
Technical Report
Number 621

Computer Laboratory

UCAM-CL-TR-621
ISSN 1476-2986

Fresh Objective Caml user manual

Mark R. Shinwell, Andrew M. Pitts

February 2005

15 JJ Thomson Avenue

Cambridge CB3 0FD

United Kingdom

phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 Mark R. Shinwell, Andrew M. Pitts

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Contents

1 Introduction 5

1.1 About the language . 5

1.2 Obtaining and installing Fresh O’Caml 5

1.3 The toplevel system . 6

1.4 Batch compilation . 6

2 Concrete syntax 9

2.1 Keywords . 9

2.2 Values . 9

2.3 Type expressions . 10

2.4 Patterns . 10

2.5 Expressions . 10

3 Handling of binding operations 11

3.1 Types of bindable names . 11

3.2 Abstraction values and types . 11

3.3 Declaring fresh atoms . 12

3.4 Structural equality and alpha-conversion 13

3.5 Abstraction patterns . 14

3.6 Swapping bindable names . 16

3.7 The freshness relation . 18

3.8 Abstraction types in general . 18

3.9 Reference cells . 20

Bibliography 21

3

1 Introduction

1.1 About the language

Fresh O’Caml extends Objective Caml (www.ocaml.org) to provide seamless and cor-

rect manipulation of object language binding constructs inside a metalanguage. The

language enables the programmer to concentrate on the algorithmic essence of their

syntax-manipulating programs, without having to concern themselves with the te-

dious matters of ensuring that properties of α-convertible object language names are

correctly respected. Importantly, an algebraic datatype in Fresh O’Caml may involve

the use of a novel abstraction type-former, which enables one to incorporate repre-

sentations of object-level binding operations into meta-level syntax trees without any

further ado. Such representations are first-class citizens in the metalanguage just like

products, sums and the like; the resulting syntax trees correctly represent object-level

syntax up to α-conversion of the bound names, as proved in [4]. The result is a style

of metaprogramming which feels natural and elegant, yielding concise name- and

binder-manipulating code which exhibits real correspondence to the underlying algo-

rithms. Our approach differs from approaches which use higher-order abstract syntax

internally, not least because Fresh O’Caml gives direct access to the names of bound

entities.

Fresh O’Caml is the latest in a series of languages based on the Gabbay-Pitts theory of

FM-sets and metaprogramming [1]. This theory first yielded a language with quite a

complicated static type system for controlling the dynamic effects of fresh name gen-

eration [3]. More recently, such a type system has been found to be unnecessary for

the basic correctness properties of representing object-level syntax up to α-conversion

of bound names; as a result of this discovery, the FreshML language described in [6]

was created. Whilst an interpretive system was created for this language, it is no

longer supported. Instead, Fresh O’Caml is now used, which transfers these ideas to

the Objective Caml language.

This User Manual provides an informal introduction to the features of Fresh O’Caml

that are new compared with O’Caml. It assumes familiarity with the ML programming

idiom and terminology in general and with O’Caml [2] in particular. A very much

more detailed discussion of the Fresh O’Caml language and its correctness properties

are provided in a journal paper [5] and Shinwell’s PhD thesis [4].

1.2 Obtaining and installing Fresh O’Caml

To obtain Fresh O’Caml, visit the website at www.fresh-ocaml.org, which also con-

tains examples of programming with binders using it. The Fresh O’Caml code samples

referred to in this manual are linked to from that page.

5

http://www.ocaml.org/
http://www.fresh-ocaml.org/

6 CHAPTER 1. INTRODUCTION

The current release of Fresh O’Caml is based on release 3.08.2 of the Objective Caml

system. It is known to compile successfully on Linux and Mac OS X systems and

should work without difficulty on other UNIX-like platforms. It has not been tested on

Microsoft Windows.

