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Local Stability Analysis for Uncertain Nonlinear Systems

Ufuk Topcu and Andrew Packard

Abstract—We propose a method to compute provably invariant subsets
of the region-of-attraction for the asymptotically stable equilibrium points
of uncertain nonlinear dynamical systems. We consider polynomial dy-
namics with perturbations that either obey local polynomial bounds or are
described by uncertain parameters multiplying polynomial terms in the
vector field. This uncertainty description is motivated by both incapabili-
ties in modeling, as well as bilinearity and dimension of the sum-of-squares
programming problems whose solutions provide invariant subsets of the
region-of-attraction. We demonstrate the method on three examples from
the literature and a controlled short period aircraft dynamics example.

Index Terms—Region-of-attraction (ROA), uncertain systems, verifica-
tion.

I. INTRODUCTION

We consider the problem of computing invariant subsets of the
region-of-attraction (ROA) for uncertain systems with polynomial
nominal vector fields and local polynomial uncertainty descrip-
tion. Since computing the exact ROA, even for systems with known
dynamics, is hard, researchers have focused on finding Lyapunov func-
tions whose sublevel sets provide invariant subsets of the ROA [1]–[5].
Recent advances in polynomial optimization based on sum-of-squares
(SOS) relaxations [6], [7] are utilized to determine invariant subsets of
the ROA for systems with known polynomial and/or rational dynamics
solving optimization problems with matrix inequality constraints
[8]–[13]. Reference [14] provides a generalization of Zubov’s method
to uncertain systems and [15] investigates robustness of the ROA
under time-varying perturbations and proposes an iterative algorithm
that asymptotically gives the robust ROA. Parametric uncertainties are
considered in [16]–[18]. The focus in [16] is on computing the largest
sublevel set of a given Lyapunov function that can be certified to be an
invariant subset of the ROA. [17], [18] propose parameter-dependent
Lyapunov functions which lead to potentially less conservative results
at the expense of increased computational complexity.

Similar to other problems in local analysis of dynamical systems
based on Lyapunov arguments and SOS relaxations [9], [11]–[13], [17],
[19], our formulation leads to optimization problems with bilinear ma-
trix inequality (BMI) constraints. BMIs are nonconvex and bilinear
semidefinite programs (SDPs) (those with BMI constraints) are gen-
erally harder than linear SDPs. Consequently, approaches for solving
SDPs with BMIs are limited to local search schemes [20]–[23]).

The uncertainty description detailed in Section III contains two types
of uncertainty: uncertain components in the vector field that obey local
polynomial bounds and/or uncertain parameters appearing affinely and
multiplying polynomial terms. Using this description, we develop an
SDP with BMIs to compute robustly invariant subsets of the ROA.
The number of BMIs (and consequently the number of variables) in
this problem increases exponentially with the sum of the number of
components of the vector field containing uncertainty with polynomial
bounds and the number of uncertain parameters. One way to deal with
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this difficulty is first to compute a Lyapunov function for a particular
system (imposing extra robustness constraints) and then determine the
largest sublevel set in which the computed Lyapunov function serves as
a local stability certificate for the whole family of systems. Once a Lya-
punov function is determined for the system in the first step, second step
involves solving smaller decoupled linear SDPs. Therefore, this two
step procedure is well suited for parallel computation leading to rel-
atively efficient numerical implementation. Moreover, recently devel-
oped methods [13], [24], which use simulation to aid in the nonconvex
search for Lyapunov functions, extend easily to the robust ROA anal-
ysis using simulation data for finitely many systems from the family
of possible systems (e.g., systems corresponding to the vertices of the
uncertainty polytope when the uncertainty can be described by a poly-
tope). In the examples in this technical note, we implement this gener-
alization of the simulation based ROA analysis method from [13], [24].

The rest of the technical note is organized as follows: Section II re-
views results on computing the ROA for systems with known polyno-
mial dynamics. Section III is devoted to the discussion of the motivation
for this work and the setup for the uncertain system analysis. In Sec-
tion IV provides a generalization of the results from Section II to the
case of dynamics with uncertainty. The methodology is demonstrated
with three small examples from the literature and a five-state example
in Section V.

