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Abstract— We investigate collaborative optimization in a
multi-agent setting, when the agents execute in a distributed
manner using local information, while the communication
topology used to exchange messages and information is modeled
by a graph-valued random process, independent of other
time instances. Specifically, we study the performance of the
consensus-based multi-agent subgradient method, for the case
of a constant stepsize, as measured by two metrics: rate of
convergence and guaranteed region of convergence, evaluated
via their expected values. Under a strong convexity type of
assumption, we provide upper bounds on the performance
metrics, which explicitly depend on the probability distribution
of the random graph and on the agents’ estimates of the optimal
solution. This provides a guide for tuning the parameters of
the communication protocol such that good performance of the
multi-agent subgradient method is ensured.

I. INTRODUCTION

Multi-agent distributed optimization problems appear nat-
urally in many distributed processing problems (such as
network resource allocation), where the optimization cost
is a convex function which is not necessarily separable. A
distributed subgradient method for multi-agent optimization
of a sum of convex functions was proposed in [7], where
each agent has only local knowledge of the optimization
cost, i.e. knows only one term of the sum. The agents ex-
change information according to a communication topology,
modeled as an undirected, time varying graph, which defines
the communication neighborhoods of the agents. The agents
maintainestimatesof the optimal decision vector, which are
updated in two stages. The first stage consists of a consensus
step among the estimate of an agent and its neighbors. In the
second stage, the result of the consensus step is updated in
the direction of a subgradient of the local knowledge of the
optimization cost. Another multi-agent subgradient method
was proposed in [5], where the communication topology is
assumed time invariant and where the order of the two stages
mentioned above is inverted.

In this note we investigate the collaborative optimization
problem in a multi-agent setting, when the agents execute
in a distributed manner using local information, while the
communication topology used to exchange messages and
information is modeled by a graph-valued random process,
independent of other time instances. Specifically, we study
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the performance of the consensus-based multi-agent subgra-
dient method proposed in [7], for the case of a constant
stepsize, as measured by two metrics: rate of convergence
and guaranteed region of convergence, evaluated via their
expected values. Random graphs are suitable models for
networks that change with time due to link failures, packet
drops, node failures, etc. An analysis of the multi-agent
subgradient method under random communication topology
is addressed in [8]. The authors assume that the consensus
weights are lower bounded by some positive scalar and give
upper bounds on the performance metrics as functions of this
scalar and other parameters of the problems. More precisely,
the authors give upper bounds on the distance between
the cost function and the optimal solution (in expectation),
where the cost is expressed as a function of the (weighted)
time average of the optimal decision vector’s estimate.In
this paper, our main goal is the provide upper bounds on
the performance metrics, which explicitly depend on the
probability distribution of the random graph. We first derive
an upper bound on how close the cost function, evaluated
at the estimate, gets to the optimal solution. Next, under a
strong convexity type of assumption, we focus on the squared
distance between the estimate of the optimal decision and
some minimizer. We provide an upper bound for this metric,
which will give us the rate of convergence of the estimate to a
guaranteed neighborhood of the optimum. The performance
metrics are evaluated via their expected values. The explicit
dependence on the graph’s probability distribution allows us
to determine the optimal probability distributions that would
ensure the best guaranteed upper bounds on the metrics. This
idea has relevance especially in the wireless networks case,
where the communication topology has a random nature
with a probability distribution (partially) determined by the
communication protocol parameters. As example of possible
applications of our results, in [10] we address two simple
scenarios where the goal is to tune the communication
protocol parameters such that the performance of the multi-
agent subgradient method is improved. In the first scenario
we consider that the agents use a randomize scheme for
enabling packet transmissions, where the agents decide to
act like a transmitter or a receiver with some probability.
This probability will play the role of the protocol parameter.
In the second scenario, we assume that the transmissions
happen according to a pre-established order (TDMA based
protocol) but they are affected by interferences. In this case,
the power allocated for transmissions is going to play the
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role of protocol parameters. Both scenarios are applied on a
small world type of communication topology.

