IMAGE DENOISING USING SPARSE
REPRESENTATIONS

SeyyedMajid Valiollahzadeh(®*, Hamed Firouzi(®, Massoud Babaie-Zadeh(®),
and Christian Jutten(®

(W) Department of Electrical Engineering, Sharif University of Technology,
Tehran, Iran,
(") GIPSA-lab, Grenoble, France

Abstract. The problem of removing white zero-mean Gaussian noise
from an image is an interesting inverse problem to be investigated in this
paper through sparse and redundant representations. However, finding
the sparsest possible solution in the noise scenario was of great debate
among the researchers. In this paper we make use of new approach to
solve this problem and show that it is comparable with the state-of-art
denoising approaches.

1 Introduction

Being a simple inverse problem, the denoising is a challenging task and basically
addresses the problem of estimating a signal from the noisy measured version
available from that. A very common assumption is that the present noise is addi-
tive zero-mean white Gaussian with standard deviation o. Many solutions have
been proposed for this problem based on different ideas, such as spatial adap-
tive filters, diffusion enhancement [1], statistical modeling [2], transfer domain
methods [3], [4], order statistics [5] and yet many more. Among these meth-
ods, methods based on with sparse and redundant representations has recently
attracted lots of attentions [8]. Many researchers have reported that such rep-
resentations are highly effective and promising toward this stated problem [8].
Pioneered by Donoho [5], sparse representations firstly examined with unitary
wavelet dictionaries leading to the well-known shrinkage algorithm [5]. A major
motivation of using overcomplete representations is mainly to obtain translation-
invariant property [6]. In this respect, several multiresolutional and directional
redundant transforms are introduced and applied to denoising such as curvelets,
contourlets, wedgelets, bandlets and the steerable wavelet [5] [8].

The aim of all such transforms is to provide a redundant sparse decomposi-
tion of the signal. In parallel, beside providing a suitable redundant transform,
representation of a signal with these transforms is also of high value, since such
a representation is not necessarily unique. Several methods are then proposed to

* This work has been partially supported by Iran National Science Foundation (INSF)
under contract number 86/994 and also by ISMO and French embassy in Iran in the
framework of a Gundi-Shapour collaboration program.



2 Authors Suppressed Due to Excessive Length

find the best possible representation of a signal from a redundant, overcomplete
dictionary obtained by these transforms, namely Matching Pursuit(MP), Basis
Pursuit(BP), FOCUSS, and Smoothed ¢°- Norm (SL0) [7]. All these approaches
basically try to find the sparsest possible solution among all the possible rep-
resentations a signal can obtain. As an alternative point of view to obtain the
sparse representation, example-based dictionary learning of K-SVD which is in-
troduced by Aharon, et. al. [8] attempts to find the sparse dictionary over the
image blocks. When using the Bayesian approach to address this inverse problem
with the prior of sparsity and redundancy on the image, it is the dictionary to be
used that we target as the learned set of parameters. Instead of the deployment
of a pre-chosen set of basis functions like the curvelet or contourlet, this process
of dictionary learning can be done through examples, a corpus of blocks taken
from a high-quality set of images and even blocks from the corrupted image itself.
This idea of learning a dictionary that yields sparse representations for a set of
training image blocks has been studied in a sequence of works [8] and specifically
the one using K-SVD has shown to outperform in both providing the sparse rep-
resentation and capability of denoising. While the work reported here is based
on the same idea of sparsity and redundancy concepts, a different method is used
to solve the sparsest possible solution in presence of noise. An example-based
dictionary learning such as K-SVD along with here used technique can provide
better solutions in estimation of the original clean signal.

The paper is organized as follows. In section 2, we briefly present modeling of
the scenario in decomposing a signal on an overcomplete dictionary in the pres-
ence of noise. In section 3 we discuss this algorithm in the real image denoising
task. At the end we conclude and give a general overview to future’s work.

2 FINDING THE SPARSE REPRESENTATION IN
PRESENCE OF NOISE

Consider the problem of estimation of x from the observed signal
y=xXx+n

where n denotes the observation noise. Assume that x has a sparse representation
over the dictionary @, i.e. x = $a with a small ||a|J (the number of nonzero
elements of a vector) and also assume that a good estimation on the energy of
the present noise, ||n||3 < €2 is provided.

The sparsest representation we are looking for, is simply

Py : min ||| subject to ly — ®a|); <€ (1)

Note that the above-stated problem rarely has a unique solution [11], since
once the sparsest solution is found, many feasible variants of it sharing the same
support can be built. Since the above-stated problem is highly nonconvex and
hard to deal with, many researchers pursue a strategy of convexification with
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— Initialization: let a = A(I+ &7 &) '¢Ty
(This is equivalent to the solution when the o tends to be infinity)
ie.:

argming |||z + Ny — @3
— Choose a suitable decreasing sequence for o, [o1 ...07].
—forn=1,...,J:
1. Let 0 = oy
2. find aZ! = argming, (m — Fy(e)) + M|y — ®a||3
using any kind of optimization tool ,
say steepest decent with fixed number of iterations
Final answer is o = a°Pt.

Fig. 1. Algorithm for finding the sparse coefficients in presence of noise.

replacing £° norm with £'- norm. so simply try to solve the following problem
instead:

P : min |||, subject to lly — ®all3 < € (2)

where ||a]|, = Y a; is the £*-norm of a. Note that the replacing £°-norm by
other convex cost functions such as #'-norm is only asymptotic and the equiva-
lence does not always hold [9]. Hereafter, motivated by the recently stated work
of Mohimani, et. al. [7] we seek to find the sparsest possible answer without
such a replacement and instead, attempt to relax the replacing £°- norm by a
continuous, differentiable cost function, say F,(a) = >, exp(—a?/20?).

This function tends to count the number of zero elements of a vector. So, as
stated in [7] the above problem can be converted to:

Py : min(m — Fy(a))  subject to lly — a3 < € (3)

The above optimization task can be converted to optimizing the Lagrangian:
Py: min(m— Fy(a)) + My — ®alj; (4)

So that the constraint becomes a penalty and the parameter A is dependent
on €. Solution toward this problem was recently proposed in [12] and it is shown
that for a proper choice of A, these two problems are equivalent. The o param-
eter determines the smoothness of the approximated cost function. By gradual
decrease in this parameter it is highly probable to skip trapping in local mini-
mum. The overall algorithm which is used through this paper is shown in Fig. 1
is a slight modification of the same idea presented in [12].

Once the sparsest solution of (3) has been found with the stated algorithm
summarized in Fig. 1, we can retrieve the approximate image by x = $a.
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3 IMAGE DENOISING

The problem of estimation of X from an observed noisy version of it under the
sparsity prior has two essential issues: first, to find a dictionary @ which permits
a sparse representation regarding the fact that the sample are noisy and second
to find the coefficients of this sparse representation. The second phase was what
explained so far. As it was shown by Aharon [8], et. al., the K-SVD learning is
a very efficient strategy which leads to satisfactory results. This method along
with all other types of dictionary learning fails to act properly [8] when the size
of dictionary grows. Beside that, the computational complexity and thus time
needed for training will grow awesome.

When we are dealing with larger size images we are still eager to apply this
method but as stated it is computationally costly and both dictionary learning
and optimization to find the coefficients of sparse representation are sometimes
intractable. To overcome this difficulty, an image with size VN x +/N is divided
to blocks of size of /n x /n. These blocks are chosen highly overlapped for
two reasons: first, to avoid blockiness and second to have better estimate in
noise removal process. Then a dictionary is tried to be found over these blocks
and all these blocks are cleaned with algorithm of Fig. 1. Let L;; be a matrix
representing each block to be located in (ij)-th position of the image. L;; is
a matrix of size n x N which provides the location information of all possible
blocks of the images. So in this respect, the noise removal process changes to:

{X,a} = argming oMY = X[5+ > llailly + Y IPa —LyX|l;  (5)
ij ij

in which X is the original image to be estimated and the Y is the observed
available noisy version of it. This equation is similar to (1) with this slight dif-
ference that local analysis was taken into account and a linear combination of
£°-norm and ¢?>-norm of all sparse representation and error between the original
signal and the reconstructed one tried to be minimized. In this process, visible
artifacts may occur due to blocking phenomena. To avoid this, we choose the
blocks with overlap and at the end average the results in order to prevent block-
iness artifact. After determining all the approximated coefficients, we estimate
the original image by solving the following equation:

X = argming A|[Y = X[[3 + ) [[#a — Ly X|J5 (6)
ij

This quadratic equation has the solution:

X =+ LiLj) '(A\Y+ > Lida)™ (7)
ij ij

This estimated modified image can be interpreted as a relaxed averaging be-
tween the noisy observed image with the cleaned estimated one. The summarized
overall algorithm is shown is Fig. 2.
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— Goal: denoise a given image Y from additive white Gaussian noise with variance
of [In]l3

— parameters:
n block-size ,k dictionary, A Lagrangian multiplier.the task is to optimize

{X, &} = argminy o \|Y — X[I3 + 32, vllew; I5 + 32, |Pe — Li; X3
— train a dictionary @ of size n x k using K-SVD.
— find the sparse noisy coefficients of a using algorithm stated in Fig. 1.

— Final estimation is X = (AI + > L) TTAY + 3, L da)

Fig. 2. The final denoising algorithm.

4 Experimental results:

In this work, the underlying dictionary was trained with the K-SVD method and
once the learning is done, the image blocks was represented sparsely via Fig.
1. The algorithm of section 2 was used for such a representation. The overall
denoising method explained above was examined with numerous test images
mainly of size 256 x 256 and 512 x 512 with different noise levels. Blocks of size
8 x 8 was driven by the synthesis noisy image and a dictionary of size 64 x 256
was learned through this blocks using K-SVD method. Then we applied the
algorithm of Fig. 1 to represent each block on the provided dictionary, while
the similar approach done by Aharon [8] make use of Orthogonal Matching
Pursuit (OMP) [10] for this stage. The tested images are all the same ones as
those used in the denoising experiments reported in [8], in order to enable a fair
comparison. Table 1 summarizes the denoising results in the same database of
images. In a quite large experiments we found sparser solution and better quality
of representations. Every result reported is an average over 5 experiments, having
different realizations of the noise. To show a comparison in sparsity yielded with
different methods coefficients in representations of a sample block with OMP
and the stated algorithm was depicted in Fig. 3. The quite same results is valid
for other blocks as well.

The denoised blocks were averaged, as described in Fig.2 .In Fig. 5 the results
of the overall algorithm for the image ”Barbara” for ||n||z = 20 is shown. By
refereing to Table 1, as it is seen, when the level of noise grows, our approach
outperforms K-SVD with OMP and we can conclude the mentioned algorithm
is suitably designed for noisy cased with known energy.

Also a comparison was done with other types of sparse coding phase such
as FOCUSS and SLO [8] and yet the proposed algorithm outperforms them. A
sample comparison has been done in Fig. 4. In this experiment after providing
the dictionary, the sparse representation coefficients are found with different
approaches. The coefficients of the original clean signal, the signal corrupted
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Fig. 3. Coefficients of a sample block represented with OMP above and in bottom .the latter, leads
to the same result or sparsely superior one.

with additive white gaussian noise of v||n||2 = 20, recovered block via OMP and
the recovered signal via Fig. 1 is depicted in Fig. 4 and as it can be seen the our
recovered signal resembles more to the original signal.

5 Discussions and Conclusions

In this paper a simple algorithm for denoising application of an image was pre-
sented leading to state-of-the-art performance, equivalent to and sometimes sur-
passing recently published leading alternatives. It is basically on the basis of
sparse representation of an image in the presence of noise. The stated algorithm
considers local approach, splits the noisy observed image to several blocks and
learns a dictionary over these blocks and attempts to find the best possible sparse
representation of each block with this dictionary. In order to find the cleaned
image some averaging is needed to avoid the blocking effect in boundaries. Ex-
perimental results show satisfactory recovering of the image. Future theoretical
work on the general behavior of this algorithm is on our further research agenda.
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Original clean image

Fig. 5. From left to right: original image, noisy image with zero-mean white gaussian noise of
|n|l2 = 20, the cleaned image via sparse representation described.

Table 1. Summary of denoising PSNR results. In each column the bottom is corre-
sponding to our approach and the above is corresponding to the K-SVD with OMP.

isy image, 20.0826dB
=

the bold one corresponds with better response.

Denoised image by adaptive dictionary, 31.0448dB

it ¢
A

| %% |[LENA[[BARBARA[BOAT]|| Fgrpt [[House|[Peppers|[[Average[lopsnr|
2/42.11 ||43.58 43.67 43.14 || 42.99 ||44.47| 43.33 || 44.47 | 43.33
42.11 42.38 42.17 || 41.85 |[42.92 || 42.51 42.92 42.51
5/34.15 || 38.60 38.08 37.22 || 36.65 ||39.37|| 37.78 || 39.37 || 37.78
38.18 3741 36.68 || 36.17 |[38.25| 37.08 38.25 || 37.08
10/28.13||35.47 34.42 33.64 || 32.39 |[35.98|| 34.28 35.98 || 34.28
35.42 34.51 33.62 || 32.31 || 35.60 || 34.53 35.60 || 34.53
15/24.61|| 33.70 32.36 31.73 || 30.06 || 34.32 32.22 34.32 32.22
33.91 32.79 32.13(|30.258(|34.40| 32.79 || 34.40 || 32.79
20/22.11|| 32.38 30.83 30.36 || 28.47 (| 33.20|| 30.82 33.20 || 30.82
33.46 32.01 31.29| 29.16 ||34.19|| 31.58 || 34.19 || 31.58
25/20.17|| 31.32 29.60 29.28 || 27.26 || 32.15]|| 29.73 32.15 29.73
32.72 31.01 30.46 || 28.90 ||33.61|| 30.83 || 33.61 || 30.83
50/14.15|| 27.79 25.47 25.95 || 23.24 ||27.95]|| 26.13 27.95 26.13
28.98 26.93 27.30 || 24.43 ||28.69(| 27.70 || 28.69 || 27.70
75/10.63|| 25.80 23.01 23.98 || 19.97 | 25.22 || 23.69 25.22 || 23.69
26.93 24.71 25.33 || 21.69 ||26.83|| 24.28 || 26.83 || 24.28
75/10.63|| 24.46 21.89 22.81 || 18.30 ||23.71|| 21.75 23.71 21.75
26.32 23.55 24.36 || 22.19 ||25.08|| 23.14 || 25.08 || 23.14
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ABSTRACT

Recently, great attention was intended toward
overcomplete dictionaries and the sparse representations
they can provide. In a wide variety of signal processing
problems, sparsity serves a crucial property leading to
high  performance. Inpainting, the process of
reconstructing lost or deteriorated parts of images or
videos, is an interesting application which can be handled
by suitably decomposition of an image through
combination of overcomplete dictionaries. This paper
addresses a novel technique of such a decomposition and
investigate that through inpainting of images. Simulations
are presented to demonstrate the validation of our
approach.

Index Terms— Sparse representations, Inpainting,
Texture, Cartoon, Total variation.

1. INTRODUCTION

Sparse signal decomposition of signals on an over
overcomplete Dictionary was of great interest among
researchers in past few years and serve many interesting
applications [1]. The main assumption over these signals
is that they are linear mixtures of building atoms and also
only a few of these atoms will participate in the
reconstruction. In the context of image processing an
interesting decomposition application would be separating
texture from non-texture part to be used in areas from
compression to analysis and synthesis of an image[2][3].
Inpainting consists in problems like filling the holes,
reconstructing lost or deteriorated parts of images or
videos, removal of scratches in old photos, removal of
unwanted text or graphic and is an interesting inverse
problem with lots of research momentum [4] in recent

1 This work has been partially supported by Iran National Science
Foundation (INSF) under contract number 86/994, by Iran
Telecommunications Research Center (ITRC), and also by ISMO and
French embassy in Iran in the framework of a Gundi-Shapour
collaboration program

years dealing highly with such decomposition. Pioneered
by the work of Sapiro et al [5], total variation was used in
this respect taking mainly the geometrical contents into
consideration. Since images contain both geometrical and
textural information, decomposition should be done in
two layers.

This approach has been presented in [6]-[7] and the
layers to which an image is decomposed are called texture
and cartoon. The inpainting process is done in each layer
separately and afterwards the output will be formed by
summing up these layers. The crucial part in this
approach is layer decomposition and will extend the
notions of total variations. By this trend, if any failure in
the inpainting of each layer is presented, superimposing
of two layers will lead in less visual artifact and hence
quite satisfactory result.

In some recent work sparsity was taken into account
as additional criteria to decompose an image to these
layers. To this end, we need two dictionaries, mutually
incoherent, one to represent the texture and the other for
the cartoon. Both should provide the sparse representation
for the corresponding layer image while vyielding
nonsparse for the other. Combination of these two
dictionaries into one and performing the (Basis Pursuit
denoising) BPDN [1] algorithm seeking the sparsest
solution has shown to perform well and even can be
improved by further applying the total-variation
regularization.

