
Copyright

by

Daniel Joseph Clancy

1997

Solving Complexity and Ambiguity Problems within Qualitative

Simulation

by

Daniel Joseph Clancy, M.S., B.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Ful�llment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 1997

Solving Complexity and Ambiguity Problems within Qualitative

Simulation

Approved by

Dissertation Committee:

I dedicate this dissertation to the many people who have touched my life. In

particular, my loving wife Suzanne, my child to be \Peanut", my ever{patient and

supportive parents Mary Ethel and Jerry, and my father Joeseph Ignatius Clancy,

who was taken before his time. Thanks for all love.

Acknowledgments

I am grateful to the family, friends and professional colleagues who have supported

me throughout the long process required to obtain my PhD. My advisor Benjamin

Kuipers provided countless insights, �nancial support, and more importantly friend-

ship throughout. In addition, I would like to thank my dissertation committee Eliz-

abeth Bradley, Ray Mooney, Bruce Porter and Risto Miikkulainen for their support.

In particular, Elizabeth Bradley performed the impressive task of reading the entire

dissertation and o�ering countless comments to greatly improve the quality of the

document. Other colleagues and friends that have supported me throughout this

process include Ken Forbus, Rich Doyle, Brian Falkenhainer, Giorgio Brajnik, and

all of the members of the qualitative reasoning community.

I would like to thank my fellow students Tara Estlin, Dave Moriarty, John

Zelle, Paul Ba�es, and Je� Mahoney for the many conversations and the hours

wasted playing darts and participating in stupid arguments. Other students who

have supported me and provided useful insights into my research include Je� Rickel,

Adam Farquhar, and Rich Mallory along with many others. I also would like to make

a special note of the contributions of Bert Kay to the work presented here. A friend

and colleague whose life was recently cut short, Bert and I spent 6 years together

working together under Ben and for the last few years was my sole companion in

the QR group at UT. My thoughts and prayers go out to his wife Meg and his twin

daughters Sonia and Nina.

Besides my professional colleagues, I would like to thank my many friends

from Duke, Boston and Austin. They have provided countless hours of joy doing

little more than hanging out, drinking beers and playing basketball. In particular, I

would like to thank those friends who have been closest throughout the years, \D",

Dom and Doug, for their invaluable friendship.

Last and obviously not least, I would like to thank my loving wife Suzanne,

my supportive parents, Mary Ethel and Jerry, my many siblings, Joe, Mary, Paul,

Bob, Carolyn and Barbara, my mother-in-law Janet and my faithful dog Thor. All

v

of these people have meant a great deal to me throughout the years. My parents

have always o�ered guidance, support and a place to call home. Joe provided me

with many years of enjoyment when we were kids and a foil to compete against as

we grew older while the rest of my siblings provided me with constant entertainment

and companionship ensuring that there was never a dull moment around the house.

Similarly, Thor, has ensured that there is never a dull moment around our house

here in Austin. Finally, my wife Suzanne has been eternally patient as I have worked

over the years to obtain my PhD. She is my wife, best friend and companion and I

look forward to the many years that we have left together and the children to come.

Daniel Joseph Clancy

The University of Texas at Austin

December 1997

vi

Solving Complexity and Ambiguity Problems within Qualitative

Simulation

Publication No.

Daniel Joseph Clancy, Ph.D.

The University of Texas at Austin, 1997

Supervisor: Benjamin Kuipers

Qualitative simulation is used to reason about the behavior of imprecisely

de�ned dynamical systems for tasks such as monitoring, diagnosis, or design. Often,

however, simulation of complex dynamical systems results in either an intractable

simulation or an ambiguous behavioral description. These results have caused con-

cern regarding the scalability of techniques based upon qualitative simulation to

real{world problems. Two di�erent approaches are used to solve these problems:

1) abstraction and problem decomposition techniques are used during simulation to

focus on relevant distinctions thus reducing the overall complexity of the simulation;

and 2) the expressiveness of the modeling language is extended to allow the modeler

to incorporate additional information.

Model decomposition and simulation (DecSIM) uses a component{based sim-

ulation algorithm to reason about the complex interactions within a sub{system in-

dependent of the interactions between subsystems. Variables within the model are

partitioned into closely related components and a separate behavioral description is

generated for each component. Links are maintained between related components

to ensure that all of the constraints in the model are satis�ed. DecSIM results in

exponential speed{up for models that lend themselves to decomposition. Further-

more, DecSIM is guaranteed to generate a behavioral description that is equivalent

to the description generated by a standard QSIM simulation modulo the temporal

vii

ordering of events for variables in separate components.

A common source of irrelevant distinctions within qualitative simulation is in-

tractable branching due to chatter. Chatter occurs when the derivative of a variable

is constrained only by continuity within a restricted region of the state space. We

present two di�erent abstraction techniques that completely eliminate the problem

of chatter by abstracting a chattering region into a single abstract state. Both tech-

niques retain the QSIM soundness guarantee and eliminate all instances of chatter

without over{abstracting.

To address the problem of an ambiguous behavioral description, Temporally

Constrained QSIM (TeQSIM) integrates temporal logic model checking into the

qualitative simulation process allowing the modeler to specify behavioral information

via trajectory constraints. Trajectory constraints, speci�ed using an extension of

a propositional linear{time temporal logic, can be used to focus the simulation,

simulate non{autonomous systems and reason about boundary condition problems.

