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Abstract 
 
In real-time systems the execution time of a program is crucial, missing a deadline can have 
catastrophically consequences. Today the estimation of the worst execution time is mostly done by 
measurements with the worst possible input to the program. These measurements are not totally reliable; 
there is a chance that the worst execution path of the program is not caught in the measurements. There 
have been a lot of research performed in the WCET (Worst Case Execution Time) analysis field in the last 
couple of years, and models of how to theoretically estimate the WCET have been thoroughly described. 
But there haven’t been many attempts at applying the models to actual real-time operating system code. 
 
The goal with this thesis project is to use today’s research in the WCET analysis field, especially the work 
by the ASTEC WCET -group in Sweden, to develop a tool that can be used on object-code for an ARM 
microprocessor. The tool should be able to transform the binary executable file of a program into control 
flow graphs with basic blocks, so that a safe (no underestimates) and tight WCET analysis can be 
calculated. In this case study the WCET of the interrupt latencies in the OSE real-time operating system. A 
part of the work is to determine how much work that has to be done by hand, e.g. through program-specific 
input from the user, and how much that can be automated. 
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1 Introduction 
 
Estimating the worst-case execution time of a 
program is a very important task, especially 
when you are dealing with real-time operating 
systems and programs, which have deadlines 
that have to be kept. Missing a deadline can 
have catastrophically consequences, because 
real time operating systems and programs are 
used in all types of time sensitive embedded 
systems, e.g. in medical equipment, cars, mobile 
phones and airplanes. 
 
To calculate a static estimate the worst case 
execution time of a program and get a both safe 
(no underestimates) and tight (as little 
overestimation as possible) WCET (Worst Case 
Execution Time) approximation is not an easy 
task. Several things have to be considered, such 
as how to model the caching behaviour to 
include it in the analysis and how to find the 
longest execution path in all the execution paths 
of the program. The most important task when 
performing a WCET analysis is to determine the 
number of loop iterations in the program, 
because it’s here that the programs spend most 
of their execution time. 
 
This thesis project was performed at OSE 
Systems, which is the developer and distributor 
of the OSE real-time operating system. They 
were interested in calculating the maximum 
Interrupt latency within the operating system 
kernel using static analysis of the compiled 
code.  
 
OSE Systems’ reason to get involved in this 
project is for one that today the estimations of 
the WCET are made by manual tests. Therefore 
a higher time limit on the deadlines for the 
operating system then necessary is set, because 
one can’t be absolutely sure all execution paths 
have been tested. If this project could come up 
with a good way of representing the code for 
statically WCET Analysis, the theoretically 
WCET could be calculated and the deadline 
time limits could be reduced. 
 
The main part of the thesis project was spent on 
the implementation of a tool prototype for 
preparing operating system code at object code 
level for static WCET calculation. The tool 
constructs a number of control flow graphs 

(CFG) from a compiled and linked binary file of 
the operating system kernel. These CFG’s 
contain basic blocks of instructions, bounded by 
jump instructions and, in our case, instructions 
that change the Interrupt State. The approach 
was an up-and-down solution, which starts with 
the first binary and constructs basic blocks and 
control flow until all binaries are decoded and 
placed into basic blocks and the flow between 
the blocks is determined. There are others that 
have faced the same task, e.g. [16] where they 
had a bottom-up approach when constructing 
the CFG from the binary file. 
 
This report will explain some of the background 
to WCET Analysis as well as some theory 
behind real-time operating systems in general 
and the OSE operating system in specific. The 
target architecture (ARM9) will be briefly 
discussed, but the main part of the report will be 
spent on the tool prototype implementation and 
the results from the experiments. In these 
chapters the problems we encountered and how 
we solved them will be discussed and the most 
important lessons of the project are presented in 
the conclusions and future work chapter 
 

1. 1 Company Background 
 
A brief summary of the company where the 
thesis was performed: 
 
OSE Systems 1 is a subsidiary of Enea Data2. 
Enea Data was founded in 1968 by a couple of 
KTH (Kungliga Tekniska Högskolan, Royal 
Institute of Technology) and Stockholm 
University students. Enea is an abbreviation of 
Engström Elektronik AB (Engstrom Electronics 
Inc) where Engström is the last name of one of 
the founders. The first Unix system in Sweden 
stood in a room at Enea (1981), and the first E-
mail in Sweden was sent to Enea (April 7, 
1983). In the early Internet years, Enea was the 
.se NIC (where you register domain names), 
that of course means enea.se was the first 
Swedish domain registered. Enea also 
administrated the first Internet backbone in 
Sweden, which was later moved to KTH and is 
today known as SUNET3. Enea has since the 

                                                                 
1 www.ose.com 
2 www.enea.se  
3 www.sunet.se  
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start been in the embedded systems consulting 
business and the OSE operating system 
originated from a number of consulting projects 
for the telecom industry. OSE is today one of 
the largest operating systems in the world for 
embedded systems such as mobile phones and 
airplanes. 
 

2 Real-Time Operating Systems 

2.1 General 
 
The definition of a real-time system is that the 
program execution has certain timing deadlines 
that have to be kept. Deadlines in real-time 
systems are often divided into two types: Hard 
and Soft. Where in hard deadline real-time 
systems, missing a deadline causes the system 
to crash in every case. For soft deadline real-
time systems, deadlines can be missed without 
crashing the system. Another way to look at it is 
that the type of the deadline depends on the 
consequences for missing it, e.g. lowered 
efficiency in a car engine or an unstable 
measuring system. 
 
Keeping real-time constraints can be difficult 
even on single processor systems. Therefore on 
distributed real-time systems it’s even more 
difficult too keep the deadlines. A distributed 
system is a system with several processors, 
running separate from each other. The deadlines 
are kept through a carefully considered 
squeduling algorithm. An example of missing a 
deadline is shown in figure 2.1. Here a reply-
message arrives too late. 
 
 
In the figure process A needs some service form 
process B in order to continue the execution. 
The process sends a message to B requesting the 
information. B receives the message and sends a 
reply back to process A. If the reply message 
from B is not received by process A within the 
deadline, either an exception is raised (soft real-
time systems) or the system requirements is not 
kept  (hard real-time systems). 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Deadline example in a distributed 
system, taken from [17] 

 

2.2 The OSE Operating System 
 
OSE is used in distributed systems with hard 
real-time deadlines but in reality most of these 
systems contain parts with hard real-time 
deadlines, and other parts with soft real-time 
deadlines. 

2.2.1 Processes in OSE 
 
There are five types of processes in OSE: 
 
• Interrupt, trigged by either an interrupt, e.g. 

an Ethernet package has arrived and needs 
to be taken care of (before the queue of 
packages overflows), or some unit has been 
removed from the PCI bus. 

 
• Timer Interrupt, used for periodic events, 

e.g. when it’s desired to measure the 
temperature each 500 ms, or when a LED is 
set to blink every second. 

Deadline 
for 

Process A 

Sending 
Node 

Process A 

Receiving 
Node 

Process B 
Network 

Request 

Reply 



 4

 
• Prioritised, the most common kind of 

process. They are written as eternal loops 
(for(;;) ) and runs as long as no interrupt 
occurs or a process with higher priority 
becomes ready. 

 
• Background, run in a strictly time-sharing 

mode beneath the prioritised processes. 
Also written as eternal loops just like the 
prioritised processes. Background 
processes are pre -empted by prioritised or 
interrupt processes. 

 
• Phantom, contains no executable code and 

are used only as a representation of another 
process. Used together with a redirection 
table to form a logical channel for 
communication between processes in 
distributed systems. 

 
Every process has a priority from 0-31, where 0 
is the highest. For interrupt processes, the 
priority is mapped against a hardware priority. 
At every point in time, the process with highest 
priority is run. Every process can be in one of 
three stages, waiting, ready and running, as 
shown in figure 2.1. 
 

 

Figure 2.2 Possible process states in OSE 
from Enea OSE Documentation [19] 
 

2.2.2 Memory Management 
 
Memory management is important in every real-
time system. In OSE the memory is organized 
into different pools and segments, as shown in 
figure 2.3. There is one system pool in OSE, 
where processes and blocks that execute in the 
system segment can allocate memory. The 
system pool is always located in the kernel 

memory. So if the system pool gets corrupted 
then the whole system will crash. The advantage 
of that each block can have its own memory 
pool is isolation. First isolation through memory 
protection and also isolation so that one process 
can’t allocate all the memory in a segment and 
block other processes from allocating memory. 
 
Processes can be put together into blocks that 
can have their own memory pool. One 
advantage of using blocks is that many system 
calls can operate on whole blocks instead on 
single processes. Another is that the blocks 
memory pool can be used for environment 
variables that are visible for all the processes 
within the block, but not for other processes. 
 

 

Figure 2.3 Memory organisation in OSE, 
taken from the OSE documentation [19] 
 

2.2.3 Interrupts 
 
An interrupt occurs either when an outside 
device wants to notify the system that there is 
data available, e.g. an incoming signal, or when 
an error has occurred in the system, e.g. when a 
device has been removed or broken down. 
 