Notations: Let X be a subset ofRn and lety be a point
in R

n. Using an abuse of notation, by‖y−X‖ we understand
the distance from the pointy to the setX, i.e. ‖y− X‖ ,
minx∈X ‖y− x‖, where‖ · ‖ is the standard two norm.

Let f :Rn→R be a convex function. We denote by∂ f (x)
the subdifferential of f at x, i.e. the set of all subgradients
of f at x:

∂ f (x) = {d ∈Rn| f (y) ≥ f (x)+d′(y− x), ∀y ∈Rn}. (1)

Let ε≥ 0 be a nonnegative real number. We denote by∂ε f (x)
theε-subdifferential of f at x, i.e. the set of allε-subgradients
of f at x:

∂ f (x) = {d ∈Rn| f (y) ≥ f (x)+d′(y− x)− ε, ∀y ∈Rn}. (2)

We will denote by LEM and SLEM the largest and second
largest eigenvalue of a stochastic matrix, respectively. We
will use MASM for multi-agent subgradient method and pmf
for probability mass function.

Paper structure: Section II contains the problem formula-
tion. More precisely presents in details the communication
and optimization models assumed in this note. In Section
III, we introduce a set of preliminary results, which mainly
consist in providing upper bounds for a number a quantities
of interest. By combining the preliminary results, in Section
IV we give upper bounds for the expected values of two
performance metrics: the distance between the cost function
evaluated at the estimate and the optimal solution and the
(squared) distance between the estimate and some minimizer.

Due to space limitation some of the proofs of our results
are omitted. The missing proofs can be found in reference
[10].

II. Problem formulation

A. Communication model

Consider a network ofN agents, indexed byi = 1, . . . ,N.
The communication topology is time varying and is modeled
by a random graphG(k), whose edges correspond to commu-
nication links among agents. Given a positive integerM, the
graphG(k) takes values in a finite setG = {G1,G2, . . . ,GM}.
The underlying random process ofG(k) is assumed i.i.d.
with probability distribution Pr(G(k) = Gi) = pi , ∀k ≥ 0,
where

∑M
i=1 pi = 1. Throughout this note, we will consider

only bidirectional communication topologies, i.e.G(k) is
undirected.

Assumption 2.1:(Connectivity assumption) The graph re-
sulting from the union of graphs inG, i.e.

⋃N
i=1Gi , is

connected.
Let G be a graph of orderN and letA ∈RN×N be a row

stochastic matrix, with positive diagonal entries. We say that
the matrixA, correspondsto the graphG or the graphG is
inducedby A if any non-zero entry (i,j) of A implies a link
from j to i in G and vice-versa. Consider a matrix product
of stochastic matrices of lengthm,

∏m
i=1 Ai . We say that the

graph induced by the aforementioned matrix product, is given

by the union of graphs corresponding to the matricesAi ,
i = 1, . . . ,m, i.e.

⋃m
i=1Gi , whereGi is induced byAi .

B. Optimization model

The task of theN agents consists in minimizing a convex
function f : Rn→R. The function f is expressed as a sum
of N functions, i.e.

f (x) =
N

∑

i=1

fi (x), (3)

where fi : Rn → R are convex. Formally expressed, the
agents want to cooperatively solve the following optimization
problem

min
x∈Rn

N
∑

i=1

fi (x). (4)

The fundamental assumption is that each agenti, has access
only to the functionfi . Let f ∗ denote the optimal value of
f and let X∗ denote the set of optimizers off , i.e. X∗ =
{x ∈ Rn| f (x) = f ∗}. Let xi(k) ∈ Rn designate theestimate of
the optimal decision vectorof (4), maintained by agenti,
at timek. The agents exchange estimates among themselves
according to the communication topology described by the
random graphG(k).

