

Worst Case Execution Time Analysis,

Case Study on Interrupt Latency,
For the OSE Real-Time Operating System

By

Martin Carlsson

Royal Institute of Technology, Stockholm

Master’s Thesis in Electrical Engineering
Stockholm, 2002-03-18

 ii

Abstract

In real-time systems the execution time of a program is crucial, missing a deadline can have
catastrophically consequences. Today the estimation of the worst execution time is mostly done by
measurements with the worst possible input to the program. These measurements are not totally reliable;
there is a chance that the worst execution path of the program is not caught in the measurements. There
have been a lot of research performed in the WCET (Worst Case Execution Time) analysis field in the last
couple of years, and models of how to theoretically estimate the WCET have been thoroughly described.
But there haven’t been many attempts at applying the models to actual real-time operating system code.

The goal with this thesis project is to use today’s research in the WCET analysis field, especially the work
by the ASTEC WCET -group in Sweden, to develop a tool that can be used on object-code for an ARM
microprocessor. The tool should be able to transform the binary executable file of a program into control
flow graphs with basic blocks, so that a safe (no underestimates) and tight WCET analysis can be
calculated. In this case study the WCET of the interrupt latencies in the OSE real-time operating system. A
part of the work is to determine how much work that has to be done by hand, e.g. through program-specific
input from the user, and how much that can be automated.

 1

Table of Contents

1 Introduction .. 2
1. 1 Company Background... 2

2 Real-Time Operating Systems .. 3
2.1 General... 3
2.2 The OSE Operating System... 3

3 Target Hardware .. 5
3.1 ARM 9 ... 5

4 WCET Analysis – Theory.. 6
4.1 Introduction to WCET Analysis .. 6
4.2 Related Work.. 7
4.3 Program Flow Analysis .. 8
4.4 Low-level Analysis .. 8
4.5 Calculation ..10

5 WCET-Prepare tool prototype..11
5.1 Goal..11
5.2 Find Functions and DI...11
5.3 ARM decoder ...12

6 Prototype Implementation..12
6.1 Finding functions and interrupt changes..12
6.2 Decoding binaries ..13
6.3 Construction of basic blocks..16
6.4 Creation of Basic Blocks Graph..19

7 Experiments..20
7.1 DI-EI chain properties...24

8 Conclusions ..29
9 Future Work ...30
Acknowledgements ..31
10 References ..31
Appendix A – Work Overview...33
Appendix B Scope Graph File for chain DI156588-156828...34

 2

1 Introduction

Estimating the worst-case execution time of a
program is a very important task, especially
when you are dealing with real-time operating
systems and programs, which have deadlines
that have to be kept. Missing a deadline can
have catastrophically consequences, because
real time operating systems and programs are
used in all types of time sensitive embedded
systems, e.g. in medical equipment, cars, mobile
phones and airplanes.

To calculate a static estimate the worst case
execution time of a program and get a both safe
(no underestimates) and tight (as little
overestimation as possible) WCET (Worst Case
Execution Time) approximation is not an easy
task. Several things have to be considered, such
as how to model the caching behaviour to
include it in the analysis and how to find the
longest execution path in all the execution paths
of the program. The most important task when
performing a WCET analysis is to determine the
number of loop iterations in the program,
because it’s here that the programs spend most
of their execution time.

This thesis project was performed at OSE
Systems, which is the developer and distributor
of the OSE real-time operating system. They
were interested in calculating the maximum
Interrupt latency within the operating system
kernel using static analysis of the compiled
code.

OSE Systems’ reason to get involved in this
project is for one that today the estimations of
the WCET are made by manual tests. Therefore
a higher time limit on the deadlines for the
operating system then necessary is set, because
one can’t be absolutely sure all execution paths
have been tested. If this project could come up
with a good way of representing the code for
statically WCET Analysis, the theoretically
WCET could be calculated and the deadline
time limits could be reduced.

The main part of the thesis project was spent on
the implementation of a tool prototype for
preparing operating system code at object code
level for static WCET calculation. The tool
constructs a number of control flow graphs

(CFG) from a compiled and linked binary file of
the operating system kernel. These CFG’s
contain basic blocks of instructions, bounded by
jump instructions and, in our case, instructions
that change the Interrupt State. The approach
was an up-and-down solution, which starts with
the first binary and constructs basic blocks and
control flow until all binaries are decoded and
placed into basic blocks and the flow between
the blocks is determined. There are others that
have faced the same task, e.g. [16] where they
had a bottom-up approach when constructing
the CFG from the binary file.

This report will explain some of the background
to WCET Analysis as well as some theory
behind real-time operating systems in general
and the OSE operating system in specific. The
target architecture (ARM9) will be briefly
discussed, but the main part of the report will be
spent on the tool prototype implementation and
the results from the experiments. In these
chapters the problems we encountered and how
we solved them will be discussed and the most
important lessons of the project are presented in
the conclusions and future work chapter

1. 1 Company Background

A brief summary of the company where the
thesis was performed:

OSE Systems 1 is a subsidiary of Enea Data2.
Enea Data was founded in 1968 by a couple of
KTH (Kungliga Tekniska Högskolan, Royal
Institute of Technology) and Stockholm
University students. Enea is an abbreviation of
Engström Elektronik AB (Engstrom Electronics
Inc) where Engström is the last name of one of
the founders. The first Unix system in Sweden
stood in a room at Enea (1981), and the first E-
mail in Sweden was sent to Enea (April 7,
1983). In the early Internet years, Enea was the
.se NIC (where you register domain names),
that of course means enea.se was the first
Swedish domain registered. Enea also
administrated the first Internet backbone in
Sweden, which was later moved to KTH and is
today known as SUNET3. Enea has since the

1 www.ose.com
2 www.enea.se
3 www.sunet.se

 3

start been in the embedded systems consulting
business and the OSE operating system
originated from a number of consulting projects
for the telecom industry. OSE is today one of
the largest operating systems in the world for
embedded systems such as mobile phones and
airplanes.

2 Real-Time Operating Systems

2.1 General

The definition of a real-time system is that the
program execution has certain timing deadlines
that have to be kept. Deadlines in real-time
systems are often divided into two types: Hard
and Soft. Where in hard deadline real-time
systems, missing a deadline causes the system
to crash in every case. For soft deadline real-
time systems, deadlines can be missed without
crashing the system. Another way to look at it is
that the type of the deadline depends on the
consequences for missing it, e.g. lowered
efficiency in a car engine or an unstable
measuring system.

Keeping real-time constraints can be difficult
even on single processor systems. Therefore on
distributed real-time systems it’s even more
difficult too keep the deadlines. A distributed
system is a system with several processors,
running separate from each other. The deadlines
are kept through a carefully considered
squeduling algorithm. An example of missing a
deadline is shown in figure 2.1. Here a reply-
message arrives too late.

In the figure process A needs some service form
process B in order to continue the execution.
The process sends a message to B requesting the
information. B receives the message and sends a
reply back to process A. If the reply message
from B is not received by process A within the
deadline, either an exception is raised (soft real-
time systems) or the system requirements is not
kept (hard real-time systems).

Figure 2.1 Deadline example in a distributed
system, taken from [17]

2.2 The OSE Operating System

OSE is used in distributed systems with hard
real-time deadlines but in reality most of these
systems contain parts with hard real-time
deadlines, and other parts with soft real-time
deadlines.

2.2.1 Processes in OSE

There are five types of processes in OSE:

• Interrupt, trigged by either an interrupt, e.g.

an Ethernet package has arrived and needs
to be taken care of (before the queue of
packages overflows), or some unit has been
removed from the PCI bus.

• Timer Interrupt, used for periodic events,

e.g. when it’s desired to measure the
temperature each 500 ms, or when a LED is
set to blink every second.

Deadline
for

Process A

Sending
Node

Process A

Receiving
Node

Process B
Network

Request

Reply

 4

• Prioritised, the most common kind of

process. They are written as eternal loops
(for(;;)) and runs as long as no interrupt
occurs or a process with higher priority
becomes ready.

• Background, run in a strictly time-sharing

mode beneath the prioritised processes.
Also written as eternal loops just like the
prioritised processes. Background
processes are pre -empted by prioritised or
interrupt processes.

• Phantom, contains no executable code and

are used only as a representation of another
process. Used together with a redirection
table to form a logical channel for
communication between processes in
distributed systems.

Every process has a priority from 0-31, where 0
is the highest. For interrupt processes, the
priority is mapped against a hardware priority.
At every point in time, the process with highest
priority is run. Every process can be in one of
three stages, waiting, ready and running, as
shown in figure 2.1.

Figure 2.2 Possible process states in OSE
from Enea OSE Documentation [19]

2.2.2 Memory Management

Memory management is important in every real-
time system. In OSE the memory is organized
into different pools and segments, as shown in
figure 2.3. There is one system pool in OSE,
where processes and blocks that execute in the
system segment can allocate memory. The
system pool is always located in the kernel

memory. So if the system pool gets corrupted
then the whole system will crash. The advantage
of that each block can have its own memory
pool is isolation. First isolation through memory
protection and also isolation so that one process
can’t allocate all the memory in a segment and
block other processes from allocating memory.

Processes can be put together into blocks that
can have their own memory pool. One
advantage of using blocks is that many system
calls can operate on whole blocks instead on
single processes. Another is that the blocks
memory pool can be used for environment
variables that are visible for all the processes
within the block, but not for other processes.

Figure 2.3 Memory organisation in OSE,
taken from the OSE documentation [19]

2.2.3 Interrupts

An interrupt occurs either when an outside
device wants to notify the system that there is
data available, e.g. an incoming signal, or when
an error has occurred in the system, e.g. when a
device has been removed or broken down.