Elad et al. [8, 9] proposed an inpainting algorithm
capable of filling in holes in either texture or cartoon
content, or any combination thereof extending
employment of separation by sparsity, so that the missing
samples fit naturally into the layer separation framework.
The main advantageous point of this approach is the
global treatment trend toward the image rather the local
one. Also it deploys general overcomplete dictionaries
which can be better established for a typical image
content.

What is presented in this paper is quite similar on the
basis of sparse representations, but modeling the overall
problem as a specific optimization is better relaxed.
Inspired by the work of Mohimani, et al. [10] for finding



the sparsest solution of an Underdetermined System of

Linear Equations (USLE) through the smoothed ¢° -norm,
we extend this approach in two dimensional models to
solve the prior modeling. The outline of the paper is as
follows. In section 2, we briefly present the modeling
scenario to decompose a signal over two incoherent
dictionaries. In section 3 we model the inpainting problem
and present the final algorithm. We discuss some
simulation results to validate the proposed algorithm in
section 4 and finally conclusion and summary of later
work is discussed in the last section.

2. MAIN IDEA

Let the input image ¢ containing N total pixels, be
presented as a one-dimensional vector. This image is to
be decomposed over two distinct dictionaries, A and B,
the former corresponding to texture and the latter to
cartoon. Both provide sparse representation for the image
of their kind and non-sparse for the other, written
formally as:

c, = As,;

¢, = Bs,

(s, is sparse) )]
(s, is sparse) 2

Sparsity of a vector S is quantified by its ¢°-norm,
denoted by||s|,, defined by the number of its nonzero

elements. There are two assumptions over these
dictionaries [8,9]: firstly, these two dictionaries should be
incoherent, i.e. the texture dictionary is not able to
represent the cartoon image sparsely and vice versa.
Secondly, the dictionary assigned to texture should be
such that if the texture appears in parts of the image and is
otherwise zero, representation is still sparse, implying
somehow that it should employ a multiscale and local
analysis of the image content.

Now, we seek a sparse representation over the
combined dictionary:

{s, s,}=argmin {"51"0 +||sz||0}
e ©))
Subjectto:  As, +Bs, =¢

The problem is non-convex and seemingly intractable due
to combinatorial search it needs, however inspired by the

work of Mohimani et al [10], we can find S;,S, as it

using smoothed ¢° -norm.  Smoothed /° -norm of a

vectora is an approximation to its¢®-norm and is
defined as:

m
F. (o) = Z:exp(—oci2 126°) 4)

i=1
where o is a parameter determining a tradeoff between
the accuracy of approximation and the smoothness of

F_ (o) .Minimizing the ¢°norm of a subject to b = ®a

then requires then to maximize F, (a) for a small value of
o . For a small o, F_ () is highly non-smooth with lots

of local maxima. To overcome this difficulty we use a
decreasing sequence of o and make use of maximizer

of F (a)as a starting point to find the next (smaller)
sigma [10]. Moreover, the algorithm initially starts with
minimum  ¢?norm solution of b=®a, which
corresponds to the maximizer of F_(a)wheno —« .

Using similar idea ,we want to minimize a cost
function J_(s) -which will be introduced in the next

section- subject to As, +Bs, =c.The minimization
should be done for small o and in order to avoid trapping

in local minima we use a sequence of [O'l,...,ak ] and

then minimize J_(s) for each o, with the starting point

yielded by the maximizer of the previous (longer) o .
Moreover the process is initialized by:

(A B]le} =c=>

2

e e

S,

(PBLA)T (5)
(piB)
where, P, and P, are the orthogonal projections of the
corresponding matrices:

Pi=1-AT(AAT) A
, (6)
P, =1-B' (BB') B

Then we use L iterations of the steepest ascent
algorithm, followed by a projection onto the feasible
which is:

Update le} = El} -[A B]T (c—As, —Bs,) 8

For more explanation about choosing the sequence
see [10].

3. Modeling inpainting and the final proposed
algorithm

Suppose that missing pixels of the image are masked
with a diagonal mask matrix M (of which has value’l’
over the existing pixels and ‘0’ over the missing pixels)
we propose restoring the image by optimizing the
following problem:

{5 9Py = ar% rsnin {HslHo +[ls, |, +

9)

+1 HM(c - As, —Bs, )Hi + yTV{Asl}}



in which we have TV{x} = |Vx],. So the recovered

image would be:
¢ = As? + Bs* (10)

— Initialization :

+Let {:1} =[a B]'c

2

+Choose a suitable sequence for o = [O’l ..... oy ]

_ ) , -

o) *(311) ) _(Slm)
s\ exp o | s exp * ,
20, ' 20,

() 2

(5) {5
sWexp| o | Wexp| V™ )
20, : 20,

+ z{AT (e Asl)}.

BT (chsz)

8 8 As,
| Lz :| ) |:s2 :| ) |:ﬂ2Asz :|
44 and g, can be chosen by a line-search minimizing
(the overal penalty function or fixed stepsize. j
e Calculate ¢; = As,;
e Apply the TV Corrolation on the c;
arvie}

—Reconstruct ¢; =¢; —
oc,

Ve,
=¢, — (V| ——
|vey|
1
eUpdate A = A —— 4,
N

+Update {sl} - [sl}[A B]' (c- As, - Bs,)

S2 S2

+S=S,1

—Final coefficients are §1 and S5.

Figure 1: The proposed algorithm for decomposition

The term TV{As,} essentially computes the image
As, (supposed to be piecewise smooth), applies the

absolute gradient field and summing up /* norm to avoid
blockiness and force the image be smooth thus support
the separation process.

These coefficients to be found can be relaxed as
stated in the previous part:

J,=(M,=F,(s,))+(M,=F,(s,))
+/1||M(c—As1 —Bs2)||§ +yTV{As,}
M, and M, are the length of s,,s, coefficients ,not

necessarily equivalent. The overall algorithm is shown in
Fig 1. The parameters yand A are found experimentally

(91
4. EXPERIMENTAL RESULTS

In this section, we apply the algorithm of Figl for the
reconstruction of gray level still images where some parts
are missing. In proposed algorithm, we briefly present the
scenario to decompose a signal over two incoherent
dictionaries. Our approach in this work is to choose two
known transforms, one to represent the texture and the
other for the cartoon.

With regards to the actual choice, for the cartoon
representation, we used curvelet transform and for the
texture; we used local-DCT transform. These dictionaries
are nice choice of transform according to our experience
dependent on this problem. We must remind that type of
sparse transformation may vary from one image to
another [8] but must be mutually independent.

In fig 2, we show the representation result of the
proposed algorithm for the Barbara image. Left image
was obtained using the curvelet transform with six
resolution levels and right one is the output of local-DCT
representation with a block size 32x32. We must mention
that resolution levels in curvelet and optimal block size in
local-DCT transformation were obtained experimentally.

Figure 2: The representation result in last iteration of
proposed algorithm for the Barbara image.(left) Output of
curvelet transform with six resolution levels. (right)
Output of local-DCT representation with a block size
32x32.



The parameters we had used in our simulations are:
N =5 (number of decreasing value of ), 7, €[1,2]and

L =10 (number of iterations of the steepest ascent
algorithm). Note that for calculating the computational
complexity of the proposed inpainting algorithm, we can
ignore L iterations of the steepest ascent calculation,
therefore it is governed by the number of applying the
two forward and the inverse transforms.

In fig 2, (top left) we show the original Barbara
image; on top right the target regions are masked in white.
Region filling via our inpainting method using curvelet
and local-DCT dictionaries are illustrated on bottom left.
The result of our algorithm around Barbara's eyes shows
no trace of the original holes, and seems natural on
bottom right.

h-m&'l i
Figure 2: The reconstruction of the masked image.
(top left) Original image. (top right) The target regions
are masked in white. (bottom left) Region filling via the
proposed inpainting algorithm. (bottom right) The result
of our algorithm around Barbara's eyes.

5. CONCLUSIONS

In this paper we presented a novel approach for
inpainting. It is basically on the basis of decomposition of
an image to texture and cartoon layers via sparse
combinations of atoms of predetermined dictionaries. The
stated algorithm with consideration of total-variation
regularization attempts to fill in the holes in each layer
separately and superimposes these layers as a final
solution. Experimental results show the efficiency of the
proposed algorithm in finding the missing samples.

Future theoretical work on the general behaviour of this
algorithm along with learning of dictionaries through
examples adapted to each layers are two further topics in
our current research agenda.

6. REFERENCES

[1]] S.S. Chen, D.L. Donoho, M.A. Saunder, “Atomic
decomposition by basis pursuit”, SIAM J. Sci. Comput. 20, pp.
33-61, 1998.

[2] J.S. De Bonet, “Multiresolution sampling procedure for
analysis and synthesis of texture images”, in: Proceedings of
SIGGRAPH, 1997.

[3] A.A. Efros, T.K. Leung, “Texture synthesis by non-
parametric sampling”, in: IEEE International Conference on
Computer Vision, Corfu, Greece, pp. 1033-1038, September
1999.

[4] V. Caselles, M. Bertalmio, G. Sapiro, C. Ballester, “Image
inpainting, in: Comput. Graph. (SIGGRAPH 2000), pp. 417-
424, July 2000.

[5] M. Bertalmio, L. Vese, G. Sapiro, S. Osher, “Simultaneous
structure and texture image inpainting”, IEEE Trans. Image
Process. 12, pp. 882-889, 2003.

[6] L. Vese and S. Osher, “Modeling textures with total
variation minimization and oscillating patterns in image
processing,” Journal of Scientific Computing vol. 19, pp. 553—
577, 2003.

[7] J. Aujol, G. Aubert, L. Blanc-Feraud, and A. Chambolle,
“Image decomposition: Application to textured images and SAR
images,” Tech. Rep. ISRN I3S/RR-2003-01-FR, INRIA -
Project ARIANA, Sophia Antipolis, 2003.

[8] J.-L. Starck, M. Elad, D.L. Donoho, “Image decomposition
via the combination of sparse representations and a variational
approach”, IEEE Trans. Image Process. Vol 14,No10, pp. 1570-
1582, oct. 2005.

[91 M. EladJ.-L. Starck , P. Querre, D.L. Donoho,
"Simultaneous cartoon and texture image inpainting using
morphological component analysis (MCA)", Journal on Applied
and Computational Harmonic Analysis, Vol. 19, pp. 340-358,
November 2005.

[10] G. H. Mohimani, M.Babaie-Zadeh, C. Jutten, “A Fast
approach for overcomplete sparse decomposition based on
smoothed LO norm”, to appear in IEEE Trans on Signal
Processing. Available at: http://ee.sharif.edu/~SLzero/



£ SEE——
2 s L 2 ——

F oy =
5 g b L=
= ICEE NN Z : =
o % 2008 F «Q - m =

% o\, = -

7, = — -

% =/[\=
7 -
‘/9 LTarbiat Modares University VI S o ORI

May 13-15, 2008

Sparse Component Analysis (SCA) in Random-valued and Salt and
Pepper Noise Removal

Hadi. Zayyani, Seyyedmajid. Valliollahzadeh

Sharif University of Technology

zayyani2000@yahoo.com, valliollahzadeh@yahoo.com

Massoud. Babaie-Zadeh
Sharif University of Technology
mbzadeh@yahoo.com

Abstract: In this paper, we propose a new method for
impulse noise removal from images. It uses the sparsity
of images in the Discrete Cosine Transform (DCT)
domain. The zeros in this domain give us the exact
mathematical equation to reconstruct the pixels that are
corrupted by random-value impulse noises. The
proposed method can also detect and correct the
corrupted pixels. Moreover, in a simpler case that salt
and pepper noise is the brightest and darkest pixels in
the image, we propose a simpler version of our method.
In addition to the proposed method, we suggest a
combination of the traditional median filter method with
our method to yield better results when the percentage
of the corrupted samples is high.

Keywords: Image denoising, salt and pepper
noise, sparse component analysis, median filter.

1. Introduction

Impulse noise is caused by malfunctioning pixels
in camera sensors, faulty memory locations in
hardware or transmission in a noisy channel. The
salt and pepper noise and the random valued-noise
are the two common types of impulsive noises. In
the salt and pepper noise, the salt noise is assumed
to have the brightest gray level and the pepper
noise has the darkest value of the gray level in the
image. This assumption can help us to know the
corrupted pixels in the images. In these cases the
only hard task is to recover the original pixel of the
image. But, in the general case of random-valued
impulse noise, there is not any pre-assumption
about the value of the impulsive noise. Therefore,
the image denoising task in these cases is to detect
the corrupted pixels and then correct them by the
original pixel of the image. So, image denoising
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for random-valued impulse noises is more difficult
than fixed salt and pepper image denoising. In this
paper, we focus on the random value impulsive
noise. However, we also present a version of our
method in the case of salt and pepper noise.

The median filter is the most popular nonlinear
filter for removing impulse noise [1]. However,
when the noise level is high or when the random
noise is available, some details and edges are
smeared by the filter and the performance of the
median filter decreases. Different remedies of the
median filter have been proposed so far. They are
the adaptive median filter [2], the median filter
based on homogeneity [3], centre-weighted median
filters [4] a generally family called decision-based
methods. The so-called “decision-based” methods
first identify possible noisy pixels and then replace
them by using the median filter or its variants,
while leaving all other pixels unchanged. Some of
these two-stage methods deal with salt and pepper
noise [5] and the others with the case of random-
valued impulse noises [6].

In this paper, we do not separate the detection and
correction steps similar to “decision-based”
methods mentioned earlier. We use the
compressibility of the images in the DCT domain
which is used for image compression in JPEG
standard. This compressibility gives us the
necessary equation to exactly recover the
impulsive noises or errors. Therefore, we use the
transformed image to recover the noisy pixels. To
recover the noisy pixels (or finding errors), we
encounter an Underdetermined System of Linear
Equations (USLE) whose sparse solution is to be
found. This USLE problem can be solved by
means of Sparse Component Analysis (SCA)
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methods [7]. In the SCA context, m sparse sources
(which the most of their samples are nearly zero)
and nlinear observations of them are available.
The goal is to find these sparse sources from the
observations. The relation between the sources and
the observations are:
X = As (1)

where xis the nx1observation vector and s is the
mx1 source vector and A is the »x m mixing
matrix. m is the number of sources and » is the
number of observations. In SCA, it is assumed that
the number of sources is greater than the number
of observations (m>n). So, the number of
unknowns is larger than the equations. Therefore,
this Underdetermined Linear System of Equations
(ULSE) has infinite number of solutions.
Fortunately, under conditions stated in [10], the
sparsest solution of this problem is unique. This
condition is that the number of active sources (non
zero source) should be less than half of the number
of observations (||s|jp<0.5» ). By this assumption, the

sparsest solution is unique and different algorithms
to find this solution have been already proposed,
including Basis-Pursuit (BP) [9], FOCUSS [10],

smoothed-/°[11] and EM-MAP method [12].The
aim of this paper is to use the SCA methods in
application of noise removal, especially for salt
and paper noise and random-valued noise. The
organization of the paper is as follows. Firstly, our
SCA method is introduced in section 2, then this
method in combination with popular median
filtering is studied in section 3, and at last the
simulation results will be discussed.

2. The proposed SCA method

2.1 Basic Idea

The basic idea is that, the representation of the
image in the DCT domain is sparse because the
most of the coefficients in the DCT domain are
zero or near zero. We assume the noisy model as:

2

XnxN =Swnxnv TEnun

where Sy, is the original image and E, is the
impulsive noise and Xy, is the noisy image (sub

image). If we apply the DCT transform to both
sides of equation (2), we have:

T(X)=T(S)+T(E) 3)
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where T is the DCT transform and has the
following form:

T(S) = TST' 4)
where T is the DCT transform matrix as defined
below [1]:

X7T
t(x, ) = a(x)cos((2y +1) —)
2N

— x=0 ()
a(x)=1'N

2

— xz0

N

We know that the block of 7'(S) have many almost

zero coefficients. To order this two dimensional
matrix to a one dimensional vector with zeros at
the end of the vector, we define the zigzag
transform. This transform changes a two
dimensional matrix to a one dimensional vector,
similar to the JPEG standard. We assume that the
coefficients of Z(T(X)) are zero from n+1 tom.

In this case m is the number of pixels in a sub

image of sizeNand so is equal tom=NZ.

Moreover, nis determined with the compression
ratio of the sub image. If the compression ratio of
the sub image is defined as CR, then the value of

_m

nis equal ton = xR The general idea is to use this

zeros to find the impulse noises (or errors). At first,
we present the general case where the degraded
pixels have random values and then switch to a
simpler case where the salt and pepper assumption
of noise are available.