When an interrupt occurs, the first thing that 
happens is that the program counter will be 
saved at the current execution address, and also 
if there are some registers that are needed for 
the active process, they are also saved. Then an 
interrupt handler is started which is interrupt 
type specific, that means that there are different 
interrupt handlers for different kinds of 
interrupts. As mentioned earlier interrupt 
processes also have priority. When an interrupt 
occurs and right after another interrupt with 
higher priority occurs, the current interrupt 
handler has to wait, i.e. gets pre-empted, until 
the higher priority interrupt is finished. 
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2.2.4 Interrupt Latency 
 
The Interrupt Latency is the time from when an 
Interrupt is triggered until the Interrupt process 
starts. In figure 2.3 there is an overview of the 
different stages that passes when an interrupt 
occurs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Interrupt Latency in OSE, taken 
from [17] 
 
 
The Interrupt Handler time (I – S) is, as 
mentioned before for saving the CPU register 
contents, find out cause of interrupt and set the 
interrupt mask. If the Interrupt mask is set so 
dis able Interrupts, then the system has to wait 
until Interrupts are enabled again before the 
Interrupt handling can start. This is were, in the 
worst case scenario, the most time of the 
Interrupt latency is spent and it is these parts of 
the operating system that this project will focus 
on and try to find the maximum bound for. In 
average, the time Interrupts are disabled is only 
about 1% of the total interrupt latency, but in 
the worst case, which we are interested in here, 
that time is approximately 50% of the Interrrupt 
latency. 
 

2.2.5 Disable Interrupt regions 
 
The operating system has been designed for 
real-time purposes. This means that the regions 
where Interrupts are disabled and the Interrupt 
latency is big, are many but very short. In a non 
real-time  operating system, Interrupts can be 

disabled for longer periods of times and 
therefore have fewer but longer Interrupt 
latencies. 
 
Interrupts are disabled during critical 
operations, e.g. during memory access when a 
sensitive variable needs to be changed and 
mutual exclusion is necessary, or when new 
memory is allocated. Another time when 
Interrupts are disabled is when the scheduler is 
locked for temporarily preventing a context 
switch or when a process is removed or inserted 
from the process table containing all the 
processes. 
 
In this case study we examine the OSE delta 
kernel for disable - to enable Interrupt regions. 
 

3 Target Hardware 
 
OSE is available for a number of different 
hardware targets. The delta kernel of OSE that 
has been used in this case study is available for 
ARM, StrongARM, PowerPC, Motorola 68k 
and MIPS R3000. These are all RISC (Reduced 
Instruction Set Computer) processors except for 
the Motorola 68k, which is a CISC (Complex 
Instruction Set Computer) processor. 
 
We have chosen an ARM processor as target 
because it’s one of the most common processors 
on the market, and it has a simple instruction set 
architecture. And we chose ARM9 because it’s 
relatively new with an extended 5-stage pipeline 
and still has the same instruction set as the 
predecessor ARM7 family. 
 

3.1 ARM 9 
 
The ARM9 is a 32-bit RISC microprocessor 
that differs a bit from previous ARM releases. 
Instead of a three-stage pipeline, this new 
processor family uses a five-stage pipeline. It 
supports both Big- and Little -endian modes and 
can be switched to a 16-bit THUMB mode for 
sections where compact code size is required. 
THUMB is a separate instruction set derived 
from the 32 -bit ARM instruction set. 
 

 

Time 

Interrupt is 
triggered 

Interrupt 
Handler 
starts  

Interrupt Handler finished, 
starting Interrupt process 

S 

I E 

S = Time to start the Interrupt Handler 
I = Interrupt Latency 
E = Interrupt process execution time 

Return of Interrupt 
process 
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3.1.1 ARM Instruction Set 
 
One property of the ARM instructions that 
makes it different from other processors 
instructions is that each instruction has a 
condition code attached to it. This condition 
code, which is the first four bits in the 
instruction binary, says if the instruction is to be 
executed or not. The most common condition is 
naturally the always condition. This solution 
reduces the number of branches in the code. The 
32-bit ARM Instruction Set has ten standard 
formats: 
 
• Data Processing 
• Multiply 
• Single Data Swap 
• Single Data Transfer 
• Block Data Transfer 
• Branch 
• Branch and Exchange 

• Halfword Data Transfer 
• Coprosessor Data Transfer 
• Coprocessor Data Operation  
• Coprocessor Register Transfer 
• Software Interrupt 
• Undefined 
 
The processor has a total of 37 registers made 
up of 31 general 32 bit registers and 6 status 
registers. At any time, 16 general registers (R0 
to R15) and one or two status registers are 
visible to the programmer. The visible registers 
depend on the processor mode and the other 
registers. The banked registers are switched in 
to support rapid interrupt response and context 
switching [20]. 
 
Interrupts are disabled and enabled by setting 
one or two of the Interrupt bits in the status 
register (CPSR) FIQ and IRQ in figure 3.1.  
 
 

 

 

Figure 3.1 Format of the ARM Program Status Registers (PSR) 

 
 
 

4 WCET Analysis – Theory 

4.1 Introduction to WCET Analysis  
 
Several attempts have been made to come up 
with a useful method for the estimation of the 
worst-case execution time of a program. It’s 
hard to determine the best method because the 
research in the area only goes back about 10 
years from now, and they haven’t been applied 
to enough number of real systems to come to 
any conclusion. The main methods used in this 
report are based on the work of the ASTEC 

WCET-group in Sweden [1] [2] [3] [4] [5] [14]. 
They have come up with a powerful tool to 
express the different parts of the analysis in a 
language that can be used for the development 
of timing analysing tools, such as the one 
developed within this thesis project. Their 
method to calculate the WCET is divided into 
three steps.  
First the program flow analysis step, where the 
control flow of the program is analysed, the 
code is grouped into basic blocks and a basic 
blocks graph and scope graph are constructed.  
The second step is the low-level analysis, which 
determines the timing effects of external and 
internal parts. The external part is called global 
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low-level analysis and includes the timing 
effects of caches and pipeline timing effects. 
Local low-level analysis deals with machine 
timing effects that depend on a single 
instruction and its immediate neighbours. 
The last step of the WCET analysis is the 
calculation step. Here the previous parts of the 
analysis are combined so that a total result can 
be reached. 

4.2 Related Work 
 
In [1], the previous work that has been 
conducted in Uppsala is presented. For example 
the introduction of a language representation for 
modelling complex program flows, and the 
timing behaviour of pipelines. It also gives an 
overview of the modular architecture of the 
WCET tool developed by the ASTEC WCET -
group in Uppsala (see Figure 1). 
 
In [2] Jakob Engblom has looked at the 
properties of embedded programs, such as how 
many condition statements there are and the 
depth of loops in a real-time program. The study 
was performed at object-code level, because 
program-code for embedded systems is often 
automatically generated, and therefore rather 
“ugly”.  
 
The researchers behind [3] [4] and [5] go deeper 
into the different parts of the WCET model 
from the ASTEC WCET-group. [3] 
concentrates on pipeline analysis, based on a 
trace-driven simulation, whereas [4] and [5] 
looks at the modelling of complex program-
flows, i.e. how to model a complex flow in 
order to get the tightest possible WCET -
estimate. 
 
Colin and Puat have in [6] applied WCET 
methods on a real R-T operating system, namely 
the RTEMS operating system. They came to the 
conclusion that WCET analysis for a R-T 
operating system is feasible and located some of 
the difficulties one might have in performing 
the analysis. 
 
A group of Korean researchers presents in [7] a 
technique for estimating the WCET for 
programs run on RISC processors. They have 
included cache analysis as well as pipeline 
timing considerations in their model. 
 

In [8] the IPET (Implicit Path Enumeration 
Technique) is used for calculation of the worst 
possible execution path. A WCET analysis tool 
for hard real-time programs is presented: 
Cinderella (who had the hard real-time 
constraint that she had to be home by 
midnight…) that calculates the WCET for 
programs run on the Intel i960 KB processors. 
 
The writers of [9] present models for instruction 
cache analysis using abstract interpretation and 
shows how to statically categorize the caching 
behaviour of each instruction. 
 
The important task of how to bound the number 
of loop iterations inside R-T programs to be 
able to perform WCET analysis on it is closely 
examined in [10]. 
 
The WCET analysis in [12] also includes 
caching- and pipeline-analysis where the 
caching behaviour is attached to each basic 
block and the pipeline-analysis takes  care of 
pipeline behaviour between the basic blocks. 
 
[14] Gives an overview of the work performed 
by the ASTEC WCET-group and explains the 
pipeline timing-effects more in detail. 
 
Theiling and Ferdinand try to combine Abstract 
Interpretation (AI) and Integer Linear 
Programming (ILP) in [13] and [15]. They use 
AI for the cache modelling and ILP for the 
program flow analysis. The advantage in using 
ILP for flow analysis is that the tool becomes 
more portable, as the user can specify 
constraints of the specific program before 
analysing it  
 
 

 

Figure 4.1 Relation between possible 
executions and flow information [4] 
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4.3 Program Flow Analysis  
 
The goal with the program-flow analysis is to 
model the possible execution paths the program 
can take when it runs, i.e. what functions get 
called, how many times loops iterate and 
dependencies between if-statements (figure 1). 
This is to ensure that we have all the feasible 
paths when we later, in the calculation step, will 
perform a search for the longest feasible path. In 
order to be able to do that, the first step is to 
divide the code into basic blocks and find the 
dependencies between them when constructing 
the control flow graph. Each block has the 
property that it doesn’t contain any function 
calls or jumps to other procedures, i.e. we are 
ensured of this piece of code’s execution-path. 
There are a number of different approaches to 
creating the control flow graph with basic 
blocks as nodes available. Either the analysis 
can be done automatically or it can be done by 
hand. With the automatic approach, one can use 
control flow information from the compiler, 
integer linear programming (ILP) constraints, or 
abstract interpretation. In abstract interpretation 
the idea is to extract properties of the run-time 
behaviour of a program by making an 
“interpretation” of the program using 
abstractions of values instead of concrete values 
[1]. The program behaviour can easily be 
modelled by ILP, but the analysis is likely to 
become inefficient for larger applications, since 
solving an ILP problem in general takes 
exponential time [12]. Abstract interpretation 
for flow analysis has been widely explained 
[4][5][7][9][12]. In [4], in order to represent the 
dynamic behaviour of the program, the concept 
of a scope is introduced. Here, each scope 
corresponds to a repeating or differentiating 
execution environment in the program, e.g. a 
function call or a loop, and can contain one or 
more basic blocks (figure 4.2).  
 