As proposed in [7], the agents update their estimates using
a modified incremental subgradient method. Compared to
the standard subgradient method, the local estimatexi(k) is
replaced by a convex combination ofxi(k) with the estimates
received from the neighbors:

xi (k+1)=
N

∑

j=1

ai j (k)x j(k)−α(k)di(k), (5)

where ai j (k) is the (i, j)th entry of a stochastic random
matrix A(k) which corresponds to the communication graph
G(k). The matricesA(k) form an i.i.d random process taking
values in a finite set of symmetric stochastic matrices with
positive diagonal entriesA= {Ai }Mi=1, whereAi is a stochastic
matrix corresponding to the graphGi ∈ G, for i = 1, . . . ,M.
The probability distribution ofA(k) is inherited fromG(k),
i.e. Pr(A(k) = Ai) = Pr(G(k) = Gi) = pi . The real valued
scalarα(k) is the stepsize, while the vectordi(k) ∈ Rn is
a subgradient offi at xi (k), i.e. di(k) ∈ ∂ fi (xi(k)).

Assumption 2.2:(Subgradient Boundedness and Constant
Stepsize) The subgradients of functionfi at any point are
bounded, i.e. there exists a scalarϕ such that

‖d‖ ≤ ϕ,∀d ∈ ∂ fi(x), ∀x ∈Rn, i = 1, . . . ,N,

and the stepsizeα(k) is assumed constant and known by all
agents, i.e.α(k) = α, ∀k≥ 0.

Assumption 2.3:(Existence of an Optimal Solution) The
optimal solution setX∗ is nonempty.
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III. Preliminary Results

In this section we lay the ground for our main results in
Section IV. The preliminary results introduced here revolve
around the idea of providing upper-bounds on a number of
quantities of interest. The first quantity is represented by the
distance between an estimate of the optimal decision and the
average of all estimates. The second quantity is described by
the distance between the average of the estimates and the set
of optimizers.

We introduce theaverage vector of estimates of the
optimal decision vector, denoted by ¯x(k) and defined by

x̄(k) ,
1
N

N
∑

i=1

xi (k). (6)

The dynamic equation for the average vector can be derived
from (5) and takes the form

x̄(k+1)= x̄(k)− α(k)
N

h(k), (7)

whereh(k) =
∑N

i=1di(k).
We introduce also thedeviationof the local estimatesxi(k)

from the average estimate ¯x(k), which is denoted byzi (k) and
defined by

zi (k) , xi(k)− x̄(k), i = 1, . . . ,N. (8)

Let us define theaggregatevectors of estimates, average
estimates, deviations and subgradients, respectively:

x(k)′ , [x1(k)′, x2(k)′, . . . , xN(k)′] ∈RNn,

x̄(k)′ , [ x̄(k)′, x̄(k)′, . . . , x̄(k)′] ∈RNn,

z(k)′ , [z1(k)′,z2(k)′, . . . ,zN(k)′] ∈RNn

and
d(k)′ , [d1(k),d2(k), . . . ,dN(k)′] ∈RNn.

From (6) we note that the aggregate vector of average
estimates can be expressed as

x̄(k) = Jx(k),

whereJ = 1
N11

′⊗ I , with I the identity matrix inRn×n and
1 the vector of all ones inRN. Consequently, the aggregate
vector of deviations can be written as

z(k) = (I − J)x(k). (9)

The next Proposition characterize the dynamics of the
vectorz(k).

Proposition 3.1:The dynamic equation of the aggregate
vector of deviations is given by

z(k+1)=W(k)z(k)−α(k)(I − J)d(k), z(0)= z0, (10)

whereW(k) =
(

A(k)− 1
N11

′
)

⊗ I , with solution

z(k) = Φ(k,0)z(0)−
k−1
∑

s=0

α(s)Φ(k, s+1)d(s), (11)

where Φ(k, s) is the transition matrix of (10) defined by
Φ(k, s) ,W(k−1)W(k−2)· · ·W(s), with Φ(k,k) = I .

Remark 3.1:The transition matrixΦ(k, s) of the stochastic
linear equation (10) can also be represented as

Φ(k, s) =

















s
∏

i=1

A(k− i)

















⊗ I − J, (12)

whereJ =
(

1
N11

′
)

⊗ I . This comes from the fact that for any
i ∈ {1,2, . . . , s−1} we have that

(A(k− i)⊗ I − J) (A(k− i −1)⊗ I − J) =
= A(k− i)A(k− i −1)⊗ I − J.