Fresh O’Caml is currently only distributed as source code. You can download the latest

distribution, which at the time of writing is version 3.08.2+4 of 14th January 2005, or

browse the example files. Commands similar to the following should suffice to build

and install the system:

tar fxz fresh-ocaml-3.08.2+4.tar.gz

cd fresh-ocaml-3.08.2+4

./configure

make world

make opt

make install

If you wish to install the system somewhere other than the default installation location

of /usr/local/, then use the -prefix option to the configure script, for example:

./configure -prefix ~/fresh-ocaml

Note that we strongly advise not installing Fresh O’Caml with the same prefix as

your existing O’Caml installation.

The web site www.fresh-ocaml.org will be updated with revised Fresh O’Caml distri-

butions and/or installation instructions as they appear.

1.3 The toplevel system

The interpreter is started by executing fresh-ocaml. This produces a modified ver-

sion of the O’Caml interactive toplevel system waiting for you to type Fresh O’Caml

programs.

$ fresh-ocaml

Fresh Objective Caml version 3.08.2+4

#

Write your programs using the concrete syntax of O’Caml [2, Chapter 6] augmented

by the syntax described in Chapter 2. The features that Fresh O’Caml adds to O’Caml

are described in Chapter 3.

1.4 Batch compilation

For batch compilation, the following compilers are provided. These correspond to

those from the standard Objective Caml distribution. (The features that Fresh O’Caml

adds to O’Caml are described in Chapter 3.)

• fresh-ocamlc: compilation to bytecode.

http://www.fresh-ocaml.org/

1.4. BATCH COMPILATION 7

• fresh-ocamlc.opt: compilation to bytecode, but with the compiler itself com-

piled to native code.

• fresh-ocamlopt: compilation to native code.

• fresh-ocamlopt.opt: compilation to native code, but with the compiler itself

also compiled to native code.

2 Concrete syntax

This chapter describes the additions Fresh O’Caml makes to the concrete syntax of

O’Caml. The meaning of the new syntactic forms is described in Chapter 3.

2.1 Keywords

The following identifiers are reserved as keywords in Fresh O’Caml and cannot be

employed otherwise:

name fresh freshfor swap

The following character sequences are also keywords:

<< >> <| |>

2.2 Values

Atoms

There is a (countably infinite) collection of atoms.1 Atoms form a name-space distinct

from other O’Caml name-spaces, such as names of record fields or methods. (They are

the values inhabiting the types of bindable names, ’a name; see section 3.1.)

Abstraction values

Abstraction values are given by pairs, written [v1]v2, where v1 and v2 are values. They

are the values inhabiting abstraction types, which are written << tyexpr1 >> tyexpr2:

see section 3.2.

1The name ‘atom’ is used for historical reasons to do with the mathematical universe [1] that under-

lies the semantics of Fresh O’Caml.

9

10 CHAPTER 2. CONCRETE SYNTAX

2.3 Type expressions

Fresh O’Caml adds to O’Caml a distinguished type constructor for types of bindable

names and a binary operation for forming abstraction types.

typexpr ::= tyexpr name type of names

| << tyexpr >> tyexpr abstraction type

· · · rest of grammar as in [2, Sect. 6.4]

2.4 Patterns

Fresh O’Caml adds to O’Caml patterns for abstraction values (see section 3.5). There

are two alternative forms of syntax. Since the first one (<< >>) interferes with the

Camlp4 preprocessor quotation mechanism, it is recommended to use the second one

(<| |>) if Camlp4 is in use.

pattern ::= << pattern >> pattern abstraction,

| <| pattern |> pattern with alternative syntax

· · · the rest as in [2, Sect. 6.6]

2.5 Expressions

Fresh O’Caml adds to O’Caml expressions for creating fresh bindable names (see sec-

tion 3.3), for swapping bindable names (see section 3.6), for abstractions (see sec-

tion 3.2), and for testing whether a bindable name is fresh for an expression (see

section 3.7).

expr ::= fresh fresh bindable name

| swap expr and expr in expr swapping

| << expr >> expr abstraction,

| <| expr |> expr with alternative syntax

| expr freshfor expr freshness relation

· · · rest of grammar as in [2, Sect. 6.7]

