
A Case Study on Reactive Protocols for Aircraft Electric Power
Distribution

Huan Xu1, Ufuk Topcu2, and Richard M. Murray3

Abstract— We consider the problem of designing a control
protocol for the aircraft electric power system that meets system
requirements and reacts dynamically to changes in internal
system states. We formalize these requirements by translating
them into a temporal logic specification language describing
the correct behaviors of the system, and apply formal methods
to automatically synthesize a controller protocol that satisfies
system properties and requirements. Through an example, we
perform a design exploration to show the benefits and tradeoffs
between centralized and distributed control architectures.

I. INTRODUCTION

Advances in electronics technology have made the transi-
tion from conventional to more-electric aircraft architectures
possible. Conventional architectures utilize a combination of
mechanical, hydraulic, electric, and pneumatic subsystems.
The move towards more-electric aircraft increases efficiency
by reducing power take-offs from the engines that would
otherwise be needed to run hydraulic and pneumatic compo-
nents. Moreover, use of electric systems provides opportuni-
ties for system-level performance optimization and decreases
life-cycle costs.

Efforts have been made to re-use previously developed
systems from conventional aircraft [3], but additional high-
voltage networks and electrically-powered components in-
crease the system’s complexity, and thus new design ap-
proaches need to be considered. These electric power sys-
tem designs must behave according to certain properties or
requirements determined by physical constraints and per-
formance criteria. Because safety of the aircraft is solely
or mostly dependent on electric power, the electric power
system needs to be highly reliable, fault tolerant, and au-
tonomously controlled. Previous work in this area has fo-
cused on the analysis of aircraft performance and power
optimization by using modeling libraries and simulations
[2], [4], [5]. Analysis of all faults or errant behaviors in
these models is difficult due to the high complexity of
these systems. This has led to a greater emphasis on the
use of formal methods to aid in safety and performance
certification.

System requirements are typically text-based lists, often-
times ambiguous in intent or inconsistent with each other.
The process of verifying the correctness of a system with
respect to these specifications is expensive, both in terms

This work was supported in part by the FCRP consortium through the
Multiscale Systems Center (MuSyC), the Boeing Corporation, and AFOSR
Award FA9550-12-1-0302.

1Mechanical Engineering, California Institute of Technology
2Electrical and Systems Engineering, University of Pennsylvania
3Controls and Dynamical Systems, California Institute of Technology

of cost and time. Building on recent work on formal syn-
thesis of vehicle management systems [15] and distributed
synthesis of control protocols [8], [9], we take the initial step
toward automatically converting text-based system require-
ments into a specification language, synthesizing centralized
and distributed control protocols for an aircraft electric power
system, and examine design tradeoffs between these different
control architectures. The remainder of the paper is struc-
tured as follows: We describe the standard components in an
electric power system and the general problem description
in Section II. Section III gives a technical description of the
specification language and synthesis procedure. Sections IV
presents a case study of an electric power system, which is
followed by results, and concluding remarks.

II. ELECTRIC POWER DISTRIBUTION SYSTEM

Next-generation aircraft will have increased safety-
criticality reliant on the electric power system and increased
number of overall components in the electric power system,
raising the complexity of design. In this paper, we investigate
an alternative way for the design of control protocols for
electric power systems.

A. System Components

The single-line diagram in Fig. 1 includes a combination
of generators, contactors, buses, and loads. The following
is a brief description of the components referenced in the
primary power distribution single-line diagram [6].

AC and DC buses deliver power to both high-voltage and
low-voltage loads. (Note: Individual loads are not depicted
in the single-line diagram.) Buses can be essential or non-
essential. Essential buses supply loads that should always
remain powered, while non-essential buses supply loads that
may be shed in the case of a fault. Generators supply power
to buses, and can operate at either high or low-voltages.
Contactors are electronic switches that connect the flow of
power from sources to buses and loads (represented by a`).
They can reconfigure (i.e., switch between open and closed)
by commands from one or multiple controllers. Rectifier
units convert AC power to DC power, transformers step
down a high-voltage to a lower one, and a transformer
rectifier unit both converts AC to DC and lowers the voltage.
Batteries provide short-term power in case of an emergency.