Notation: For � � ��, � � � means that �� � � for
� � �� � � � � �. For � � �� � ����, � � � �� � ��
means that ���� � � �� �� for all � � ��. ��� represents
the set of polynomials in � with real coefficients. The subset
	��� 
� � � ��� 
 � � ��� � ��� � � � �� ���� ��� � � � � �� � ���
of ��� is the set of SOS polynomials. For � � ���, ���� de-
notes the degree of �. For subsets �� and �� of a vector space � ,
�� � �� 
� ��� � �� 
 �� � ��� �� � ��	. In several places, a
relationship between an algebraic condition on some real variables and
state properties of a dynamical system is claimed, and same symbol for
a particular real variable in the algebraic statement as well as the state
of the dynamical system is used. This could be a source of confusion,
so care on the reader’s part is required. �

II. COMPUTATION OF INVARIANT SUBSETS OF

REGION-OF-ATTRACTION

In this section, we give a characterization of invariant subsets of
ROA using Lyapunov functions and formulate a bilinear optimization
problem for computing these functions when they are restricted to be
polynomial. These results will be modified to compute invariant subsets
of the ROA for systems with uncertainty in Section IV. Now, consider
the system governed by

���	� � 
���	�� (1)

where ��	� � �� is the state vector and 
 
 �� 
 �� is such
that 
��� � �, i.e., the origin is an equilibrium point of (1) and 
 is
locally Lipschitz on ��. Let ��	
��� denote the solution to (1) with
the initial condition ���� � ��. If the origin is asymptotically stable
but not globally attractive, one often wants to know which trajectories
converge to the origin as time approaches �. This gives rise to the
following definition of the region-of-attraction:

Definition 2.1: The region-of-attraction �� of the origin for the
system (1) is

�� 
� �� � �
� 
 ���

���

��	
��� � � 


�

0018-9286/$25.00 © 2009 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 5, MAY 2009 1043

For � � � and a function � � �� � �, define the �-sublevel set of
� as

���� �� �� � �� � � ��� � ���

For simplicity, ���� is denoted by �� . Lemma 2.2 provides a charac-
terization of invariant subsets of the ROA in terms of sublevel sets of
appropriate Lyapunov functions.

Lemma 2.2: If there exists a continuously differentiable function
� � �� � � such that

� ��� � � ��	 � ��� � � 
�� �

 � �� �� (2)

�� �� ����	�	� ��	 (3)

�� � ��� 	 �� � �
� � 
� ������� � �� (4)

then for all �� � �� , the solution of (1) exists, satisfies	�
���� � ��

for all 
 � �, and 
����� 	�
���� � �, i.e., �� is an invariant subset
of ��. �

Lemma 2.2 is proven in [11], [12] using a similar result from [25].
If the dynamical system has an exponentially stable linearization, one
can impose a stricter condition replacing (4), for 
 � �, by

�� � ��� 	 �� � �
� � 
� ������� � �
� ���� � (5)

With nonzero 
, (5) not only assures that trajectories starting in ��

stay in �� and converge to the origin but also imposes a bound on the
rate of exponential decay of � certifying the convergence and provides
an implicit threshold for the level of a disturbance that could drive the
system out of �� . Therefore, one may consider the stability property
implied by (5) with nonzero 
 to be more desirable in practice. With
this in mind, all subsequent derivations contain the 
� term. The re-
laxed condition in (4) can be recovered by setting 
 � �.

III. SETUP AND MOTIVATION

We now introduce the uncertainty description used in the rest of the
technical note and explain its usefulness in ROA analysis based on
computing Lyapunov functions using SOS programming. Consider the
system governed by

���
� � ����
�� � �����
�� � ����
�� � ����
�� (6)

where ��� �� � � �� � �� are locally Lipschitz. Assume that �� is
known, � � 
�, and � � 
� , where


� �� �� � ����� � ���� � �	��� � � � ��


� �� �� � ���� � ����� � � � �� �� � � � �	��

Here, � is a given subset of �� containing the origin, �� and �	 are
� dimensional vectors of known polynomials satisfying ����� � � �
�	��� for all � � �, �� ��� �	 � �
 , and � is a matrix of known
polynomials. Let ��, ����, �	��, ��, ����, and �	�� denote �-th entry of
�, ��, �	 , �, ��, and �	 , respectively. Define 
 �� 
� � 
� . We
assume that ����� � �, ���� � � for all � � 
� (i.e., ����� � �,
and �	��� � ��, and ���� � � for all � � 
� (i.e., ���� � �),
which assure that all systems in (6) have a common equilibrium point

TABLE I
� (LEFT COLUMNS) AND � (RIGHT COLUMNS)

FOR DIFFERENT VALUES OF � AND ��

at the origin.1 In order to be able to use SOS programming, we restrict
our attention to the case where ��, ��, �	, and � have only polynomial
entries and � is defined as � �� �� � �� � ���� � �� �� � ���� � �
�� � � � ���. Note that entries of � do not have to be polynomial but have
to satisfy local polynomial bounds.