Remark 3.2:(On the first and second moments of the
transition matrixΦ(k, s)) Let m be a positive integer and con-
sider the transition matrixΦ(k+m,k)=W(k+m−1). . .W(k),
generated by a sequence of lengthm of random graphs, i.e.
G(k) . . .G(k+m− 1), for somek ≥ 0. The random matrix
Φ(k+m,k) takes values of the formWi1Wi2 · · ·Wim, with
i j ∈ {1,2, . . . ,M} and j = 1, . . . ,m. The norm of a particular
realization ofΦ(k+m,k) is given by the LEM of the matrix
productWi1Wi2 · · ·Wim or the SLEM ofAi1Ai2 · · ·Aim, denoted
henceforth byλi1...im. Let pi1...im =

∏m
j=1 pi j be the probability

of the sequence of graphsGi1 . . .Gim that appear during
the time interval [k,k+m]. Let Im be the set of sequences
of indices of lengthm for which the union of the graphs
with the respective indices produces a connected graph, i.e.
Im = {i1i2 . . . im|

⋃m
j=1Gi j = connected}. Using the previous

notations, the first and second moments of the norm of
Φ(k+m,k) can be expressed as

E[‖Φ(k+m,k)‖] = ηm, (13)

E[‖Φ(k+m,k)‖2] = ρm, (14)

whereηm =
∑

j∈Im p jλ j +1−
∑

j∈Im p j andρm =
∑

j∈Im p jλ
2
j +

1−
∑

j∈Im p j . The integer j was used as an index for the
elements of the setIm.

The above formulas follow from results introduced in [4],
Lemma 1, or in [15], Lemma 3.9, which state that for any se-
quence of indicesi1 . . . im∈ I (m), the matrix productAi1 · · ·Aim
is ergodic, and thereforeλ j < 1, for j ∈ I (m). Conversely,
if j < I (m), then λ j = 1. We also note that

∑

j∈I (m) p j is the
probability of having a connected graph over a time interval
of length m. Due to Assumption 2.1, for sufficiently large
values ofm, the setI (m) is nonempty. In fact form≥ M,
I (m) is always non-empty. In general for large values ofm,
it may be difficult to compute all eigenvalueλ j , j ∈ I (m). We
can omit the necessity of computing the eigenvaluesλ j , and
this way decrease the computational burden, by using the
following upper bounds onηm andρm

ηm≤ λmpm+1−pm, (15)

ρm≤ λ2mpm+1−pm, (16)

whereλm =maxj∈Imλ j and pm =
∑

j∈Im p j is the probability
to have a connected graph over a time interval of lengthm.
For notational simplicity, in what follows we will omit the
index m when referring to the scalarsηm andρm.

Throughout this note we will use the symbolsm, η and
ρ in the sense defined within the Remark 3.2. Moreover,
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the value ofm is chosen such thatI (m) is nonempty. The
existence of such a value is guaranteed by Assumption 2.1.

The next Proposition gives upper bounds on the expected
value of the norm and the squared norm of the transition
matrix Φ(k, s).

Proposition 3.2:Let r ≤ s≤ k be three nonnegative integer
values. Letm be a positive integer, such that the setI (m)

is non-empty. Then, the following inequalities involving the
transition matrixΦ(k, s) of (10), hold

E[‖Φ(k, s)‖] ≤ η
⌊

k−s
m

⌋

, (17)

E[‖Φ(k, s)‖2] ≤ ρ
⌊

k−s
m

⌋

, (18)

E[‖Φ(k, r)Φ(k, s)‖] ≤ ρ
⌊

k−s
m

⌋

η⌊
s−r
m ⌋, (19)

whereη andρ are defined in Remark 3.2.
The following lemma gives upper bounds on the first and

the second moments of the distance between the estimate
xi(k) and the average of the estimates, ¯x(k).