viii

Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1 Introduction 1

1.1 Reducing the Complexity of a Simulation 4

1.1.1 Model Decomposition and Simulation (DecSIM) 8

1.1.2 Chatter abstraction techniques 8

1.2 Focusing and Re�ning Ambiguous Behavioral Descriptions 10

1.2.1 Temporally Constrained QSIM (TeQSIM) 10

1.3 Evaluation . 11

1.4 Overview . 13

Chapter 2 Qualitative Simulation 14

2.1 Qualitative models . 14

2.2 Qualitative states . 15

2.3 Behavioral description . 16

2.4 Qualitative constraints . 18

2.5 Dynamic simulation . 19

2.5.1 Simulation complexity . 19

Chapter 3 Model Decomposition and Simulation 21

3.1 DecSIM Overview . 22

3.1.1 DecSIM: A component based qualitative simulation algorithm 23

3.2 Two tank cascade example . 26

ix

3.2.1 Presentation Overview . 29

3.3 Components, the component graph and clusters 29

3.3.1 Causal ordering . 33

3.3.2 Boundary variables . 33

3.3.3 Constraints . 34

3.3.4 Component graph . 34

3.3.5 Identifying clusters . 35

3.4 A Component{Based Simulation Algorithm 36

3.4.1 View/guide tree generation 37

3.4.2 Generating guide links . 38

3.4.3 Compatible behaviors . 41

3.4.4 Global consistency . 45

3.4.5 Global consistency algorithm 46

3.4.6 Results of the algorithm . 50

3.5 Theoretical Results . 55

3.6 Other Issues . 58

3.6.1 Acausally related components 58

3.6.2 Global inconsistency . 59

3.6.3 Detecting quiescence . 59

3.6.4 Transitions . 60

3.6.5 Landmark Introduction . 62

3.7 Empirical Evaluation . 62

3.7.1 Simulation complexity . 62

3.7.2 Soundness and completeness 70

3.8 Complexity Analysis . 72

3.8.1 Solution space . 73

3.8.2 E�ciency . 75

3.8.3 Factors a�ecting complexity 77

3.9 Related Work . 78

3.9.1 Qualitative reasoning . 78

3.9.2 Constraint satisfaction . 79

3.10 Future Work . 80

3.10.1 Re�ning the DecSIM Algorithm 81

3.10.2 Integrating DecSIM with other techniques 81

3.10.3 Applying DecSIM to larger models 82

3.10.4 Extending DecSIM to other CSP problems 83

3.11 Conclusions . 83

x

Chapter 4 Eliminating Chatter through Abstraction 85

4.1 Chatter Branching . 85

4.1.1 Chatter versus oscillation . 90

4.1.2 Eliminating chatter . 91

4.2 Previous Solutions . 93

4.2.1 Higher{Order Derivatives . 93

4.2.2 Ignore Qdirs . 94

4.3 Chatter{Box Abstraction . 95

4.3.1 Identifying potentially chattering region 95

4.3.2 Focused envisionment . 100

4.3.3 Identifying the boundaries of the chattering region 100

4.3.4 Abstract state and successor state creation 100

4.3.5 Time{point Successor Generation 101

4.3.6 Results . 101

4.3.7 Discussion . 105

4.4 Dynamic Chatter Abstraction . 106

4.4.1 Detecting Chatter . 108

4.4.2 Chattering region predicate: Syntax and semantics 109

4.4.3 De�ning a chattering region predicate 110

4.4.4 Identifying the set of chattering variables 114

4.4.5 W-tube example . 121

4.4.6 Landmark chatter . 121

4.4.7 Abstract state creation and successor generation 127

4.4.8 Results . 128

4.4.9 Complexity . 131

4.5 Empirical Evaluation . 132

4.6 Related Work . 133

4.7 Discussion . 137

4.8 Future Work . 138

4.9 Conclusions . 140

Chapter 5 Temporally Constrained QSIM (TeQSIM) 141

5.1 TeQSIM Overview . 143

5.1.1 Temporal logic constraint language 144

5.1.2 Discontinuous change expressions 145

5.2 Problem solving with TeQSIM . 145

5.2.1 Parameter identi�cation example 146

xi

5.3 Trajectory Speci�cation Language: syntax and semantics 149

5.3.1 Temporal logic constraint language:

syntax and semantics . 149

5.3.2 Syntax . 149

5.3.3 Semantics . 152

5.3.4 External event declaration . 157

5.3.5 Discontinuous change expressions 157

5.4 TeQSIM Theory and Architecture 158

5.4.1 Discontinuous Change Processor 160

5.4.2 TL{Guide model checking algorithm 160

5.4.3 Temporal Logic Guide algorithm 167

5.5 Results . 170

5.6 Problem Solving with Trajectory Information 171

5.7 Related Work . 172

5.7.1 Qualitative reasoning . 172

5.7.2 Temporal logic . 174

5.8 Discussion and Future Work . 175

5.9 Conclusions . 177

Chapter 6 Future Directions 178

6.1 Using qualitative simulation within a larger problem solving context 179

6.1.1 Using arti�cial intelligence to solve real{world problems . . . 180

6.1.2 Applying qualitative simulation to real{world problem solving

tasks . 181

6.2 Advances within the �eld of qualitative simulation 186

6.3 Conclusions . 188

Chapter 7 Conclusions 190

7.0.1 DecSIM . 191

7.0.2 Chatter abstraction techniques 191

7.0.3 TeQSIM . 192

7.0.4 Concluding Remarks . 192

Appendix A DecSIM Theorems, Lemmas and Proofs 193

Appendix B Dynamic Chatter Abstraction: Theorems and Proofs 197

B.1 Ceq: Sound and complete . 197

B.2 Chatter-test: Sound and complete . 199

xii

B.3 Real valued trajectories . 203

Appendix C TeQSIM Soundness and Completeness Theorem Proof 206

Appendix D QSIM References 209

D.0.1 QSIM Transition Tables . 209

Bibliography 211

Vita 218

xiii

List of Tables

1.1 Models used for evaluation. 12

3.1 Variable View Algorithm . 40

3.2 Guide link mapping algorithm . 42

3.3 The Global Consistency Test Algorithm 51

3.4 The Global Consistency Propagation Algorithm 52

3.5 Results comparing DecSIM to QSIM for all three topologies 64

3.6 Number of Behaviors Generated for Di�erent Topologies 69

4.1 Extensions to the QSIM I-Successor transition table 101

4.2 The Chatter-test Algorithm. 115

4.3 The EQ-Chatter-test Algorithm. 117

4.4 The Check-dependencies Algorithm. 118

4.5 The Check-assertions Algorithm. 119

4.6 The Check-state-completions Algorithm. 120

4.7 How a change in magnitude can a�ect the direction of change. . . . 125

4.8 Evaluation of Dynamic Chatter and Chatter{Box Abstraction 134

4.9 Comparison of chatter abstraction techniques for the N{tank cascade 135

5.1 Applying TeQSIM to other tasks using the regulated tank model. . . 150

5.2 Conditions for a behavior being su�ciently determined 162

5.3 Tasks to which TeQSIM has been applied. 173

xiv

List of Figures

1.1 Qualitative model and simulation of a simple bathtub 3

1.2 Repeating three way chatter branch 6

1.3 Simulation of a Two Tank Cascade 7

2.1 Damped Spring Simulation . 17

3.1 View/guide links and the component graph 25

3.2 Exploiting structure in the component graph 27

3.3 Simple Two Tank Cascade . 28

3.4 DecSIM simulation of the two tank cascade 30

3.5 Controlled Two Tank Cascade . 31

3.6 DecSIM simulation of controlled two tank cascade 32

3.7 Projection of a behavior tree . 39

3.8 Composite behavior mapping . 44

3.9 Component graph topology for models used to evaluate DecSIM . . 63

3.10 DecSIM vs QSIM: Cascade con�guration 65

3.11 DecSIM vs QSIM: Loop con�guration 66

3.12 DecSIM vs QSIM: Chain con�guration 67

3.13 DecSIM Only: Cascade, loop and chain con�gurations { Execution

time . 68

3.14 DecSIM: Chain con�guration vs Loop con�guration 70

3.15 DecSIM: Di�erent partitionings of the cascade con�guration 71

4.1 Using qualitative simulation to answer prediction questions. 86

4.2 Intractable branching due to chatter in the simulation of a W tube. . 88

4.3 Possible qualitative value transitions for a QSIM variable. 89

4.4 Chatter around zero: Possible QSIM transitions. 91

4.5 Numerical Simulation of a Two Tank Cascade 92

xv

4.6 chatter{box abstraction algorithm applied to the W-tube. 96

4.7 W-tube Chatter Equivalence Classes 98

4.8 Chatter Propagation . 107

4.9 Example Chattering Region Predicate for the W-Tube 111

4.10 Cycle can prevent chatter . 116

4.11 Chatter detection for the W-tube. 122

4.12 Comparison of chatter abstraction techniques for the N{tank cascade 135

4.13 Dynamic chatter abstraction results for the N{tank cascade 136

5.1 TeQSIM constraint interaction . 142

5.2 Trajectory speci�cation for parameter identi�cation example of a reg-

ulated tank{
ow controller . 147

5.3 Time plots generated by TeQSIM . 148

5.4 TeQSIM architecture. 159

xvi

Chapter 1

Introduction

What happens when you throw a ball in the air? Well, unless you are in the Mir

space station, it probably goes up and then comes back down. Or, what happens

when you put a pot of water on the stove? It boils. For humans these are simple

questions that can often be answered with little knowledge about the dynamical

properties of the system being reasoned about and certainly without requiring a

precise numerical model. While many people may answer these questions simply

based upon experience, others may use knowledge about the qualitative relationships

between the variables to reason about the potential behavior of the system or explain

particular behaviors.

These examples demonstrate the use of qualitative information in \common

sense reasoning"; however, this type of information is also quite useful within the

domain of engineering problem solving. The world is in�nitely complex and thus

when reasoning about a system an engineer must use abstraction, approximation,

aggregation and other techniques to generate a manageable representation of the

forces and factors that are relevant to the problem being addressed. While a host

of numerical techniques exist for reasoning about the behavior of a physical system,

often precise numerical information may not be available thus making it di�cult to

automate the reasoning process.

But what type of knowledge do people use when they reason abstractly about

the behavior of the system and how can this knowledge be represented and used in

an automated fashion? Over the last 15 years, the �eld of qualitative reasoning has

attempted to answer these and other questions trying to gain an understanding of

how people reason about autonomous change in the physical world. Of particular

interest within the �eld are techniques for deriving behavioral information about a

system from a structural model describing the relationships between the variables.

1

Qualitative simulation (Kuipers, 1994; Forbus, 1984; de Kleer & Brown, 1985) al-

lows the modeler to explicitly represent and reason about an imprecisely de�ned

dynamical system using an abstract structural model to derive a description of all

possible qualitatively distinct behaviors. These techniques have been used for tasks

such as monitoring, diagnosis, design and explanation.

Traditionally, qualitative simulation uses a state-based representation to de-

scribe the behavior of the system via a tree or graph of alternating time-point and

time-interval states. A state provides a qualitative value for each variable within the

model. A branch results within this description when a state has multiple potential

successor states due to the imprecision within the model. For example, �gure 1.1

shows the results from the simulation of a simple bathtub model. The behavior

tree contains three distinct paths corresponding to the three qualitatively distinct

behaviors consistent with the constraints provided within the model: the bathtub

can over
ow, reach a steady state prior to �lling, or it can reach reach a steady

state and become full at the same time. In addition, the model can be augmented

by quantitative information in the form of ranges on landmark values and envelopes

for monotonic functions to re�ne the description. Such a model is called a semi-

quantitative model (Kay, 1991; Kay & Kuipers, 1993; Berleant & Kuipers, 1988).

Qualitative simulation provides a guarantee that the behavioral description

generated provides a representation of all potential real-valued trajectories for the

class of dynamical systems de�ned by the model. Any given instance of this class,

however, will only exhibit one of these behaviors. In the bathtub example, the actual

behavior exhibited by a given bathtub depends upon the size and shape of the tank,

the in
ow rate, and the size of the drain.

Recently the e�cacy of these techniques for solving real{world problems has

been questioned due to the complexity of the simulation process and the ambiguity

of the behavioral description (Doyle & Sacks, 1992). Simulation of larger, more com-

plex models often results in an intractable simulation that may or may not contain

the discriminatory information required to address the task at hand. Furthermore,

it is often quite di�cult to develop a model and extract information from the results

due to the complexity of the behavioral description.

At times, an ambiguous description or complex simulation are inherent lim-

itations of the abstract representation used to describe the system. Imprecision

within the model can result in a wide range of qualitatively distinct behaviors. Of-

ten, however, many of the distinctions are artifacts of the simulation algorithm and

irrelevant to the current task. In addition, the modeler may possess additional infor-

mation not contained within the model that could constrain the space of consistent

2

ODE Model
Equation Constraints Variables

(M+ amount outflow) (amount (0 FULL))

Amount0 = (ADD netflow outflow inflow) (outflow (0 inf))

In
ow � Out
ow (d/dt amount netflow) (inflow (0 if* inf))

(constant inflow) (netflow (minf 0 inf))

(a) Qualitative model

←

↑
. ↑

. ↑ FULL

0

T0 T1

AMOUNT

↓ ↓ ↓

INF

N-0

N-1

0

MINF

T0 T1

Netflow

←
↑

. ↑
. °

FULL

A-0

0

T0 T1

Amount

↓ ↓ °

INF

N-0

0

MINF

T0 T1

Netflow
(b) Results

Simulation of a simple bathtub model (a) with four variables results in a total of three

behaviors. The behavior of �Amount and Netflow are displayed for the �rst two behaviors

(b). The third behavior is simply a combination of these behaviors in that Amount becomes

steady when it reaches Full.

Figure 1.1: Qualitative model and simulation of a simple bathtub

3

behaviors. Ideally, the techniques used for simulation should mimic a human's abil-

ity to reason at multiple levels of abstraction within di�erent parts of the system

depending upon the information available and the distinctions of interest. Further-

more, the system should be able to reason with di�erent types of information in

an integrated fashion and to systematically apply simplifying assumptions when

needed.

The research described within this dissertation builds upon existing work

within the �eld to provide a
exible, e�cient qualitative simulation algorithm that

reasons at multiple levels of abstraction and allows the modeler to describe the

system with various types of information. The following contributions are provided.

1) Decomposition and abstraction techniques reduce the complexity of the simu-

lation by eliminating irrelevant distinctions that lead to combinatoric branch-

ing. These techniques result in an exponential speed{up for certain models

and ensure that the complexity of the simulation is a function of the problem

speci�cation as opposed an artifact of the simulation algorithm.

(2) Temporal logic{based trajectory constraints extend the expressiveness of the

modeling language allowing the modeler to directly specify time{varying con-

straints on the behavior of the system. Traditionally, qualitative simulation

only allows the modeler to specify atemporal, structural constraints. The

qualitative simulation is restricted to the region of the trajectory space iden-

ti�ed by the trajectory constraints. This extension provides the modeler with

a declarative language for specifying assumptions, controlling the simulation

and incorporating additional information.

All of the techniques described here have been developed as extensions to the

QSIM qualitative simulation algorithm (Kuipers, 1994). The problems addressed,

however, are general problems that are encountered when using other qualitative

simulation algorithms (Forbus, 1984; Bredeweg, 1992; de Kleer & Brown, 1985) and

the solutions are equally relevant to these algorithms.

1.1 Reducing the Complexity of a Simulation

Qualitative simulation traditionally uses a state{based representation that provides

a single level of detail and highlights a �xed set of distinctions. Each qualitative

state provides unique values for all of the variables within the model. A branch

results in the behavioral description when the model fails to constrain the valid

combinations of variable values that can follow from a given state. The complexity

4

of a simulation is dominated by the complexity of this representation and thus the

degree to which the model restricts branching. Many of these distinctions, however,

are often irrelevant or of secondary importance to the current task thus needlessly

increasing the complexity of the simulation. To reduce the simulation complexity,

we must �rst understand why branching occurs and then modify the representation

so that the simulation focuses on relevant distinctions.

The types of branches within a simulation are determined by the transition

values allowed by continuity (see appendix D for a listing of the valid transitions).

Branches can be divided into two categories: event and chatter branches.

De�nition 1.1 (Event branching) An event occurs when a variable reaches a

landmark or becomes steady (i.e. its derivative crosses zero). An event branch

occurs when there are multiple events following a time{interval state whose ordering

is unconstrained by the model.

For example, in the bathtub model (see �gure 1.1), a three way event branch occurs

following state S1 due to the complete temporal ordering of two events: the bathtub

becoming full and the amount of water in the tub becoming steady.

De�nition 1.2 (Chatter branching) A chatter branch occurs following time{

point ti if there exists a variable v that is currently steady whose direction of change is

constrained only by continuity. A three way branch1 occurs depending upon whether

the variable is increasing, decreasing or steady in the interval (ti ti+1).