B. Problem Description

Given the topology of an electric power system, the main
design problem is determining all correct configurations of
contactors for all flight conditions and faults that can occur. A



Fig. 1. Single line diagram of an electric power system adapted from a
Honeywell, Inc. patent [7]. Two high-voltage generators, APU generators,
and low-voltage generators serve as power sources for the aircraft. Depend-
ing on the configuration of contactors, power can be routed from sources
to buses through the contactors, rectifier units, and transformers. Buses are
connected to subsystem loads. Batteries can be used to provide emergency
backup power to DC buses.

“correct” configuration satisfies all system requirements, also
referred to as specifications. We now discuss a few sample
specifications relevant to the problems found in Fig. 1.

Safety specifications characterize the way each bus can be
powered and the length of time it can tolerate power losses.
First, we disallow any paralleling of AC sources (i.e., no
bus should be powered by multiple AC generators at the
same time.) Second, essential loads, such as flight-critical
actuators, should never be unpowered for more than 50 msec.
Lastly, typical contactor opening and closing times can range
between 10-25 msec [6]. Performance specifications rank
desired system configurations. A generator priority list is
assigned to each bus specifying the order of sources each
bus should be powered. If the first priority generator is
unavailable, then it will be powered from the second priority
generator, and so forth.

III. FORMAL SPECIFICATION AND SYNTHESIS

We now discuss a formal specification language utilized
for the synthesis of control protocols later in this section.

A. Formal Specification Using Linear Temporal Logic

In reactive systems, correctness will depend not only
inputs and outputs of a computation, but on executions of the
system. Temporal logic is a branch of logic that incorporates

temporal aspects to reason about propositions in time, and
was first used as a specification language by Pneuli [11]. In
this paper, we consider a version of temporal logic called
linear temporal logic (LTL) [1]. We first define an atomic
proposition, LTL’s main building block.

A system consists of a set V of variables. The domain of
V , denoted by dom(V ), is the set of valuations of V . An
atomic proposition is a statement on a valuation of system
variables that has a unique truth value (True or False) for a
given value v. Let v ∈ dom(V ) be a state of the system and
p be an atomic proposition. Then v satisfies p, v |= p, if p
is True at the state v. Otherwise, v 6|= p.

For a set π of atomic propositions, any atomic proposition
p ∈ π is an LTL formula. Given LTL formulas ϕ and ψ
over π, ¬ϕ, ϕ ∨ ψ, #ϕ and ϕ U ψ are also LTL formulas.
LTL formulas over π are interpreted over infinite sequences
of states. Formulas involving other operators can be derived
from these, including eventually (3) and always (�). We
refer the reader to [1] and references therein for a more
detailed discussion of LTL.

B. Reactive Synthesis

Let E and P be sets of environment and controlled
variables, respectively. Let s = (e, p) ∈ dom(E)× dom(P )
be a state of the system. Consider an LTL specification
ϕ of assume-guarantee form ϕ = (ϕe → ϕs) where
ϕe characterizes the assumptions on the environment and
ϕs characterizes the system requirements. The synthesis
problem is then concerned with constructing a strategy which
chooses the move of the controlled variables based on the
state sequence so far and the behavior of the environment
so that the system satisfies ϕs as long as the environment
satisfies ϕe. The synthesis problem can be viewed as a two-
player game between and environment that attempts to falsify
the specification and a controlled plant that tries to satisfy it.

