed “univariate” methods. Methods that also use the 
secondary variables are often referred to as “multivariate” methods. In geostatistics, 
the methods accounting for a single variable, such as SK, OK, BK, are univariate, and 
methods accounting for secondary information, like SCK, OCK, KED, are 
multivariate. Although UK is classified as a method accounting for a single variable 
by Goovaerts (1997), it is considered as a multivariate method in this review because 
it uses coordinate information. TPS can also be extended to include a multivariate 
spline function (Burrough and McDonnell, 1998; Hutchinson, 1995; Mitasova et al., 
1995).  

It should be noted that in the gstat package in R, multivariate kriging means that there 
are several variables that can be either primary variables with or without secondary 
variables, while multiple kriging implies that several primary variables are kriged 
separately at the same time (personal communication with Edzer Pebesma, 25 and 26 
August 2008). 

3.1.7. Irregular versus Regular System 

The estimation can be interpolated based on either the regular grid system or irregular 
(e.g., triangular) network. The advantages and disadvantages of an irregular network 
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are discussed in Burrough and McDonnell (1998). Most of the methods in this review 
are based on the point data in a regular grid system that has several advantages 
(Burrough and McDonnell, 1998). 

3.2. Comparison of the Features 
The features of the spatial interpolation methods vary from one method to another, so 
it is difficult to summarise the features of all methods in one table. In this section, the 
non-geostatistical methods are first compared with the common features of 
geostatistical methods. The features of geostatistical methods are then summarised 
and compared amongst themselves.  

3.2.1. Non-geostatistical Methods and Kriging Methods 

The features of non-geostatistical methods and geostatistics are summarised in Table 
3.1, which is mainly based on the Burrough et al. (1998). For geostatistical methods, 
their common features are summarised for a comparison with non-geostatistical 
methods.  

The NN is a special case of IDW with p being zero and n equal to 1 (Brus et al., 1996; 
Laslett et al., 1987). NN is best for qualitative data when other spatial interpolation 
methods are not applicable (Burrough and McDonnell, 1998; Hartkamp et al., 1999). 
The disadvantages are that the estimated values at each point are based on just one 
sample point, there is no error estimate, and other nearby sampled points are ignored 
(Webster and Oliver, 2001). 

The TIN is a simple, local and deterministic method (Webster and Oliver, 2001). It is 
better than NN, although each estimate still depends on only three samples. The 
estimated surface is continuous but with abrupt changes in gradient at the margins of 
the triangles (Webster and Oliver, 2001).  

The NaN is local and deterministic (Webster and Oliver, 2001). It is somewhat better 
than NN and TIN because its estimated surface is continuous and smooth except at the 
data points where its derivative is discontinuous. However, such abrupt changes can 
be smoothed (Sibson, 1981). At local maxima and minima in such data it can generate 
an artefact known as “Prussian helmets” (Sibson, 1981; Webster and Oliver, 2001).  

The IDW works well with regularly spaced data, but it is unable to account for 
clustering (Isaaks and Srivastava, 1989). 

The TSA is considered to be a stochastic method (Collins and Bolstad, 1996). 
However, in other publications it is described as a deterministic method with a local 
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stochastic component (Burrough and McDonnell, 1998). 

The classification method assumes that all spatial changes take place at boundaries, 
which are sharp instead of gradual (Burrough and McDonnell, 1998). 
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Table 3.1. Comparison of non-geostatistical spatial interpolation methods and kriging as a generic model for geostatistical methods (mainly modified 
from Burrough and McDonnell (1998). 

Method Assumption Univariable / 
Multivariable

Deterministic/ 
stochastic 

Local/ 
global 

Exact/ 
inexact 

Abrupt/ 
gradual 

Limitation of the procedure Computing 
load 

Output data 
structure 

Suitability 

Nearest 
neighbours 
(NN) 

Best local 
predictor is nearest 

data point 

Univariable Deterministic Local Exact Abrupt No error assessment, only 
one data point per polygon. 
Tessellation pattern depends 

on distribution of data. 

Small Polygons or 
gridded 
surface 

Nominal data from point 
observations 

Triangulation 
(TIN) 

Best local 
predictor is data 

points on the 
surrounding 

triangle 

Univariable Deterministic Local Exact Abrupt No error assessment. TIN 
pattern depends on 

distribution of data and there 
a few ways to form 

triangulation and no one is 
better than any other. 

Small Triangles or 
Gridded 
surface 

Quick interpolation from 
sparse data on regular or 

irregularly spaced samples. 

Natural 
neighbours 
(NaN) 

Best local 
predictor is data 

points in the 
surrounding 

polygons 

Univariable Deterministic Local Exact Gradual or 
abrupt 

No error assessment Small Gridded 
surface 

Quick interpolation from 
sparse data on regular or 

irregularly spaced samples. 

Inverse 
distance 
weighting 
(IDW) 

underlying surface 
is smooth 

Univariable Deterministic Local Inexact 
(but can 
be forced 

to be 
exact) 

Gradual No error assessment. Results 
depend on size of search 
window and choice of 

weighting parameter. Poor 
choice of window can give 
artefacts when used with 

high data densities such as 
digitised contours. 

Small Gridded 
surface, 
contours 

Quick interpolation from 
sparse data on regular grid 

or irregularly spaced 
samples. 

Regression 
models (LM) 

Samples are 
independent, 
normal and 

homogeneous in 
variance 

Univariable/ 
Multivariable

Stochastic Global Inexact Gradual if 
inputs 
have 

gradual 
variation

Results depend on the fit of 
the regression model and the 

quality and detail of the 
input data surfaces. Error 

assessment possible if input 
errors are known. 

Small Polygons or 
continuous, 

gridded 
surface 

Simple numerical modelling 
of expensive data when 
better methods are not 

available or budgets are 
limited 

Trend surface 
analysis 
(TSA) 

Phenomenological 
explanation of 
trend, normally 
distributed data 

Multivariable Stochastic Global Inexact Gradual Physical meaning of trend 
may be unclear. Outliers and 

edge effects may distort 
surface. Error assessment 
limited to goodness of fit. 

Small continuous, 
gridded 
surface 

Quick assessments and 
removal of spatial trend 
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Method Assumption Univariable / 
Multivariable

Deterministic/ 
stochastic 

Local/ 
global 

Exact/ 
inexact 

Abrupt/ 
gradual 

Limitation of the procedure Computing 
load 

Output data 
structure 

Suitability 

Splines & 
Local trend 
surfaces 
(LTS) 

Best local 
predictor is the 

nearest data point 
and data normality 

Multivariable Stochastic Local Inexact Gradual Results depend on span 
parameter and detail of the 

input data surfaces. 

Moderate continuous, 
gridded 
surface 

Quick interpolation from 
sparse data on regular grid 

or irregularly spaced 
samples. 

Classification 
(Cl) 

Homogeneity 
within boundaries 

Univariable Deterministic 
"soft" 

information 

Global Inexact Abrupt Delineation of areas and 
classes may be subjective. 
Error assessment limited to 

within-class standard 
deviations. 

Small Classified 
polygons 

Quick assessments when 
data are sparse Removing 

systematic differences 
before continuous 

interpolation from data 
points 

Regression 
tree (CART) 

Phenomenological 
explanation of 

variance 

Multivariable Stochastic Global Inexact ? ? Small Gridded 
surface 

 

Thin plat 
splines (TPS) 

Underlying 
surface is smooth 

everywhere 

Univariable/ 
Multivariable

Deterministic Local Exact Gradual Goodness of fit possible, but 
within the assumptions that 
the fitted surface is perfectly 

smooth. 

Small Gridded 
surface, 
contours 

Quick interpolation 
(univariate or multivariate) 
of digital elevation data and 
related attributes to create 
digital elevation models 
(DEM) from moderately 

detailed data 
Kriging* Interpolated 

surface is smooth. 
Statistical 

stationarity and 
the intrinsic 
hypothesis. 

Univariable/ 
Multivariable

Stochastic Local Exact Gradual Error assessment depends on 
variogram and distribution 
of data points and size of 

interpolated blocks. 
Requires care when 

modelling spatial correlation 
structures. 

Moderate Gridded 
surface 

When data are sufficient to 
compute variograms, kriging 
provides a good interpolator 
for sparse data. Binary and 

nominal data can be 
interpolated with Indicator 

kriging. Soft information can 
also be incorporated as 
trends or stratification. 

Multivariate data can be 
interpolated with co-kriging. 

* Of the kriging methods, BK is an inexact interpolator. 



Features and Theoretical Comparison of Spatial Interpolation Methods 

 33

Splines are deterministic with locally stochastic properties. Splines are piece-wise 
functions using a few points at a time. The interpolation predictions can be quickly 
calculated and predictions are very close to the values being interpolated, providing 
the measurement errors associated with the data are small (Burrough and McDonnell, 
1998; Mitasova et al., 1995). Splines retain small-scale features, but there are no 
direct estimates of the errors (Burrough and McDonnell, 1998). The application of 
splines and other nonparametric regression models to data on a grid is sometimes 
questionable because the dataset does not have the direct information needed for 
reliable prediction and the dataset yields no direct information on residual variance 
(Laslett, 1994).  

Exact splines may produce local artefacts of excessively high or low values. These 
artefacts can be removed using TPS, where an exact spline surface is replaced by a 
locally smoothed average (Burrough and McDonnell, 1998). TPS can also be 
extended to include multivariate spline function (Burrough and McDonnell, 1998; 
Hutchinson, 1995; Mitasova et al., 1995). TPS may provide a view of reality that is 
unrealistically smooth and thus generate misleading results (Burrough and 
McDonnell, 1998).  

Kriging has few advantages and also some drawbacks (Nalder and Wein, 1998). It 
provides the best linear unbiased estimate. It also provides a measure of the error or 
uncertainty at the unsampled points; and it is an exact method with an exception of 
BK. It does not produce edge-effects resulting from trying to force a polynomial to fit 
the data as with TSA (Collins and Bolstad, 1996). However, it assumes stationarity of 
data, which is usually not true, although this assumption can be relaxed with specific 
forms of kriging. Definition of the required variogram models is time consuming and 
somewhat subjective; and definition of neighbourhoods is also required which is 
difficult to do objectively. It also assumes that the data are isotropic. Data 
transformation may be needed for non-stationary data and anisotropy needs to be 
considered.  

Kriging also requires a large number of samples, at least 100, to produce a reliable 
estimation of variogram (Webster and Oliver, 1992). This requirement could be 
overcome by using the REML variogram because predictions based on REML 
variograms were generally more accurate than those from the conventional moment 
variograms with fewer than 100 samples (Kerry and Oliver, 2007). In such cases, a 
sample size of 50 appears adequate (Kerry and Oliver, 2007). 

Kriging variance is independent of the data values. Hence, it does not reflect the 
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uncertainty expected at a specific point. It is a ranking index of data geometry (and 
size) and is not a measure of the local spread of errors (Goovaerts, 1997). The error 
variance provided by kriging algorithms is also poorly correlated with actual 
estimation error. Therefore, in general, the kriging variance cannot be used alone as a 
measure of local uncertainty (Goovaerts, 1997). 

3.2.2. Geostatistical Methods 

The features of 16 geostatistical methods are summarised in Table 3.2 according to 
the findings in Goovaerts (1997) and other previous studies cited in Chapter 2. Some 
of the methods reviewed in Chapter 2 are excluded because either they are for 
uncertainty assessment, for categorical variables, or rarely used in practice. However, 
a few frequently used variants or sub-methods are included. Prior to the comparison 
and discussion of geostatistical methods, issues relevant to kriging weights and search 
neighbourhood windows are discussed.  
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Table 3.2. A comparison of geostatistical spatial interpolation methods. 
Geostatistical method Univariable/ 

Multivariable 
Stationary/ 
local mean 

Local 
trend 

Information 
of 

coordinates 

Secondary 
variable 

Point/ 
block 

estimation 

Exhaustive 
secondary 

information 

Stratification Orthogonalisation 
of secondary 
information 

Single or multiple 
samples in the 
search window 

Simple kriging (SK) Univariate stationary no no no point na no na multiple 
Ordinary kriging (OK) Univariate local no no no point na no na multiple 
Block kriging (BK) Univariate local no no no block na no na multiple 
Universal kriging (UK) Multivariate local yes yes no point yes no no multiple 
SK with varying local 
means (SKlm) Multivariate local no/yes* no yes point yes no no multiple 

Kriging with an external 
drift (KED) Multivariate local yes yes yes point yes no no multiple 

Simple cokriging (SCK) Multivariate stationary no no yes point no no no multiple 
Ordinary cokriging 
(OCK) Multivariate local no no yes point no no no multiple 

Standardised OCK 
(SOCK) Multivariate both# no no yes point no no no multiple 

Principal component 
kriging (PCK) Multivariate local no no yes point no no yes multiple 

Simple colocated 
cokriging (SCCK) Multivariate stationary no no yes point no no no single 

Ordinary colocated 
cokriging (OCCK) Multivariate local no no yes point no no no single 

Simple kriging within 
strata (SKWS) Multivariate 

within 
strata 

stationary 
no no no point na yes na multiple 

Ordinary kriging within 
strata (OKWS) Multivariate local no  no no point na yes na multiple 

Simple cokriging within 
strata (SCKWS) Multivariate 

within 
strata 

stationary 
no no yes point no yes no multiple 

Ordinary cokriging 
within strata (OCKWS) Multivariate local no no yes point no yes no multiple 

* The local trend is “no” if the secondary variable is categorical and “yes” if it is continuous. 

# Need the stationary means of both the primary and secondary variables. 
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Kriging Weights 
A number of factors affect kriging weights (Webster and Oliver, 2001). The value of 
the weight assigned to a sample increases as the distance to the estimated point or 
block decreases. The larger the nugget, the smaller the value of the weight of a sample 
that is nearest to the point or block estimated. The value of the weight of the nearest 
sample decreases but the weights of the more distant samples increase as the block 
size increases. Clustered samples carry less weight individually than isolated samples 
at the same distance. Samples can be screened by those lying between them and the 
target point. 

Goovaerts (1997) raised several issues in relation to kriging weights. Kriging weights 
depend only on the shape of the semivariogram (i.e., the relative nugget effect and 
anisotropy, correlation range), not on its global sill. Samples outside the correlation 
range may be assigned a non-zero weight, due to their contribution to the estimation 
of the trend component at points of interest. Samples may get negative weights when 
they are screened by a closer sample. Negative weights allow the kriging estimate to 
take values outside the range of the data, which is referred to as the non-convexity of 
the estimator and may yield unacceptable results such as negative estimates or 
estimated proportions larger than one. A larger nugget effect reduces the impact of 
distance of sample points to the point of interest and also reduces the screening effect. 
In the presence of a pure nugget effect, all weights are equal to 1/n and the kriging 
estimate then reverts to the arithmetic average of the data retained (i.e., moving 
average). 

There are a few ways to deal with the non-convexity problems (i.e., the kriging 
estimate takes values outside the range of the data due to negative weights; Goovaerts 
1997). The first is to force all weights to be positive. The next is to add to all the 
weights a constant (i.e., the absolute value of the largest negative weight), and then 
reset the weights to sum to one. The third is to reset any faulty estimate to the nearest 
bound (e.g., 0 if negative values are not acceptable, or 1 for excessive proportions). 
The last method is to impose constraints on the kriging estimates through the use of 
indicator constraint intervals.  

Search Neighbourhood Window 
Several aspects should be considered in selecting the search neighbourhood window 
(Goovaerts, 1997). The shape of the window is typically taken as a circle centred on 
the point being estimated. When the variation of the data is anisotropic, an ellipse 
with its major axis oriented along the direction of the maximum continuity should be 
used. If samples are clustered, the window should be split into equal angle sectors, but 
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quadrants should be avoided when data are grided and the estimation grid is aligned 
with the sampling grid. 

Although there are reasons for restricting the size of the window, one should avoid 
limiting a priori the maximum search distance to the correlation range of data 
(Goovaerts, 1997). In a sub-region where sample density is low, the search distance 
should be increased to retain enough data or simply retain n closest samples 
regardless their distance. The semivariogram distance γ(x0-xi), instead of Euclidian 
distance |x0-xi|, should be used for data selection so that data are preferentially 
selected along the direction of maximum continuity. 

In addition to size and orientation of the window, the minimum and maximum 
number of samples need to be specified for estimation (Goovaerts, 1997). The 
minimum needs to be equal at least to the number of constraints on kriging weights 
and should be larger where data are clustered. The maximum should be limited to 
depict local features of the attribute and should be larger to depict long-range 
structures. Isaaks and Srivastava (1989) have also discussed the search strategy. 

Simple Kriging versus Ordinary Kriging 
OK is usually preferred to SK because: 1) it requires neither knowledge nor 
stationarity of the mean over the region of interest; 2) OK allows one to account for 
local variation of the mean by limiting the domain of the stationarity of the mean to 
the local neighbourhood centred on the point being estimated, but SK requires the 
stationary mean of the whole region of interest; 3) OK estimates better follow the data 
fluctuations than SK estimates; and 4) OK estimates changes proportionally with the 
local data means (Goovaerts, 1997). Hence the OK with local search neighbourhood 
already accounts for trends (varying mean) in the values of the attribute (Goovaerts, 
1997). However, OK requires a stationary mean of the local search window. This 
requirement of stationarity of OK and OCK has been relaxed to allow them to krige 
non-stationary data by using RK (Knotters et al., 1995), universal CK (Stein et al., 
1988), and KED and UK (Verfaillie et al., 2006) if the statistical properties of the 
primary variable are not constant within the search window. 

Ordinary Kriging versus Universal Kriging 
OK and UK yield similar interpolating estimates, but quite different extrapolating 
estimates, depending on the trend fitted to the last few data values (Goovaerts, 1997). 
OK with local search neighbourhoods is preferred in interpolations because it 
provides results similar to UK estimates, but is easier to implement. In extrapolations, 
UK should be used whenever the attribute suggests a particular function form for 
extrapolating a trend fitted from the sampled data. UK may yield aberrant 
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extrapolation estimates (e.g., negative estimates depending on the trend fitted to the 
last few values; Goovaerts, 1997). 

Kriging with External Drift versus Simple Kriging with Varying Local Means 
Like UK, KED amounts to evaluating the regression coefficients from samples within 
each search window, estimating the trend component at all primary data points and at 
the point being estimated, and then performing SK on the corresponding residuals 
(Goovaerts, 1997). The KED estimator is similar to SKlm. KED and SKlm differ in 
their definition of the trend component. The trend coefficients are derived once and 
independently of the kriging system in SKlm, but are implicitly estimated through the 
kriging system within each search window in KED (Goovaerts, 1997). 

Simple Kriging versus Simple Cokriging 
The SK and SCK are compared according to Goovaerts (1997). SCK is theoretically 
better than SK because its error variance is always smaller than or equal to the error 
variance of SK. However, SCK is much more demanding than SK because of the 
additional modelling and computational requirements. SCK and SK produce identical 
estimates when: 1) the primary and secondary variables are uncorrelated; or 2) the 
primary and secondary variables are measured at the same locations and the cross 
covariance is proportional to the primary autocovariance. SK and SCK estimates are 
essentially the same in the isotopic case and the difference between estimates 
increases as the samples of secondary variables become more numerous than those of 
the primary variable. Cokriging improves over kriging only when the secondary 
variables are better sampled than the primary variable, or more accurately reflect the 
real world. CK is most effective when the covariate is highly correlated with the 
primary variable (Hartkamp et al., 1999). 

Goovaerts (1997) discussed further the effects of a secondary variable. The 
contribution of the secondary variable to the SCK estimate should depend on: 1) 
correlation between the primary and secondary variables, 2) its pattern of spatial 
continuity, 3) the spatial configuration of the primary and secondary sample points, 
and 4) the sample density of each variable. The relative influence of the secondary 
variable can be measured by the ratio of the sums of absolute values of the secondary 
and primary data weights. The ratio increases exponentially as: 1) the correlation 
coefficient increases, 2) the relative nugget effect on the primary semivariogram 
model increases, 3) the secondary data points get further away from the primary data 
point and get closer to the point of interest, and 4) the sample size of the secondary 
variable increases. The secondary variable may screen the influence of the colocated 
primary data when both the primary and secondary variables are highly correlated and 
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the secondary variable varies more continuously in space than the primary variable. 

Ordinary Kriging versus Ordinary Cokriging 
If both the primary and secondary variables are all measured at the same points then 
OCK will not produce estimates that are different from OK (Burrough and 
McDonnell, 1998). 

Colocated Cokriging versus Cokriging 
The CCK is valuable alternative to CK when the sample density is high for the 
secondary variables (Goovaerts, 1997). It avoids instability caused by highly 
redundant secondary data and is computationally fast. However, it requires: 1) the 
samples of secondary variables at all points being estimated; and 2) knowledge of the 
stationary means of the primary and secondary variables. CK and the computationally 
fast CCK give similar results.  

Colocated Cokriging versus Kriging with External Drift 
The CCK and KED use exhaustively sampled secondary information, but they differ 
in many aspects (Goovaerts, 1997). In CCK the colocated datum directly influences 
the primary cokriging estimate and CCK accounts for the global linear correlation 
between primary and secondary variables as captured by the semivariogram. In KED 
the secondary information provides information only about the primary trend of the 
point of interest and tends to influence strongly the estimate especially when the 
estimated slope of the local trend model is large. The influence of the residual 
covariance required by KED is not straightforward. Modelling direct and cross 
semivariograms in CCK is straightforward although computationally demanding.  

Block Kriging versus Ordinary Kriging 
The BK estimates vary more smoothly in space than OK estimates; and the 
smoothness increases with increasing size of the block (Goovaerts, 1997). BK 
smoothes out short-range variation of the attribute and can erase the artefact 
discontinuities near sample points. As such, BK is not an exact method. If the 
objective is to map large-scale features of an attribute, BK is preferred to point 
kriging (Goovaerts, 1997). 

Limitations of Principal Component Kriging  
Although PCK remains computationally less demanding than cokriging, it suffers 
from three major limitations (Goovaerts, 1997). The first is that only those data points 
where all variables are jointly measured can be considered. The next is that the cross 
correlation between principal components at h ≠ 0 may not be negligible. The third is 
that the modelling of the principal components’ semivariogram cannot capitalise on 
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available ancillary information about the original variables. 

Features of Regression Kriging 
The RK is mathematically equivalent to the spatial interpolation method variously 
called UK and KED (Hengl et al., 2007). RK combines a regression of the primary 
variable on secondary variables with SK of the regression residuals, but UK and KED 
use secondary variables directly to solve the kriging weights. The advantage of RK is 
its ability to extend the method to a broader range of regression techniques such as 
GAM, and CART (Bishop and McBratney, 2001), and GLM (Gotway and Stroup, 
1997; Pebesma, 2005) and to allow separate interpretation of the two interpolated 
components (Hengl et al., 2007).  

Knotters et al. (1995) discussed the advantages and disadvantages of RK in 
comparison with CK. Three advantages were identified: 1) in RK, the relationship 
between the primary variable and the secondary variable can have any form and is 
physically interpretable, but CK does not use physically interpretable relationships 
and assumes a linear relationship; 2) for RK, only a model of the spatial correlation of 
the primary variable is required, but in CK with m variables, m generalised covariance 
functions and m(m-1)/2 generalised cross-covariance functions need to be estimated; 
and 3) RK is thus less computationally demanding and therefore is more efficient than 
CK. RK also considers the local trend within the search window by kriging non-
stationary data. A disadvantage of RK is that assumptions are required about the 
errors of the values predicted by the regression model, namely: they are unsystematic, 
not autocorrelated and not correlated with the variable. Knotters et al. (1995) 
suggested that by adding variables to the regression model, thereby explaining a 
greater part of the variance, the assumption of the absence of autocorrelation of the 
errors will be satisfied more. We would also argue that if a GLM is used, such 
assumptions could be avoided. Several limitations of RK were also discussed by 
Hengl (2007), including data quality, sample size, reliable estimation of the 
covariance/correlation structure, extrapolation outside the sampled feature space, 
secondary variables with uneven relationships to the primary variable, and 
intermediate-scale modelling. 

Splines versus Regression Kriging-D 
It was claimed that regularised splines with tension and RK-D would yield very 
similar results; and the major difference is that the splines require a user specified 
smoothing parameter, while the smoothing is determined objectively in the kriging 
(Hengl, 2007). 
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Residual Maximum Likelihood-empirical Best Linear Unbiased Predictor versus 
Regression Kriging 
There is a bias at long lags when the variogram of the residuals were estimated using 
RK-C (Lark et al., 2006). Such bias may be reduced but not removed when using RK-
D. However, the bias in the variance for REML is very small and negligible by 
comparison with the bias for RK-C (Lark et al., 2006). Such bias will have two 
consequences: 1) underestimation of the overall variation of the random variable and 
2) incorrect estimation of spatial structure (Lark et al., 2006). Therefore, REML-
EBLUP was recommended over various RK types unless datasets are very large 
because REML-EBLUP is applicable only when the sample size is small (<200) 
(Minasny and McBratney, 2007). 

Model-Based Kriging versus Other Kriging Methods 
OK, lognormal OK, DK, and IK ignore the additional uncertainty caused by inferring 
the covariance structure from the data when they make predictions; but MBK does not 
suffer from this obvious disadvantage because it incorporates parameter uncertainty in 
a natural way into the predictions (Moyeed and Papritz, 2002). However, MBK is 
computationally demanding and not suitable for large datasets (> 300 samples) 
(Moyeed and Papritz, 2002). This limitation may be overcome as the computing 
power increases. 

Simulation 
Conditional bias (i.e., an underestimation of large values and an overestimation of 
small values) dramatically affects the evaluation of the extent of an attribute. 
Simulated maps could correct for the conditional bias of estimated maps if they are 
applied (Goovaerts, 1997). 
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Chapter 4: Assessment Measures 
In this chapter, performance assessment measures are reviewed. These measurements 
are for assessing the performance of: 1) the variogram models, 2) the spatial 
interpolation methods, and 3) the spatial interpolation methods for datasets with 
different sample sizes. Two new measurements are proposed for assessing the 
performance of the spatial interpolation methods for different variables. The 
measurements reviewed are those commonly used, so the list of the measurements is 
intentionally non-exhaustive. 