2.2 Random value impulsive noise

By defining X[ Z(T(X))|,41m» and the previous
assumption that transformed original image in the
DCT domain is sparse, i.e.Z(T(S)) |, 1.,=0, We
will have the following reconstruction formula to
find the impulsive noises (or errors):
If we are able to write the right hand of equation
(6) in the linear form of Z(T'(E)) |,,;1.,,= HZ(E) , then

the problem of finding errors, converts to a
classical SCA formulation as:
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X =HZ(E) (7)
Solving this SCA problem Ileads to zigzag
transform of the errors. Taking the inverse zigzag
transform yields the error image (both its value and
its position). After subtracting the error image from
the noisy image, the estimation of the original
image is obtained. We call this method as “SCA
method”. The block diagram of this method is
depicted in Fig. 1.

Inverse

— Zigag || UstE | | I )
transform| | (by SCA) Zigzag A
transform

Fig. 1 The block diagram of our method

At first, we should find the matrix H in terms of
the DCT transform. To compute the matrix H, we
use the 2-D transform equation in the general form

[1]:

N-1N-1
T(E) |(M,V)= xéo yZ=:0 E(xv y)t(xv y,u,v) (8)

Note that the i ’th element of the Z(T'(E)) equal to:
Z(TE) |;=TE) 1)1 (i)) )

where we can imagine the [u(i),v(i)] as the inverse

zigzag transform of the i’th 1-D element. From
equations (8) and (9), we can write:

Z(T(E)) ;=
[0, 0,u(i), v(i)), (0,1, u(i), v(i), ..t (N, N,u(i), v(i))]Z(E)

(10)

Therefore, Z(T(E)) can be written as GZ(E) , where
the matrix G is:

Gy = Hu( ). (). (i), 9(0) (1

From equations (6), (7), (9) and the preceding
discussion, the matrix H is H=Gn+1:m,1:m)
where we use MATLAB matrix notation. The
matrix G is obtained simply from equation (11)
and knowing that the DCT transform is separable
of the form #(x, y,u,v) = t(x,u)t(y,v) . So, we have:

G = 1)), (D) (12)

302

where #(u(j),v(j),u(@),v(i)) is defined in equation
(5). Finally, the SCA problem in equation (7) can
be solved by means of any SCA method such as
MP, BP (or known as Linear Programming),

smoothed-/° or EM-MAP. Since we should divide
the image into the sub images and then solve the
correspondence SCA problem with different
XandH, so a fast method for SCA is a necessity.
Among the various methods, BP (or equivalently
LP) and EM-MAP is rather complicated.
Moreover, the MP method does not yield the
accurate sparse solution of a SCA problem.
However, a recently developed method called

smoothed- /° [11] has the ability to provide a very
fast and accurate estimation of the sparse solution.
So, in our simulations we use this method.

2.3 Salt and pepper impulsive noise

In the salt and pepper impulsive noise, it is usually
assumed that the salt noise is the maximum gray
level (255) and the pepper noise is the minimum
gray level (0) [5]. So, the places of noisy pixels are
easily found by a simple comparison to these
values (assuming that our image has not pixels
with gray level 0 and 255). In [5], an adaptive
median filter is used to detect the noisy pixels. But,
in our paper, we assume that our image does not
have pixels with gray level 0 and 255, and the
noisy pixels are known by a simple comparison
with the upper and lower gray levels. So, the only
problem is to recover the original gray level of
noisy pixels. Therefore, we propose a simpler
version of our method. In this case we start from
equation (7). Since the positions of errors are
known, we can omit the columns of the matrix H
which we know that there is not any error at those
places. So, equation (7) converts to the following
formula:

Pl

=HyuncatedZ ®nonzero (13)

After solving the above equation which is equal to
solving a linear system of equations, the nonzero
errors are obtained. In this case, the number of
errors must be less than the size of the X vector
which is equal tom—n. The solution in these cases
can be obtained via pseudo-inverse (where the
unknowns are smaller than equations). We call this
method the “Salt-Pepper SCA method” (SP-SCA).
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3. The combined median-SCA-median
method

Because of the good properties of the nonlinear
filtering and especially median filtering in the
image denoising applications, we suggest to use a
combination of the traditional median filtering with
our SCA method. When the noise level is low, the
noisy pixels in a subimage are small and the
median value of the sub image is not noisy. But,
when the noise level is high the median value itself
is a noisy pixel. So, the performance of the median
filter is decreased. The median filter can be
regarded as a pre-process to reduce the effect of
the impulsive noise. After that, we can apply our
SCA method. Moreover, in high level noise, this
combination also cannot omit all the impulsive
noises. Another median filter after our SCA
method can omit the remaining impulse noises. So,
the block diagram of this combination method is
shown in Fig. 2.

median SCA median
filter ) filter

Fig. 2 The block diagram of combination of
methods

4. Experiments

Three experiments were done to investigate our
SCA method in image denoising when impulsive
noise is present. In all experiments, the
performance of our SCA method is compared with
the median filter and also with the combination of
methods. In the first experiment, we use the “SCA
method” introduced in Sec. 2.2, and in the second
and third experiments, we use the “salt-pepper
SCA method” introduced previously in Sec. 2.3.
Our performance measure is the Peak-Signal-to-
Noise Ratio (PSNR), defined as:

2
PSNR =10log,y(— 255 ) (14)

MN Z (Sif N §i/ )2
LJ

4.1 Random-valued impulsive noise

In this experiment, random valued impulsive noise
with different levels is added to the image. The
results of the simulations are shown in Fig. 3. As
we can see the combination of the methods has the
best result in high level of noise (30% to 60%

noise level). In addition to objective measures, the
reconstructed images have good results up to 50%
impulsive noise. Fig. 4 shows the corrupted image
when 50% of pixels are corrupted with random-
valued noise. Fig. 5 shows the reconstructed
image.

—H— median+SCA+median
—<— median+SCA

pmiss(%)

Fig. 3 The results for the random-valued noise

Fig. 4 The 50% random-valued noisy image

I

Fig. 5 The reconstructed image from 50% random-
valued noisy image
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4.2  Fixed gray level salt and pepper noise

In this experiment, it is assumed that only fixed
gray level salt and pepper noise has corrupted the
image (0 for pepper and 255 for salt). In this case,
the image is reconstructed by the “salt-pepper SCA
method” as introduced in Sec. 2.3. The results of
various methods are depicted in Fig. 6. As it can be
seen, our combination of methods has slightly
better results especially at high noise levels. In this
case, we can reconstruct the images ever it is
corrupted by 60% salt and pepper noise. The noisy
image and the reconstructed image in this case are
shown in Fig. 7 and Fig. 8 respectively.

—H— median+SCA+median
—#— median+SCA

—v— SCA

PSNR(dB)

pmiss(%)

Fig. 6 The result for the fixed gray level salt and
pepper noise

5 Rt i gt

Fig. 7 The 60% fixed salt and pepper noisy image
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Fig. 8 The reconstructed image from 60% fixed
salt and pepper noise

4.3 Missing sample
In this experiment, we assume that some pixels of
the image are missed. So, those pixels are dark and
have zero gray level. Similar to the previous
experiment, the reconstruction of image is done by
the “salt-pepper SCA method” as introduced in
Sec. 2.3. The result of the simulations is shown in
Fig. 9. In this case, the reconstruction was done
appropriately up to 40% of missed samples. The
missed-sample image and reconstructed image are
shown in Fig. 10 and Fig. 11 respectively.

50

i i i I i
| | —8— median+SCA+median | |
—+— median+SCA

45- - — - — —

<&

pmiss(%)

Fig. 9 The result for the missing sample
experiment
5.  Conclusion
In this paper, a novel method is proposed to
remove impulsive noise from images. This method
is essentially based on the sparsity of the images in
the DCT domain. Using the nearly zeros in the

DCT domain, an exact equation is provided to
recover the impulse noises (or errors). To solve
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this equation, the smoothed-/° method [11] is
utilized. In addition, in the simple case of fixed
gray level salt and pepper noise, we present a new
version of our method. To obtain better results
when high level of noise is present, a combination
of our SCA method with traditional median
filtering is suggested. The simulation results show
the efficiency of our method in the three cases of
impulsive noise (random-value, fixed salt and
pepper and missing sample).

l

Fig. 11 The reconstructed image from 40% missed
sample image
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Abstract

In this paper, a new Adaboosted Kernel Classifier
algorithm is introduced for face detection application.
However, most of the methods used to implement
Relevance Vector Machine (RVM), need lengthy
computation time when faced with a large and
complicated dataset. A new pruning method is used to
reduce the computational cost.

The kernel classifier parameters are adaptively
chosen. In addition, using Fisher’s criterion, a subset of
Haar-like features is selected. As a result, our proposed
algorithm with its previous counterparts i.e. Support
Vector Machine (SVM) and RVM without boosting is
compared, which results in a better performance in
terms of generalization, sparsity and real-time behavior
for CBCL face database.

1. Introduction

Nonlinear classification of data is always of special
attention. Face Detection is a problem dealing with such
data, due to large amount of variation and complexity
brought about by changes in facial appearance, lighting
and expression. Feature selection is needed beside
appropriate classifier design to solve this problem, like
many other pattern recognition tasks.

Tipping’s Relevance Vector Machines (RVM) [1] [3]
are a Bayesian approach leading to a probabilistic non-
linear model with a prior on the weights that promotes
sparse solutions. The advantage of RVM over non-
Bayesian kernel methods comes from explicit
probabilistic ~ formulation that yields predictive
distributions for test instances and allows Bayesian
model selection [4].

One of the major developments in machine learning in
the past decade is the Ensemble method, which finds a
highly accurate classifier by combining many
moderately accurate component classifiers. Boosting
[15] and Bagging [16] are the most common
techniques, used to construct Ensemble classifiers. In
Comparison with Bagging, Boosting outperforms when
the data do not have much noise [17] [18]. Among
popular Boosting methods, AdaBoost [6] establishes a
collection of weak component classifiers by
maintaining a set of weights over training samples and
adjusting them adaptively after each Boosting iteration
the weights of the misclassified samples by current
component classifier will be increased while the
weights of the correctly classified samples will be
decreased. To implement the weight updates in
Adaboost, several algorithms have been proposed [19].
The success of Adaboost can be attributed to its ability

to enlarge the margin [5], which could enhance
Adaboost’s generalization capability. All these factors
have to be carefully tuned in practical use of Adaboost.
Furthermore, diversity is known to be an important
factor which affects the generalization accuracy of
Ensemble classifiers [21][19]. In order to quantify the
diversity, some methods are proposed [19] [22]. It is
also known that in Adaboost there exists an
accuracy/diversity dilemma [9], which means that the
more accurate two component classifiers become, the
less they can disagree with each other. Only when the
accuracy and diversity are well balanced, the Adaboost
can demonstrate excellent generalization performance.
However, the existing Adaboost algorithms do not yet
explicitly taken sufficient measurement to deal with this
problem.

In this paper we propose a new kernel classifier for face
detection. Applying boosted RVM has an advantage of
getting accuracy and being Sparse. Boosting will reduce
the sparsity in nature, while RVM will compensate this
fact. Obtaining accuracy and sparsity will allow the
system operate very fast. The rest of the paper is
organized as follows Sections 2 describes the feature
selection method. In Section 3 we introduce RVM and
Adaboost, and then we develop AdaboostRVM. In
Section 4, we apply the proposed method for face
detection. Finally, we provide discussions and
conclusions in Section 5.

2. Feature selection

To find out which features to be used for a particular
problem, is referred as feature selection. In this paper,
like Viola and Jones [10], we use four types of Haar-
like basis functions for feature selection which have
been used by Papageorgiou et al [9].

Like their work, we use four types of haar-like feature
to build the feature pool. The features can be computed
efficiently within integral image. The main objective to
use these features is that they can be rescaled easily
which avoids to calculate a pyramid of images and
yields to fast operation of the system on these features.
These features can be seen in Figure 1. Given that the
base resolution of the detector is 19x19, the exhaustive
set of rectangle features is quite large. Note that unlike
the Haar basis, the set of rectangle features is over
complete. Like viola, we use image variance G to
correct lighting, which can be got using integral images
of both original image and image squared.
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Figure 1. Example rectangle features shown relative
to the enclosing detection window. The sum of the
pixels which lie within the white rectangles is
subtracted from the sum of pixels in the grey rectangles.
Two-rectangle features are shown in (A) and (B).
Figure (C) shows a three-rectangle feature, and (D) a
four-rectangle feature.

Figure 2.The sum of the pixels within rectangle D can
be computed with four array references. The value of
the integral image at location 1 is the sum of the pixels
in rectangle A. The value at location 2 correspond to the
area A+B and so on

Using the integral image any rectangular sum can be
computed in four array references (see Figure 2). Clearly
the difference between two rectangular sums can be
computed using eight references. Since the two-
rectangle features defined above involve adjacent
rectangular sums they can be computed in six array
references, eight in the case of the three-rectangle
features, and nine for four-rectangle features.

we use Fisher’s score for between-class
measurement as:

_ m;, face ", nonface (1)
i 2
o-i,face_'—o-i,norgface
By selecting the feature with highest Fisher’s scores
and smallest spatial correlation, we can retain the most
discriminative feature between face and non-face
classes

3. Statistical Learning

In this section, we describe boost based learning
methods to construct face/nonface classifier, and
propose a new boosting algorithm which improves
boosting learning.
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3.1. AdaBoost Learning

Given a set of training samples, AdaBoost [7]
maintains a probability distribution, W, over these
samples. This distribution is initially uniform. Then,
AdaBoost algorithm calls a WeakLearn algorithm
repeatedly in a series of cycles. At cycle T, AdaBoost

provides training samples with a distributionw'to the
WeakLearn algorithm.

AdaBoost, constructs a composite classifier by
sequentially training classifiers while putting more and
more emphasis on certain patterns.

For two class problems, we are given a set of N

labeled training examples(yljxl),,,,,(yN,xN), where

yie{+1,—l} is the class label associated with

example X ; .
For face detection, x, is an image sub-window of a

fixed size containing an instance of the face( y; = +1)

or non-face (yi :_1) pattern.  In the notion of

AdaBoost see table 1, a stronger classifier is a linear
combination of M weak classifiers.
In boosting learning [15], each example x, is

associated with a weightw , and the weights are updated

dynamically using a multiplicative rule according to the
errors in previous learning so that more emphasis is
placed on those examples which are erroneously
classified by the weak classifiers learned previously.

Greater weights are given to weak learners having
lower errors. The important theoretical property of
AdaBoost is that if the weak learners consistently have
accuracy only slightly better than half, then the error of
the final hypothesis drops to zero exponentially fast.
This means that the weak learners need be only slightly
better than random.

Furthermore, since proposed AdaBoost with RVM
invents a convenient way to control the classification
accuracy of each weak learner, it also provides an
opportunity to deal with the  well-known
accuracy/diversity dilemma in Boosting methods. This
is a happy accident from the investigation of AdaBoost
based on RVM weak learners.

Table 1. The AdaBoost with RVM Algorithm [3] .
1. Input: Training sample
Input: a set of training samples with labels ()’1’3‘1 )’m,(yme) ,

ComponentLearn algorithm, the number of cycles 7.

2. Initialize: the weights of training samples: w[_l =1/ N, for all
i=1..,.N

3.Dofor t =1,...,T

(1)Use ComponentLearn algorithm to train the component
classifier /¢ on the weighted training sample set.

(2)Calculate the training error of ht :




N
=2 why #h(x @

1=1

(3)Set weight of component classifier /1 ,

1 1-¢,
h o =—1 3
: Z(QJ (3)

(4)Update the weights of training samples:
Wt+1 — Wzt exp{atyiht (xi )}

! 4
1 C ( )

t

where C is a normalization constant, and

N
> wt =1 )

4.Output: f(x)= sign(i%h (%)

3.2. RVM for classification
N
yXW) = '21 wiK (X X;)+w, (6)
1=

Where k(x,X;) is a kernel function, effectively

defining one basis function for each example in the
training set.

Relevance vector machine (RVM) is a Bayesian
framework for achieving the sparse linear model (6). In
sparse model, the majority of the W s are zero. The
sparsity of model is based on a hierarchical prior, where
an independent Gaussian prior is defined on the weight
parameters in the first level:

p(W‘a) = ﬁ N(w,- 0,0{l-_l) (7)
i=l1

Where o =(o,m...ay)is a vector consisting of N

hyper parameters. An independent Gamma hyper prior
is used for the variance parameters in the second level:

p(al.) = Gamma (a,b) (8)

Where a and b are constants. The key point of this
method is using the maximum a posteriori (MAP)
instead of maximum likelihood (ML) for the Weight
estimation.

Given the N pairs of training data{X; ,t]}‘l]\i | the
dataset likelihood is defined by applying the logistic
= 1/1+e_y to y(x) and

adopting the Bernoulli distribution for P(¢]x) :

sigmoid link function o ()

N In ~
P([‘W)= qlo-{y(Xn;W)} |:1—O'{y(Xn;W)}:|1 n (9)

Where class label is denoted by ¢, e {0,1}. The

/
parameters W, are then obtained by maximizing the
posterior distribution of the class labels given the input

vectors with respect to prior information. For this
maximization, a numerical method is suggested as
follows:

1. For the current, fixed, values ofcr, the most
probable’ weights ,  are found, giving

the location of the mode of the posterior distribution.