When an interrupt occurs, the first thing that
happens is that the program counter will be
saved at the current execution address, and also
if there are some registers that are needed for
the active process, they are also saved. Then an
interrupt handler is started which is interrupt
type specific, that means that there are different
interrupt handlers for different kinds of
interrupts. As mentioned earlier interrupt
processes also have priority. When an interrupt
occurs and right after another interrupt with
higher priority occurs, the current interrupt
handler has to wait, i.e. gets pre-empted, until
the higher priority interrupt is finished.

 5

2.2.4 Interrupt Latency

The Interrupt Latency is the time from when an
Interrupt is triggered until the Interrupt process
starts. In figure 2.3 there is an overview of the
different stages that passes when an interrupt
occurs.

Figure 2.3 Interrupt Latency in OSE, taken
from [17]

The Interrupt Handler time (I – S) is, as
mentioned before for saving the CPU register
contents, find out cause of interrupt and set the
interrupt mask. If the Interrupt mask is set so
dis able Interrupts, then the system has to wait
until Interrupts are enabled again before the
Interrupt handling can start. This is were, in the
worst case scenario, the most time of the
Interrupt latency is spent and it is these parts of
the operating system that this project will focus
on and try to find the maximum bound for. In
average, the time Interrupts are disabled is only
about 1% of the total interrupt latency, but in
the worst case, which we are interested in here,
that time is approximately 50% of the Interrrupt
latency.

2.2.5 Disable Interrupt regions

The operating system has been designed for
real-time purposes. This means that the regions
where Interrupts are disabled and the Interrupt
latency is big, are many but very short. In a non
real-time operating system, Interrupts can be

disabled for longer periods of times and
therefore have fewer but longer Interrupt
latencies.

Interrupts are disabled during critical
operations, e.g. during memory access when a
sensitive variable needs to be changed and
mutual exclusion is necessary, or when new
memory is allocated. Another time when
Interrupts are disabled is when the scheduler is
locked for temporarily preventing a context
switch or when a process is removed or inserted
from the process table containing all the
processes.

In this case study we examine the OSE delta
kernel for disable - to enable Interrupt regions.

3 Target Hardware

OSE is available for a number of different
hardware targets. The delta kernel of OSE that
has been used in this case study is available for
ARM, StrongARM, PowerPC, Motorola 68k
and MIPS R3000. These are all RISC (Reduced
Instruction Set Computer) processors except for
the Motorola 68k, which is a CISC (Complex
Instruction Set Computer) processor.

We have chosen an ARM processor as target
because it’s one of the most common processors
on the market, and it has a simple instruction set
architecture. And we chose ARM9 because it’s
relatively new with an extended 5-stage pipeline
and still has the same instruction set as the
predecessor ARM7 family.

3.1 ARM 9

The ARM9 is a 32-bit RISC microprocessor
that differs a bit from previous ARM releases.
Instead of a three-stage pipeline, this new
processor family uses a five-stage pipeline. It
supports both Big- and Little -endian modes and
can be switched to a 16-bit THUMB mode for
sections where compact code size is required.
THUMB is a separate instruction set derived
from the 32 -bit ARM instruction set.

Time

Interrupt is
triggered

Interrupt
Handler
starts

Interrupt Handler finished,
starting Interrupt process

S

I E

S = Time to start the Interrupt Handler
I = Interrupt Latency
E = Interrupt process execution time

Return of Interrupt
process

 6

3.1.1 ARM Instruction Set

One property of the ARM instructions that
makes it different from other processors
instructions is that each instruction has a
condition code attached to it. This condition
code, which is the first four bits in the
instruction binary, says if the instruction is to be
executed or not. The most common condition is
naturally the always condition. This solution
reduces the number of branches in the code. The
32-bit ARM Instruction Set has ten standard
formats:

• Data Processing
• Multiply
• Single Data Swap
• Single Data Transfer
• Block Data Transfer
• Branch
• Branch and Exchange

• Halfword Data Transfer
• Coprosessor Data Transfer
• Coprocessor Data Operation
• Coprocessor Register Transfer
• Software Interrupt
• Undefined

The processor has a total of 37 registers made
up of 31 general 32 bit registers and 6 status
registers. At any time, 16 general registers (R0
to R15) and one or two status registers are
visible to the programmer. The visible registers
depend on the processor mode and the other
registers. The banked registers are switched in
to support rapid interrupt response and context
switching [20].

Interrupts are disabled and enabled by setting
one or two of the Interrupt bits in the status
register (CPSR) FIQ and IRQ in figure 3.1.

Figure 3.1 Format of the ARM Program Status Registers (PSR)

4 WCET Analysis – Theory

4.1 Introduction to WCET Analysis

Several attempts have been made to come up
with a useful method for the estimation of the
worst-case execution time of a program. It’s
hard to determine the best method because the
research in the area only goes back about 10
years from now, and they haven’t been applied
to enough number of real systems to come to
any conclusion. The main methods used in this
report are based on the work of the ASTEC

WCET-group in Sweden [1] [2] [3] [4] [5] [14].
They have come up with a powerful tool to
express the different parts of the analysis in a
language that can be used for the development
of timing analysing tools, such as the one
developed within this thesis project. Their
method to calculate the WCET is divided into
three steps.
First the program flow analysis step, where the
control flow of the program is analysed, the
code is grouped into basic blocks and a basic
blocks graph and scope graph are constructed.
The second step is the low-level analysis, which
determines the timing effects of external and
internal parts. The external part is called global

 7

low-level analysis and includes the timing
effects of caches and pipeline timing effects.
Local low-level analysis deals with machine
timing effects that depend on a single
instruction and its immediate neighbours.
The last step of the WCET analysis is the
calculation step. Here the previous parts of the
analysis are combined so that a total result can
be reached.

4.2 Related Work

In [1], the previous work that has been
conducted in Uppsala is presented. For example
the introduction of a language representation for
modelling complex program flows, and the
timing behaviour of pipelines. It also gives an
overview of the modular architecture of the
WCET tool developed by the ASTEC WCET -
group in Uppsala (see Figure 1).

In [2] Jakob Engblom has looked at the
properties of embedded programs, such as how
many condition statements there are and the
depth of loops in a real-time program. The study
was performed at object-code level, because
program-code for embedded systems is often
automatically generated, and therefore rather
“ugly”.

The researchers behind [3] [4] and [5] go deeper
into the different parts of the WCET model
from the ASTEC WCET-group. [3]
concentrates on pipeline analysis, based on a
trace-driven simulation, whereas [4] and [5]
looks at the modelling of complex program-
flows, i.e. how to model a complex flow in
order to get the tightest possible WCET -
estimate.

Colin and Puat have in [6] applied WCET
methods on a real R-T operating system, namely
the RTEMS operating system. They came to the
conclusion that WCET analysis for a R-T
operating system is feasible and located some of
the difficulties one might have in performing
the analysis.

A group of Korean researchers presents in [7] a
technique for estimating the WCET for
programs run on RISC processors. They have
included cache analysis as well as pipeline
timing considerations in their model.

In [8] the IPET (Implicit Path Enumeration
Technique) is used for calculation of the worst
possible execution path. A WCET analysis tool
for hard real-time programs is presented:
Cinderella (who had the hard real-time
constraint that she had to be home by
midnight…) that calculates the WCET for
programs run on the Intel i960 KB processors.

The writers of [9] present models for instruction
cache analysis using abstract interpretation and
shows how to statically categorize the caching
behaviour of each instruction.

The important task of how to bound the number
of loop iterations inside R-T programs to be
able to perform WCET analysis on it is closely
examined in [10].

The WCET analysis in [12] also includes
caching- and pipeline-analysis where the
caching behaviour is attached to each basic
block and the pipeline-analysis takes care of
pipeline behaviour between the basic blocks.

[14] Gives an overview of the work performed
by the ASTEC WCET-group and explains the
pipeline timing-effects more in detail.

Theiling and Ferdinand try to combine Abstract
Interpretation (AI) and Integer Linear
Programming (ILP) in [13] and [15]. They use
AI for the cache modelling and ILP for the
program flow analysis. The advantage in using
ILP for flow analysis is that the tool becomes
more portable, as the user can specify
constraints of the specific program before
analysing it

Figure 4.1 Relation between possible
executions and flow information [4]

 8

4.3 Program Flow Analysis

The goal with the program-flow analysis is to
model the possible execution paths the program
can take when it runs, i.e. what functions get
called, how many times loops iterate and
dependencies between if-statements (figure 1).
This is to ensure that we have all the feasible
paths when we later, in the calculation step, will
perform a search for the longest feasible path. In
order to be able to do that, the first step is to
divide the code into basic blocks and find the
dependencies between them when constructing
the control flow graph. Each block has the
property that it doesn’t contain any function
calls or jumps to other procedures, i.e. we are
ensured of this piece of code’s execution-path.
There are a number of different approaches to
creating the control flow graph with basic
blocks as nodes available. Either the analysis
can be done automatically or it can be done by
hand. With the automatic approach, one can use
control flow information from the compiler,
integer linear programming (ILP) constraints, or
abstract interpretation. In abstract interpretation
the idea is to extract properties of the run-time
behaviour of a program by making an
“interpretation” of the program using
abstractions of values instead of concrete values
[1]. The program behaviour can easily be
modelled by ILP, but the analysis is likely to
become inefficient for larger applications, since
solving an ILP problem in general takes
exponential time [12]. Abstract interpretation
for flow analysis has been widely explained
[4][5][7][9][12]. In [4], in order to represent the
dynamic behaviour of the program, the concept
of a scope is introduced. Here, each scope
corresponds to a repeating or differentiating
execution environment in the program, e.g. a
function call or a loop, and can contain one or
more basic blocks (figure 4.2).