Motivation for this kind of system description stems from the fol-
lowing sources:

i) Perturbations as in (6) may be due to modeling errors, aging,
disturbances, and uncertainties due to environment which may
be present in any realistic problem. Prior knowledge about the
system may provide local bounds on the entries of � and/or
bounds for the parametric uncertainties �. Moreover, uncertain-
ties that do not change system order can always be represented
as in (6) (see [27, p.339]).

ii) Analysis of dynamical systems using SOS programming is often
limited to systems with polynomial or rational vector field. In
[28], a procedure for re-casting non-rational vector fields into
rational ones at the expense of increasing the state dimension
is proposed. Another way to deal with a non-polynomial vector
field is to locally approximate the vector field with a polynomial
and bound the error. For practical purposes only finite number of
terms can be used. Finite-term approximations are relatively ac-
curate in a restricted region containing the origin. However, they
are not exact. On the other hand, it may be possible to represent
terms, for which the error between the exact vector field and its
finite-term approximation obey local polynomial bounds, using
� in (6) (see Table I).

iii) SOS programming can be used to analyze systems with polyno-
mial vector fields. The number of decision variables ��������	

and the size �
�� of the matrix in the SDP for checking exis-
tence of a SOS decomposition for a degree �� polynomial in �
variables grows polynomially with � if � is fixed and vice versa
[6]. However, �
�� and ��������	 get practically intractable for
the state-of-the-art SDP solvers even for moderate values of �
for fixed � (see Table II, where solid lines in the table represent a
fuzzy boundary between tractable and intractable SDPs). More-
over, using higher degree Lyapunov functions and/or higher de-
gree multipliers (used in the sufficient conditions for certain set
containment constraints in Section IV) as well as higher degree
vector fields increases the problem size, and, in fact, the growth
of the problem size with the simultaneous increase in � and �

is exponential. Therefore, in order to be able to use SOS pro-
gramming, one may have to simplify the dynamics by truncating
higher degree terms in the vector field. In this case, �� and �	
provide local bounds on the truncated terms. This is discussed
further at the end of Section IV. It is also worth mentioning that
bilinearity, a common feature of the optimization problems for

1The assumption that all possible systems in (6) have a common equilibrium
point can be alleviated by generalizing the analysis based on contraction metrics
and SOS programming studied in [26] to address local stability (rather than
global stability as in [26]). However, this method leads to higher computational
cost. Therefore, we do not pursue this direction here.
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TABLE II
OPTIMAL VALUES OF � IN THE PROBLEM (15) WITH

DIFFERENT VALUES OF � AND ���� � � AND 4

local analysis using Lyapunov arguments (see Section IV), in-
troduces extra complexity [29] and therefore a further necessity
for simplifying the system dynamics.

In summary, representation in (6) and definitions of �� and �� are
motivated by uncertainties introduced due to incapabilities in modeling
and/or analysis.

IV. COMPUTATION OF ROBUSTLY INVARIANT SETS

In this section, we will develop tools for computing invariant subsets
of the robust ROA. The robust ROA is the intersection of the ROAs for
all possible systems governed by (6) and formally defined, assuming
that the origin is an asymptotically equilibrium point of (6) for all � �
�, as

Definition 4.1: The robust ROA ��
� of the origin for systems gov-

erned by (6) is

�
�
� ��

���

��� � �
� � ���

���
������� �� � 	�

where ������� �� denotes the solution of (6) for � � � with the initial
condition ��	� � ��. �

We focus on computing invariant subsets of the robust ROA charac-
terized by sublevel sets of appropriate Lyapunov functions. Since the
uncertainty description for � and 	 holds only for � � �, we will also
require the computed invariant set to be a subset of �. To this end, we
modify Lemma 2.2 such that condition (5) holds for (6) for all � � �
(i.e., for all � � �� and 	 � ��).