Since P(W|t,) = P(«|w) P(w|a) this is equivalent to
finding the maximum, over W, of:

tog{ () (1)} =

N (10)
3 iy logy, +(1-t,)log(1-y,) —%WTAW

n=1

Withy = o {y(x, )}

2. Laplace’s method 1is simply a quadratic
approximation to the log-posterior around its mode. The
quantity (10) is differentiated twice to give:

Vy Vyy log P(W]t.a) ~(@TBo+4) (1)

‘WMP
Where

B =diag (1.B2.--BN) B, = o{y(Xn)H1=o{y(Xp)} ]
The posterior is approx1mated around w,, by a

Gaussian approximation with Covariance:
-1
5 = (o7 o+ 4) (12)
And mean

-so! B (13)
3. Using the statistics ¥ and £/ of the Gaussian
approximation, the hyper parameters ¢ are updated as
follows:

o =7 (14)

where £/, is the i-th posterior mean weight from(14)

and 7, =l-«a [dN which  ~.is the i-th diagonal

element of X .Slnce computing the U and > based on

above mentioned steps takes so much time, we use
incremental DFT-RVM for simplicity ~ on
implementation.

3.3. Data Pruning

When we are faced to a large and complicated dataset,
the accuracy of RVM classification is not as high as
expected and the computation time increases rapidly.
Therefore, improving the efficiency of RVM is one
important area of study.

Now, we present a simple statistical algorithm to
identify the most crucial points of the training data. The
basic idea is to model the face class as a multivariate
normal distribution, which is especially reasonable if
one, models only the upright frontal faces that are
properly aligned to one another. Note that the training
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face images are all upright, frontal, and properly
aligned. Therefore, the density function of the face class
is modeled as a multivariate normal distribution as
follows:

T

p(y‘wf)zw )
Xexp{—l(Y—M)t s (r- M)}

2

Where Y € R” the discriminating is feature vector
and M € R",Y € R are the mean vector and the

covariance matrix of the face class w ., respectively.

Afterwards, we model non-face class PDF with a
Gaussian mixture model.

P(Y|Wn):lgWiN(Y;Mi’zi) (16)

As a result, the crucial data are introduced as
follows:

g < Lo p(Yw")} <eg 17
o [P(Y o)) 1
Where the remaining points obtained above, are the
ones hardly separable.
The data obtained according to aforementioned
scheme, can now be applied to a learning machine

3.4. Adaboosted RVM-Based Classifier

We combine RVM with Adaboost to improve its
capability in classification. A polynomial RVM with

kernel K (x,x;) = (1+sX ~X1)d is used in our experiments
[2].

RVM weak classifiers are obtained by selecting the
polynomial parameters, s and d, then these weak
classifiers (classifier error place in range of %55 to
%65) are used for optimizing strong classifiers
(Adaboost classifier).

3.5. Face Detection System

We explain our face detection system and show how
to construct an Adaboosted RVM-based component
classifier for face detection. The learning of a detector
is done as follows:

1. A set of simple Haar wavelet features are used as
candidate features. There are tens of thousands of such
features for a 19x19 window.

2. A subset of them based on fisher’s score are
selected and the corresponding weak classifiers are
constructed, using Adaboosted RVM-based component
classifier learning. Data pruning is applied to reduce the
number of effective samples but it helps to get higher
training speed without losing the accuracy in general.

3. A strong classifier is constructed as a linear
combination of the weak ones.
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4. Experimental results

We adopt a face image database from the Center for
Biological and  Computational  Learning  at
Massachusetts Institute of Technology (MIT), which
contains 2429 face training samples, 472 face testing
samples, and 23,573 non-face testing samples. We
randomly collected 15,000 non-face training samples
from the images that do not contain faces.

We compared RVM and SVM with the same input
vectors and 2nd polynomial kernel without boosting. In
this stage we generated the input vector by applying a

mask on images in our database.
(a) {c) (da

Figure 3.(a) Original face image, (b) The mask, (c)
Normalized image and (d) Histogram equalized image

(b}

Next we performed normalization and the
histogram equalization on resulted image. Figure 3
shows these steps [2]. Then we used the face training
samples to calculate 50 Principal Analysis Component
(PCA) features.

In the other experiment we calculated 50 Fisher‘s
features and used them as the features of the 2nd
polynomial kernel RVM and SVM classifier without
boosting.

As we can see in the Figure 4, 50 PCA features
outperforms in the terms of accuracy than 50 Fisher‘s
features. This experiment showed RVM is better than
SVM classifier.

Our experiment showed that the sparseness of RVM
is more than SVM classifier and in testing phase it
makes the RVM work fast. Table 2. Compares the
sparseness of this approach. Another reason that this
method works fast is the advantageous usage of Fisher‘s
feature instead of PCA features. The number of
multiplications required for computing Fisher‘s features
are very less than PCA features. Also Figure4 shows
that AdaboostRVM by applying pruning performs
nearly to AdaboostRVM in accuracy but it reduces the
number of samples greatly. Our methods used the
highest 50 Fisher’s scores features. Figure 4 shows the
ROC graph of our method. According to this Figure, it is
clear that the performance of the proposed method is
much better than the SVM and RVM without boosting.

5. Conclusions

An Adaboosted method is proposed in this paper in
order to combine a group of week RVMs which
adaptively adjusts the kernel parameters of RVM
classifier to get the best result. Experimental results on
CBCL database for Face Detection demonstrated that



the proposed AdaboostRVM algorithm performs better
than other approaches such as SVM and RVM without
being Adaboosted in accuracy and speed.

IR=N 3
0aF
07k
o OBF
i
c
505}
o
o
S 04F
o —— 50 fisher feature 's with SWM
03k —2— 50 fisher featura 's with RVM
—H— 50 PCA with SvM
02 —#— 2083 gray value with VM i
i —8— 50 PCA with RN
a1 b Adshoosted Rviv ]
¥ === Adaboosted RvM with Pruning
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Figure 4. RVM and SVM Comparison

Table 2. Comparison of the sparseness

Adaboosted Adaboosted
SVM | RVM | RVM RVM with
Pruning
283 gray 792 - . —
level
50 PCA 766 185 - -
50Fisher | 529 107 586 427
‘s feature

Experimental results show that AdaboostRVM with
pruning, results in a better performance in terms of
computational cost and sparsity. Due to this fact that by
applying pruning, number of effective samples will be
reduced without losing the accuracy noticeably.
Besides these, it is found that proposed AdaboostRVM
algorithm demonstrated a better performance on
imbalanced classification problems. Based on the
AdaboostRVM, an improved version is further
developed to deal with the accuracy/diversity dilemma
in Boosting algorithms, in raising a better generalization
performance. Experimental results indicate that the
performance of the Adaboost classifier with RVM is
overlay superior to those obtained by the SVM and
RVM.
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ABSTRACT

In this paper we discuss the applicability of the kernel-based
feature extraction for speaker-independent vowels recogni-
tion, focusing on non-linear dimension reduction methods.
The Increasing of feature space dimension lead us to improve
accuracy of vowels recognition system but we lost realime
system. So, using dimension reduction algorithms, help us
to improved accuracy and we study the applicability of this
idea to build a quasi-realtime system in Persian speech. In
Vowels Recognition and other similar applications that need
a mapping technique that introduces representation of low-
dimensional features with enhanced discriminatory power and
a proper classifier, able to classify those complex features.
In this short paper, we combine nonlinear kernel based map-
ping of data with Support Vector machine (SVM) classifier to
improve efficiency of system. The proposed here method is
compared, in terms of classification accuracy, to other com-
monly used Vowels Recognition methods on FarsDat data-
base.

Index Terms— Kernel-Based feature extraction, Speaker-
independent Vowel recogmtion, Persian speech

1. INTRODUCTION

In Recent years, automatic speech processing like Automatic
Speech Recognition (ASR) becomes very important and pop-
ular since it can contribute to the natural language recogni-
tion. ASR technology and other speech processing applica-
tion have been developed very quickly in many fields, espe-
cially in the Internet, telecom and security. In these applica-
tions, the vowel recognition generally plays an important role
[1].

For example, approaches to large vocabulary continuous
speech recognition are based on acoustic modeling of sub-
word units of speech such as context-dependent phones (di-
phones and triphones) [1] and syllables [2].

In many languages, the Consonant-Vowel (CV) units have
the highest frequency of occurrence among different forms
of subword units. Therefore, recognition of CV units with a
good accuracy 1s crucial for development of a speech recog-
nition system. Recognition of these subword units is a large-

class-set pattern classification problem because of the large
number (typically, a few thousands) of units [3]. In this case,
if ASR recognizes the vowel with a good accuracy, system
can reduce region of search and improve accuracy and time.
With this reason, we try to establish a vowel recognition sys-
tem. In our auditory system, same vowels pronounced by dif-
ferent people with different gender, different age, or by the
same person using a different pitch can be recognmized.

For the purpose of data reduction and feature extraction
in pattern recognition, Principle component analysis (PCA)
and linear discriminant analysis (LDA) are introduced as two
powerful tools. It is generally believed that, L.DA based al-
gorithms outperform PCA based ones in solving problems
of pattern classification, since the former optimizes the low-
dimensional representation of the objects with focus on the
most discriminant feature extraction while the latter achieves
simply object reconstruction.

The limited success of these methods should be attributed
to their linear nature. Kernel discriminant analysis algorithm,
(KDA) [4] generalizes the strengths of the presented LDA.
Recently, more effective solutions, called Direct LDA (D-
LDA) methods, have been presented for image processing
purpose like face recognition [5], [6]. Although successful
n many cases, linear methods fail to deliver good perfor-
mance when face patterns are subject to large variations in
viewpoints, which results in a highly non-convex. In this pa-
per, we try to use nonlinear mapping characteristic of kernels
with Direct LDA idea from pattern recognition problems for
establishing a Speaker-Independent Vowel Recognition sys-
tem. The kemnel techniques while at the same time overcomes
many of their shortcomings and limitations [7].

In this work, we first nonlinearly map the onginal mput
space to an implicit high-dimensional feature space, where
the distribution of Vowel patterns is hoped to be linearized and
simplified. Then, KDDA method 1s introduced to effectively
derive a set of optimal discriminant basis vectors in the feature
space. And then SVM approach is used for classification.

The rest of the paper i1s organized as follows. In Section
tow, we start the analysis by briefly reviewing KDDA method.
Following that in section three, SVM is introduced and ana-
lyzed as a powerful classifier. In Section four, a set of ex-
periments are presented to demonstrate the effectiveness of



the KDDA algorithm together with SVM classifier on highly
nonlinear, highly complex face pattern distributions. The pro-
posed method is compared, in terms of the classification error
rate performance, to other methods like KPCA (kernel based
PCA) on the FarsDat speech database. Conclusions are sum-
marized in Section five.

2. KERNEL-BASED FEATURE EXTRACTION

2.1. Kernel Discriminant Analysis (KDA)

In the statistical pattern recognition tasks, Kernel Discrimi-
nante Analysis (KDA) is the nonlinear kemel version of LDA
to deal with the feature extraction and the classification of
nonlinear characteristics [4].

The problem of feature extraction can be stated as follows:
Assume that we have a training set,{ X }24, is available. It is
further assumed that each input belongs to one of C classes.
For a given nonlinear mapping ¢ , the input space, R¥, can
be mapped into the feature, F', ¢ : R — F space . Note that
the feature space could have a much higher, possibly infinite,
dimensionality.

Let Sprw and Sy be the between- and within- class
scatter matrices in the feature space I respectively, expressed
as follows:

o)
BTW = H Z — m¥)(mf m@)T (1)
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Where m? is the mean of class ¢ and m¥ is the average of the
ensemble.
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Where ; 1s the number of observations of class 2. The max-
imization can be achieved by:
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The optimal discriminant vectors in feature space I can be
obtained by solving the eigenvalue problem:

(SErw) (Srra) ¥ = A(SErw) (Styrg) 1T (6)

where A is eigenwalues matrix and W is eigenvectors matrix.

2.2. Kernel Direct Discriminant Analysis (KDDA)

We saw that KDA can become numerically unstable because
of the invertibility problem of the Within-class Scatter Matrix.
Furthermore, the non orthogonality of the resulting transfor-
mation matrix may prove disadvantageous. These issues give
rise to the need for KDDA [4].

The maximization process in Eq.(5) is not directly linked
to the classification error which is the criterion of performance
used to measure the success of the vowel recognition proce-
dure. Modified versions of the method, such as the Direct
LDA (D-LDA) approach, use a weighting function in the in-
put space, to penalize those classes that are close and can po-
tentially lead to misclassifications in the output space [4].

Most LDA based algorithms including D-LDA [5] utilize
the conventional Fisher’s criterion denoted by Eq.(7). The
introduction of the kernel function allows us to avoid the ex-
plicit evaluation of the mapping. Any function satisfying Mer-
cer’s condition can be used as a kernel, and typical kernel
functions mnclude polynomial function, radial basis function
(RBF) and multi-layer perceptrons [Vapnik, 1995].

[T (SErw )Y
v UT(SE )Y + T (S5 Y

¥ = arg max

N

The KDDA method implements an improved D-LDA in
a high-dimensional feature space using a kemel approach.
KDDA introduces a nonlinear mapping {rom the input space
to an implicit high dimensional feature space, where the non-
linear and complex distribution of patterns in the mput space
is "linearized” and "simplified” so that conventional LDA can
be applied.

In Generalized discriminant analysis (GDA), to remove
the null space of , it is required to compute the pseudo in-
verse of the kernel matrix K, which could be extremely 1ll-
conditioned when certain kernels or kemel parameters are
used. Pseudo inversion is based on inversion of the nonzero
eigenvalues.

3. SVM BASED APPROACH FOR CLASSIFICATION

The principle of Support Vector Machine (SVM) [Vapnik,
1995] [8] relies on a linear separation in a high dimension
feature space where the data have been previously mapped, in
order to take into account the eventual non-linearities of the
problem.

3.1. Support Vector Machines (SVM)

Subheadings should appear in lower case (initial word cap-
italized) in boldface. They should start at the left margin
on a separate line. If we assume that, the training set X =
(ri)‘zizl < R where Ithe number of training vectors, R is
the number of modalities, is labeled with two class targetsY =



(43)};_1y> Where :

ye{-1,+1} @:RE-F (8)
Maps the data into a feature space F. Vapnik has proved that
maximizing the minimum distance in space £’ between $(X)
and the separating hyper plane H (w,b) is a good means of
reducing the generalization risk. Where:

H{w,b) ={f € F| <w,f>p+b=0} ©)

where <> 1s inner product. Vapnik also proved that the opti-
mal hyper plane can be obtained solving the convex quadratic
programming (QP) problem:

I
_ 1 2
Mazimize: 5 | w | +CZ;C2' (10)
With : y(<w,P(X) > +b)=zi— ¢ (A1)

Where constant C and slack variables x are introduced to take
into account the eventual non-separability of ¢(X) into F.

In practice this criterion is softened to the minimization
of a cost factor involving both the complexity of the classifier
and the degree to which marginal points are misclassified, and
the tradeoft between these factors is managed through a mar-
gin of error parameter (usually designated C'y which 1s tuned
through cross-validation procedures.

Although the SVM is based upon a linear discriminator, it
is not restricted to making linear hypotheses. Non-linear deci-
sions are made possible by a non-linear mapping of the data to
a higher dimensional space. The phenomenon 1s analogous to
folding a flat sheet of paper into any three-dimensional shape
and then cutting it into two halves, the resultant non-linear
boundary in the two-dimensional space 1s revealed by unfold-
ing the pieces.

The SVM’s non-parametric mathematical formulation al-
lows these transformations to be applied efficiently and im-
plicitly: the SVM’s objective 1s a function of the dot prod-
uct between pairs of vectors; the substitution of the original
dot products with those computed in another space eliminates
the need to transform the original data points explicitly to the
higher space. The computation of dot products between vec-
tors without explicitly mapping to another space is performed
by a kernel function.

The nonlinear projection of the data 1s performed by this
kemnel functions. There are several common kemel functions
that are used such as the linear, polynomial kernel K (z,v) =
< 1,y >qe +a® and the sigmoidal kernel K (x, ) = tanh(<
T,y >qr +a), where z and y are feature vectors in the input
space. The other popular kernel is the Gaussian (or “radial
basis function™) kernel, defined as:

|z — y?

K(z,y) = exp(_ 572 {(12)

Where o is a scale parameter, and z and y are feature-vectors
in the input space. The Gaussian kernel has two hyper para-
meters to control performance C' and the scale parameter. In
this paper we used radial basis function (RBF).