All scopes are supposed to be looping, even if
they iterate less then one time. Therefore all
scopes can be assigned something that is called
flow-fact-information, where a number of
properties of the scope are given, such as the
number of iterations of the scope and intervals
of iterations where the expressions are valid.

Figure 4.2 Example of code with associated
scopes [4]

In figure 4.3 is an example of flow information
facts attached to the scopes. The symbol [1…4]
means that the facts are the total result from
iterations one to four of the scope. <Range…>
says that the facts are valid for each of the
iterations in the range. When no ranges are
given, the facts are supposed to be valid in all
iterations of the scope. The right part of the
information facts is a constraint specification,
e.g. the first fact of scope foo in figure 4.3
means that the total of XA in the iterations one
to four is less than or equal to two.

Figure 4.3
Example of facts attached to scopes [4]

The technique with expressing flow information
using constraints is known from the implicit
path-enumeration technique (IPET) that will be
discussed later in this chapter.

4.4 Low-level Analysis

The second part of the WCET analysis is to
consider the machine timing-effects. This
includes both global low-level analysis, where

 9

the external timing effects such as caching are
considered, and local low-level analysis, where
the focus is on the timing effects from single
instructions and pipeline effects. To get an
overview of the timing effects from the low-
level analysis, a timing graph is constructed.
Also in this graph the nodes consist of basic
blocks and we attach the timing facts to each
node including both the global and the local
low-level analysis. Relevant parts of the timing
graph are later used in the calculation of the
WCET.

4.4.1 Global Low-level Analysis

Global low-level analysis means analysing the
effects on execution time from all parts of the
machine. The main global contributor to lower
execution times is the caching of instructions
and data, and therefore it needs to be considered
in the WCET analysis in order to get a tight
estimation of the actual execution time. The
other global timing effects are small in
comparison and therefore I only focus on
caching in the global analysis.

4.4.1.1 Including Cache Performance in the
Analysis

Methods on how to model the caching
behaviour have been presented in several
research articles [7][9][12][13][15]. In [7] the
authors divide the difficulty in predicting the
caching behaviour into two problems: intertask
interference and intratask interference. Intertask
interference is caused by preemption of a task,
and when the task gets to run after being pre-
empted, it will refer to memory blocks in the
cache that is no longer there. Intratask
interference occurs when more then one
memory block from the same task competes for
the same cache memory block. This results in
two kinds of cache misses: capacity, due to
limited cache size, and conflict, due to limited
amount of cache set associativity. The
instructions or data in the cache references are
divided into four categories. Always-hit, the
referenced data or instruction is always in the
cache. Always-miss, instruction or data is not in
the cache in any cache reference. First-miss,
means that the reference is not in the cache the
first iteration, but can be supposed to be in the
cache the rest of the iterations, e.g. a for() loop.

Finally conflict, a reference that can’t be
determined whether it’s in the cache or not.
Whalley and others have a similar approach in
[9], with the same categorizations of cache
references except that they add the first-hit
category, which means that the referred
instruction (data caches are not considered here)
is in the cache the first iteration and all
remaining references will be misses. They also
add some information to each basic block in the
control flow graph that gives a set that
abstractly represent what’s in the cache at the
entry and exit of each basic block. Here two
new definitions are given to determine the sets:

1. A program line can potentially be in
the cache if there exists a sequence of
transitions in the combined control
flow graph and call graph (graph with
the external function calls and function
instances) such that the program line is
cached when the basic block is entered.

2. An abstract cache state of a basic block
in a function instance is the subset of
all program lines that can potentially
be cached (1) prior to the execution of
the basic blocks.

The other articles use combinations of the
above.
The cache information is then included in the
timing graph for later use as can be seen in the
example in figure 4.4.

Figure 4.4 Example of cache execution
scenarios included in the timing graph. [3]

4.4.2 Local Low-level Analysis

Single instructions and their pipeline timing
effects are considered in the local low-level
analysis. The timing contributions from the
single instructions memory access time are first

 10

added to the timing graph by summing up the
execution time of every instruction in the
correspondent basic block.
The pipeline effects between sequential basic
blocks in a program can be achieved in two
ways, either a simulation with first the basic
blocks isolated and then together to get the
pipeline timing effect, or through a statical
analysis. In [7] the pipeline timing effects are
considered statically, using so called reservation
tables for each basic block. These tables are
built up by examining the pipeline steps of each
instruction in the block. Then the head and tail
of the reservation table of depending blocks are
analysed together to get the pipeline effect. An
example of the reservation tables can be seen in
figure 4.5, where the vertical axis corresponds
to the pipeline steps and the horizontal is time.

Figure 4.5 Example of a reservation table [7]

With simulation the basic blocks are first run
isolated and then in sequence to get the
pipelining difference. This difference is in
[3][5] and [14] denoted with δ as can be seen in
the example in figure 4.6

Figure 4.6 Example of pipeline overlap
between consecutive blocks. [3]

4.5 Calculation

The final step of the WCET analysis is the
calculation step. Here the results from the flow
analysis and low-level analysis are put together
to form a final estimate of the execution time. In
research literature there are three main methods
of calculation: path-, tree- or IPET- (Implicit
Path Enumeration Technique) based [1].

4.5.1 Path based Calculation

When calculating the WCET with path-based
calculation the goal is to get the longest feasible
execution time of the program. This is achieved
by first calculate the, e.g. five, longest paths of
the program and then seeing which one of them
is feasible [12].

4.5.2 Tree based Calculation

In tree-based calculation the WCET is generated
by a traversal of a tree representing the
program, starting from the bottom. Results from
analysing smaller parts of the program are used
to make the timing estimates for larger parts [7].

4.5.3 Implicit Path Enumeration Technique
(IPET)

The way to implicitly find the longest
executable path of a program is by setting
algebraic and/or logical constraints to the basic
blocks in the graphs and thereafter maximizing
an objective function (1) and holding the
constraints using integer linear programming
(ILP) [8].

Σ∀ (xbasic block * tbasic block – ttiming effect) (1)

An explanation of the object function: Σ∀
means the sum of all elements in the following
expression. xbasic block is the number of iterations
for a basic block. tbasic block is the timing effect of
each block and ttiming effect is the gain of pipeline
effects between blocks.

Most WCET tools use a combination of the
techniques mentioned above for different parts
of the calculation.

 11

Figure 4.7 Overview of the WCET tool using path -based calculation [5]

5 WCET-Prepare tool prototype

5.1 Goal

The goal for the tool developed within this
project is that it should be able to produce flow
information graphs from a number of source
code files and an ELF (Executable Linkable
File) containing object code binaries. It should
be able to detect interrupt pairs (disable
interrupt -> enable interrupt) and construct a
basic blocks graph for each such chain. This is
needed to calculate the maximum interrupt
latency. The result should be presented as a
scope graph (in a .sg file) and as a special .tcd
(Textual Code Description) file containing the
basic blocks graph. The idea is that the graphs
should be on a format they can be used for
direct WCET calculation by using the tool
developed by ASTEC.

I have chosen to call the tool WCET prepare
because the actual calculation is performed by
an automatic calculation too developed by
ASTEC in Uppsala. So the tool developed in
this project makes all the preparations to make a
calculation possible.

As programming language, C++ is used for the
most part, but some text comparing is done with
AWK scripts.

The tool is divided in two separate parts, which
internally are named “Find Functions and DI”
and “ARM decoder”.

5.2 Find Functions and DI

The goal of this part of the tool is first to filter
out each function in the source code files and
then find out how many disable and enable
interrupts they contain. This is all done with the
help of AWK-scripts. Here I had to study the
source files in order to find out how interrupts
were disabled and enabled to be able to filter
correctly. In the assembler source code, the
disabling of interrupts is done by setting one of
two (or both) interrupt bits in the ARM
processor status register. This means that
determining whether interrupts are disabled or
enabled from just looking at the source code is
very difficult, because a separate register is
often used when changing the status register.
And to determine the change correctly, the
content of that register needs to be known. The
solution to this problem was to categorize some
changes of the status register as unknown when
the register content could not be determined by
looking at the instructions just preceding the
interrupt change instruction (Move Register to
Status Register, MSR [22]). Whether the change
is a disable or enable interrupt is left open until
later when the tool is put together with the basic
blocks graph, where flow information is
available. There is a possibility that the interrupt
change is still undeterminable but this will be
further discussed in the next chapter.

After the first filtering the function names are
compared with a parsed ELF (Executable
Linkable File) to get the physical starting
address for each function, which then are linked
together with their respective function.

 12

5.3 ARM decoder

The second part of the tool is the part that
handles the translation of binary instructions to
an internal instruction format, and the
construction of basic code blocks plus a basic
blocks graph.

As a first step the ELF file obtained from the
linking of the compilation is parsed in order to
get the binary representation of each instruction.
These binaries are put into a list with their
respective address.

5.3.1 Instruction considerations

The ARM instructions have some different
properties that have to be considered during
decoding. First there are constant data regions
embedded in the executable regions so that
functions can access data very fast. There are
also regions with THUMB instructions.
THUMB is a 16-bit instruction set derived from
the 32-bit ARM instruction set. These
instructions are used when there is a need to
save code size, which is an important cost factor
in small embedded systems, e.g. a mobile
phone.

6 Prototype Implementation

The largest part of the work in this thesis project
was the implementation of the WCET prepare
tool and the most workload within the
implementation was put in the creation of basic
blocks and managing correct program flows. I
will discuss this later in this chapter.

As mentioned above, the tool is consists of two
parts, the first is for finding functions and their
properties, and the second for translating object
code into a suitable instruction format, dividing
the code into blocks and managing correct
program flow.