4.1. Performance of Variogram Models 
As discussed in Chapter 2, there are a number of variogram models that could be 
employed; and different variogram models may lead to different interpolations. Thus 
selecting an appropriate model to capture the features of the data is critical. The ratio 
of the square sum of deviance to the total sum of squares provides information on 
which model best fits the semivariance. If the model fits the semivariogram well, the 
ratio will be small, otherwise the ratio will approach 1 (Hartkamp et al., 1999). Cross-
validation techniques could be used to choose the best semivariogram model from the 
candidates (such as spherical, exponential, and Gaussian). Cross-validation techniques 
could also be used to select an optimal search radius which minimises the kriging 
variance. The best-fit variogram model could also be determined by selecting the 
model having the lowest AIC (Erxleben et al., 2002). 

The spatial structure of the data affects the performance of geostatistical interpolators. 
To test for anisotropy, the semivariogram needs to be determined in different 
directions. To ensure isotropy, the semivariogram model should be unaffected by the 
direction in which h is taken (Hartkamp et al., 1999). The variogram may show 
directional changes in different spatial scales, different semivariances, and different 
forms (Webster and Oliver, 2001).  

The structural variance, which determines the variance due to spatial dependence 
explained by the variogram model, is calculated as the difference of total variance and 
nugget variance divided by the total variance (Hernandez-Stefanoni and Ponce-
Hernandez, 2006). The relative “noisy” nature of the spatial variability is represented 
by the values of the nugget variance (Hernandez-Stefanoni and Ponce-Hernandez, 
2006). The nugget variance may result from 1) the sampling error, and 2) the spatial 
dependence that may exist at finer scales than the minimum separation distance 
between samples (Hernandez-Stefanoni and Ponce-Hernandez, 2006).  

The ratio of nugget to sill reflects the spatial heterogeneity of the data (Robertson et 



Assessment Measures 

 43

al., 1997; Wang et al., 2005). If the ratio is big, the spatial variation is mainly resulted 
from the random process and the measurement error is high, and if it is small, the 
variation is mainly due to the spatial structure. 

4.2. Performance of Spatial Interpolation Methods 
With the wide and increasing applications of the spatial interpolation methods, there 
is also a growing concern about their accuracy and precision (Hartkamp et al., 1999). 
As any other statistical modelling techniques, the spatial interpolation methods also 
produce a certain degree of errors associated with the estimation. 

The statistics of the differences (absolute and squared) between the measured and 
predicted values at sampled points are often used as an indicator of the performance 
of an inexact method (for definition of exactness see section 3.1.2) (Burrough and 
McDonnell, 1998). Several error measurements have been proposed (Table 4.1). 
Commonly used error measurements include: mean error (ME), mean absolute error 
(MAE), mean squared error (MSE) and root mean squared error (RMSE). ME is used 
for determining the degree of bias in the estimates, often referred to as the bias (Isaaks 
and Srivastava, 1989) but it should be used cautiously as an indicator of accuracy 
because negative and positive estimates counteract each other and resultant ME tends 
to be lower than actual error (Nalder and Wein, 1998). RMSE provides a measure of 
the error size, but it is sensitive to outliers as it places a lot of weight on large errors 
(Hernandez-Stefanoni and Ponce-Hernandez, 2006). MSE suffers the same drawbacks 
as RMSE. Whereas MAE is less sensitive to extreme values (Willmott, 1982; 
Vicente-Serrano et al., 2003) and indicates the extent to which the estimate can be in 
error (Nalder and Wein, 1998). MAE and RMSE are argued to be similar measures, 
and they give estimates of the average error, but they do not provide information 
about the relative size of the average difference and the nature of differences 
comprising them (Willmott, 1982). Of course, we can also use cross-validation in 
together with these measurements to assess the performance of both exact and inexact 
methods. 
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Table 4.1. Measurements used to assess the performance of the spatial interpolation 
methods (Ahmed and De Marsily, 1987; Burrough and McDonnell, 1998; Hu et al., 
2004; Isaaks and Srivastava, 1989; Vicente-Serrano et al., 2003). 
Measurement Definition* 
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* n: number of observations or samples; o: observed value; p: predicted or estimated values; os: 
standardised observed value; ps: standardised predicted value; s: standard deviation of the 
estimation error; o : mean of observed values; o′i: oi- o ; and p′i: pi- o . 

Hu et al. discussed several criteria for using error measurements to judge the 
performance of the spatial interpolation methods (Hu et al., 2004). If ME, MSE, and 
MSE2 are closer to zero, and RMSE is smaller, the better the model. ASE and RSME 
should be the same or close. If ASE>RSME, then the method overestimates the 
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primary variable. If ASE<RSME, then the method underestimates the primary 
variable. RMSSE should be close to 1. If RMSSE>1, the method underestimates the 
primary variable, and if RMSSE<1, it overestimates the primary variable.  

MSRE, also called studentised residuals for regression diagnostics in statistics 
(Venables and Ripley 2002) or standardised mean square error (SMSE; Martínez, 
1996) , should approach one (Ahmed and De Marsily, 1987). 

The index of agreement, or Willmott’s D, scales with the magnitude of the variable, 
retains mean information, and does not amplify outliers (Willmott, 1982). If D is 
closer 1, the more accurate the method is considered to be (Vicente-Serrano et al., 
2003).  

The closer RVar is to 1, the better the ability of a spatial interpolation method to 
preserve the observed variance (Haberlandt, 2007).  

Greenwood, Neeteson and Draycott (1985) cited by Vicente-Serrano et al. (2003) 
proposed an accuracy measurement known as model efficiency (EF). The closer EF to 
1, the better the method. If EF is close to zero, it indicates that the mean value of the 
observations is more reliable than the estimations and the model has significant 
limitations (Vicente-Serrano et al., 2003).  

RMSE and MAE are argued to be among the best overall measures of model 
performance as they summarise the mean difference in the units of observed and 
predicted values (Willmott, 1982).  

The correlation between the observed values and predicted values, usually described 
by Pearson’s product-moment correlation coefficient or coefficient of determination, 
is also a commonly used performance measurement. However, it is argued that it 
should not be used as a model performance measure because it is insufficient and 
often misleading (Willmott, 1981; Willmott, 1982). 

4.3. Performance of Spatial Interpolation Method for Datasets 
with Different Sample Sizes 
The performance of a spatial interpolation method for two different sizes of datasets 
was compared in terms of the nugget effects of the variogram (Hartkamp et al., 1999). 
As an indication of measurement accuracy, if the nugget of the large dataset is larger 
than the nugget of the small dataset, then the large dataset is probably less accurate, 
providing that 1) for each variogram, the number of lags and the lag distance are kept 
constant; and 2) the model type fitted through the variogram is also the same for each 
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dataset. Thus the nugget difference is independent of model, number of lags, and lag 
distance. The relative nugget difference (RND) can be calculated as:  
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−− −
=                 (14) 

4.4. Performance of Spatial Interpolation Methods for Different 
Variables 
All of the measures listed in section 4.2 have been developed to assess the 
performance of the spatial interpolation methods for individual primary variables. The 
magnitude of these measurements depends on the unit of the primary variable. In 
some cases, it is necessary to compare the performance of the spatial interpolation 
methods among different studies, in which the primary variables are in different 
measurement units or scales. It is impossible to use the scale-dependent measurements 
for such comparisons, so new types of measurements are needed to compare results 
for variables with different measurement units. 

Here we propose two new measurements that remove the effect of measurement units 
and they are not sensitive to the changes in measurement unit or scale. The first is 
relative mean absolute error (RMAE) that is given as: 
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RMAE can be understood as a relative error in predictions. And the second is relative 
root mean square error (RRMSE), as follows: 
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However, in most published studies, the information required to calculate RMAE and 
RRMSE is not available. To overcome this problem, RMAE and RRMSE are 
modified by using MAE/mean (i.e., mean of the validation dataset) and RMSE/mean 
instead. The second one is also called standardised RMSE (Haberlandt, 2007). The 
mean of the validation dataset is, however, often not reported in publications. They 
are further modified by using the mean of the dataset for estimation that is more 
frequently available in publications. These new measurements provide effective tools 
to compare the results of various variables from different studies and from various 
disciplines.  
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Chapter 5: Comparison of Spatial Interpolation 
Methods Applied to Various Disciplines 
The spatial interpolation methods have been applied to many disciplines such as 
mining engineering (Journel and Huijbregts, 1978) and environmental sciences 
(Burrough and McDonnell, 1998; Goovaerts, 1997; Webster and Oliver, 2001). On 
the basis of a bibliographic research (Zhou et al., 2007), it was found that the top 10 
fields that employ geostatistics are: 1) geosciences, 2) water resources, 3) 
environmental sciences, 4) agriculture or soil sciences, 5) mathematics, 6) statistics 
and probability, 7) ecology, 8) civil engineering, 9) petroleum engineering and 10) 
limnology. Our focus in this review is on environmental sciences, including: water 
resources, meteorology, ecology, agriculture and soil science, and marine 
environmental science. Examples of the application of different spatial interpolation 
methods in each of these disciplines are provided in this chapter. The focus is further 
narrowed down on comparative studies that compared the performance of the spatial 
interpolation methods. 

Sample density, sample size and spatial distribution of samples as discussed in the 
next chapter are important in assessing the performance of the spatial interpolation 
methods. However, such information is often not clearly stated or unavailable in 
publications. In this review, such information is provided whenever it is available in 
the references, and information on the area of region studied, resolution, sampling 
strategy or experimental design is also provided. The spatial interpolation methods 
compared, sampling design, sample size, area of region interested, and results are 
summarised for each of 51 comparative studies, namely: 16 studies in meteorology 
and water resources, one study in ecology, 25 studies in agriculture and soil sciences, 
four studies in marine environmental science and five in other disciplines (Appendix 
A). 

5.1. Comparison by Studies 
The 51 comparative studies reviewed above are summarised in Table 5.1. The spatial 
interpolation methods compared are listed and the results are briefly discussed. The 
frequency of each spatial interpolation method compared in these 51 studies is 
summarised in Table 5.2. Given that the times of recommendation of a spatial 
interpolation method in Table 5.2 depend on the methods compared, it should be 
assessed in together with all spatial interpolation methods compared (Table 5.1). 

These 51 comparative studies illustrate the following major characteristics:  
1. The spatial interpolation methods have been applied widely in environmental 



Comparison of Spatial Interpolation Methods Applied to Various Disciplines 

 48

sciences, with about 62 various methods including combined methods employed; 
2. Different studies have compared a suite of different methods, which makes it 

difficult to draw general conclusions. However, by numbers, OK, IDW including 
IDS and OCK are the most commonly compared methods (Table 5.2); 

3. In general, kriging methods perform better than non-geostatistical methods, with 
only a few exceptions; 

4. RK, KED and OCK frequently performed better than other methods, and IDS TPS 
and LM occasionally outperformed other methods; 

5. GIDS and other highlighted methods in Table 5.2 are worthy of attention because 
of their good performance; and 

6. Stratification may improve the estimation. 
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Table 5.1. Summary of the 51 reviewed comparative studies.  
No Reference Discipline Methods compared Result 
1 Hartkamp et al., 1999 IDW, TPS & OCK No difference, but TPS preferred. 
2 Erxleben et al., 2002 IDW, OK, RK-C, OCK, CART with OK & CART with OCK CART with OK and CART with OCK more 

accurate. 
3 Martínez-Cob, 1996 OK, OCK & RK-C OCK more accurate. 
4 Vicente-Serrano et al., 2003 TSA, LM, NN, IDW, splines, SK, OK, BK, OK, UK, OCK, LM with 

IDS & splines with LM Kriging and LM more accurate. 

5 Haberlandt, 2007 NN, IDS, OK, OIK, KED & IKED KED the best. 
6 Collins and Bolstad, 1996 IDS, OIDW, splines, LM, TSA, LR, kriging & CK LM the best. 
7 Jarvis and Stuart, 2001 LM-IDW, TSA, RK-C & partial TPS with secondary variables Partial TPS with secondary variables the 

best. 
8 Jef et al., 2006 RK-C, IDW (with distance power 4) & LM with IDW RK-C the best. 
9 Goovaerts, 2000 SKlm, KED, OCCK, LM, NN, IDS & OK SKlm the best. 
10 Nalder and Wein, 1998 GIDS, IDS, NN, CK, OK, RK-C & UK GIDS preferred. 
11 Mardikis et al., 2005 GIDS, IDS, OK & RK-C GIDS the best. 
12 Naoum and Tsanis, 2004 Splines, IDW, NN, LM & kriging Kriging preferred. 
13 (Lin and Chen, 2004 RBFN, improved RBFN & OK Improved RBFN the best. 
14 Sun, 1998 MWRCK, CK & LSZ LSZ the best. 
15 Li et al., 2005 IDS, OK, OCK & OK combined with LR OK combined with LR the best. 
16 Hosseini et al., 1993 

Meteorology and Water 
resources 

OK, UK, TSA, IDW & AK OK preferred. 
17 Hernandez-Stefanoni and Ponce-

Hernandez, 2006 
Ecology OK, OCK, IDS, StOK, StOCK, StIDW & Cl StOK the best. 

18 Schloeder et al., 2001 OK, IDW & TPS OK and IDW better. 
19 Wang et al., 2005 

Agriculture and soil science 
TSA-OK & TSA-OCK TSA-OCK better. 

20 Voltz and Webster, 1990  SK, StSK, Cl & cubic spline StSK the best. 
21 Brus et al., 1996  Cl, GM, IDS, OK, NN, IDW-0, TPS & their combination with soil 

strata StOK the best. 

22 Van Kuilenburg et al., 1982  NN, IDS & OK OK preferred. 
23 Goovaerts, 1997  OCK, SCK, SOCK & OCCK OCK and SOCK better. 
24 Goovaerts, 1997  KED & SKlm Similar 
25 Goovaerts, 1997  OIK & OICK Similar 
26 Hu et al., 2004  SK, OK, lognormal kriging, UK, DK & IDW UK the best. 
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No Reference Discipline Methods compared Result 
27 Moyeed and Papritz, 2002 OK, lognormal OK, DK, IK & MBK Similar 
28 Laslett et al., 1987 

Agriculture and soil science 
TPS, OK, global means and medians, NN, IDW-0, IDS, AK, NaN & 

TSA TPS and OK better. 

29 Laslett and McBratney, 1990  NN, TPS, AK, SK? & REML UK REML UK the best. 
30 Laslett, 1994  Cubic splines & SK SK better. 
31 Knotters et al., 1995  OK, OCK & RK-A RK-A the best. 
32 Bishop and McBratney, 2001  GAM, LM, CART, OK, KED, RK-F & RK-C KED the best. 
33 Odeh et al., 1994  LM, OK, UK, OCK, RK-A, and RK-B RK the best. 
34 Odeh et al., 1995  LM, OK, UK, OCK, RK-A, RK-B & RK-C RK-C the best. 
35 Meul and Van Meirvenne, 2003  OK, UK, SKlm & OCK UK + OCK the best. 
36 Minasny and McBratney, 2007  REML-EBLUP, OK & RK-C RK-C recommended. 
37 Li et al., 2007  OK, OCK and RK-E RK-E better. 
38 Bourennane et al., 2000  KED & LM KED better. 
39 Ahmed and De Marsily, 1987  OCK, KED, RK-A & RK-B OCK and RK-A preferred. 
40 Wu et al., 2006  OK & OCK OCK better. 
41 Gotway et al., 1996  OK & IDW OK better. 
42 Kravchenko and Bullock, 1999  OK, lognormal OK & IDW Lognormal OK better. 
43 ICES, 2005 OK & KED KED better. 
44 Verfaillie et al., 2006 OK, KED & LM KED the best. 
45 Rivoirard and Wieland, 2001 

Marine environmental 
science 

KED & OK KED better. 
46 Ruddick, 2006  OK, OCK, IDW, NN & T2R Similar. 
47 Boufassa and Armstrong, 1989 Other fields OK, lognormal OK, SK, lognormal SK, disjunctive OK & disjunctive 

SK SK and OK recommended. 

48 Isaaks and Srivastava, 1989  OK,  IDS, TIN & NN OK the best. 
49 Zimmerman et al., 1999  OK, UK & IDS OK preferred. 
50 Weber and Englund, 1992  OK, SK, lognormal OK, rank OK, global mean, IDW, TSA & 

Projected Slope IDS better. 

51 Puente and Bras, 1986  UK, DK & local mean estimator UK better. 
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Table 5.2. Frequency of the spatial interpolation methods compared and the number 
of times the method was recommended in the 51 reviewed comparative studies. 
Methods with 100% rate of recommendation are highlighted.  

Method Frequency Recommendations Method Frequency Recommendations 
OK 37 8 disjunctive OK 1 0 
IDW 18 1 disjunctive SK 1 0 
OCK 14 4 GAM 1 0 
LM 13 2 IK 1 0 
IDS 12 1 IKED 1 0 
NN 11 0 improved RBFN 1 1 
KED 9 6 local mean 1 0 
RK-C 9 3 lognormal SK 1 0 
UK 8 2 LR 1 0 
SK 7 2 LSZ 1 1 
TSA 7 0 MWRCK 1 0 
Splines 6 0 NaN 1 0 
TPS 6 3 OICK 1 0 
CK 4 0 OK combined with LR 1 1 
lognormal OK 4 1 Projected Slope 1 0 
RK-A 4 2 RBFN 1 0 
AK 3 0 REML UK 1 1 
Cl 3 0 REML-EBLUP 1 0 
DK 3 0 RK-E 1 1 
GM 3 0 RK-F 1 0 
kriging 3 2 SOCK 1 1 
RK-B 3 0 StIDS 1 0 
SKlm 3 1 StIDW 1 0 
BK 2 0 StOCK- 1 0 
GIDS 2 2 StSK 1 1 
OCCK 2 0 StTPS 1 0 
OIK 2 0 T2R 1 0 
StOK 2 2 TIN 1 0 
CART with 
OCK 

1 1 TSA-OCK 1 1 

CART 1 0 UK+OCK 1 1 
CART with OK 1 1    

 

5.2. Comparison by Variables 
Of the 51 comparative studies from the various disciplines contained in this review, 
17 were selected for a comparative analysis. The criteria for the selection are that the 
following information should be reported: 1) the mean and CV of the primary variable 
for either the estimation dataset or validation dataset, 2) the sample size for the 
estimation and validation datasets, 3) the area of the region studied, and 4) appropriate 
accuracy measurements of the spatial interpolation methods (i.e., MAE and/or RMSE 
or MSE). Of course, the spatial interpolation methods need to be named properly, 
appropriately referenced, or clearly described. The information has been summarised 
in Appendix B. In the 17 studies, there were 33 methods and their variants and 77 



Comparison of Spatial Interpolation Methods Applied to Various Disciplines 

 52

cases (i.e., variables). For some methods, the method and its variants have to be 
grouped into one method. Taking IDW as example, some studies clearly stated the 
power of distance, but in others no such information was provided, so IDW and its 
variants are treated as a single method. However, information on their variants is 
provided in the appendix for those interested.  

In this section, the frequency and accuracy of the spatial interpolation methods are 
discussed. The performance of various methods is then further compared in relation to 
sampling density, variation in the data, and sampling design in the next chapter, based 
on the information provided by the 17 selected studies. 

5.2.1. Frequency of the Spatial Interpolation Methods Compared 

The frequency with which the individual spatial interpolation method was compared 
varies considerably between methods in the 17 comparative studies (Fig. 5.1). The 
spatial interpolation methods can be divided into four groups in terms of their 
frequency. The first group contains the most frequently compared methods with a 
frequency > 30 which are OK, IDW, IDS and TPS. The high frequency of IDW and 
TPS was mainly because their variants were all counted individually, thus increased 
the number of occurrences of these two methods (see Appendix B). The next group 
contains frequently compared methods with a frequency between 20 and 30 which are 
two methods, OCK and RK-C. The third group includes GIDS, IDW-0, LM, TSA and 
UK that were less frequently compared (with a frequency between 8 and 15). The last 
group contains the remaining methods that were occasionally compared (with a 
frequency < 8).  
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Figure 5.1. The frequency of 33 spatial interpolation methods compared in the 17 
reviewed comparative studies.  

5.2.2. Performance of the Spatial Interpolation Methods Compared 

The performance of the spatial interpolation methods compared exhibits dramatic 
variation in terms of RMAE and RRMSE (Figs. 5.2 and 5.3). The RMAE values of 
some methods such as DK, KED, LM, are missing because the studies reviewed did 
not report this information. Of the four most frequently compared methods, OK is the 
most accurate. In the second group, RK-C performed better than OCK and both of 
these methods are more accurate than the four most frequently compared methods in 
group 1. Likewise, GIDS performed better than other less frequently compared 
methods in group 3 and is also more accurate than all methods in group 1 and 2. For 
the occasionally used methods (group 4), the results are not reliable due the small 
number of times of application. In general, RK-C, OCK, KED and GIDS are the best 
performing (i.e. the most accurate) methods.  
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However, these conclusions are only based on the results from 77 cases in the 17 
comparative studies. Other methods might display similar features, but were 
unfortunately not compared in this review due to the lack of relevant information for 
appropriate comparison between different variables. Moreover, some comparative 
studies may have been missed in this review because only 51 comparative studies are 
assessed but there are 2,866 publications identified by the Institute for Scientific 
Information between 1967 to 2005 in geostatistics (Zhou et al., 2007). Nonetheless, 
the most influential comparative studies are believed to have been included in this 
review. 

 
Figure 5.2. The accuracy of 33 spatial interpolation methods compared in the 17 
comparative studies in terms of RMAE(%).  
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Figure 5.3. The accuracy of 33 spatial interpolation methods compared in the 17 
comparative studies in terms of RRMSE(%). 
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5.3. Complicating and Confounding Factors 
Several complicating and confounding factors were encountered in this review that 
may have some bearing on the outcomes. Information about the study region, 
experimental design and primary variable were missing at times. The measurements 
of the performance of the spatial interpolation methods varied between studies. 
Occasionally the methods used for interpolation were not clearly or adequately 
described or referenced. For example, some studies mentioned the use of kriging or 
cokriging. This is not sufficient because there are many different kriging methods and 
more than one cokriging method. All these factors make it difficult to compare the 
performance of the spatial interpolation methods using results from the published 
studies, consequently preventing any possible generalisation of the observed patterns. 
Only 5 out of 16 studies in meteorology and water resources, and 12 of 25 studies in 
soil science provided appropriate information for possible comparison between 
different variables and studies. All of the studies reviewed in the other disciplines 
failed to report relevant statistics for further comparative research between different 
variables.  

Here we would recommend that future studies should report relevant information 
clearly in their publications, including: the area of region studied; experimental and 
sampling design, particularly the sample size of datasets for estimation and validation; 
summary statistics of the primary variable for both estimation and validation datasets; 
and appropriate references or descriptions of the spatial interpolation methods used. 
The measurements should include at least MAE or MSE for comparing the results of 
different variables. Correlation coefficient has been used in many studies as a 
measurement of the performance of the spatial interpolation methods. However, as 
discussed in section 4.2, it is often misleading and it should be either avoided or 
extreme care should be taken in using it. 

In summary, the spatial interpolation methods have been applied in many disciplines. 
Although some methods perform better than others, there is no consistent pattern in 
the performance observed and thus no definite conclusion could be drawn on which 
method is the best or most appropriate. It is clear that some methods are only 
applicable to a certain types of data. The performance of a spatial interpolation 
method depends not only on the features of the method itself, but also on other factors 
such as the nature and quality of the data. These factors are discussed in the next 
chapter. It was even argued that improvements in prediction do not rely on more 
sophisticated methods, but rather on gathering more useful and high quality data 
(Minasny and McBratney, 2007). 
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Chapter 6: Factors Affecting the Performance of 
Spatial Interpolation Methods 
In this chapter, several factors that affect the performance of the spatial interpolation 
methods are discussed. The impacts of sampling density, variation in the data, 
sampling design and stratification on the estimation of the spatial interpolation 
methods are quantified using data from 77 cases in the 17 comparative studies 
(Appendix B). The variability, sampling density, detectability and other properties of 
some common environmental variables have been summarised by Hengl (2007). 

6.1. Sampling Design and Sample Spatial Distribution  
6.1.1. Data Density 

Data density plays a significant role in the performance of the spatial interpolation 
methods. The following sections discuss the effects of data density on the 
performance of the spatial interpolation methods. 

High Density 
When data density is high, most methods produce similar results (Burrough and 
McDonnell, 1998). It was found that kriging does not show significantly greater 
improvement in prediction than simpler methods, such as IDS and NN for high-
density networks (i.e., 13 rain gauges over a 35 km2 region) (Dirks et al., 1998). Bregt 
(1992), cited in (Brus et al., 1996), compared local mean, global mean, IDW and 
kriging at several grid densities ranging from 8 to 200 samples per km2 for the depth 
to the pyritic layer and found no statistically significant differences between these 
methods at any density. Little difference was also found in the performance of OK, 
UK, UK with a linear drift, IDS and TSA for a intensively sampled region, however 
the interpolated surfaces were very different, resulting a preference for OK (Hosseini 
et al., 1993). 

Using datasets of regularly spaced and high density samples, Gotway et al. (1996) 
found that the use of wider sample spacings greatly reduced the information in the 
resultant maps, although the sample density was still relatively high. 

Low Density 
When data are sparse, the underlying assumptions about the variation among samples 
may differ and the choice of a spatial interpolation method and parameters may 
become critical (Burrough and McDonnell, 1998; Hartkamp et al., 1999). The 
performance of the spatial interpolation methods is better when the sample density is 
greater (Englund et al., 1992; Isaaks and Srivastava, 1989; Stahl et al., 2006). 
However, it is claimed that the accuracy of regression modelling is not really 
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dependent on the sampling density, but rather on how well the data are sampled and 
how significant the correlation is between the primary variable and secondary 
variable(s) (Hengl, 2007). 

Sample size also affects the predicted error. It was found that with small samples, 
both UK and DK may dramatically over- or under-predict the predicted estimation 
error (Puente and Bras, 1986). This suggests that such predicted errors should not be 
used in an absolute sense, but as a relative measure of spatial estimation accuracy 
(Puente and Bras, 1986). In addition, it is found that the smoothing of the estimations 
(or map) increased at lower sample densities (Goovaerts, 1997). Issues relating to 
sample size are further discussed below. 

6.1.2. Sample Spatial Distribution 

Sample spatial distribution may affect the performance of the spatial interpolation 
methods. Splines performed much better when dense, regularly-spaced data were 
available, but not for irregular-spaced data (Collins and Bolstad, 1996). For 
irregularly-spaced data, the interpolated map was more variable where sample density 
was high than where it was low, which may result in structures that are pure artefacts 
of the data configuration; and one potential solution is to use simulation algorithms 
instead of kriging algorithms (Goovaerts, 1997). In contrast, sample patterns (i.e., 
random, cellular stratified, and regular grid) were found not to be significant in 
determining the performance of OK (Englund et al., 1992).  