The typing of these expressions can be deduced from the following interaction with

the Fresh O’Caml toplevel. (As can be seen from the first response, the interactive

system prints atoms as name n, for n = 0, 1, 2, . . .)

fresh;;

- : ’_a name = name_0

function x -> function y -> function z -> swap x and y in z;;

- : ’a name -> ’a name -> ’b -> ’b = <fun>

function x -> function y -> << x >> y;;

- : ’a -> ’b -> <<’a>>’b = <fun>

function x -> function y -> <| x |> y;;

- : ’a -> ’b -> <<’a>>’b = <fun>

function x -> function y -> x freshfor y;;

- : ’a name -> ’b -> bool = <fun>

3 Handling of binding operations

This chapter gives an informal explanation of Fresh O’Caml’s facilities for computing

with binders.

3.1 Types of bindable names

Fresh O’Caml provides a polymorphic family ’a name of types of bindable names. For

each type tyexpr, the values of type tyexpr name are called atoms and behave rather

like values of the ML type unit ref; they provide an inexhaustible supply of names

which may take part in binding operations at the object level. The user has access to

this supply via the expression fresh of type ’a name, which yields a fresh atom each

time it is evaluated. Each type of bindable names is isomorphic to any other; the use

of the type-parameterised family ’a name is simply to provide as many different such

types as the user needs, whilst subsuming polymorphism over the different kinds of

name under the usual mechanisms for polymorphic types.1

3.2 Abstraction values and types

We are going to use as a running example of an object language a small ML-like

language with the following kinds of terms:

x variables

fn x ⇒ e function abstraction

e1 e2 function application

let fun f x = e1 in e2 end local recursive function

We will name variables (such as x and f in the above terms) using a type of bindable

names, in order to be able to take advantage of Fresh O’Caml’s ability to handle α-

conversion and freshness of atoms automatically:

type t and var = t name;;

to which the system responds

type t

type var = t name

1This is a simpler approach than the bindable type declaration used by FreshML [6].

11

12 CHAPTER 3. HANDLING OF BINDING OPERATIONS

It is the type var that we want to use as a type of bindable names; the abstract type t

just provides us with some type (a fresh one, because of the generative nature of the

declaration type t in [Fresh] O’Caml) to which to apply the type construction name.

Now we can declare a suitable datatype for parse trees of terms in our example object-

language, or rather, for α-equivalence classes of them:

type term = (* terms, e *)

Var of var (* x *)

| Fn of <<var>>term (* fn x => e *)

| App of term * term (* e1 e2 *)

| Letfun of (* let fun f x = e1 in e2 *)

<<var>>((<<var>>term) * term);;

The types we have used in this declaration tell the system exactly which data con-

structors are binders and in which way their arguments are bound. For example in the

term let fun f x = e1 in e2 end , there is a binding occurrence of the variable f whose

scope is both of e1 and e2; and a binding occurrence of the variable x whose scope is

just e1. These binding scopes are reflected by the type of corresponding constructor

Letfun. For example, if a and b are atoms of type var, then

[a]([b](App(Var a, Var b)), Var a)

is a value of type <<var>>((<<var>>term)*term); and then

Letfun([a]([b](App(Var a, Var b)), Var a)) (3.1)

is a value of type term representing the α-equivalence class of the term let fun f x =
f x in f end . For example, renaming a to some fresh atom a′, then the value

Letfun([a′]([b](App(Var a′, Var b)), Var a′))

behaves in all respects like (3.1). Fresh O’Caml codifies a common practice in math-

ematics when it comes to dealing with binders: its programs allow the user to ma-

nipulate α-equivalence classes by naming one of their representatives, through the

use of value identifiers naming specific bindable names. However, as shown in [5],

Fresh O’Caml is designed in such a way that well-typed programs can only use such

representatives in ways that are independent up α-equivalence of which particular

representative is chosen.