6.1 Finding functions and interrupt
changes

Figure 6.1 shows an overview of the first part of
the tool, for finding interrupt changes, function
names and their start-addresses. To get the
function names from the source code files I used
AWK scripts from the Cygwin tools. AWK is
originally from UNIX but can be transformed to

Windows through the use of GNU or Cygwin
tools. That makes the tool more platform-
independent. Cygwin is Open Source, so the
tool is not depending on any commercial
product. The GNU tools are also free to use, and
they could just as well have been used here.

AWK scripts are used when you are parsing text
files and need to do more complex searches
within the text. It’s possible to implement quite
complex code in AWK that lets you do a lot
with the text you’re working with. Here the
problems were to get the function names from
each source code file and within each function
detect the number of Disable and Enable
Interrupts. The function names were no
problem, but to detect the interrupt changes was
a bit more problematic then I first thought.
In the c source files the interrupt disabling is
done with a LOCK_PUSH() call or just
LOCK(), and these were fairly easy to detect.

Figure 6.1 Finding Interrupt changes and
function names from source code files

Source Code
Files

CC

LINK

Grep DI

List of funcs
with DI

.ELF

Parser Parser

MATCH

List of startadr.
For funcs with
DI and #DI

Foo: 0xFF00:5

 13

The problem is in the assembler source files. As
mentioned in the section about ARM the
interrupts are disabled and enabled by setting or
clearing one or both of the interrupt bits in the
status register. This is done with the MSR-
(Move Register to Status-register) instruction
where the second operand is one of the registers
r0-r12. This means we have to know what’s in
this register to decide whether interrupts are
disabled or enabled. In some cases checking the
instructions just before the MSR-instruction can
do this, e.g. when the interrupt bits of the local
register are cleared using a BIC (Bit Clear)
instruction. But in other cases, there is no
certainty for what this register contains before
the status register is changed, e.g. when the
register is an argument into a function that
changes the interrupt mode. There are also a
great deal of lock-push and lock-pop in the
assembly source files. For the code that means a
LDR instruction, where a previously stored
interrupt state is stored, and the status register is
then changed accordingly to this previous state.
In this case we also need to know what’s the
register contains in order to determine the type
of interrupt change correctly. This could
possibly be achieved with a more complex data
analysis of the program flow.

The solution, or compromise one might say,
was to label these hard-to-determine interrupt
changes as ‘unsure’ and let the user look deeper
into the specified function if the actual interrupt
change is desired.

The thought behind detecting the interrupt
changes at this stage was that the information
was going to be used in the later stages, when
constructing the basic blocks. But as it is not
possible to determine an exact physical address
for the change just by looking at the source
code, the information can be used to compare
with the basic blocks graph and see that each
function contains the right number of interrupt
changes.

Now we needed the physical starting addresses
for each function. What we had to work with
was the input ELF (Executable Linkable File)
that contains information about each part of the
execution region, for example where each
function is located. First, an object dump was
made of the ELF into a temporary file by using
the Cygwin binutils command ‘objdump –x
<elf> > temp_file’ (again, the GNU binutils are

just as good as Cygwin in this case, but we
chose to use Cygwin).
The temporary file was then parsed with an
AWK script to dispose unnecessary
information, before reading the function names
and their start-addresses. The result was put in a
function database so that it could be used when
constructing basic blocks. Each function was
then compared with the result from the source
code analysing and when a function was found,
its properties (start- and stop-line in the code
file, di, ei, unsure interrupt changes and object
code file) were added to the function object in
the database.

All functions could not be found in this search
because of two reasons:

First, the ELF contains all the functions in the
entire executable program, and if not all the
source code files of the program are given as
input to the tool, all functions will not be found.
Only the functions in these source code files
will be found in the ELF.

Second, to keep OSE portable, OSE Systems
has changed the names of some of the functions
to a format that can be handled by all linkers,
even older versions that can’t take care of e.g.
long function names.
To get the real function names, one has to look
in a translation table that is kept safe from
outsiders. Hence, some function names will be
compared to the translated name and therefore
not be applied it’s properties.

6.2 Decoding binaries

This concluded the first part of the tool, the
function handling. Next step was to translate the
ELF binaries of each instruction to a suitable
instruction format, which could be used in the
creation of the basic blocks. Figure 6.2 shows
an overview of this stage.

As a start, the binaries were read into a list with
pairs of an instruction binary and its physical
address. There were some problems that had to
be solved here. The executable code image for
ARM consists of different regions, namely data,
THUMB- and ARM-regions (see chapter 4).
Where these regions start and where another
ends can be found by looking at the symbol
table in the map-file created from the ELF. A

 14

separate list with the region information was
created from this table and used when reading
from the binaries. First, the idea was to filter all
the data regions at this stage, because they
didn’t contain any code that should be included
in the basic blocks graph. But later in the project
we discovered that at certain places in the code,
conditional jumps were taken into some of the
data regions, and that the code here looked as a
normal subroutine with a normal return to the
calling function. There are two kinds of data
regions in the symbol table: d and f. When
looking at the disassembly code in the ARM
debugger I couldn’t make out any difference
between them, except that a small number of the
f-regions looked as it actually was ‘real’ code.
Most of the data regions looked, as expected, as
total nonsense code.
The solution to this was, as I mentioned, to
include the data binaries in the list and to take
the different regions into account when
constructing the basic blocks. This will be
further discussed later in this chapter.

Now we have a list with all the instruction
binaries, so the next step is to decode the
binaries into a suitable format. As help, I
received an ARM binary decoder from IAR
Systems, which translated the binaries into a c-
struct with a number of properties for each
instruction (see figure 6.2). The decoder had to
be slightly modified to suit my special wishes,
but was very helpful in the translation. This c-
struct was then used to create a new ARM
instruction object from a format that I specified,
which can be seen in Table 6.1.

This object has a number of properties to help
the building of basic blocks. When an
instruction is decoded, it’s compared with the
function database to see if it is the first
instruction in a new function. If so, a variable
‘functionstart’ is set to true and later detected in
the basic block creation. Each ARM instruction
subclass (one for each instruction format [20])
has one important function, the print function.
This is called when the TCD file for the basic
blocks graph is constructed, and prints the
instruction with its operators on the format
specified for the ASTEC WCET calculation
tool.

Figure 6.2 Parsing the ELF and decode ARM
instruction

In the decoding stage, every change of the
Interrupt State is detected again. It’s necessary
to have the exact physical address location of
each change when the basic blocks are created
and therefore the detection has to be done here.
The interrupt properties for each function
collected earlier can, when the program is
finished, are used to check if the analysis was
correct or not.

There are three types of interrupt state changes
in the OSE source code. The first and simplest
one is when the interrupt bits in a register is
cleared or set right before it’s applied to the
status register. Then a Disable or Enable
Interrupts can be determined directly.

IAR
Decoder

Instruction
Binaries

ARM
Decoder

IAR

ARM
Instruction

Object

ELF

ELF
Parser

 15

A second variant of interrupt change is by
storing the Interrupt State on a stack before
disabling interrupts. When a lock pop is
performed, it’s done by restoring the previous
Interrupt State from the stack, which therefore
can lead to that interrupts still are disabled if the
interrupts were disabled before the lock push.
The reason to have this kind of lock push and
lock pop instructions is that some parts of the
code has to execute with interrupts disabled
regardless if they were enabled or disabled
before. This means that regardless if the calling
function or subroutine has interrupts enabled or
disabled, we are always certain that our little
piece of code is executed safely and that the
caller continues to execute unaffected by the
interrupt changes in our code.

The third type of interrupt change is when a
register with unknown content is used to change
the status register. This occurs e.g. when the
register contains an argument to a function that
uses this argument to change the Interrupt State.
Then it depends on what the calling function or
subroutine had stored in this argument register
before the call.

This tool only handles the first type of interrupt
change completely. As in the first part of the
tool, when interrupt changes were detected by
looking at the source code, the changes are
labelled according to its type. Direct changes
are labelled Disable and Enable, lock push is
detected as a Disable also at this stage and lock
restore is labelled Lock Restore. The changes
with unknown register content are labelled
Unsure. This part of the tool has to be extended
to fully take care of all types of interrupt
changes and get a correct estimation of all
regions of code were interrupts are disabled.
Again, this can probably be done with a more
complex data analysis of the program flow.

All interrupt changes are saved in a list with its
type and the physical address of the change
instruction (MSR Move Register to Status
register). This list is then used in the creation of
basic blocks.

Table 6.1 ARM Instruction Class

Member
variable

Type Description

cond short Condition code, e.g.
0xE for CondAL [20]

format int One of 15 instruction
formats

binary uns. int The instructions 32-bit
binary

instr_adr uns.
long

Physical address for the
instruction

instr_name char * Name of instruction,
e.g. "Bx"

cond_name char * Name of condition
code, e.g. "CondAL"

change_pc bool True if the instruction
changes the PC

updated_regs short Registers changed by
the instruction

update bool True if a register
updates itself, e.g. mov
r0 <- r0+1

isthumb bool True for THUMB
instructions

fstart bool True if instruction is
first in new function

offset int Used to calculate jump
destination addresses

targetadr int Destination address for
jump instruction

bits short Condition bits, e.g. S for
set conditions in status
register

rn short Operand register
rd short Destination register
op2 Operand Special class for second

operand
Member
functions

Return
type

Description

Print() string Prints the instruction on
the ASTEC ARM
instruction format

FindCondName() char * Returns the name of the
instruction condition,
e.g. "CondAL"

IsJump() bool Checks if an instruction
is a jump instruction

 16

When we started the project we thought that all
instructions were 32-bit ARM instructions (see
chapter 4). But when we started decoding the
instruction binaries we discovered that was not
the case. Some parts of the operating system not
critical to performance, executed in 16-bit
THUMB mode, this was in the same time as we
discovered the constant data regions. As
THUMB instructions are just a subset of the
ARM instruction set [20], the easiest way to
adopt the tool for THUMB was to make the new
THUMB root class a subclass of the ARM
Instruction root class (see Table 6.1). That took
about one extra day to implement.
In the decoding stage the target address for each
jump is calculated. This is very straightforward
with normal ARM instructions and most of
THUMB instructions were the jumps are
calculated directly with an offset. There is one
special case however, THUMB Branch with
link instructions (BL) are divided into two parts,
to allow longer jumps. That just meant we had
to save the first offset temporarily and calculate
the target address when decoding the second
branch with link instruction.