For general LTL, the synthesis problem has a doubly expo-
nential complexity [12]. A subset of LTL, namely generalized
reactivity (1) (GR(1)), can be solved in polynomial time [10].
GR(1) specifications restrict ϕe and ϕs to take the following
form, for α ∈ {e, s},

ϕα := ϕαinit ∧
∧
i∈Iα1

2ϕα1,i ∧
∧
i∈Iα2

23ϕα2,i,

where ϕαinit is a propositional formula characterizing the
initial conditions; ϕα1,i are transition relations characterizing
safe, allowable moves and propositional formulas character-
izing invariants; and ϕα2,i are propositional formulas charac-
terizing states that should be attained infinitely often.

Given a GR(1) specification, the digital design synthesis
tool implemented in JTLV (a framework for developing
temporal verification algorithm) [13] generates a finite-state
automaton that represents a switching strategy for the system.
The temporal logic planning (TuLiP) toolbox, a collection
of python-based code for automatic synthesis of correct-
by-construction embedded control software as discussed in
provides an interface to JTLV [16]. For examples discussed
in this paper, we use TuLiP.



C. Distributed Synthesis

We follow the exposition in [9] for the distributed synthe-
sis problem. For ease of representation, consider the case of
two subsystems. The set of variables and global specification
ϕe → ϕs decomposed as follows:

Let ϕe, ϕe1 , ϕe2 , ϕs, ϕs1 , and ϕs2 be LTL formulas con-
taining variables only from their respective sets of environ-
ment variables E,E1, E2 and system variables S, S1, S2.
If the following conditions hold: (1) any execution of the
environment that satisfies ϕe also satisfies (ϕe1 ∧ ϕe2 ), (2)
any execution of the system that satisfies (ϕs1 ∧ ϕs2 ) also
satisfies ϕs, and (3) there exist two control protocols that
make the local specifications (ϕe1 → ϕs1 ) and (ϕe2 →
ϕs2 ) true. Then, by a result in [9], implementing these two
control protocols together leads to a system where the global
specification ϕe → ϕs is met. See Section V-B.2 for an
example of such a refinement and [9] for restrictions on
distributing local environment and system variables.

IV. SYNTHESIS OF REACTIVE PROTOCOLS FOR
AIRCRAFT ELECTRIC POWER DISTRIBUTION

We address the problem of primary distribution in an
electric power system by examining a simplified version of
the single-line diagram. Fig. 2 shows a topology that consists
of the basic high-voltage AC components: two generators
powered from engines and two generators powered by the
APU, all of which are connected to four buses via seven
contactors. Note: With abuse of notation, we refer to APU
powered generators as APUs in the rest of the paper.

!%$ !&$ !'$ !($

*)$

-%$ -&$

-'$ -($ -1$

-2$ -3$

.)$ .0$ *0$

Fig. 2. Simplified single-line diagram used in the centralized problem. Four
power sources connect to four buses through a series of seven contactors

A. Variables

Environment variables include the health statuses of the
left and right generators (GL, GR) and APUs (AL, AR)
can each take values of healthy (1) and unhealthy (0).
These statuses are uncontrollable and may change at any
point in time. Controlled variables are contactors connecting
generators and APUs to buses, (C1, C2, C5, C6). They can
each take values of open (0) or closed (1). A closed contactor
will allow power to pass through, while an open one does not.
Contactors between buses (C3, C4, C7) can take three values.
A value of 0 again denotes an open contactor. A value of -1
or 1 signifies a contactor is closed and that power is flowing
from right to left, or left to right, respectively. Dependent
variables are buses B1, B2, B3, and B4 that can be either
powered (1) or unpowered (0). Bus values will depend on
the status of their neighboring contactors, buses, as well as
the health status of connecting generators or APUs.

Timing considerations play a key part in the specifications
for an electric power system. LTL, however, only addresses
the notion of temporal ordering of events. In order to
reconcile this discrepancy, the variable C̃i for i ∈ [1, 7] is
introduced to represent the controller intent for contactor Ci.
If a fault occurs, the controller sets the intent for a contactor
based on the status of its neighboring generator or bus. An
action on contactor status occurs immediately or one time
step later. Note that timing is addressed in an ad-hoc manner.
An alternative approach, currently under study, is using timed
specification languages, e.g., computation tree logic (CTL),
and appropriate synthesis tools, e.g., UPPAAL-Tiga [14].