Since the variable's direction of change is unconstrained, the variable is free to

become steady again and the process repeats itself for an arbitrary number of qual-

itative states. (See �gure 1.2.) While some behaviors exit the unconstrained region

of the state space, others will continue cycling between di�erent values for the di-

rection of change resulting in an in�nite number of behaviors that remain within

this region of the state space.2

Figure 1.3 shows a simple example of chatter when simulating a model of a

two tank cascade. The direction of change for tank B's net
ow (i.e. netflowB) is

in
uenced by two opposing forces following the initial state. Both the in
ow and the

1A two way branch occurs if the analytic function constraint is applied since the branch where
the variable remains steady over the ensuing interval is �ltered. The analytic function �lter assumes
that if a variable is constant over an interval, then it must always be constant (Kuipers, 1994).

2The behavioral description is in�nite due to the introduction of landmarks during the simula-
tion. If landmarks are not introduced, then the number of behaviors within the chattering region
is exponential in the number of chattering variables. The introduction of landmarks is discussed in
section 2.

5

out
ow are increasing and thus the direction of change for netflowB is unconstrained

resulting in a series of chatter branches. In more complicated systems, multiple

variables can chatter simultaneously thus complicating the description further.

"

	

"

	

#�
��3

��3
-

QQs

- 	

"

	 q q q

#

��3
-

QQs

QQs
	

"

	 q q q

#

��3
-

QQs

��3
	

"
	 q q q

#

��3
-

QQs

� Once a variable whose derivative is unconstrained becomes steady, it can increase,
decrease or remain steady in the following time{interval state. A three way branch
occurs in the behavioral description. This process continues as the variable returns
to steady and another three way branch occurs.

Figure 1.2: Repeating three way chatter branch

Event branching and chatter branching pose di�erent problems with respect

to the complexity of the simulation and the information provided by the distinc-

tions. In the case of chatter, distinctions in a variable's direction of change within

a chattering region of the state space provide no additional information since the

simulation simply computes all possible trajectories consistent with continuity. Fur-

thermore, chatter results in exponential branching that makes the results of the

simulation unusable. Thus, chatter branching must be eliminated from the behav-

ioral representation.

Event branches, on the other hand, often provide useful information that

corresponds to qualitative distinctions speci�ed within the model. In the bathtub

example, the event branch di�erentiates between the tank reaching quiescence ver-

sus an over
ow condition. Event branching, however, can also result in the complete

temporal ordering of a set of unrelated events. As the size of the model grows, the

likelihood of any two events being unrelated increases and event branching becomes

more problematic. For example, simulation of a qualitative model of a V-8 auto-

mobile engine containing a description of all eight spark plugs could exhibit over

500,000 behaviors simply describing the order in which the eight spark plugs may

have �red if all possible orderings of these eight events are allowed. Thus, to provide

6

��

A

B

A0 = in� f(A)

B0 = f(A)� g(B)

f; g 2M+

(a) Cascaded Tanks

1

2

3

4

5

6

7

8

9

10

11

↑ ↑
.

.
.

.
. ° ↓ ° ↓ °

INF

N-5

N-6

N-8

0

MINF

T0 T1 T2 T3

NetflowB Beh 1

↑ ↑
.

.
.

.
. ° ↓

° ↑ °

INF

N-5

N-9

N-6

0

MINF

T0 T1 T2 T3

NetflowB Beh 4

↑ ↑
. ° ↓ ° ↑ ↑

INF

N-5

N-6

0

MINF

T0 T1 T2 T3

NetflowB Beh 5

↑ ↑ ° ↑ ° ↑
INF

N-7

N-5

0

MINF

T0 T1 T2

NetflowB Beh 11

(b) Behavior Tree (c) Assorted Behaviors for Net
owB

NetflowB is in
uenced by two opposing forces: the in
ow is increasing, but so is the out
ow

(a). (i.e. Both f(A) and g(B) are increasing and thus the sign of B0 is ambiguous since

there are two opposing forces.) Thus, its direction of change is unconstrained resulting in

an in�nite behavioral description (b) as the derivative of NetflowB moves freely. Four of

the behaviors are displayed (c).

Figure 1.3: Simulation of a Two Tank Cascade

7

a tractable simulation, certain event branches must be eliminated

1.1.1 Model Decomposition and Simulation (DecSIM)

A divide and conquer approach is used to address the problem of combinatoric event

branching via the model decomposition and simulation (DecSIM) algorithm (Clancy

& Kuipers, 1997b). The variables within the model are partitioned into components

so that closely related variables are contained within the same component. Each

component is simulated independently to eliminate event branching between vari-

ables in separate components. A separate behavioral description is generated for

each component. Links are maintained between the separate behavioral descriptions

to reason about the interactions between the components using a causal analysis of

the model.

The degree to which the model constrains the behavior of the system deter-

mines the complexity of the qualitative simulation. By partitioning the model into

closely related components, DecSIM divides the problem into smaller, more tightly

constrained sub-problems. In addition to reducing the overall size of the problem,

this process eliminates a primary source of complexity by separating unrelated vari-

ables into distinct components. For models that lend themselves to decomposition,

this process results in an exponential speedup in simulation time as well as a more

compact and understandable description of the potential system behaviors.

This dissertation provides a detailed description of the DecSIM simulation

algorithm. Theoretical results show that the behavioral description generated de-

scribes the same set of real{valued trajectories as a standard qualitative simulation

except for the temporal ordering of events in separate components. Theoretical

results are also presented demonstrating the bene�ts of the DecSIM algorithm in

terms of the complexity of the simulation. Finally, an empirical analysis is provided

demonstrating the performance of DecSIM on a variety of models.

1.1.2 Chatter abstraction techniques

The phenomenon of chatter is a di�cult problem that has addressed by a variety of

techniques. In general, these techniques either �lter spurious behaviors or eliminate

distinctions in a variable's direction of change throughout the simulation. While

existing techniques work well in certain situations, they do not provide a general

solution that eliminates all instances of chatter without reducing the constraining

power of the model. The algorithms presented here not only provide such a tech-

nique, but they also handle more complex forms of chatter not addressed by existing

8

techniques.

Two separate abstraction techniques (Clancy & Kuipers, 1997a, 1997c) have

been developed to eliminate chatter: chatter box abstraction and dynamic chatter

abstraction. Both of these techniques abstract chattering regions of the state space

into a single qualitative state within the behavioral description. The techniques

di�er in the manner in which the boundaries of the chattering region are identi�ed

and how the successors of the abstracted state are computed.

Chatter box abstraction (Clancy & Kuipers, 1993) uses static information con-

tained within the model to identify potentially chattering variables over an

open time interval. A recursive call to the simulation algorithm restricted

to the potentially chattering region of the state space to determine which of

these variables actually exhibit chatter and to identify the states exiting the

chattering region. The behavioral description generated by this simulation is

abstracted into a single qualitative state within the main description and its

successors are derived from the results of the recursive simulation.

Dynamic chatter abstraction provides a more e�cient solution that extends

chatter box abstraction by eliminating the need to perform a simulation to

determine the behavior of the system over the potentially chattering region.

Instead, the algorithm uses a dynamic analysis of the model along with the

current qualitative state to determine which variables, if any, chatter and to

create the abstract state. The algorithm computes the successors of this ab-

stract state using an extension to the standard QSIM successor generation

algorithm.

By recursively calling the simulation algorithm, chatter box abstraction ex-

ploits the inference capabilities already contained within the algorithm. This fa-

cilitates the integration of chatter box abstraction with other extensions to the

basic simulation algorithm and lends itself to a straight{forward proof of the abil-

ity of chatter box abstraction to eliminate all instances of chatter without over{

abstracting.

Dynamic chatter abstraction, on the other hand, provides a scalable solution

to chatter elimination that exploits knowledge about the type of inferences made by

the simulation algorithm. While it is more e�cient than chatter box abstraction,

it is not as extensible. Dynamic chatter abstraction is evaluated both theoretically

and empirically. We show that it eliminates all instances of chatter without over{

abstracting given two clearly stated assumptions. The empirical evaluation, using

a corpus of over 20 models collected from various researchers within the qualitative

9

reasoning community, validates the theoretical results and demonstrates the bene�ts

provided by dynamic chatter abstraction when compared to chatter box abstraction

with respect to the complexity of the simulation.

1.2 Focusing and Re�ning Ambiguous Behavioral De-

scriptions

The detail contained within the original model limits the behavioral information

computed by the simulation algorithm. Multiple behaviors result when there is

insu�cient information to discriminate between alternative behaviors. Additional

information that distinguishes these behaviors may be available to the modeler, how-

ever, it may be di�cult or impossible to represent this information via structural

constraints. For example, when simulating a pot of water on the stove, the modeler

may know that the water boils within �ve minutes; however, this information cannot

be incorporated into the model. This additional information can re�ne the behav-

ioral description generated during the simulation. Alternatively, the modeler may

be interested in focusing the simulation on certain regions of the trajectory space.

For example, when designing a nuclear power plant, a modeler may be interested in

focusing his attention on behaviors in which the plant can explode.

Traditionally, qualitative simulation techniques do not allow the modeler to

represent behavioral information within the model. Structural equations are used

to constrain the simultaneous values of related variables. Non{local information

constraining the behavior of the system across time is not used except through the

implicit application of continuity during the simulation or through speci�c exten-

sions to the simulation algorithm.3

1.2.1 Temporally Constrained QSIM (TeQSIM)

The Temporally Constrained QSIM (TeQSIM, pronounced tek'sim) (Brajnik &

Clancy, 1996a, 1996b, 1997) algorithm extends the expressiveness of the modeling

language allowing the modeler to specify both continuous and discontinuous behav-

ioral information via trajectory constraints4 to focus the simulation and re�ne the

3For example, the QSIM energy and non{intersection constraints both use information con-
tained within an entire behavior (i.e. non{local information) as opposed to limiting inferences to
information within a single state (i.e. local information).

4A trajectory for a tuple of variables <v1; : : : ; vn> over a time interval [a; b] � <+ [f0;+1g is
de�ned as a function � mapping time to variable values de�ned over the set of the extended reals,
i.e. � : [a; b]! (<[f�1;+1g)n.

10

behavioral description. Trajectory constraints contain both qualitative and quanti-

tative information and are formulated using a combination of temporal logic expres-

sions, a speci�cation of discontinuous changes and a declaration of external events.

TeQSIM integrates an incremental model checking algorithm into the qualitative

simulation process to eliminate partial behaviors that fail to model the trajectory

constraints and to re�ne behaviors using qualitative information contained within

the trajectory constraints.

A billiards shot provides a simple example of how trajectory information can

be used when reasoning about the behavior of a dynamical system. The objective

is to derive quantitative bounds on the velocity required to hit a successful billiards

shot given an initial description of the table. (i.e. How hard and in which direction

does the white ball need to be hit so that it strikes a designated ball and propels it

into a particular pocket?) A standard qualitative simulation derives a description

of all potential behaviors including behaviors in which the shot is not successful.

The modeler then needs to identify those behaviors that are consistent with the

desired shot and extract the required information. TeQSIM, on the other hand,

allows the modeler to use trajectory constraints to specify boundary conditions on

the desired behaviors to restrict the simulation to the region of the state space in

which the cue ball strikes the target ball (before stopping or striking a cushion) and

the target ball hits the desired pocket (before stopping or striking a cushion). This

example demonstrates only some of the bene�ts provided by trajectory constraints

within TeQSIM. In addition, trajectory constraints can can be used to focus the

simulation for larger, more complex simulations, simulate non{autonomous systems

and incorporate observations into the simulation.