Sample clustering affects the accuracy of the estimations and the effects may also 
depend on the spatial interpolation methods. High clustering reduced the correlation 
coefficient between the observed and estimated values for all four methods studied, 
OK, IDS, TIN and NN; reduced the MAE for OK, TIN and NN and increased the 
MAE for IDS; reduced the MSE for OK, NN, increased the MSE for IDS, while had 
little influence on TIN (Isaaks and Srivastava, 1989). SK outperformed cubic splines 
if the sample points were highly clustered (Laslett, 1994). In addition, sample 
clustering reduced the accuracy of all methods tested (i.e., OK, UK, IDS) 
(Zimmerman et al., 1999). 

While spatial scale, relative spatial density and distribution of samples can be 
determinant factors on the performance of the spatial interpolation methods (Collins 
and Bolstad, 1996), other relevant factors may also be important. For example, 
altitudinal and seasonal changes in data have been shown to play a significant role in 
predictions (Stahl et al., 2006). Where temporal scales are short, preliminary data 
analyses are especially important to determine the suitability of a particular spatial 
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interpolation method (Collins and Bolstad, 1996).  

6.1.3. Surface Type 

The surface type may play a significant role in the performance of the spatial 
interpolation methods. The variability in the surface tremendously increases the 
estimation error of the spatial interpolation methods; and estimation error consistently 
increases with an increasing rate as sample size decreases (MacEachren and 
Davidson, 1987). It has also been found that the performance of the spatial 
interpolation methods decreased with increasing variability of the surface 
(Zimmerman et al., 1999). Distinct and sharp spatial changes, like changing soil types 
across a region, may also cause problems with the estimations (Stein et al., 1988; 
Voltz and Webster, 1990). 

6.1.4. Sample Size, Sampling Design and Variogram  

Sample size and sampling configuration or design affect the reliability of the 
variogram. Generally, if the sample size is <50, the variograms derived are often 
erratic with little or no evident spatial structure (Webster and Oliver, 2001). The 
larger the sample size from which the variogram is computed, the more precisely is it 
estimated, although the precision is unknown in most instances (Brus and de Gruijter, 
1994; Webster and Oliver, 2001). If the sample size is too small, a noisy variogram 
would be generated (Burrough and McDonnell, 1998).  

Sample spacing must relate to the scale or scales of variation in a region, otherwise 
samples might be too sparsely spaced to identify correlation and could result in a pure 
nugget (Webster and Oliver, 2001). In such cases, the accuracy of the estimation 
could be reduced, as evidenced by the findings in Gotway et al. (1996) that the use of 
wider sampling spacings greatly reduced the information in the resultant maps. In 
addition, the smoothness of the estimations (or map) may increase with the relative 
nugget effect (Goovaerts, 1997). 

The spatial structure of the data may also affect the sample size and variogram. For 
data with a short range of variograms, intensive sampling with a large proportion of 
clustered points is required; and conversely for variables with a long range, fewer and 
more evenly spaced samples are required (Marchant and Lark, 2006). Variogram is 
also sensitive to sample clustering, particularly when it is combined with a 
proportional effect that is a form of heteroscedasticity where the local mean and local 
variance of data are related (Goovaerts, 1997). 

The number of pairs of samples at each lag is an important factor that needs to be 



Factors Affecting the Performance of Spatial Interpolation Methods 

 60

considered in modelling the variogram. A rule of thumb, as suggested by Burrough 
and McDonnell (1998) is that at least 50-100 samples are necessary to achieve a 
stable variogram. Alternatively, 30-50 pairs of samples with the lag distance less than 
half of the dimension of sampled region are required to achieve the same result 
(Journel and Huijbregts, 1978). For REML variograms, 50 samples may be adequate 
(Kerry and Oliver, 2007). Even a sample size of 28 has been suggested for kriging 
and CK in a case study (Chang et al., 1998). Another rule of thumb is that the product 
of the lag interval distance and the number of lags should not exceed half of the 
largest dimension of the region of interest (Verfaillie et al., 2006). In addition, 
Burrough and McDonnell (1998) discussed some issues regarding how to use 
variograms to optimise the sampling so as to improve the overall estimations. 

6.1.5. Sample Size and Spatial Interpolation Methods 

The impacts of sample size on the estimation depend on the spatial interpolation 
methods. On the basis of the comparison of SK (incorrectly termed OK in the study, 
but in fact it is SK as it used global mean, see page 14 in Hengl 2007) and RK-D on 
two datasets with sample sizes of 222 and 2251 respectively, it was found that RK-D 
performed better than SK in terms of the level of detail and accuracy, and RK-D (222) 
even performed better than SK (2251) (Hengl, 2007). It was suggested that future 
studies should focus more on the quality of sampling and on quality of auxiliary 
environmental predictors, rather than on making more observations (Hengl, 2007). 
Findings in this research imply that the effects of sample size on the estimations also 
depend on the spatial interpolation methods. In practice, we believe there is a 
threshold beyond which any increase in sample size does not improve much the 
accuracy of the estimations; otherwise sample size is still a critical factor. Other 
factors like variance inherited in the data also play a significant role (as discussed 
below). Care should be taken in applying this suggestion in future research.  

OK, OCK and RK-E were compared for several sample sizes that are 40, 70, 100, 130 
and 160 (Li et al., 2007). The results showed that as sample size increased, the 
performance of all three methods increased, with exceptions that OK and OCK were 
more accurate when sample size was 70 than when sample size was 100, RK-E was 
less accurate when sample was 160 than when sample size was 130, 100 and 70 in 
terms of RMSE. A similar result was observed by Wang et al. (2005) for TSA-OK 
and TSA-OCK.  

KED and LM were applied for sample densities of 40, 50, 75, 100, 125 and 150 
(Bourennane et al., 2000). The results revealed that despite a couple of anomalies, 
generally KED performed better when the sample size increased. The performance of 
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LM remained largely stable across all the sample sizes, which implies that 40 samples 
provided sufficient information or there is no useful information contained in the extra 
samples for linear model.  

The exceptions found in these studies imply that factors other than sample size may 
play a major role in determining the performance of a spatial interpolator. It is likely 
that in these cases, other properties of the data, such as spatial distribution and spatial 
structure, also influenced the performance. Notwithstanding these additional factors, 
the results of these studies into the effects of sample size suggest that its effect on the 
performance of the spatial interpolators depends largely on the features of the spatial 
interpolators themselves. Therefore, there is no definite conclusion on the relation of 
sample size and the performance of the spatial interpolators.  

6.2. Data Quality 
Five major factors relevant to the quality of the data are discussed in this section: 
distribution, isotropism and anisotropism, variance and range, accuracy, spatial 
correlation and other factors, and secondary variables. The sources of errors in spatial 
continuous data and factors affecting the reliability of spatial continuous data have 
been discussed in Burrough and McDonnell (1998). 

6.2.1. Distribution 

Data normality can influence the estimation of certain spatial interpolation methods 
that assume that the input data are distributed normally about their mean. Data 
normality can be tested using such as the Kolgorov-Smirnov test. If this assumption is 
not met, log transformation is commonly applied, thus resulting in lognormal methods 
(e.g., lognormal kriging; Cressie, 1993). The predictions are then transformed back to 
the original scale by a marginally unbiased back transformation proposed by Cressie 
(1993). However, back-transforming the estimated values can be problematic because 
exponentiation tends to exaggerate any interpolation-related error (Goovaerts, 1997). 
Other transformation functions may also be used to achieve the normality, resulting in 
trans-Gaussian kriging and multi-Gaussian kriging (Cressie, 1993). Rank and normal 
score transformation could also be applied prior to kriging (Rossi et al., 1992; Weber 
and Englund, 1992; Wu et al., 2006). In addition, the prediction error may also be 
used to determine whether the data should be transformed (Nalder and Wein, 1998). 

Wu et al. (2006) found that data transformation of highly skewed data generally 
improved the estimations by OK and OCK, especially for low concentrations of zinc, 
but the differences among normal score, log-normal and rank-order transformations 
were relatively small for OCK. Kravchenko and Bullock (1999) also found a similar 
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result that log-transformation generally improved the performance of OK. OK failed 
to model the conditional distribution of the marginally skewed data, while the 
nonlinear methods modelled the conditional distribution with similar success 
(Moyeed and Papritz, 2002). In contrast, log transformation was found to have little 
effect on the performance of OK (Moyeed and Papritz, 2002), or even reduce the 
accuracy of OK prediction (Weber and Englund, 1992). 

6.2.2. Isotropism and Anisotropism 

Isotropism of data is assumed for kriging methods. Data may display evidence of 
anisotropism, which should be considered in the modelling; otherwise biased 
estimation may result. However, in some cases, the anisotropism could be ignored to 
simplify model fitting and to maintain some consistency between the semivariograms 
in the multivariate model (Martínez-Cob, 1996). Conditions that allow for this are: 1) 
anisotropism is not evident with the specified search distance; 2) the secondary 
variable and primary variable are colocated, thus the influence of surrounding values 
would be small, so anisotropy would make little difference; and 3) the directions of 
maximum and minimum spatial variability for the different variables did not coincide. 
A similar result was also observed by Haberlandt (2007). It was found that the impact 
of the semivariogram on interpolation performance was not great because no 
significant differences could be found in prediction performance between isotropic 
and anisotropic variograms, although anisotropy was clearly present in the data. The 
best estimations were obtained using an automatic fitting procedure with isotropic 
variograms.  

6.2.3. Variance and Range 

The variance of the data affects the performance of the spatial interpolators and the 
resultant predictions. The performance of the spatial interpolation methods decreased 
rapidly when the coefficient of variation (CV) increased (Martínez-Cob, 1996; 
Schloeder et al., 2001).  

It was also found that the variance and range of the data can influence the 
performance and choice of a spatial interpolation technique after comparing eight 
spatial interpolators across two regions for two temperature variables (maximum and 
minimum) at three temporal scales (Collins and Bolstad, 1996). When temperature 
variances were large, the performance of all spatial interpolation techniques suffered, 
which means that increasing temperature variance negatively affected the 
performance of the spatial interpolators. As the temperature range increased, MAE 
values across all spatial interpolators also increased significantly. Temporal scale also 
affected the choice of a spatial interpolator as temperature range, temperature 
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variance, and temperature correlation with elevation, all changed with temporal scale 
(Collins and Bolstad, 1996).  

The chosen sampling scheme also affects the performance of the spatial interpolation 
methods through the variation in the data. Data should be collected at a range of 
separations to capture changes in the scales of the variation (Laslett, 1994). 

6.2.4. Accuracy 

Data accuracy is an important factor influencing the estimations of the spatial 
interpolation methods. Where the data are not representative of the surface being 
modelled, it may result in interpolation biases (Collins and Bolstad, 1996). Where 
sample elevations are not representative of regional elevations, care must be taken in 
comparing observed and interpolated data. Data noise can negatively affect the 
performance of the spatial interpolation methods (i.e., OK, UK and IDS in 
Zimmerman et al., 1999; NaN in Webster and Oliver, 2001). When data are too noisy, 
a pure nugget effect is produced in the variogram and the resultant interpolation is not 
sensible (Burrough and McDonnell, 1998). In contrast, sampling precision (i.e., zero 
error and high-level normally distributed error with a relative standard deviation of 
32% of the true value) was found not to be significant in determining the performance 
of a spatial interpolator, being OK in this case (Englund et al., 1992) 

Outliers affect the performance of the spatial interpolation methods and interact with 
sampling schemes. The variogram is sensitive to outliers and to extreme values 
(Webster and Oliver, 2001). Exceptionally large or small values will distort the 
average as evident from its definition (i.e., Equation 6 and 7). This effect depends on 
the location of the data point in the region and also on the spatial pattern of data 
(Webster and Oliver, 2001). All outliers must be regarded with suspicion and 
investigated. Outliers should be removed if they are believed to not belong to the 
population and strongly skewed distributions need to be transformed to approximate 
normal before conducting geostatistical analyses (Webster and Oliver, 2001). For 
example, removing outliers resulted in considerable improvement in the performance 
of the spatial interpolation methods, particularly when additional samples were 
included to allow estimation of short-range variation (Laslett and McBratney, 1990).  

6.2.5. Spatial Correlation and Other Factors 

Spatial correlation in samples is also essential for reliable estimation. The 
performance of OK, UK and IDS was negatively affected when the spatial correlation 
between samples decreased (Zimmerman et al., 1999). 
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The performance of different spatial interpolation methods changes with the variable 
estimated. It was found that the best method varied as a function of the region and the 
spatial scale required for estimation (Vicente-Serrano et al., 2003). Accuracy was 
lower in regions of great topographic complexity and regions with contrasting 
atmospheric or oceanic influences than in flatter regions or regions with constant 
atmospheric patterns. Even the performance of the same spatial interpolation method 
differed considerably with different variables, which resulted from the fact that data 
quality (in this case variance and range) changed with different variables. 

6.2.6. Secondary Variables 

The quality of secondary information is important for methods using auxiliary 
information. In these methods, secondary variables are assumed to be well and 
accurately sampled at a large number of locations in space and to give a good image 
of the underlying structure of the primary variable that means they need to be strongly 
correlated with the primary variables (Ahmed and De Marsily, 1987). 

6.3. Correlation between Primary and Secondary Variables 
Correlation between the primary and secondary variables is critical for the spatial 
interpolation methods that use auxiliary information. A number of studies have shown 
that the strength of the correlation between the primary and secondary variables can 
considerably affect the performance of CK and OCK (Ahmed and De Marsily, 1987; 
Goovaerts, 1997; Hernandez-Stefanoni and Ponce-Hernandez, 2006; Juang and Lee, 
1998). In addition, the performance of GAM, LM, CART, OK, KED, RK-C and RK-
F depended on the choice of secondary information (Bishop and McBratney, 2001). 
Conversely, Optimal IDW (OIDW) was found to be superior over kriging when data 
were isotropic and the primary variable was not correlated with secondary variable 
(Collins and Bolstad, 1996). Non-related or non-significant variables can be 
eliminated using a stepwise procedure in regression models. 

As the correlation increases, the information brought from the secondary variable on 
to the primary value increases (Goovaerts, 1997). The accuracy of regression 
modelling depends on how well the data are sampled and how significant the 
correlation is between the primary variable and secondary variable (Hengl, 2007). It 
has been shown that stronger correlations would result in more accurate estimations 
by CK and OCK (Goovaerts, 1997), by OCK over OK and RK-C (Martínez-Cob, 
1996) and by SKlm, KED and OCCK (Goovaerts, 2000). In another study, it was 
found that as correlations between elevation and temperature increased, MAE values 
dropped significantly for those spatial interpolation methods which used elevation as 
ancillary information (Collins and Bolstad, 1996). For a correlation >0.4, SCK and 
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OCK performed better than other methods (SK, OK, LM), and KED was almost as 
accurate as CK (Asli and Marcotte, 1995). When the correlation increased from 0.77 
to 0.99, the RMSE for CK was reduced by 48.3% (Wang et al., 2005). 

Erxleben et al.(2002) have suggested that Moran’s I should be used to test whether 
the primary variable and the secondary variable are spatially independent in terms of 
cross-correlation statistics. They concluded that only variables that were spatially 
cross-correlated with the primary variable should be included in OCK models.  

6.4. Other Issues  
The choice of semivariogram models may play a significant role in the resultant 
estimation. It was found that the first-order trend OK performed better with Gaussian 
semi-variogram model than with spherical and exponential models (Hu et al., 2004). 
Some practical guidelines are provided for selecting an appropriate variogram model 
by Hartkamp et al (1999), Goovaerts (2000) and Cressie (1993). Some relevant issues 
are also discussed in sections 4.1 and 6.1. 

The scale (i.e., grid size or resolution) can also affect the accuracy of the estimations. 
As the grid becomes coarser, the overall information content will progressively 
decrease (Hengl, 2007). The accuracy may increase as the grid size decreases, but 
computing time will also increase (Hengl, 2007).  

6.5. Interaction among Factors 
Interactions among different factors may also exist and should be considered in 
evaluating the performance of the spatial interpolation methods. All two-way 
interactions of method, surface type, sampling pattern, noise, and correlation and 
three way interactions of method-surface type-sampling patterns, method-surface 
type-noise, and surface type-sampling pattern-noise, were found to significantly affect 
the performance of the spatial interpolation methods (Zimmerman et al., 1999). 

6.6. Impacts of Data Quality 
The performance of various methods is analysed in relation to sampling density, 
variation in the data, sampling design and stratification based on information in the 17 
reviewed comparative studies in Appendix B. Two measurements proposed in section 
4.3 are used to assess the performance of the spatial interpolation methods for 
different variables. 

6.6.1. Sampling Density  

The sampling density may play a role in the performance of the spatial interpolation 
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methods as discussed above. Considering all 17 reviewed comparative studies, there 
is no apparent pattern to the performance of the spatial interpolation methods in 
relation to sampling density (i.e., area per sample) in terms of RMAE and RRMSE 
(Figs. 6.1 and 6.2). It is often argued that if the sample size is big enough, then the 
effects of sample size would disappear, which means that a threshold exists. 
Apparently this assertion is not true as seen in this review because, in intensely 
sampled cases, there is still a clear pattern where as sample size increases the 
performance of the spatial interpolation methods continues to improve (Figs. 6.3 and 
6.4). However, this result is probably misleading because the pattern is confounded by 
the effects of variation in the data as illustrated in Figs. 6.12 to 6.16 in 6.6.2. 

For each method, there is little relation between the performance and the sampling 
density in terms of RMAE and RRMSE (Figs. 6.5 and 6.6). The difference in 
observations for RMAE and RRMSE is due to the fact that in some studies, both 
MAE and RMSE were reported, but in some only one of them was presented. The 
effects of sampling density are dominated by the other factors such variation in the 
data. 
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Figure 6.1. Effects of sampling density on the accuracy of the spatial interpolation 
methods compared in the 17 comparative studies in terms of RMAE(%). 

 
Figure 6.2. Effects of sampling density on the accuracy of the spatial interpolation 
methods compared in the 17 comparative studies in terms of RRMSE(%). 
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Figure 6.3. Effects of sampling density on the accuracy of the spatial interpolation 
methods compared in the 17 comparative studies with intensely sampled cases in 
terms of RMAE(%). 

 
Figure 6.4. Effects of sampling density on the accuracy of the spatial interpolation 
methods compared in the 17 comparative studies with intensely sampled cases in 
terms of RRMSE(%). 
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Figure 6.5. Effects of sampling density on the accuracy of each spatial interpolation 
method compared in the 17 comparative studies in terms of RMAE(%). 
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Figure 6.6. Effects of sampling density on the accuracy of each spatial interpolation 
method compared in the 17 comparative studies in terms of RRMSE(%). 
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6.6.2. Data Variation 

Data variation significantly affects the performance of the spatial interpolation 
methods. There is a strong pattern of the performance of the spatial interpolation 
methods in relation to the variation in the data in terms of RMAE and RRMSE (Figs. 
6.7 and 6.8). As the variation increases, the performance declines, which is consistent 
with previous findings (Collins and Bolstad, 1996; Martínez-Cob, 1996; Schloeder et 
al., 2001).  

This relationship maintains when the sampling density changes in terms of RMAE 
and RRMSE (Figs. 6.9 and 6.10). The pattern is further illustrated for datasets with 
high sample densities where the area per sample is <50 km2 (Figs. 6.11 and 6.12) and 
even <0.3 km2 (Figs. 6.13, 6.14, 6.15 and 6.16). This relationship also persists for data 
with relatively low sample densities where the area per sample is >1500 km2, 
although in this case the results were only available from one study and the area per 
sample is 1783 km2 (Figs. 6.17 and 6.18). These results suggest that the effects of 
variation in data on the performance of the spatial interpolation methods are 
independent of sampling density. 
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Figure 6.7. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies in terms of RMAE(%). 

 
Figure 6.8. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies in terms of 
RRMSE(%). 
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Figure 6.9. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies in relation to the 
sample density in terms of RMAE(%). 

 
Figure 6.10. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies in relation to the 
sample density in terms of RRMSE(%). 
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Figure 6.11. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies in relation to high 
sample density in terms of RMAE(%). 

 
Figure 6.12. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies in relation to high 
sample density in terms of RRMSE(%). 
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Figure 6.13. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies in relation to very high 
sample density in terms of RMAE(%). 

 
Figure 6.14. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies with very high sample 
density (<0.3 km2 per sample) in terms of RMAE(%). 
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Figure 6.15. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies in relation to very high 
sample density in terms of RRMSE(%). 

 
Figure 6.16. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in the 17 comparative studies with very high sample 
density (<0.3 km2 per sample) in terms of RRMSE(%). 
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Figure 6.17. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in relation to low sample density in terms of 
RMAE(%). 

 
Figure 6.18. Effects of the variation in the data on the accuracy of the spatial 
interpolation methods compared in relation to low sample density in terms of 
RRMSE(%). 
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The relationship between the performance of the spatial interpolation methods and the 
variation in the data is largely maintained for each individual method in terms of 
RMAE and RRMSE (Figs. 6.19 and 6.20; see also Figs. 6.17 and 6.18). The results 
show that the performance of all frequently used methods is affected by the variation 
in the data, but the overall impact is method-dependent. GIDS and RK-C are less 
sensitive to the variation in the data than OK, OCK, IDS, IDW and TPS, and OCK is 
less sensitive to the variation in the data than OK in terms of RRMSE. Such method 
dependency was also observed in the improved RBFN, which performed well 
especially when the variance of the reference surface was large in comparison with 
RBFN and OK (Lin and Chen, 2004). 

The results are consistent with findings by Gotway et al. (1996) who found that the 
performance of a spatial interpolator (IDW in this case) may be affected by variation 
of the dataset in terms of CV. Although they claimed that the performance of OK was 
generally unaffected by variation in the data, but it turned out to be that the 
performance of OK, like IDW, also declines as the variation increases (as illustrated 
in Figs A.1 and A.2). This again supports the results observed in this review. 
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Figure 6.19. Effects of the variation in the data on the accuracy of each spatial 
interpolation method compared in the 17 comparative studies in terms of RMAE(%). 
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Figure 6.20. Effects of the variation in the data on the accuracy of each spatial 
interpolation method compared in the 17 comparative studies in terms of RRMSE(%). 
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6.6.3. Sampling Design 

Difference in sampling design affects the performance of the spatial interpolation 
methods. In the 17 comparative studies, samples collected from point locations that 
are irregularly distributed in space lead to a higher accuracy of the estimations of the 
spatial interpolators than samples colleted from regularly distributed points (Fig. 6.21 
and 6.22). Therefore, the irregular sampling design could improve the performance of 
the spatial interpolation methods. However, splines performed poor for irregular 
spaced data (Collins and Bolstad, 1996); and sample patterns were found not to be 
significant in determining the performance of the spatial interpolator (i.e., OK) 
(Englund et al., 1992). 
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Figure 6.21. Effects of sampling design on the accuracy of the spatial interpolation 
methods compared in the 17 comparative studies in relation to the sampling design in 
terms of RMAE(%). 

 
Figure 6.22. Effects of sampling design on the accuracy of the spatial interpolation 
methods compared in the 17 comparative studies in relation to the sampling design in 
terms of RRMSE(%). 



Factors Affecting the Performance of Spatial Interpolation Methods 

 83

It is obvious that although the average value of the RMAE and RRMSE is relatively 
lower for samples collected from irregularly distributed points than from regularly 
sampled ones, the variation in the RMAE and RRMSE is much higher for samples 
colleted from irregularly distributed points (Figs. 6.21 and 6.22). This high variation 
in the RMAE and RRMSE is mainly due to the relatively high variations in the 
datasets for the irregularly spaced samples (Figs. 6.23 and 6.24). The high CV comes 
from three studies that used irregularly sampling method (Odeh et al., 1994; Odeh et 
al., 1995; Schloeder et al., 2001). However, this does not necessarily mean that the 
irregularly sampling method would always lead to high variation in the collected data, 
and further investigation is warranted. 
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Figure 6.23. Effects of sampling design and the variation in the data on the accuracy 
of the spatial interpolation methods compared in the 17 comparative studies in terms 
of RMAE(%). 

 
Figure 6.24. Effects of sampling design and the variation in the data on the accuracy 
of the spatial interpolation methods compared in the 17 comparative studies in terms 
of RRMSE(%). 
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6.6.4 Stratification 

Stratification pertains to the method of spatial interpolation rather than features of the 
data. Although it was claimed that there was no statistically significant stratification ( 
Brus et al., 1996), the trend of improvement in the performance of the spatial 
interpolation methods is apparent for all methods compared in terms of RMAE and 
RRMSE (Figs. 6.25 and 6.26). It was found that stratification improved the 
performance of SK by Voltz and Webster (1990), because it avoids the effects of non-
stationary. However, stratification has two major limitations: 1) it may dramatically 
reduce the number of samples in the kriging neighbourhood, and 2) it depends on the 
goodness of the classification (Voltz and Webster, 1990). Further research into the 
effects of stratification is warranted.  
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Figure 6.25. Effects of stratification on the accuracy of the spatial interpolation 
methods compared by Brus et al. (1996) in terms of RMAE(%). 

 
Figure 6.26. Effects of stratification on the accuracy of the spatial  interpolation 
methods compared by Brus et al. (1996) in terms of RRMSE(%). 
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Chapter 7: Classification and Selection of the Methods 
In this chapter, the spatial interpolation methods are classified based on their features 
to provide an overview of the differences and relationships among the various spatial 
interpolation methods. These features are then quantified and a cluster analysis is 
conducted to show similarities and relationships among these spatial interpolators. 
Lastly, a decision tree is developed for selecting an appropriate method according to 
the nature and availability of data to provide guidelines for potential users. 

7.1. Classification of Spatial Interpolation Methods 
The spatial interpolation methods are classified based on the comparisons summarised 
in Tables 3.1 and 3.2. This classification assists in further understanding these 
methods and provides a base for developing a decision tree for selecting an 
appropriate method in practice. 