All scopes are supposed to be looping, even if 
they iterate less then one time. Therefore all 
scopes can be assigned something that is called 
flow-fact-information, where a number of 
properties of the scope are given, such as the 
number of iterations of the scope and intervals 
of iterations where the expressions are valid. 
 

 

Figure 4.2 Example of code with associated 
scopes [4] 
 
 
In figure 4.3 is an example of flow information 
facts attached to the scopes. The symbol [1…4] 
means that the facts are the total result from 
iterations one to four of the scope. <Range…> 
says that the facts are valid for each of the 
iterations in the range. When no ranges are 
given, the facts are supposed to be valid in all 
iterations of the scope. The right part of the 
information facts is a constraint specification, 
e.g. the first fact of scope foo in figure 4.3 
means that the total of XA in the iterations one 
to four is less than or equal to two. 
 
 
 

 

Figure 4.3                                                    
Example of facts attached to scopes [4] 
 
 
The technique with expressing flow information 
using constraints is known from the implicit 
path-enumeration technique (IPET) that will be 
discussed later in this chapter. 

4.4 Low-level Analysis  
 
The second part of the WCET analysis is to 
consider the machine timing-effects.  This 
includes both global low-level analysis, where 
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the external timing effects such as caching are 
considered, and local low-level analysis, where 
the focus is on the timing effects from single 
instructions and pipeline effects. To get an 
overview of the timing effects from the low-
level analysis, a timing graph is constructed. 
Also in this graph the nodes consist of basic 
blocks and we attach the timing facts to each 
node including both the global and the local 
low-level analysis. Relevant parts of the timing 
graph are later used in the calculation of the 
WCET. 

4.4.1 Global Low-level Analysis 
 
Global low-level analysis means analysing the 
effects on execution time from all parts of the 
machine. The main global contributor to lower 
execution times is the caching of instructions 
and data, and therefore it needs to be considered 
in the WCET analysis in order to get a tight 
estimation of the actual execution time. The 
other global timing effects are small in 
comparison and therefore I only focus on 
caching in the global analysis. 
 

4.4.1.1 Including Cache Performance in the 
Analysis  
 
Methods on how to model the caching 
behaviour have been presented in several 
research articles [7][9][12][13][15]. In [7] the 
authors divide the difficulty in predicting the 
caching behaviour into two problems: intertask 
interference and intratask interference. Intertask 
interference is caused by preemption of a task, 
and when the task gets to run after being pre-
empted, it will refer to memory blocks in the 
cache that is no longer there. Intratask 
interference occurs when more then one 
memory block from the same task competes for 
the same cache memory block. This results in 
two kinds of cache misses: capacity, due to 
limited cache size, and conflict, due to limited 
amount of cache set associativity. The 
instructions or data in the cache references are 
divided into four categories. Always-hit, the 
referenced data or instruction is always in the 
cache. Always-miss, instruction or data is not in 
the cache in any cache reference. First-miss, 
means that the reference is not in the cache the 
first iteration, but can be supposed to be in the 
cache the rest of the iterations, e.g. a for() loop. 

Finally conflict, a reference that can’t be 
determined whether it’s in the cache or not. 
Whalley and others have a similar approach in 
[9], with the same categorizations of cache 
references except that they add the first-hit 
category, which means that the referred 
instruction (data caches are not considered here) 
is in the cache the first iteration and all 
remaining references will be misses. They also 
add some information to each basic block in the 
control flow graph that gives a set that 
abstractly represent what’s in the cache at the 
entry and exit of each basic block. Here two 
new definitions are given to determine the sets:  

1. A program line can potentially be in 
the cache if there exists a sequence of 
transitions in the combined control 
flow graph and call graph (graph with 
the external function calls and function 
instances) such that the program line is 
cached when the basic block is entered. 

2. An abstract cache state of a basic block 
in a function instance is the subset of 
all program lines that can potentially 
be cached (1) prior to the execution of 
the basic blocks. 

The other articles use combinations of the 
above. 
The cache information is then included in the 
timing graph for later use as can be seen in the 
example in figure 4.4. 
 
 
 

 

Figure 4.4 Example of cache execution 
scenarios included in the timing graph. [3] 

4.4.2 Local Low-level Analysis 
 
Single instructions and their pipeline timing 
effects are considered in the local low-level 
analysis. The timing contributions from the 
single instructions memory access time are first 
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added to the timing graph by summing up the 
execution time of every instruction in the 
correspondent basic block.  
The pipeline effects between sequential basic 
blocks in a program can be achieved in two 
ways, either a simulation with first the basic 
blocks isolated and then together to get the 
pipeline timing effect, or through a statical 
analysis. In [7] the pipeline timing effects are 
considered statically, using so called reservation 
tables for each basic block. These tables are 
built up by examining the pipeline steps of each 
instruction in the block. Then the head and tail 
of the reservation table of depending blocks are 
analysed together to get the pipeline effect. An 
example of the reservation tables can be seen in 
figure 4.5, where the vertical axis corresponds 
to the pipeline steps and the horizontal is time. 
 

 

Figure 4.5 Example of a reservation table [7] 
 
 
With simulation the basic blocks are first run 
isolated and then in sequence to get the 
pipelining difference. This difference is in 
[3][5] and [14] denoted with δ as can be seen in 
the example in figure 4.6 
 
 

 

Figure 4.6 Example of pipeline overlap 
between consecutive blocks. [3] 
 
 
 

4.5 Calculation 
 
The final step of the WCET analysis is the 
calculation step. Here the results from the flow 
analysis and low-level analysis are put together 
to form a final estimate of the execution time. In 
research literature there are three main methods 
of calculation: path-, tree- or IPET- (Implicit 
Path Enumeration Technique) based [1]. 

4.5.1 Path based Calculation 
 
When calculating the WCET with path-based 
calculation the goal is to get the longest feasible 
execution time of the program. This is achieved 
by first calculate the, e.g. five, longest paths of 
the program and then seeing which one of them 
is feasible [12]. 

4.5.2 Tree based Calculation 

 
In tree-based calculation the WCET is generated 
by a traversal of a tree representing the 
program, starting from the bottom. Results from 
analysing smaller parts of the program are used 
to make the timing estimates for larger parts [7]. 

4.5.3 Implicit Path Enumeration Technique 
(IPET) 
 
The way to implicitly find the longest 
executable path of a program is by setting 
algebraic and/or logical constraints to the basic 
blocks in the graphs and thereafter maximizing 
an objective function (1) and holding the 
constraints using integer linear programming 
(ILP) [8]. 
 
 
Σ∀ (xbasic block * tbasic block – ttiming effect ) (1) 
 
 
An explanation of the object function: Σ∀ 
means the sum of all elements in the following 
expression. xbasic block is the number of iterations 
for a basic block. tbasic block is the timing effect of 
each block and ttiming effect is the gain of pipeline 
effects between blocks. 
 
Most WCET tools use a combination of the 
techniques mentioned above for different parts 
of the calculation. 
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Figure 4.7 Overview of the WCET tool using path -based calculation [5] 
 

5 WCET-Prepare tool prototype  

5.1 Goal 
 
The goal for the tool developed within this 
project is that it should be able to produce flow 
information graphs from a number of source 
code files and an ELF (Executable Linkable 
File) containing object code binaries. It should 
be able to detect interrupt pairs (disable 
interrupt -> enable interrupt) and construct a 
basic blocks graph for each such chain. This is 
needed to calculate the maximum interrupt 
latency. The result should be presented as a 
scope graph (in a .sg file) and as a special .tcd 
(Textual Code Description) file containing the 
basic blocks graph. The idea is that the graphs 
should be on a format they can be used for 
direct WCET calculation by using the tool 
developed by ASTEC. 
 
I have chosen to call the tool WCET prepare 
because the actual calculation is performed by 
an automatic calculation too developed by 
ASTEC in Uppsala. So the tool developed in 
this project makes all the preparations to make a 
calculation possible. 
 
As programming language, C++ is  used for the 
most part, but some text comparing is done with 
AWK scripts. 
 
The tool is divided in two separate parts, which 
internally are named “Find Functions and DI” 
and “ARM decoder”. 
 
 

5.2 Find Functions and DI  
 
The goal of this part of the tool is first to filter 
out each function in the source code files and 
then find out how many disable and enable 
interrupts they contain. This is all done with the 
help of AWK-scripts. Here I had to study the 
source files in order to find out how interrupts 
were disabled and enabled to be able to filter 
correctly. In the assembler source code, the 
disabling of interrupts is done by setting one of 
two (or both) interrupt bits in the ARM 
processor status register. This means that 
determining whether interrupts are disabled or 
enabled from just looking at the source code is 
very difficult, because a separate register is 
often used when changing the status register. 
And to determine the change correctly, the 
content of that register needs to be known. The 
solution to this problem was to categorize some 
changes of the status register as unknown when 
the register content could not be determined by 
looking at the instructions just preceding the 
interrupt change instruction (Move Register to 
Status Register, MSR [22]). Whether the change 
is a disable or enable interrupt is left open until 
later when the tool is put together with the basic 
blocks graph, where flow information is 
available. There is a possibility that the interrupt 
change is still undeterminable but this will be 
further discussed in the next chapter. 
 