This dissertation provides a detailed description of the TeQSIM algorithm

along with examples demonstrating how trajectory constraints can be used within

a simulation. In addition, theoretical results are presented showing that a behavior

is included within the behavioral description if and only if there exists an extension

of the behavior that can model all of the trajectory constraints.

1.3 Evaluation

We use both theoretical and empirical results to validate and evaluate the techniques

presented within this dissertation. The theoretical results guarentee that the be-

havioral description generated by the qualitative simulation contains all real{valued

trajectories consistent with the information contained within the model. (i.e.We re-

tain the QSIM soundness guarentee.) In addition, we show that the abstraction and

11

Model Description

Plant Physiology Various models and scenarios generated via au-
tomated modeling from a large{scale botany
knowledge{base (Rickel & Porter, 1994).

Reaction Control System Navigation system used on the NASA Space Shuttle
Glucose-Insulin Interaction Variety of models describing various physiological

scenarios with respect to the relationship between
glucose and insulin in the human body.

Continuously Stirred Tank Reac-
tions (CSTR)

A number of CSTR models are available for various
chemical reactions.

Three tank cascade Three tank cascade model described in section 4.
Mans�eld dam control Dam out
ow control for Lake Travis, that uses real{

world quantitative information
Graft versus host disease
(GVHD)

Model of the physiological process leading to GVHD
in humans using various scenarios.

Proportional Integral Controller Various controller models.
Heart Model Model of the human cardiovascular system.
Iron Metabolism Model of the e�ects of external perturbations on the

human iron-metabolism process.
Van der Pol equation Model of the Van der Pol equation
Predator{Prey Model describing the cyclic relationship between a

predator population and a prey population.

Table 1.1: Models used for evaluation.

decomposition algorithms do not introduce new behaviors within the description.

(i.e. The constraining power of the model is not reduced.)

The empirical evaluation reinforces the theoretical results and demonstrates

the e�ectiveness of these techniques at reducing the complexity of a simulation.

To validate the theoretical results, we tested each algorithm on a corpus of mod-

els collected from various researchers throughout the �eld of qualitative reasoning.

Figure 1.1 contains a brief description of some of these models. In general, the cor-

pus contains all relevant medium{to{large sized QSIM models that we could obtain.

Thus, the corpus re
ects the type of problems currently addressed using qualitative

simulation.

The empirical evaluation uses \extendible" models to evaluate the asymp-

totic performance of the algorithms presented with respect to execution time. An

extendible model is a model whose size can be incrementally increased by adding

variables in a controlled manner. For example, an N tank cascade is an extendible

model since the size of the model can be increased by adding tanks to the bottom

12

of the cascade. Extendible models allow us to determine how the algorithms scale

as the size of the model grows.

1.4 Overview

The next chapter provides an introduction to qualitative simulation, relevant def-

initions and other background information. The rest of the dissertation is divided

into three self{contained chapters describing the DecSIM, chatter abstraction, and

TeQSIM algortihms respectively. Each chapter contains additional background in-

formation, a detailed presentation of the algorithm, theoretical results, evaluation,

related work, and future extensions. These chapters can be read in any order. The

�nal chapter contains concluding remarks along with a more general discussion of

how qualitative simulation can be used as one component in a larger problem solving

context. This chapter includes speci�c proposals for future research to facilitate the

application of qualitative simulation to larger, more realitic problems.

13

Chapter 2

Qualitative Simulation

2.1 Qualitative models

Qualitative simulation uses a structural model of a dynamical system to derive a

behavioral description. In the QSIM representation, the model is represented by

a qualitative di�erential equation (QDE). A QDE is an abstraction of an ordinary

di�erential equation (ODE) that speci�es qualitatively signi�cant distinctions and

relationships within the model.

De�nition 2.1 (Qualitative di�erential equation) A QDE is a tuple of four

elements <V;Q;C;T> where the elements are de�ned as follows:

� V is a set of variables.

� Q is a set of quantity spaces. A separate quantity space is de�ned for each

variable in V .

� C is a set of constraints on the variables in V .

� T is a set of transitions de�ning the boundary of the domain of applicability

of the QDE.

De�nition 2.2 (Consistent model) A QDE is considered consistent if and only

if there exists at least one qualitative behavior describing the variables within the

model that is consistent with the constraints. Otherwise the model is considered

inconsistent.

14

2.2 Qualitative states

A symbolic language is de�ned to represent the state of the system at either a time{

point or time{interval. A qualitative state provides a qualitative value for all of the

variables within the model along with a value for the special variable TIME.

De�nition 2.3 (Qualitative value) A qualitative value for the variable v is de-

scribed by a magnitude (qmag) and a direction of change (qdir). The qmag is

described with respect to a �nite, totally ordered quantity space l1 < l2 < : : : < lk
de�ned for v.

� The qmag is either a landmark value lj or an interval between two adjacent

landmarks (lj; lj+1).

� The qdir represents the sign of the derivative of the variable where

qdir =

8><
>:
inc if _v > 0

std if _v = 0

dec if _v < 0

The qualitative value, magnitude, and derivative for a variable v within state S are

written Qval(v; S), Qmag(v; S) and Qdir(v; S) respectively.

Each qualitative state corresponds to a point or region within the real{valued

state space for the dynamical system being modeled. However, the symbolic lan-

guage de�ned by the model allows each state to be viewed as a point in a symbolic

state space of dimensionality 2n where n is the number of variables within the

model. (The dimensionality is 2n since each variable has a magnitude and direction

of change.) Throughout the dissertation references to a \region of the state space"

refers to the qualitative state space which in turn maps to a corresponding region

of the real{valued state space for the dynamical system.

Viewing a qualitative state in this manner allows us to extend the concept of

a qualitative state to include regions within the qualitative state space by extending

the de�nition of a qualitative value.

De�nition 2.4 (Abstract qualitative value) An abstract qualitative value is a

qualitative value containing either an abstract qmag, an abstract qdir or both. An

abstract qmag is de�ned as an interval between two non-adjacent landmarks within

the quantity space while an abstract qdir is de�ned as a list of qdirs where

15

(dec std inc) corresponds to _v being unspeci�ed

(dec std) corresponds to _v � 0

(std inc) corresponds to _v � 0

Note that the value (inc dec) is not allowed since it does not correspond to a con-

tinuous interval. A value of nil is interpreted as abbreviation for (dec std inc) for

a qdir and (�1 1) for a qmag.

An abstract qualitative state is a qualitative state containing at least one abstract

qval.1 In general, term qualitative state will be used for the generalized concept of a

qualitative state (i.e. either an abstracted or a non-abstracted state) and the terms

concise or non{abstracted will be used to refer to a qualitative state or value that

has not been abstracted.

Thus, a qualitative state refers to a region of the qualitative state space. As

such, two qualitative states can be related through a subset/superset relation while

a concise qualitative state can be described as an element of the region of the state

space described by an abstract qualitative state.

2.3 Behavioral description

Qualitative simulation describes the dynamic behavior of the system by either a

graph or tree of alternating time{point and time{interval points. An envisionment

graph represents the behavior as a state-transition graph of qualitative states in

which each unique set of qualitative values corresponds to a single, unique state

within the representation. Each path within the graph corresponds to a qualita-

tively distinct behavior. A behavior tree, on the other hand, represents the behavior

of the system as a tree of qualitative states2. Similarly, each path within the tree

corresponds to a distinct qualitative behavior. In addition, a behavior tree repre-

sentation allows for the introduction of new, qualitatively interesting distinctions

throughout the simulation. QSIM inserts new landmarks into a quantity space to

represent points at which the variable reaches a critical value (i.e. its derivative

becomes zero). The introduction of landmarks allows QSIM to represent behaviors

such as decreasing and increasing oscillations and to infer additional quantitative

information thus providing a more re�ned behavioral description. Furthermore, it

1An abstract qualitative state is conceptually equivalent to the idea of a partial qualitative state
as used by Kuipers(Kuipers, 1994).

2The representation is not strictly a tree since cycles are represented via links from leaf states to
preceding states within a behavior. The representation, however, is referred to as a tree throughout
the literature and thus we will continue to refer to it in this manner

16

1

2

3

4

°.....↓.....↓.....↓.....
↓.....↓.....

°.
....↑.....↑.....↑

..
..
.↑.

....↑
.....°.....↓.....↓.....↓.....↓.....↓.....°.

....↑

INF

X-0

X-2

0

X-3

X-1

MINF

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Position

↓.....↓.....
°.
....↑

.....↑.....↑
..
..
.↑
....

.↑.
....°.....↓.....↓.....↓.....↓.....↓.....°.

....↑
.....↑.....↑..

...↑.
....↑

INF

V-1

0

V-2

V-0

MINF

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Velocity

(a) Behavior tree (b) Behavior plot from behavior tree simulation

0 1 2 3 4 6 8 9 10 11 12 14 16 = 0

13 = 5

5

1

2

3

°.....↓.....↓.....↓.....
↓.....

↓.....°.....↑.....↑.....↑...
..↑

...
..↑.....°

INF

0

MINF

T0 T1 T2 T3 T4 T5 T6

Position

↓.....
↓.....°.....↑.....↑.....↑...

..↑
...

..↑.....°.....↓.....↓.....↓.....
↓

INF

0

MINF

T0 T1 T2 T3 T4 T5 T6

Velocity

(c) Envisionment graph (d) Behavior plot from envisionment simulation

� A behavior tree simulation of the damped spring describes the initial segment of a
potentially in�nite behavior tree (a). The behavior plot (b) of behavior 1 describes a
decreasing oscillation. Landmarks X-0 through X-3 and V-0 through V-2 are intro-
duced during the simulation.

� An envisionment generates a �nite behavioral description (c) with links pointing to
other equivalent states within the tree (state 16). The behavior plot (d) is unable to
describe a decreasing oscillation since landmarks are not introduced.

Figure 2.1: Damped Spring Simulation

is easier to understand the overall behavior of the system using a behavior tree

since it explicitly represents each distinct behavior. Within an envisionment graph,

inferring patterns within the behavioral description and obtaining a comprehensive

understanding of the potential system behavior may require an analysis of each path

within the graph. This analysis becomes di�cult when multiple cycles occur within

the description.

Although QSIM can generate either representation, the default representa-

tion is a behavior tree description. Figure 2.1 presents the results from both a

behavior tree and an envisionment simulation for a model of a damped spring.

17

2.4 Qualitative constraints

The dynamic behavior of the system is restricted by the constraints speci�ed within

the model. A qualitative constraint, an abstraction of a mathematical relation, spec-

i�es valid combinations of simultaneous values for a set of variables. The semantics

for these constraints are speci�ed using a qualitative sign algebra (Williams, 1991).

A brief presentation of some of the commonly used constraints is provided below.

Please refer to Kuipers (Kuipers, 1994) for a more thorough discussion. The expres-

sion [x]x0 corresponds to the sign of x with respect to some landmark value x0 and

[_x] = sign(dx=dt). [x] is used as an abbreviation for [x]0.

Constraint Algebraic Restrictions

(ADD x y z) [x] + [y] = [z] ^

[_x] + [_y] = [_z]

(MULT x y z) [x] � [y] = [z] ^

[_x][y] + [_y][x] = [_z]

(M+ x y) [_x] = [_y]

(M- x y) [_x] = �[_y]

(D/DT x y) [_x] = [y]0
(CONSTANT x) [_x] = 0

For many of these constraints, it is also possible to specify corresponding values that

describe a tuple of landmark values that the variables in the constraint can have at

the same time to further constrain the set of values allowed by each constraint.