3.3 Declaring fresh atoms

We can create values of type term by applying its constructors to previously con-

structed values, with the constructor Var getting us off the ground. However, initially

there are no constants of type var and to get some bindable names we have to create

them using the fresh expression. For example, to get a parse tree of type term that

represents the (α-equivalence class of the) first projection function fn x ⇒ fn y ⇒ x,

we can use the declarations

let x,y = (fresh:var),(fresh:var);;

let fst = Fn(<<x>>(Fn(<<y>>(Var x))));;

3.4. STRUCTURAL EQUALITY AND ALPHA-CONVERSION 13

The first one associates with the value identifiers x and y atoms not used so far in the

current environment, a and b say; and then the second one associates with the value

identifier fst the value Fn([a](Fn([b](Var a)))) of type term.

Note that << x >> (−) is not a meta-level binding operation. Thus in the above decla-

ration of fst, the occurrences of x and y are not locally bound value identifiers (as

they would be in function x -> function y -> Var x, for example), but refer to the

previously declared values of type var. For example, we can re-use those values to

declare an open term:

let e0 = Fn(<<y>>(Var x));;

The system’s response to the above declarations is:

val x : var = name_0

val y : var = name_0

val fst : term = Fn <<name_0>>(Fn <<name_1>>(Var name_0))

val e0 : term = Fn <<name_1>>(Var name_0)

This tells us that we have associated with fst and e0 values of type term and it gives

us a textual representation of those values. In this representation atoms are printed as

name n, with distinct atoms getting distinct numbers n. Note from the first two lines of

the system’s response that this numbering works on a ‘per-response’ basis (rather like

the renaming of type variables by an ML system to start from ’a for each response):

the particular atoms assigned to each name are hidden from the user.

3.4 Structural equality and alpha-conversion

The important correctness property of Fresh O’Caml is that values of types like term

are observationally equivalent iff they correspond to α-equivalent terms of the object-

language.2 Thus we obtain working ‘up to α-conversion’ for free. In particular, when

the function

(=) : ’a -> ’a -> bool

that tests for structural equality [2, Sect. 19.2] is applied to values of type term, it

computes object-level α-equivalence. For example consider the following declarations:

let e1 = Fn(<<x>>(Fn(<<x>>(App(Var x, Var x)))));;

let e2 = Fn(<<x>>(Fn(<<y>>(App(Var x, Var x)))));;

let e3 = Fn(<<x>>(Fn(<<y>>(App(Var y, Var y)))));;

These associate with the identifiers e1, e2 and e3 values of type term corresponding

to the α-equivalence classes of the terms

fn x ⇒ fn x ⇒ x x

fn x ⇒ fn y ⇒ x x

fn x ⇒ fn y ⇒ y y

respectively. The first and the second of these terms are not α-equivalent, whereas the

first and the third are. Fresh O’Caml knows this:

2This is discussed at length in [4].

14 CHAPTER 3. HANDLING OF BINDING OPERATIONS

e1 = e2;;

- : bool = false

e1 = e3;;

- : bool = true

3.5 Abstraction patterns

Deconstruction of an abstraction value [v1]v2 is performed using an abstraction pattern

<< pattern
1
>> pattern

2
. This matches against the structure of the values in the binding

position and in the body of the abstraction, rather like a pair pattern. Crucially how-

ever, during matching Fresh O’Caml ensures that any atoms which occur inside these

values and which are bound by an abstraction are suitably freshened before the values

are associated with identifiers in the environment. This is achieved by consistently

swapping these existing atoms inside the values with as many fresh ones as necessary.

This form of matching ensures that these concrete values are always ‘suitably fresh’;

many side-conditions to do with the freshness of names which crop up in operational

semantics and the like are then automatically satisfied.

For example, consider the following function

subst : term -> var -> term -> term.