After the first filtering the function names are 
compared with a parsed ELF (Executable 
Linkable File) to get the physical starting 
address for each function, which then are linked 
together with their respective function. 
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5.3 ARM decoder 
 
The second part of the tool is the part that 
handles the translation of binary instructions to 
an internal instruction format, and the 
construction of basic code blocks plus a basic 
blocks graph. 
 
As a first step the ELF file obtained from the 
linking of the compilation is parsed in order to 
get the binary representation of each instruction. 
These binaries are put into a list with their 
respective address.  

5.3.1 Instruction considerations 
 
The ARM instructions have some different 
properties that have to be considered during 
decoding. First there are constant data regions 
embedded in the executable regions so that 
functions can access data very fast. There are 
also regions with THUMB instructions. 
THUMB is a 16-bit instruction set derived from 
the 32-bit ARM instruction set. These 
instructions are used when there is a need to 
save code size, which is an important cost factor 
in small embedded systems, e.g. a mobile 
phone. 

6 Prototype Implementation 
 
The largest part of the work in this  thesis project 
was the implementation of the WCET prepare 
tool and the most workload within the 
implementation was put in the creation of basic 
blocks and managing correct program flows. I 
will discuss this later in this chapter. 
 
As mentioned above, the tool is consists of two 
parts, the first is for finding functions and their 
properties, and the second for translating object 
code into a suitable instruction format, dividing 
the code into blocks and managing correct 
program flow. 

6.1 Finding functions and interrupt 
changes 
 
Figure 6.1 shows an overview of the first part of 
the tool, for finding interrupt changes, function 
names and their start-addresses. To get the 
function names from the source code files I used 
AWK scripts from the Cygwin tools. AWK is 
originally from UNIX but can be transformed to 

Windows through the use of GNU or Cygwin 
tools. That makes the tool more platform-
independent. Cygwin is Open Source, so the 
tool is not depending on any commercial 
product. The GNU tools are also free to use, and 
they could just as well have been used here. 
 
AWK scripts are used when you are parsing text 
files and need to do more complex searches 
within the text. It’s possible to implement quite 
complex code in AWK that lets you do a lot 
with the text you’re working with. Here the 
problems were to get the function names from 
each source code file and within each function 
detect the number of Disable and Enable 
Interrupts. The function names were no 
problem, but to detect the interrupt changes was 
a bit more problematic then I first thought.  
In the c source files the interrupt disabling is 
done with a LOCK_PUSH() call or just 
LOCK(), and these were fairly easy to detect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.1 Finding Interrupt changes and 
function names from source code files 
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The problem is in the assembler source files. As 
mentioned in the section about ARM the 
interrupts are disabled and enabled by setting or 
clearing one or both of the interrupt bits in the 
status register. This is done with the MSR- 
(Move Register to Status-register) instruction 
where the second operand is one of the registers 
r0-r12. This means we have to know what’s in 
this register to decide whether interrupts are 
disabled or enabled. In some cases checking the 
instructions just before the MSR-instruction can 
do this, e.g. when the interrupt bits of the local 
register are cleared using a BIC (Bit Clear) 
instruction. But in other cases, there is no 
certainty for what this register contains before 
the status register is changed, e.g. when the 
register is an argument into a function that 
changes the interrupt mode. There are also a 
great deal of lock-push and lock-pop in the 
assembly source files. For the code that means a 
LDR instruction, where a previously stored 
interrupt state is stored, and the status register is 
then changed accordingly to this previous state. 
In this case we also need to know what’s the 
register contains in order to determine the type 
of interrupt change correctly. This could 
possibly be achieved with a more complex data 
analysis of the program flow. 
 
The solution, or compromise one might say, 
was to label these hard-to-determine interrupt 
changes as ‘unsure’ and let the user look deeper 
into the specified function if the actual interrupt 
change is desired. 
 
The thought behind detecting the interrupt 
changes at this stage was that the information 
was going to be used in the later stages, when 
constructing the basic blocks. But as it is not 
possible to determine an exact physical address 
for the change just by looking at the source 
code, the information can be used to compare 
with the basic blocks graph and see that each 
function contains the right number of interrupt 
changes. 
 
Now we needed the physical starting addresses 
for each function. What we had to work with 
was the input ELF (Executable Linkable File) 
that contains information about each part of the 
execution region, for example where each 
function is located. First, an object dump was 
made of the ELF into a temporary file by using 
the Cygwin binutils command ‘objdump –x 
<elf> > temp_file’ (again, the GNU binutils are 

just as good as Cygwin in this case, but we 
chose to use Cygwin). 
The temporary file was then parsed with an 
AWK script to dispose unnecessary 
information, before reading the function names 
and their start-addresses. The result was put in a 
function database so that it could be used when 
constructing basic blocks. Each function was 
then compared with the result from the source 
code analysing and when a function was found, 
its properties (start- and stop-line in the code 
file, di, ei, unsure interrupt changes and object 
code file) were added to the function object in 
the database. 
 
All functions could not be found in this search 
because of two reasons: 
 
First, the ELF contains all the functions in the 
entire executable program, and if not all the 
source code files of the program are given as 
input to the tool, all functions will not be found. 
Only the functions in these source code files 
will be found in the ELF. 
 
Second, to keep OSE portable, OSE Systems 
has changed the names of some of the functions 
to a format that can be handled by all linkers, 
even older versions that can’t take care of e.g. 
long function names. 
To get the real function names, one has to look 
in a translation table that is kept safe from 
outsiders. Hence, some function names will be 
compared to the translated name and therefore 
not be applied it’s properties. 
 

6.2 Decoding binaries 
 
This concluded the first part of the tool, the 
function handling. Next step was to translate the 
ELF binaries of each instruction to a suitable 
instruction format, which could be used in the 
creation of the basic blocks. Figure 6.2 shows 
an overview of this stage. 
 
As a start, the binaries were read into a list with 
pairs of an instruction binary and its physical 
address. There were some problems that had to 
be solved here. The executable code image for 
ARM consists of different regions, namely data, 
THUMB- and ARM-regions (see chapter 4). 
Where these regions start and where another 
ends can be found by looking at the symbol 
table in the map-file created from the ELF. A 
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separate list with the region information was 
created from this table and used when reading 
from the binaries. First, the idea was to filter all 
the data regions at this stage, because they 
didn’t contain any code that should be included 
in the basic blocks graph. But later in the project 
we discovered that at certain places in the code, 
conditional jumps were taken into some of the 
data regions, and that the code here looked as a 
normal subroutine with a normal return to the 
calling function. There are two kinds of data 
regions in the symbol table: d and f. When 
looking at the disassembly code in the ARM 
debugger I couldn’t make out any difference 
between them, except that a small number of the 
f-regions looked as it actually was ‘real’ code. 
Most of the data regions looked, as expected, as 
total nonsense code. 
The solution to this was, as I mentioned, to 
include the data binaries in the list and to take 
the different regions into account when 
constructing the basic blocks. This will be 
further discussed later in this chapter. 
 
 
Now we have a list with all the instruction 
binaries, so the next step is to decode the 
binaries into a suitable format. As help, I 
received an ARM binary decoder from IAR 
Systems, which translated the binaries into a c-
struct with a number of properties for each 
instruction (see figure 6.2). The decoder had to 
be slightly modified to suit my special wishes, 
but was very helpful in the translation. This c-
struct was then used to create a new ARM 
instruction object from a format that I specified, 
which can be seen in Table 6.1.  
 
This object has a number of properties to help 
the building of basic blocks. When an 
instruction is decoded, it’s compared with the 
function database to see if it is the first 
instruction in a new function. If so, a variable 
‘functionstart’ is set to true and later detected in 
the basic block creation. Each ARM instruction 
subclass (one for each instruction format [20]) 
has one important function, the print function. 
This is called when the TCD file for the basic 
blocks graph is constructed, and prints the 
instruction with its operators on the format 
specified for the ASTEC WCET calculation 
tool. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2 Parsing the ELF and decode ARM 
instruction 
 
 
In the decoding stage, every change of the 
Interrupt State is detected again. It’s necessary 
to have the exact physical address location of 
each change when the basic blocks are created 
and therefore the detection has to be done here. 
The interrupt properties for each function 
collected earlier can, when the program is 
finished, are used to check if the analysis was 
correct or not. 
 
There are three types of interrupt state changes 
in the OSE source code. The first and simplest 
one is when the interrupt bits in a register is 
cleared or set right before it’s applied to the 
status register. Then a Disable or Enable 
Interrupts can be determined directly.  
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A second variant of interrupt change is  by 
storing the Interrupt State on a stack before 
disabling interrupts. When a lock pop is 
performed, it’s done by restoring the previous 
Interrupt State from the stack, which therefore 
can lead to that interrupts still are disabled if the 
interrupts were disabled before the lock push. 
The reason to have this kind of lock push and 
lock pop instructions is that some parts of the 
code has to execute with interrupts disabled 
regardless if they were enabled or disabled 
before. This means that regardless if the calling 
function or subroutine has interrupts enabled or 
disabled, we are always certain that our little 
piece of code is executed safely and that the 
caller continues to execute unaffected by the 
interrupt changes in our code. 
 