3.2. Multi-class SVM

The standard Support Vector Machines (SVM) 1s designed for
dichotomic classification problem (two classes, called also bi-
nary classification). Several different schemes can be applied
to the basic SVM algorithm to handle the K-class pattern clas-
sification problem. These schemes will be discussed in this
section. The K-class pattern classification problem is posted
as follow [9]:

- Given { i.i.d sample: (z1,w1),..., (z7, 4 ) where z;, for
i =1,..,0is a feature vector of length d and y; = {1,..., k}
1s the class label for data point z;.

- Find a classifier with the decision function, f(z) such
that y = f(z) where y is the class label for «.

The multi-class classification problem is commonly solved
by decomposition to several binary problems for which the
standard SVM can be used. For solving the multi-class prob-
lem are as listed below:

- Using K one-to-rest classifiers (one-against-all).

- Using K (K — 1)/2 pair wise classifiers.

- Extending the formulation of SVM to support the k-class
problem.

4. EXPERIMENTAL RESULTS

In this section, first, we briefly describe our database, and
then, present simulations results for a speaker independent
vowel recognition system.

4.1. DATABASE

We used a subset of clean speech data consisting of 20 male
and 20 female utterances with no background noise were ex-
tracted from FARSI-DAT (most popular Persian speech data-
base) for the-evaluation experiments.

The training material consisted of 100 word for each speaker.
In the database, people do not speak simultaneously. The ut-
terance length 1s between 400 ms and 5s. We made vowels
database by labeling vowels manually in each utterance. Our
database focuses on eight important vowels in Persian lan-
guage (as /af, /Q/. o), [e/, [if. [u/. au], [ei]). We
used 80 percent of our data for training and 20 percent for
evaluation phase.

Specifications of the speech analysis at the acoustic pre-
processor are summarized as follows (in Fig.2):

For example, an industry standard Mel-frequency cepstral
coefficients (IMFCC) front end is typically employed to ex-
tract 12 Mel-frequency cepstral coefficients (MFCC) plus the
log energy at a frame shift of 12.5 ms. In order to model the



Fig. 1. Speech analysis conditions.

Sampling Frequency 8 kHz
Pre-Emphasis 1—-0.98271
Hamming window width 25 ms(200 Point)
Frame period 12.5 ms{100 Point)
LPC analysis order 16-th
Feature parameters MFCC, Delta MFCC, FLE,
Delta PLP, F1, F2

spectral variation of the speech signal, the first and second or-
der derivatives of the 13 coefficients are appended to yield a
total of 39 coefficients per frame. Another popular front end
that can be used for vowel recognition task based on the per-
ceptual linear prediction (PLP) coefficients, first and second
formants (F1 and F2).

4.2. Vowel Recognition System

Our system includes three main stages. In first stage sys-
tem detects vowels then in second stage extracts features with
KDDA feature extraction and in last stage we use SVM as
clagsifier. We will demonstrate the effectiveness of our com-
bined KDDA and SVM proposed method. Tt 1s compared with
LDA, GDA and pure SVM. We use a radial basis function
(RBF) kemel for KDDA and SVM.

We use simple method for vowels detection in continues
speech. Like [10], for detecting vowels the modified loudness
has to be smoothed over time in order to get a kind of envelope
of the modified loudness and the energy envelope.

For each detected vowel, we candidate a fixed length seg-

ment then pass this segment to vowel classification phase (KDDA

+ SVM).
Fig. 2. Speaker independent Vowel Recognition Rate.
Recognition Rate
LDA GDA SVM | KDDA+SVM
Traiming Set | 93.1% | 94.2% | 923 % 96.1 %
Test set 89.2% | 90.8% | 91.4% 939%

The RBF function is selected for the proposed SVM method

and KDDA in the experiments. The selection of scale para-
meter 1s empirical.

In addition, in the experiments the training set is selected
randomly each time, so there exists some fluctuation among
the results. In order to reduce the fluctuation, we do each
experiment 15 times and use the average of them. The best
result is illustrated in Table 2.

5. DISCUSSIONS AND CONCLUSIONS

A new Vowel Recognition method has been introduced in this
paper. The proposed method combines kernel-based method-

ologies with discriminant analysis techniques and SVM clas-
sifier. The kemnel function is utilized to map the original vowel
patterns to a high-dimensional feature space, where the highly
non-convex and complex distribution of patterns 1s simplified,
so that linear discriminant techniques can be used for feature
extraction.

Hxperimental results indicate that the performance of the
KDDA algorithm together with SVM is overall superior to
those obtained by the pure SVM or GDA approaches. In con-
clusion, the KDDA mapping and SVM classifier is a general
pattern recognition method for nonlinearly feature extraction
from high-dimensional input patterns.

We expect that in addition to vowel recognition, KDDA
will provide excellent performance in applications where clas-
sification tasks are routinely performed, such as phoneme recog-
nition and speaker recognition and verification.
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ABSTRACT

In this paper, we discuss the issues in automatic recognition
of vowels in Persian language. The present work focuses on
new statistical method of recognition of vowels as a basic
unit of syllables. First we describe a vowel detection system
then briefly discuss how the detected vowels can feed to
recognition unit. According to pattern recognition, Support
Vector Machines (SVM) as a discriminative classifier and
Gaussian mixture model (GMM) as a generative model
classifier are two most popular techniques. Current state-of-
the-art systems try to combine them together for achieving
more power of classification and improving the
performance of the recognition systems. The main idea of
the study is to combine probabilistic SVM and traditional
GMM pattern classification with some characteristic of
speech like band-pass energy to achieve better classification
rate. This idea has been analytically formulated and tested
on a FarsDat based vowel recognition system. The results
show inconceivable increases in recognition accuracy. The
tests have been carried out by various proposed vowel
recognition algorithms and the results have been compared.

Index Terms— Vowel Recognition, Automatic Speech
Recognition (ASR), Support Vector Machine (SVM),
Gaussian Mixture Model (GMM), Speaker-independent.

1. INTRODUCTION

Some recent researches in speech processing area like
Automatic Speech Recognition (ASR) and speaker
recognition and verification focus on Vowel Recognition
(VR) because of generally spectrally well defined character
of vowels. In fact they improve our ability to recognize
speech significantly, both by human beings and ASR
systems. Therefore the vowel recognition generally plays an
important role [1, 2 and 3].

Previous vowel recognition methods like segmental
trajectory modeling [3] and HMM using cepstra with their
derivatives have some leakage. For example HMM can not
model the trajectories of speech signals effectively
especially for vowels. In segmental trajectory modeling, the

main problem is computational complexity of estimation of
transformation matrix to reduce the high correlation within
the residual error covariance using Minimum Classification
Error (MCE).

In this paper, like traditional segmental modeling
methods [5, 6], we proposed a weighted least square
estimation to estimate the trajectory feature but for reducing
the computational complexity we weaken the updating of
transformation matrix then we used the state-of-the-art
maximum margin classifier, Probabilistic Vector Machines
(PSVM) [9, 10], as a powerfully discriminative function to
compensate lack of accuracy. SVM is an effective and
accurate discriminative model and it has excellent property
of making full use of discriminative information of different
classes in the representation pattern variations.

Generative model such as Gaussian Mixture Model
(GMM) can construct high performance class models for
pattern recognition tasks using statistical information.
Earlier works try to combine generative models, particularly
GMMs and HMMs, with discriminative framework like
SVM [7]. In these systems classifiers are trained to
discriminate between individual frames of data then the
likelihood scores of each frame are combined using an
averaging step [8] to give an overall utterance score from
which the authenticity of the speaker may be determined. In
this paper we introduce a solution to combine weighted
GMM for selecting the SVM training data set to prevail
over an important weakness of SVM in large scale
databases. Therefore we use GMM score (likelihood) for
classifying the easy-to-find members of classes and keep
other hard-to-find members, we can reduce number of
support vectors.

The rest of the paper is organized as follows. In Section
two, we start the analysis by briefly reviewing the SVM and
GMM. Following that in section three, we introduce our
method as a powerful classifier. In Section four, a set of
experiments are presented to demonstrate the effectiveness
of our classifier. The proposed method is compared, in
terms of the classification error rate performance, to other
methods like pure SVM for Speaker-Independent Vowel
Recognition on the FarsDat speech database. Conclusions
are summarized in Section five.



2. SVM CLASSIFIER WITH GMM TRAINING SET
SELECTION

2.1. Support Vector Machines (SVM)

The principle of Support Vector Machine (SVM) relies on a
linear separation in a high dimension feature space where
the data have been previously mapped considering the
eventual non-linearities. Assuming that the training set
X =(x), cR® is labeled with two class targets
Y = (yi)!, with | the number of training vectors, R the real
line and R number of modalities:
yie{-1+1} ®:R® >F 6
Y ,Maps the data into a feature space F. it has been
proved that maximizing the minimum distance in space F
between d(X) and the separating hyper plane H (w,b) is
a good means of reducing the generalization risk [10].
H(w,b)={f eFl<w, f >, +b=0} )
Where, <> is inner product Also, it has been proved that

the optimal hyper plane can be obtained solving the convex
quadratic programming (QP) problem [10]:

1, 2 '
ol +e2.4 @)

with Yilkw,®(X)>+b) >1-& i=1..,l

Where constant C and slack variables x are introduced to
take into account the eventual non-separability of ®(X)
into F. Practically, this criterion is softened to the
minimization of a cost factor involving both the complexity
of the classifier, the degree to which marginal points are
misclassified, and the tradeoff between these factors
through a margin of error parameter (usually designated C)
which is tuned through cross-validation procedures. There
are several common kernel functions that are used such as
the linear, polynomial kernel, sigmoidal kernel and the most
popular one, Gaussian (or "radial basis function™) kernel,
defined as:

Minimize

“x=yf
o)) 4)
Where o is a scale parameter and x, y are feature-vectors
in the input space. The Gaussian kernel has two hyper
parameters of C and o to control the overall performance.
In this paper we used radial basis function (RBF).

K(x,y) =exp(

2.2. Probabilistic SVM

Given training examples x; e ®",i =1..,m, labeled by
yi e{+1,-1}, the binary Support Vector Machine (SVM)
computes a decision function f (x) such that sign (f x))

can be used to predict the label of any test example X .
Instead of predicting the label, many applications require a

posterior class probability P(y =1|x). Platt [9] proposes to

approximate the posterior by a sigmoid function:
1
P(y=1|x)=P,,(X)=
(=110~ Py () 1+exp(Af (x) + B) ®)
The best parameters (A, B) are then estimated by solving
the following regularized maximum likelihood problem
with a set of labeled examples {(x,,y;)}_ (with N, of

the y; s positive and N _ for negative ones):
|

min F(z2) == (t log(p;)+ (Lt log(1- p,)), ®)

i=1

S++; ity =+1
for p,=Pag(x)and t =4 " R
if y=-1
N_+2

2.3. Gaussian Mixture Models

Gaussian Mixture Models (GMM) provides a good
approximation of the originally observed feature probability
density functions by a mixture of weighted Gaussians. The
mixture coefficients were computed using an Expectation
Maximization (EM) algorithm. Each emotion is modeled in
a separate GMM and decision is made on the basis of
maximum likelihood model. We used diagonal covariance
GMM s as baseline classifier. The outputs of GMM are:

M
Powm (chi):zcimN(Xlﬂim’Zim) (7
m=1
Where:

1 1 T -1 (8)
NIX, gz, 5 :7xexp{——(x—y) b) (X—y)}
( im 'm) (27Z)d/2‘2‘1/2 2
Here,C,,, #4nand X, are the weight, mean and
variance, respectively, of the m-th mixture for class i. The
GMM reflects the intra-class information.

3. VOWEL RECOGNITION SYSTEM OVERVIEW

To make a model practical, it is necessary to develop
training and recognition algorithms precisely. Our system
based on two important steps, first step is vowel detection
and second for vowel classification. In following we briefly
describe our steps.

3.1. Vowel detection and recognition

The purpose of this step is creation of system for detection
of vowels then finds the best boundaries of vowels. In fact
this step is a pre-processing for classification step. Outputs
of vowel detection block include two boundaries (start and
end point of vowel) and average likelihood score of each
vowel’s segment. The basis of the suggested model is a
linear fusion of estimated score of GMM's with probabilistic
SVM and traditional band-pass energy for achieving better



performance and accuracy. In rest of this section we
describe proposed vowel recognition system.

3.2. Soft GMM Fitting

The main idea of soft segment modeling on a phoneme
recognition system is proposed in [5] and improved in [6].
In this segmentation method, considers neighbor segment's
vectors in estimating each segment's probability distribution
function (PDF) with suitable weight using a GMM. The
importance of soft segmentation approach may come into
view in the boundary estimation and the recognition phase.
In the training phase, the adjacent segments are playing role
in GMM parameter estimation.

|l o, L,

Ta Ta
@) )

Figure 1. Soft segment modeling versus hard segment modeling.
(a)Hard (b) Soft segment modeling.

We proposed to compute this score (normalized between
0 and 1), called confidence measure (CM), to indicate
reliability of any recognition decision made by vowel
detection system. CM can be computed for every
recognized vowel to indicate how likely it is correctly
recognized and how much we can trust the results for the
utterance.

3.3. Probabilistic SVM Training with GMM?’s Output

The overall training and recognition block diagram of the
developed system is depicted in figure 2. In this proposed
method, we introduce a method that how we can use GMM
for selecting the SVM training data set. An important
weakness of SVM in large scale databases is time
consuming in real time recognition because of its large
numbers of support vectors.

In this case, if we use GMM confidence measure for
choosing the training dataset, we achieve the best support
vectors. We discuss vowel (@,) and non-vowel (w,)

training system, The GMM score is the difference between
the log likelihoods of the two models,
I(X) =log P(X | @;)~log P(X | @, ) ©)
The decision boundary is:
2y

<

I(X) _ tog(R)~log(P,) (10)

Where P; is the A priori probability of e, . If we add ¢
margin for GMM score,

X € wy, if |(X)<|og(pp—1J—g
2

X € wy, if I(X)>Iog[§—1]+s (11)
2

X pass to SVM classifier if otherwise

That ¢ is calculated experimentally. It is clear that the
value of & is very important for generalization charact-
eristic of classifier.

3.4. Classification with linear combined models' outputs

In this section, we proposed a linear model for vowel
recognition based on combining the outputs of soft GMM
models (vowel and non-vowel classes), the probabilistic
output of PSVM and band-pass energy. The overall training
block diagram of the developed system is depicted in figure
1. We suggested for calculation of vowel boundaries first
we must estimate P(Vowel | X ):
P(Vowel | X )= (0.3)G(X)
+(0.5)Pgyy (X |Vowel) +(0.2)Pug,, (X)
Where P(Vowel | X) is probability of input vector X is
member of vowel class, P,,, (X |Vowel)is output of soft

GMM fitted to vowel class, P, (X)is output of PSVM

PSVI
and g(x) is band-pass energy of frame. Like vowel class
we can calculate P(NonVowel | X ) for non vowel class:
P(NonVowel | X )= (0.3)(1-G(X))
+(0.5) Py, (X | NonVowel ) + (0.2)Pogyy (X)

Wherep_,. (X | NonVowel)is the output of soft GMM
fitted to non-vowel class. The underlying goal of classifier
combination theory is to identify the conditions under which
the combination of an ensemble of classifiers vyields
improved performance compared to the individual
classifiers. We can find the vowels boundaries with contact
points of P(Vowel | X ) and P, (X | NonVowel) curves.

(12)

(13)

4. EXPERIMENTAL RESULTS

The proposed method has been verified on a subset of clean
speech data consisting of 30 male and 25 female utterances
with no background noise were extracted from FARSI-DAT
(most popular Persian speech database) for the-evaluation
experiments. The training material consisted of 30 complete
sentences for each speaker. We made vowels database by
labeling vowels manually in each utterance. Our database
focuses on eight important vowels in Persian language (as
fal, 1@/, lol, lel, lil, lul, faul, [eil). We used 80 percent of our
data for training and 20 percent for evaluation phase.
Specifications of the speech analysis at the acoustic pre-
processor are summarized as follows (in Table 1):
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Figure 1 — Block Diagram of (a) Training phase (b) Vowel Recognition system.

In training phase, we searched for the best number of
mixtures in soft GMM model experimentally. For vowel
class, GMM have been trained with 80 mixtures and for
non-vowel class, with 170 mixtures. Although this may
increase the computational cost, it would be ignorable in
comparison with Viterbi search computational cost.

In recognition phase, the results compared by
equivalent system using HMM. In overall, our method
improved about 1% in averaged recognition rate. Accuracy
matrix for proposed speaker independent vowel recognition
is illustrated in Table 2.