In addition to the basic constraints listed above, the following more sophis-

ticated constraints will be referred to within this dissertation:

� The QSIM multivariate monotonic function constraint (called the "multivari-

ate M constraint") generalizes the concept of the monotonic function con-

straint to handle functions of several variables. The format of the constraint

is as follows:

(((M s1 ... sn) x1 ... xn y) (a1 ... an a0) ...)

where si speci�es the sign of the in
uence of xi on y and a1; : : : ; an; a0 speci�es

a tuple of corresponding values.

� U+=� and S+=� correspond to non-monotonic generalizations of M+=�. U+

corresponds to a concave up (U� is concave down) function that is monotonic

on both sides of the extreme point while S+ corresponds to functions that are

monotonically increasing within a given interval (S� decreases), but constant

outside of the interval.

18

2.5 Dynamic simulation

QSIM generates the behavioral description using an iterative process of computing

the successors for each non-terminal leaf state within the description. The succes-

sors of a qualitative state are computed using a combination of continuity and the

constraints within the model. Initially, a list of potential successor values for each

variable are computed using continuity. A successor state is formed for each com-

bination of these variable values consistent with the constraints contained within

the model. A branch results in the description when there are multiple consistent

successor states.

2.5.1 Simulation complexity

The primary source of complexity within a qualitative simulation is the branching

factor within the tree. In its most basic form, qualitative simulation attempts to

compute all consistent solutions to the constraint satisfaction problem (CSP) de�ned

by the constraints within the model coupled with the continuity constraint applied

during simulation. Thus, each behavior corresponds to a unique solution to the

CSP.

Viewing each behavior as a separate solution to the CSP requires a sightly

non{standard characterization of the CSP since the solution being computed is

potentially in�nite. A straight{forward characterization of qualitative simulation

as a CSP simply maps the variables and constraints within the model directly to

the CSP (Kuipers, 1994). In this characterization, however, a solution is simply

a qualitative state. Alternatively, the CSP can be characterized such that each

behavior corresponds to a solution by viewing continuity as a constraint in the

CSP. Thus, each variable within the model actually corresponds to a vector of

variables within the CSP with a value for each time{point and each time{interval.

While formally characterizing the CSP that is being solved, at this point, it is more

important to simply see how qualitative simulation can be viewed in this manner.

Since qualitative simulation computes all possible solutions, there are two

choices for reducing the complexity of a simulation:

1. increase the constraining power of the model, or

2. modify the representation used to describe the solutions.

The degree to which additional constraints can be added to the model depends

upon the information available to the modeler. TeQSIM extends the expressiveness

of the modeling language, thus providing the modeler with more
exibility when

19

trying to incorporate additional information or assumptions. DecSIM and chatter

abstraction, on the other hand, modify the representation used to describe the

system behavior providing a more compact representation that eliminates irrelevant

distinctions. DecSIM does this by generating a separate, state{based representation

for each component while chatter elimination abstracts intractable regions of the

trajectory state into a single qualitative state within the description.

20

Chapter 3

Model Decomposition and

Simulation

Qualitative simulation (de Kleer & Brown, 1985; Forbus, 1984; Kuipers, 1994) tra-

ditionally describes a dynamical system via a single model of interacting constraints

reasoning about its behavior using a global, state{based behavioral representation.

For smaller, more tightly constrained models, this representation proves adequate,

often resulting in a small number of behaviors and a tractable simulation (see the

bathtub example in �gure 1.1.) As the size of a model increases, however, the model

tends to become more loosely constrained. Unrelated distinctions in distant vari-

ables combine combinatorially often resulting in intractable event branching. Often,

these distinctions are irrelevant to the current task and tend to obscure other rele-

vant distinctions in the behavioral representation.

Combinatoric branching due to unrelated events is an inherent limitation of

a state{based representation. An alternative representation �rst proposed by Hayes

(Hayes, 1985) and later used by Williams (Williams, 1986) describes the behavior of

each variable as a set of independent variable histories. Relevant temporal relations

between variables are described separately. For a set of closely related variables,

however, the number of temporal relations may be quite large resulting in a more

complex representation if a history{based description is used instead of a state{based

representation.

The Model Decomposition and Simulation (DecSIM) qualitative simulation

algorithm bridges the gap between a history{based and a state{based representation.

Variables within the model are partitioned into loosely coupled components and

each component is simulated separately using a state{based simulation algorithm.

DecSIM reasons about interactions between components as needed to constrain each

21

component. Thus, the relationship between variables within the same component is

state{based while the relationship between di�erent components is history{based.

The DecSIM algorithm can be separated into the simulation algorithm and

the variable partitioning algorithm. This dissertation focuses on the simulation

algorithm and assumes that the variable partitioning is provided by the modeler.

For an arbitrary variable partitioning, the DecSIM simulation algorithm provides

the same soundness guarantees and the same degree of constraining power as a

standard state{based qualitative simulation.

By partitioning the model into smaller chunks, DecSIM signi�cantly reduces

the overall complexity of the simulation by eliminating the temporal correlations

between variables in di�erent components. For models that lend themselves to

decomposition, partitioning the model results in an exponential speed{up in simu-

lation time and a much more compact representation of the system behavior. Given

an appropriate partitioning of the variables, the complexity of the DecSIM algo-

rithm becomes a function of the problem speci�cation rather than an artifact of the

simulation algorithm.

3.1 DecSIM Overview

DecSIM uses a divide and conquer approach to control the problem of event branch-

ing by exploiting structure within the qualitative model. To understand the general

approach taken in DecSIM, it is best to view qualitative simulation as a constraint

satisfaction problem (CSP) in which each behavior corresponds to a unique solution

to the CSP. Qualitative simulation explicitly computes all possible solutions to the

CSP. As with any CSP, if two variables are completely unconstrained with respect

to each other, then the set of all possible solutions will contain the cross product of

the possible values for each variable. For QSIM this results in combinatoric branch-

ing when the temporal ordering of a set of events is unconstrained. DecSIM avoids

explicitly computing this cross product by breaking the CSP problem PM into a

set of smaller sub{problems fp1; p2; : : : ; png. Each sub{problem contains a subset

of the variables in PM while shared variables represent the constraints between

sub{problems.

DecSIM explicitly computes all solutions for each sub{problem. Each so-

lution to a sub{problem pi provides a partial solution to PM since it provides an

assignment of values to a subset of the variables. Two partial solutions are consis-

tent if they assign the same value to any shared variables. For a partial solution

to be globally consistent, it must be consistent with a complete assignment of the

22

variables from PM . Determining if a partial solution is globally consistent is itself a

constraint satisfaction problem.

By decomposing the model into smaller problems, DecSIM is able to exploit

structure within the model in two ways.

(1) It avoids explicitly computing all possible solutions to the original CSP. In-

stead, it computes all solutions for each sub{problem and then for each of

these solutions it computes a single solution to the global CSP.

(2) DecSIM uses causality to identify an ordering between the sub{problems al-

lowing solutions to the causally upstream sub{problems to be identi�ed as

globally consistent without �nding a solution to the global CSP.

The characterization of qualitative simulation as a non{standard CSP with a

potentially in�nite number of variables and constraints poses a number of interesting

problems when re�ning this general approach. Each partial solution is a sequence of

qualitative states. To ensure that a partial solution for sub{problem pi is consistent

with a solution for a related sub{problem pj , each state within the solution for pi
must be matched against a state in the solution for pj . Validating a partial solution

as globally consistent must be performed incrementally as the partial solution is

generated via simulation.

Describing the DecSIM algorithm from the perspective of constraint satis-

faction demonstrates the basic approach that is being used. For the rest of the

presentation, however, we focus speci�cally on the component{based qualitative

simulation algorithm. The more general problem of constraint satisfaction is only

referenced when it serves to clarify the discussion. The next section provides an

overview of the algorithm. This is followed by an example and then a more detailed

presentation of the algorithm in the following sections.

3.1.1 DecSIM: A component based qualitative simulation algorithm

DecSIM decomposes a given model M into sub{problems by partitioning the vari-

ables inM so that closely related variables are grouped together. Currently, DecSIM

requires the modeler to provide a partitioning of the variables fV1; V2; : : : ; Vng. For

each partition Vi, a component or sub-QDE is generated. Two types of variables are

contained within each component.

Within-partition variables are the variables speci�ed in the corresponding par-

tition. A variable can only be classi�ed as a within{partition variable within

a single component.

23

Boundary variables are variables contained in other partitions that causally in-

uence the within{partition variables..

Each component is designed to derive a behavioral description for the within{

partition variables of the component. Boundary variables, however, must be in-

cluded since the within{partition variables are constrained by the behavior of vari-

ables in other components.

Boundary variables for a component are identi�ed using a causal analy-

sis (Iwasaki, 1988; Nayak, 1994) of the QDE. A variable v is a boundary variable

for a component C if and only if v is directly upstream with respect to the causal

ordering and related to a within{partition variable in C via a constraint within the

original model. Boundary variables are the manner in which two components are

related. A component C1 is said to be a boundary component of component C2

if there exists a variable v that is shared by the two components such that v is a

within{partition variable in C1 and a boundary variable in C2. Note that the cat-

egorization of a variable as a within{partition or boundary variable is relative to a

speci�c component.

The relationships between components de�ned by the boundary variables

de�nes a labeled, directed graph of components called the component graph in which

each node corresponds to a component. A directed edge exists between components

C1 and C2 if and only if C1 is a boundary component with respect to C2. The edge

is labeled with the boundary variables for C2 that are contained in C1.

QSIM is used to derive a separate behavioral description, called a component

tree, for each component. The terms component behavior and component state are

used to refer to a behavior and a state within a component tree respectively. A

component behavior is locally consistent if it is consistent with all of the constraints

speci�ed within the component. QSIM guarantees that all of the component be-

haviors are locally consistent. In addition, however, each component behavior must

be consistent with respect to the the rest of the model. A component behavior b is

globally consistent if there exists a compatible combination of behaviors from each

component that includes b. A combination of component behaviors is compatible

if and only if the resulting behavior corresponds to at least one behavior within a

non{decomposed behavior tree.

DecSIM maintains links between matching states within related component

trees via an intermediate view/guide tree1

1The tree is called a view/guide tree because it provides a view of the shared variables in the
component tree of the upstream component that is used to guide the behavior of the variables in
the downstream component.

24

View/guide trees are used to relate states between components that share variables. The
upstream component is used to derive a description of the behavior of the shared variables
(i.e. the view/guide tree). This description is used to guide the behavior of the boundary
variables in the simulation of the downstream component. Each consistent state within the
downstream component must map to at least one component in the view/guide tree.

� Links from the upstream tree to a view/guide tree are called view links while links
from the view/guide tree to the downstream component are called guide links.

� Each view/guide tree corresponds to a link in the component graph.

� If component C1 contains boundary variables in C2 and C2 contains boundary vari-
ables in C1, then two links exist within the component graph relating these compo-
nents. Thus, two separate view/guide trees are maintained since the directionality of
the in
uence in the two sets is di�erent.