The third type of interrupt change is when a 
register with unknown content is used to change 
the status register. This occurs e.g. when the 
register contains an argument to a function that 
uses this argument to change the Interrupt State. 
Then it depends on what the calling function or 
subroutine had stored in this argument register 
before the call. 
 
This tool only handles the first type of interrupt 
change completely. As in the first part of the 
tool, when interrupt changes were detected by 
looking at the source code, the changes are 
labelled according to its type. Direct changes 
are labelled Disable and Enable, lock push is 
detected as a Disable also at this stage and lock 
restore is labelled Lock Restore. The changes 
with unknown register content are labelled 
Unsure. This part of the tool has to be extended 
to fully take care of all types of interrupt 
changes and get a correct estimation of all 
regions of code were interrupts are disabled. 
Again, this can probably be done with a more 
complex data analysis of the program flow. 
 
All interrupt changes are saved in a list with its 
type and the physical address of the change 
instruction (MSR Move Register to Status 
register). This list is then used in the creation of 
basic blocks. 
 
 
 
 
 
 
 

Table 6.1 ARM Instruction Class 
 
Member 
variable 

Type Description 

cond short  Condition code, e.g. 
0xE for CondAL [20] 

format int One of 15 instruction 
formats  

binary uns. int The instructions 32-bit 
binary 

instr_adr uns. 
long 

Physical address for the 
instruction 

instr_name char * Name of instruction, 
e.g. "Bx"  

cond_name  char * Name of condition 
code, e.g. "CondAL"  

change_pc bool True if the instruction 
changes the PC 

updated_regs short  Registers changed by 
the instruction 

update bool True if a register 
updates itself, e.g. mov 
r0 <- r0+1 

isthumb  bool True for THUMB 
instructions 

fstart  bool True if instruction is 
first in new function 

offset int Used to calculate jump 
destination addresses  

targetadr int Destination address for 
jump instruction 

bits  short  Condition bits, e.g. S for 
set conditions in status 
register 

rn short  Operand register 
rd short  Destination register 
op2 Operand Special class for second 

operand 
Member 
functions 

Return 
type 

Description 

Print() string Prints the instruction on 
the ASTEC ARM 
instruction format 

FindCondName() char * Returns the name of the 
instruction condition, 
e.g. "CondAL"  

IsJump() bool Checks if an instruction 
is a jump instruction 
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When we started the project we thought that all 
instructions were 32-bit ARM instructions (see 
chapter 4). But when we started decoding the 
instruction binaries we discovered that was not 
the case. Some parts of the operating system not 
critical to performance, executed in 16-bit 
THUMB mode, this was in the same time as we 
discovered the constant data regions. As 
THUMB instructions are just a subset of the 
ARM instruction set [20], the easiest way to 
adopt the tool for THUMB was to make the new 
THUMB root class a subclass of the ARM 
Instruction root class (see Table 6.1). That took 
about one extra day to implement. 
In the decoding stage the target address for each 
jump is calculated. This is very straightforward 
with normal ARM instructions and most of 
THUMB instructions were the jumps are 
calculated directly with an offset. There is one 
special case however, THUMB Branch with 
link instructions (BL) are divided into two parts, 
to allow longer jumps. That just meant we had 
to save the first offset temporarily and calculate 
the target address when decoding the second 
branch with link instruction. 

6.3 Construction of basic blocks 
 
So, now we have a list of ARM Instruction 
objects, a list of regions, a database of functions 
and a list of interrupt changes. That is enough to 
start dividing the instructions into basic blocks. 
Figure 6.3 shows the basic steps in the process 
of creating basic blocks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3 Creation of Basic Blocks 
 
 

The definition of a basic block is a group of 
instructions that always execute all of the 
instructions or none at all, and always in the 
same order. 
 
Even if we only want to calculate the WCET of 
a small region in the code, all basic blocks of 
the entire program have to be created. This is 
necessary because the little region we want to 
examine might contain a subroutine call to a 
function in a totally different region, and if we 
haven’t created the basic blocks for that region, 
we cannot calculate a WCET for it. 
 
In ARM, all instructions are provided with a 
conditional (see chap. 4), telling whether the 
instruction will be executed and if so under 
what condition. The most common is obviously 
the always condition (CondAL), i.e. that the 
instruction will always be executed if it’s in the 
execution path. 
Strictly, every instruction that is not a CondAL 
instruction should form a separate basic block 
as shown in figure 6.4. 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.4 Separate blocks for each 
conditional instruction. 
 
 
But that would lead to a tremendous amount of 
blocks, and the WCET calculation would be 
very complex. We decided to let conditional 
instructions to be considered as CondAL 
instructions and form basic blocks together with 
other instructions. This makes our WCET 
estimation not as tight as it would be if we let 
every conditional instruction form its own 
block, but the gain in simplicity is greater and 
our estimation will still be correct. 
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The bounds for a basic block are: 
 
Start of new block: 
• The instruction before was the end of 

another block. 
• There is a jump somewhere in the code to 

the current instruction address (this will be 
further discussed later in this chapter). 

• The current instruction is an enable 
interrupt or unknown interrupt change. 

• The current instruction is the start of a new 
function. 

• A new region starts at the current 
instruction address. 

 
End of block criteria’s: 
• The current instruction is a jump 

instruction. 
• The instruction following the current one is 

the start of a new block (see criteria’s 
above). 

• The current instruction is a disable 
interrupt, lock restore or an unknown 
interrupt change. 

 
Because unknown interrupt changes are in both 
criteria’s, these instructions will form separate 
blocks. 
 
If an instruction is a jump to an address that is 
higher then the current (i.e. no block has yet 
been created at that address), an empty block is 
created at the target address and the target 
address is put in a queue of empty blocks. This 
queue is checked for each new instruction and 
when the start instruction for the empty block is 
found, the preceding block is finished and the 
empty block is filled with instructions. 
 
If the target address for the jump instruction is 
within an already created block, that block is 
split in two blocks at that address, as shown in 
figure 6.5. 
The new block names (BB1p and BB1c) stands 
for parent and child and will is applied each 
split so that each block have a unique name in 
the database. This can lead to block names with 
several p’s and c’s in them, e.g. “BB1ppcp”. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 Splitting a basic block 
 
 
When a new block is created, it is inserted into a 
database containing all the basic blocks that 
have been created. This database consists of a 
std::map in c++, where every basic block is 
indexed by the physical start address of the first 
instruction in the block. 
 
To help the finding of interrupts and building of 
a scopegraph, symbols are applied to the block 
names according to what kind of block it is. 
First, each block is given a name in increasing 
number order (“BB1”, “BB2”…), except if the 
start address for a block is found in the function 
database. Then that block will have the same 
name as the found function, e.g. “foo”. 
Second, all blocks names are applied their 
region,  “_a” for a block that executes in ARM 
mode, “_t” for a block that executes in THUMB 
mode and “_d” or “_f” for a block that contains 
constant data. The region is attached to the end 
of the name, e.g. “BB1_a” or “foo_t”. This is 
the most basic form of a block name. 
If the block is the start of a function or a 
subroutine (The target block for a branch with 
link jump is said to be the start of a subroutine) 
a “f_” is applied to the beginning of the name, 
resulting in “f_BB1” etc. 
If the last instruction of the block is a branch 
with link instruction (also discussed later in this 
chapter), “b_” is applied to the name, in the 
beginning, but after “f_” if present. 
Last, the interrupt blocks are applied the type of 
interrupt change to their name, “di_” for disable 
interrupt, “ei_” for enable interrupt, “lr_” for 
lock restore and “ic_” for unknown interrupt 
change. 
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All of these naming conventions makes the 
block names a bit complex, but it makes it very 
easy to parse the basic blocks graphs for e.g. 
interrupt chains. The longest possible name 
would be: “f_di_ei_function-name_a”, saying 
that the block starts a new function or 
subroutine, the first instruction is a disable 
interrupt, the last instruction is an enable 
interrupt and the block executes in ARM mode. 
 
Every block has a list of predecessor blocks and 
a list of successor blocks. These can be empty if 
the block is a single block function that never is 
called, but for most blocks they are not both 
empty. The predecessors and successors form 
the program flow information, i.e. which paths a 
certain block can take and what paths that could 
have lead to this block. 
A basic block is given its flow information facts 
during the construction of basic blocks. If the 
preceding block of a newly created block did 
not end with an unconditional jump, that 
preceding block is put in the list of predecessors 
of the new block. And respectively, the new 
block is put in the list of successors for the 
preceding block. 
There is also another case for adding a 
successor or predecessor, and that is when a 
basic block ends with a jump instruction. 
There are three kinds of jump instructions in 
ARM: Branch (B), Branch with link (Bl) and 
Branch and exchange (Bx). 
Branch instructions are used when there is no 
need to save the return address, that is for 
internal jumps and PC-relative jumps.  
Branch-with-link instructions are used for 
subroutine calls when the return address has to 
be saved. This address is then put in the link 
register (Reg 14 in ARM) before the jump is 
taken. 
When a subroutine ends, its final instruction is a 
Branch and exchange. Then the PC-value is 
restored, either by what’s in the link register, or 
in which other register that is given as argument 
for the branch and exchange instruction. 
Because the branch instruction is word aligned, 
the final bit can be used to change mode 
between THUMB and ARM. If the least 
significant bit in the branch instructions offset is 
set, then the mode of the code starting at the 
restored PC-value is THUMB mode. 
 