The classification of the spatial interpolation methods has not been addressed before 
apart from the study of Lam (1983) who proposed a simple classification of four types 
of the spatial interpolation methods. In this review, an approach used in taxonomy is 
adopted to classify the 26 spatial interpolation methods according to their features, as 
follows: 

1 Non-geostatistical, no error assessment 
 2 Deterministic 
  3 Global ………………………………………………...…..................................Cl 
  3* Local  
   4 Exact  
    5 Abrupt 
     6 Tessellation and using one sample.….......................................................NN 
     6* Using more than one sample 

7 Triangulation and using three samples..................................................TIN 
7* Combination of triangulation & tessellation .....................................NaN 

    5* Gradual 
     8 Univariate………..……......…................................................................NaN 
     8* Univariate/multivariate, exact within smoothing limit........…………. TPS 
   4* Inexact …………………………...............................................................IDW 
 2* Stochastic 
  9 Global 
   10 Abrupt………………………….…………………………………..…...CART 
   10*Gradual 
    11 Coordinates only…………………………………….………………….TSA 
    11* Coordinates and other secondary variables……………...……………..LM 
  9*Local……………………………………………………………..Splines & LTS 
1* Geostatistical, with error assessment 
 12 Univariate 
  13 Stationary mean………………………………………………………………SK 
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  13* Local means 
   14 Point estimate………………………………………………………...……OK 
   14* Block estimate……………………………………………………………BK 
 12* Multivariate 
  15 Stationary mean 
   16 Non-stratification 
    17 Search window with multiple samples………...…………………….…SCK 
    17* Search window with single sample…….………..………….………SCCK 
   16* Stratification  
    18 Non-continuous secondary information……….…..…………………SKWS 
    18* With continuous secondary information……….…………….…...SCKWS 
  15*Local means 
   19 Exhaustive secondary information and/or local trend 
    20 Coordinates only……………………….…………………………….…..UK 
    20* Non-coordinate secondary variable 
     21 A secondary variable and search window with multiple samples 
      22 Regression coefficients estimated within each search window...….KED 
      22* Regression coefficients estimated once……...….……………….SKlm 

21* One or more secondary variable and search window with single 
sample………………………………………………………………....OCCK 

   19* Non-exhaustive secondary information and no local trend 
    23 Stratification  
     24 No secondary information………………………………...….……OKWS 
     24* Secondary information………………………………………….OCKWS 
    23* Non-stratification 
     25 Orthogonalisation of secondary information………...………….……PCK 
     25* Non-orthogonalisation of secondary information 

26 No information of the stationary means of the primary and secondary 
variables…………………………………………………...……..……OCK 
26* With information of the stationary means of both the primary and 
secondary variables...……………………………………..…...……..SOCK 

7.2. Similarity of Spatial Interpolation Methods 
The similarity between 26 spatial interpolation methods is analysed in this section. A 
total of 21 features extracted from Table 3.1 and 3.2 and from those used for the 
classification are converted into qualitative variables with factor levels ranging from 0 
to 1 or not applicable (na) (Table 7.1). Information of each feature for each of the 26 
spatial interpolation methods is summarised in Table 7.2. 
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Table 7.1. Conversion between feature status and factor levels.  
Level No Feature 

0 1 na* 
1 Univariate no yes  
2 Multivariate no yes  
3 Deterministic/stochastic deterministic stochastic  
4 Local/global global local  
5 Exact/inexact exact inexact  
6 Abrupt transition no yes  
7 Gradual transition no yes  
8 Output: polygons no yes  
9 Output: triangular no yes  
10 Output: grids no yes  
11 Stationary/ local mean stationary local na 
12 Stationary mean of secondary variable no yes na 
13 Local trend-constant no yes na 
14 Local trend-non-constant no yes na 
15 Info of coordinates no yes  
16 Secondary variables no yes  
17 Point/ block  point block  
18 Exhaustive secondary information no yes na 
19 Stratification no yes  
20 Orthogonalisation of secondary information no yes na 
21 Single or multiple samples in the search window single multiple  

*na: not applicable. 
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Table 7.2. The qualified data of the 21 features of 26 spatial interpolation methods. 
For the feature corresponding to each number please see Table 7.1. The methods are 
arranged in an order according to the results from Figure 7.1. The bold values 
highlight the key differences among the methods within each non-single-method 
group. 

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
UK 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 
SKlm 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 
KED 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1 
SKWS 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 na 1 na 1 
OKWS 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 na 1 na 1 
SCK 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 
OCK 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 
SOCK 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 0 0 1 
PCK 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1 
SCCK 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 
OCCK 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 
SCKWS 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 
OCKWS 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 
LM 1 1 1 0 1 0 1 1 0 1 na 0 1 1 1 1 0 1 0 0 1 
CART 1 1 1 0 1 1 0 0 0 1 na 0 na na 1 1 0 1 0 0 1 
TSA 0 1 1 0 1 0 1 0 0 1 na 0 na na 1 0 0 na 0 na 1 
LTS 0 1 1 1 1 0 1 0 0 1 na 0 na na 1 0 0 na 0 na 1 
Cl 1 0 0 0 1 1 0 1 0 0 na na na na 1 1 1 1 0 na 0 
SK 1 0 1 1 0 0 1 0 0 1 0 na 1 0 0 0 0 na 0 na 1 
OK 1 0 1 1 0 0 1 0 0 1 1 na 1 0 0 0 0 na 0 na 1 
BK 1 0 1 1 0 0 1 0 0 1 1 na 1 0 0 0 1 na 0 na 1 
IDW 1 0 0 1 1 0 1 0 0 1 na na na na 0 0 0 na 0 na 1 
TPS 1 1 0 1 0 0 1 0 0 1 na na na na 0 0 0 na 0 na 1 
NN 1 0 0 1 0 1 0 1 0 1 na na na na 0 0 1 na 0 na 0 
TIN 1 0 0 1 0 1 0 0 1 1 na na na na 0 0 1 na 0 na 1 
NaN 1 0 0 1 0 1 1 0 0 1 na na na na 0 0 1 na 0 na 1 
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The data in Table 7.2 were first analysed using hierarchical cluster analysis on 
Gower’s distance in R 2.6.2 (R Development Core Team, 2007). In a further cluster 
analysis, NA was replaced by 0, because it was treated as missing when calculating 
the distance in the first analysis. However, both analyses produced the same 
classification results. The results from the first analysis are presented in Figure 7.1. If 
a threshold line is added at 0.2 in Figure 7.1, these methods could be classified into 10 
groups. The results show that: 
1) LM, CART and Cl each forms a single method group, and they are group 4, 5 and 
7 respectively, which indicate that they are different for each other and also from all 
the other methods.  
2) Group 1: SKlm, UK and KED are alike and they all use secondary information 
and/or coordinate information in making their estimations and they are different in 
local trend and utilisation of coordinate and secondary information. 
3) Group 2: SKWS and OKWS form a group of kriging methods without using 
secondary information but with stratification; and they differ due to the stationary 
mean for SKWS and local means for OKWS. 
4) Group 3: all cokriging methods are grouped together. Within this group there are 
two subgroups as distinguished by stratification. Methods with stratification differ in 
the choice of mean; and methods without stratification differ in the choice of mean, 
using secondary information, the number of samples in search window and 
orthogonalisation in producing their estimations. 
5) Group 6: TSA and LTS form a group that uses coordinate information in deriving 
the estimations; and they are different in estimation in that the TSA is a global 
approach and LTS is a local one. 
6) Group 8: BK, SK and OK are most similar and they do not use secondary 
information; and their differences are from the choice of point or block estimation and 
the choice of the stationary mean or local means. 
7) Group 9: IDW and TPS are in the same group and their features are similar; and 
they differ in exactness of estimation and TPS could be multivariate.  
8) Group 10: NN, TIN and NaN are similar for most of features considered except the 
output and the smoothness.  

The relationship among these 10 groups can be further explored if a threshold line is 
added at 0.4 in Figure 7.1, and these groups can be merged into four major groups. 
Group 1, 2 and 3 are similar because of their common features like multivariate, 
stochastic, local, inexact, gradual, grid-output and with point estimation. Group 4, 5 
and 6 share similar features that are multivariate, stochastic, inexact, utilisation of 
coordinate information, point-estimation, stratification, multiple samples in search 
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widow and with grid-output. Group 7 is unique due to the combination of the 
requirement of exhaustive secondary information and block estimation, and polygon-
output. Group 8, 9 and 10 are all featured with univariate, local, and non-utilisation of 
coordinate and secondary information. 

 
Figure 7.1. Classification of the spatial interpolation methods based on the 21 binary 
features in Table 7.2. 

7.3. Selection of Spatial Interpolation Methods 
Selection of an appropriate spatial interpolation method for the data at hand is critical, 
but it is not an easy task. The performance of the spatial interpolators depends on 
many factors including: the variable under study, the spatial configuration of the data, 
and the underlying assumptions of the spatial interpolation methods. It seems that 
there is no simple answer regarding the choice of an appropriate spatial interpolator, 
because a method is “best” only for specific situations (Isaaks and Srivastava, 1989).  
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There are a number of factors that should be considered in making an appropriate 
selection, given that there is no one best spatial interpolation method. The choice of 
method may depend on the assumption and properties of each method, nature and 
spatial structure of the data for the primary variable, sample size or sample density 
and distribution, the availability of secondary information, and the factors discussed 
in Chapter 6. They can be used prior to interpolation to eliminate some inappropriate 
methods. The availability of software may also be an important issue. The 
computational demands are also crucial depending on the sample size, the power of 
the computer, and the efficiency of software. 

In this section, a decision tree for selecting an appropriate spatial interpolation method 
is developed according to the availability and nature of the data and the expected 
estimation in combination with the features of each spatial interpolator. All 26 spatial 
interpolation methods listed in Table 7.2 are considered. Again this decision tree is 
represented in an easy following taxonomic fashion. 

1 Data or residuals show spatial structure 
 2 Estimation of continuous variable  
  3 No information of secondary variables available  
    4 Global mean known ………………………………...…..............................SK 
    4* Global mean unknown and using local means 

5 Point estimation……..………………………..........................................OK 
5* Block estimation………………………………………………………..BK 

  3* Information of secondary variables available  
   6 Global mean known 
    7 Secondary variable is only categorical 
     8 Stratification…………………….…………………………………...SKWS 
     8* Non-stratification………………………………………..…..……….SKlm 
    7* Secondary variable is not only categorical 

9 Stratification………………….……………………………………SCKWS 
9* Non-stratification 

10 Sparse samples of secondary variable and multiple samples in search 
window………….…………………………………………………...…SCK 
10* Dense samples of secondary variable and single sample in search 
window.…………………………………..…..………………………SCCK 

   6* Global mean unknown and using local means 
    11 Secondary information available for each point being estimated 

12 Spatial trend is apparent and only coordinates available ………..…….UK 
12* Other secondary variable available 
 13 An apparent global relation with the secondary variable………….SKlm 
 13* The relation is not so apparent…………………………….………KED 

    11* Secondary information not available for each point being estimated 
     14 Secondary variables including a categorical variable 
      15 Only a categorical variable available 
       16 Multiple samples in search window……………..……….……OKWS 

 16* Dense samples of secondary variable and single sample in search 
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window………………………………………...….…………………OCCK 
      15* Other secondary information available……………………….OCKWS 
     14* Secondary variables without categorical variable 

17 Sparse samples of secondary variable and multiple samples in search 
window 
 18 Many secondary variables and PCA needed..……………………PCK 
 18* PCA not needed to reduce the number of secondary variables 
  19 Avoid negative weights and artificially limiting the effect of 
secondary variable……………………………………………………SOCK 
  19* Accept above two drawbacks…………………………………OCK 
17* Dense samples of secondary variable and single sample in search 
window………………………………………………………………OCCK 

 2* Estimation of categorical variable or uncertainty assessment….IK & its variants 
1* Data or residuals show no spatial structure 
 20 No secondary variables available 
  21 Abrupt estimation acceptable 
   22 Using single sample for estimation…………………………………..…….NN 
   22* Using multiple samples for estimation 
    23 Using three samples for estimation……………………………………...TIN 
    23* Using more than three natural neighbour samples for estimation……..NaN 
  21* Abrupt estimation unacceptable 
   24 Using more than three natural neighbour samples weighted by area...…..NaN 
   24* Using nearest several samples weighted by distance…………...………IDW 
 20* Secondary variable available 
  25 Using information of coordinates 
   26 Only coordinates information used with inexact estimation 
    27 Using nearby samples……..………………………………...Splines & LTS 
    27* Using all samples………………………………………………...……TSA 
   26* May use other variables with exact estimation……………....…………..TPS 
  25* Not using information of coordinates 
   28 Only categorical secondary information available 
    29 Only one variable available………………………....……………………..Cl 
    29* Multiple variables available…………………………………………CART 
   28* Continuous secondary information available 
    30 Univariate or multiple secondary information……………………….….LM 
    30* Require multiple secondary information……………………………CART 

The above decision tree only provides a guideline for selecting an appropriate spatial 
interpolator according to the nature and availability of the data and the expected 
outcomes. There are also many other factors as discussed in previous chapters that 
could influence the choice of the spatial interpolation methods. For example, one 
might use a spatial interpolator that does not incorporate secondary information even 
if such information is available if it is considered a reasonable approach. Joint 
application of two spatial interpolation methods might produce additional benefits 
such as the combined procedures in section 2.4. If sharp spatial changes, such as those 
caused by soil and rock types, vegetation classes, and habitat types, are expected, 
stratified spatial interpolation methods may be used to improve the estimation 
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(Hernandez-Stefanoni and Ponce-Hernandez, 2006; Stein et al., 1988; Voltz and 
Webster, 1990). 

For kriging methods, a number of factors including sample size, isotropy and 
anisotropy of the data, need to be considered for selecting appropriate variogram 
model. Data transformation may need to be considered when the data are skewed and 
anisotropic. Three methods of data transformation (logarithms, standardised rank 
order, and normal scores) can be employed to reduce the skewness ( Wu et al., 2006). 
Non-stationary methods like KED should be used in cases with a general anisotropy 
or trend (i.e. drift) (Verfaillie et al., 2006). If different types of nonstationarity exist 
inside a study region, application of different spatial interpolation methods to each 
type may be a good practice because the estimation resulted from the combination of 
the results from different methods can be more precise than when only a single 
method is used (Meul and Van Meirvenne, 2003).  

It is recommended that one should try several search strategies on a test subregion 
before running any kriging over an entire region (Goovaerts, 1997). Cross-validation 
can be used to evaluate the effects of different search parameters on the estimations, 
but it should be noted that the search strategy that generates the best cross-validated 
results may not necessarily produce the best estimations at unsampled locations.  

When datasets consist of relatively few samples, it is recommended that least square 
error and ranking procedures should be used rather than Delfiner’s methodology for 
estimating the generalised covariance function (Puente and Bras, 1986). 

Guidelines have been also proposed in previous studies for selecting a spatial 
interpolator from subsets of the methods listed above. For instance, a decision tree for 
selecting a suitable spatial prediction method from RK, OK, IDW and LM was 
developed by Hengl (2007). Pebesma (2004) proposed a decision tree for IDW, TSA 
and a few kriging methods available in gstat package in R. There are also some 
guidelines for choosing between DK and IK according to the nature and structure of 
the data (Lark and Ferguson, 2004). In addition, several steps have been provided for 
using kriging methods by Burrough and McDonnell (1998) who also provide 
guidelines for selecting an appropriate spatial interpolation method. 

This review is the first to provide guidelines in the form of a decision tree for 
selecting an appropriate spatial interpolator from 26 spatial interpolation methods 
according to data properties. It is the most comprehensive comparative study that has 
been published for environmental scientists. The next chapter lists software packages 
for the application of the spatial interpolation methods to the environmental data. 
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Chapter 8: Software Packages and Recommendation 
for Marine Environmental Scientists 

8.1. Software Packages 
There are many software packages that contain functions to interpolate spatial point 
data to spatial continuous data (Table 8.1). The list of software packages and the 
spatial interpolation methods in each package is acquired from various sources and is 
not exhaustive. 

Several packages in R perform spatial interpolation, including: akima, deldir, fields, 
geoR, GeoRglm, GRASS, gstat, spatial, sgeostat, RandomFields, and tripack. Large 
parts of the geoR and GeoRglm packages address the uncertainty of estimated 
covariance parameters in Bayesian framework (also known as MBK; Diggle and 
Ribeiro Jr., 2007) (Pebesma, 2004). Due to heavy computational requirements, MBK 
seems to be only relevant to datasets of small sample sizes (Moyeed and Papritz, 
2002). Given that the power of the computer has been increased dramatically recently 
and some improved algorithms have been adopted in geo-statistics that could easily 
handle sample size of 10,000 (personal communication with Edzer Pebesma, 9 July 
2008), the previous statements made about the computation requirements of the 
spatial interpolation methods may no longer valid. This should be taken into account 
in the future studies.  

Computer programs available for the methods of surface pattern analysis are listed 
and briefly described by Legendre and Legendre (1998). They include Geo-EAS, 
GEOSTAT, GSLib, ISATIS, Kellogg’s, MACGRIDZO and UNIMAP, which also 
include some spatial interpolation methods. The computing capacities of some 
popular statistical and GIS packages were compared by Hengl (2007). Some spatial 
interpolation methods are also available in GS+ (Robertson, 2000).  

Two types of the spatial interpolation methods, OK and UK, are provided in the 
S+SpatialStats module in S-PLUS (Kaluzny et al., 1998). 
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Table 8.1. Availability of the spatial interpolation methods in several commonly used software packages. 

R S-
PLUS 

SURFER Method/ 
package 

ArcGIS/ 
ArcView 
GIS 

GS+ 

stats akima deldir fields geoR geoRglm GRASS gstat spatial sgeostat RandomFields tripack   

NN yes    yes         yes  yes 
TIN yes    yes         yes yes yes 
NaN yes               yes 
Cl  yes yes            yes  
TSA yes          yes    yes  
IDW yes yes        yes      yes 
LM yes  yes            yes yes 
TPS yes  yes yes  yes         yes  
SK yes     yes? yes   yes  yes? yes    
OK yes yes     yes  yes yes   yes  yes yes 
UK yes     yes yes   yes yes    yes yes 
SCK yes         yes       
OCK yes yes        yes       
Universal CK yes         yes       
BK yes         yes     yes  
SCCK          yes       
KED       yes   yes       
StOK/StSK  yes        yes       
IK yes         yes       
MBK       yes yes         
Simulation          yes       
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8.2. Important Factors and Recommendation 

8.2.1. Important Factors  

There are many potential factors that should be considered as secondary information 
for the spatial interpolation of marine environmental data. For instance, in marine 
science, combined flow bed shear stress (i.e., a combination of the effects of surface 
ocean waves, tidal, wind and density driven ocean currents) strongly influence benthic 
habitats on the continental shelf by mobilising sediments or directly influencing 
organisms. It was suggested that both magnitude and frequency of combined-flow bed 
shear stresses must be considered when characterising the benthic environment 
(Hemer, 2006).  

Bathymetry has been used to improve the performance of the spatial interpolators 
(Verfaillie et al., 2006). The relation between the bathymetry and grain-size depends 
on the morphology, topography, and the substrate type (Verfaillie et al., 2006), so 
inclusion of such information would probably further improve the estimations. 
Distance to coastline may be important in improving the prediction of geospatial data. 
Other factors like those used in Whiteway et al. (2007) may also provide useful 
information to improve the prediction. 

As in statistical analysis, understanding the mechanisms underpinning the observed 
phenomena and incorporation of professional knowledge in the estimation could 
improve the performance of the spatial interpolation methods. For example, inclusion 
of in-water distance instead of Euclidean distance and trend component improved the 
prediction accuracy by a reduction of 10-30% of the prediction error variance in a 
study for predicting contaminant and water quality variables in an estuary (Little et 
al., 1997). 

There are also many other factors affecting the performance of the spatial 
interpolation methods as discussed in previous chapters. These factors should be 
considered in data collection, field survey design and selection of the spatial 
interpolation methods. Irregular sampling design may be preferred over regular one, 
but not for splines. 

8.2.2. Recommendation for Marine Environmental Scientists 

A number of the spatial interpolation methods show their strength in practical 
application. For instance, RK-C and GIDS are less sensitive to the variation in the 
data and more accurate than other methods. KED and OCK have also proven to obtain 
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high accuracy when appropriate high quality secondary information is available. RK-
D and those methods highlighted in Table 5.2 are also worth a further investigation. 
OK and UK could be good candidates when the correlation between the primary 
variable and secondary variables are weak. TPS should be considered if no spatial 
structure is detected. IDW, although performs poorly in most cases, should provide a 
good control as it is a standard spatial interpolation tool used for geospatial data in 
Geoscience Australia. In addition, GWR is worth attention in the future.  

Stratification could improve the estimation of the spatial interpolators when relevant 
information is available by reducing the variance of the data (Stein et al., 1988; Voltz 
and Webster, 1990). The geomorphic features of Australian continental margin 
(Harris et al., 2005; Heap and Harris, 2008) would provide valuable information for 
employing stratification method together with the spatial interpolation techniques. If 
such information stratifies relevant Australian marine environmental variables so that 
the variance within each geomorphic feature is reduced, then the accuracy of spatial 
interpolation of the environmental variables is expected to be improved. 

LR and its variants (Stahl et al., 2006) are developed specifically for air temperature 
in relation to elevation. Given this, they are probably not as applicable to other 
environmental science disciplines. However, if similar relationships can be found 
between seabed physical variables and bathymetry, LR could be possibly adopted to 
spatial interpolation of marine environmental variables. 

 



Acknowledgements 

 100

Acknowledgements 
We would like to thank Hideyasu Shimadzu and Brendan Brooke for their valuable 
comments and suggestions. We also thank Edzer Pebesma for his helpful explanation 
about computational aspect of geo-statistical methods in gstat package. We are 
grateful to Maggie Tran for her careful proofreading. Tara Anderson, Shoaib Burq, 
David Ryan and Frederic Saint-Cast are acknowledged for providing references 
relevant to marine environmental science. This record is published with permission of 
the Chief Executive Officer, Geoscience Australia 

 



References 

 101

References: 
Ahmed, S. and De Marsily, G., 1987. Comparison of geostatistical methods for 

estimating transmissivity using data on transmissivity and specific capacity. 
Water Resources Research, 23(9): 1717-1737. 

Akima, H., 1978. A method of bivariate interpolation and smooth surface fitting for 
irregularly distributed data points. ACM Transactions on Mathematical 
Software, 4(2): 148-159. 

Akima, H., 1996. Algorithm 761: scattered-data surface fitting that has the accuracy 
of a cubic polynomial. ACM Transactions on Mathematical Software, 22: 362-
371. 

Armstrong, M. and Matheron, G., 1986a. Disjunctive kriging revisited: Part I. 
Mathematical Geology, 18(8): 711-728. 

Armstrong, M. and Matheron, G., 1986b. Disjunctive kriging revisited: Part II. 
Mathematical Geology, 18(8): 729-741. 

Asli, M. and Marcotte, D., 1995. Comparison of approaches to spatial estimation in a 
bivariate context. Mathematical Geology, 27: 641-658. 

Balk, B. and Elder, K., 2000. Combining binary decision tree and geostatistical 
methods to estimate snow distribution in a mountain watershed. Water 
Resources research, 36(1): 13-26. 

Bishop, T.F.A. and McBratney, A.B., 2001. A comparison of prediction methods for 
the creation of field-extent soil property maps. Geoderma, 103: 149-160. 

Boufassa, A. and Armstrong, M., 1989. Comparison  between different kriging 
estimators. Mathematical Geology, 21(3): 331-345. 

Bourennane, H., King, D. and Couturier, A., 2000. Comparison of kriging with 
external drift and simple linear regression for predicting soil horizon thickness 
with different sample densities. Geoderma, 97: 255-271. 

Bregt, A.K., 1992. Processing of soil survey data, Agricultural University of 
Wageningen, The Netherlands. 

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., 1984. Classification and 
regression trees. Wadsworth, Belmont. 

Brus, D.J. and de Gruijter, J.J., 1994. Estimating of non-ergodic variograms and their 
sampling variance by design-based sampling strategies. Mathematical 
Geology, 26(4): 437-454. 

Brus, D.J. et al., 1996. The performance of spatial interpolation methods and 
choropleth maps to estimate properties at points: a soil survey case study. 
Environmetrics, 7: 1-16. 

Burrough, P.A., 1991. Principles of Geographical Information Systems for Land 
Resources Assessment. Monographs on Soil and Resources Survey, 12. 
Oxford Press, Oxford, 194 pp. 

Burrough, P.A. and McDonnell, R.A., 1998. Principles of Geographical Information 
Systems. Oxford University Press, Oxford, 333 pp. 

Carr, J.R. and Deng, E.D., 1987. Comparison of two techniques for applying 
disjunctive kriging: The Gaussian anamorphosis model versus the direct 
statistical inference of the bivariate distributions. Mathematical Geology, 
19(1): 57-68. 

Chambers, J.M. and Hastie, T.J., 1992. Statistical Models in S. Wadsworth and 
Brooks/Cole Advanced Books and Software, Pacific Grove, CA, 608 pp. 

Chang, Y.H., Scrimshaw, M.D., Emmerson, R.H.C. and Lester, J.N., 1998. 
Geostatistical analysis of sampling uncertainty at the Tollesbury Managed 



References 

 102

Retreat site in Blackwater Estuary, Essex, UK: Kriging and cokriging 
approach to minimise sampling density. The Science of the Total 
Environment, 221: 43-57. 

Clark, I. and Harper, W.V., 2001. Practical Geostatistics 2000. Geostokos (Ecosse) 
Limited, 342 pp. 

Cleveland, W.S. and Devlin, S.J., 1988. Locally weighted regression: an approach to 
regression analysis by local fitting. Journal of the American Statistical 
Association, 83(403): 596-610. 

Collins, F.C. and Bolstad, P.V., 1996. A comparison of spatial interpolation 
techniques in temperature estimation, Proceedings, Third International 
Conference/Workshop on Integrating GIS and Environmental Modeling, Santa 
Fe, NM. Santa Barbara, CA: National Center for Geographic Information and 
Analysis, Santa Barbara. 

Cressie, N.A., 1993. Statistics for Spatial Data. John Wiley & Sons, Inc., New York, 
900 pp. 

Danielsson, A., Carman, R., Rahm, L. and Aigars, J., 1998. Spatial estimation of 
nutrient distributions in the Gulf of Riga sediments using cokriging. Estuarine, 
Coastal and Shelf Science, 46: 713-722. 

Davis, J.C., 1973. Statistics and Data Analysis in Geology. John Wiley & Sons, Inc., 
New York, 550 pp. 

Diggle, P.J. and Ribeiro Jr., P.J., 2007. Model-based Geostatistics. Springer, New 
York, 228 pp. 

Diggle, P.J., Tawn, J.A. and Moyeed, R.A., 1998. Model-based geostatistics. Applied 
Statistics, 47(3): 299-350. 