Sampling Frequency 8 kHz

Pre-Emphasis 1-0.98z"

Hamming window width 25 ms(200 Point)

Frame period 12.5 ms(100 Point)

LPC analysis order 16-th

Feature parameters MFCC, Delta MFCC,

Delta Log-Energy

Table 1. Speech analysis conditions

Uttered Vowel

lal @/ | lof lel lil ful | fau/

lal 94.9 2.1 0.3 0.5 0.1 0.1 0.1

@/ 14 95.2 0.1 0.8 0.3 0.4 0.2

[0/ 0.8 0.4 96.1 3.7 0.4 0.2 0.4

lel 0.4 0.5 2.1 93.2 0.3 0.1 0.1

fil 05 1.1 0.3 0.4 95.1 1.1 1.4

u/ 0.9 0.4 0.7 0.6 2.9 96.1 0.6

Recognized Vowel

fau/ 11 0.3 04 0.8 0.9 2.1 97.2

Table 2. Accuracy matrix for Vowel Recognition system
5. DISCUSSIONS AND CONCLUSIONS

A simple and efficient statistical Vowel Recognition method
has been introduced in this paper. This method improved
accuracy of vowel recognition with combining GMM, SVM
and Band-pass Energy. The main feature of this model is the
toleration of gradual inter-segmental conversion. The model
is very promising in both recognition rate and
computational complexity aspects. The proposed method
has the ability to reduce support vectors significantly. This
reduction leads us to improve the speed of SVM classifier
also using the GMM help us achieving more accuracy. The
main advantage of this model is a drastic reduction of

recognition time. The remained open problems are the soft
window shape, fast methods for both GMM recognition and
training, and the coefficients of each combined classifiers
(e.g. SVM, GMM and Band-Pass Energy) on this duration
modeling approach, which their studies are all in progress
now.
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Recently, Adaboost has been widely used to improve the accuracy of any given learning algorithm. In this
paper we focus on designing an algorithm to employ combination of Adaboost with Support Vector
Machine (SVM) as weak component classifiers to be used in Face Detection Task. To obtain a set of
effective SVM-weaklearner Classifier, this algorithm adaptively adjusts the kernel parameter in SVM
instead of using a fixed one. Proposed combination outperforms in generalization in comparison with SVM
on imbalanced classification problem. The proposed here method is compared, in terms of classification
accuracy, to other commonly used Adaboost methods, such as Decision Trees and Neural Networks, on
CMU+MIT face database. Results indicate that the performance of the proposed method is overall superior

to previous Adaboost approaches.

1 INTRODUCTION

Nonlinear classification of data is always of special
attention. Face Detection is a problem dealing with
such data, due to large amount of variation and
complexity brought about by changes in facial
appearance, lighting and expression. Feature
selection is needed beside appropriate classifier
design to solve this problem, like many other pattern
recognition tasks.

One of the major developments in machine learning
in the past decade is the Ensemble method, which
finds a highly accurate classifier by combining many
moderately accurate component classifiers. Two of
the commonly used techniques for constructing
Ensemble classifiers are Boosting [schaphire, 2002]
and Bagging [Breiman, 1996]. In Comparison with
Bagging, Boosting outperforms when the data do not
have much noise [Opitz, 1999] [Bauer, 1999]
.Among popular Boosting methods, AdaBoost
[Freund, 1997] establishes a collection of weak

component classifiers by maintaining a set of
weights over training samples and adjusting them
adaptively after each Boosting iteration: the weights
of the misclassified samples by current component
classifier will be increased while the weights of the
correctly classified samples will be decreased. To
implement the weight updates in Adaboost, several
algorithms have been proposed [Kuncheva, 2002].
The success of AdaBoost can be attributed to its
ability to enlarge the margin [schapire, 1998], which
could enhance AdaBoost’s generalization capability.
Decision Trees [Dietterich, 2000] or Neural
Networks [Schwenk, 2000] [Ratsch, 2001] have
already been employed as component classifiers for
AdaBoost.  These  studies showed  good
generalization performance of these AdaBoost.
However, determining the suitable tree size is a
question when Decision Trees are used as
component classifiers. Also, controlling the
complexity in order to avoid over fitting will remain
a question, when Radial Basis Function (RBF)
Neural Networks are used as component classifiers.



Moreover, we have to decide on the optimum
number of centers and also on setting the width
values of the RBFs. All these factors have to be
carefully tuned in practical use of AdaBoost.
Furthermore, diversity is known to be an important
factor which affects the generalization accuracy of
Ensemble classifiers [Melville, 2005][Kuncheva,
2002]. In order to quantify the diversity, some
methods are proposed [Kuncheva, 2003] [Windeatt,
2005]. It is also known that in AdaBoost exists an
accuracy/diversity dilemma [Dietterich, 2000],
which means that the more accurate two component
classifiers become, the less they can disagree with
each other. Only when the accuracy and diversity are
well balanced, can the AdaBoost demonstrate
excellent generalization performance. However, the
existing AdaBoost algorithms do not yet explicitly
taken sufficient measurement to deal with this
problem. Support Vector Machine [Vapnick, 1998]
was developed based on the theory of Structural
Risk Minimization. By using a kernel trick to map
the training samples from an input space to a high
dimensional feature space, SVM finds an optimal
separating hyper plane in the feature space and uses
a regularization parameter, C, to control its model
complexity and training error. One of the popular
kernels used by SVM is the RBF kernel, including a
parameter known as Gaussian width, 6. In contrast
to the RBF networks, SVM with the RBF kernel
(RBFSVM in short) can automatically determine the
number and location of the centers and the weight
values [Scholkopf, 1997]. Also, it can effectively
avoid over fitting by selecting proper values of C
and o. From the performance analysis of RBFSVM
[Valentini, 2004], we know that ¢ is a more
important parameter compared to C: although
RBFSVM cannot learn well when a very low value
of C is used, its performance largely depends on the
o value if a roughly suitable C is given. This means
that, over a range of suitable C, the performance of
RBFSVM can be conveniently changed by simply
adjusting the value of o.

The proposed here method is compared, in terms of
classification accuracy, to other commonly used
Adaboost methods, such as Decision Trees and
Neural Networks, on CMU+MIT face database.
Results indicate that the performance of the
proposed method is overall superior to those of
traditional adaboost approaches.

2 FEATURE SELECTION

In this paper, like Viola and Jones [Viola and
Jones 2001], we use four types of Haar-like basis
functions for feature selection which have been used
by Papageorgiou et al [Papageorgiou et al 1998].
Like their work, we use four types of haar-like
feature to build the feature pool. The feature can be
computed efficiently with integral image. The main
objective to use these features is that they can be
rescaled easily which avoids to calculate a pyramid
of images and yields to fast operation of the system
on these features. These features can be seen in
figurel. Given that the base resolution of the
detector is 32x32, the exhaustive set of rectangle
features is quite large, over 180,000. Note that
unlike the Haar basis, the set of rectangle features is
overcomplete. For each scale level, we rescale the
features and record the relative coordinate of the
rescaled features to the top-left of integral image in
look-up-table (LUT). After looking up the value of
the rescaled rectangle’s coordinate, we calculate
features with relative coordinate. Like viola, we use
image variance ¢ to correct lighting, which can be
got using integral images of both original image and
image squared. Rescaling needs to round rescaled
coordinates to nearest integer, which would degrade
the performance of viola’s features [Lienhart 2003].
Like R. Lienhart [Lienhart 2003], we normalize the
features by acreage, and thus reduce the rounding
error.

C D

Figure 1: Example rectangle features shown relative to the
enclosing detection window. The sum of the pixels which lie
within the white rectangles is subtracted from the sum of pixels in
the grey rectangles. Two-rectangle features are shown in (A) and
(B). Figure (C) shows a three-rectangle feature, and (D) a four-
rectangle feature.

Using the integral image any rectangular sum
can be computed in four array references (see Figure
2). Clearly the difference between two rectangular
sums can be computed in eight references. Since the
two-rectangle features defined above involve
adjacent rectangular sums they can be computed in



six array references, eight in the case of the three-
rectangle features, and nine for four-rectangle
features.

Figure 2: The sum of the pixels within rectangle D can be
computed with four array references. The value of the integral
image at location 1 is the sum of the pixels in rectangle A. The
value at location 2 is A+B, at location 3 is A+C, and at location 4
is A+B+C+D. The sum within D can be computed as 4+1-(2+3).

3 STATISTICAL LEARNING

In this section, we describe boost based learning
methods to construct face/nonface classifier, and
propose a new boosting algorithm which improves
boosting learning.

3.1 AdaBoost Learning

Given a set of training samples, AdaBoost
[Schapire and Singer 1999] maintains a probability
distribution, W, over these samples. This distribution
is initially uniform. Then, AdaBoost algorithm calls
Weak Learn algorithm repeatedly in a series of
cycles. At cycle T, AdaBoost provides training

samples with a distribution W' to the WeakLearn
algorithm.

AdaBoost, constructs a composite classifier by
sequentially training classifiers while putting more
and more emphasis on certain patterns.

For two class problems, we are given a set of N
labeled training examples(y,,x,),...,(y,, Xy ), Where

Y, e{+1,—1} is the class label associated with
example X; .

For face detection, X; is an image sub-window of

a fixed size (for our system 24x24) containing an
instance of the face(yi = +1) or non-face (yi = —1)

pattern. In the notion of AdaBoost see Algorithm 1,
a stronger classifier is a linear combination of M
weak classifiers.

In boosting learning [9, 26, 10], each example

X; is associated with a weightW; , and the weights

are updated dynamically using a multiplicative rule
according to the errors in previous learning so that

more emphasis is placed on those examples which
are erroneously classified by the weak classifiers
learned previously.

Greater weights are given to weak learners with
lower errors. The important theoretical property of
AdaBoost is that if the weak learners consistently
have accuracy only slightly better than half, then the
error of the final hypothesis drops to zero
exponentially fast. This means that the weak learners
need be only slightly better than random.

Furthermore, since proposed AdaBoost with
SVM invents a convenient way to control the
classification accuracy of each weak learner, it also
provides an opportunity to deal with the well-known
accuracy/diversity dilemma in Boosting methods.
This is a happy accident from the investigation of
AdaBoost based on SVM weak learners.

Algorithm 1. The AdaBoosAlgorithm [Schapire and Singer] .

1. Input: Training sample
Input: a set of training samples with Iabels(yl,x1 ),m,(yN >XN) ,

ComponentLearn algorithm, the number of cycles T.

2. Initialize: the weights of training samples: Wi1 =1/ N, for all
i=1..,N

3.Dofort=1,...,T

(1)Use ComponentLearn algorithm to train the component

classifier ht on the weighted training sample set.

(2)Calculate the training error of ht :

N
& :gwit’yi 7'&ht(xi)'

(3)Set weight of component classifier ht :

h :e, :;ln[l_aj
8t

(4)Update the weights of training samples:
t
Wil W exp{—oztyiht (x; )}
I C .
where C, is a normalization constant, and

iwi‘” =1
4. Output: f(X)= sign(iath[(x))-

3.2 SVM Based Approach for
Classification

The principle of Support Vector Machine (SVM)
relies on a linear separation in a high dimension
feature space where the data have been previously



mapped, in order to take into account the eventual
non-linearities of the problem.
If we assume that, the

X = (X)), cR® where | is the number of

training vectors, R stands for the real line and R is
the number of modalities, is labelled with two class

targets Y = (Yi)|_,, where :

training  set

in{—1,+1} ®:RR S F ()

Maps the data into a feature space F. Vapnik has
proved that maximizing the minimum distance in
space F between ®(X) and the separating hyper
plane H(w,b) is a good means of reducing the

generalization risk.
Where:

Hwb)={f eF|<w, > +b=0},

(<> isinner product)

Vapnik also proved that the optimal hyper plane

can be obtained solving the convex quadratic
programming (QP) problem:

2

Minimize

1, 2 '
EHWH +CZ_;§' 3)
with Y(<W,O(X)>+b)>1-& i=1,..,

Where constant C and slack variables x are
introduced to take into account the eventual non-
separability of @(X) into F.

In practice this criterion is softened to the
minimization of a cost factor involving both the
complexity of the classifier and the degree to which
marginal points are misclassified, and the tradeoff
between these factors is managed through a margin
of error parameter (usually designated C) which is
tuned through cross-validation procedures.

Although the SVM is based upon a linear
discriminator, it is not restricted to making linear
hypotheses. Non-linear decisions are made possible
by a non-linear mapping of the data to a higher
dimensional space. The phenomenon is analogous to
folding a flat sheet of paper into any three-
dimensional shape and then cutting it into two
halves, the resultant non-linear boundary in the two-
dimensional space is revealed by unfolding the
pieces.

The SVM’s non-parametric =~ mathematical
formulation allows these transformations to be

applied efficiently and implicitly: the SVM’s
objective is a function of the dot product between
pairs of vectors; the substitution of the original dot
products with those computed in another space
eliminates the need to transform the original data
points explicitly to the higher space. The
computation of dot products between vectors
without explicitly mapping to another space is
performed by a kernel function.

The nonlinear projection of the data is performed
by this kernel functions. There are several common
kernel functions that are used such as the linear,

. d
polynomial kernel (K(X,Yy)=(<X,y > +1)
and the sigmoidal kernel
(K(X,y) = tanh(< X,y >_; +a)), where x and

y are feature vectors in the input space.
The other popular kernel is the Gaussian (or
"radial basis function") kernel, defined as:

—[x=y’

4
21 ) )

K(X,y) = exp(

Where O is a scale parameter, and x and y are
feature-vectors in the input space. The Gaussian
kernel has two hyper parameters to control
performance C and the scale parameter o . In this
paper we used radial basis function (RBF).

3.3 AdaBoosted SVM-Based Component
Classifier

We combine SVM with AdaBoost to improve its
capability in classification. When applying Boosting
method to strong component -classifiers, these
classifiers must be appropriately weakened in order
to benefit from Boosting [Dietterich 2000].

Like Schapire and Singer, we used resampling to
train AdaBoost, in this problem we must train weak
classifiers (SVM classifier) to obtain best Gaussian
width, ¢ and the regularization parameter, C, for
optimizing strong classifier (AdaBoost classifier).

Hence, SVM with RBF kernel is used as weak
learner for AdaBoost, a relatively large o value,
which corresponds to a SVM with RBF kernel with
relatively weak learning ability, is preferred. Both
resampling and reweighting can be used to train
AdaBoost. The algorithm is shown in the following
diagram.



Algorithm 2. The AdaBoost with SVM Algorithm.

1. Input: Training sample
Input: a set of training samples with labels (yqu ),m,(yN ,XN) R

The initial O =G, ,

(¢ ()

min 2 " step
2. Initialize: the weights of training samples: Wil =1/N, for all

i=1..,N

3. Do while G > O ;1
(1)Use RBFSVM to train on the weighted training sample set.
(2)Calculate the training error of ht :

N
" :IZ:]:Wit’yi ¢ht(xi)'

(3)ife, > 5 ,decrease O value by G and goto(1)

step

(4)Set weight of component classifier ht :

h, : e, :iln(l_g‘J
gl

(5)Update the weights of training samples:
t
e Wy exp{—o:tyiht (x; )}
1 (:l
where C‘ is a normalization constant, and

iwim -1
4. Output: f (X) = SIQH(EO!J’\[(X))

4 EXPERIMENTAL RESUTTS

4.1 Database

We tested our system on the MIT+CMU frontal
face test set [Rowley et al. 1994] and own database.
There are more than 2,500 faces in total. To train the
detector, a set of face and nonface training images
were used. The pairwise recognition framework is
evaluated on a compound face database with 2000
face images hand labelled faces scaled and aligned
to a base resolution 32 by 32 pixels by the centre
point of the two eyes and the horizontal distance
between the two eyes. For non-face training set, an
initial 10,000 non-face samples were selected
randomly from 15,000 large images which contain
no face.

4.2 Face Detection System

We explain our face detection system and show
how to construct a AdaBoosted SVM-based
component classifier for face detection. The learning
of a detector is done as follows:

1. A set of simple Haar wavelet features are
used as candidate features. There are tens of
thousands of such features for a 32x32
window.

2. A subset of them are selected and the
corresponding ~ weak  classifiers  are
constructed, using AdaBoosted SVM-based
component classifier learning.

3. A strong classifier is constructed as a linear
combination of the weak ones.

4. A detector is composed of one or several
strong classifiers in cascade.

The detector pyramid is then built upon the

learned detectors [Li and Zhang 2004].

4.3 Results

The SVM-based component classifier and
AdaBoost algorithm are used for the classification of
each pair of individuals. We compare the detection
rates to other commonly used Adaboost methods,
such as Decision Trees and Neural Networks, on
face database.

For showing the performance of our AdaBoosted
svm-based component classifier algorithm, the
results are shown in Table 1.

False detections
120 | 200
Detector
Adaboost with SVM 541 | 1.85
Adaboost with Decision Trees 9.81 | 2.42
Adaboost with Neural Networks | 14.51 | 5.41
Table 1: Comparison of Error rate (%) for some AdaBoost
methods.