B. Formal Specifications

Given the topology in Fig. 2, the following lists the
temporal logic specifications used.

Environment Assumption: At least one power source is
healthy at any given time, written as �{(GL = 1) ∨ (AL =
1) ∨ (AR = 1) ∨ (GR = 1)}.

Power Status of Buses: A bus can only be powered if
a contactor is closed and its connecting generator, APU, or
neighboring bus is powered. If B1 is powered if one of two
properties holds: GL is healthy and C1 is closed, or B2 is
powered and C3 is closed. If neither of these two are true,
then bus B1 will be unpowered. Specifically:
• �{((C1 = 1) ∧ (GL = 1))→ (B1 = 1)}
• �{((B2 = 1) ∧ (C3 = −1))→ (B1 = 1)}
• �{¬((C1 = 1) ∧ (GL = 1)) ∨ ((B2 = 1) ∧ (C3 =
−1))→ (B1 = 0)}

A similar set of specifications is applied for B2, B3, and B4.
No Paralleling of AC Sources: One way to avoid par-

alleling is to explicitly enumerate and eliminate all bad
configurations. In Fig. 2, paralleling can occur if GL and
AL are both healthy, and contactors C1, C2, and C3 are
all closed. A specification could be to disallow closing
C1, C2, and C3 at the same time. This “global” approach
becomes difficult to scale when the number of paths and
components grows large. We take a “localized” view; instead
of examining entire paths, we focus on the source of power
coming into each bus. To this end, we first introduce “power
flow direction” to contactors C3, C4, and C7. The contactors
connecting generators and APUs are strictly unidirectional.
We restrict the value of contactors based on the direction in
which power may flow depending on the health and status of
surrounding buses/sources. For these bidirectional contactors,
if the neighboring two nodes (either a generator, APU or
bus) is unpowered, then the contactor cannot direct power in
the opposite direction those nodes. Note that directionality
within the contactor is not present in the physical implemen-
tation of hardware. A contactor is either open or closed.

If the left generator is unhealthy, then contactor C3 cannot
direct power from left to right, and the intent variable C̃3

should be assigned accordingly. If the following properties
are not true: (1) the left generator is healthy an bus B2 is
powered, or (2) Buses B2 and B3 are powered, then contactor
C3 cannot direct power from right to left. This can be written:
• �{¬(GL = 1)→ ¬(C̃3 = 1)}



• �{¬(((GL = 1) ∧ (B2 = 1)) ∨((B3 = 1) ∧ (B2 =
1)))→ ¬(C̃3 = −1)}

Given direction of flow in contactors, we can examine each
bus and eliminate any configuration of contactors which may
allow for paralleling of sources. For example, the following
configurations are not allowed for bus B2.
• �{¬((C2 = 1) ∧ (C3 = 1))}
• �{¬((C2 = 1) ∧ (C4 = −1))}
• �{¬((C3 = 1) ∧ (C4 = −1))}
Safety-Criticality of Buses: In this problem we consider

buses B1 and B4 to be safety-critical buses, and can be
unpowered for no longer than five time steps. This is im-
plemented through an additional clock variable t for each
bus, where each “tick” of the clock represents 10 msec. A
safety specification for B1 would be: If B1 is unpowered,
then at the next time step clock t1 increases �{(B1 = 0)→
(#t1 = t1+1)}. If B1 is powered, then at the next time step
reset clock t1 �{(B1 = 1)→ (#t1 = 0)}. Then, ensure that
bus B1 is never unpowered for more than 5 steps �{t1 ≤ 5}.

Unhealthy Buses: A bus connected to an unhealthy source
will create a short-circuit failure, leading to excessive electri-
cal currents, overheating, and possible fires. We require that a
contactor open when a generator or APU becomes unhealthy
to avoid such failures. An example specification for the intent
of contactor C1 would be: �{(GL = 0)→ (C̃1 = 0)}.