Figure 3.1: View/guide links and the component graph

25

describing the behavior of the shared variables (see �gure 3.1). The view/guide

links specify constraints on how behaviors in related component trees can be com-

bined. Information about the temporal ordering of unrelated events is represented

within these links. Determining if a component behavior is globally consistent is

equivalent to �nding a solution to the constraint satisfaction problem de�ned by

the component graph coupled with the view/guide links. The constraints within

this CSP are de�ned by the view/guide links while the components correspond to

variables and component behaviors to variable values.

A tree{clustering algorithm (Dechter & Pearl, 1988b, 1989) is used to ex-

ploit structure and causality within the component graph to reduce the complexity

of the CSP when determining if a component behavior is globally consistent. A

tree-clustering algorithm converts a CSP into a tree{based representation by identi-

fying clusters within the component graph. A cluster identi�es a set of components

such that a cycle exists containing any two components within the cluster. The

consistency of a component behavior is only dependent upon components within

the same cluster and non{cluster components that are upstream in the component

graph. Figure 3.2 presents an example component graph and demonstrates how

structure and causality are applied for this graph.

3.2 Two tank cascade example

Figure 3.3(a) describes the model for a simple two tank cascade. The variables

are partitioned into two components, A and B, corresponding to the two tanks.

The sub{QDE for component B includes Out
owA as a boundary variable since it

is causally upstream and related to In
owB through a constraint. In
owB is not

a boundary variable in component A since it is causally downstream. Thus, the

constraint relating these two variables is only represented within component B.

Figure 3.3(b) shows the topology of the component graph. Since component

A is strictly upstream from component B, the consistency of each component behav-

ior for A is independent of B. Thus, component A can be simulated to completion

prior to simulating component B.2

Each state within the component tree for B is linked to a set of corresponding

states within the component tree for A. The assertion of the links is determined by

the behavior of Out
owA and continuity. A component B state is only placed on

2The ordering of the simulation is slightly di�erent since the description for component A could
be in�nite. For this reason, the simulation of component A is extended as additional information
is required to drive the simulation of component B.

26

In the example above, a total of nine components, identi�ed by small circles, are grouped
into 4 clusters.

� The global consistency of behaviors in component C1 can be determined independent
of the rest of the model.

� Component C9 separates the components in cluster 4 from cluster 2. If a compo-
nent behavior in C6 is supported by a globally consistent behavior in C9, then it is
consistent with all of the component graph upstream from C9.

� Constraint satisfaction must be used to determine the global consistency of a com-
ponent behavior within clusters 2 and 4. However, this CSP only needs to \assign
a value" for the components in the cluster. Thus, the complexity of the CSP is
determined by the size of the cluster.

Figure 3.2: Exploiting structure in the component graph

27

(a) Model of two tank cascade

(b) Component graph of two tank cascade

� The model of a simple two tank cascade is represented using a directed graph (a)
describing a causal ordering of the variables within the model. Nodes within the
graph correspond to variables and edges to constraints. Arrows indicate the direction
of causality between variables with respect to the constraint.

� The boxed region identi�es the partitioning of the model provided as an input to
DecSIM. The dotted line extension to the box around component B indicates that
Out
owA is a boundary variable for component B.

� The topology of the component graph (b) can be derived from the relationship be-
tween the component via boundary variables. Since the topology is a tree structure,
simulation of the upstream component is independent of the results from the simula-
tion of the downstream component.

Figure 3.3: Simple Two Tank Cascade

28

the agenda for simulation (i.e. to have its successors computed), if it is supported by

a state in component A. Figure 3.4 shows the results from the DecSIM simulation.

The cascaded tanks example provides a simple demonstration of the DecSIM

algorithm. In many cases, however, a feedback loop exists between a set of related

components. Figure 3.5(a) describes a version of the two tank cascade in which

the level in tank B controls the in
ow to tank A. The type of controller used is

irrelevant to the critical features of the example so a detailed model of the controller

is omitted. It is assumed that In
owA is in
uenced by a control variable u in some

manner. In this example, LevelB is a boundary variable in the controller component

while u is a boundary variable in component A. Figure 3.5(b) shows how a cycle

exists within the corresponding component graph.

Simulation of this example generates three separate component trees with

three view/guide trees providing a mapping from states in component A to states

in the controller component, from the controller component to B and �nally from

B back to A (�gure 3.4.) For a state to be globally consistent, a cycle must exist

within this mapping. This cycle corresponds to a solution to the component graph

since it contains a state from each component and each state is consistent with the

other component states. In this example, each component tree is in�nite. A DecSIM

simulation hides the details of each component from the rest of the simulation. In

a traditional QSIM simulation, combinatoric branching would result if an event any

one component was unrelated to an event in the other components.

3.2.1 Presentation Overview

In the next section, we provide a formal de�nition for the concepts and terms used

up to this point followed by a detailed presentation of the core DecSIM simula-

tion algorithm. Section 3.6 discusses how DecSIM handles certain extensions to

QSIM along with other issues that are not addressed in the presentation of the

core algorithm. This is followed by theoretical and empirical results demonstrating

the bene�ts provided by DecSIM with respect to the complexity of the simulation

and proving that DecSIM generates an equivalent behavioral description as QSIM.

Finally, in sections 3.9 and 3.10 we discuss related and future work respectively.

3.3 Components, the component graph and clusters

Given a QSIM model M , a partitioning of the variables fV1; V2; : : : ; Vng, and an

initial state S, the component generation algorithm returns a component, or sub-

QDE for each partition along with a component graph augmented with a grouping

29

↑
. ↑

. °

INF

A-0

0

T0 T1

AmountA Beh 1

↑
. ↑

. °

INF

O-1

0

T0 T1

OutflowA View/Giude

°
. ↑ ↑ ↑

. °

INF

A-3

0

T0 T1 T2

AmountB Beh 1

� DecSIM generates a view/guide tree when simulating component A. This tree is used
to control the behavior of Out
owA in the simulation of component B.

� DecSIM maintains view links from the component tree for A to the view/guide tree
and also asserts guide links from the view/guide tree to component B. These links
identify compatible states.

� For component B, a branch occurs depending upon whether or not B reaches qui-
escence at the same time or after A reaches quiescence. The �nal quiescent state in
component A maps to all of the states in component B in which Out
owA has become
steady.

Figure 3.4: DecSIM simulation of the two tank cascade

30

(a) Controlled two tank cascade

(b) Component graph

� Adding a controller to the two tank cascade (a) links LevelB to In
owA through a
controller component and results in a cycle within the component graph (b).

Figure 3.5: Controlled Two Tank Cascade

31

� A decomposition of a controlled two tank cascade results in a feedback loop within
the component graph. Simulation results in an in�nite component tree for each sub-
QDE. We have omitted the actual trees from the �gure due to the complexity of the
view/guide link mapping.

Figure 3.6: DecSIM simulation of controlled two tank cascade

of the components into clusters. For each variable partition Vi, a component Ci is

de�ned by the tuple <Vi; BV;Q; Con; T> where

� Vi is a set of within{partition variables,

� BV is a set of boundary variables,

� Q is a set of quantity spaces, one for each of the variables,

� Con is the maximum set of constraints within M such that if Variables(Con)

represents the set of variables within Con, Variables(Con) � (Vi [BV).

� T is a set of transition.3

During the simulation a behavior tree, called a component tree, is generated

for each component. The component tree is consistent with the QDE de�ned by

the set of variables Vi [BV , the quantity spaces for each of these variables and the

set of constraints Con. Each state within a component tree is called a component

3Currently, we do not handle transitions within DecSIM; section 3.6.4 discusses extensions to
DecSIM to handle transitions.

32

state. The initial state for each component is simply de�ned as the projection of the

complete initial state onto the variables de�ned by the component.4 Throughout

our discussion a qualitative state with a subscript ci (i.e. sci) corresponds to a

component state within the component tree for component Ci. For simplicity, we

may omit this reference and simply describe sci as a component state.

3.3.1 Causal ordering

Boundary variables are identi�ed using a causal ordering of the variables in the

model via an extension of the causal ordering algorithm �rst described by Iwasaki

and Simon (1988) and later re�ned by Nayak (1992). The causal ordering algorithm

is a conservative algorithm that converts the constraint graph within the model into

a directed hypergraph called the causal graph.

De�nition 3.1 (Causal graph) A causal graph is a hybrid directed/non{directed,

hypergraph de�ned for a model M such that

(1) a node is generated for each variable within M ,

(2) a hyperedge is generated for each constraint C relating the variables within C,

(3) each hyperedge can have at most one outgoing link, and

(4) each node can have at most one incoming link from a hyperedge.

A variable v is said to immediately in
uence a variable v0 if there exists a hyper{edge

relating v and v0 with an outgoing edge directed at v0. If two the causal relationship

speci�ed by a constraint are ambiguous, then the corresponding hyperedge will not

contain an outgoing link.

DecSIM uses a conservative causal ordering algorithm that does not guar-

entee the assertion of a causal relationship for each of the constraints in the model.

DecSIM, however, does not depend upon the causal ordering algorithm at all. This

information simply improves the e�ciency of the algorithm. Furthermore, the mod-

eler is free to specify the causal relationship between components by directly speci-

fying the boundary variables for each partition as an input.

3.3.2 Boundary variables

Given a causal graph of the model, a variable v is considered a boundary variable

in component Ci if and only if

4A formal de�nition for projection is included later in the discussion.

33

(1) v is not a within{partition variable in Ci

(2) v is related to a variable v0 via a constraint Con such that v0 is a within{

partition variable in Ci, and

(3) the hyperedge in the causal graph corresponding to Con is either acausal (i.e.

a causal direction was not inferred) or it has an outgoing edge pointing to v0.

3.3.3 Constraints

The constraints from the model are assigned to components such that a constraint

Con is included within a component C if and only if all of the variables in Con are

either within{partition or boundary variables in C.

Lemma 3.1 Each constraint within the model is assigned to at least one component.

Proof: For each constraint Con two cases must be considered:

(1) If all of the variables in Con are contained in a single component, then Con is

by de�nition assigned to that component.

(2) Otherwise, Con spans multiple partitions. If the hyperedge corresponding to

Con has a single outgoing link, then component pointed to by this link will

contain the other variables within the constraint as boundary variables. Thus,

Con will be assigned to this component. If the hyperedge corresponding to

Con does not have an outgoing edge, then each of the components containing

a variable in Con will contain the rest of the variables as boundary variables.

Thus, Con will be assigned to all of these components. 2

3.3.4 Component graph

De�nition 3.2 (Component graph) Given a set of related components

fC1; C2; : : : ; Cng the component graph is a labeled, directed graph with a node cor-

responding to each component. The edges are de�ned as follows:

� An edge exists from component Ci to node Cj if and only if there exists a

variable v such that v is a within{partition variable in Ci and a boundary

variable in Cj.

� An edge from Ci to Cj is labeled with the set of boundary variables in Cj that

are classi�ed as within{partition variables in Ci.

34

De�nition 3.3 (Directly in
uence) A component C directly in
uences C0 if and

only if there exists an edge within the component graph from C to C0.

The expression A
vab! B is used throughout the rest of the dissertation as an abbre-

viation for the expression: an edge labeled vars exists within the component graph

connecting component A to component B.

Note that for two components A and B, it is possible for both A to directly

in
uence B and for B to directly in
uence A. This occurs if either the causal

ordering is incomplete or if two separate constraints with di�erent causal directions

relate the variables within the two components. However, there can only exist one

link within each direction. Thus, each link is uniquely de�ned by the direction of

the relation.