A ROC curve showing the performance of our
detector on this test set is shown in Figure 3 and
Some results are shown in Figure 4.
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5 CONCLUSIONS

AdaBoost with properly designed SVM-based
component classifiers is proposed in this paper,
which is achieved by adaptively adjusting the kernel
parameter to get a set of effective component
classifiers. Experimental results on CMU+MIT
database for Face Detection demonstrated that
proposed AdaBoostSVM algorithm performs better
than other approaches of using component classifiers
such as Decision Trees and Neural Networks in
accuracy and speed. Besides these, it is found that
proposed AdaBoostSVM algorithm demonstrated
good performance on imbalanced classification
problems. Based on the AdaBoostSVM, an
improved version is further developed to deal with
the accuracy/diversity dilemma in Boosting
algorithms, giving rising to better generalization
performance. Experimental results indicate that the
performance of the cascaded adaboost classifier with
SVM is overall superior to those obtained by the NN
and Decision Tree.
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Abstract: Applications such as Face Recognition (FR)
that deal with high-dimensional data need a mapping
technique that introduces representation of low-
dimensional features with enhanced discriminatory
power and a proper classifier, able to classify those
complex features .Most of traditional linear
discriminant  analysis (LDA) suffer from the
disadvantage that their optimality criteria are not
directly related to the classification ability of the
obtained  feature representation. Moreover, their
classification accuracy is affected by the “small sample
size” (SSS) problem which is often encountered in FR
tasks. In this short paper, we combine nonlinear kernel
based mapping of data called KDDA with Support
Vector machine (SVM) classifier to deal with both of the
shortcomings in an efficient and cost effective manner.
The proposed here method is compared, in terms of
classification accuracy, to other commonly used FR
methods on UMIST face database. Resulls indicate that
the performance of the proposed method is overall
superior to those of traditional FR approaches, such as
the Eigenfaces, Fisherfaces, and D-LDA methods and
traditional linear classifiers.

Keywords: Face Recognition, Kernel Direct
Discriminant Analysis (KDDA), small sample size
problem (SSS), Support Vector Machine (SVM).

1 Introduction

Selecting appropriate features to represent faces
and proper classification of these features are two
central issues to face recognition (FR) systems. For
feature selection, successful solutions seem to be

121

appearance-based approaches, (see [3], [2] for a
survey), which directly operate on images or
appearances of face objects and process the images
as two-dimensional (2-D) holistic patterns, to
avoid difficulties associated with  Three-
dimensional (3-D) modelling, and shape or
landmark detection [2]. For the purpose of data
reduction and feature extraction in the appearance-
based approaches, Principle component analysis
(PCA) and linear discriminant analysis (LDA) are
introduced as two powerful tools. Eigenfaces [4]
and Fisherfaces [5] built on the two techniques,
respectively, are two state-of-the-art FR methods,
proved to be very successful. It is generally
believed that, LDA based algorithms outperform
PCA based ones in solving problems of pattern
classification, since the former optimizes the low-
dimensional representation of the objects with
focus on the most discriminant feature extraction
while the latter achieves simply object
reconstruction. However, many LDA based
algorithms suffer from the so-called “small sample
size problem” (SSS) which exists in high-
dimensional pattern recognition tasks where the
number of available samples is smaller than the
dimensionality of the samples. The traditional
solution to the SSS problem is to utilize PCA
concepts in conjunction with LDA (PCA+LDA) as
it was done for example in Fisherfaces [11].
Recently, more effective solutions, called Direct
LDA (D-LDA) methods, have been presented {12},
[13]. Although successful in many cases, linear
methods fail to deliver good performance when
face patterns are subject to large variations in
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viewpoints, which results in a highly non-convex _ (M
and complex distribution. The limited success of Serw = Z Ci (¢ ¢X¢ ¢)f
these methods should be attributed to their linear @)
nature [14]. Kernel discriminant analysis = -z z (¢,, 9, )(¢,, ¢,)
algorithm, (KDDA) generalizes the strengths of the =) sl
recently presented D-LDA [1] and the kernel Where ¢, =§(Z,), ¢ _ Z ¢( )15 the mean of

techniques while at the same time overcomes many
of their shortcomings and limitations.

In this work, we first nonlinearly map the original
input space to an implicit high-dimensional feature
space, where the distribution of face patterns is
hoped to be linearized and simplified. Then,
KDDA method is introduced to effectively solve
the SSS problem and derive a set of optimal
discriminant basis vectors in the feature space. And
then SVM approach is used for classification.

The rest of the paper is organized as follows. In
Section tow, we start the analysis by briefly
reviewing KDDA method. Following that in
section three, SVM is introduced and analyzed as a
powerful classifier. In Section four, a set of
experiments are presented to demonstrate the
effectiveness of the KDDA algorithm together with
SVM classifier on highly nonlinear, highly
complex face pattern distributions. The proposed
method is compared, in terms of the classification
error rate performance, to KPCA, GDA and
KDDA algorithm with nearest neighbour classifier
on the multi-view UMIST face database.
Conclusions are summarized in Section five.

2 Kernel Direct Discriminant Analysis
(KDDA)

2.1. Linear Discriminant Analysis

In the statistical pattern recognition tasks, the
problem of feature extraction can be stated as
follows: Assume that we have a training set, {7 }*

i=l
is available. Each image is defined as a vector of
length N(=1,x1,), i.e. Z e RY where I, x I, is the
face image size and R”denotes a N-dimensional
real space [1].

It is further assumed that each image belongs to
one of C classes {Z, }il The objective is to find a
transformation ¢, based on optimization of certain
separability = criteria, which  produces a
mapping y, = ¢(Z,), with y, e R" that leads to an
enhanced separability of different face objects.

Let S, and S,,,, be the between- and within-class

scatter matrices in the feature space F respectively,
expressed as follows:
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l]l

class Z and ¢ = Z Z ¢( )15 the average of
i=l j=1

the ensemble.

The maximization can be achieved by solving the

following eigenvalue problem:

T 3)
® = arg max |2 @]
|©7 8y @]
The feature space F could be considered as a
“linearization ~ space” [6], however, its
dimensionality could be arbitrarily large, and

possibly infinite. Solving this problem lead us to
LDAT1].
Assuming that is S, nonsingular and ®the

basis vectors correspond to the M first
eigenvectors with the largest eigenvalues of the
discriminant criterion:
J=tr(Sypm S gy ®) @
The M-dimensional representation is then obtained
by projecting the original face images onto the
subspace spanned by the eigenvectors.
Discriminant  Analysis

2.2. Kernel Direct

(KDDA)

The maximization process in (3) is not directly
linked to the classification error which is the
criterion of performance used to measure the
success of the FR procedure. Modified versions of
the method, such as the Direct LDA (D-LDA)
approach, use a weighting function in the input
space, to penalize those classes that are close and
can potentially lead to misclassifications in the
output space.

Most LDA based algorithms including Fisherfaces
[7] and D-LDA [9] utilize the conventional
Fisher’s criterion denoted by (3).

The introduction of the kernel function allows us to
avoid the explicit evaluation of the mapping. Any
function satisfying Mercer’s condition can be used
as a kernel, and typical kernel functions include
polynomial function, radial basis function (RBF)
and multi-layer perceptrons [10].

|©7 Sy @
|(CD SBTW(D)+ ((D Sy @ ]

*)

D =arg max
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The KDDA method implements an improved D-
LDA in a high-dimensional feature space using a
kernel approach.

KDDA introduces a nonlinear mapping from the
input space to an implicit high dimensional feature
space, where the nonlinear and complex
distribution of patterns in the input space is
“linearized” and “simplified” so that conventional
LDA can be applied and it effectively solves the
small sample size (SSS) problem in the high-
dimensional feature space by employing an
improved D-LDA algorithm.

Unlike the original D-LDA method of [10] zero
eigenvalues of the within-class scatter matrix are
never used as divisors in the improved one. In this
way, the optimal discriminant features can be
exactly extracted from both of inside and outside
of Sy, °s null space.

In GDA, to remove the null space of SWTH, it is
required to compute the pseudo inverse of the
kernel matrix K, which could be extremely ill-
conditioned when certain kernels or kernel
parameters are used. Pseudo inversion is based on
inversion of the nonzero eigenvalues.

3 SVYM Based Approach for Classification

The principle of Support Vector Machine (SVM)
relies on a linear separation in a high dimension
feature space where the data have been previously
mapped, in order to take into account the eventual
non-linearities of the problem.

3.1. Support Vector Machines (SVM)

If we assume that, the training set
X =(xu), cR® where [ is the number of

training vectors, R stands for the real line and R is
the number of modalities, is labelled with two class

targets ¥ = ( y,-)f=l , where :
yef1+1} ®:RESF (5)
Maps the data into a feature space F. Vapnik has

proved that maximizing the minimum distance in
space F between &®(x) and the separating hyper

plane H(w,b) is a good means of reducing the

generalization risk. Where:

Hw,b)={feFl<w,f>F+b=0},
(<> is inner product)

Vapnik also proved that the optimal hyper plane
can be obtained solving the convex quadratic
programming (QP) problem:

(6)
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Minimize %"wﬂz +cZ§i ™
i=l
with w<w, O(X)>+b)yz1-& i=1,..,1

Where constant C and slack variables x are
introduced to take into account the eventual non-
separability of ®(X) into F.

In practice this criterion is softened to the
minimization of a cost factor involving both the
complexity of the classifier and the degree to
which marginal points are misclassified, and the
tradeoff between these factors is managed through
a margin of error parameter (usually designated C)
which is tuned through cross-validation
procedures.

Although the SVM is based upon a linear
discriminator, it is not restricted to making linear
hypotheses. Non-linear decisions are made
possible by a non-linear mapping of the data to a
higher dimensional space. The phenomenon is
analogous to folding a flat sheet of paper into any
three-dimensional shape and then cutting it into
two halves, the resultant non-linear boundary in the
two-dimensional space is revealed by unfolding the
pieces.

The SVM’s non-parametric  mathematical
formulation allows these transformations to be
applied efficiently and implicitly: the SVM’s
objective is a function of the dot product between
pairs of vectors; the substitution of the original dot
products with those computed in another space
eliminates the need to transform the original data
points explicitlty to the higher space. The
computation of dot products between vectors
without explicitly mapping to another space is
performed by a kernel function.

The nonlinear projection of the data is performed
by this kernel functions. There are several common
kernel functions that are used such as the linear,

polynomial kernel (K(x,y)=(sx.y+a)?) and
the sigmoidal kernel (K(x, y) =tanh(sx.y + a)),
where x and y are feature vectors in the input
space.
The other popular kernel is the Gaussian (or "radial
basis function") kernel, defined as:

®

2
oAy
(207)
Where o is a scale parameter, and x and y are
feature-vectors in the input space. The Gaussian
kernel has two hyper parameters to control

performance C and the scale parametero . In this
paper we used radial basis function (RBF).

K(x,y) = exp(
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3.2. Multi-class SVM

The standard Support Vector Machines (SVM) is
designed for dichotomic classification problem
(two classes only, called also binary classification).
Several different schemes can be applied to the
basic SVM algorithm to handle the K-class pattern
classification problem. These schemes will be
discussed in this section. The K-class pattern
classification problem is posted as follow:

Given [ iid. sample: (xi,),...,(x, 1)
where Xi , for i =1,...,/ is a feature vector
of length d and yi={l,...,k} is the class
label for data pointXi.

Find a classifier with the decision function,
f(x) such that y= f(x) where y is the
class label for x .

The multi-class classification problem is
commonly solved by decomposition to several
binary problems for which the standard SVM can
be used.

For solving the multi-class problem are as listed
below:

Using K one-to-rest classifiers (one-
against-all)

Using k(k —1)/2 pair wise classifiers
Extending the formulation of SVM to
support the k-class problem.

3.2.1. Combination of one-to-rest classifiers

This scheme is the simplest, and it does give
reasonable results. K classifiers will be
constructed, one for each class. The K-th classifier
will be trained to classify the training data of class
k against all other training data. The decision
function for each of the classifier will be combined
to give the final classification decision on the K-
class classification problem. In this case the
classification problem to k classes is decomposed
to k dichotomy decisions f(x),me K =1,...,k

where the rule f«(x) separates training data of the

m-th class from the other training patterns. The
classification of a pattern x is performed according
to maximal value of functions fu(x) ,meK,

K =1,...,k i.e. the label of ¥ is computed as:

(%) = arg(max(fu(x)) ®)

3.2.2. Pair wise Coupling classifiers

The schemes require a binary classifier for each
possible pair of classes. The decision function of
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the SVM classifier for yi-to- y2 and y2-to- yrhas
reflectional symmetry in the zero planes. Hence
only one of these pairs of classifier is needed. The
total number of classifiers for a K-class problem
will then be k(k —1)/2. The training data for each
classifier is a subset of the available training data,
and it will only contain the data for the two
involved classes. The data will be reliable
accordingly, i.e. one will be labeled as +1 while
the other as -1. These classifiers will now be
combined with some voting scheme to give the
final classification results. The voting schemes
need the pair wise probability, i.e. the probability
of x belong to class i given that it can be only
belong to class i or j.

The output value of the decision function of an
SVM is not an estimate of the p.d.f. of a class or
the pair wise probability. One way to estimate the
required information from the output of the SVM
decision function is proposed by (Hastie and
Tibshirani, 1996) The Gaussian p.d.f. of a
particular class is estimated from the output values
of the decision function, f(x), for all x in that

class. The centroid and radius of the Gaussian is
the mean and standard deviation of f(x)

respectively.

4. EXPERIMENTS AND RESULTS

4.1 Database

In our work, we used a popular face databases (The
UMIST [13]), for demonstrating the effectiveness
of our combined KDDA and SVM proposed
method. It is compared with KPCA, GDA and
KDDA algorithm with nearest neighbor classifier.
We use a radial basis function (RBF) kernel
function:

2
Jx-f ) (10)
(207%)
Where ¢ is a scale parameter, and x and y are
feature-vectors in the input space. The RBF
function is selected for the proposed SVM method
and KDDA in the experiments. The selection of
scale parameter o is empirical.
In addition, in the experiments the training set is
selected randomly each time, so there exists some
fluctuation among the results. In order to reduce
the fluctuation, we do each experiment more than
10 times and use the average of them.

K(x, y) = exp(

4.2 UMIST Database
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The UMIST repository is a multi-view database,
consisting of 575 images of 20 people, each
covering a wide range of poses from profile to
frontal views. Figure 1 depicts some samples
contained in the two databases, where each image
is scaled into (112 92), resulting in an input
dimensionality of N = 10304.

For the face recognition experiments, in UMIST
database is randomly partitioned into a training set
and a test set with no overlap between the two set.
We used ten images per person randomly chosen
for training, and the other ten for testing. Thus,
training set of 200 images and the remaining 375
images are used to form the test set.

o B ©
Figure 1: Some sample images of four persons
randomly chosen from the UMIST database.

It is worthy to mention here that both experimental
setups introduce SSS conditions since the number
of training samples are in both cases much smaller
than the dimensionality of the input space [1].

On this database, we test the methods with
different training samples and testing samples
corresponding the training number k=2, 3, 4,
5,6,7,8 of each subject. Each time randomly select
k samples from each subject to train and the other
10 - K to test. The experimental results are given

in the table 1.

Table 1. Recognition rate (%) on the UMIST database

Our method KDDA | KPCA | GDA

(KDDA+SVM) | +NN*
2 81.8 81.9 75.5 71.5
3 83.5 83.4 76.2 72.8
4 87.3 854 77.1 74.5
5 90.4 87.9 79.3 75.1
6 94.1 89.1 83.4 79.0
7 96.0 93.9 87.1 82.1
10 96.5 95.2 89.1 83.0

* Nearest Neighbour

Figure 2 depicts the first two most discriminant
features extracted by utilizing KDDA respectively
and we show the decision boundary for first 6
classes for training data in Combination of one-to-
rest classifier SVM.

The only kernel parameter for RBF is the scale
valueg? for SVM classifier. Figure.4 shows the
error rates as functions ofg?, when the optimal
number of feature vectors (M is optimum) is used.
As such, the average error rates of our method with
RBF kernel are shown in Figure 5. It shows the
error rates as functions of M within the range from
2t0 19 (&* is optimum).

S Discussions and Conclusions

A new FR method has been introduced in this
paper. The proposed method combines kemel-
based methodologies with discriminant analysis
techniques and SVM classifier. The kernel
function is utilized to map the original face
patterns to a high-dimensional feature space, where
the highly non-convex and complex distribution of
face patterns is simplified, so that linear
discriminant techniques can be used for feature
extraction. The small sample size problem caused
by high dimensionality of mapped patterns is
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! Figure 2: The decision boundary for Figure 4: Comparison of error rates
| first 6 classes for training data based on RBF kernel function.
(Combination of one-to-rest classifier
SVM)

Figure 3: error rates as functions o’ of
SVM. (a2, =5x10° [1])
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addressed by a kernel-based D-LDA technique
(KDDA) which exactly finds the optimal
discriminant subspace of the feature space without
any loss of significant discriminant information.
Then feature space will be fed to SVM classifier.
Experimental results indicate that the performance
of the KDDA algorithm together with SVM is
overall superior to those obtained by the KPCA or
GDA approaches. In conclusion, the KDDA
mapping and SVM classifier is a general pattern
recognition method for nonlinearly feature
extraction from high-dimensional input patterns
without suffering from the SSS problem. We
expect that in addition to face recognition, KDDA
will provide excellent performance in applications
where classification tasks are routinely performed,
such as content-based image indexing and
retrieval, video and audio classification.
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Abstract: Applications such as Face Recognition (FR) that deal with high-dimensional data need a mapping technique
that introduces representation of low-dimensional features with enhanced discriminatory power and a proper classifier,
able to classify those complex features .Most of traditional Linear Discriminant Analysis (LDA) suffer from the
disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature
representation. Moreover, their classification accuracy is affected by the “small sample size” (SSS) problem which is
often encountered in FR tasks. In this short paper, we combine nonlinear kernel based mapping of data called KDDA
with Support Vector machine (SVM) classifier to deal with both of the shortcomings in an efficient and cost effective
manner. The proposed here method is compared, in terms of classification accuracy, to other commonly used FR
methods on UMIST face database. Results indicate that the performance of the proposed method is overall superior to
those of traditional FR approaches, such as the Eigenfaces, Fisherfaces, and D-LDA methods and traditional linear
classifiers.