It implements capture-avoiding substitution: subst e x e’ computes (a representation

of) the object-language term obtained by capture-avoiding substitution of the term

represented by e for all free occurrences of the variable named x in the term repre-

sented by e’.

let rec subst e x e’ =

match e’ with

Var y -> if x = y then e else Var y

| Fn(<<y>>e1) -> Fn(<<y>>(subst e x e1))

| App(e1,e2) -> App(subst e x e1, subst e x e2)

| Letfun(<<f>>(<<y>>e1,e2)) ->

Letfun(<<f>>(<<y>>(subst e x e1), subst e x e2));;

For example, with e0 as declared above,

let e4 = subst (Var y) x e0;;

val e4 : term = Fn <<name_1>>(Var name_0)

let e5 = Fn(<<x>>(Var y));;

val e5 : term = Fn <<name_1>>(Var name_0)

e4 = e5;;

- : bool = true

The value binding for e4 carries out the substitution of y for the free occurrence of x

in the term represented by e0, which is fn y ⇒ x. We expect to obtain as a result a

value corresponding not to the term fn y ⇒ y, but rather to the term fn z ⇒ y, where

z is any variable other than y (such as x). As the above interaction indicates, this is

indeed what we get.

3.5. ABSTRACTION PATTERNS 15

The declaration of subst manages to implement this capture-avoiding behaviour be-

cause of the way Fresh O’Caml matches atom-abstraction patterns using fresh atoms

for abstracted identifiers. For example, when evaluating subst (Var y) x e0, we fall

through to the second match-clause

| Fn(<<y>>e1) -> Fn(<<y>>(subst e x e1))

and reach a point where the environment contains the associations x 7→ a, e 7→ (Var b)
(where b is the atom the environment associates with y) and we are attempting to

match Fn(<<y>>e1) against the value associated with e0, namely Fn([b](Var a)). The

match succeeds in associating y with a fresh atom, b′ say, and e1 with the result of

swapping b with b′ in Var a, which is Var a again. Then the right-hand side of the

clause, Fn(<<y>>(subst x e e1)), is evaluated in this environment (and with the

current state augmented by b′), resulting in the value Fn([b′](Var b)), as expected.

So: matching that involves abstraction patterns may have the side-effect of dynamically

generating fresh names.

For example consider the following declaration:

let rec listBvars e =

match e with

Var _ -> []

| Fn(<<x>>e1) -> x :: (listBvars e1)

| App(e1,e2) -> (listBvars e1) @ (listBvars e2)

| Letfun(<<f>>(<<x>>e1,e2)) ->

f :: x :: (listBvars e1) @ (listBvars e2);;

val listBvars : term -> var list = <fun>

Perhaps the intention was for (listBvars e) to return a list of names of binding

variables in the object-level term represented by e. However, such a list of binding

variables makes no sense at the level of α-equivalence classes of object-level terms,

i.e. values of type term; and indeed all listBvars does is to return a list of fresh

atoms, rather than the actual atoms occurring in some value to which it is applied:

listBvars e1;;

- : var list = [name_0; name_1]

We can count the length of such a list, but we do not have access to the names of

the atoms in it. Compare this with the following declaration of a function listFvars

(which makes use of the List.filter function [2, Sect. 20.17]):

let rec listFvars e =

match e with

Var x -> [x]

| Fn(<<x>>e1) -> List.filter ((<>) x) (listFvars e1)

| App(e1,e2) -> (listFvars e1) @ (listFvars e2)

| Letfun(<<f>>(<<x>>e1,e2)) ->

List.filter ((<>) f) (

(List.filter ((<>) x) (listFvars e1))

@ (listFvars e2));;

val listFvars : term -> var list = <fun>

16 CHAPTER 3. HANDLING OF BINDING OPERATIONS

When applied to a value of type term, the function listFvars returns a list of atoms

(possibly with repeats) corresponding to the free variables of the object-language term

represented by the value. Although we cannot see the names of those atoms directly,

we can compute with them. The following interaction illustrates the difference be-

tween listBvars and listFvars (recall that e0 was declared to be Fn(<<y>>(Var

x))):

(listFvars e0) = [x];;

- : bool = true

(listBvars e0) = [y];;

- : bool = false

The second equality is false because (listBvars e0) computes a fresh atom for e0’s

bound variable. An even more extreme example is:

(listBvars e0) = (listBvars e0);;

- : bool = false

The value is false because (listBvars e0) computes a fresh atom each time it is

evaluated.