Dirks, K.N., Hay, J.E., Stow, C.D. and Harris, D., 1998. High-resolution studies of 
rainfall on Norfolk Island Part II: interpolation of rainfall data. Journal of 
Hydrology, 208: 187-193. 

Emery, X., 2006. Ordinary multigaussian kriging for mapping conditional 
probabilities of soil properties. Geoderma, 132: 75-88. 

Englund, E., Weber, D. and Leviant, N., 1992. The effects of sampling design 
parameters on block selection. Mathematical Geology, 24(3): 329-343. 

Erxleben, J., Elder, K. and Davis, R., 2002. Comparison of spatial interpolation 
methods for estimating snow distribution in the Colorado Rocky Mountains. 
Hydrological Processes, 16: 3627-3649. 

Fotheringham, A.S., Brunsdon, C. and Charlton, M., 2002. Geographically Weighted 
Regression: the analysis of spatially varying relationships. John Wiley & Sons, 
Ltd, Chichester, 269 pp. 

Gaus, I., Kinniburgh, D.G., Talbot, J.C. and Webster, R., 2003. Geostatistical analysis 
of arsenic concentration in groundwater in Bangladesh using disjunctive 
kriging. Environmental Geology, 44(8): 939-948. 

Gilmour, A., Cullis, B., Welham, S., Gogel, B. and Thompson, R., 2004. An efficient 
computing strategy for prediction in mixed linear models. Computational 
Statistics & Data Analysis, 44: 571-586. 

Goff, J.A., Jenkins, C.J. and Williams, S.J., 2008. Seabed mapping and 
characterization of sediment variability using the usSEABED data base. 
Continental Shelf Research, 28: 614-633. 

Gold, C.M. and Condal, A.R., 1995. A spatial data structure integrating GIS and 
simulation in a marine environment. Marine Geodesy, 18: 213-228. 

Goovaerts, P., 1997. Geostatistics for Natural Resources Evaluation. Oxford 
University Press, New York, 483 pp. 



References 

 103

Goovaerts, P., 2000. Geostatistical approaches for incorporating elevation into the 
spatial interpolation of rainfall. Journal of Hydrology, 228: 113-129. 

Gotway, C.A., Ferguson, R.B., Hergert, G.W. and Peterson, T.A., 1996. Comparison 
of kriging and inverse-distance methods for mapping parameters. Soil Science 
Society of American Journal, 60: 1237-1247. 

Gotway, C.A. and Stroup, W.W., 1997. A generalized linear model approach to 
spatial data analysis and prediction. Journal of Agricultural, Biological, and 
Environmental Statistics, 2(2): 157-178. 

Greenwood, D.J., Neeteson, J.J. and Draycott, A., 1985. Response of potatoes to N 
fertilizer: dynamic model. Plant Soil, 85: 185-203. 

Guarini, J.-M. et al., 1998. Dynamics of spatial patterns of microphytobenthic 
biomass: inferences from a geostatistical analysis of two comprehensive 
surveys in Marennes-Oleron Bay (France). Marine Ecology Progress Series, 
166: 131-141. 

Haberlandt, U., 2007. Geostatistical interpolation of hourly precipitation from rain 
gauges and radar for a large-scale extreme rainfall event. Journal of 
Hydrology, 332: 144-157. 

Harris, P. et al., 2005. Geomorphic Features of the Continental Margin of Australia, 
Geoscience Australia. 

Hartkamp, A.D., De Beurs, K., Stein, A. and White, J.W., 1999. Interpolation 
Techniques for Climate Variables, CIMMYT, Mexico, D.F. 

Heap, A.D. and Harris, P.T., 2008. Geomorphology of the Australian margin and 
adjacent seafloor. Australian Journal of Earth Sciences, 55: 555-585. 

Hemer, M.A., 2006. The magnitude and frequency of combined flow bed shear stress 
as a measure of exposure on the Australian continental shelf. Continental Shelf 
Research, 26: 1258-1280. 

Hengl, T., 2007. A Practical Guide to Geostatistical Mapping of Environmental 
Variables, Luxembourg: Office for Official Publication of the European 
Communities. 

Hengl, T., Heuvelink, G.B.M. and Rossiter, D.G., 2007. About regression-kriging: 
From equations to case studies. Computer & Geosciences, 33: 1301-1315. 

Hengl, T., Heuvelink, G.B.M. and Stein, A., 2004. A generic framework for spatial 
prediction of soil variables based on regression-kriging. Geoderma, 120: 75-
93. 

Hernandez-Stefanoni, J.L. and Ponce-Hernandez, R., 2006. Mapping the spatial 
variability of plant diversity in a tropical forest: comparison of spatial 
interpolation methods. Environmental Monitoring and Assessment, 117: 307-
334. 

Hosseini, E., Gallichand, J. and Caron, J., 1993. Comparison of several interpolators 
for smoothing hydraulic conductivity data in South West Iran. American 
Society of Agricultural Engineers, 36(6): 1687-1693. 

Hu, K., Li, B., Lu, Y. and Zhang, F., 2004. Comparison of various spatial 
interpolation methods for non-stationary regional soil mercury content. 
Environmental Science, 25(3): 132-137. 

Hutchinson, M.F., 1995. Interpolating mean rainfall using thin plate smoothing 
splines. International Journal of Geographical Information Systems, 9(4): 385-
403. 

Hutchinson, M.F. and Gessler, P.E., 1994. Splines - more than just a smooth 
interpolator. Geoderma, 62: 45-67. 



References 

 104

ICES, 2005. Report of the Working Group on Marine Habitat Mapping (WGMHM), 
ICES CM 2005/E:05, Bremerhaven, Germany. 

Isaaks, E.H. and Srivastava, R.M., 1989. Applied Geostatistics. Oxford University 
Press, New York, 561 pp. 

Jarvis, C.H. and Stuart, N., 2001. A comparison among strategies for interpolating 
maximum and minimum daily air temperature. Part II: the interaction between 
number of guiding variables and the type of interpolation method. Journal of 
Applied Meteorology, 40: 1075-1084. 

Jef, H., Clements, M., Gerwin, D. and Frans, F., 2006. Spatial interpolation of 
ambient ozone concentrations from sparse monitoring points in Belgium. 
Journal of Environmental Monitoring, 8: 1129-1135. 

Jerosch, K., Schlüter, M. and Roland, P., 2006. Spatial analysis of marine categorical 
information using indicator kriging applied to georeferenced video mosaics of 
the deep-sea Håkon Mosby Mud Volcano. Ecological Informatics, 1: 391-406. 

Journel, A.G. and Huijbregts, C.J., 1978. Mining Geostatistics. Academic Press, 
London, 600 pp. 

Juang, K.W. and Lee, D.Y., 1998. A comparison of three kriging methods using 
auxiliary variables in heavy-metal contaminated soils. Journal of 
Environmental Quality, 27: 355-363. 

Kanevski, M., Timonin, V. and Pozdnoukhov, A., 2008. Automatic decision-oriented 
mapping of pollution data. ICCSA, 1: 678-691. 

Kerry, R. and Oliver, M.A., 2007. Comparing sampling needs for variograms of soil 
properties computed by the method of moments and residual maximum 
likelihood. Geoderma, 140(4): 383-396. 

Knotters, M., Brus, D.J. and Oude Voshaar, J.H., 1995. A comparison of kriging, co-
kriging and kriging combined with regression for spatial interpolation of 
horizon depth with censored observations. Geoderma, 67: 227-246. 

Kravchenko, A.K. and Bullock, D.G., 1999. A comparison study of interpolation 
methods for mapping soil properties. Agronomy Journal, 91: 393-400. 

Krige, D.G., 1951. A statistical approach to some mine valuations problems at the 
Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of 
South Africa, 52: 119-139. 

Kaluzny, S.P., Vega, S.C., Cardoso, T.P. and Shelly, A.A., 1998. S+SpatialStats: 
User's Manual for Windows and UNIX. Springer, New York. 

Lam, N.S.-N., 1983. Spatial interpolation methods: a review. The American 
Cartographer, 10(2): 129-139. 

Lark, R.M., Cullis, B.R. and Welham, S.J., 2006. On spatial prediction of soil 
properties in the presence of a spatial trend: the empirical best linear unbiased 
predictor (E-BLUP) with REML. European Journal of Soil Science, 57(6): 
787-799. 

Lark, R.M. and Ferguson, R.B., 2004. Mapping risk of soil nutrient deficiency or 
excess by disjunctive and indicator kriging. Geoderma, 118: 39-53. 

Laslett, G.M., 1994. Kriging and splines: an empirical comparison of their predictive 
performance in some applications. Journal of the American Statistical 
Association, 89(426): 391-400. 

Laslett, G.M. and McBratney, A.B., 1990. Further comparison of spatial methods for 
predicting soil pH. Soil Science Society of America Journal, 54: 1553-1558. 

Laslett, G.M., McBratney, A.B., Pahl, P.J. and Hutchinson, M.F., 1987. Comparison 
of several spatial prediction methods for soil pH. Journal of Soil Science, 38: 
325-341. 



References 

 105

Legendre, P. and L., L., 1998. Numerical Ecology. ELSEVIER, Amsterdam, 853 pp. 
Lehmann, A., 1997. A GIS approach of aquatic plant spatial heterogeneity in relation 

to sediment and depth gradients, Lake Geneva, Switzerland. Aquatic Botany, 
58: 347-361. 

Li, X., Cheng, G. and Lu, L., 2005. Spatial analysis of air temperature in the Qinghai-
Tibet Plateau. Arctic, Antarctic, and Alpine Research, 37(2): 246-252. 

Li, Y., Shi, Z., Wu, C., Li, H. and Li, F., 2007. Improved prediction and reduction of 
sampling density for soil salinity by different geostatistical methods. 
Agricultural Science in China, 6(7): 832-841. 

Lin, G. and Chen, L., 2004. A spatial interpolation method based on radial basis 
function networks incorporating a semivariogram model. Journal of 
Hydrology, 288: 288-298. 

Little, L.S., Edwards, D. and Porter, D.E., 1997. Kriging in estuaries: as the cow flies, 
or as the fish swims? Journal of Experimental Marine Biology and Ecology, 
213: 1-11. 

Lucio, P.S., Bodevan, E.C., Dupont, H.S. and Ribeiro, L.V., 2006. Directional 
kriging: a proposal to determine sediment transport. Journal of Coastal 
Research, 22(6): 1340-1348. 

MacEachren, A.M. and Davidson, J.V., 1987. Sampling and isometric mapping of 
continuous geographic surfaces. The American Cartographer, 14(4): 299-320. 

Marchant, B.P. and Lark, R.M., 2006. Adaptive sampling and reconnaissance surveys 
for geostatistical mapping of the soil. European Journal of Soil Science, 57: 
831-845. 

Mardikis, M.G., Kalivas, D.P. and Kollias, V.J., 2005. Comparison of interpolation 
methods for the prediction of reference evapotranspiration - an application in 
Greece. Water Resources Management, 19: 251-278. 

Martínez-Cob, A., 1996. Multivariate geostatistical analysis of evapotranspiration and 
precipitation in mountainous terrain. Journal of Hydrology, 174: 19-35. 

Matheron, G., 1963. Principles of geostatistics. Economic Geology, 58: 1246-1266. 
Matheron, G., 1969. Le Krigeage universel. Cahiers du Centre de Morphologie 

Mathematique, Ecole des Mines de Paris, Fontainebleau. 
Maynou, F.X., Sardà, F. and Conan, G.Y., 1998. Assessment of the spatial structure 

and biomass evaluation of Nephrops norvegicus (L.) populations in the 
northwestern Mediterranean by geostatistics. ICES Journal of Marine Science, 
55: 102-120. 

Meul, M. and Van Meirvenne, M., 2003. Kriging soil texture under different types of 
nonstationarity. Geoderma, 112: 217-233. 

Minasny, B. and McBratney, A.B., 2007. Spatial prediction of soil properties using 
EBLUP with the Matern covariance function. Geoderma, 140: 324-336. 

Mitasova, H. et al., 1995. Modelling spatially and temporally distributed phenomena: 
new methods and tools for GRASS GIS. International Journal of Geographical 
Information Systems, 9(4): 433-446. 

Moyeed, R.A. and Papritz, A., 2002. An empirical comparison of kriging methods for 
nonlinear spatial point prediction. Mathematical Geology, 34(4): 365-386. 

Nalder, I.A. and Wein, R.W., 1998. Spatial interpolation of climatic Normals: test of a 
new method in the Canadian boreal forest. Agricultural and Forest 
Meteorology, 92: 211-225. 

Naoum, S. and Tsanis, I.K., 2004. Ranking spatial interpolation techniques using a 
GIS-based DSS. Global Nest: the International Journal, 6(1): 1-20. 

Odeh, I.O.A., McBratney, A.B. and Chittleborough, D.J., 1994. Spatial prediction of 



References 

 106

soil properties from landform attributes derived from a digital elevation 
model. Geoderma, 63: 197-214. 

Odeh, I.O.A., McBratney, A.B. and Chittleborough, D.J., 1995. Further results on 
prediction of soil properties from terrain attributes: heterotopic cokriging and 
regression-kriging. Geoderma, 67: 215-226. 

Oliver, M.A., Webster, R. and McGrath, S.P., 1996. Disjunctive kriging for 
environmental management. Environmetrics, 7: 333-358. 

Papritz, A. and Moyeed, R.A., 1999. Linear and non-linear kriging methods: tools for 
monitoring soil pollution. In: V. Barnett, A. Stein and K.F. Turkman (Editors), 
Statistical Aspects of Health and the Environment. Statistics for the 
Environment. John Wiley & Sons, Chichester, pp. 303-336. 

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computer & 
Geosciences, 30: 683-691. 

Pebesma, E.J., Duin, R.N.M. and Burrough, P.A., 2005. Mapping sea bird densities 
over the North Sea: spatially aggregated estimates and temporal changes. 
Environmetrics, 16(6): 573-587. 

Petitgas, P., 1993. Use of a disjunctive kriging to model areas of high pelagic fish 
density in acoustic fisheries surveys. Aquatic Living Resources, 6: 201-209. 

Porter, D.E., Edwards, D., Scott, G., Jones, B. and Street, W.S., 1997. Assessing the 
impacts of anthropogenic and physiographic influences on grass shrimp in 
localized salt-marsh estuaries Aquatic Botany, 58: 289-306. 

Puente, C.E. and Bras, R.L., 1986. Disjunctive kriging, universal kriging, or no 
kriging: Small sample results with simulated fields. Mathematical Geology, 
18(3): 287-305. 

R Development Core Team, 2007. R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, Vienna. 

Rendu, J.-M., 1980. Disjunctive kriging: Comparison of theory with actual results. 
Mathematical Geology, 12(4): 305-320. 

Ripley, B.D., 1981. Spatial Statistics. John Wiley & Sons, New York, 252 pp. 
Rivoirard, J. and Wieland, K., 2001. Correcting for the effect of daylight in 

abundance estimation of juvenile haddock (Melanogrammus aeglefinus) in the 
North sea: application of kriging with external drift. ICES Journal of Marine 
Science, 58: 1272-1285. 

Robertson, G.P., 2000. GS+: Geostatistics for the Environmental Science. Gamma 
Design Software, Plainwell, Michigan USA. 

Robertson, G.P. et al., 1997. Soil resources, microbial activity, and primary 
production across an agricultural ecosystem. Ecological Applications, 7: 158-
170. 

Rossi, R.E., Mulla, D.J., Journel, A.G. and Franz, E.H., 1992. Geostatistical tools for 
modeling and interpreting ecological spatial dependence. Ecological 
Monographs, 62(2): 277-314. 

Ruddick, R., 2006? Data interpolation methods in the Geoscience Australia seascape 
maps, Geoscience Australia, Canberra. 

Schloeder, C.A., Zimmerman, N.E. and Jacobs, M.J., 2001. Comparison of methods 
for interpolating soil properties using limited data. Soil Science Society of 
American Journal, 65: 470-479. 

Sibson, R., 1981. A brief description of natural neighbour interpolation. In: V. Barnett 
(Editor), Interpreting Multivariate Data. John Wiley and Sons, Chichester, pp. 
21-36. 

Silverman, B.W., 1981. Density estimation for univariate and bivariate data. In: V. 



References 

 107

Barnett (Editor), Interpreting Multivariate Data. John Wiley and Sons, 
Chichester, pp. 37-53. 

Stahl, K., Moore, R.D., Floyer, J.A., Asplin, M.G. and McKendry, I.G., 2006. 
Comparison of approaches for spatial interpolation of daily air temperature in 
a large region with complex topography and highly variable station density. 
Agricultural and Forest Meteorology, 139: 224-236. 

Stein, A., Hoogerwerf, M. and Bouma, J., 1988. Use of soil map delineations to 
improve (co-)kriging of point data on moisture deficits. Geoderma, 43: 163-
177. 

Stineman, R.W., 1980. A consistently well behaved method of interpolation. Creative 
Computing, 6(7): 54-57. 

Sun, W., 1998. Comparison of a cokriging method with a Bayesian alternative. 
Environmetrics, 9: 445-457. 

Suro-Pérez, V. and Journel, A.G., 1991. Indicator principal component kriging. 
Mathematical Geology, 23(5): 759-788. 

United Nations, 1993. Convention on Biological Diversity. Treaty Series: No. 30619. 
Concluded at Rio de Janeiro on 5 June 1992.  

Van Kuilenburg, J., De Gruijter, J.J., Marsman, B.A. and Bouma, J., 1982. Accuracy 
of spatial interpolation between point data on soil moisture supply capacity, 
compared with estimates from mapping units. Geoderma, 27: 311-325. 

Venables, W.N. and Ripley, B.D., 2002. Modern Applied Statistics with S-Plus. 
Springer-Verlag, New York, 495 pp. 

Verfaillie, E., van Lancker, V. and van Meirvenne, M., 2006. Multivariate 
geostatistics for the predictive modelling of the surficial sand distribution in 
shelf seas. Continental Shelf Research, 26: 2454-2468. 

Vicente-Serrano, S.M., Saz-Sánchez, M.A. and Cuadrat, J.M., 2003. Comparative 
analysis of interpolation methods in the middle Ebro Valley (Spain): 
application to annual precipitation and temperature. Climate Research, 24: 
161-180. 

Voltz, M. and Webster, R., 1990. A comparison of kriging, cubic splines and 
classification for predicting soil properties from sample information. Journal 
of Soil Science, 41: 473-490. 

Wackernagel, H., 2003. Multivariate Geostatistics: An Introduction with 
Applications. Springer, Berlin, 387 pp. 

Wahba, G. and Wendelberger, J., 1980. Some new mathematical methods for 
variational objective analysis using splines and cross-validation. Monthly 
Weather Review, 108: 1122-1145. 

Wang, H., Liu, G. and Gong, P., 2005. Use of cokriging to improve estimates of soil 
salt solute spatial distribution in the Yellow River delta. Acta Geographica 
Sinica, 60(3): 511-518. 

Wang, J., Li, Q., Fischer, M.M., Chen, J. and Chen, H., 1996. Adaptive structure 
model of earthquake trend regionalization. Earthquake Research in China, 12 
(supplement): 78-88. 

Weber, D. and Englund, E., 1992. Evaluation and comparison of spatial interpolators. 
Mathematical Geology, 24(4): 381-391. 

Webster, R. and Oliver, M., 2001. Geostatistics for Environmental Scientists. John 
Wiley & Sons, Ltd, Chichester, 271 pp. 

Webster, R. and Oliver, M.A., 1992. Sample adequately to estimate variograms of soil 
properties. Journal of Soil Science, 43: 177-192. 

Welham, S., Cullis, B.R., Gogel, B., Gilmour, A. and Thompson, R., 2004. Prediction 



References 

 108

in linear mixed models. Australian and New Zealand Journal of Statistics, 46: 
325-347. 

Whiteway, T. et al., 2007. Seascapes of the Australian Margin and Adjacent Sea 
Floor: Methodology and Results, Geoscience Australia. 

Willmott, C.J., 1981. On the validation of models. Physical Geography, 2: 184-194. 
Willmott, C.J., 1982. Some comments on the evaluation of model performance. 

Bulletin American Meteorological Society, 63(11): 1309-1313. 
Willmott, C.J. and Matsuura, K., 1995. Smart interpolation of annually averaged air 

temperature in the United States. Journal of Applied Meteorology, 34: 2577-
2586. 

Wu, J., Norvell, W.A. and Welch, R.M., 2006. Kriging on highly skewed data for 
DTPA-extractable soil Zn with auxiliary information for pH and organic 
carbon. Geoderma, 134: 187-199. 

Yates, S.R., Warrick, A.W. and Myers, D.E., 1986. Disjunctive kriging: 1. Overview 
of estimation and conditional probability Water Resources Research, 22(5): 
615-621. 

Zhou, F., Guo, H.-C., Ho, Y.-S. and Wu, C.-Z., 2007. Scientometric analysis of 
geostatistics using multivariate methods. Scientometrics, 73(3): 265-279. 

Zimmerman, D., Pavlik, C., Ruggles, A. and Armstrong, M.P., 1999. An experimental 
comparison of ordinary and universal kriging and inverse distance weighting. 
Mathematical Geology, 31(4): 375-390. 

 



Appendices 

 109

Appendices 

Appendix A. Applications of Spatial interpolation Methods in 
Various Disciplines 

A.1. Meteorology and Water Resources  

A total of 16 studies that compared the performance of the spatial interpolation 
methods in meteorology and water resources have been reviewed in this section.  

Study1: OK, UK with a linear drift (UK-LD), UK with quadratic drift (UK-QD), 
TSA (with first, second, third and fourth order), IDW (with distance powers 0, 1, 2, 3 
and 4) and AK were employed for smoothing hydraulic conductivity data using 383 
samples, 500 m apart over an area of 16,000 ha (Hosseini et al., 1993). Leave-one-out 
cross-validation was used for validating the performance of these spatial interpolators. 
The best methods were OK, UK with a linear drift and IDS in terms of MAE. 
Although overall, the poor performance of all methods due to the very high variation 
(coefficient of variation (CV) = 78.68%) in the data, OK was considered the most 
appropriate method because of its precision and the smoothness of its interpolated 
surface. The similarity in the precision of these methods might be due to the high 
sampling density, as discussed in the Chapter 6.  

Study 2: IDS, Optimal IDW (OIDW, the power parameter is chosen based on the 
minimum MAE), cubic splines, LM, TSA, LR, kriging, and CK were compared in 
temperature estimation (i.e., minimum and maximum) for three temporal scales (10 
year average, seasonal and daily) in two regions (Collins and Bolstad, 1996). The 
results show that: 
1) IDS performed consistent poorly across all temporal and regional scales. Where 

data were sparse, the results were implausible. It also suffered from discontinuities 
at station locations resulting in temperature peaks (i.e., "birds eye" patterns in the 
interpolated surface). OIDW was recommended over IDS because OIDW would 
always yield equal or better MAE results than IDS since the power parameter was 
chosen on the basis of minimum MAE. When the data were isotropic, IDS had 
lower MAE values than kriging. OIDW, however, was not always as visually 
plausible as kriging. When the data were not correlated and isotropic, the most 
preferred method turned out to be OIDW. 

2) TSA was not recommended for temperature interpolation because: a) it was not 
representative of the original data range as its interpolated temperature range was 
typically narrower than the original data range; b) although it tended to capture 
broad regional trends, due to bias introduced by multicollinearity, these trends 
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were suspect; and c) where station distribution resulted in extrapolation beyond 
the convex data hull, the estimated temperatures were well beyond the original 
data range. 

3) Splines generated poor visual and cross validation results. Where data variances 
were high, splines tended to have interpolated values well outside the observed 
data range. Splines also produced high MAE values across all temporal scales, 
across both regions, for both minimum and maximum temperatures. Splines 
performed much better when dense, regularly-spaced data were available. A 
similar conclusion was made by Hutchinson and Gessler (1994) that cubic splines 
was generally not recommended for interpolation of irregularly-spaced data. 
Splines are useful for quickly obtaining a clear map showing the main features of 
the variable, but they are not an accurate spatial interpolator. Generally speaking, 
splines produced more outliers than kriging. 

4) LM was clearly superior to all other methods, with the lowest MAE value of the 
eight methods considered. The performance of LM did not appear to be affected 
by data range. However, care must be taken with LM to ensure the results are 
representative of the original data range. Where station elevations are not 
representative of regional elevations, care must be taken in comparing observed 
and interpolated data. 

5) While LR performed poorly in terms of MAE, its results were more plausible than 
methods that did not use elevation as ancillary information. When elevation and 
temperature were not correlated, LR degraded into a NN where estimated values 
simply took on the value of the nearest station point. LR resulted in some banding 
effects and “island-like” isothermal tessellations around certain influential 
stations. Outlier stations were less noticeable with LM than with LR. In Stahl et 
al.’s study (2006), it was found that methods that compute local lapse rates 
performed better for datasets with a greater number of higher-elevation stations. 

6) Kriging produced better results than OIDW when the data were anisotropic. 
Kriging appeared similar to splines, but had lower MAE values than splines for 
every case tested. Perhaps the greatest advantage of kriging is that the 
geostatistical process provides the users greater information about the spatial 
variability of the regionalised variable of interest via the semivariogram and 
variogram surfaces.  

7) CK produced visually implausible results and when elevation and temperature 
were not correlated. Its overall performance beared a strong resemblance to 
kriging. However, further evaluation is not possible because the methods of 
kriging and cokriging method used in this study were not stated. 

8) Stronger correlations between elevation and temperature favoured LM and LR. 
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LR, CK and LM were found to be inappropriate when correlations between 
temperature and elevation were below 0.72. Inverse distance squared, optimal 
inverse distance, and kriging showed similar robustness to a priori data range, 
correlation (between elevation and temperature), and variance. Of all the methods 
assessed, splines seemed to be most sensitive to a priori data characteristics. 
Kriging was favoured over optimal inverse distance when data were anisotropic. 
When data were isotropic, OIDW was favoured. When data variance was high or 
correlation between temperature and elevation were low, CK produced specking 
or “birds eye” effects around station locations.  

Study 3: OK, OCK and RK-C were used to interpolate long-term mean total annual 
reference evapotranspiration and long-term mean total annual precipitation for a 
47,000 km2 complex topographic region (Martínez-Cob, 1996). A total of 108 and 
132 samples were used for estimation for evapotranspiration and precipitation 
respectively, and 50 samples for validation. Elevation was used as secondary 
information. It was found that OCK was more accurate thane OK and RK-C, and that 
RK-C did not improve OK results. The good performance of OCK was probably due 
to a good correlation between the primary and secondary variables.  