De�nition 3.4 (Upstream/downstream) If there exists a path within the com-

ponent graph from component Ci to component Cj then Ci is considered causally

upstream from Cj while Cj is causally downstream from Ci. Ci is strictly upstream

if and only if Ci is causally upstream from Cj, but not also causally downstream.5

3.3.5 Identifying clusters

DecSIM uses a non{directed version of the component graph to identify clusters of

related components within the component graph.

De�nition 3.5 (Cluster) The component graph is partitioned into clusters such

that each cluster is the maximum set of components fC1; C2; : : :Cng such that two

components Ci and Cj are contained within the same cluster if and only if there exists

a cycle containing both Ci and Cj within the non{directed version of the component

graph. The function Cluster : C ! 2C maps a component to the cluster (i.e. set of

components) containing it.

Lemma 3.2 (Single cluster) A component is included in one and only one clus-

ter.

Proof: First we will show that a component is included in at least one cluster and

then we will show that it is included in at most one cluster.

(1) By de�nition, a component is included in at least one cluster. If the component

A is not contained in a cycle, then the cluster simply contains A.

5Ci can be both upstream and downstream from Cj if they are contained within the same cluster.

35

(2) Suppose component A is contained in clusters C1 and C2. Then there exist

two distinct paths p1 and p2 corresponding to the two clusters such that both

paths begin and end in A. (i.e. both paths are cycles.) For any given pair of

nodes N1 and N2 within the respective paths, there exist two alternative paths

connecting them: the su�x of p1 starting at N1 composed with the pre�x of

p2 ending at N2 and the su�x of p2 combined with the pre�x of p1. Thus, N1

and N2 must be contained within the same cluster. This is a contradiction. 2

De�nition 3.6 (Cluster graph) The partitioning of the component graph into

clusters de�nes a directed graph such that each node within the graph corresponds to

a cluster and two nodes Ni and Nj are connected with a directed edge if and only if

an edge exists within the component graph from a component in Ni to a component

in Nj.

Lemma 3.3 The cluster graph is acyclic.

Proof: Follows directly from the de�nition of the partitioning of the component

graph into clusters. If a cycle exists between two components, they are contained

within the same cluster. Thus, the cluster graph must be acyclic. 2

3.4 A Component{Based Simulation Algorithm

DecSIM uses the core QSIM algorithm to compute a behavioral description for each

component. DecSIM repeatedly iterates through the components using the QSIM

successor generation algorithm to extend each leaf state within a component tree a

single time{step. The algorithm terminates once all of the component trees are fully

extended or if the state{limit is reached. QSIM guarantees that each component

behavior is consistent with respect to the constraints and variables contained within

the component. In addition, DecSIM must determine whether each component

behavior is consistent with the rest of the model. Constraints between components

occur due to shared variables and thus correspond to the edges within the component

graph.

For each edge within the component graph such that A
vab! B, DecSIM gen-

erates a view/guide tree that focuses on the behavior of the subset of variables vab
within the component tree for A.

De�nition 3.7 (View/guide tree) A view tree Tvars is a projection of a behavior

tree T onto a subset of the variables vab described within T . Thus, Tvars = �vab(T)

36

where � is the projection operator as traditionally de�ned within the relational

database literature. The upstream component is referred to as the viewed compo-

nent. The next section contains a formal de�nition of a projection.

DecSIM maintains view links relating states within the component tree for

the upstream component to states within the view tree. The view tree is then

used to guide the behavior of the boundary variables vab within the downstream

component. The behavior of these variables within the downstream component is

completely determined by their behavior within the view/guide tree. DecSIM also

maintains guide links relating states in the view/guide tree to states in the down-

stream component. Note that the directionality of the edge relating two components

determines the manner in which the view/guide tree is generated. Causality allows

the structure of the view/guide tree to be completely determined by the upstream

component tree. Later in the presentation we will discuss how an acausal relation

between variables is handled.

3.4.1 View/guide tree generation

DecSIM incrementally generates both the view links and the view/guide tree as the

upstream component tree is extended. A projection of a qualitative state and of a

behavior tree are de�ned as follows (see �gure 3.7 for a more intuitive, graphical

description of a behavior tree projection). The symbol S =vars S
0 is used for short

hand to mean that S and S0 are equivalent with respect to the set of variables

vars. More formally, for all v such that v 2 vars :: Qval(v; S) = Qval(v; S0). This

abbreviation will be used throughout the dissertation.

De�nition 3.8 (Projection of a qualitative state) A qualitative state Svars is

said to be a projection of the qualitative state S with respect to the set of variables

vars, written �s
vars(S) = Svars if and only if,

(1) if V represents the set of variables described by S then vars � V ,

(2) S =vars Svars, and

(3) for all v such that v 2 V and v 62 vars, Qval(v; Svars) is unde�ned

where

De�nition 3.9 (Projection of a behavior tree) A behavior tree Tvars is said to

be a projection of T with respect to vars, written �vars(T) = Tvars, if and only if

the there exists a surjective function Pvars : ST ! STvars mapping states from T to

states in Tvars such that:

37

(1) for all s such that s is in T , Pvars(s) = �s
vars(s).

(2) if s is an initial state of T then Pvars(s) is an initial state of Tvars

(3) either s is a time{point or a quiescent state or Pvars(s) is a time{interval state

(4) if Pvars(s) = s0 then for all ssucc such that ssucc is a successor of s either

Pvars(ssucc) = s0, or Pvars(succ(s)) 2 succ(s0).

Furthermore, if Tvars is a projection of T with a mapping function Pvars then the

function P�1 : STvars ! 2sT de�nes a mapping from a state in Tvars to the set

of corresponding states in T such that s 2 P�1(Pvars(s)) and for all qualitative

states ST and STvars from T and Tvars respectively ST 2 P
�1(STvars) if and only if

Pvars(ST) = STvars.

Each state added to the upstream component tree is either mapped to an

existing state within the view/guide tree or the view/guide tree is extended and

a new state is introduced. Formally, the mapping de�ned by the view/guide link

de�nes a function ViewedByvab : Su ! Sv=g where Su and Sv=g correspond to states

in the upstream component tree and the view/guide tree respectively. ViewedByvab
corresponds to the mapping function Pvab de�ned by the projection operator. The

variable view algorithm (Clancy, Brajnik, & Kay, 1997), described in �gure 3.1,

generates the view/guide tree and de�nes the function ViewedByvab .

3.4.2 Generating guide links

Guide links are generated as either the view/guide tree or the downstream compo-

nent tree is extended. These links de�ne a partial function GuideOf : Sv=g ! 2Sd

that maps a state in the view/guide tree to a set of states in the downstream compo-

nent tree. The function is partial since a state may be added to either the view/guide

tree or to the downstream component tree even if a corresponding state does not ex-

ist in the other tree. This is because the extension of the view/guide tree is driven

completely by the simulation of the upstream component. For those states that

are mapped, the function GuideOf (s) is equivalent to the inverse mapping function

P�1 de�ned by the projection operator. Figure 3.2 describes the guide link mapping

algorithm used to maintain the guide mapping links.

The mapping function GuideOf de�ned by the guide link mapping algorithm

satis�es the following properties where Tv=g corresponds to the view/guide tree, Td
to the downstream component tree, and vab to the set of variables described by Tv=g.

(1) for all sv=g ; sd and v such that sv=g 2 Tv=g; sd 2 Td, and v 2 vab ::

if sd 2 GuideOf (sv=g) then Qval(v; sv=g) = Qval(v; sd),

38

Base Tree

Projection

(a) (b)

or

(c)
For Tvab to be a projection of T the many{to{one mapping from states in T to states in Tvab
must satisfy the following properties (� represents a time{interval state while � represents
a time{point state):

(1) if two states are mapped together, they must be equivalent with respect to vab

(2) initial states are mapped to initial states

(3) since transitions within T may correspond to changes in other variables, a time{
interval state in the projection can map to multiple states in the original tree (a), but
a time{point state can only map to a single time{point state (b)

(4) if a state A in T maps to B then each successor of A must either map to B or to a
successor of B (c).

Figure 3.7: Projection of a behavior tree

39

Variable View Algorithm:

Given a state s and a set of variables vab such that vab is a subset of the
variables described by s, the following algorithm updates the view/guide
tree for vab and modi�es the function ViewedByvab. The symbol =vab is
used to mean that two states are equivalent with respect to the variables
vab.

1. If s is an initial state then generate a new state svab such that
svab = �s

vab
(s) and assert a view link so that ViewedByvab(s) = svab

and return.

2. If s =vab Pred(s) and either s is a time{point state
or ViewedByvab(Pred(s)) is a time{interval state, then set
ViewedByvab(s) to ViewedByvab(Pred(s)) and return.

3. If there exists an s0 such that s0 2 Succ(ViewedByvab(Pred(s))) and
s0 =vab s, then set ViewedByvab to s

0 and return.

4. Otherwise, generate a new state svab such that svab = �s
vab
(s), add

svab as a successor of ViewedByvab(Pred(s)), set ViewedByvab(s) to
svab and return.

Table 3.1: Variable View Algorithm

40

(2) if sv=g is an initial state of Tv=g then for all sd 2 GuideOf (sv=g) sd is an initial

state of Td

(3) either sv=g is a time{interval or a quiescent state or for all sd 2 GuideOf (sv=g)

sd is a time{point state

(4) for all sv=g 2 Tv=g and sd 2 Td if sd 2 GuideOf (sv=g) then either sv=g and sd are

initial states, pred(sd) 2 GuideOf (pred(sv=g)), or pred(sd) 2 GuideOf (sv=g).

3.4.3 Compatible behaviors

For all edges A
vab! B within the component graph, the predicate M

A
vab
!B

(sa; sb)

relating states within A and B can be de�ned by composing the mapping functions

ViewedByvab and GuideOf de�ned with respect to the view/guide tree relating A

and B. M
A
vab
!B

(sa; sb) is called a component edge predicate.

De�nition 3.10 (Component{edge predicate) For each edge within the com-

ponent graph such that A
vab! B, the component{edge predicateM

A
vab
!B

(sa; sb), where

sa and sb are a states in the component trees for components A and B respectively,

is true if and only if

sb 2 GuideOf(ViewedByvab(sa))

Lemma 3.4 (component{edge lemma) For each edge within the component graph

such that A
vab! B, the component{edge predicate M

A
vab
!B

(ai; bj) is true if and only

if the following statements are satis�ed:

� ai =vab bj,

� ai is an initial state i� bj is an initial state,

� If ai and bj are not initial states, (M
A
vab
!B

(ai�1; bj�1) [(M
A
vab
!B

(ai; bj�1) [

(M
A
vab
!B

(ai�1; bj)

The proof for this lemma is contained in appendix A.

While the component{edge predicates de�ne relations on qualitative states,

these predicates allow us to e�ciently determine whether behaviors from two related

components are compatible. Intuitively, two behaviors are compatible if they can be

combined to form a single composite behavior describing all of the variables within

both components. It is possible to determine whether two behaviors are compatible

41

Guide Link Mapping Algorithm:

Given a state s that is added to a component tree that is guided by a
view/guide tree describing the set of variables vab such that vab is a subset
of the variables described by s, update the function GuideOf if there
exists a state corresponding to s in the view/guide tree. GuidedByvab is
the inverse mapping function of GuideOf

1. If s is an initial state and there exists an initial state of the
view/guide tree s0 such that s0 =vab s, then add s to the set re-
turned by GuideOf and return. If there is not an initial state of
the view/guide tree matching s then return an error.