3.6 Swapping bindable names

Fresh O’Caml has name-swapping expressions of the form

swap expr1 and expr2 in expr3

Here expr1 and expr2 must be expressions of the same type of bindable names. The

swap-expression evaluates expr1 and expr2 to find which atoms they stand for, and

then interchanges all occurrences of those atoms in the value obtained by evaluating

expr3. For example:

(swap x and y in App(Var x, Var y)) = App(Var y, Var x);;

- : bool = true

Name-swapping can express the operation from [3] of concreting an abstraction at a

(fresh) atom:

let (@@) =

function <<x>>(e:term) ->

function (x’:var) ->

swap x and x’ in e;;

val (@@) : <<var>>term -> var -> term = <fun>

(<<x>>(Fn(<<y>>(App(Var x, Var x))))) @@ y;;

- : term = Fn <<name_1>>(App (Var name_0, Var name_0))

A more typical use of swap-expressions is to replace the bound names in a number

of abstraction with the same name. For example, consider declaring a function eq

of type term -> term -> bool to compute equality of α-equivalence classes of terms

in the fragment of ML we are using as a running example. When comparing the

3.6. SWAPPING BINDABLE NAMES 17

equivalence classes of two function abstractions we can always choose representatives

of the classes that have the same fn-bound variable and then compare the bodies of the

function abstractions for equality modulo α-equivalence. Thus we might be tempted

to use a clause like

| (Fn(<<x>>e1), Fn(<<x>>e2)) -> eq e1 e2

in the declaration of eq. This is not possible in Fresh O’Caml, because for simplicity it

adopts the same linearity constraint on patterns as does O’Caml: there must be at most

one occurrence of any value identifier in a pattern. In the clause for Fn in the declaration

of eq, we must use distinct bound names in the function abstractions and then swap

them; and similarly for the other binder, Letfun:

let rec eq e e’ =

match (e, e’) with

(Var x, Var y) -> (x = y)

| (Fn(<<x1>>e1), Fn(<<x2>>e2)) ->

eq (swap x1 and x2 in e1) e2

| (App(e1,e1’), App(e2,e2’)) ->

(eq e1 e2) && (eq e1’ e2’)

| (Letfun(<<f1>>(<<x1>>e1,e1’)),

Letfun(<<f2>>(<<x2>>e2,e2’))) ->

(eq (swap f1 and f2 in (swap x1 and x2 in e1)) e2)

&& (eq (swap f1 and f2 in e1’) e2’)

| (_, _) -> false;;

val eq : term -> term -> bool = <fun>

We mentioned in Sect. 3.4 that the built-in structural equality function (=) imple-

ments the appropriate notion of α-equivalence for values of type term; and in fact the

function eq coincides with the built-in structural equality function for this type. For

example, with e1, e2 and e3 as declared in Sect. 3.4:

eq e1 e2;;

- : bool = false

eq e1 e3;;

- : bool = true

let f = (fresh:var);;

val f : var = name_0

let e6 = Letfun(<<f>>(<<x>>(Var x), App(Var f, Var y)));;

val e6 : expr =

Letfun <<name_1>>(<<name_0>>(Var name_0),

App (Var name_1, Var name_2))

let e7 = Letfun(<<x>>(<<y>>(Var y), App(Var x, Var y)));;

val e7 : expr =

Letfun <<name_1>>(<<name_0>>(Var name_0),

App (Var name_1, Var name_2))

eq e6 e7;;

- : bool = true

e6 = e7;;

- : bool = true

Fresh O’Caml also provides a standard library module Freshness which contains a

function to swap multiple atoms at once. Calling

18 CHAPTER 3. HANDLING OF BINDING OPERATIONS

Freshness.swap_multiple_atoms l1 l2 v

where l1 and l2 are lists of bindable names returns that value formed by swapping

the first element of l1 with the first element of l2 throughout v, and so forth to the

end of the lists. Both lists must therefore be the same length.