Study 4: GIDS, IDS, NN, CK, OK, RK-C, and UK were compared for the spatial 
interpolation of monthly temperature and monthly precipitation using 32 samples with 
elevation as the secondary information (Nalder and Wein, 1998). Leave-one-out 
method was used for validation. GIDS produced the lowest MAE and RMSE while 
providing low MEs for both temperature and precipitation. It also produced a more 
consistent performance than any other method from month to month. However, it was 
not significantly better than RK-C for temperature or better than OK, CK, NN and 
IDS for precipitation. Nevertheless, GIDS was considered preferable because it is 
robust and relatively simple to apply. 

Study 5: MWRCK, CK and LSZ (a Bayesian alternative) were used to predict the 
NO3 in rainfall using 48 monthly samples for 35 datasets with SO4 as secondary 
information and leave-one-out cross validation was used (Sun, 1998). It was found 
that LSZ yielded a slightly smaller MSE than MWRCK. LSZ also produced an almost 
correct coverage probability, but MWRCK yielded a low coverage probability.  

Study 6: IDW, TPS and OCK were evaluated using a DEM to a resolution of 1 km2 
over a 20,000 km2 square region (Hartkamp et al., 1999). A total of 169 samples of 
monthly precipitation were used for predictions and 25 samples for validation. For 
monthly mean maximum temperature 125 samples were used for estimation and 15 
samples for validation. The validation showed no difference among the three methods 
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for predicting precipitation. For maximum temperature, splines performed best. The 
rigid prerequisites of cokriging regarding the statistical properties of the data used 
(e.g., normal distribution, non-stationarity), along with its computational demands, 
may put this approach at a disadvantage. Taking into account error prediction, data 
assumptions, and computational simplicity, TPS was recommended for interpolating 
climate variables. 

Study 7: SKlm, KED, OCCK, LM, NN, IDS, and OK were compared using 36 
samples of annual and monthly rainfall data in a 5000 km2 region (Goovaerts, 2000). 
Leave-one-out cross validation was used for validating the performance of these 
spatial interpolators. This study revealed that: 1) three multivariate geostatistical 
methods (i.e., SKlm, KED and OCCK) using elevation as a secondary variable 
outperformed the other spatial interpolators in terms of MSE; 2) SKlm yielded the 
best predictions; and it also provided an easier way to incorporate several secondary 
variables than the other two multivariate methods; 3) OK was better than LM when 
the correlation coefficient between rainfall and elevation was smaller than 0.75; 4) the 
three multivariate methods generally reduced the OK prediction error as long as the 
correlation coefficient was larger than 0.75; and the benefit of the multivariate 
techniques was marginal when the correlation was too small; and 5) when the 
correlation ranged between 0.4 and 0.7 and the secondary information (i.e., elevation 
data) exhibited a much smaller relative nugget effect than rainfall data, inclusion of 
secondary information still improved the prediction, in particular when the nugget 
effect of their cross semivariogram was small. 

Study 8: LM with IDW, TSA extended to include secondary information, RK-C 
(detrended OK) and partial TPS incorporating secondary information were applied to 
interpolating the maximum and minimum daily air temperatures to a resolution of 1 
km using 174 samples in England and Wales region (Jarvis and Stuart, 2001). Several 
variables including elevation and land cover classes were used as secondary 
information or “guiding variables”. Prior to the inclusion of secondary variables, all 
methods produced similar estimates for both minimum and maximum temperatures in 
terms of RMSE, with the exception of TSA which was less accurate than the others. 
After incorporating the covariates, the performance of all methods improved 
considerably, and the differences in estimation accuracy among partial PTS, OK and 
IDW results were not significant although the performance of TSA was poorer. Best 
accuracies were achieved using partial TPS.  

Study 9: IDW, OK, RK-C and OCK, and CART with OK and OCK were used to 
estimate snow depth using three datasets of 550 samples collected from an area of one 
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km2 within each of three study regions (Erxleben et al., 2002). Elevation, slope, 
aspect, net solar radiation and vegetation were used as the secondary information. 
Leave-one-out cross-validation was used to assess the performance of these spatial 
interpolators. It was found that the tree-based models provided the most accurate 
estimate, explaining up to about 30% of the observed variability. Kriging of the 
regression tree residuals did not substantially improve the models. The poor 
performance of all models was largely due to the lack of spatial structure. The value 
for the power parameter for IDW was not provided in this study. However, it was 
found previously that combining regression tree and OK or OCK could explain 6-20% 
more of the variance and thus improve the estimation of snow depth over 6.9 km2 in 
the same region (Balk and Elder, 2000).  

Study 10: IDW (with  power parameters 1, 2 and 3), LM, NN, splines (with a tension 
parameter of 400 and 500, and a smoothing parameter of 0 and 400), TSA (with first, 
second, third, fourth and fifth order), SK, OK, BK, OK with anisotropy, UK with 
linear drift, UK with quadratic drift, CK (perhaps OCK), LM plus IDS, and splines 
(with tension of 400) of the residuals of LM were applied to annual precipitation and 
temperature for a mountainous region of over 20,000 km2 (Vicente-Serrano et al., 
2003). Several variables including longitude, latitude, distance to Mediterranean Sea, 
elevation, radiation and their two-way interaction were used as secondary 
information. These variables were highly correlated with the primary variable. A total 
of 99 samples were used for precipitation and 61 for temperature, of which 70% were 
used for estimation and the remaining 30% for validation. It was found that the 
geostatistical methods and a regression model generated the best estimations for 
precipitation and the regression-based method produced the most accurate results for 
temperature.  

Study 11: RBFN, improved RBFN and OK were compared using 20 simulated 
datasets consisting of 25 samples randomly sampled from 100 evenly spacing grid 
points in a square area of 81 grid cells and the remaining 75 data points were used for 
validation (Lin and Chen, 2004). The data for each grid point of each dataset was 
generated using an exponential semivariogram model. These methods were also 
applied to 64 datasets of hourly rainfall records of 55 samples in a region of 2726 km2 
and leave-one-out cross validation was used. The results showed that improved RBFN 
was the best, then OK and the least is RBFN regardless of the arrangement of sample 
points in terms of RMSE. A similar pattern of performance was observed for the 
rainfall data. The improved RBFN had a higher computation speed for larger dataset 
as compared to OK. 
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Study 12: Two spline methods (regularized and tension), IDW, NN, LM and kriging 
with different variogram models were compared using daily rainfall records of sample 
size 187, 280 and 374 in a region of 41,284 km2 with a resolution of 500 m, 1,000 m, 
5,000 m, and 10,000 m (Naoum and Tsanis, 2004). The remaining 280, 187 and 93 
samples out of the total 467 samples were probably employed for validation 
respectively. Kriging with exponential and universal_1 models showed consistent 
performance and provided reliable estimates in terms of MAE and standard deviation 
regardless of sample size and resolution. However, it is not clear which specific 
kriging method was used in this research and this study was conducted in ArcView 
GIS 3.2. 

Study 13: IDS, OK, OCK and OK combined with LR were applied for spatial 
analysis of monthly mean air temperature using 90 samples in the Qinghai-Tibet 
Plateau with a resolution of 0.5° (Li et al., 2005). The results revealed that the 
performance of these methods was as follows: OK combined with LR performed the 
best, followed by COK and OK, and then IDS in terms of subjective analysis. The 
limited availability of the secondary information affected the performance of COK. 

Study 14: GIDS, IDS, OK, and RK-C were compared for the prediction of reference 
evapotranspiration using 74 samples for estimation and 19 samples for validation in a 
region of 131,944 km2 with a resolution of 7.62 km (Mardikis et al., 2005). GIDS was 
found to be the most accurate method in terms of MAE and RMSE. GIDS also 
performed better than NN, LM and several LR related methods (Stahl et al., 2006),. 

Study 15: RK-C, IDW (with distance power 4) and LM with IDW were used for the 
spatial interpolation of ambient ozone concentrations to a resolution of 5 km from 
sparse monitoring points (sample size = 38) in Belgium (land area is 30,278 km2). 
Population density data were used as auxiliary data (Jef et al., 2006). Leave-one-out 
method was used for validation. RK-C was the best spatial interpolator in terms of 
RMSE and it significantly improved the estimation in comparison with IDW. 

Study 16: NN, IDS, OK, OIK, KED and indicator KED (IKED) were compared for 
predicting hourly precipitation (21 stations with 64 time steps) with secondary 
information from daily precipitation (281 stations), elevation and radar in a region of 
25,000 km2 with 14,436 grid cells (Haberlandt, 2007). It was found that KED and 
IKED clearly outperformed the other methods in terms of standardised RMSE. The 
best performance was achieved when all additional information were used 
simultaneously with KED. IKED produced, in some cases, smaller RMSEs than the 
compared methods, which used the original data, but at the expense of a significant 
loss of variance. 
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A.2. Ecology 

Only one study was found in ecology that compared the performance of the spatial 
interpolation methods. StOK was found to be the best in terms of the accuracy of the 
estimations (i.e., MAE, RMSE and correlation coefficient) in comparison with six 
other methods that are OK, OCK, IDS, StOCK, StIDW with p=1, and Cl using 141 
samples of plant diversity data collected from a tropical landscape mosaic of 64 km2 
in GS+ (Hernandez-Stefanoni and Ponce-Hernandez, 2006). Vegetation indices were 
used as secondary information and leave-one-out method was used for validation. The 
relative poor performance of OCK and StOCK was due to the poor correlation 
between the primary variable and secondary variables.  

Geostatistical tools have been applied for modelling and interpreting ecological 
spatial dependence to many aspects of ecology and their application in this discipline 
dates back to 1960 (Rossi et al., 1992). LM was used to predict the spatial distribution 
of biomass of three plant species using aquatic environmental variables including 
sediment and depth (Lehmann, 1997). OK was used to assess the impacts of 
disturbances on the distribution of grass shrimp in estuaries (Porter et al., 1997). 

A.3. Agriculture and Soil Science 

A total of 25 studies have been reviewed in this section, which compared the 
performance of the spatial interpolation methods in agriculture and soil science. 
McBratney et al. (2003) summarised some application of the spatial interpolation 
methods in soil science.  

Study 1: NN, IDS and OK were applied for predicting the soil moisture using 530 
sample for estimation and 661 samples for validation in an area of 359 ha (Van 
Kuilenburg et al., 1982). OK was the most accurate of these methods, but it was only 
marginally better than IDS in terms of RMSE.  

Study 2: OCK, KED, RK-A and RK-B were applied for estimating transmissivity at a 
resolution of 3 km using 72 samples of transmissivity measurements and 235 samples 
of specific capacity data as secondary information in a region of 80 by 40 km (Ahmed 
and De Marsily, 1987). These methods were also applied to 15 simulated datasets. 
The following conclusions were drawn: 1) OCK was found to be the most rigorous 
method and should be used if the residuals of the regression of one variable on the 
other are spatially correlated and if the correlation coefficients between the primary 
and secondary variables are high, but it requires all variables have a significant 
number of common data points for a reasonable estimation of the cross variogram; 2) 
RK-A could be used only if the residuals of the regression are spatially uncorrelated 
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or if the correlation coefficients between the primary and secondary variables are 
high, and it requires all variables to have a significant number of common data points 
to fit a regression; 3) KED could be used for an unlimited number of variables, like 
OCK and it does not require any common data points between the variables; and 4) 
RK-B did not show any advantage.  

Study 3: TPS and OK were found to be the most accurate methods for estimating soil 
pH data using 121 samples collected in an area of 10 by 10 grid of 10 m spacing in 
comparison with global means and medians, NN, IDW-0 (averages of three nearest 
samples), IDS, AK, NaN, and quadratic TSA in terms of MSE based on 64 validation 
samples (Laslett et al., 1987).  

Study 4: Laslett and McBratney (1990) further compared NN, TPS, AK, global 
kriging using generalised covariances (SK?) and REML UK (a global UK fitted by 
REML) using regularly spaced 121 soil samples as in study 3 to predict soil pH, with 
and without 80 additional samples to account for spatial variation at short distances. 
Two datasets of 121 and 64 samples were used for validation. The results showed that 
REML UK trend was consistently the best performing method. The inclusion of close 
data pairs usually improved the predictions of the methods, but no dramatic 
improvement occurred with REML UK as the best overall method for the dataset. 

Study 5: SK, StSK, Cl, and a cubic spline were evaluated and compared for clay 
content data (Voltz and Webster, 1990). One dataset consists of 321 samples collected 
along a transect 3.2 km long at 10 m intervals; of which 107 samples were used for 
estimation and 212 for validation. Two other datasets were collected from point 
locations with 100 m spacing in an area of 92 ha. The first dataset consisted of 34 
samples for estimation and 143 for validation and the second one with 114 samples 
for prediction and 63 for validation. StSK and SK were found to perform better than 
Cl and spline in terms of MSE, and StSK was more precise than SK. 

Study 6: Cubic splines and SK were compared using two sampled surface datasets 
(Laslett, 1994). One dataset consisted of 1150 samples of heights measured at 1 
micron intervals along the drum of a roller and the other dataset was collected along a 
transect at 365 sampling locations of 4 m spacing. The results revealed that SK 
sometimes outperformed the splines by considerable margins, particularly if the 
samples are highly clustered; and it never performed worse than the splines in terms 
of MSE.  

Study 7: LM, OK, UK, OCK, RK-A, and RK-B were applied to 161 samples of four 
soil properties data in an area of 400 by 700 m and 71 samples were used for 
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validation (Odeh et al., 1994). RK-A produced the best results for the depth of solum 
and subsoil clay, while RK-B gave the best estimation for the depth of bedrock and 
topsoil gravel in terms of RMSE. Generally speaking RK methods outperformed all 
the other methods. The poor performance of OK was largely due to the strong trend in 
the data as evidenced by the performance of LM.  

Study 8: LM, OK, UK, isotopic OCK, heterotopic OCK, RK-A, RK-B and RK-C 
were further compared using the datasets in Study 7 by Odeh et al.(1995). In this 
study, both RK-C and heterotopic OCK performed well in terms of RMSE, and RK-C 
generally performed the best and was more flexible than heterotopic OCK. 

Study 9: OK, OCK and RK-A (kriging combined with regression) were compared for 
539, 141, 55 and 33 samples of non-stationary data (with a drift of degree 0, 1, and 2) 
for soil layer depth in an area of about 97 ha (Knotters et al., 1995). A total of 117 
samples were used for validation. Soil electrical conductivity was used as auxiliary 
variable. RK-A was found to be the most accurate method in terms of RMSE.  

Study 10: Cl, GM, IDS, OK, NN, IDW-0, and TPS and their combination with soil 
strata (i.e., stratified using soil units) were used to estimate soil properties (thickness 
of A1 horizon, maximum areic mass of phosphate adsorbed by soil, mean highest 
water table, and mean lowest water table) using 188 samples (a square grid of 12 x 16 
points, spaced 500 m apart) in a region of 6 x 8 km (Brus et al., 1996). A dataset 
consisting of 96 samples was used for validation. Soil units were used to stratify the 
data. It was found that: 1) IDS and OK were more reliable, although differences 
between methods were small and not statistically significant, 2) the stratification 
slightly improved the estimation but the effect was not statistically significant, and 3) 
the combined effect of methods and stratification was usually not significant. 
However, OK performed better for values near data points. Combined with soil map 
stratification, OK was a more reliable estimator in the sense that it estimated all soil 
properties well. 

Study 11: OK and IDW (with distance power parameters 1, 2 and 4) were compared 
using two datasets of regularly spaced and high density samples (Gotway et al., 
1996). The first dataset consisted of 255 soil N and organic matter samples collected 
from an area of 90 x 518 m with a sampling space of 6 x 15 m plus 60 extra samples 
at closer spacings of 0.76, 1.5, 2.3, 3.7, and 5.3 m. Samples were divided into subsets 
for the prediction (195, 119) and validation (119 and 136) respectively. The second 
dataset consisted of about 1388 soil N and organic matter samples collected from an 
area of 53 ha. Samples were again divided into subsets for the prediction (731, 657) 
and validation (657, 709) respectively, and two further subsets of 192 samples and 88 
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samples were sampled on a regular grid of size 48 x 48 m and 72 x 72 m respectively 
for prediction, and 657 samples were used for validation. The results revealed that 1) 
the accuracy of IDW tended to increase with the power of distance for datasets with a 
CV of <25%; 2) for datasets with greater variation (with a CV of >25%), IDW using 
high distance powers (2 or 4) can produce poor estimations; 3) OK was slightly better 
than IDW for all sampling scenarios in terms of MSE; 4) “the accuracy of predictions 
from kriging was generally unaffected by the coefficient of variation”, but this 
statement is not correct because a further analysis showed that OK had a similar 
response to changes in CV for both soil nitrate (Figure A.1) and soil organic matter 
(Figure A.2); and 5) the use of wider sampling spacings greatly reduced the 
information in the resultant maps. 
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Figure A.1. Impacts of the variation in the dataset of soil nitrate on the performance 
of four spatial interpolation methods based on the results of Gotway et al. (1996). 

 
Figure A.2. Impacts of the variation in the dataset of soil organic matter on the 
performance of four spatial interpolation methods based on the results of Gotway et 
al. (1996). 
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Study 12: Goovaerts (1997) compared several geostatistical methods using the Jura 
dataset collected at Lausanne. The results showed that OCK was compared with SCK, 
SOCK and OCCK. OCK estimates better followed the data fluctuations than SCK 
estimates. OCK and SOCK performed equally. OCCK only slightly reduced the 
accuracy of estimation in comparison with OCK. 

Study 13: KED and SKlm estimates displayed similar long-range features, but KED 
yielded more local details and might produce unacceptable negative estimations for 
soil mineral concentration using the Jura dataset (Goovaerts, 1997). 

Study 14: OIK and OICK with a single unbiasedness constraint produced similar 
estimations except that OICK resulted in more variable estimations beyond data range 
and OICK might produce estimations outside the data range such as predicted 
probabilities being negative or >1 (Goovaerts, 1997). PK, as a special case of OICK, 
shared the same features of OICK as discussed above. 

Study 15: OK, lognormal OK and IDW (with distance powers 1, 2, 3 and 4) were 
compared for predicting soil P and K using 30 datasets of sample size ranging from 
36 to 1752, with sample spacing from 25 to 100 m (Kravchenko and Bullock, 1999). 
The results showed that OK with the optimal number of the neighbouring samples, a 
careful selected variogram model and appropriate log-transformation generally 
performed better than IDW in terms of ME and MAE. 

Study 16: KED and LM were applied for predicting the thickness of a silty-clay-loam 
horizon with different sample densities (40, 50, 75, 100, 125 and 150) in an area of 
380 ha and with a resolution of 20 m (Bourennane et al., 2000). A total of 69 samples 
were used for validation. The results showed that irrespective of sample size, KED 
estimates were on average more accurate than LM in terms of RMSE. KED 
performed better when the sample size increased, but the performance of LM 
remained unchanged over all sample sizes. Moreover, KED performed even better at a 
sample size of 40 than LM at whatever the sample size. KED can improve 
estimations, resulting in a considerable reduction of sampling intensity and while 
maintaining high prediction accuracy. 

Study 17: GAM, LM, CART, OK, KED, RK-F and RK-C were compared for soil 
cation exchange capacity with a number of secondary variables in an area of 74 ha 
(Bishop and McBratney, 2001). A total of 113 samples were used for estimation and 
leave-one-out method was used for validation. It was found that the better prediction 
methods were KED, RK-C and RK-F in terms of RMSE, of which KED was the best.  
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Study 18: OK, IDW (with distance powers 0.5, 1 and 2, and two search radii 12 and 
22 km), and TPS with tension method (with weights 0.01, 0.1, and 0.5, and two 
variations of the number of points parameter = 8 and 16) were applied to predict 
several soil properties (clay content, pH, Na, Ca, Mg, total available P, and organic 
matter) using 44 samples in a region of 20 x 70 km (Schloeder et al., 2001). Leave-
one-out method was used for validation. OK and IDW produced similar accuracies 
and were similarly effective, and TPS with tension performed poorly by comparison. 

Study 19: OK, lognormal OK, DK, IK and MBK were compared using a calibration 
dataset consisting of 500 samples of the trace element (Co and Cu) concentrations and 
a validation dataset consisting of 2149 samples over a region of 3500 km2 (Moyeed 
and Papritz, 2002). No method was found to be superior to the others when the data 
were marginally skewed. OK failed to model the conditional distribution of the 
marginally skewed data. Between them, the nonlinear methods modelled the 
conditional distribution with similar success. 

Study 20: OK, UK, SKlm and OCK were compared for soil silt content for 96 
samples with elevation as secondary information in an area of 8 x 18 km (Meul and 
Van Meirvenne, 2003). A total of 164 samples were used for validation. OCK best 
accounted for the global trend while UK was best for accounting for the local 
nonstationarity in terms of MSE. Estimations from combining the results of these two 
methods (i.e., UK + OCK) were more precise than when any single method was used 
over the entire study region. 

Study 21: SK, OK, lognormal kriging, UK, DK and IDW and their combinations with 
linear and quadratic trend were applied to 70 samples of soil surface Hg content data 
collected over a region of 1039 km2 (Hu et al., 2004). Leave-one-out method was used 
for validation. It was found that the methods with a trend effect were better than those 
without a trend effect; and first-order trend UK method was the best, while the IDW 
the worst. However, the results are slightly contentious as the value of the power 
parameter used for IDW was not stated in the study. 

Study 22: TSA-OK and TSA-OCK (perhaps OCK) were compared for predicting soil 
Cl- concentration using 119, 120 and 239 regularly spaced samples collected over a 
region of 5862 km2 (Wang et al., 2005). Soil total salt was used as secondary 
information and leave-one-out cross validation was used to assess the performance of 
these spatial interpolation methods. The results revealed that OCK was more accurate 
than OK in terms of RMSE. 

Study 23: OK and OCK was applied for predicting soil Zn using 293 samples of 
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highly skewed data with a testing set of 294 samples in the 18 counties of Northern 
North Dakota (approximately 78,000 km2) (Wu et al., 2006). Soil organic carbon and 
pH were used as auxiliary variables for OCK. Three methods of data transformation 
(logarithms, standardised rank order, and normal scores) were carried out to reduce 
the skewness. OCK, using soil organic carbon or pH as secondary variable, was 
consistently more accurate than OK in terms of RMSE. OCK with soil organic carbon 
and pH together provided additional benefit. Data transformation generally improved 
the estimations, especially for low Zn concentrations. The differences in the 
performance between normal score OCK, log-normal OCK and rank-ordered OCK 
were relatively small. 

Study 24: OK, OCK and RK-E were compared using 160 samples of soil bulk 
electrical conductivity over an area of 10.5 ha (Li et al., 2007). A total of 80 samples 
were used for validation. The results showed that irrespective of the sample size of the 
primary variable (i.e., 40, 70, 100, 130 and 160), RK-E produced, on average, more 
accurate predictions than OK and COK in terms of RMSE. RK-E was more accurate 
at a sample size of 70 compared to OCK at any of the sample size. And RK-E was 
more accurate at a sample size of 40 than OK at any of the sample size. The study 
concluded that RK-E showed promise for improving predictions with considerable 
reduction of sampling intensity while maintaining high prediction accuracy. 

Study 25: REML-EBLUP, OK and RK-C were compared for four topsoil properties 
datasets, namely: 1) 155 Zn concentration samples in an area of 10 km2, 2) 399 
samples of soil pH with 200 m spacing between sites, 3) 341 samples of soil clay 
content with approximately 2.8 km sampling spacing, and 4) 248 samples of soil 
nitrogen in an area of 83 ha (Minasny and McBratney, 2007). The results revealed 
that although REML-EBLUP generally improved the prediction in terms of RMSE, 
the improvement was small compared with RK-C. Therefore, RK-C is a robust 
method for practical application, while REML-EBLUP is useful when the spatial 
trend is strong and the number of observations is small (<200).  

A.4. Marine Environmental Science 

A total of four studies that compared the performance of the spatial interpolation 
methods in marine environmental science have been reviewed in this section. 

Study 1: KED and OK was used for predicting haddock of ages 1, 2 and 3 years using 
200-300 samples in each year from 1983 to 1997 in a region of about 369,154 km2 
(Rivoirard and Wieland, 2001). Day/night indicator and time of day were used as 
external drift. The results from cross-validation indicated that KED with day/night 
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indicator and with time of day performed better than OK in terms of MSE. 

Study 2: OK and KED with bathymetry as external drift were compared for grain size 
data (ICES, 2005). The results revealed that the estimations from KED were 15.7% 
more accurate than those generated by OK in terms of MSE. This research was further 
reported in detail by Verfaillie et al.(2006), as discussed next. 

Study 3: OK, KED and LM were applied for predicting the surficial sand distribution 
on continental shelf over a region of 3600 km2 using about 6,000 samples, of which 
70% of the samples were used for estimation and the remaining for validation 
(Verfaillie et al., 2006). Bathymetry, with a resolution of 80 m, was used as a 
secondary variable. KED proved to be the most accurate method in terms of ME, 
MAE, MSE and RMSE; and the resulting map was more realistic than that from the 
other methods and separated clearly the sediment distribution over the sandbanks 
from the swales.  

Study 4: OK, OCK, IDW with three distance power parameter (1, 1.5, and 2) and two 
search radii, NN and Topo to Raster (T2R, hydrological splining) were compared 
using sand data in the northern Australian marine region (Ruddick, 2007). Sample 
size for prediction and validation, summary statistics of input data and area of study 
region were not reported in this study. However, the results showed that IDW, OK, 
NN and T2R performed similarly in terms of RMSE, although T2R produced slightly 
poor estimations. The failure of OCK was attributed to the weak correlation between 
sand concentrations and bathymetry. 

The comparison studies of the spatial interpolation methods in marine environmental 
science are scarce. However, there are some applications of the spatial interpolation 
methods for estimating marine environmental variables. DK has been used to model 
regions of high fish density (Petitgas, 1993). NN has been used to interpolate 
bathymetry, sea temperature and seismic data (Gold and Condal, 1995). OK has been 
used to predict the spatial patterns of microphytobenthic biomass (Guarini et al., 
1998) and the spatial distribution of nutrients in the surficial sediments (Danielsson et 
al., 1998). OK and DK have been used for the assessment of the spatial structure and 
biomass evaluation in Mediterranean Sea (Maynou et al., 1998). IK has been applied 
to mapping of the spatial distribution of benthic communities following a categorical 
classification scheme (Jerosch et al., 2006). Kriging has been used to determine 
sediment transport (Lucio et al., 2006). Finally, OK has been used for seabed 
mapping and characterisation of sediment variability (Goff et al., 2008).  
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A.5. Other Disciplines 

A total of five studies that compared the performance of the spatial interpolation 
methods in other disciplines have been reviewed in this section.  