Lemma 3.1:Under Assumption 2.2, for the sequences
{xi(k)}k≥0, i = 1, . . . ,N generated by (5) with a constant
stepsizeα, the following inequalities hold

E[‖xi(k)− x̄(k)‖] ≤ β
√

Nη
⌊

k
m

⌋

+
mαϕ

√
N

1−η
(20)

E[‖xi(k)− x̄(k)‖2] ≤ Nβ2ρ
⌊

k
m

⌋

+Nα2ϕ2
(

1+ 2m
1−η

)

m
1−ρ+

+2Nαβϕmρ
⌊

k−1
m

⌋

+1
−η

⌊

k−1
m

⌋

+1

ρ−η ,

(21)
whereη, ρ andm are defined in Remark 3.2.

The following result allows us to interpret iteration (7) as
an ε-subgradient (withε being a random process).

Lemma 3.2:The vectordi(k) is an ǫ(k)-subdifferential of
fi at x̄(k), i.e. di(k) ∈ ∂ǫ(k) fi (x̄(k)) and

∑N
i=1di(k) is anNǫ(k)-

subdifferential of f at x̄(k), i.e.
∑N

i=1di(k) ∈ ∂Nǫ(k) f (x̄(k)), for
any k≥ 0 , where

ǫ(k) = 2ϕβ
√

N‖Φ(k,0)‖+2αϕ2
√

N
k−1
∑

s=0

‖Φ(k, s+1)‖. (22)

Under a strong convexity type of assumption onf , the next
result gives an upper bound on the second moment of the
distance between the average vector ¯x(k) and the set of
optimizers of f .

Lemma 3.3:Let {x̄(k)}k≥0 be a sequence of vectors gener-
ated by iteration (7). Also, assume that Assumptions 2.2 and
2.3 hold and that there exists a positive scalarµ such that

f (x)− f ∗ ≥ µ‖x−X∗‖. (23)

Then, the following inequality holds

E[‖x̄(k)−X∗‖2] ≤ ‖x̄(0)−X∗‖2γk+
4αϕβ

√
N

1−γ η
⌊

k
m

⌋

+

+
α2ϕ2

1−γ

(

4m
√

N
1−η +1

)

,
(24)

whereγ = 1− 2αµ
N and η is defined in Remark 3.2.

IV. Main Result - Convergence analysis

In the following we provide upper bounds for three perfor-
mance metrics of the MASM. First, we give an estimate on
the radius of a neighborhood around the optimal valuedf ∗,
where the cost functionf , evaluated at the estimatexi(k), is
guaranteed to converge. Second, we focus on the (squared)
distance between the estimatexi (k) and the set of optimizers
X∗. Under a strong convexity type of assumption, we give
an estimate of the radius of a neighborhood around the zero
point, where this metric is guaranteed to converge. We also
provide an upper bound for the rate of convergence to the
aforementioned neighborhood.

Corollary 4.1: Let Assumptions 2.1, 2.2 and 2.3 hold and
let {xi(k)}k≥0 be a sequence generated by the iteration (5),
i = 1, . . .N. Then

liminf
k→∞

E[ f (xi(k))] ≤ f ∗ +
√

Nαϕ2 m
1−η

(N+2)+
αϕ2

2
(25)

Proof: Using the subgradient definition we have

fi (x̄(k)) ≥ fi (xi(k))+di(k)′(x̄(k)− xi(k)) ≥
≥ fi (xi(k))−‖di(k)‖‖zi(k)‖,

or

fi(xi(k)) ≤ fi (x̄(k))+ϕ‖zi(k)‖, for all i = 1, . . . ,N.

Summing over alli, we get

f (xi (k)) ≤ f (x̄(k))+Nϕ‖z(k)‖.

By the results of Lemma 3.1, the following inequality holds

liminf
k→∞

E[ f (xi(k))] ≤ lim inf
k→∞

E[ f (x̄(k))] +N
√

Nαϕ2 m
1−η

.

(26)
Let x∗ ∈ X∗ be an optimal point off . By (7), where we use
a constant stepsizeα, we obtain

‖x̄(k+1)− x∗‖2 = ‖x̄(k)− x∗− αNh(x̄(k))‖2 =
= ‖x̄(k)− x∗‖2−2αNh(x̄(k))′(x(k)− x∗)+α2ϕ2

and since, by Lemma 3.2,h(x̄(k)) is a Nǫ(k)-subdifferential
of f at x̄(k), we have

‖x̄(k+1)−x∗‖2≤ ‖‖x̄(k)−x∗‖2−2α( f (x̄(k))− f ∗)+2αε(k)+α2ϕ2,

or

‖x̄(k+1)− x∗‖2 ≤ ‖x̄(0)− x∗‖2−2α
∑k−1

s=0( f (x̄(s))− f ∗)+
+2α

∑k−1
s=0ε(s)+kα2ϕ2.