6.3 Construction of basic blocks

So, now we have a list of ARM Instruction
objects, a list of regions, a database of functions
and a list of interrupt changes. That is enough to
start dividing the instructions into basic blocks.
Figure 6.3 shows the basic steps in the process
of creating basic blocks.

Figure 6.3 Creation of Basic Blocks

The definition of a basic block is a group of
instructions that always execute all of the
instructions or none at all, and always in the
same order.

Even if we only want to calculate the WCET of
a small region in the code, all basic blocks of
the entire program have to be created. This is
necessary because the little region we want to
examine might contain a subroutine call to a
function in a totally different region, and if we
haven’t created the basic blocks for that region,
we cannot calculate a WCET for it.

In ARM, all instructions are provided with a
conditional (see chap. 4), telling whether the
instruction will be executed and if so under
what condition. The most common is obviously
the always condition (CondAL), i.e. that the
instruction will always be executed if it’s in the
execution path.
Strictly, every instruction that is not a CondAL
instruction should form a separate basic block
as shown in figure 6.4.

Figure 6.4 Separate blocks for each
conditional instruction.

But that would lead to a tremendous amount of
blocks, and the WCET calculation would be
very complex. We decided to let conditional
instructions to be considered as CondAL
instructions and form basic blocks together with
other instructions. This makes our WCET
estimation not as tight as it would be if we let
every conditional instruction form its own
block, but the gain in simplicity is greater and
our estimation will still be correct.

CondAL instruction

CondEQ instruction

CondAL instruction

List of ARM
Instruction Objects

Find Jumps and
Interrupt Changes

Create Blocks
With Flow info

 17

The bounds for a basic block are:

Start of new block:
• The instruction before was the end of

another block.
• There is a jump somewhere in the code to

the current instruction address (this will be
further discussed later in this chapter).

• The current instruction is an enable
interrupt or unknown interrupt change.

• The current instruction is the start of a new
function.

• A new region starts at the current
instruction address.

End of block criteria’s:
• The current instruction is a jump

instruction.
• The instruction following the current one is

the start of a new block (see criteria’s
above).

• The current instruction is a disable
interrupt, lock restore or an unknown
interrupt change.

Because unknown interrupt changes are in both
criteria’s, these instructions will form separate
blocks.

If an instruction is a jump to an address that is
higher then the current (i.e. no block has yet
been created at that address), an empty block is
created at the target address and the target
address is put in a queue of empty blocks. This
queue is checked for each new instruction and
when the start instruction for the empty block is
found, the preceding block is finished and the
empty block is filled with instructions.

If the target address for the jump instruction is
within an already created block, that block is
split in two blocks at that address, as shown in
figure 6.5.
The new block names (BB1p and BB1c) stands
for parent and child and will is applied each
split so that each block have a unique name in
the database. This can lead to block names with
several p’s and c’s in them, e.g. “BB1ppcp”.

Figure 6.5 Splitting a basic block

When a new block is created, it is inserted into a
database containing all the basic blocks that
have been created. This database consists of a
std::map in c++, where every basic block is
indexed by the physical start address of the first
instruction in the block.

To help the finding of interrupts and building of
a scopegraph, symbols are applied to the block
names according to what kind of block it is.
First, each block is given a name in increasing
number order (“BB1”, “BB2”…), except if the
start address for a block is found in the function
database. Then that block will have the same
name as the found function, e.g. “foo”.
Second, all blocks names are applied their
region, “_a” for a block that executes in ARM
mode, “_t” for a block that executes in THUMB
mode and “_d” or “_f” for a block that contains
constant data. The region is attached to the end
of the name, e.g. “BB1_a” or “foo_t”. This is
the most basic form of a block name.
If the block is the start of a function or a
subroutine (The target block for a branch with
link jump is said to be the start of a subroutine)
a “f_” is applied to the beginning of the name,
resulting in “f_BB1” etc.
If the last instruction of the block is a branch
with link instruction (also discussed later in this
chapter), “b_” is applied to the name, in the
beginning, but after “f_” if present.
Last, the interrupt blocks are applied the type of
interrupt change to their name, “di_” for disable
interrupt, “ei_” for enable interrupt, “lr_” for
lock restore and “ic_” for unknown interrupt
change.

BB1

BB2

BB1p

BB1c

BB2

 18

All of these naming conventions makes the
block names a bit complex, but it makes it very
easy to parse the basic blocks graphs for e.g.
interrupt chains. The longest possible name
would be: “f_di_ei_function-name_a”, saying
that the block starts a new function or
subroutine, the first instruction is a disable
interrupt, the last instruction is an enable
interrupt and the block executes in ARM mode.

Every block has a list of predecessor blocks and
a list of successor blocks. These can be empty if
the block is a single block function that never is
called, but for most blocks they are not both
empty. The predecessors and successors form
the program flow information, i.e. which paths a
certain block can take and what paths that could
have lead to this block.
A basic block is given its flow information facts
during the construction of basic blocks. If the
preceding block of a newly created block did
not end with an unconditional jump, that
preceding block is put in the list of predecessors
of the new block. And respectively, the new
block is put in the list of successors for the
preceding block.
There is also another case for adding a
successor or predecessor, and that is when a
basic block ends with a jump instruction.
There are three kinds of jump instructions in
ARM: Branch (B), Branch with link (Bl) and
Branch and exchange (Bx).
Branch instructions are used when there is no
need to save the return address, that is for
internal jumps and PC-relative jumps.
Branch-with-link instructions are used for
subroutine calls when the return address has to
be saved. This address is then put in the link
register (Reg 14 in ARM) before the jump is
taken.
When a subroutine ends, its final instruction is a
Branch and exchange. Then the PC-value is
restored, either by what’s in the link register, or
in which other register that is given as argument
for the branch and exchange instruction.
Because the branch instruction is word aligned,
the final bit can be used to change mode
between THUMB and ARM. If the least
significant bit in the branch instructions offset is
set, then the mode of the code starting at the
restored PC-value is THUMB mode.

When a Branch and exchange has a register that
is not the link register as argument, the value of
that register has to be known in order to give a
correct basic blocks graph and scope graph.

In our WCETprepare tool and in the scope
graph creator, we consider all branch with
exchange jumps as a return from subroutine.
This problem is very similar to that of finding
the lock push and lock pop discussed earlier,
and can probably be solved by using a more
complex data flow analysis.

So, to get back to the flow information, there
are some considerations that need to be done.
For a normal Branch instruction there is no
problem, if it’s an unconditional jump (B
CondAL), only the target block is put in the
successor list. If it’s a conditional Branch
instruction, both the target block and the block
at the next address (in ascending order) are put
in the list of successors.
Branch and exchange instructions are always
unconditional jumps, so no blocks are put in the
successor list.
But for unconditional Branch with link
instructions the block in ascending address
order after the jump block will be taken as soon
as a return from subroutine is reached. Should
then the jump block be in the predecessor list
for the block that is taken after return from
subroutine? And should that block be in the
successor list for the Branch with link block?
The answer is of course no in both cases,
because there is no direct execution path
between the two blocks, but we had to adjust the
WCETprepare tool a bit to make the automatic
creation of scope graphs work. This is where the
“b_” in the jump block comes in. Every time the
scopegraph converter finds a block with ”b_” in
the name, it knows that the block at the next
address should be included in the scope, even
though it is not in the successor list.
Also, every time a subroutine is called with a
Branch with link instruction, the called block
gets a “f_” in its name so that the scope graph
converter and the WCET calculate tool
recognize it as a function.

When a basic block is split into two blocks, due
to a jump where the target is an instruction
within an already created block (see earlier in
this chapter), the flow information is updated
for that block. The successors of the parent
block are transferred to the child block, and the
only successor the parent block has left in the
list is its child block. The child block of course
puts its parent block in its predecessor list.

 19

6.4 Creation of Basic Blocks Graph

When all blocks are created, and all flow
information have been put into the blocks, its
time to create a basic blocks graphs and TCD-
files. A TCD-file is a file that contains the basic
blocks graph, with all the blocks and their
instructions, on a special format that the WCET
calculation tool can recognize. The format is
basically:

Begin block name
 List of predecessors
 List of successors
 Instructions
End block

Next block…

The instructions are printed on a format that
looks like this:
<Address> : Instruction length : Instruction-
name : Condition : Operands ;

The tool is able to build three kinds of basic
blocks graphs: one big for the entire program,
one for each function in the program and finally
one for each Enable - to Disable Interrupt chain.
The graphs for each function are constructed by
stepping through all the blocks, and when a new
function is found, a tree is built starting from
that block’s successors, until there are no
successors left. Then a print function is called
that only prints the blocks in the tree. If a block
has a predecessor that is not in the tree, that
block is not included in the predecessor list.