3.7 The freshness relation

The boolean-valued expression

expr1 freshfor expr2

is true iff expr1 is an expression of bindable name type that evaluates to an atom

occurring in the algebraic support (which we here abbreviate to just support) of the

value to which expr2 evaluates. The notion of ‘support’ comes from the intended

denotational semantics of Fresh O’Caml in the universe of FM-cppos: see [4]. It gives

a syntax-independent notion of the set of free atoms of a value. We refer the reader to

[1] for a full account of this notion and simply note that the support of a Fresh O’Caml

representation of some object-language term corresponds to the set of free variables

in that term. The freshfor relation thus provides a built-in ‘not-a-free-variable-of’

test for object-language terms. For example, the freshfor relation holds between an

atom and a value of the type term declared in Sect. 3.2 just in case the atom does not

occur in the list returned by applying the listFvars function of Sect. 3.5 to the value.

x freshfor e0;;

- : bool = false

List.mem x (listFvars e0);;

- : bool = true

y freshfor e0;;

- : bool = true

List.mem y (listFvars e0);;

- : bool = false

3.8 Abstraction types in general

So far we have given examples of abstraction types << tyexpr1 >> tyexpr2 and val-

ues [v1]v2 where tyexpr1 is a type of bindable names and hence v1 is an atom. Fresh

O’Caml permits values of arbitrary type in binding position, that is, within the double

angle brackets. Using some types of value in this position may cause Invalid argument

exceptions to be raised upon evaluation, in the same way that, for example, using

structural equality between function values raises this exception [2, Sect. 19.2]. The

reason for this has to do with the semantics of matching, alluded to in Sect. 3.5.

Fresh O’Caml ‘freshens’ []-bound values by swapping all the atoms in their support

(see Sect. 3.7) with dynamically generated fresh ones. For this process to be seman-

tically sound, the system has to calculate the support of a value accurately (overes-

timation by just finding all the atoms occurring in the value can be unsound). This

is not possible for function values, so the Invalid argument exception is raised upon

encountering such values during matching. For example:

3.8. ABSTRACTION TYPES IN GENERAL 19

let absApply <<f>>x = f x;;

val absApply : <<’a -> ’b>>’a -> ’b = <fun>

absApply (<< function (x:int) -> x >> 0);;

Exception: Invalid_argument "Invalid value in binding position".

The semantics of Fresh O’Caml matching ensures that values of the form [v1]v2 are

indistinguishable up to freshening all the atoms in the support of the value v1 which

occur in the value v2. For example, swapping atoms a and b with different atoms a′

and b′ respectively, the value

[[[a]b ; [b]b]](a, b) (3.2)

(of type <<(<<’a name>>(’a name)) list>>(’a name * ’a name)) behaves in all

respects like

[[[a′]b′ ; [b]b]](a, b′) (3.3)

but is a different value from

[[[a′]b′ ; [b]b]](a′, b′) (3.4)

since a is in the support of the value in (3.3).

The general form of abstraction is useful for specifying object-level binding operations

whose binding names (rather than bound names) occur in a concrete data structure of

some fixed type. For example, let us add pair expressions and patterns to the fragment

of ML we have been using as a running example, by redeclaring term as follows:

type pat = (* patterns, p *)

VarPat of var (* x *)

| PairPat of pat * pat;; (* (p1,p2) *)

type term = (* terms, e *)

Var of var (* x *)

| Pair of term * term (* (e1,e2) *)

| Fn of <<pat>>term (* fn p => e *)

| App of term * term (* e1 e2 *)

| Letfun of (* let fun f p = e1 in e2 *)