Proposition 4.2: If there exists a continuously differentiable func-
tion 
 � �� � � and � � 	 such that, for all � � �, conditions
(2)–(3)


� 	 � (7)

and


� 
 �	� � �� � �
� � �
 ��������� � ����� 
 
�
 ���� (8)

hold, then for all �� � 
� and for all � � �, the solution of (6) exists,
satisfies ������� �� � 
� for all � � 	, and ������ ������� �� � 	,
i.e., 
� is an invariant subset of ��

� . �

Proof: Proposition 4.2 follows from Lemma 2.2. Indeed, for any
given system �� � ����� � ����, (8) assures that (5) is satisfied. Then,
for any fixed � � � and for all�� � 
� ,������� �� exists and satisfies
������� �� � 
� for all � � 	, ������ ������� �� � 	, and 
� is
an invariant subset of ��� � �� � ������� ��� 	�. Therefore, 
� is
an invariant subset of ��

� .
Remark 4.3: In fact, 
� is invariant for both time-invariant and

time-varying perturbations. The conclusion of Proposition 4.2 holds
for time-varying ��� ���� as long as ����� � ���� �� � �	��� and
�� � ���� � �	 for all � � � and � � 	. Recall that, in the uncertain
linear system literature, e.g., [30], the notion of quadratic stability is
similar, where a single quadratic Lyapunov function proves the stability
of an entire family of uncertain linear systems. �

Note that � has infinitely many elements; therefore, there are infin-
itely many constraints in (8). Now, define

�� �� �� � �
 � 
�� ��� �
 �� ����� �� ���
 �� �	�
�

�� �� �	 � 	��� � ������ �
 �� ����� �� ���
 �� �	�
�

and � �� �� � �� . � , a finite subset of �, can be used to transform
condition (8) to a finite set of constraints that are more suitable for
numerical verification:

Proposition 4.4: If


� 
 �	� 	 �� � �
� � �
 ��������� � ����� 
 
�
 ���� (9)

holds for all � � � , then (8) holds for all � � �. �

Proof: Let �� � 
� be nonzero and � � �. Then, �� � � by (7);
therefore, there exist ��� � � � � ��, ��� � � � � �� (depending on ��) with
	 � �
 � � and 	 � �
 � � such that ����� � ������� � �� 

���	���� � ��������� � �� 
���	�, where � and � are diagonal
with �

 � �
 and �

 � �
. Hence, there exist nonnegative num-
bers �
 (determined from �’s and �’s) for � � � with


��
�
 � �

such that ����� �

��

�
�����. Consequently, by �
 ����������� �
������ ��
 ������������ 
��

�
������ �

��

�
�
 ������������
������ 
 



��
�
�
 ���� � 
�
 ����, (8) follows.

In order to enlarge the computed invariant subset of the robust ROA,
we define a variable sized region�� �� �� � �� � ���� � ��, where
� � 
�� is a fixed, positive definite, convex polynomial, and maximize
� while imposing constraints (2)–(3), (7), (9), and �� 	 
� . This can
be written as an optimization problem

�
���� �� ���

� ������

� ����� � �� (10a)


 �	� � 	 ��� 
 ��� � 	 !�� ��� � �� 	�


� � �� � �� � 
 ��� � �� �� ��������
(10b)

�� � �� � �� � ���� � �� 	 
�


� 	 ��
(10c)


� 
 �	� 	

��

�� � �� � �
 ������ � ����� 
 
�
 ���� �

(10d)

Here, � denotes the set of candidate Lyapunov functions over which
the maximum is defined (e.g., � may be equal to all continuously dif-
ferentiable functions).

In order to make the problem in (10) amenable to numerical opti-
mization (specifically SOS programming), we restrict 
 to be a poly-
nomial in � of fixed degree. We use the well-known sufficient condition
for polynomial positivity [6]: for any � � 
��, if � � "
��, then � is
positive semidefinite. Using simple generalizations of the �-procedure
(Lemmas 8.1 and 8.2 in the appendix), we obtain sufficient conditions
for set containment constraints. Specifically, let �� and �� be a positive
definite polynomials (typically ���� with some (small) real number
�). Then, since �� is radially unbounded, the constraint