Since‖x̄(k+1)− x∗‖2 ≥ 0

2α
k−1
∑

s=0

( f (x̄(s))− f ∗) ≤ ‖x̄(0)− x∗‖2+2α
k−1
∑

s=0

ε(s)+kα2ϕ2,

or

2α
k−1
∑

s=0

(E[ f (x̄(s))]− f ∗)≤ ‖x̄(0)−x∗‖2+2α
k−1
∑

s=0

E[ε(s)]+kα2ϕ2.

By Proposition 3.1 and Lemma 3.1, we obtain the following
upper bound for the expected value ofǫ(s).

E[ǫ(s)] ≤ 2ϕβ
√

NE[‖Φ(s,0)‖]+2αϕ2
√

N
s−1
∑

r=0

E[‖Φ(s, r+1)‖] ≤
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≤ 2ϕβ
√

Nη⌊
s
m⌋+ 2αϕ2

√
Nm

1−η
,

which in turn leads to
k−1
∑

s=0

E[ǫ(s)] ≤ 2ϕβ
√

N
m

1−η
+k2αϕ2

√
N

m
1−η

.

Using the fact that

k−1
∑

s=0

(E[ f (x̄(s))] − f ∗) ≥ k min
s=0,...,k−1

(E[ f (x̄(s))] − f ∗),

we get

liminf
k→∞

E[ f (x̄(k))] − f ∗ ≤ 2αϕ2
√

N
m

1−η
+
αϕ2

2
. (27)

Inequality (25) follows by combining (26) and (27).
The next result shows that under a strong convexity

type of assumption, the convergence rate of the MASM, in
expectation sense, is linear for a sufficiently small constant
stepsize. It also shows that only convergence (in expectation
sense) to a neighborhood can be guaranteed; a neighborhood,
however, that can be made arbitrarily small.

Corollary 4.2: Let Assumptions 2.1, 2.2 and 2.3 hold and
let µ be a positive scalar such that

f (x)− f ∗ ≥ µ‖x−X∗‖2, ∀x ∈Rn. (28)

Then, the sequence{xi(k)}k≥0, generated by iteration (20)
with the stepsizeα ≤ N

2µ , converges, in expectation, (at
least) R-linearly to a guaranteed neighborhood around some
optimizer of f . The R-factor equals max{γ,η 1

m }, whereγ =
1− 2αµ

N and the radius of the neighborhood equals

A+B+
√

AB,

where

A=
α2ϕ2

1−γ













4m
√

N
1−η

+1













,

B= Nα2ϕ2
(

1+
2m

1−η

)

m
1−ρ

.

Proof: By the triangle inequality we have

‖xi (k)−X∗‖ ≤ ‖xi(k)− x̄(k)‖+ ‖x̄(k)−X∗‖,

or

‖xi (k)−X∗‖2 ≤ ‖xi (k)− x̄(k)‖2+2‖x(k)− x̄(k)‖‖x̄(k)−X∗‖+
+‖x̄(k)−X∗‖2.

or

E[‖xi(k)−X∗‖2] ≤ E[‖xi(k)− x̄(k)‖2]+
+2E[‖xi(k)− x̄(k)‖‖x̄(k)−X∗‖] +E[‖x̄(k)−X∗‖2].

By the Cauchy-Schwarz inequality for the expectation oper-
ator, we get

E[‖xi(k)−X∗‖2] ≤ E[‖xi(k)− x̄(k)‖2] +2E[‖xi(k)− x̄(k)‖2]
1
2 ·

·E[‖x̄(k)−X∗‖2]
1
2 +E[‖x̄(k)−X∗‖2].