When a Branch and exchange has a register that 
is not the link register as argument, the value of 
that register has to be known in order to give a 
correct basic blocks graph and scope graph. 

In our WCETprepare tool and in the scope 
graph creator, we consider all branch with 
exchange jumps as a return from subroutine. 
This problem is very similar to that of finding 
the lock push and lock pop discussed earlier, 
and can probably be solved by using a more 
complex data flow analysis. 
 
So, to get back to the flow information, there 
are some considerations that need to be done. 
For a normal Branch instruction there is no 
problem, if it’s an unconditional jump (B 
CondAL), only the target block is put in the 
successor list. If it’s a conditional Branch 
instruction, both the target block and the block 
at the next address (in ascending order) are put 
in the list of successors. 
Branch and exchange instructions are always 
unconditional jumps, so no blocks are put in the 
successor list. 
But for unconditional Branch with link 
instructions the block in ascending address 
order after the jump block will be taken as soon 
as a return from subroutine is reached. Should 
then the jump block be in the predecessor list 
for the block that is taken after return from 
subroutine? And should that block be in the 
successor list for the Branch with link block? 
The answer is of course no in both cases, 
because there is no direct execution path 
between the two blocks, but we had to adjust the 
WCETprepare tool a bit to make the automatic 
creation of scope graphs work. This is where the 
“b_” in the jump block comes in. Every time the 
scopegraph converter finds a block with ”b_” in 
the name, it knows that the block at the next 
address should be included in the scope, even 
though it is not in the successor list. 
Also, every time a subroutine is called with a 
Branch with link instruction, the called block 
gets a “f_” in its name so that the scope graph 
converter and the WCET calculate tool 
recognize it as a function. 
 
When a basic block is split into two  blocks, due 
to a jump where the target is an instruction 
within an already created block (see earlier in 
this chapter), the flow information is updated 
for that block. The successors of the parent 
block are transferred to the child block, and the 
only successor the parent block has left in the 
list is its child block. The child block of course 
puts its parent block in its predecessor list. 
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6.4 Creation of Basic Blocks Graph 
 
When all blocks are created, and all flow 
information have been put into the blocks, its 
time to create a basic blocks graphs and TCD-
files. A TCD-file is a file that contains the basic 
blocks graph, with all the blocks and their 
instructions, on a special format that the WCET 
calculation tool can recognize. The format is 
basically: 
 
Begin block name  
 List of predecessors 
 List of successors 
  Instructions 
End block 
 
Next block… 
 
The instructions are printed on a format that 
looks like this: 
<Address> : Instruction length : Instruction-
name : Condition : Operands ; 
 
The tool is able to build three kinds of basic 
blocks graphs: one big for the entire program, 
one for each function in the program and finally 
one for each Enable - to Disable Interrupt chain. 
The graphs for each function are constructed by 
stepping through all the blocks, and when a new 
function is found, a tree is built starting from 
that block’s successors, until there are no 
successors left. Then a print function is called 
that only prints the blocks in the tree. If a block 
has a predecessor that is not in the tree, that 
block is not included in the predecessor list. 
 
The same strategy is used when the basic blocks 
graphs for the Disable- to Enable Interrupt 
chains are created. A brief overview is given in 
figure 6.5. Here a tree for each Disable Interrupt 
is built at first. When the tree is finished, it is 
searched for any Enable Interrupt blocks. For 
each Enable Interrupt found, a backward search 
is performed, until the starting Disable Interrupt 
block is found. This is done because we want to 
avoid all unnecessary blocks that are not in the 
execution path for that particular chain. The 
backward search also has to consider 
unconditional jumps to subroutines, e.g. if a 
block ends with an unconditional Branch-with-
link instruction. Then that block will only have 
the starting block of the called subroutine in its 
predecessor list, but the execution continues 
with the block at the next address when the 

subroutine is finished. If such a block is found 
during the backward search then the whole 
subroutine is added to the chain, unless an 
Enable Interrupt block is found in the 
subroutine. Then that path is excluded from the 
chain. 
Also, if an Interrupt change that is of unknown 
type, e.g. a LOCK_POP (see earlier section in 
this chapter), then the backward search is 
stopped and the chain is discarded. 
When everything goes well, a file with the name 
DI<address>-EI<address>.tcd is created for 
each chain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6 Building a Basic Blocks graph for 
each Disable to Enable Interrupt chain 
 
 
Because the calculation tool developed by 
ASTEC that is used in the last step of the 
process checks the names of the basic blocks for 
certain properties, e.g. if a basic block is the 
start of a new function (block name starts with 
“f_”) or if a basic block calls a subroutine 
(block name contains “b_”), some modifications 
had to be made to the block names. In this case 
study we make basic blocks graphs for Disable 
to Enable Interrupt chains. That means that we 
stop constructing the graph when we find an 
Enable Interrupt. Sometimes a subroutine is 
called in the middle of the chain and Interrupts 
are enabled before a return from subroutine 
comes. But the calculation tool expects to find 
an end for each function it detects, i.e. for each 
block that begins with “f_”, otherwise an 
exception is raised and the calculation stops. 

Database wit h 
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This means we have to temporarily change the 
name of some blocks inside the chain if no 
return from subroutine is found. It’s a kind of 
“flattening” for unfinished functions so that for 
the calculator it looks like the half function is a 
part of the main function and not a subroutine. 
The same goes for the basic bock that calls the 
subroutine. That block will at the beginning 
have “b_” inside its name, and when the 
calculator detects that kind of block it expects a 
return from subroutine somewhere in the 
following execution path otherwise an 
exception is raised. So the basic blocks with 
“b_” are also changed so that it looks as if they 
call a normal basic block inside the current 
function.  
 
All the basic blocks names are then restored in 
the last stage when the whole graph is 
constructed and a .tcd file has been created. 

7 Experiments 
 
In this chapter I will present some information 
about the results from the test runs of the tool 
together with the scopegraph converter and 
WCET calculation tool from the ASTEC group. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1 Last step in the work chain, 
calculating the WCET 
 
 

The .tcd files containing the basic blocks graphs 
of the found Disable to Enable Interrupts chains 
are run through an automatic scopegraph 
converter that produces a .sg file with the 
scopegraph for the chain as shown in figure 7.1. 
 
The definition of a scope is, as explained in the 
chapter about WCET theory, that each scope 
corresponds to a repeating or differentiating 
execution environment in the program, e.g. a 
function call or a loop, and can contain one or 
more basic blocks (see figure 3.2, page 4). All 
scopes are also supposed to be looping, even if 
they iterate equal to or less then one time. The 
calculator needs both one basic blocks graph 
and one scope graph of the same chain to 
calculate the WCET. The scopegraph if needed 
to get the loop bound for the loops within the 
chain. 
  
So after the scope graph is constructed, one 
have to find the loop bounds manually, by first 
looking at the code in the basic blocks graph if 
the number of iterations can be found directly. 
If its not possible to determine the bound 
directly one have to find the corresponding 
source code to see if the loop bound can be 
found there. Often the loop bound is set by the 
size of a vector or variable and therefore hard to 
determine. One possibility is to look if there 
exists a maximum size for that vector or 
variable in a header file that is included in the 
source file.  
 
I had some problems to find the corresponding 
source code for the basic blocks graphs. This 
could probably be done pretty easily with the 
ARM Debugger, but I couldn’t find the right 
settings. So what I did was I looked at the 
physical starting address for each chain and then 
compared it with the starting addresses of the 
functions that I calculated in the first step of the 
tool. This method is not the best since if the 
chains start in a subroutine relocated between 
two functions, then the  source code for that 
chain doesn’t have to be in the same source file 
as that function. And if it is, the code could be 
placed in another section in the source code file. 
Of the chains I looked at I could only find the 
correct loop bound for one, because of that I 
couldn’t trace the code back to the actual source 
code. 
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The total number of Disable to Enable 
Interrupts chains found in the compiled 
operating system kernel: 612 
 
This is approximately half of the total number 
of interrupt chains in the operating system 
kernel. The other half is from those where 
storing the state on a stack or restoring the state 
from a stack, i.e. lock-push and lock-pop 
instructions, makes the interrupt state change. 
 
Chains that contain 3 or fewer basic blocks: 554 
 
That means that more then 90 percent of the 
found chains are very short. This was expected, 
because interrupts are not supposed to be 
disabled for a long period of time, except during 
boot. 
 
I’ve chosen 10 of the chains that were produced 
by the WCETprepare tool, to look a little closer 
on the properties. These chains either contain a 
number of loops or are longer then most chains. 
Table 7.1 shows the properties of the selected 
chains. Of these chains I could only determine 
the loop bound for one of them directly because 
I could not trace the chains back to the source 
code as I mentioned above. 
 
Notable is also that because not all types of 
interrupt changes are handled (see previous 
chapter), there are a lot of chains that will not be 
detected by this tool. One of the most common 
ways to disable and enable interrupts  in the OSE 
operating system kernel, is by saving the locks 
(disable) and unlocks (enable) on a stack, i.e. 
through lock push and lock pop instructions. 
This is to make a section of code execute with 
interrupts disabled no matter what state the 

calling function was in when the call was made. 
This means that the calling function doesn’t 
need to worry about if the interrupt state has 
changed after the subroutine has finished. The 
interrupt state that was before the call will be 
restored and the execution can go on as normal. 
 