Study 1: UK, DK and a local mean estimator were compared using 36 datasets 
chosen randomly on simulated stationary and nonstationary fields (Puente and Bras, 
1986). The fields were generated on a rectangular region of 30, 000 km2, with side on 
proportion 2 to 1, on a regular 21 x 11 grid. Half of the datasets consist of about 50 
points and the other half of datasets about 30 points. The results revealed that in all 
cases, UK and DK performed better than the local mean estimator, with UK either 
performed better than or as good as DK in terms of MSE. UK performed particularly 
well with nonstationary fields, but often underestimated the predicted estimation 
variance. 

Study 2: OK, lognormal OK, SK, lognormal SK, disjunctive OK and disjunctive SK 
were compared using 122 samples in geology (Boufassa and Armstrong, 1989). The 
results showed that lognormal kriging produced comparable results to the 
corresponding type of disjunctive kriging. Results produced by linear kriging (OK and 
SK) were similar to those produced by the corresponding nonlinear methods. OK, SK, 
disjunctive OK and disjunctive SK can produce negative estimates because of the 
presence of negative weights, but lognormal OK and lognormal SK never generate 
negative estimates since the estimator is an exponential. It was recommended that SK 
should be used when the mean of the distribution is known, otherwise OK should be 
used. The similar results from linear and nonlinear methods were argued to be due to 
the CV was only 1.53. However, this CV is very high and the observed similarity 
might actually result from the high sampling density instead.  

Study 3: It was found that the accuracy of four spatial interpolation methods was as 
follows: OK > IDS > TIN > NN in terms of MAE when the samples were least 
clustered; and the order became OK > TIN > IDS > NN in terms of MAE and MSE 
when the samples were most clustered (Isaaks and Srivastava, 1989). The datasets 
used in this study are probably simulated data.  

Study 4: OK, SK, lognormal OK, rank OK, global mean, IDW (with distance power 
1), IDS, TSA and Projected Slope were compared using 54 subsets of data drawn 
from an exhaustive set of 19,800 data points in a 110 x 180 array, and 198 block (2 x 
2 array) estimates were made with each method for each subset (Weber and Englund, 
1992). The subsets were drawn independently according to a factorial design with 
three sample sizes (104, 198 and 308), three sample patterns (random, cellular 
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stratified, and regular grid), and two sampling precisions (zero error and high level 
normally distributed error with a relative standard deviation of 32% of the true value). 
It was found that the accuracy of these methods in terms of MSE was as follows: IDS 
> IDW > OK > SK > the other methods compared. However, it was suggested that the 
results from this study should not be interpreted to mean the IDW and IDS are 
superior to kriging methods in all cases. 

Study 5: Four spatial interpolation methods (OK, UK, IDS-6 using the nearest six 
observations, and IDS-12 using the nearest 12 observations) were compared using a 
factorial computational experiment that included three simulated surface types (plane, 
sombrero and Morrison’s surface), four sampling patterns (hexagonal, inhibited, 
random and clustered), two variances and two correlation strength parameters 
(Zimmerman et al., 1999). The results revealed that the two kriging methods 
performed substantially better than the two IDS methods over all levels of surface 
type, sampling pattern, noise and correlation. Moreover, there was little difference 
between two kriging methods, although OK performed marginally better when the 
data were inhibited, clustered, high of noise or less correlated or when the data were 
for a sombrero surface. 
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Appendix B. Summary statistics of the information from the 17 reviewed comparative studies.  
Case 
study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

1 Meteorology 20000 Irregular 169 118.3432 IDW IDW 5.9  1.9500  33.05  
1  20000 Irregular 169 118.3432 OCK OCK 5.9  1.8500  31.36  
1 

(Hartkamp 
et al., 1999) 

 

Precipitation-April 

20000 Irregular 169 118.3432 TPS TPS 5.9  2.3500  39.83  
2 Meteorology 20000 Irregular 169 118.3432 IDW IDW 27.2  6.0000  22.06  
2  20000 Irregular 169 118.3432 OCK OCK 27.2  5.9500  21.88  
2 

(Hartkamp 
et al., 1999) 

 

Precipitation-May 

20000 Irregular 169 118.3432 TPS TPS 27.2  5.8000  21.32  
3 Meteorology 20000 Irregular 169 118.3432 IDW IDW 197.6  32.5500  16.47  
3  20000 Irregular 169 118.3432 OCK OCK 197.6  36.3500  18.40  
3 

(Hartkamp 
et al., 1999) 

 

Precipitation-
August 

20000 Irregular 169 118.3432 TPS TPS 197.6  45.5000  23.03  
4 Meteorology 20000 Irregular 169 118.3432 IDW IDW 166.4  33.8000  20.31  
4  20000 Irregular 169 118.3432 OCK OCK 166.4  36.7000  22.06  
4 

(Hartkamp 
et al., 1999) 

 

Precipitation-
September 

20000 Irregular 169 118.3432 TPS TPS 166.4  39.3000  23.62  
5 Meteorology 20000 Irregular 125 160 IDW IDW 31.9  2.7000  8.46  
5  20000 Irregular 125 160 OCK OCK 31.9  2.6000  8.15  
5 

(Hartkamp 
et al., 1999) 

 

Temperature-April 

20000 Irregular 125 160 TPS TPS 31.9  1.6000  5.02  
6 Meteorology 20000 Irregular 125 160 IDW IDW 32.9  2.5000  7.60  
6  20000 Irregular 125 160 OCK OCK 32.9  2.3000  6.99  
6 

(Hartkamp 
et al., 1999) 

 

Temperature-May 

20000 Irregular 125 160 TPS TPS 32.9  1.4000  4.26  
7 Meteorology 20000 Irregular 125 160 IDW IDW 28.3  2.0000  7.07  
7  20000 Irregular 125 160 OCK OCK 28.3  1.8000  6.36  
7 

(Hartkamp 
et al., 1999) 

 

Temperature-
August 

20000 Irregular 125 160 TPS TPS 28.3  1.2000  4.24  
8 Meteorology 20000 Irregular 125 160 IDW IDW 28.2  1.9000  6.74  
8  20000 Irregular 125 160 OCK OCK 28.2  1.9000  6.74  
8 

(Hartkamp 
et al., 1999) 

 

Temperature-
September 

20000 Irregular 125 160 TPS TPS 28.2  1.1000  3.90  
9 Meteorology 1 Regular 549 0.001821 IDW IDW 0.58 19.83 0.0822 0.1090 14.17 18.79 
9  1 Regular 549 0.001821 OK OK 0.58 19.83 0.0820 0.1092 14.14 18.83 
9  1 Regular 549 0.001821 TSA TSA 0.58 19.83 0.0817 0.1088 14.09 18.76 
9  1 Regular 549 0.001821 RK-C RK-C 0.58 19.83 0.0817 0.1087 14.09 18.74 
9  1 Regular 549 0.001821 CART CART 0.58 19.83 0.0800 0.1043 13.79 17.98 

9 

(Erxleben et 
al., 2002) 

 

Snow depth1 

1 Regular 549 0.001821 CART-OK CART-
OK 0.58 19.83 0.0797 0.1048 13.74 18.07 
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Case 
study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

10 Meteorology 1 Regular 549 0.001821 IDW IDW 1.09 19.36 0.1503 0.1877 13.79 17.22 
10  1 Regular 549 0.001821 OK OK 1.09 19.36 0.1479 0.1904 13.57 17.47 
10  1 Regular 549 0.001821 TSA TSA 1.09 19.36 0.1468 0.1851 13.47 16.98 
10  1 Regular 549 0.001821 RK-C RK-C 1.09 19.36 0.1429 0.1814 13.11 16.64 
10  1 Regular 549 0.001821 CART CART 1.09 19.36 0.1391 0.1764 12.76 16.18 

10 

(Erxleben et 
al., 2002) 

 

Snow depth2 

1 Regular 549 0.001821 CART-OK CART-
OK 1.09 19.36 0.1367 0.1748 12.54 16.04 

11 Meteorology 1 Regular 549 0.001821 IDW IDW 1.77 21.07 0.2268 0.3368 12.81 19.03 
11  1 Regular 549 0.001821 OK OK 1.77 21.07 0.2200 0.3351 12.43 18.93 
11  1 Regular 549 0.001821 TSA TSA 1.77 21.07 0.2409 0.3595 13.61 20.31 
11  1 Regular 549 0.001821 RK-C RK-C 1.77 21.07 0.2180 0.3322 12.32 18.77 
11  1 Regular 549 0.001821 CART CART 1.77 21.07 0.2196 0.3200 12.41 18.08 

11 

(Erxleben et 
al., 2002) 

 

Snow depth3 

1 Regular 549 0.001821 CART-OK CART-
OK 1.77 21.07 0.2094 0.3134 11.83 17.71 

12 Meteorology 47000 Irregular 108 435.1852 OK OK 1087 15.6 40.3000 51.9711 3.71 4.78 
12  47000 Irregular 108 435.1852 OCK OCK 1087 15.6 38.6000 53.3198 3.55 4.91 
12 

Martínez-
Cob, 1996 

 

Evapotranspiration 

47000 Irregular 108 435.1852 RK-C RK-C 1087 15.6 49.3000 64.7765 4.54 5.96 
13 Meteorology 47000 Irregular 132 356.0606 OK OK 2770.6 7.4 48.9000 62.3699 1.77 2.25 
13  47000 Irregular 132 356.0606 OCK OCK 2770.6 7.4 44.8000 59.4390 1.62 2.15 
13 

Martínez-
Cob, 1996 

 

Precipitation 

47000 Irregular 132 356.0606 RK-C RK-C 2770.6 7.4 53.8000 67.3795 1.94 2.43 
14 Meteorology 131944 Irregular 74 1783.027 IDS IDS 1.2 37.5 0.1900 0.0500 15.83 4.17 
14  131944 Irregular 74 1783.027 GIDS GIDS 1.2 37.5 0.0800 0.0200 6.67 1.67 
14  131944 Irregular 74 1783.027 OK OK 1.2 37.5 0.2500 0.0700 20.83 5.83 
14 

Mardikis et 
al., 2005 

 

Evapotranspiration-
Jan 

131944 Irregular 74 1783.027 RK-C RK-C 1.2 37.5 0.1500 0.0400 12.50 3.33 
15 Meteorology 131944 Irregular 74 1783.027 IDS IDS 1.61 28.6 0.1900 0.0500 11.80 3.11 
15  131944 Irregular 74 1783.027 GIDS GIDS 1.61 28.6 0.0800 0.0200 4.97 1.24 
15  131944 Irregular 74 1783.027 OK OK 1.61 28.6 0.2000 0.0600 12.42 3.73 
15 

Mardikis et 
al., 2005 

 

Evapotranspiration-
Feb 

131944 Irregular 74 1783.027 RK-C RK-C 1.61 28.6 0.1100 0.0300 6.83 1.86 
16 Meteorology 131944 Irregular 74 1783.027 IDS IDS 2.22 19.8 0.2000 0.0600 9.01 2.70 
16  131944 Irregular 74 1783.027 GIDS GIDS 2.22 19.8 0.0700 0.0200 3.15 0.90 
16  131944 Irregular 74 1783.027 OK OK 2.22 19.8 0.2300 0.0700 10.36 3.15 
16 

Mardikis et 
al., 2005 

 

Evapotranspiration-
March 

131944 Irregular 74 1783.027 RK-C RK-C 2.22 19.8 0.0900 0.0200 4.05 0.90 
17 Meteorology 131944 Irregular 74 1783.027 IDS IDS 3.17 14.5 0.2900 0.0800 9.15 2.52 
17  131944 Irregular 74 1783.027 GIDS GIDS 3.17 14.5 0.0700 0.0200 2.21 0.63 
17 

Mardikis et 
al., 2005 

 

Evapotranspiration-
April 

131944 Irregular 74 1783.027 OK OK 3.17 14.5 0.3800 0.1100 11.99 3.47 
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Case 
study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

17    131944 Irregular 74 1783.027 RK-C RK-C 3.17 14.5 0.0700 0.0200 2.21 0.63 
18 Meteorology 131944 Irregular 74 1783.027 IDS IDS 4.27 12.2 0.3500 0.1100 8.20 2.58 
18  131944 Irregular 74 1783.027 GIDS GIDS 4.27 12.2 0.0900 0.0200 2.11 0.47 
18  131944 Irregular 74 1783.027 OK OK 4.27 12.2 0.4000 0.1300 9.37 3.04 
18 

Mardikis et 
al., 2005 

 

Evapotranspiration-
May 

131944 Irregular 74 1783.027 RK-C RK-C 4.27 12.2 0.1200 0.0400 2.81 0.94 
19 Meteorology 131944 Irregular 74 1783.027 IDS IDS 5.45 13.6 0.4900 0.1400 8.99 2.57 
19  131944 Irregular 74 1783.027 GIDS GIDS 5.45 13.6 0.1800 0.0500 3.30 0.92 
19  131944 Irregular 74 1783.027 OK OK 5.45 13.6 0.5400 0.1700 9.91 3.12 
19 

Mardikis et 
al., 2005 

 

Evapotranspiration-
June 

131944 Irregular 74 1783.027 RK-C RK-C 5.45 13.6 0.2400 0.0700 4.40 1.28 
20 Meteorology 131944 Irregular 74 1783.027 IDS IDS 6.02 15.9 0.6000 0.1900 9.97 3.16 
20  131944 Irregular 74 1783.027 GIDS GIDS 6.02 15.9 0.2400 0.0700 3.99 1.16 
20  131944 Irregular 74 1783.027 OK OK 6.02 15.9 1.0300 0.3400 17.11 5.65 
20 

Mardikis et 
al., 2005 

 

Evapotranspiration-
July 

131944 Irregular 74 1783.027 RK-C RK-C 6.02 15.9 0.3200 0.0900 5.32 1.50 
21 Meteorology 131944 Irregular 74 1783.027 IDS IDS 5.57 16.7 0.5500 0.1700 9.87 3.05 
21  131944 Irregular 74 1783.027 GIDS GIDS 5.57 16.7 0.2300 0.0800 4.13 1.44 
21  131944 Irregular 74 1783.027 OK OK 5.57 16.7 0.5500 0.1700 9.87 3.05 
21 

Mardikis et 
al., 2005 

 

Evapotranspiration-
Aug 

131944 Irregular 74 1783.027 RK-C RK-C 5.57 16.7 0.3000 0.0900 5.39 1.62 
22 Meteorology 131944 Irregular 74 1783.027 IDS IDS 4.14 17.6 0.4500 0.1300 10.87 3.14 
22  131944 Irregular 74 1783.027 GIDS GIDS 4.14 17.6 0.1500 0.0500 3.62 1.21 
22  131944 Irregular 74 1783.027 OK OK 4.14 17.6 0.4800 0.1400 11.59 3.38 
22 

Mardikis et 
al., 2005 

 

Evapotranspiration-
Sept 

131944 Irregular 74 1783.027 RK-C RK-C 4.14 17.6 0.1600 0.0500 3.86 1.21 
23 Meteorology 131944 Irregular 74 1783.027 IDS IDS 2.62 21 0.2900 0.0800 11.07 3.05 
23  131944 Irregular 74 1783.027 GIDS GIDS 2.62 21 0.1100 0.0300 4.20 1.15 
23  131944 Irregular 74 1783.027 OK OK 2.62 21 0.3300 0.0900 12.60 3.44 
23 

Mardikis et 
al., 2005 

 

Evapotranspiration-
Oct 

131944 Irregular 74 1783.027 RK-C RK-C 2.62 21 0.1300 0.0400 4.96 1.53 
24 Meteorology 131944 Irregular 74 1783.027 IDS IDS 1.62 29.6 0.2500 0.0700 15.43 4.32 
24  131944 Irregular 74 1783.027 GIDS GIDS 1.62 29.6 0.0800 0.0300 4.94 1.85 
24  131944 Irregular 74 1783.027 OK OK 1.62 29.6 0.3700 0.1100 22.84 6.79 
24 

Mardikis et 
al., 2005 

 

Evapotranspiration-
Nov 

131944 Irregular 74 1783.027 RK-C RK-C 1.62 29.6 0.1300 0.0400 8.02 2.47 
25 Meteorology 131944 Irregular 74 1783.027 IDS IDS 1.26 38.9 0.2000 0.0600 15.87 4.76 
25  131944 Irregular 74 1783.027 GIDS GIDS 1.26 38.9 0.0900 0.0300 7.14 2.38 
25  131944 Irregular 74 1783.027 OK OK 1.26 38.9 0.3500 0.1000 27.78 7.94 
25 

Mardikis et 
al., 2005 

 

Evapotranspiration-
Dec 

131944 Irregular 74 1783.027 RK-C RK-C 1.26 38.9 0.1600 0.0500 12.70 3.97 

26 Hosseini et 
al., 1993 

Water 
resources 

Hydraulic 
conductivity-6 160 Regular 382 0.418848 OK OK 2.72 78.68 1.4320  52.65  
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Case 
study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

26 160 Regular 382 0.418848 IDW-0 IDW-0 2.72 78.68 1.4320  52.65  
26 160 Regular 382 0.418848 IDW-1 IDW 2.72 78.68 1.4350  52.76  
26 160 Regular 382 0.418848 IDW-2 IDS 2.72 78.68 1.4460  53.16  
26 160 Regular 382 0.418848 IDW-3 IDW 2.72 78.68 1.4610  53.71  
26 160 Regular 382 0.418848 IDW-4 IDW 2.72 78.68 1.4920  54.85  
26 160 Regular 382 0.418848 UK-LD UK 2.72 78.68 1.4970  55.04  
26 

   

160 Regular 382 0.418848 UK-QD UK 2.72 78.68 2.1590  79.38  
27 160 Regular 382 0.418848 OK OK 2.72 78.68 1.3990  51.43  
27 160 Regular 382 0.418848 IDW-0 IDW-0 2.72 78.68 1.4050  51.65  
27 160 Regular 382 0.418848 IDW-1 IDW 2.72 78.68 1.4020  51.54  
27 160 Regular 382 0.418848 IDW-2 IDS 2.72 78.68 1.4110  51.88  
27 160 Regular 382 0.418848 IDW-3 IDW 2.72 78.68 1.4300  52.57  
27 160 Regular 382 0.418848 IDW-4 IDW 2.72 78.68 1.4750  54.23  
27 160 Regular 382 0.418848 UK-LD UK 2.72 78.68 1.4020  51.54  
27 

Hosseini et 
al., 1993 

Water 
resources 

Hydraulic 
conductivity-12 

160 Regular 382 0.418848 UK-QD UK 2.72 78.68 1.8550  68.20  
28 160 Regular 382 0.418848 OK OK 2.72 78.68 1.3730  50.48  
28 

Water 
resources 160 Regular 382 0.418848 IDW-0 IDW-0 2.72 78.68 1.6930  62.24  

28  160 Regular 382 0.418848 IDW-1 IDW 2.72 78.68 1.7390  63.93  
28  160 Regular 382 0.418848 IDW-2 IDS 2.72 78.68 1.3920  51.18  
28  160 Regular 382 0.418848 IDW-3 IDW 2.72 78.68 1.4170  52.10  
28  160 Regular 382 0.418848 IDW-4 IDW 2.72 78.68 1.4710  54.08  
28  160 Regular 382 0.418848 UK-LD UK 2.72 78.68 1.3830  50.85  
28 

Hosseini et 
al., 1993 

 

Hydraulic 
conductivity-18 

160 Regular 382 0.418848 UK-QD UK 2.72 78.68 1.6930  62.24  

29 Water 
resources 160 Regular 382 0.418848 AK AK 2.72 78.68 1.8050  66.36  

29  160 Regular 382 0.418848 TSA-1 TSA 2.72 78.68 1.4620  53.75  
29  160 Regular 382 0.418848 TSA-2 TSA 2.72 78.68 1.4460  53.16  
29  160 Regular 382 0.418848 TSA-3 TSA 2.72 78.68 1.4060  51.69  
29 

Hosseini et 
al., 1993 

 

Hydraulic 
conductivity 

160 Regular 382 0.418848 TSA-4 TSA 2.72 78.68 1.4080  51.76  
30 Soil science 1400 Irregular 43 32.55814 OK OK 631 16.64 83.0000 32.2800 13.15 5.12 
30  1400 Irregular 43 32.55814 IDW-0.5 IDW 631 16.64 81.8000 31.3688 12.96 4.97 
30  1400 Irregular 43 32.55814 IDW-1 IDW 631 16.64 80.1000 30.7083 12.69 4.87 
30  1400 Irregular 43 32.55814 IDW-2 IDS 631 16.64 79.5000 30.6105 12.60 4.85 
30  1400 Irregular 43 32.55814 TPS-0.01 TPS 631 16.64 82.7000 31.4006 13.11 4.98 
30 

Schloeder et 
al., 2001 

 

Clay 

1400 Irregular 43 32.55814 TPS-0.1 TPS 631 16.64 83.3000 31.8748 13.20 5.05 
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Case 
study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

30    1400 Irregular 43 32.55814 TPS-0.5 TPS 631 16.64 85.0000 32.6497 13.47 5.17 
31 Soil science 1400 Irregular 43 32.55814 OK OK 7.82 4.86 0.2100 0.2828 2.69 3.62 
31  1400 Irregular 43 32.55814 IDW-0.5 IDW 7.82 4.86 0.2600 0.3317 3.32 4.24 
31  1400 Irregular 43 32.55814 IDW-1 IDW 7.82 4.86 0.2500 0.3162 3.20 4.04 
31  1400 Irregular 43 32.55814 IDW-2 IDS 7.82 4.86 0.2200 0.3000 2.81 3.84 
31  1400 Irregular 43 32.55814 TPS-0.01 TPS 7.82 4.86 0.2400 0.3162 3.07 4.04 
31  1400 Irregular 43 32.55814 TPS-0.1 TPS 7.82 4.86 0.2400 0.3317 3.07 4.24 
31 

Schloeder et 
al., 2001 

 

pH 

1400 Irregular 43 32.55814 TPS-0.5 TPS 7.82 4.86 0.2500 0.3317 3.20 4.24 
32 Soil science 1400 Irregular 43 32.55814 OK OK 3.61 66.48 0.9800 1.2247 27.15 33.93 
32  1400 Irregular 43 32.55814 IDW-0.5 IDW 3.61 66.48 1.5300 1.8815 42.38 52.12 
32  1400 Irregular 43 32.55814 IDW-1 IDW 3.61 66.48 1.4300 1.7776 39.61 49.24 
32  1400 Irregular 43 32.55814 IDW-2 IDS 3.61 66.48 1.2900 1.6186 35.73 44.84 
32  1400 Irregular 43 32.55814 TPS-0.01 TPS 3.61 66.48 1.0600 1.2806 29.36 35.47 
32  1400 Irregular 43 32.55814 TPS-0.1 TPS 3.61 66.48 1.0600 1.2689 29.36 35.15 
32 

Schloeder et 
al., 2001 

 

Na 

1400 Irregular 43 32.55814 TPS-0.5 TPS 3.61 66.48 1.0600 1.2649 29.36 35.04 
33 Soil science 1400 Irregular 43 32.55814 OK OK 27.56 19.92 4.4400 5.7166 16.11 20.74 
33  1400 Irregular 43 32.55814 IDW-0.5 IDW 27.56 19.92 4.2600 5.4827 15.46 19.89 
33  1400 Irregular 43 32.55814 IDW-1 IDW 27.56 19.92 4.2500 5.4360 15.42 19.72 
33  1400 Irregular 43 32.55814 IDW-2 IDS 27.56 19.92 4.3900 5.5498 15.93 20.14 
33  1400 Irregular 43 32.55814 TPS-0.01 TPS 27.56 19.92 5.7600 7.4559 20.90 27.05 
33  1400 Irregular 43 32.55814 TPS-0.1 TPS 27.56 19.92 5.8800 7.6440 21.34 27.74 
33 

Schloeder et 
al., 2001 

 

Ca 

1400 Irregular 43 32.55814 TPS-0.5 TPS 27.56 19.92 6.0600 7.9265 21.99 28.76 
34 Soil science 1400 Irregular 43 32.55814 OK OK 7.64 42.41 2.3700 3.0332 31.02 39.70 
34  1400 Irregular 43 32.55814 IDW-0.5 IDW 7.64 42.41 2.1600 2.7964 28.27 36.60 
34  1400 Irregular 43 32.55814 IDW-1 IDW 7.64 42.41 2.1400 2.7477 28.01 35.97 
34  1400 Irregular 43 32.55814 IDW-2 IDS 7.64 42.41 2.1000 2.7221 27.49 35.63 
34  1400 Irregular 43 32.55814 TPS-0.01 TPS 7.64 42.41 2.7000 3.5256 35.34 46.15 
34  1400 Irregular 43 32.55814 TPS-0.1 TPS 7.64 42.41 2.7300 3.5749 35.73 46.79 
34 

Schloeder et 
al., 2001 

 

Mg 

1400 Irregular 43 32.55814 TPS-0.5 TPS 7.64 42.41 2.8000 3.6401 36.65 47.64 
35 Soil science 1400 Irregular 43 32.55814 OK OK 4.68 120.73 3.1200 4.7812 66.67 102.16 
35  1400 Irregular 43 32.55814 IDW-0.5 IDW 4.68 120.73 3.4900 5.0666 74.57 108.26 
35  1400 Irregular 43 32.55814 IDW-1 IDW 4.68 120.73 3.4300 4.9071 73.29 104.85 
35  1400 Irregular 43 32.55814 IDW-2 IDS 4.68 120.73 3.6100 4.8415 77.14 103.45 
35 

Schloeder et 
al., 2001 

 

P 

1400 Irregular 43 32.55814 TPS-0.01 TPS 4.68 120.73 3.9000 5.2659 83.33 112.52 
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Case 
study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

35  1400 Irregular 43 32.55814 TPS-0.1 TPS 4.68 120.73 4.0100 5.3796 85.68 114.95 
35 

 
 