<<var>>((<<pat>>term) * term);;

For example, the ML first projection function fn (x, y) ⇒ x can be represented by the

value Fun([PairPat(a, b)](Var a)) of the above type term, assuming a and b are atoms

of type var.3

This change to term hardly affects the definition of capture-avoiding substitution in

Fresh O’Caml, which becomes:

let rec subst e x e’ =

match e’ with

Var y -> if x = y then e else Var y

| Pair(e1,e2) -> Pair(subst e x e1, subst e x e2)

| Fn(<<p>>e1) -> Fn(<<p>>(subst e x e1))

| App(e1,e2) -> App(subst e x e1, subst e x e2)

| Letfun(<<f>>(<<p>>e1,e2)) ->

Letfun(<<f>>(<<p>>(subst e x e1), subst e x e2));;

val subst : term -> var -> term -> term = <fun>

3Of course, linearity conditions on object-level patterns are not enforced by the declaration of term;

so for example, Fun([PairPat(a, a)](Var a)) is also a value of type term.

20 CHAPTER 3. HANDLING OF BINDING OPERATIONS

3.9 Reference cells

The interactions between reference cells and the model of name binding employed by

Fresh O’Caml may be surprising to the reader. For the address of a reference cell is

treated as being pure—that is to say, it is treated as containing no atoms. It follows

that any swapping operations on the address of the cell will not have any effect—in

particular, the contents of the cell are unchanged.

We can illustrate the semantics with the following code fragment, which always pro-

duces the result false4:

let a = fresh;;

let x = <<a>>(ref a);;

match x with <<a’>>a’’ -> a’ = !a’’;;

Compare this to the following fragment, which always produces true:

let a = fresh;;

let x = <<a>>a;;

match x with <<a’>>a’’ -> a’ = a’’;;

This semantics for swapping operations on reference cells is theoretically straightfor-

ward, but perhaps pragmatically unsatisfactory. However, it is not yet clear how the

situation could be improved and further research will be required.

4As of the time of writing (February 2005), there is a bug in the released versions of the Fresh O’Caml

system which causes incorrect results when using reference cells. This will be fixed in the near future.

Bibliography

[1] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable

binding. Formal Aspects of Computing, 13:341–363, 2002. Special issue in honour

of Rod Burstall. To appear.

[2] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml Sys-

tem. Institut National de Recherche en Informatique et en Automatique (INRIA),

release 3.06 edition, August 2002.

[3] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names

modulo renaming. In R. Backhouse and J. N. Oliveira, editors, Mathematics of

Program Construction. 5th International Conference, MPC2000, Ponte de Lima, Por-

tugal, July 2000. Proceedings, volume 1837 of Lecture Notes in Computer Science,

pages 230–255. Springer-Verlag, Heidelberg, 2000.

[4] M. R. Shinwell. The Fresh Approach: functional programming with names and

binders. PhD thesis, University of Cambridge Computer Laboratory, 2005.

[5] M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theoretical

Computer Science, 2005. To appear; a preliminary version appears in the proceed-

ings of the second workshop of the EU FP5 IST thematic network IST-2001-38957

APPSEM II, Tallinn, Estonia, April 2004.

[6] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Programming with

binders made simple. In Eighth ACM SIGPLAN International Conference on Func-

tional Programming (ICFP 2003), Uppsala, Sweden, pages 263–274. ACM Press,

August 2003.

21

	Contents
	to1Introduction
	About the language
	Obtaining and installing Fresh O'Caml
	The toplevel system
	Batch compilation

	to2Concrete syntax
	Keywords
	Values
	Type expressions
	Patterns
	Expressions

	to3Handling of binding operations
	Types of bindable names
	Abstraction values and types
	Declaring fresh atoms
	Structural equality and alpha-conversion
	Abstraction patterns
	Swapping bindable names
	The freshness relation
	Abstraction types in general
	Reference cells

	Bibliography