The types of Disable to Enable Interrupts chains 
that are found by this tool is typically when 
interrupts need to be disabled for a very short 
period of time, e.g. in memory handling when a 
sensitive system variable needs to be updated 
and mutual exclusion is needed to secure a safe 
execution. And as said in the beginning of this 
chapter, 90 percent of the found chains consists 
of 3 or fewer basic blocks, i.e. very small. An 
explanation to the chains containing loops in 
Table 7.1. 
 
The WCET is given by the number of cycles for 
the basic blocks outside the loop(s) plus the 
number of cycles for the basic blocks inside the 
loop multiplied by the number of iterations. 
When the number of iterations couldn’t be 
determined directly, e.g. when the loop bound is 
set by a variable, the limit has been set to 100, 
50 and 20. This is to show the big time 
contribution loop is. When the loop bound gets 
high, then the WCET gets worse fast. If the 
unsure loop bounds are set to 100 it’s sure that 
no underestimations are made. The probability 
that there are chains where interrupts are 
disabled containing loops that iterates more then 
100 times is very small. When there is a nested 
loop, as there is in two cases, the total time for 
the nested loop is calculated and added to the 
outer loops basic blocks total time before 
multiplied with the outer loop bound. 
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Table 7.1 Selected Disable to Enable Interrupts chains 
 

Chain Size Blocks Loops Nested Scopes WCET (cycles) 
DI156588-EI156828 244 11 2 - 4 64 + 25*(20) = 564 

64 + 25*(50) = 1314 
64 + 25*(100) = 2564 

DI159444-EI159608 168 7 - - 2 45 
DI181296-EI147608 200 9 - - 2 85 
DI182248-EI147608 308 16 - - 2 89 
DI183924-EI183796 160 11 1 - 3 51 + 23*(20) = 511 

51 + 23*(50) = 1201 
51 + 23*(100) = 2351 

DI183924-EI184392 160 11 1 - 3 63 + 23*(20) = 523 
63 + 23*(50) = 1213 
63 + 23*(100) = 2363 

DI185276-EI185524 248 11 - - 2 86 
DI194280-EI194376 100 6 - - 2 31 
DI230288-EI230508 240 12 3 1 5 29+(7*32+29)*(20) + 14*(20)  = 5369 

29+(7*32+29)*(50) + 14*(50)  = 13379 
29+(7*32+29)*(100) + 14*(100) = 26729 

DI261180-EI261432 212 9 3 1 5 28 + 14*20 + (16+7*32+6)*20 = 5228 
28 + 14*50 + (16+7*32+6)*50 = 13028 

28 + 14*100 + (16+7*32+6)*100 = 26228 
 
The loop bounds in the table that could not be decided directly are set to 20, 50 and 100 to have something 
to compare with. In the real case however, this is probably an huge overestimation, since most loop bounds 
are kept low in the speed critical operating system kernel. 
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Diagram 7.1 Distribution of chai n sizes in bytes 
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Diagram 7.1 shows the size distribution of the 612 found chains. This also confirms the fact that almost all 
Disable to Enable Interrupt chains are very short. 



 24 

7.1 DI-EI chain properties 
 
All the times given in the blocks are given in 
clock cycles. The negative values between some 
blocks are the pipeline effects. 
 
The first chain is shown in figure 7.1 and 
contains 11 basic blocks with 2 loops. In 
Appendix B there is the corresponding scope 
graph file. In this chain I have attached the 
actual name of each basic block to make it 
possible to follow the scope graph file  in 
Appendix B. 
The loop bounds could not be found directly by 
looking at the basic blocks graph with the 
translated instructions. Therefore the chain 
needed to be checked against the source code 
file to get the correct bounds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1 DI156588-EI156828 

 
Here we see that only one of the loops will be 
taken, since they are in different execution 
paths. So, the path with the highest loop bound 
will most likely give the WCET.  
 
Largest block (last block): 18 instructions with 
WCET: 25 cycles  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2 Chain DI159444-EI159608 
 
This is the second shortest of the selected 
chains, with a WCET of 45 cycles. 
 
First block: 13 cycles, last block: 5 cycles  
 
Largest block: 9 instructions with WCET 13 
cycles 
 
Here we can see that the longest path search 
works, as the execution path is given by the 
blocks with number of cycles information inside 
them, and the block not taken has a WCET of 8 
cycles. 
 
Otherwise this is a pretty normal DI to EI chain, 
with not so many blocks in it, no loops and no 
function calls. 
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Figure 7.3 Chain DI181296-EI147608 
 
In figure 7.3 we see a chain that contains a call 
to a subroutine, which enables the interrupts. 
This is also very common, often there is a 
function called something like 
“clear_interrupts” that is a function calls instead 
of turning interrupts on inside it. 
 
First block: 13 cycles and last block: 12 cycles. 
 
Largest block: 10 instructions with WCET 22 
cycles. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.4 Chain DI182248-EI147608 
 
Another call to the same subroutine, but from 
another function, is shown in figure 7.4. Here 
there are two almost identical paths, but one 
contains more instructions then the other, and 
therefore has the highest WCET. 
 
First block: 7 cycles and last block: 12 cycles. 
 
Largest block: 10 instructions with WCET 22 
cycles. 
 
 
 
 
 
 
 
 
 

EI 

22 

5 

5 

10 

10 

7 

6 

DI 

Branch with link call 
to remote Function 

-2 

-2 

DI 

5 

10 

5 

EI 

22 

10 

7 

6 

9 

Branch with 
link calls to 
remote 
function 

-2 

-2 



 26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    -2 
 
 
 
 
 
 
 
 
 

Figure 7.5 Chain DI183924-EI183796 
 
This is the first chain containing a loop. It’s also 
one of the larger of the selected chains. 
 
The loop bound could not be determined 
directly, and is therefore set to a high number in 
the calculation to be on the safe side. Here we 
can see that the WCET rapidly gets high, when 
the number of loop iterations increases, as the 
WCET is given by: 
 
51 + 23*(number of loop iterations) 
 
First block: 13 cycles and last block: 5 cycles. 
 
Largest block: 6 instructions with WCET 13 
cycles. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.7 Chain DI183924-EI184392 

 
This chain is similar to the previous example, 
but here the enabling of interrupts is done in a 
different place. Also the execution path is  a 
little different in this example and therefore the 
WCET is a little different. 
 
First block: 13 cycles and last block: 5 cycles 
 
Largest block: 6 instructions with WCET 13 
cycles. 
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Figure 7.7 Chain DI185276-EI185524 
 
 
Pretty straightforward chain where the longest 
path is found from a number of possible chains. 
But it’s still very unusual to find paths this long 
with interrupts disabled in the results from my 
experiments. 
 
First block: 22 cycles and last block: 5 cycles. 
 
Largest block: 14 instruction with WCET 22 
cycles. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.8 Chain DI194280-EI194376 
 
 
This is the smallest chain that’s included in the 
selected chains. That gives an idea about how 
the more usual chains look like, a bit smaller 
then this one. The most common chain contains 
only 3-4 blocks and rarely any conditional. This 
is logical, since often you want to change a 
variable or register that is sensitive and disables 
interrupts just long enough to make the change.  
 
Here ones again, the longest path is found (the 
execution path is given by the blocks with 
cycles inside them) and the WCET can be 
calculated, in this case it’s 31 cycles. 
 
First block: 9 cycles and last block: 5 cycles. 
 
Largest block: 8 instructions with WCET 12 
cycles. 
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Figure 7.9 Chain DI230288-EI230508 
 
 
This chain is one of the two most complex 
chains I found during my experiments. It 
contains three loops, where one of the loops is a 
nested loop. Again, the loop bounds where hard 
to determine, but the small nested loop has a 
loop bound of 32 iterations. And as you can see, 
it doesn’t contain a lot of code, so to set the 
bound for the larger loops to 100 iterations are 
on the safe side. 
 
First block: 18 cycles and last block: 5 cycles. 

 
Largest block: 11 instructions with WCET 18 
cycles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.10 Chain DI261180-EI261432 
 
 
Very similar to the previous chain, also with 
three loops, where one of the loops is nested. 
Also this nested loop has a bound of 32 
iterations. 
 
First block: 14 cycles and last block: 5 cycles. 
 
Largest block: 11 instructions with WCET 16 
cycles. 
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8 Conclusions 
 
The first, and most important, conclusion of this 
project is that we have showed that it is possible 
to use WCET analysis on real-time operating 
system code. But there are still a number of 
issues that can be improved, these will be 
further discussed in the next chapter, future 
work.  
 
The current tool is not compared to real WCET 
numbers from physical tests. This is because 
with this tool only half of the chains from 
Disable Interrupt to Enable Interrupt could be 
found and therefore one cannot be sure that the 
WCET is found. It would be very interesting to 
see how good the results from the tool are, but 
only if its certain that the WCET is found.  
 
I think the tool can be very helpful to determine 
the WCET of a desired region of compiled 
operating system code if the improvements that 
are suggested in the next chapter are 
implemented. The biggest downside right now, 
as I see it, is that each loop bound needs to be 
determined by hand. If you have to analyse a 
large piece of code, such as an operating system 
kernel, this can be very time consuming. 
 
Another downside, as we discovered after the 
project, is that the tool is compiler dependent. 
This is because all the instruction binaries and 
MAP files are generated from code that is 
compiled and linked. In this project the ARM 
C-compiler armcc is used, but when the tool 
was tested with object code compiled by an IAR 
compiler, it did not work. 
 

8.1 Detailed Conclusions  
 
In the beginning of the project, we set up a 
number of goals and wishes, which we wanted 
as results: 
 
* See if it was possible to convert operating 
system code into a format that could be used to 
statically calculate the execution time of 
specified regions of code.  
 