The same strategy is used when the basic blocks
graphs for the Disable- to Enable Interrupt
chains are created. A brief overview is given in
figure 6.5. Here a tree for each Disable Interrupt
is built at first. When the tree is finished, it is
searched for any Enable Interrupt blocks. For
each Enable Interrupt found, a backward search
is performed, until the starting Disable Interrupt
block is found. This is done because we want to
avoid all unnecessary blocks that are not in the
execution path for that particular chain. The
backward search also has to consider
unconditional jumps to subroutines, e.g. if a
block ends with an unconditional Branch-with-
link instruction. Then that block will only have
the starting block of the called subroutine in its
predecessor list, but the execution continues
with the block at the next address when the

subroutine is finished. If such a block is found
during the backward search then the whole
subroutine is added to the chain, unless an
Enable Interrupt block is found in the
subroutine. Then that path is excluded from the
chain.
Also, if an Interrupt change that is of unknown
type, e.g. a LOCK_POP (see earlier section in
this chapter), then the backward search is
stopped and the chain is discarded.
When everything goes well, a file with the name
DI<address>-EI<address>.tcd is created for
each chain.

Figure 6.6 Building a Basic Blocks graph for
each Disable to Enable Interrupt chain

Because the calculation tool developed by
ASTEC that is used in the last step of the
process checks the names of the basic blocks for
certain properties, e.g. if a basic block is the
start of a new function (block name starts with
“f_”) or if a basic block calls a subroutine
(block name contains “b_”), some modifications
had to be made to the block names. In this case
study we make basic blocks graphs for Disable
to Enable Interrupt chains. That means that we
stop constructing the graph when we find an
Enable Interrupt. Sometimes a subroutine is
called in the middle of the chain and Interrupts
are enabled before a return from subroutine
comes. But the calculation tool expects to find
an end for each function it detects, i.e. for each
block that begins with “f_”, otherwise an
exception is raised and the calculation stops.

Database wit h
Basic Blocks

Find Disable
Interrupt Blocks

Build Basic
Blocks Graph until

Enable Interrupt

 20

This means we have to temporarily change the
name of some blocks inside the chain if no
return from subroutine is found. It’s a kind of
“flattening” for unfinished functions so that for
the calculator it looks like the half function is a
part of the main function and not a subroutine.
The same goes for the basic bock that calls the
subroutine. That block will at the beginning
have “b_” inside its name, and when the
calculator detects that kind of block it expects a
return from subroutine somewhere in the
following execution path otherwise an
exception is raised. So the basic blocks with
“b_” are also changed so that it looks as if they
call a normal basic block inside the current
function.

All the basic blocks names are then restored in
the last stage when the whole graph is
constructed and a .tcd file has been created.

7 Experiments

In this chapter I will present some information
about the results from the test runs of the tool
together with the scopegraph converter and
WCET calculation tool from the ASTEC group.

Figure 7.1 Last step in the work chain,
calculating the WCET

The .tcd files containing the basic blocks graphs
of the found Disable to Enable Interrupts chains
are run through an automatic scopegraph
converter that produces a .sg file with the
scopegraph for the chain as shown in figure 7.1.

The definition of a scope is, as explained in the
chapter about WCET theory, that each scope
corresponds to a repeating or differentiating
execution environment in the program, e.g. a
function call or a loop, and can contain one or
more basic blocks (see figure 3.2, page 4). All
scopes are also supposed to be looping, even if
they iterate equal to or less then one time. The
calculator needs both one basic blocks graph
and one scope graph of the same chain to
calculate the WCET. The scopegraph if needed
to get the loop bound for the loops within the
chain.

So after the scope graph is constructed, one
have to find the loop bounds manually, by first
looking at the code in the basic blocks graph if
the number of iterations can be found directly.
If its not possible to determine the bound
directly one have to find the corresponding
source code to see if the loop bound can be
found there. Often the loop bound is set by the
size of a vector or variable and therefore hard to
determine. One possibility is to look if there
exists a maximum size for that vector or
variable in a header file that is included in the
source file.

I had some problems to find the corresponding
source code for the basic blocks graphs. This
could probably be done pretty easily with the
ARM Debugger, but I couldn’t find the right
settings. So what I did was I looked at the
physical starting address for each chain and then
compared it with the starting addresses of the
functions that I calculated in the first step of the
tool. This method is not the best since if the
chains start in a subroutine relocated between
two functions, then the source code for that
chain doesn’t have to be in the same source file
as that function. And if it is, the code could be
placed in another section in the source code file.
Of the chains I looked at I could only find the
correct loop bound for one, because of that I
couldn’t trace the code back to the actual source
code.

Scope Graph
Converter

.SG

Calculation
Tool

WCET

.TCD

 21

The total number of Disable to Enable
Interrupts chains found in the compiled
operating system kernel: 612

This is approximately half of the total number
of interrupt chains in the operating system
kernel. The other half is from those where
storing the state on a stack or restoring the state
from a stack, i.e. lock-push and lock-pop
instructions, makes the interrupt state change.

Chains that contain 3 or fewer basic blocks: 554

That means that more then 90 percent of the
found chains are very short. This was expected,
because interrupts are not supposed to be
disabled for a long period of time, except during
boot.

I’ve chosen 10 of the chains that were produced
by the WCETprepare tool, to look a little closer
on the properties. These chains either contain a
number of loops or are longer then most chains.
Table 7.1 shows the properties of the selected
chains. Of these chains I could only determine
the loop bound for one of them directly because
I could not trace the chains back to the source
code as I mentioned above.

Notable is also that because not all types of
interrupt changes are handled (see previous
chapter), there are a lot of chains that will not be
detected by this tool. One of the most common
ways to disable and enable interrupts in the OSE
operating system kernel, is by saving the locks
(disable) and unlocks (enable) on a stack, i.e.
through lock push and lock pop instructions.
This is to make a section of code execute with
interrupts disabled no matter what state the

calling function was in when the call was made.
This means that the calling function doesn’t
need to worry about if the interrupt state has
changed after the subroutine has finished. The
interrupt state that was before the call will be
restored and the execution can go on as normal.

The types of Disable to Enable Interrupts chains
that are found by this tool is typically when
interrupts need to be disabled for a very short
period of time, e.g. in memory handling when a
sensitive system variable needs to be updated
and mutual exclusion is needed to secure a safe
execution. And as said in the beginning of this
chapter, 90 percent of the found chains consists
of 3 or fewer basic blocks, i.e. very small. An
explanation to the chains containing loops in
Table 7.1.

The WCET is given by the number of cycles for
the basic blocks outside the loop(s) plus the
number of cycles for the basic blocks inside the
loop multiplied by the number of iterations.
When the number of iterations couldn’t be
determined directly, e.g. when the loop bound is
set by a variable, the limit has been set to 100,
50 and 20. This is to show the big time
contribution loop is. When the loop bound gets
high, then the WCET gets worse fast. If the
unsure loop bounds are set to 100 it’s sure that
no underestimations are made. The probability
that there are chains where interrupts are
disabled containing loops that iterates more then
100 times is very small. When there is a nested
loop, as there is in two cases, the total time for
the nested loop is calculated and added to the
outer loops basic blocks total time before
multiplied with the outer loop bound.

 22

Table 7.1 Selected Disable to Enable Interrupts chains

Chain Size Blocks Loops Nested Scopes WCET (cycles)
DI156588-EI156828 244 11 2 - 4 64 + 25*(20) = 564

64 + 25*(50) = 1314
64 + 25*(100) = 2564

DI159444-EI159608 168 7 - - 2 45
DI181296-EI147608 200 9 - - 2 85
DI182248-EI147608 308 16 - - 2 89
DI183924-EI183796 160 11 1 - 3 51 + 23*(20) = 511

51 + 23*(50) = 1201
51 + 23*(100) = 2351

DI183924-EI184392 160 11 1 - 3 63 + 23*(20) = 523
63 + 23*(50) = 1213
63 + 23*(100) = 2363

DI185276-EI185524 248 11 - - 2 86
DI194280-EI194376 100 6 - - 2 31
DI230288-EI230508 240 12 3 1 5 29+(7*32+29)*(20) + 14*(20) = 5369

29+(7*32+29)*(50) + 14*(50) = 13379
29+(7*32+29)*(100) + 14*(100) = 26729

DI261180-EI261432 212 9 3 1 5 28 + 14*20 + (16+7*32+6)*20 = 5228
28 + 14*50 + (16+7*32+6)*50 = 13028

28 + 14*100 + (16+7*32+6)*100 = 26228

The loop bounds in the table that could not be decided directly are set to 20, 50 and 100 to have something
to compare with. In the real case however, this is probably an huge overestimation, since most loop bounds
are kept low in the speed critical operating system kernel.

 23

Diagram 7.1 Distribution of chai n sizes in bytes

Chainsizes in bytes

0

50

100

150

200

250

300

350

 < 40 < 100 < 152 < 192 < 240 < 280 > 280

bytes

N
um

be
r

of
 c

ha
in

s

Diagram 7.1 shows the size distribution of the 612 found chains. This also confirms the fact that almost all
Disable to Enable Interrupt chains are very short.

 24

7.1 DI-EI chain properties

All the times given in the blocks are given in
clock cycles. The negative values between some
blocks are the pipeline effects.

The first chain is shown in figure 7.1 and
contains 11 basic blocks with 2 loops. In
Appendix B there is the corresponding scope
graph file. In this chain I have attached the
actual name of each basic block to make it
possible to follow the scope graph file in
Appendix B.
The loop bounds could not be found directly by
looking at the basic blocks graph with the
translated instructions. Therefore the chain
needed to be checked against the source code
file to get the correct bounds.

Figure 7.1 DI156588-EI156828

Here we see that only one of the loops will be
taken, since they are in different execution
paths. So, the path with the highest loop bound
will most likely give the WCET.

Largest block (last block): 18 instructions with
WCET: 25 cycles

Figure 7.2 Chain DI159444-EI159608

This is the second shortest of the selected
chains, with a WCET of 45 cycles.