(29)
The guaranteed radius of the neighborhood around some
optimizer of f follows by inequalities (21) and (24) and by
taking the limit ask goes to infinity of the above inequality.

By inequality (21) we have

E[‖xi(k)− x̄(k)‖2] ≤ a1ρ
k
m +a2η

k
m +a3,

wherea1, a2 anda3 are some positive scalars derived from
the right-hand side of (21). By noting thatη ≥ ρ, we can
further write

E[‖xi(k)− x̄(k)‖2] ≤ ã1η
k
m + ã2 (30)

whereã1 and ã2 are some positive scalars.
By inequality (24), we obtain

E[‖x̄(k)−X∗‖2] ≤ b1γ
k+b2η

k
m +b3,

whereb1, b2 andb3 are some positive scalars derived from
the right-hand side of (24). We can further write

E[‖x̄(k)−X∗‖2] ≤ b̃1max{γ,η
1
m }k+ b̃2, (31)

whereb̃1 and b̃2 are some positive scalars. Using the nota-
tionsc1 =max{ã1, b̃1} andc2 =max{ã2, b̃2}, by (29), (30) and
(31), we obtain

E[‖xi(k)−X∗‖2] ≤ 4c1max{γ,η
1
m }k+4c2,

which shows the R-linear convergence, with the R-factor
given by max{γ,η 1

m }.

A. Discussion of the results

We obtained upper bounds on three performance met-
rics relevant to the MASM: the distance between the cost
function evaluated at the estimate and the optimal solution
(Corollary 4.1), the distance between the estimate of the
decision vector and the set of optimizers and the rate of
convergence to some neighborhood around an optimizer of
f (Corollary 4.2). The three upper bounds are functions
of three quantities which depend on the scalarsm, η and
ρ, i.e. m

1−η ,
m

1−ρ and η
1
m , which show the dependence of

the performance metrics on the pmf ofG(k) and on the
corresponding random matrixA(k). The scalarsη and ρ
represent the first and second moments of the SLEM of
the random matrixA(k+ 1). . .A(k+m), corresponding to
a random graph formed over a time interval of lengthm,
respectively. We notice from our results that the performance
of the MASM is improved by makingm

1−η ,
m

1−ρ and η
1
m as

small as possible, i.e. by optimizing these quantities having
as decision variablesm and the pmf ofG(k). Since the three
quantities are not necessarily optimized by the same values
of the decision variables, we have in fact a multi-criteria
optimization problem:

minm,pi { m
1−η ,

m
1−ρ ,η

1
m }

subject to: m≥ 1
∑M

i pi = 1, pi ≥ 0.

(32)

The scalarη
1
m relates to the rate of convergence of the

distance between the estimate of the decision vector and
the set of optimizers. Note that, unless it helps the other
two quantities m

1−η and m
1−ρ , making η

1
m too small, may
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not necessarily result in an improvement of the rate of
convergence since the latter is given by the max{γ,η 1

m }.
The solution to the above problem is a set of Pareto points,

i.e. solution points for which improvement in one objective
can only occur with the worsening of at least one other
objective.

We note that for each fixed value ofm, the three quantities
are minimized if the scalarsη and ρ are minimized as
functions of the pmf of the random graph. In fact, we can
focus only on minimizingη, since for every fixedm, η is an
upper bound onρ and in fact both quantities are minimized
by the same pmf. Therefore, in problem (32), we have to
find an appropriate value ofm such that a Pareto solution is
obtained, which has a corresponding optimal pmf. Depending
on the communication model used, the pmf of the random
graph can be a quantity dependent on a set of parameters of
the communication protocol (transmission power, probability
of collisions, etc). Having anoptimal pmf allow us to tune
these parameters such that the performance of the MASM is
improved.