 
 �� � "
�� (11)

and 
 �	� � 	 are sufficient conditions for the constraints in (10b). By
Lemma 8.1, if �� � "
�� and ��� � "
�� for � � �� � � � ��, then


 
�� 
 ���� � �
 
 ��� �"
�� (12)

 � 
 ��
 
 ���� �"
��� � � �� � � � �� (13)

imply the first and second constraints in (10c), respectively. By Lemma
8.2, if ��
� ��
 � "
�� for � � � , then


 
��
 
 ���
 � ��
 ��� � �� � �
 ���
 � ��� � "
�� (14)
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is a sufficient condition for the feasibility of the constraint in (10d).
Using these sufficient conditions, a lower bound on ����� can be de-
fined as an optimization:

Proposition 4.5: Let ��� be defined as

������������ �� ���
����	 �	 �	 �	

� �	
��
� �� ����–���� (15)

� ��� � �, � � ����� , �� � ��, ��
 � ��
 , ��
 � ��
 , ��� � ��� ,
and � � �. Here, ����� � � and �’s are prescribed finite-dimen-
sional subspaces of ��� and ����, respectively. Then, ������������ �
���������. �

The optimization problem in (15) provides a recipe to compute sub-
sets of �� that are invariant under the flow of all possible systems
described by (6). The number of constraints in (15) (consequently the
number of decision variables since each new constraint includes new
variables) increases exponentially with� and 	��	 where �	 is defined
as the number of entries of the vectors 
� and 

 satisfying 
���� �


��� � � for all � � �. Namely, there are ��������� SOS condi-
tions in (15) due to the constraint in (14). Revisiting the discussion in
item (iii) at the end of Section III, we note that covering the high de-
gree vector field with low degree uncertainty reduces the dimension of
the SOS constraints but increases (exponentially, depending on 	� �	)
the number of constraints. Consequently, the utility of this approach
will depend on 	 � �	 and is problem dependent. Example (3) in Sec-
tion V-A illustrates this technique.

This difficulty can be partially alleviated by accepting suboptimal
solutions for (15) in two steps: First compute a Lyapunov function for
a finite sample of systems corresponding to the finite set		����� � 	
(for example, 		����� can be taken as the singleton corresponding to
the “center” of 	) solving the problem

���
����	 �	 �	 �	

� �	
��
� ��

� � �� � ����

� ��� � ���� � �� � ��� � ���� (16)


� � ��� � ���� � ����� � � �� � � � ��

� ���� � ���� �
� ��	 � ����� � ��� � ����

for � � 		�����, where �� � ��� ��� � ��� ��� � ��� ��� � �� are
SOS, � � ����� , � ��� � �, and let �� the Lyapunov function com-
puted by solving (16). In the second step, compute the largest sublevel
set �� such that �� certifies �� to be in the ROA for every
vertex system by solving several smaller decoupled affine SDPs. For
� � � , define

�
 �� ���
��	 �� �	 ��

� �	
��
� �� ��� �� � ����

(17)

� �� � �� ��� �
�� ��	 � ���� � �� � ����

and �	
���� �� ���
�
 � � � ��. Then, a lower bound for �	
����

can be computed through

�	
���� �� ���
��	 ��

� �	
��
� �� �� � ����

(18)

� �� � ���� � � �� � �	
����� � �����

While the two-step procedure sacrifices optimality, it has practical
computational advantages. The constraints in (14) decouple in the
problem (17). In fact, for each � � �
, the problem in (17) contains

only a single constraint from (14). Therefore, this decoupling en-
ables suboptimal local stability analysis for systems with uncertainty
without solving optimization problems larger than those one would
have to solve in local stability analysis for systems without uncer-
tainty. Furthermore, problems in (17) can be solved independently
for different � � �
 and therefore computations can be trivially
parallelized. Advantages of this decoupling may be better appreciated
by noting that one of the main difficulties in solving large-scale SDPs
is the memory requirements of the interior-point type algorithms
[31]. Consequently, it is possible to perform some ROA analysis on
systems with relatively reasonable number of states and/or uncertain
parameters using the proposed suboptimal solution technique.

Finally, the following upper bound on the value of �, for which (14)
can be feasible, will be useful in Section V.