First block: 13 cycles, last block: 5 cycles

Largest block: 9 instructions with WCET 13
cycles

Here we can see that the longest path search
works, as the execution path is given by the
blocks with number of cycles information inside
them, and the block not taken has a WCET of 8
cycles.

Otherwise this is a pretty normal DI to EI chain,
with not so many blocks in it, no loops and no
function calls.

DI

5

13

10

5

EI

-2

-2

-2

18

EI

4

9

10

DI

-2

-2

-2

-2

f_main

BB_9486_a

BB_9487_a

BB_9488_a

BB_9489_a

BB_9490_a

BB_9485_a

BB_9492_a

BB_9494_a

BB_9493_a

ei_BB_9472_a

 25

Figure 7.3 Chain DI181296-EI147608

In figure 7.3 we see a chain that contains a call
to a subroutine, which enables the interrupts.
This is also very common, often there is a
function called something like
“clear_interrupts” that is a function calls instead
of turning interrupts on inside it.

First block: 13 cycles and last block: 12 cycles.

Largest block: 10 instructions with WCET 22
cycles.

Figure 7.4 Chain DI182248-EI147608

Another call to the same subroutine, but from
another function, is shown in figure 7.4. Here
there are two almost identical paths, but one
contains more instructions then the other, and
therefore has the highest WCET.

First block: 7 cycles and last block: 12 cycles.

Largest block: 10 instructions with WCET 22
cycles.

EI

22

5

5

10

10

7

6

DI

Branch with link call
to remote Function

-2

-2

DI

5

10

5

EI

22

10

7

6

9

Branch with
link calls to
remote
function

-2

-2

 26

 -2

Figure 7.5 Chain DI183924-EI183796

This is the first chain containing a loop. It’s also
one of the larger of the selected chains.

The loop bound could not be determined
directly, and is therefore set to a high number in
the calculation to be on the safe side. Here we
can see that the WCET rapidly gets high, when
the number of loop iterations increases, as the
WCET is given by:

51 + 23*(number of loop iterations)

First block: 13 cycles and last block: 5 cycles.

Largest block: 6 instructions with WCET 13
cycles.

Figure 7.7 Chain DI183924-EI184392

This chain is similar to the previous example,
but here the enabling of interrupts is done in a
different place. Also the execution path is a
little different in this example and therefore the
WCET is a little different.

First block: 13 cycles and last block: 5 cycles

Largest block: 6 instructions with WCET 13
cycles.

8

6

6 7

7

5

EI

6

7

4

DI
-2

-2

-2

DI

8

4

7

6

7

EI

6

7

5

7

-2

-2

-2

-2

 27

Figure 7.7 Chain DI185276-EI185524

Pretty straightforward chain where the longest
path is found from a number of possible chains.
But it’s still very unusual to find paths this long
with interrupts disabled in the results from my
experiments.

First block: 22 cycles and last block: 5 cycles.

Largest block: 14 instruction with WCET 22
cycles.

Figure 7.8 Chain DI194280-EI194376

This is the smallest chain that’s included in the
selected chains. That gives an idea about how
the more usual chains look like, a bit smaller
then this one. The most common chain contains
only 3-4 blocks and rarely any conditional. This
is logical, since often you want to change a
variable or register that is sensitive and disables
interrupts just long enough to make the change.

Here ones again, the longest path is found (the
execution path is given by the blocks with
cycles inside them) and the WCET can be
calculated, in this case it’s 31 cycles.

First block: 9 cycles and last block: 5 cycles.

Largest block: 8 instructions with WCET 12
cycles.

DI

7

9

7

9

10

11

12

EI

8

 -2

EI

1

12

DI

6

-2

 28

Figure 7.9 Chain DI230288-EI230508

This chain is one of the two most complex
chains I found during my experiments. It
contains three loops, where one of the loops is a
nested loop. Again, the loop bounds where hard
to determine, but the small nested loop has a
loop bound of 32 iterations. And as you can see,
it doesn’t contain a lot of code, so to set the
bound for the larger loops to 100 iterations are
on the safe side.

First block: 18 cycles and last block: 5 cycles.

Largest block: 11 instructions with WCET 18
cycles.

Figure 7.10 Chain DI261180-EI261432

Very similar to the previous chain, also with
three loops, where one of the loops is nested.
Also this nested loop has a bound of 32
iterations.

First block: 14 cycles and last block: 5 cycles.

Largest block: 11 instructions with WCET 16
cycles.

DI

10

6

3

16

6

9

8

EI

6

6

1

-2

-2

-2

-2

-2

-2

-2 EI

6

10

6

7

16

9

8

DI

-2

-2

-2

-2 -2

 29

8 Conclusions

The first, and most important, conclusion of this
project is that we have showed that it is possible
to use WCET analysis on real-time operating
system code. But there are still a number of
issues that can be improved, these will be
further discussed in the next chapter, future
work.

The current tool is not compared to real WCET
numbers from physical tests. This is because
with this tool only half of the chains from
Disable Interrupt to Enable Interrupt could be
found and therefore one cannot be sure that the
WCET is found. It would be very interesting to
see how good the results from the tool are, but
only if its certain that the WCET is found.

I think the tool can be very helpful to determine
the WCET of a desired region of compiled
operating system code if the improvements that
are suggested in the next chapter are
implemented. The biggest downside right now,
as I see it, is that each loop bound needs to be
determined by hand. If you have to analyse a
large piece of code, such as an operating system
kernel, this can be very time consuming.

Another downside, as we discovered after the
project, is that the tool is compiler dependent.
This is because all the instruction binaries and
MAP files are generated from code that is
compiled and linked. In this project the ARM
C-compiler armcc is used, but when the tool
was tested with object code compiled by an IAR
compiler, it did not work.

8.1 Detailed Conclusions

In the beginning of the project, we set up a
number of goals and wishes, which we wanted
as results:

* See if it was possible to convert operating
system code into a format that could be used to
statically calculate the execution time of
specified regions of code.

* How much of the process of converting
operating system object code into basic blocks
and basic blocks graphs could be automated and
how much had to be done manually.

* Look at the typical properties of operating
system code, such as nested loops, function
pointers, recursion and so on.

The answer to the first goal is yes, but it was not
as easy as we first thought when we started the
project. A number of unpredicted problems
occurred that we had to solve, such as how to
handle the conditional branch with link jumps
and adapt the tool for THUMB mode. But in the
end we were able to convert the source code
like we wanted in the beginning (see work
overview, Appendix A). Very helpful in the
later stages, during the tests, was the scope
graph converter developed by ASTEC in
Uppsala that converts a basic blocks graph into
a scope graph. This would otherwise be done
manually and that would have taken a lot longer
time for such large pieces of code.

We had to make some assumptions along the
way though, in order to get it to work. First we
assumed that the code didn’t contain any
THUMB code, but that proved to be false so we
had to adopt the tool. Another assumption was
that a Branch-and-exchange jump (Bx
instruction [20]) always means return from
subroutine. This is true for almost all cases,
where the operand of the instruction is the link
register (register 14 in the ARM9 family [20]).
But sometimes the operand is another register
and then the result depends on what is saved in
that register before the jump is taken. In most
cases it is the link register that is temporarily
saved in that register, but sometimes the content
is undefined, e.g. when a switch table is used.
We then assume that the meaning nonetheless is
return from subroutine. The exact content can
probably be determined by a larger data analysis
of the program flow, just as for the determining
of interrupt types mentioned in the prototype
implementation chapter. Another assumption
was that a subroutine called by a Branch-with-
link instruction [20] always has to end with a
Branch-and-exchange instruction. Because
when the subroutine is finished, the execution
starts at the address after where the Branch-
with-link jump was taken, i.e. the content of the
link register. This is not necessarily an
assumption since it’s logical and we couldn’t
find any case where this was not true.

Another of the things we discovered was,
discussed in the implementation chapter, some
peculiarities with the constant data regions.

 30

There are two types of data regions in the ELF,
marked as ‘d’ and ‘f’ in the symbol table. When
looking at the code in the ARM debugger, all
the ‘d’ regions are, as expected, just constant
data, and all the ‘f’ regions looked to be the
same. But when we worked on the control flow
between the basic blocks, we found blocks that
jumped from normal ARM execution, to ‘f’
blocks. And the ‘f’ blocks performed a normal
execution with return from subroutine when
finished. The conclusion was that not all ‘f’
regions consist of constant data, but are infact
executable code. There was no information on
what exact difference there are between the two
data region types as far as we could see, but as
we treat all blocks the same it doesn’t effect the
WCET calculation.

The second goal was to make as much of the
process as possible automated. Because the tool
developed in this project is used on large code
sections, here the kernel of an operating system,
a great deal of manual interference would make
it very slow to calculate the WCET. All the
finding of interrupt changes, function names
and their starting addresses in the tool are done
automatically. Also, all conversions from
binaries to the new ARM instruction format are
done automatically. And the creation of basic
blocks of code and their graphs are also
automated. The parts where manual interference
is needed are during the creation of scope
graphs and the finding of loop bounds. To
create a scope graph, one only need to start the
tool from ASTEC, which constructs a scope
graph file from a basic blocks graph file. It
should not be too difficult to integrate this
automatic scope graph converter into the tool
and make that part automated as well. But
determining the loop bounds is very hard to
automate, since it depends on the circumstances,
e.g. when a constant set the loop bound or if a
pointer or variable determines it.

But the rest of the process is automated. All the
program needs to run is an ELF (Executable
Linkable File) of the program and a text file
containing the paths to the source code files that
are to be examined.

Third goal was to look at typical properties of
operating system code. There are a number of
aspects that one can look at the properties of
source code, such as function pointers, loops
and nested loops.