Keywords: Face Recognition, Kernel Direct Discriminant Analysis (KDDA), small sample size problem (SSS),
Support Vector Machine (SVM).

latter achieves simply object reconstruction. However,
many LDA based algorithms suffer from the so-called

INTRODUCTION “small sample size problem” (SSS) which exists in

Selecting appropriate features to represent faces
and proper classification of these features are two
central issues to face recognition (FR) systems. For
feature selection, successful solutions seem to be
appearance-based approaches, (see [3], [2] for a
survey), which  directly operate on images or
appearances of face objects and process the images as
two-dimensional (2-D) holistic patterns, to avoid
difficulties associated with Three-dimensional (3-D)
modelling, and shape or landmark detection [2]. For
the purpose of data reduction and feature extraction in
the  appearance-based  approaches, Principle
component analysis (PCA) and linear discriminant
analysis (LDA) are introduced as two powerful tools.
Eigenfaces [4] and Fisherfaces [5] built on the two
techniques, respectively, are two state-of-the-art FR
methods, proved to be very successful. It is generally
believed that, LDA based algorithms outperform PCA
based ones in solving problems of pattern
classification, since the former optimizes the low-
dimensional representation of the objects with focus
on the most discriminant feature extraction while the

high-dimensional pattern recognition tasks where the
number of available samples is smaller than the
dimensionality of the samples. The traditional solution
to the SSS problem is to utilize PCA concepts in
conjunction with LDA (PCA+LDA) as it was done for
example in Fisherfaces [11]. Recently, more effective
solutions, called Direct LDA (D-LDA) methods, have
been presented [12], [13]. Although successful in
many cases, linear methods fail to deliver good
performance when face patterns are subject to large
variations in viewpoints, which results in a highly
non-convex and complex distribution. The limited
success of these methods should be attributed to their
linear nature [14]. Kernel discriminant analysis
algorithm, (KDDA) generalizes the strengths of the
recently presented D-LDA [1] and the kernel
techniques while at the same time overcomes many of
their shortcomings and limitations.

In this work, we first nonlinearly map the original
input space to an implicit high-dimensional feature
space, where the distribution of face patterns is hoped
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to be linearized and simplified. Then, KDDA method
is introduced to effectively solve the SSS problem and
derive a set of optimal discriminant basis vectors in
the feature space. And then SVM approach is used for
classification.

The rest of the paper is organized as follows. In
Section tow, we start the analysis by briefly reviewing
KDDA method. Following that in section three, SVM
is introduced and analyzed as a powerful classifier. In
Section four, a set of experiments are presented to
demonstrate the effectiveness of the KDDA algorithm
together with SVM classifier on highly nonlinear,
highly complex face pattern distributions. The
proposed method is compared, in terms of the
classification error rate performance, to KPCA (kernel
based PCA), GDA (Generalized Discriminant
Analysis) and KDDA algorithm with nearest
neighbour classifier on the multi-view UMIST face
database. Conclusions are summarized in Section five.

2 Kernel Direct Discrimi-nant Analysis
(KDDA)

2.1 Linear Discriminant Analysis

In the statistical pattern recognition tasks, the
problem of feature extraction can be stated as follows:
Assume that we have a training set, {zi}il is

available. Each image is defined as a vector of
lengthN (=1, x1,),i.e. Z, e R where |, x 1/ is the

face image size and R" denotes a N-dimensional real
space [1].

It is further assumed that each image belongs to
one of C cIasses{Zi}iczl. The objective is to find a
transformation ¢?, based on optimization of certain
separability criteria, which produces a mapping, with

N
yieR that leads to an enhanced separability of
different face objects.

Let Sgpy and Sy, be the between- and within-

class scatter matrices in the feature spaceP
respectively, expressed as follows:

1 C

Sgw = L - |(¢_|_¢_X¢_|_¢_)T 1)
1 C' S A —

WTH = I; - (¢ij _¢i X¢ij _¢i) (2)

Whereg =4(Z,) ¢7, is the mean of class Zj

and (1? is the average of the ensemble.

¢7i=CiZ:l¢(Zij) 3)
Z:,Z;¢( ;) @)

The maximization can be achieved by solving the

following eigenvalue problem:

‘q)T SBTW q)‘

O =arg m:lalx e

¢ ‘(D SWTH (D‘

The feature space F could be considered as a

“linearization space” [6], however, its dimensionality

could be arbitrarily large, and possibly infinite.
Solving this problem lead us to LDA[1].

®)

Assuming that is S, nonsingular and @ the

basis vectors correspond to the M first eigenvectors
with the largest eigenvalues of the discriminant
criterion:

J =tr(Symy _lSBtW D) ©

The M-dimensional representation is then obtained
by projecting the original face images onto the
subspace spanned by the eigenvectors.

2.2 Kernel Direct Discriminant Analysis (KDDA)

The maximization process in (3) is not directly
linked to the classification error which is the criterion
of performance used to measure the success of the FR
procedure. Modified versions of the method, such as
the Direct LDA (D-LDA) approach, use a weighting
function in the input space, to penalize those classes
that are close and can potentially lead to
misclassifications in the output space.

Most LDA based algorithms including Fisherfaces
[7] and D-LDA [9] utilize the conventional Fisher’s
criterion denoted by (3).

The introduction of the kernel function allows us
to avoid the explicit evaluation of the mapping. Any
function satisfying Mercer’s condition can be used as
a kernel, and typical kernel functions include
polynomial function, radial basis function (RBF) and
multi-layer perceptrons [10].

7Sy @

(@7 Sy @ )+ (@7 S,y @) @

The KDDA method implements an improved D-
LDA in a high-dimensional feature space using a
kernel approach.

® = arg max
(]

KDDA introduces a nonlinear mapping from the
input space to an implicit high dimensional feature
space, where the nonlinear and complex distribution
of patterns in the input space is “linearized” and
“simplified” so that conventional LDA can be applied
and it effectively solves the small sample size (SSS)
problem in the high-dimensional feature space by
employing an improved D-LDA algorithm.

Unlike the original D-LDA method of [10] zero
eigenvalues of the within-class scatter matrix are
never used as divisors in the improved one. In this
way, the optimal discriminant features can be exactly

extracted from both of inside and outside of Swn ’s
null space.
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In GDA, to remove the null space of S, , it is

required to compute the pseudo inverse of the kernel
matrix K, which could be extremely ill-conditioned
when certain kernels or kernel parameters are used.
Pseudo inversion is based on inversion of the nonzero
eigenvalues.

3 SVM Based Approach for Classification

The principle of Support Vector Machine (SVM)
relies on a linear separation in a high dimension
feature space where the data have been previously
mapped, in order to take into account the eventual
non-linearities of the problem.

3.1 Support Vector Machines (SVM)
If we assume that, the training set
X = (i), = R® where | is the number of training

vectors, R stands for the real line and R is the number
of modalities, is labelled with two class targets

Y = (yi)l,, where :

yie{~1+1} ®:R® >F ®)

Maps the data into a feature space F. Vapnik has
proved that maximizing the minimum distance in
space F between @(x) and the separating hyper plane

H(w,b) is a good means of reducing the
generalization risk. Where:

H(wb)={f e Fl<w, f > +b=0},

.. 9
(<> is inner product) ®

Vapnik also proved that the optimal hyper plane
can be obtained solving the convex quadratic
programming (QP) problem:

. 1, 2 '
Minimize EM +c§§. (10)
with (W d(X)>+b)>1-& i=1...

Where constant C and slack variables x are
introduced to take into account the eventual non-

separability of ®(X) into F.

In practice this criterion is softened to the
minimization of a cost factor involving both the
complexity of the classifier and the degree to which
marginal points are misclassified, and the tradeoff
between these factors is managed through a margin of
error parameter (usually designated C) which is tuned
through cross-validation procedures.Although the
SVM is based upon a linear discriminator, it is not
restricted to making linear hypotheses. Non-linear
decisions are made possible by a non-linear mapping
of the data to a higher dimensional space. The
phenomenon is analogous to folding a flat sheet of
paper into any three-dimensional shape and then
cutting it into two halves, the resultant non-linear
boundary in the two-dimensional space is revealed by

unfolding the pieces.

The SVM’s  non-parametric  mathematical
formulation allows these transformations to be applied
efficiently and implicitly: the SVM’s objective is a
function of the dot product between pairs of vectors;
the substitution of the original dot products with those
computed in another space eliminates the need to
transform the original data points explicitly to the
higher space. The computation of dot products
between vectors without explicitly mapping to another
space is performed by a kernel function.

The nonlinear projection of the data is performed
by this kernel functions. There are several common
kernel functions that are used such as the linear,

polynomial kernel (K(X,y)=(<X,y >, +1)° and
the sigmoidal kernel
(K(x,y) =tanh(< X,y >_. +a)), where x and y
are feature vectors in the input space.

The other popular kernel is the Gaussian (or
"radial basis function") kernel, defined as:

_ _|X_y|2 11
K(x,y) =exp( 257) ) (11)

Where o is a scale parameter, and x and y are
feature-vectors in the input space. The Gaussian
kernel has two hyper parameters to control
performance C and the scale parametero . In this
paper we used radial basis function (RBF).

3.2 Multi-class SVM

The standard Support Vector Machines (SVM) is
designed for dichotomic classification problem (two
classes, called also binary classification).

Several different schemes can be applied to the
basic SVM algorithm to handle the K-class pattern
classification problem. These schemes will be
discussed in this section. The K-class pattern
classification problem is posted as follow:

e Given | iid. sample: (X, Yyi),...,(X1, y1)

where Xi, for /=1,.,/ is a feature vector of
length d and yi={1,...,k} is the class label for

data point X; .

e Find a classifier with the decision function,
f(x) such that y = f(x) where y is the class
label for X .

The multi-class classification  problem s
commonly solved by decomposition to several binary
problems for which the standard SVM can be used.

For solving the multi-class problem are as listed
below:

» Using K one-to-rest classifiers (one-
against-all)
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»  Using K(k —1)/ 2 pair wise classifiers
= Extending the formulation of SVM to
support the k-class problem.

3.2.1. Combination of one-to-rest classifiers

This scheme is the simplest, and it does give
reasonable results. K classifiers will be constructed,
one for each class. The K-th classifier will be trained
to classify the training data of class k against all other
training data. The decision function for each of the
classifier will be combined to give the final
classification decision on the K-class classification
problem. In this case the classification problem to k
classes is decomposed to k dichotomy
decisions £,(x) ,me K =1,.., k where the rule 7#{x)
separates training data of the m-th class from the other
training patterns. The classification of a pattern x is
performed according to maximal value of

functions f(X) ,me K, K =1,.., k i.e. the label of
Xis computed as:

f (x) = arg(max( fn(x)) (12)

3.2.2. Pair wise Coupling classifiers

The schemes require a binary classifier for each
possible pair of classes. The decision function of the
SVM classifier for y,-to- )y, and y,-to- ), has

reflectional symmetry in the zero planes. Hence only
one of these pairs of classifier is needed. The total
number of classifiers for a K-class problem will then
bek (k —1)/2 . The training data for each classifier is

a subset of the available training data, and it will only
contain the data for the two involved classes. The data
will be reliable accordingly, i.e. one will be labeled as
+1 while the other as -1. These classifiers will now be
combined with some voting scheme to give the final
classification results. The voting schemes need the
pair wise probability, i.e. the probability of x belong to
class i given that it can be only belong to class i or j.

The output value of the decision function of an
SVM is not an estimate of the p.d.f. of a class or the
pair wise probability. One way to estimate the required
information from the output of the SVM decision
function is proposed by (Hastie and Tibshirani, 1996)
The Gaussian p.d.f. of a particular class is estimated
from the output values of the decision function,
f(x), for all x in that class. The centroid and radius

of the Gaussian is the mean and standard deviation of
f(X) respectively.

4 EXPERIMENTS AND RESULTS

4.1 Database

In our work, we used a popular face databases
(The UMIST [13]), for demonstrating the
effectiveness of our combined KDDA and SVM
proposed method. It is compared with KPCA, GDA
and KDDA algorithm with nearest neighbor classifier.

We use a radial basis function (RBF) kernel
function:

~[x-yf
(207)
Where o is a scale parameter, and x and y are
feature-vectors in the input space. The RBF function is
selected for the proposed SVM method and KDDA in

the experiments. The selection of scale parameter O is
empirical.

K(x,y) = exp(——5-) (13)

In addition, in the experiments the training set is
selected randomly each time, so there exists some
fluctuation among the results. In order to reduce the
fluctuation, we do each experiment more than 10
times and use the average of them.

4.2 UMIST Database

The UMIST repository is a multi-view database,
consisting of 575 images of 20 people, each covering
a wide range of poses from profile to frontal views.
Figure 1 depicts some samples contained in the two
databases, where each image is scaled into (112 92),
resulting in an input dimensionality of N = 10304.

For the face recognition experiments, in UMIST
database is randomly partitioned into a training set and
a test set with no overlap between the two set. We
used ten images per person randomly chosen for
training, and the other ten for testing. Thus, training
set of 200 images and the remaining 375 images are
used to form the test set.

It is worthy to mention here that both experimental
setups introduce SSS conditions since the number of
training samples are in both cases much smaller than
the dimensionality of the input space [1].

Figure 1: Some sample images of four persons
randomly chosen from the UMIST database.

On this database, we test the methods with
different training samples and testing samples
corresponding the training number k=2, 3, 4, 5,6,7,8
of each subject. Each time randomly select k samples
from each subject to train and the other 10— K to
test. The experimental results are given in the table 1.
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Table 1. Recognition rate (%) on the UMIST

database.
K Our method KDDA KiC Gf
(KDDA+SVM) | +NN *
2 81.8 81.9 755 | 715
3 83.5 834 762 | 728
4 87.3 85.4 77.1 74.5
5 90.4 879 798 | 751
6 94.1 89.1 834 | 790
7 96.0 93.9 87.1 82.1
10 96.5 95.2 89.1 | 83.0
* Nearest Neighbour

Figure 2 depicts the first two most discriminant
features extracted by utilizing KDDA respectively
and we show the decision boundary for first 6
classes for training data in Combination of one-to-
rest classifier SVM.
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Figure 2: The decision boundary for first 6 classes
for training data (Combination of one-to-rest
classifier SVM)

The only kernel parameter for RBF is the scale
value o* for SVM classifier. Figure.4 shows the error
rates as functions of &°, when the optimal number of
feature vectors (M is optimum) is used.

m
=]

—=— SW%M Pair wise Coupling classifier
—H&—S%M Combination of one-to-rest classifier

=
m
T

W
m O
T T

w
[=]
T

Error Rate (%)

Figure 3: error rates as functions o’ of SVML
(Gops =5x10° [1])

KDDA

As such, the average error rates of our method with
RBF kernel are shown in Figure 5. It shows the error
rates as functions of M within the range from 2 to 19
(o” is optimum).

5 Discussions and Conclusions

A new FR method has been introduced in this
paper. The proposed method combines kernel-based
methodologies with discriminant analysis techniques
and SVM classifier. The kernel function is utilized to
map the original face patterns to a high-dimensional
feature space, where the highly non-convex and
complex distribution of face patterns is simplified, so
that linear discriminant techniques can be used for
feature extraction.

The small sample size problem caused by high
dimensionality of mapped patterns is addressed by a
kernel-based D-LDA technique (KDDA) which
exactly finds the optimal discriminant subspace of the
feature space without any loss of significant
discriminant information.

Then feature space will be fed to SVM classifier.
Experimental results indicate that the performance of
the KDDA algorithm together with SVM is overall
superior to those obtained by the KPCA or GDA
approaches. In conclusion, the KDDA mapping and
SVM classifier is a general pattern recognition method
for nonlinearly feature extraction from high-
dimensional input patterns without suffering from the
SSS problem.

We expect that in addition to face recognition,
KDDA will provide excellent performance in
applications where classification tasks are routinely
performed, such as content-based image indexing and
retrieval, video and audio classification.
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