* How much of the process of converting 
operating system object code into basic blocks 
and basic blocks graphs could be automated and 
how much had to be done manually. 

 
* Look at the typical properties of operating 
system code, such as nested loops, function 
pointers, recursion and so on. 
 
The answer to the first goal is yes, but it was not 
as easy as we first thought when we started the 
project. A number of unpredicted problems 
occurred that we had to solve, such as how to 
handle the conditional branch with link jumps 
and adapt the tool for THUMB mode. But in the 
end we were able to convert the source code 
like we wanted in the beginning (see work 
overview, Appendix A). Very helpful in the 
later stages, during the tests, was the scope 
graph converter developed by ASTEC in 
Uppsala that converts a basic blocks graph into 
a scope graph. This would otherwise be done 
manually and that would have taken a lot longer 
time for such large pieces of code. 
 
We had to make some assumptions along the 
way though, in order to get it to work. First we 
assumed that the code didn’t contain any 
THUMB code, but that proved to be false so we 
had to adopt the tool. Another assumption was 
that a Branch-and-exchange jump (Bx 
instruction [20]) always means return from 
subroutine. This is true for almost all cases, 
where the operand of the instruction is the link 
register (register 14 in the ARM9 family [20]). 
But sometimes the operand is another register 
and then the result depends on what is saved in 
that register before the jump is taken. In most 
cases it is the link register that is temporarily 
saved in that register, but sometimes the content 
is undefined, e.g. when a switch table is used. 
We then assume that the meaning nonetheless is 
return from subroutine. The exact content can 
probably be determined by a larger data analysis 
of the program flow, just as for the determining 
of interrupt types mentioned in the prototype 
implementation chapter. Another assumption 
was that a subroutine called by a Branch-with-
link instruction [20] always has to end with a 
Branch-and-exchange instruction. Because 
when the subroutine is finished, the execution 
starts at the address after where the Branch-
with-link jump was taken, i.e. the content of the 
link register. This is not necessarily an 
assumption since it’s logical and we couldn’t 
find any case where this was not true. 
 
Another of the things we discovered was, 
discussed in the implementation chapter, some 
peculiarities with the constant data regions. 
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There are two types of data regions in the ELF, 
marked as ‘d’ and ‘f’ in the symbol table. When 
looking at the code in the ARM debugger, all 
the ‘d’ regions are, as expected, just constant 
data, and all the ‘f’ regions looked to be the 
same. But when we worked on the control flow 
between the basic blocks, we found blocks that 
jumped from normal ARM execution, to ‘f’ 
blocks. And the ‘f’ blocks performed a normal 
execution with return from subroutine when 
finished. The conclusion was that not all ‘f’ 
regions consist of constant data, but are infact 
executable code. There was no information on 
what exact difference there are between the two 
data region types as far as we could see, but as 
we treat all blocks the same it  doesn’t effect the 
WCET calculation. 
 
The second goal was to make as much of the 
process as possible automated. Because the tool 
developed in this project is used on large code 
sections, here the kernel of an operating system, 
a great deal of manual interference would make 
it very slow to calculate the WCET. All the 
finding of interrupt changes, function names 
and their starting addresses in the tool are done 
automatically. Also, all conversions from 
binaries to the new ARM instruction format are 
done automatically. And the creation of basic 
blocks of code and their graphs are also 
automated. The parts where manual interference 
is needed are during the creation of scope 
graphs and the finding of loop bounds. To 
create a scope graph, one only need to start the 
tool from ASTEC, which constructs a scope 
graph file from a basic blocks graph file. It 
should not be too difficult to integrate this 
automatic scope graph converter into the tool 
and make that part automated as well. But 
determining the loop bounds is very hard to 
automate, since it depends on the circumstances, 
e.g. when a constant set the loop bound or if a 
pointer or variable determines it. 
 
But the rest of the process is automated. All the 
program needs to run is an ELF (Executable 
Linkable File) of the program and a text file 
containing the paths to the source code files that 
are to be examined. 
 
Third goal was to look at typical properties of 
operating system code. There are a number of 
aspects that one can look at the properties of 
source code, such as function pointers, loops 
and nested loops. 
 

The part of OSE that I’ve worked with, that is 
the parts where interrupts are disabled, have a 
number of properties.  
We could not find any function pointers, which 
would have caused a big problem for 
calculating the WCET. If we would have found  
function pointers, then data flow analysis would 
have had to be used to try and find out what 
function the pointer points to. 
 
Nested loops were only found in two of 612 
chains, and then only one in each chain. This 
was also expected since nested loops highly 
contributes to the WCET of the chain. 
Single loops are more common, there are loops 
in about 5% of the chains found, but rarely more 
then one loop per chain. These loops contain 
basic blocks with a total WCET between 10 and 
60 clock cycles for each loop iteration. 
 
One interesting property that we found was 
conditional subroutine calls. These are specific 
for ARM and cannot be found on any other 
processor. That made it a bit harder to calculate 
the WCET, but since the calculation tool had 
been modified for conditional subroutine calls, 
we had no problems. 
 
The current tool does include pipeline analysis, 
which is a part of the calculation tool developed 
by ASTEC. The pipeline effects can be seen in 
the example chains in the previous chapter 
(Experiments) as negative contributions to the 
WCET. 
 
The tool is today also able to create basic blocks 
graphs for each function in a compiled program. 
This also needs to be integrated with a data flow 
analysis to correctly determine all subroutine 
returns that are non-link-register content 
dependent. With that I mean return jumps with a 
register that is not the link register as jump 
operand. 
 

9 Future Work 
 
There are some issues that could be considered 
in the future work with this type of tool.  
 
First an extended data flow analysis on the 
control flow graphs would be helpful when 
determining jump targets or the type of an 
interrupt change that depend on a register which 
content can’t be determined directly. Then all 
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types of interrupt changes can be determined 
and the correct WCET for all the interrupt 
latencies can be calculated. This would 
important especially for the OSE operating 
system, where there are a lot of lock push and 
lock pop instructions when disabling and 
enabling interrupts. 
 
Of course the correct loop bounds need to be set 
in order to get the correct WCET estimation. In 
the OSE operating system kernel, the ranges for 
the variables that determines the loop bounds 
are known in most cases. It should be possible 
to include some form of  parameterisation for 
these variables so that when the tool detects a 
certain type of variable it can set a worst case 
loop bound automatically. 
 
Another aspect that this tool doesn’t consider is 
cache analysis. A full correct cache analysis 
included in the control flow graphs would make 
the WCET estimation tighter. It doesn’t effect 
the safeness of the estimation to exclude cache 
analysis, we only assumes that each instruction 
reference will result in a miss in the cache. 
There has been a lot of previous work for 
including cache-analysis when calculating the 
WCET of a program [7][9][12][13][15].  When 
implementing an extended dataflow analysis for 
determining unsure register contents, the 
caching part should also be possible to include. 
 
In the future development of this tool I think 
that the major work should be spent on 
integrating the tool with a more extended data 
flow analysis and parameterisation for loop 
bounds. I know there has been work done in this 
area before by researchers within the WCET 
area. If the integration is done then it would be 
possible to correctly calculate all the interrupt 
chains in the programs, because all different 
types of interrupt chains would be possible to 
detect. 
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Appendix B Scope Graph File for chain DI156588-156828 
scopegraph 
 
  scope f_main : 
    maxiter 1 ; 
    header f_main ;  
    facts 
    subordinates 
      loop_BB9488_a ; 
      loop_BB9492_a ; 
    basicblocks 
      f_main , [] ; 
      BB9486_a , [] ; 
      BB9487_a , [] ; 
      BB9490_a , [] ; 
      BB9485_a , [] ; 
      ei_BB9472_a , [] ;  
    internaledges 
      f_main -> BB9486_a ; 
      f_main -> BB9485_a ; 
      BB9486_a -> BB9487_a ; 
      BB9486_a -> ei_BB9472_a ;  
      BB9487_a -> ei_BB9472_a ;  
      BB9490_a -> ei_BB9472_a ;  
      BB9485_a -> ei_BB9472_a ;  
    exitedges 
      BB9487_a -> ( loop_BB9488_a , BB9488_a ) ;  
      BB9485_a -> ( loop_BB9492_a , BB9492_a ) ;  
      ei_BB9472_a -> exit ; 
  end scope  
 
  scope loop_BB9488_a : 
    maxiter 1 ; 
    header BB9488_a ; 
    facts 
    subordinates 
    basicblocks 
      BB9489_a , [] ; 
      BB9488_a , [] ; 
    internaledges 
      BB9489_a -> BB9488_a ; 
      BB9488_a -> BB9489_a ; 
    exitedges 
      BB9489_a -> ( f_main , BB9490_a ) ;  
      BB9488_a -> ( f_main , ei_BB9472_a ) ;  
  end scope  
 
  scope loop_BB9492_a : 
    maxiter 1 ; 
    header BB9492_a ; 
    facts 
    subordinates 
    basicblocks 
      BB9494_a , [] ; 
      BB9492_a , [] ; 
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      BB9493_a , [] ; 
    internaledges 
      BB9494_a -> BB9493_a ; 
      BB9492_a -> BB9494_a ; 
      BB9492_a -> BB9493_a ; 
      BB9493_a -> BB9492_a ; 
    exitedges 
      BB9493_a -> ( f_main , ei_BB9472_a ) ;  
  end scope  
 
end scopegraph 