 
1400 Irregular 43 32.55814 TPS-0.5 TPS 4.68 120.73 4.1700 5.5624 89.10 118.85 

36 Soil science 1400 Irregular 43 32.55814 OK OK 14 28.57 2.2000 0.8944 15.71 6.39 
36  1400 Irregular 43 32.55814 IDW-0.5 IDW 14 28.57 2.1000 0.8944 15.00 6.39 
36  1400 Irregular 43 32.55814 IDW-1 IDW 14 28.57 2.2000 0.8944 15.71 6.39 
36  1400 Irregular 43 32.55814 IDW-2 IDS 14 28.57 2.2000 0.8944 15.71 6.39 
36  1400 Irregular 43 32.55814 TPS-0.01 TPS 14 28.57 2.5000 1.0000 17.86 7.14 
36  1400 Irregular 43 32.55814 TPS-0.1 TPS 14 28.57 2.5000 1.0000 17.86 7.14 
36 

Schloeder et 
al., 2001 

 

Soil organic matter 

1400 Irregular 43 32.55814 TPS-0.5 TPS 14 28.57 2.5000 1.0000 17.86 7.14 
37 Soil science 5862 Regular 238 24.63025 OK OK 0.23 88.1  0.1902  84.53 
37 

Wang et al., 
2005  

Cl 
5862 Regular 238 24.63025 OCK OCK 0.23 88.1  0.0997  44.31 

38  5862 Regular 119 49.2605 OK OK 0.23 88.1  0.2179  96.84 
38 

Wang et al., 
2005  

Cl 
5862 Regular 119 49.2605 OCK OCK 0.23 88.1  0.0824  36.62 

39  5862 Regular 118 49.67797 OK OK 0.23 88.1  0.1364  60.62 
39 

Wang et al., 
2005  

Cl 
5862 Regular 118 49.67797 OCK OCK 0.23 88.1  0.1222  54.31 

40 Soil science 0.032 Regular 107 0.000299 Classification Cl 25.1 62.82  8.0747  32.17 
40  0.032 Regular 107 0.000299 SK SK 25.1 62.82  7.0640  28.14 
40  0.032 Regular 107 0.000299 StSK StSK 25.1 62.82  6.8044  27.11 
40 

Voltz and 
Webster, 

1990 

 

Clay 

0.032 Regular 107 0.000299 Cubic Spline Spline-3 25.1 62.82  7.2042  28.70 
41 Soil science 0.92 Regular 34 0.027059 Classification Cl 20.4 32.33  5.1575  25.28 
41  0.92 Regular 34 0.027059 SK SK 20.4 32.33  4.7434  23.25 
41  0.92 Regular 34 0.027059 StSK StSK 20.4 32.33  4.5387  22.25 
41 

Voltz and 
Webster, 

1990 

 

Clay 

0.92 Regular 34 0.027059 Cubic Spline Spline-3 20.4 32.33  5.3292  26.12 
42 Soil science 0.92 Regular 114 0.00807 Classification Cl 21.6 31.06  5.3292  24.67 
42  0.92 Regular 114 0.00807 SK SK 21.6 31.06  4.6043  21.32 
42  0.92 Regular 114 0.00807 StSK StSK 21.6 31.06  4.5607  21.11 
42 

Voltz and 
Webster, 

1990 

 

Clay 

0.92 Regular 114 0.00807 Cubic Spline Spline-3 21.6 31.06  4.7958  22.20 
43 Soil science 48 Regular 188 0.255319 Classification Cl 29 62.07 12.2000 19.9000 42.07 68.62 
43  48 Regular 188 0.255319 GM GM 29 62.07 11.4000 18.3000 39.31 63.10 
43  48 Regular 188 0.255319 StGM StGM 29 62.07 9.7000 16.6000 33.45 57.24 
43  48 Regular 188 0.255319 IDW-0 IDW-0 29 62.07 13.2000 19.5000 45.52 67.24 
43  48 Regular 188 0.255319 StIDW-0 StIDW-0 29 62.07 11.7000 18.6000 40.34 64.14 
43  48 Regular 188 0.255319 NN NN 29 62.07 13.4000 20.8000 46.21 71.72 
43 

Brus et al., 
1996 

 

Thickness of A1 
horizon 

48 Regular 188 0.255319 StNN StNN 29 62.07 12.2000 19.5000 42.07 67.24 
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Case 
study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

43  48 Regular 188 0.255319 IDS IDS 29 62.07 11.6000 17.6000 40.00 60.69 
43  48 Regular 188 0.255319 StIDS StIDS 29 62.07 10.2000 17.1000 35.17 58.97 
43  48 Regular 188 0.255319 TPS TPS 29 62.07 12.7000 18.9000 43.79 65.17 
43  48 Regular 188 0.255319 StTPS StTPS 29 62.07 10.2000 16.8000 35.17 57.93 
43  48 Regular 188 0.255319 OK OK 29 62.07 11.7000 17.9000 40.34 61.72 
43 

 

 

 

48 Regular 188 0.255319 StOK StOK 29 62.07 9.5000 16.4000 32.76 56.55 
44 Soil science 48 Regular 188 0.255319 Classification Cl 2.1 71.43     
44  48 Regular 188 0.255319 GM GM 2.1 71.43 1.0500 1.5100 50.00 71.90 
44  48 Regular 188 0.255319 StGM StGM 2.1 71.43 0.9500 1.4400 45.24 68.57 
44  48 Regular 188 0.255319 IDW-0 IDW-0 2.1 71.43 1.0100 1.5000 48.10 71.43 
44  48 Regular 188 0.255319 StIDW-0 StIDW-0 2.1 71.43 0.9000 1.4100 42.86 67.14 
44  48 Regular 188 0.255319 NN NN 2.1 71.43 1.1600 1.7000 55.24 80.95 
44  48 Regular 188 0.255319 StNN StNN 2.1 71.43 1.0800 1.6000 51.43 76.19 
44  48 Regular 188 0.255319 IDS IDS 2.1 71.43 0.9900 1.4800 47.14 70.48 
44  48 Regular 188 0.255319 StIDS StIDS 2.1 71.43 0.9400 1.4300 44.76 68.10 
44  48 Regular 188 0.255319 TPS TPS 2.1 71.43 1.0500 1.5200 50.00 72.38 
44  48 Regular 188 0.255319 StTPS StTPS 2.1 71.43 0.9300 1.4100 44.29 67.14 
44  48 Regular 188 0.255319 OK OK 2.1 71.43 1.0000 1.4600 47.62 69.52 
44 

Brus et al., 
1996 

 

P 

48 Regular 188 0.255319 StOK StOK 2.1 71.43 0.9400 1.4200 44.76 67.62 
45 Soil science 48 Regular 188 0.255319 Classification Cl 62 70.97 24.7000 37.0000 39.84 59.68 
45  48 Regular 188 0.255319 GM GM 62 70.97 29.5000 43.6000 47.58 70.32 
45  48 Regular 188 0.255319 StGM StGM 62 70.97 25.8000 38.8000 41.61 62.58 
45  48 Regular 188 0.255319 IDW-0 IDW-0 62 70.97 28.4000 39.4000 45.81 63.55 
45  48 Regular 188 0.255319 StIDW-0 StIDW-0 62 70.97 23.7000 36.3000 38.23 58.55 
45  48 Regular 188 0.255319 NN NN 62 70.97 31.3000 47.4000 50.48 76.45 
45  48 Regular 188 0.255319 StNN StNN 62 70.97 24.1000 34.2000 38.87 55.16 
45  48 Regular 188 0.255319 IDS IDS 62 70.97 26.1000 38.4000 42.10 61.94 
45  48 Regular 188 0.255319 StIDS StIDS 62 70.97 23.0000 34.4000 37.10 55.48 
45  48 Regular 188 0.255319 TPS TPS 62 70.97 27.8000 38.8000 44.84 62.58 
45  48 Regular 188 0.255319 StTPS StTPS 62 70.97 24.5000 37.5000 39.52 60.48 
45  48 Regular 188 0.255319 OK OK 62 70.97 26.7000 38.3000 43.06 61.77 
45 

Brus et al., 
1996 

 

Mean lowest water 
table 

48 Regular 188 0.255319 StOK StOK 62 70.97 22.2000 34.1000 35.81 55.00 
46 Soil science 48 Regular 188 0.255319 Classification Cl 132 36.36 29.3000 43.2000 22.20 32.73 
46 

Brus et al., 
1996  

Mean highest water 
table 48 Regular 188 0.255319 GM GM 132 36.36 35.8000 48.2000 27.12 36.52 



Appendices 

 133

Case 
study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

46  48 Regular 188 0.255319 StGM StGM 132 36.36 30.9000 44.6000 23.41 33.79 
46  48 Regular 188 0.255319 IDW-0 IDW-0 132 36.36 33.3000 43.6000 25.23 33.03 
46  48 Regular 188 0.255319 StIDW-0 StIDW-0 132 36.36 27.6000 40.7000 20.91 30.83 
46  48 Regular 188 0.255319 NN NN 132 36.36 36.9000 55.0000 27.95 41.67 
46  48 Regular 188 0.255319 StNN StNN 132 36.36 27.7000 39.5000 20.98 29.92 
46  48 Regular 188 0.255319 IDS IDS 132 36.36 29.9000 40.6000 22.65 30.76 
46  48 Regular 188 0.255319 StIDS StIDS 132 36.36 26.2000 38.2000 19.85 28.94 
46  48 Regular 188 0.255319 TPS TPS 132 36.36 33.3000 44.0000 25.23 33.33 
46  48 Regular 188 0.255319 StTPS StTPS 132 36.36 29.4000 42.7000 22.27 32.35 
46  48 Regular 188 0.255319 OK OK 132 36.36 31.6000 42.7000 23.94 32.35 
46 

 

 

 

48 Regular 188 0.255319 StOK StOK 132 36.36 27.0000 39.0000 20.45 29.55 
47 Soil science 1039 Irregular 69 15.05797 OK OK 0.08 45.57  0.0267  33.77 

47  1039 Irregular 69 15.05797 Lognormal 
OK OK 0.08 45.57  0.0266  33.66 

47  1039 Irregular 69 15.05797 DK DK 0.08 45.57  0.0269  34.00 

47  1039 Irregular 69 15.05797 UK with a 
linear trend UK 0.08 45.57  0.0254  32.14 

47 

Hu et al., 
2004 

 

Hg 

1039 Irregular 69 15.05797 IDW IDW 0.08 45.57  0.0282  35.70 
48 Soil science 0.01 Regular 121 8.26E-05 NaN NaN 5.26 3.9 0.1930 1.9209 3.67 36.52 
48  0.01 Regular 121 8.26E-05 AK AK 5.26 3.9 0.1867 1.8466 3.55 35.11 
48  0.01 Regular 121 8.26E-05 IDS IDS 5.26 3.9 0.1700 1.7464 3.23 33.20 
48  0.01 Regular 121 8.26E-05 GM GM 5.26 3.9 0.1975 1.9925 3.75 37.88 
48  0.01 Regular 121 8.26E-05 NN NN 5.26 3.9 0.1831 1.8303 3.48 34.80 
48  0.01 Regular 121 8.26E-05 IDW-0 IDW-0 5.26 3.9 0.1636 1.6941 3.11 32.21 
48  0.01 Regular 121 8.26E-05 TSA TSA 5.26 3.9 0.1747 1.7972 3.32 34.17 
48  0.01 Regular 121 8.26E-05 TPS TPS 5.26 3.9 0.1650 1.7088 3.14 32.49 
48  0.01 Regular 121 8.26E-05 OK isotropic OK 5.26 3.9 0.1656 1.7146 3.15 32.60 

48 

Laslett et al., 
1987 

 

pH in water 

0.01 Regular 121 8.26E-05 OK 
anisotropic OK 5.26 3.9 0.1622 1.7059 3.08 32.43 

49 Soil science 0.01 Regular 121 8.26E-05 NaN NaN 4.49 4.76 0.1809 1.8601 4.03 41.43 
49  0.01 Regular 121 8.26E-05 AK AK 4.49 4.76 0.1834 1.8439 4.09 41.07 
49  0.01 Regular 121 8.26E-05 IDS IDS 4.49 4.76 0.1733 1.7550 3.86 39.09 
49  0.01 Regular 121 8.26E-05 GM GM 4.49 4.76 0.2167 2.1587 4.83 48.08 
49  0.01 Regular 121 8.26E-05 NN NN 4.49 4.76 0.1745 1.7972 3.89 40.03 
49  0.01 Regular 121 8.26E-05 IDW-0 IDW-0 4.49 4.76 0.1723 1.7692 3.84 39.40 
49 

Laslett et al., 
1987 

 

pH in CaCl2 

0.01 Regular 121 8.26E-05 TSA TSA 4.49 4.76 0.1892 1.9183 4.21 42.72 
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study 

Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

49  0.01 Regular 121 8.26E-05 TPS TPS 4.49 4.76 0.1708 1.7378 3.80 38.70 
49  0.01 Regular 121 8.26E-05 OK isotropic OK 4.49 4.76 0.1714 1.7521 3.82 39.02 

49 

 

 

 

0.01 Regular 121 8.26E-05 OK 
anisotropic OK 4.49 4.76 0.1723 1.7720 3.84 39.47 

50 Soil science 0.28 Irregular 161 0.001739 LM LM 73.5 24.66  11.9200  16.22 
50  0.28 Irregular 161 0.001739 OK OK 73.5 24.66  15.7600  21.44 
50  0.28 Irregular 161 0.001739 UK UK 73.5 24.66  13.8900  18.90 
50  0.28 Irregular 161 0.001739 OCK OCK 73.5 24.66  15.7000  21.36 
50  0.28 Irregular 161 0.001739 RK-A RK-A 73.5 24.66  8.4500  11.50 
50  0.28 Irregular 161 0.001739 RK-B RK-B 73.5 24.66  11.2000  15.24 

50  0.28 Irregular 161 0.001739 OCK 
heterotropic OCK 73.5 24.66  21.7400  29.58 

50 

Odeh et al., 
1994, 1995 

 

Depth of solum 

0.28 Irregular 161 0.001739 RK-C RK-C 73.5 24.66  10.0100  13.62 
51 Soil science 0.28 Irregular 161 0.001739 LM LM 105.5 32.96  21.0400  19.94 
51  0.28 Irregular 161 0.001739 OK OK 105.5 32.96  26.7100  25.32 
51  0.28 Irregular 161 0.001739 UK UK 105.5 32.96  26.4300  25.05 
51  0.28 Irregular 161 0.001739 OCK OCK 105.5 32.96  24.8600  23.56 
51  0.28 Irregular 161 0.001739 RK-A RK-A 105.5 32.96  20.2200  19.17 
51  0.28 Irregular 161 0.001739 RK-B RK-B 105.5 32.96  19.8900  18.85 

51  0.28 Irregular 161 0.001739 OCK 
heterotropic OCK 105.5 32.96  22.4500  21.28 

51 

Odeh et al., 
1994, 1995 

 

Depth of bedrock 

0.28 Irregular 161 0.001739 RK-C RK-C 105.5 32.96  16.5100  15.65 
52 Soil science Topsoil gravel 0.28 Irregular 161 0.001739 LM LM 10.6 127.69  4.9700  46.89 
52  0.28 Irregular 161 0.001739 OK OK 10.6 127.69  12.8200  120.94 
52  0.28 Irregular 161 0.001739 UK UK 10.6 127.69  10.3100  97.26 
52  0.28 Irregular 161 0.001739 OCK OCK 10.6 127.69  8.9800  84.72 
52  0.28 Irregular 161 0.001739 RK-A RK-A 10.6 127.69  9.6500  91.04 
52  0.28 Irregular 161 0.001739 RK-B RK-B 10.6 127.69  4.5400  42.83 

52  0.28 Irregular 161 0.001739 OCK 
heterotropic OCK 10.6 127.69  3.7200  35.09 

52 

Odeh et al., 
1994, 1995 

 

 

0.28 Irregular 161 0.001739 RK-C RK-C 10.6 127.69  5.0100  47.26 
53 Soil science 0.28 Irregular 161 0.001739 LM LM 44.4 34.99  10.2200  23.02 
53  0.28 Irregular 161 0.001739 OK OK 44.4 34.99  15.2000  34.23 
53  0.28 Irregular 161 0.001739 UK UK 44.4 34.99  14.6300  32.95 
53  0.28 Irregular 161 0.001739 OCK OCK 44.4 34.99  10.2400  23.06 
53 

Odeh et al., 
1994, 1995 

 

Subsoil clay 

0.28 Irregular 161 0.001739 RK-A RK-A 44.4 34.99  9.1100  20.52 
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Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

53  0.28 Irregular 161 0.001739 RK-B RK-B 44.4 34.99  9.2600  20.86 

53  0.28 Irregular 161 0.001739 OCK 
heterotopic OCK 44.4 34.99  5.8900  13.27 

53 

 

 

 

0.28 Irregular 161 0.001739 RK-C RK-C 44.4 34.99  8.0400  18.11 
54 Soil science 0.105 Regular 160 0.000656 OK OK 123.8 58.32  42.8500  34.61 
54  0.105 Regular 160 0.000656 OCK OCK 123.8 58.32  32.8600  26.54 
54 

Li et al., 
2007 

 

Electrical 
conductivity 

0.105 Regular 160 0.000656 RK-E RK-E 123.8 58.32  32.1500  25.97 
55 Soil science 0.105 Regular 130 0.000808 OK OK 123.8 58.32  44.4100  35.87 
55  0.105 Regular 130 0.000808 OCK OCK 123.8 58.32  32.5400  26.28 
55 

Li et al., 
2007 

 

Electrical 
conductivity 

0.105 Regular 130 0.000808 RK-E RK-E 123.8 58.32  27.2200  21.99 
56 Soil science 0.105 Regular 100 0.00105 OK OK 123.8 58.32  47.2800  38.19 
56  0.105 Regular 100 0.00105 OCK OCK 123.8 58.32  35.5100  28.68 
56 

Li et al., 
2007 

 

Electrical 
conductivity 

0.105 Regular 100 0.00105 RK-E RK-E 123.8 58.32  27.6800  22.36 
57 Soil science 0.105 Regular 70 0.0015 OK OK 123.8 58.32  46.5400  37.59 
57  0.105 Regular 70 0.0015 OCK OCK 123.8 58.32  33.0600  26.70 
57 

Li et al., 
2007 

 

Electrical 
conductivity 

0.105 Regular 70 0.0015 RK-E RK-E 123.8 58.32  31.3000  25.28 
58 Soil science 0.105 Regular 40 0.002625 OK OK 123.8 58.32  52.8500  42.69 
58  0.105 Regular 40 0.002625 OCK OCK 123.8 58.32  38.2900  30.93 
58 

Li et al., 
2007 

 

Electrical 
conductivity 

0.105 Regular 40 0.002625 RK-E RK-E 123.8 58.32  39.3800  31.81 
59 Soil science 3.8 Irregular 40 0.095 LM LM 0.65 32.31  0.2500  38.46 
59 

Bourennane 
et al., 2000  

Thickness of a soil 
horizon 3.8 Irregular 40 0.095 KED KED 0.65 32.31  0.2000  30.77 

60 Soil science 3.8 Irregular 50 0.076 LM LM 0.65 32.31  0.2400  36.92 
60 

Bourennane 
et al., 2000  

Thickness of a soil 
horizon 3.8 Irregular 50 0.076 KED KED 0.65 32.31  0.1700  26.15 

61 Soil science 3.8 Irregular 75 0.050667 LM LM 0.65 32.31  0.2400  36.92 
61 

Bourennane 
et al., 2000  

Thickness of a soil 
horizon 3.8 Irregular 75 0.050667 KED KED 0.65 32.31  0.1900  29.23 

62 Bourennane 
et al., 2000 

Soil science Thickness of a soil 
horizon 3.8 Irregular 100 0.038 LM LM 0.65 32.31  0.2300  35.38 

62    3.8 Irregular 100 0.038 KED KED 0.65 32.31  0.1600  24.62 
63 Soil science 3.8 Irregular 125 0.0304 LM LM 0.65 32.31  0.2300  35.38 
63 

Bourennane 
et al., 2000  

Thickness of a soil 
horizon 3.8 Irregular 125 0.0304 KED KED 0.65 32.31  0.1700  26.15 

64 Soil science 3.8 Irregular 150 0.025333 LM LM 0.65 32.31  0.2400  36.92 
64 

Bourennane 
et al., 2000  

Thickness of a soil 
horizon 3.8 Irregular 150 0.025333 KED KED 0.65 32.31  0.1500  23.08 

65 Soil science 78000 Irregular 293 266.2116 OK OK 1.01 95.05  0.7900  78.22 
65 

Wu et al., 
2006  

Soil zinc 
78000 Irregular 293 266.2116 OCK OCK 1.01 95.05  0.6600  65.35 
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Reference Discipline Variable Area 
(km^2) 

Sampling 
design 

Sample 
size 

Area per 
sample 

method Method Mean CV (%) MAE RMSE RMAE 
(%) 

RRMSE 
(%) 

66 Soil science 0.047 Regular 195 0.000241 OK OK 3.97 29.47  1.0198  25.69 
66  0.047 Regular 195 0.000241 IDW-1 IDW 3.97 29.47  1.0344  26.06 
66  0.047 Regular 195 0.000241 IDS IDS 3.97 29.47  1.0198  25.69 
66 

Gotway et 
al., 1996 

 

Soil nitrate 

0.047 Regular 195 0.000241 IDW-4 IDW 3.97 29.47  1.0247  25.81 
67 Soil science 0.047 Regular 119 0.000395 OK OK 4 25.75  0.9798  24.49 
67  0.047 Regular 119 0.000395 IDW-1 IDW 4 25.75  0.9695  24.24 
67  0.047 Regular 119 0.000395 IDS IDS 4 25.75  0.9747  24.37 
67 

Gotway et 
al., 1996 

 

Soil nitrate 

0.047 Regular 119 0.000395 IDW-4 IDW 4 25.75  1.0149  25.37 
68 Soil science 0.047 Regular 195 0.000241 OK OK 27.1 11.88  2.4166  8.92 
68  0.047 Regular 195 0.000241 IDW-1 IDW 27.1 11.88  2.6134  9.64 
68  0.047 Regular 195 0.000241 IDS IDS 27.1 11.88  2.4960  9.21 
68 

Gotway et 
al., 1996 

 

Soil organic matter 

0.047 Regular 195 0.000241 IDW-4 IDW 27.1 11.88  2.4083  8.89 
69 Soil science 0.047 Regular 119 0.000395 OK OK 26.7 11.16  2.3854  8.93 
69  0.047 Regular 119 0.000395 IDW-1 IDW 26.7 11.16  2.4556  9.20 
69  0.047 Regular 119 0.000395 IDS IDS 26.7 11.16  2.3685  8.87 
69 

Gotway et 
al., 1996 

 

Soil organic matter 

0.047 Regular 119 0.000395 IDW-4 IDW 26.7 11.16  2.3409  8.77 
70 Soil science 0.53 Regular 731 0.000725 OK OK 3.14 36.31  1.1358  36.17 
70  0.53 Regular 731 0.000725 IDW-1 IDW 3.14 36.31  1.1314  36.03 
70  0.53 Regular 731 0.000725 IDS IDS 3.14 36.31  1.1446  36.45 
70 

Gotway et 
al., 1996 

 

Soil nitrate 

0.53 Regular 731 0.000725 IDW-4 IDW 3.14 36.31  1.1832  37.68 
71 Soil science 0.53 Regular 657 0.000807 OK OK 3.25 38.77  1.2288  37.81 
71  0.53 Regular 657 0.000807 IDW-1 IDW 3.25 38.77  1.2247  37.68 
71  0.53 Regular 657 0.000807 IDS IDS 3.25 38.77  1.2369  38.06 
71 

Gotway et 
al., 1996 

 

Soil nitrate 

0.53 Regular 657 0.000807 IDW-4 IDW 3.25 38.77  1.2689  39.04 
72 Soil science 0.53 Regular 192 0.00276 OK OK 3.14 36.31  1.1489  36.59 
72  0.53 Regular 192 0.00276 IDW-1 IDW 3.14 36.31  1.1269  35.89 
72  0.53 Regular 192 0.00276 IDS IDS 3.14 36.31  1.1747  37.41 
72 

Gotway et 
al., 1996 

 

Soil nitrate 

0.53 Regular 192 0.00276 IDW-4 IDW 3.14 36.31  1.3229  42.13 
73 Soil science 0.53 Regular 88 0.006023 OK OK 3.14 36.31  1.1874  37.82 
73  0.53 Regular 88 0.006023 IDW-1 IDW 3.14 36.31  1.1705  37.28 
73  0.53 Regular 88 0.006023 IDS IDS 3.14 36.31  1.2124  38.61 
73 

Gotway et 
al., 1996 

 

Soil nitrate 

0.53 Regular 88 0.006023 IDW-4 IDW 3.14 36.31  1.3115  41.77 
74 Soil science 0.53 Regular 731 0.000725 OK OK 22.4 21.12  2.6495  11.83 
74 

Gotway et 
al., 1996  

Soil organic matter 
0.53 Regular 731 0.000725 IDW-1 IDW 22.4 21.12  3.0265  13.51 
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74  0.53 Regular 731 0.000725 IDS IDS 22.4 21.12  2.7695  12.36 
74 

 
 

 
0.53 Regular 731 0.000725 IDW-4 IDW 22.4 21.12  2.6552  11.85 

75 Soil science 0.53 Regular 657 0.000807 OK OK 22.3 21.3  2.7893  12.51 
75  0.53 Regular 657 0.000807 IDW-1 IDW 22.3 21.3  3.2000  14.35 
75  0.53 Regular 657 0.000807 IDS IDS 22.3 21.3  2.9240  13.11 
75 

Gotway et 
al., 1996 

 

Soil organic matter 

0.53 Regular 657 0.000807 IDW-4 IDW 22.3 21.3  2.8000  12.56 
76 Soil science 0.53 Regular 192 0.00276 OK OK 22.4 21.12  2.9394  13.12 
76  0.53 Regular 192 0.00276 IDW-1 IDW 22.4 21.12  3.5693  15.93 
76  0.53 Regular 192 0.00276 IDS IDS 22.4 21.12  3.0773  13.74 
76 

Gotway et 
al., 1996 

 

Soil organic matter 

0.53 Regular 192 0.00276 IDW-4 IDW 22.4 21.12  3.0594  13.66 
77 Soil science 0.53 Regular 88 0.006023 OK OK 22.4 21.12  3.9128  17.47 
77  0.53 Regular 88 0.006023 IDW-1 IDW 22.4 21.12  4.0410  18.04 
77  0.53 Regular 88 0.006023 IDS IDS 22.4 21.12  3.8665  17.26 
77 

Gotway et 
al., 1996 

 

Soil organic matter 

0.53 Regular 88 0.006023 IDW-4 IDW 22.4 21.12  4.1749  18.64 
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