Prioritization: We thus introduce the notion of prior-
itization on power sources. Generators GL and GR, if
healthy, will always be connected and used to power left
and right side buses, respectively. APUs AL and AR are
only connected if their respective left and right generator is
unhealthy. This corresponds to a notion of nearest generator
(in distance). In the below example, contactor C2 is only
closed if the left generator goes unhealthy. This can be
written as: �{((GL = 0) ∧ (AL = 1))→ (C̃2 = 1)}.

V. RESULTS

We apply the approach presented in Section III-B for a
specification of the form ϕe → ϕs. The output of TuLiP
includes a high-level discrete planner represented as a finite-
state automaton whose states are pairs of system states and
environment states. This section presents some preliminary
results for the formal reactive synthesis of control protocols
in an electric power system for centralized and distributed
controllers.

A. Centralized Controller Design

Fig. 3 shows the simplified single-line diagram overlaid
with a sample simulation run. The horizontal axis of each
graph in the figure represents the step of the simulation,
starting at step 0 and ending with step 5. The resulting
automaton for the centralized controller takes roughly one
minute to solve on a Mac Powerbook with a 2 GHz Intel
Core Duo processor, and has approximately 200 states.

The four graphs in row 1 correspond to the statuses
of the environment variables. These values are arbitrarily
input, subject to constraints imposed by the environment
assumptions. At each step, generators and APUs can switch

between healthy and unhealthy as long as at least one source
remains healthy. Graphs in rows 2 and 3 correspond to the
contactor statuses generated from the synthesized control
protocol. Because power can only flow from a generator or
APU, the graphs for the contactors shown in row 2 can only
take values of open or closed. Row 3 graphs, however, can
take three values corresponding to open, closed with power
directed to the right, or closed with power flowing to the left.
Graphs in row 4 correspond to the four buses, and the vertical
axis represents the power status of the bus. Because buses
are dependent variables, these values are determined by the
environment variables as well as the contactor configurations.

To better understand the results shown in Fig. 3 let us
examine the simulation graphs for a single step, namely step
2. The left generator GL is unhealthy and contactor C1 is
open. The left APU AL is healthy, and contactor C2 is closed.
Bus B2 is powered because it is connected to AL. Bus B1 is
unpowered because both neighboring contactors C1 and C3

are open. Meanwhile, the right generator GR is healthy and
contactor C6 is closed. Therefore, according to the second
set of specifications from Section IV-B, bus B4 is powered.
Note, however, that C5 remains closed even though the right
APU is unhealthy. In the previous step, AR was healthy, and
its intent to open C̃5 in step 2 does not get implemented
until step 4. In order to ensure non-paralleling of sources,
contactor C7 must remain open at step 2 because C5 is
closed, even though no power is flowing from the APU. As
a result, bus B3 is unpowered.

Safety-critical buses B1 and B4 are never unpowered for
more than two time steps throughout the entire simulation
sequence. This specification is not imposed on the middle
two buses, however, and and thus B3 can remain unpowered
for five steps without violating any system requirements. In
addition, at no time in the simulation run are AC sources
paralleled. Consider, for example, power flowing to bus B1.
When contactor C1 is closed (steps 0,1, and 4), C3 is always
open.

B. Distributed Control Architecture

In the following section, we decompose the centralized
electric power system topology into two smaller subsystems
and synthesize local controllers. When implemented together
these controllers are guaranteed to be correct with respect to
the global specification. The physical decomposition of the
electric power system is shown in Fig. 4. Let Sr represent
the right subsystem (enclosed in the dotted lines) and Sl
represent the left subsystem. The environment and system
variables for Sl and Sr are denoted by er, sr, el and sl,
respectively. Based on the refinement technique mentioned
in Section III-C, the global specification discussed in Section
IV-B is satisfied if the following are true

φr ∧ ϕel → ϕsl ∧ φl, (1)
φl ∧ ϕer → ϕsr ∧ φr, (2)

where formulas φr and φl represent additional assumptions
and guarantees made at the interface between the left and the
right subsystems in order to ensure that the global system is



!"# !$# !%# !&#

'(#

)"#

*(# *+# '+#

)$#

)%# )&# ),#

)-# ).#

!"#$%!&'
()!"#$%!&'

!"#$%!&'
()!"#$%!&'

!"#$%!&'

()!"#$%!&'
!"#$%!&'

()!"#$%!&'

*$+,"-'
+.")'