Proposition 4.6: Let �� � � and ����� �� �����. Then

�� �� ���
��	���� �	

� �	
��
� ��

(19)

��

 � � ��
 � �� � � ��� ��� ��� � � �

where �
 �� ����	 � �������
��	, is an upper bound for the values

of � such that (14) can be feasible. �
Proof: With �� as defined and ��
� ��
 � ����, if �
��� ��

� ���� � ���
 � �
� ��	 � �� � �� ���
 � ���� ����, then ��
 and
�
 cannot contain constant and linear monomials and the quadratic part
of �
 has to be SOS and equivalently positive semidefinite. Therefore,
the result follows from the fact that, for fixed � � � and positive def-
inite quadratic ��, the existence of � � � satisfying ��


 � � ��
 �
�� � ��� is necessary for the existence of �� ��
 , and ��
 feasible
for (14).

Note that the problem in (19) can be solved as a sequence of affine
SDPs by a line search on �.

V. EXAMPLES

In the following examples, ���� � ��� (except for example (2) in
Section V-A), ����� � �������, and ����� � �������. All cer-
tifying Lyapunov functions and multipliers are available at [32]. All
computations use the generalization of the simulation based ROA anal-
ysis method from [13], [24]. Representative computation times on 2.0
GHz desktop PC are listed with each example.

A. Examples From the Literature

Example 1) Consider the following system from [16]:  �� � �� and
 �� � ��� � � ��� � ��� , where � � ��� !� is a parametric un-
certainty. We solved problem (15) with ��� � � � and ��� � � �
for � � �� ����� ���"� ���� ���", and 0.2. Note that �� (as defined in
Proposition 4.6) is 0.244. Typical computation times are 5 and 8 s for
��� � � � and �, respectively.

Fig. 1 shows the invariant subset of the robust ROA reported in [16]
(solid) and those computed here with ��� � � � (dash) and ��� � � �
(dot) for � � � along with two points (stars) that are initial conditions
for divergent trajectories of the system corresponding to� � �.Table II
shows the optimal values of � in the problem (15) with ��� � � � and
4 for different values of �.

Example 2) Consider the system (from [17]) of  �� � ����������
and  �� � �� � ���� � ���� where � � ���� ��. For easy comparison
with the results in [17], let ���� � ��!#$��� � ���#����� � ���#$���
and � � �. In [17], it was shown that �	�
�
 (with a single parameter
independent quartic � ), �	���� (with pointwise maximum of two pa-
rameter independent quartic � ’s), �	��		 (with a single parameter de-
pendent quartic (in state) � ), �	��	� (with pointwise maximum of two
parameter dependent quartic (in state) � ’s) are contained in the robust
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Fig. 1. Invariant subsets of ROA reported in [16] (solid) and those computed
solving the problem in (15) with ��� � � � (dash) and ��� � � � (dot) along
with initial conditions (stars) for some divergent trajectories of the system cor-
responding to � � �.

Fig. 2. Invariant subsets of ROA with ��� � � � (inner solid) and ��� � � �
(dash) along with the unstable limit cycle (outer solid curves) of the system
corresponding to � � ��������	� 
 
 
 � ��	����.

TABLE III
OPTIMAL VALUES OF � IN THE PROBLEM (15) WITH

DIFFERENT VALUES OF � AND ���� � � AND 6

Fig. 3. Invariant subsets of ROA with ��� � � � (solid) and
��� � � � (dash) along with initial conditions for divergent tra-
jectories (“�” for 	�
� � �����
 � ���� �
 
 
 �� and “�” for
	�
� � ������
 �������
 
 
 ��).

ROA. On the other hand, the solution of problem (15) with ��� � � �
and ��� � � � certifies that ������ and ������ are subsets of the ro-
bust ROA, respectively. Fig. 2 shows invariant subsets of the robust
ROA computed using ��� � � � (inner solid) and ��� � � � (dash)
along with the unstable limit cycle (outer solid curves) of the system
corresponding to � � ���������� 	 	 	 � ���� ���. In order to demon-
strate the effect of the parameter � on the size of the invariant subsets
of the robust ROA verifiable solving the optimization problem in (15),
the analysis is repeated with � � ����� ���
� ����� ���� ��
, and 0.75.
Note that �� (as defined in Proposition 4.6) is 0.769. Table III shows
the optimal values of � in the problem (15) with ��� � � � and 6 for
different values of �. Typical computation times are 19 and 24 s for
��� � � � and �, respectively.