In what follows we provide a simple example where we
show how the optimal probability distribution,η, m

1−η andη
1
m

evolve as functions ofm.
Example 4.1:Let G(k) be random graph taking values in

the setG= {G1,G2},with probabilityp and 1−p, respectively.
The graphsG1 andG2 are shown in Figure 1. Also, letA(k)
be a (stochastic) random matrix , corresponding toG(k),
taking value in the setA = {A1,A2}, with

A1 =































1
2

1
2 0 0

1
2

1
4

1
4 0

0 1
4

3
4 0

0 0 0 1































, A2 =





























1 0 0 0
0 1 0 0
0 0 2

3
1
3

0 0 1
3

2
3





























Fig. 1. The sample space of the random graphG(k)

Figure 2(a) shows the optimal probabilityp∗ that min-
imizes η for different values ofm. Figure 2(b) shows the
optimizedη (computed atp∗) as a function ofm. Figures
2(c) and 2(d) show the evolution of theoptimized m

1−η and

η
1
m as functions ofm, from where we notice that a Pareto

solution is obtained form= 5 andp∗ = 0.582.
In order to obtain the solution of problem (32), we need

to compute the probability of all possible sequences of
length m produced byG(k), together with the SLEM of
their corresponding stochastic matrices. This task, for large
values ofm and M may prove to be numerically expensive.
We can somewhat simplify the computational burden by
using instead the bounds onη and ρ introduced in (15)
and (16), respectively. Note that every result concerning

(a)

(b)

(c)

(d)

Fig. 2. (a) Optimalp as a function ofm; (b) Optimizedη as a function of
m; (c) Optimized m

1−η as a function ofm; (d) Optimizedη
1
m as a function

of m
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the performance metrics still holds. In this case, for each
value of m, the upper bound onη is minimized, whenpm
is maximized, which can be interpreted as having to choose
a pmf that maximizes the probability of connectivity of a
random graph obtained over a time interval of lengthm. In
our example, the probability that the union ofm consecutive
graphs produced byG(k) results in a connected graph is
pm = 1− pm− (1− p)m. We note thatp1 = 0, since no single
graph inG is connected. For every fixed value ofm, pm is
maximized forp= 1

2. Given thatA(k) takes valuesA1 and
A2 with uniform distribution, the bounds on the curves of
the quantitiesη, η

1
m and m

1−η are given in Figure 3. We note

that for m= 3, both bounds onη
1
m and m

1−η are minimized.
Even in the case where we try to minimize the bound

on η, it may be very difficult to compute the expression for
pm, for large values ofm (the setG may allow for a large
number of possible unions of graphs producing connected
graphs). Another way to simplify even more our problem, is
to (intelligently) fix a value form and to try to maximize
pm having as decision variable the pmf. We note thatm
should be chosen such that, within a time interval of length
m, a connected graph can be obtained. Also, a very large
value for m should be avoided, sincem1−η is lower bounded
by m. Although in general the uniform distribution is not
necessarily minimizingη, it becomes the optimizer under
some particular assumptions, stated in what follows. LetG
be such that a connected graph is possible to be obtained
only over a time interval of lengthM (i.e. in order to form
a connected graph, all graphs inG must appear within a
sequence of lengthM). ChooseM as value form. It follows
that pm can be expressed as:

pm=m!
M
∏

i=1

pi .

We can immediately observe thatpm is maximized for the
uniform distribution, i.e.pi =

1
m, for i = 1, . . . ,M.

V. CONCLUSIONS

In this note we studied a multi-agent subgradient method
under random communication topology. Under an i.i.d. as-
sumption on the random process governing the evolution of
the topology we derived upper bounds on three performance
metrics related to the MASM. The first metric is given by
the radius of the neighborhood around the optimal solution
where the cost function evaluated at an estimate converges.
The second and the third metrics are represented by the
radius of a neighborhood around the zero point where the
distance between an estimate and the set of optimizers is
guaranteed to converge and the rate of convergence to this
neighborhood, respectively. All the aforementioned perfor-
mance measures were expressed in terms of the probability
distribution of the random communication topology. This
is particulary useful when the distributed optimization is
performed over wireless networks, since the communication
protocol parameters, which determine the probability distri-
bution of the random graph, can be tailored to improve the
performance of the MASM.

(a)

(b)

(c)

(d)

Fig. 3. (a) Optimal p as a function ofm; (b) Optimized bound onη
as a function ofm ; (c) Optimized bound on m

1−η as a function ofm; (d)

Optimized bound onη
1
m as a function ofm
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