*$+,"-'
+.")'

*$+,"-'
+.")'

*$+,"-'
+.")'

*$+,"-/012!%'
+.")'

*$+,"-/$"3'
*$+,"-/012!%'

+.")'
*$+,"-/$"3'

*$+,"-/012!%'
+.")'

*$+,"-/$"3'

.+4"0"-'
().+4"0"-'

.+4"0"-'
().+4"0"-'

.+4"0"-'
().+4"0"-'

.+4"0"-'
().+4"0"-'

5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

+/0#"#

+/0#$#

+/0#%#

+/0#&#

,%".' ,%".' ,%".' ,%".'

,%".' ,%".' ,%".' ,%".'

,%".'
,%".' ,%".'

,%".' ,%".' ,%".' ,%".'

Fig. 3. A simulation result for a centralized controller for the electric power system. The horizontal axis represents the simulation step. Row 1 shows the
environment inputs for generator and APU health. Based on these values, the controller values for contactors are set to either open or closed, as seen in
Row 2. Additionally, Row 3 shows the direction of power flow through contactors C3, C4, and C7. Row 4 shows the power status for all buses.

!"# !$#
%$# %&#

%'# %(#

!)# !*#

+,#

%)# %*#

%"#

-,# -.# +.#

/0# /1#

234056#

78931#

Fig. 4. A distributed controller decomposition for the electric power system.
Sl sees contactor C4 as an environment variable, provides the health status
of its generator and APU as information to the right side. Sr has control of
C4, which enables the flow of power between the two subsystems.

realizable. Because local distributed controllers are limited
in the information they know about other subsystems, these
additional interface guarantees are necessary to avoid dead-
lock cases and ensure realizability. φl is a guarantee from
subsystem Sl and seen as an environment assumption by the
controller for subsystem Sr. Similarly, φr is a guarantee from
Sr and an environment assumption in Sl. Specifications for
these interface refinements will be stated in the following.
We now present results for two different types of distributed
control architectures: master/slave and bidirectional.

1) Master/Slave Control Architecture: For a master/slave
architecture, power flow between the decomposed systems
is controlled by one side, and unidirectional only. For the
decomposition shown in Fig. 4, the subsystem Sr is the
“master” and can control the supply of power that can flow
from right to left via contactor C4. Subsystem Sl is the
“slave” and can only receive power when Sr provides it.

We decompose the global environment assumption such
that ϕer = �(AR = 1 ∨ GR = 1) and ϕel = true. This
ensures that for any execution σ ∈ Σ, the controller for Sr
is able to supply power to Sl at any step. The left generator
and APU health statuses are sent to the right side via a health
variable H1. The variable is set to 0 if neither source is
healthy, and is set of 1 if either GL or AL is healthy such
that ϕer can assume knowledge about the health status of
the left side.