Example 3) Consider the system governed by


� �
���� � �� � ��� � ��
����

��� � �� � ������� � ���������
� 	��� (20)

where 	 satisfies the bounds �������� � 	���� � �������
and ����� ��� � ��� � 	���� � ���� ��� � ��� in the set
� � �� � �� � 
��� � ��� � ����. Fig. 3 shows invariant subsets
of the robust ROA computed with ��� � � � (solid) and ��� � � �
(dash) along with two points that are initial conditions for divergent
trajectories (� 	 � for 	��� � �������� ���� ��� � ��� and “
” for
	��� � �������������� ��� � ��� ). Typical computation times
are 13 and 35 s for ��� � � � and 4, respectively.

B. Controlled Short Period Aircraft Dynamics

Consider the plant dynamics


� �

�� ����
 ���
�

���� ����� �����

� � �

�

�

���
� ������
���

�

�

�

�� � ������������ � ������� � �������� � ��������

�� � ��������
��� � �������� � ���
����

�

(21)


 � � �� �� �
� , where ��, �� and, �� are the pitch rate, the angle of

attack, and the pitch angle, respectively. The input � is the elevator
deflection and determined by


� �
����� ����

� �
� �

����� �����

����
 �����

 (22)

� � �� � �����, where � is the controller state. Here, �� and �� are
two uncertain parameters introducing 10% uncertainty for the entries
of the plant dynamics that are nonlinear in �, i.e., �� � ������ ����
and �� � ������ ����. Entries in the vector fields above are shown up
to three significant digits. The exact vector field used for this example
is available at [32]. The solution of (15) with ��� � � � and � � �
verifies that ���� � ��

� whereas it can be certified that ���� is a subset
of the ROA for the nominal system (i.e., for ���� � ���� � ���� �
���� � �). With ��� � � � the problem in (15) has more than 4000
decision variables. Therefore, we computed a suboptimal solution in
two steps for � � �: We first computed a Lyapunov function for the
nominal system (35 min, which certifies that ����� is in the ROA for
the nominal system) and then verified (3 min) that �	�� is an invariant
subset of the ROA for the uncertain system. To assess the suboptimality
of the results, we performed extensive simulations for the uncertain
system setting �� and �� to their limit values and found a diverging
trajectory with the initial condition satisfying ������� ����� � ��. The
gap between the value of � � �� for which �� cannot be a subset of
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the robust ROA and the value of � � ��� for which �� � ��
� is ver-

ified may be due to the finite dimensional parametrization for � , the
issues mentioned in Remark 4.3, the fact that we only use sufficient
conditions and/or suboptimality of the two step procedure used for this
example; nevertheless, it demonstrates a necessity of further study to
make local system analysis based on Lyapunov functions and SOS re-
laxations more efficient.

VI. CONCLUSION

We proposed a method to compute provably invariant subsets of the
region-of-attraction for the asymptotically stable equilibrium points
of uncertain nonlinear dynamical systems. We considered polynomial
dynamics with perturbations that either obey local polynomial bounds
or are described by uncertain parameters multiplying polynomial
terms in the vector field. This uncertainty description is motivated by
both incapabilities in modeling, as well as bilinearity and dimension of
the sum-of-squares programming problems whose solutions provide
invariant subsets of the region-of-attraction. We demonstrated the
method on three examples from the literature and a controlled short
period aircraft dynamics example.

APPENDIX

Following two lemmas are simple generalizations of the S-proce-
dure. The proof of the first one is trivial. We provide a proof for the
second one.

Lemma 8.1: Given ��� ��� � � � � �� � ���, if there exist
��� � � � � �� � ���� such that �� �

�

���
���� � ����, then

�� � �� � ��	�
� � � � � ��	�
 � �� 	 �� � �� � ��	�
 � ��. 	

Lemma 8.2: Let � � ��� be positive definite, 
 � ���, � � �,
��� �� � ����, 
 � ��� be positive definite and satisfy 
	�
 � �. Sup-
pose that � �	� � �
�� � 
�� � 
� � ���� holds. Then, 
���
��� �
�� � �� � 
	�
 � � ��� ��	�
 � ��. 	

Proof: Let � � 
��� be nonzero. Then

� � �
	�
� 	� � �	�

��	�
 � 
	�
��	�


and, consequently, ��	�
 � � (since ��	�
 � �) and 
	�
 � �.
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