The part of OSE that I’ve worked with, that is
the parts where interrupts are disabled, have a
number of properties.
We could not find any function pointers, which
would have caused a big problem for
calculating the WCET. If we would have found
function pointers, then data flow analysis would
have had to be used to try and find out what
function the pointer points to.

Nested loops were only found in two of 612
chains, and then only one in each chain. This
was also expected since nested loops highly
contributes to the WCET of the chain.
Single loops are more common, there are loops
in about 5% of the chains found, but rarely more
then one loop per chain. These loops contain
basic blocks with a total WCET between 10 and
60 clock cycles for each loop iteration.

One interesting property that we found was
conditional subroutine calls. These are specific
for ARM and cannot be found on any other
processor. That made it a bit harder to calculate
the WCET, but since the calculation tool had
been modified for conditional subroutine calls,
we had no problems.

The current tool does include pipeline analysis,
which is a part of the calculation tool developed
by ASTEC. The pipeline effects can be seen in
the example chains in the previous chapter
(Experiments) as negative contributions to the
WCET.

The tool is today also able to create basic blocks
graphs for each function in a compiled program.
This also needs to be integrated with a data flow
analysis to correctly determine all subroutine
returns that are non-link-register content
dependent. With that I mean return jumps with a
register that is not the link register as jump
operand.

9 Future Work

There are some issues that could be considered
in the future work with this type of tool.

First an extended data flow analysis on the
control flow graphs would be helpful when
determining jump targets or the type of an
interrupt change that depend on a register which
content can’t be determined directly. Then all

 31

types of interrupt changes can be determined
and the correct WCET for all the interrupt
latencies can be calculated. This would
important especially for the OSE operating
system, where there are a lot of lock push and
lock pop instructions when disabling and
enabling interrupts.

Of course the correct loop bounds need to be set
in order to get the correct WCET estimation. In
the OSE operating system kernel, the ranges for
the variables that determines the loop bounds
are known in most cases. It should be possible
to include some form of parameterisation for
these variables so that when the tool detects a
certain type of variable it can set a worst case
loop bound automatically.

Another aspect that this tool doesn’t consider is
cache analysis. A full correct cache analysis
included in the control flow graphs would make
the WCET estimation tighter. It doesn’t effect
the safeness of the estimation to exclude cache
analysis, we only assumes that each instruction
reference will result in a miss in the cache.
There has been a lot of previous work for
including cache-analysis when calculating the
WCET of a program [7][9][12][13][15]. When
implementing an extended dataflow analysis for
determining unsure register contents, the
caching part should also be possible to include.

In the future development of this tool I think
that the major work should be spent on
integrating the tool with a more extended data
flow analysis and parameterisation for loop
bounds. I know there has been work done in this
area before by researchers within the WCET
area. If the integration is done then it would be
possible to correctly calculate all the interrupt
chains in the programs, because all different
types of interrupt chains would be possible to
detect.

Acknowledgements

I would like to thank my supervisor at Enea
OSE systems, Jan Lindblad, for the help,
support and suggestions on problem solving in
this thesis project. Also I want to thank my
supervisor at KTH, Björn Lisper for help within
the project and correction suggestions on this
report.

A special thanks to Jakob Engblom and Andreas
Ermedahl at the Department of Computer
Studies at Uppsala University for all their help
and support in the every day work within the
project and correction reading of this report.

10 References

[1] J Engblo m et. al. ”Worst-Case

Execution-Time Analysis for Embedded
Real-Time Systems”, Software Tools for
Technology Transfer, February 2001.

[2] J Engblom, “Static Properties of

Commercial Embedded Real-Time
Programs, and Their Implication for
Worst-Case Execution Time Analysis”,
In Proc. 5th IEEE Real-Time Technology
and Applications Symposium (RTAS’99),
IEEE Computer Society Press, June
1999.

[3] J Engblom, A Ermedahl, “Pipeline

Timing Analysis Using a Trace driven
Simulator”, In Proc. 6th International
Conference on Real-Time Computing
Systems and Applications (RTCSA’99),
IEEE Computer Society Press, December
1999.

[4] J Engblom, A Ermedahl, “Modelling

Complex Flows for Worst-Case
Execution Time Analysis”, In Proc. 21 st
IEEE Real-Time Systems Symposium
(RTSS’00), November 2000.

[5] F Stappert, J Engblom, A Ermedahl,

“Efficient Longest Executable Path
Search for Programs with Complex
Flows and Pipeline Effects”, in Proc.
22nd IEEE Real-Time Systems Symposium
(RTSS’01), 2000.

[6] A Colin and I Puat, “Worst Case Timing

Analysis of the RTEMS Real-Time
Operating System”, Technical Report No
1277 , IRISA, November 1999.

[7] S-S Lim et. al. , “An Accurate Worst

Case Timing Analysis Technique for
RISC Processors”, IEEE Transactions on
Software Engineering , 21(7): 593-604,
July 1995.

 32

[8] Y-T S Li and S Malik, “Performance
Analysis of Embedded Software Using
Implicit Path Enumeration”, In Proc. 32nd
Design Automation Conference, pages
456-461, 1995.

[9] D Whalley et. al., “Worst-Case

Instruction Cache Performance”, In Proc.
15th IEEE Real-Time Systems
Symposium, pages 172-181, December
1994.

[10] C Healy et. al., “Bounding Loop

Iterations for Timing Analysis”, In Proc.
4th IEEE Real-Time Technology and
Applications Symposium (RTAS’98, June
1998.

[11] L Ko, D Whalley, M Harmon,

“Supporting User-Friendly Analysis of
Timing Constraints”, in Proc. ACM
SIGPLAN Workshop on Language,
Compilers, and Tools for Real-Time
Systems, June 1995, pages 107-115.

[12] F Stappert, P Altenbernd, “Complete

Worst-Case Execution Time Analysis of
Straight-line Hard Real Time Programs”,
Technical Report 27-94, C-LAB,
Paderborn December 1997.

[13] C Ferdinand et. al., “Run-Time

Guarantees for Real-Time Systems – The
USES Approach”, Universität des
Saarlandes, Saarbrücken.

[14] J Engblom, ”Modeling and Analysis of

Pipeline Timing Behavior for WCET
Analysis”, Draft of PhD Thesis,
Department of Computer Systems
Uppsala University, Uppsala, June 2001.

[15] H Theiling and C Ferdinand, “Combining

Abstract Interpretation and ILP for
Microarchitecture Modeling and Program
Path Analysis”, In Proc. 19 th IEEE Real-
Time Systems Symposium (RTSS’98),
December 1998.

[16] H Theiling, “Extracting Safe and Precise

Control Flow from Binaries”, Technical
Report within the USES group,
Saarbrücken, Germany.

[17] D Bucar, “Reducing Interrupt Latency

using the Cache”, Master’s thesis in

Electrical Engineering, Stockholm
January 2001.

[18] Tannenbaum, ”Modern Operating

Systems”, chapters 2, 6, 9-12.

[19] Enea OSE Systems, “OSE 4.3
Documentation, Volume 1 – Kernel”,
Copyright 2000.

[20] Advanced RISC Machines Ltd.

“ARM7TDMI Data Sheet”, ARM DDI
0029E.

 33

Appendix A – Work Overview

Part of the work
Produced by ASTEC

Source Code
Files

CC

LINK

Grep DI

Parser

Parser

ELF Parser

Match

For list of
Instruction
Objects

Build
Basic Blocks

Export
Scope Graph

For every DI
In the code

Export
Code File

Text
Editor

BIN

For relevant
part of the

code

.SG
Loop

bounds .TCD

List of
startadr

for functions
with

DI and EI

List of
Functions

with DI and
EI

ELF

Foo: 0xFF00:5

Calculation
Tool

WCET

 34

Appendix B Scope Graph File for chain DI156588-156828
scopegraph

 scope f_main :
 maxiter 1 ;
 header f_main ;
 facts
 subordinates
 loop_BB9488_a ;
 loop_BB9492_a ;
 basicblocks
 f_main , [] ;
 BB9486_a , [] ;
 BB9487_a , [] ;
 BB9490_a , [] ;
 BB9485_a , [] ;
 ei_BB9472_a , [] ;
 internaledges
 f_main -> BB9486_a ;
 f_main -> BB9485_a ;
 BB9486_a -> BB9487_a ;
 BB9486_a -> ei_BB9472_a ;
 BB9487_a -> ei_BB9472_a ;
 BB9490_a -> ei_BB9472_a ;
 BB9485_a -> ei_BB9472_a ;
 exitedges
 BB9487_a -> (loop_BB9488_a , BB9488_a) ;
 BB9485_a -> (loop_BB9492_a , BB9492_a) ;
 ei_BB9472_a -> exit ;
 end scope

 scope loop_BB9488_a :
 maxiter 1 ;
 header BB9488_a ;
 facts
 subordinates
 basicblocks
 BB9489_a , [] ;
 BB9488_a , [] ;
 internaledges
 BB9489_a -> BB9488_a ;
 BB9488_a -> BB9489_a ;
 exitedges
 BB9489_a -> (f_main , BB9490_a) ;
 BB9488_a -> (f_main , ei_BB9472_a) ;
 end scope

 scope loop_BB9492_a :
 maxiter 1 ;
 header BB9492_a ;
 facts
 subordinates
 basicblocks
 BB9494_a , [] ;
 BB9492_a , [] ;

 35

 BB9493_a , [] ;
 internaledges
 BB9494_a -> BB9493_a ;
 BB9492_a -> BB9494_a ;
 BB9492_a -> BB9493_a ;
 BB9493_a -> BB9492_a ;
 exitedges
 BB9493_a -> (f_main , ei_BB9472_a) ;
 end scope

end scopegraph