In order for the master/slave distributed synthesis problem
to become realizable, additional assumptions and guarantees
(i.e., interface refinements) need to be implemented. It is not
enough for power sources GR and AR to be able to generate
power at all steps. The controller for Sr must also be able
to guarantee that power can be delivered to the left. Thus,
we introduce φr as a guarantee for the Sr controller, and as
an assumption for Sl controller. Because the master controls
the flow of power, a single-sided refinement is sufficient for
the design problem to be realizable, and we can set φl =
true. The additional specification φr imposes conditions on
contactor C4 and bus B3 (the components nearest to the
interface of Sr and Sl. These specifications are
•Bus B3 is never unpowered for a set number of time steps
n. Essentially, B3 becomes a safety-critical bus, and we
introduce a clock variable t3 to monitor the power status.
�{(B3 = 0) → (#t3 = t3 + 1)} ∧ �{(B3 = 1) →
(#t3 = 0)} ∧ �{t3 ≤ n}
• If health status H1 = 0 (i.e., both GL and AL are
unhealthy), then whenever B3 is powered, C4 will close.
�{((H1 = 0) ∧ (B3 = 1))→ (C̃4 = −1)}
A similar modification must be made for the case where

unidirectional power flows from Sl to Sr. In both of the
cases discussed in the master/slave architecture, all other
specifications remain the same as those discussed from Sec-
tion IV-B and decomposed with their respective components.
Simulation results are comparable to those for the centralized
controller, shown in Fig. 3, and thus omitted.

2) Bidirectional Power Flow Control Architecture: Con-
sider again the physical decomposition shown in Fig. 4,
where power is allowed to flow from either left to right, or
right to left. The physical actuation of middle contactor C4 is
still controlled by the right side. The environment variables
for Sl include GL, AL, and C4, while environment variables
for Sr contain GR, AR, B2, and H1. Note that this differs
from the master/slave control architecture with the necessary
addition of B2 as an environment variable to allow for power



to flow in two directions.
The case where there is power flow between Sl and Sr

corresponds to a feedback interconnection where part of the
output of each system acts as an environment variable for
the other (i.e., both φl and φr are non-trivial). In order
to ensure that the interconnection is well-posed (i.e., the
interconnected system avoids deadlocks), the environment
variables should be partitioned into external and feedback
parts. For subsystem Sl, external environment variables are
GL and AL, while the feedback environment ef is the status
of contactor C4. In order for the system to be well-posed,
decisions made by the controller for Sl at step t must use
the value of C4 at the previous step t− 1.

Realizability is more difficult to achieve for the bidirec-
tional case due to the issue of well-posedness. In order to
successfully synthesize controllers for each subsystem, the
following guarantees/assumptions are imposed: For Sr, if
neither GR nor AR is healthy, then bus B2 is powered
φr = �{GR = 1 ∨ AR = 1 ∨ B2 = 1}. For Sl, if neither
GL nor AL is healthy, then power will be delivered through
C4 φl = �{GL = 0 ∧AL = 0→ (C4 = −1)}.

Because power must be able to be delivered to the other
subsystem when needed, safety-critical buses are moved
to those buses nearest the interface (e.g., B2 and B3.) In
order to enforce well-posedness (i.e., to avoid deadlock),
specifications for the controller for Sl involving C4 are
defined with additional next operators to implement a shift
in time step. For the bidirectional synthesis problem to be
realizable, contactor delays are thus omitted in this problem
formulation in order avoid conflicting specifications. Each
automaton in the distributed case is approximately 90 states
and takes less than one minute to solve.

A centralized controller has complete knowledge of all
component statuses. It can anticipate the behavior of the
entire environment, and thus control protocols can be less
conservative (e.g., longer delays in contactor switching
times). For large-scale systems, though, distributed synthe-
sis can be solved faster (due to the smaller number of
components) and are thus more scalable. Yet additional
interface refinements are required. These refinements include
more conservative contactor and bus configurations. For the
bidirectional distributed case in which refinements φl and
φr are needed, well-posedness conditions further restrict
the system. Contactor delays are no longer possible, and
additional specifications are imposed on all components
along the interfaces.

VI. CONCLUSION AND FUTURE WORK

This paper demonstrates how text-based specifications can
be translated into a temporal logic specification language
and used to automatically synthesize a control protocol for
an electric power system on a more-electric aircraft. The
resulting controller is guaranteed, by construction, to satisfy
the desired properties even in the presence of an adversary
(i.e., changes in the environment.) We synthesized a central-
ized controller, and then refined the interface specifications
for distributed control architectures. Distributed controllers

are easier to synthesize due to fewer components, but are
more conservative with respect to power usage due to lack
of information of the entire system.

From the basis of the preliminary work in this paper,
there are a number of potential directions. The first is
addressing the full scale problem from Fig. 1. Current LTL
specifications involve safety, but not liveness. Therefore, we
may not need the full expressivity of GR(1), and other
safety/reachability solvers may be used. Second, we explore
utilizing timed synthesis tools such as UPPAAL-Tiga that
may allow for larger problems to be synthesized using CTL
as a specification language.

ACKNOWLEDGMENTS

The authors wish to acknowledge Rich Poisson from
Hamilton-Sundstrand and Necmiye Ozay for their helpful
discussions.

REFERENCES

[1] C. Baier, and J.P. Katoen, Principles of Model Checking MIT press,
1999.

[2] J. Bals, G. Hofer, A. Pfeiffer, and C. Schallert, “Virtual Iron Bird -
a multidisciplinary modeling and simulation platform for new aircraft
system architectures,” in German Aerospace Conference, 2005.

[3] L. Faleiro, “Initial research towards a more electrical aircraft,” in More
Electrical Aircraft Conference, Royal Aeronautics Society, 2004.

[4] P. Krus, B. Johansson, and L. Austin, “Concept optimization of aircraft
systems using scaling models,” in Recent Advances in Aerospace
Actuation Systems and Components, France, 2004.

[5] P. Krus and J. Nyman, “Complete aircraft system simulation for
aircraft design - paradigms for modeling of complex systems,” in Pro-
ceedings of the 22nd International Congress of Aeronautical Sciences,
UK, 2000.

[6] I. Moir and A. Seabridge, Aircraft Systems: Mechanical, Electrical,
and Avionics Subsystems Integration. AIAA Education Series, 2001.

[7] R.G. Michalko, “Electrical starting, generation, conversion and dis-
tribution system architecture for a more electric vehicle,” US Patent
7,439,634 B2, Oct. 21, 2008.

[8] N. Ozay, U. Topcu, T. Wongpiromsarn, and R.M. Murray, “Distributed
synthesis of control protocols for smart camera networks,” in Intl.
Conf. on Cyber-Physical Syst., 2011.

[9] N. Ozay, U. Topcu, and R.M. Murray, “Distributed power allocation
for vehicle management systems,” in Proceedings of the 50th Interna-
tional Conference on Decision and Control, 2011.

[10] N. Piterman, A. Pneuli, and Y. Sa’ar, “Synthesis of reactive(1) de-
signs,” in Verification, Model Checking and Abstract Interpretation,
vol. 3855, pp. 364-380. Springer-Verlag, 2006.

[11] A. Pnueli, “The temporal logic of programs,” in Proceedings of the
18th Annual Symposium on the Foundations of Computer Science, pp.
46-57. IEEE, 1977.

[12] A. Pnueli and R. Rosner, “Distributed re-
active systems are hard to synthesize,” in
Proceedings of the 31st IEEE Symposium Foundations of Comp. Sci.,
pp. 746-757, 1990.

[13] A. Pnueli, Y. Sa’ar, and L.D. Zuck, “JTLV: a framework for developing
verification algorithms,” in Proceedings of the 22nd International
Conference on Computer Aided Verification, pp. 171-174, 2010.

[14] UPPAAL-Tiga, a synthesis tool for timed games. http://people.
cs.aau.dk/˜adavid/tiga/

[15] T. Wongpiromsarn, U. Topcu, and R.M. Murray,“Formal synthesis of
embedded control software for vehicle management systems,” in AIAA
Infotech@Aerospace, 2011.

[16] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R.M. Murray,
“TuLiP: a software toolbox for receding horizon temporal logic
planning,” in Proceedings of the 14th International Conference on
Hybrid Systems: Computation and Control, 2011.