2. If s is a time{point,

� if s =vab Pred(s) then add s to GuideOf (Pred(s)).

� otherwise, if there exists an
s0 such that s0 2 Succ(GuidedByvab(Pred(s))) then add s to
GuideOf (s0).

� Return.

3. If s is a time{interval,

� if GuidedByvab(Pred(s)) is a time{point, then if there exists
a state s0 such that s0 2 Succ(GuidedByvab(Pred(s))) where
s0 =vab s, then add s to GuideOf (s0).

� otherwise, if s =vab GuidedByvab(Pred(s)), then add s to
GuideOf (Pred(s)).

� return.

Given a state s that is added to a view/guide tree, if GuideOf (Pred(s))
maps to a state that has a successor s0 such that s =vab s

0 and if so
update the function GuideOf (s) accordingly.

Table 3.2: Guide link mapping algorithm

42

by comparing the behaviors beginning at the initial states. By incrementally main-

taining the mapping between states in related components, however, we are able to

determine whether two behavior segments are compatible simply by comparing the

relation between the two terminal states within the behaviors.

De�nition 3.11 (Compatible behaviors) A set of component behaviors

fb1; b2; : : : ; bng each from separate components are compatible if and only if the be-

haviors can be composed to form a single behavior describing all of the variables

within each component behavior.

De�nition 3.12 (Behavior composition) A set of component behaviors

fb1; b2; : : : ; bng can be composed if and only if there exists a composite behavior

B such that for all 1 � i � n, �vi(B) = bi where vi corresponds to the set of

variables described by bi. Furthermore, the join operator, 1 when applied to a set of

component behaviors fb1; b2; : : : ; bng de�nes the maximal set of composite behaviors

which in e�ect is a behavior tree.

Thus, for a set of behaviors to be composed there must exist an ordered

sequence of sets (S1; S2; : : :Sm) such that each set Si = fs1i ; s
2
i ; : : :s

n
i g has a single

state6 from each component tree such that any pair of states in a set are equivalent

with respect to the shared variables and the ordering of the sets satis�es the following

constraints:

� the states within S1 are all time{point, initial states,

� if set Si contains a time{point state then set Si+1 cannot contain a time{point

state,

� for all i; j where 1 � i � m and 1 � j � n, sji+1 is either the same as s
j
i or the

successor of sji within the component behaviors.

The sequence of sets corresponds to a qualitative behavior that is consistent with the

component behaviors. If a set contains a time{point state, then the corresponding

qualitative state is a time{point state. Otherwise, it is a time{interval state. Fig-

ure 3.8 provides a graphical description of this mapping. Note that in general there

may exist multiple sequences of sets that satisfy this property. Thus, each sequence

corresponds to a di�erent complete behavior while the set of all such sequences

corresponds to the maximal set of composite behaviors.

6In the notation used, the superscript corresponds to the component while the subscript corre-
sponds to the ordering of the state within a component behavior.

43

S
1

S
3

S
2

S
4

S
m

i

j

s1

s2

sn

Composite
Behavior

Sets

Sequence

The de�nition of a composite behavior provides a grouping of states, one from each compo-
nent behavior, that are sequenced in a manner that allows the component behaviors to be
combined to form a consistent qualitative state.

� The corresponding complete behavior is listed below and the states are labeled with
the name of each sequence (i.e. Si). In the de�nition from the text, i identi�es the
sequence while j identi�es the state from the behavior within the set.

� The states contained within each set are identi�ed by an oblong circle surrounding
them.

� Note how sets with time{point states map to time{point states within the composite
behavior.

Figure 3.8: Composite behavior mapping

44

Note that if the set of variables described by behaviors b1 and b2 do not

intersect, then the two behaviors are by de�nition compatible since any state from

b1 can be combined with any state from b2.

Theorem 3.1 (Compatible behavior theorem) A given pair of component be-

havior segments bi = fsi1; s
i
2; : : :s

i
ng and bj = fsj1; s

j
2; : : :s

j
mg from components Ci

and Cj, respectively, are compatible if and only if

� if Ci
vij
! Cj is an edge in the component graph then M

Ci
vij
!Cj

(sin; s
j
m) is true,

and

� if Cj
vji
! Ci is an edge in the component graph then M

Cj
vji
!Ci

(sjm; s
i
n) is true.

Proof Sketch: Proof by induction on the number N of iterations through the simu-

lation algorithm for each component. The initial states for the components are by

de�nition compatible since they are each a projection of the initial state for the en-

tire model. Then, we show that the mapping that is asserted by the component{edge

predicate is the exact mapping that is required to generate a component behavior.

The entire proof is contained in appendix A.

Theorem 3.2 (Compatible behavior set theorem) A set of component behav-

iors fb1; b2; : : : ; bng each from a di�erent component are compatible if and only if

for all i; j < n bi and bj are compatible.

Proof Sketch: The proof of this theorem is simply an extension of the previous

theorem. Once again the mapping maintained by the component{edge predicates

ensure that a composite behavior can be generated. The proof for this theorem is

contained in appendix A.

3.4.4 Global consistency

The component graph, coupled with the component{edge predicates speci�ed via

the view guide links, de�nes the component graph constraint satisfaction problem.

De�nition 3.13 (Component graph CSP) The component graph CSP is de-

�ned by the tuple <V;D;C> such that

� the variables V correspond to components,

45

� the domain for each variable is the set of qualitative states de�ned in the

component tree for the corresponding component (D is the set of domains for

each variable),

� the constraints C are de�ned by the set of component{edge predicates de�ned

for the edges within the component graph.

A solution to the component graph corresponds to a set of component states

fs1; s2; : : : ; sng such that

(1) one state comes from each component, and

(2) for all i and j such that i; j � n, if there exists an edge Ci
eij
! Cj then

M
Ci

eij
!Cj

(si; sj) is true.

De�nition 3.14 (Global consistency) A component state s is globally consis-

tent if and only if there exists a solution to the component graph containing s.

Theorem 3.3 (Global consistency , compatibility) The set of component

states fs1; s2; : : : ; sng is a solution to the component graph if and only if the set

of behaviors B = fb1; b2; : : : ; bng is compatible where bi is the component behavior

terminating in state si.

Proof: [Global consistency) compatibility] { By the de�nition, a set of

states is a solution to the component graph if and only if the states satisfy all of the

component{edge predicates (i.e. condition (2) in the de�nition of a solution). Thus,

by theorem 3.1 each pair of behaviors bi and bj are compatible. By theorem 3.2 if

each pair of behaviors is compatible, then the entire set is compatible.

[Compatibility) global consistency] { Simply reverse the argument above.

Thus, by theorem 3.2 if a set of behaviors is compatible then each pair must be

compatible. By theorem 3.1, if each pair is compatible then each of the component{

edge predicates must be satis�ed. By the de�nition of a solution to the component,

if each component{edge predicate is satis�ed then a set of states is a solution. 2

3.4.5 Global consistency algorithm

Determining whether a component behavior is globally consistent for a fully simu-

lated set of component behaviors is a straight{forward constraint satisfaction prob-

lem given the characterization that has been provided. DecSIM, however, incremen-

tally generates each component behavior. Thus, it is possible that as component

46

behaviors are extended a solution to the component graph is generated containing

a state already within a component tree that had previously not been globally con-

sistent. Furthermore, the number of states that are not globally consistent is poten-

tially quite large since the boundary variables are unconstrained within a component

except with respect to the view/guide support links. Thus, extending behaviors that

have not been determined to be globally consistent could be prohibitively expensive.

To address these issues, we use the following techniques:

� successors of a component state s are only computed if s is determined to be

globally consistent, and

� if a component state s is added to a component tree, the algorithm must

�nd all solutions to the component graph containing s such that the solution

contains at least one state whose status with respect to global consistency had

previously been undetermined.

The algorithm used to test a state for global consistency exploits causality

and structure within the component graph to reduce the complexity of �nding a

solution to the component graph in the following ways:

1. Transformation of the component graph into a tree{based representation by

identifying clusters allows the algorithm to propagate the global consistency

of a component state within regions of the component graph as opposed to

computing a complete solution to the component graph.

2. Causality is used to assert the independence of a subgraph within the compo-

nent graph. The global consistency of a component behavior is independent of

the components that are strictly downstream with respect to causality. Thus,

the algorithm only needs to identify a solution to the subgraph that is causally

upstream from a component. For example, in the simple two tank cascade the

behavior of the upstream tank is completely independent of the behavior of

the downstream tank.

The global consistency algorithm is centered around the concept of support.

Conceptually, a component state s is supported if for all components that are im-

mediately upstream there exists a globally consistent state that is consistent with

s with respect to the relevant component{edge predicate. The formal de�nition of

support is divided into two types of support.

De�nition 3.15 (Upstream support) A component state scj from component

Cj is upstream supported if and only if for all components Ci such that Ci
vij
! Cj

47

and Ci and Cj are not contained within a cluster, there exists a fully supported state

sci such that M
Ci

vij
!Cj

(sci ; scj) is true.

De�nition 3.16 (Full support) A component state scj from component Cj is

fully supported if and only if there exists a solution sol to the component subgraph

de�ned by the cluster containing Cj such that

� the solution contains scj , and

� all of the states in the solution are upstream supported.

By lemma 3.2 in section 3.3.5, we know that each component is contained in one

and only one cluster. Note that if the size of a cluster is one, then upstream support

implies cluster support. Also, if there are no upstream components for a component

C, then all of the states in the component tree for C are by de�nition fully supported.

To demonstrate that full support de�nes necessary and su�cient conditions

for a state to be globally consistent, we de�ne a partitioning of the component

graph into two subgraphs around a given component C. The operator U and its

complement �U are de�ned such that for a given component C, U(C) returns the

causally upstream subgraph for C while �U(C) returns the remainder of the subgraph.

De�nition 3.17 (Causally upstream subgraph) A causally upstream subgraph

for a component C is de�ned as the largest set of components U such that for all

Ci where Ci is an element of U , either Ci = C or there exists a path within the

component graph from Ci to C.

Thus, the causally upstream subgraph for C is the set of components and edges that

causally in
uence C while its complement is the set of components and edges that

are strictly downstream from C or causally unrelated.

Lemma 3.5 For a given cluster C a component state sc contained within the com-

ponent tree for C is fully supported if and only if there exists a solution to the

causally upstream subgraph for C that is consistent with sc.

Proof: Both directions of the if and only if will be proved by induction on the

maximum length of the path from a root node of the cluster graph to the cluster

containing C.

Base case: Length of the path is 0. A path length of zero means that there are

no causally upstream clusters. Thus, U(C) is equivalent to Cluster(C). By the

de�nition of cluster support, there exists a solution to this subgraph.

Inductive step: Assume the lemma is true for path of length n.

48

Fully supported) solution to U(C) { For component C with a maximum path

of length n+1 from a root of the cluster graph, assume that a state sc within

the component tree for C is fully supported.

(1) By assumption there exists a solution sol to the subgraph de�ned by

Cluster(C). Furthermore, each state within this solution must be up-

stream supported.

(2) Since each of the states in the solution are upstream supported, then

for all scj 2 sol and for all components Ci such that Ci
vij
! Cj and

Ci 62 Cluster(Cj), there exists a cluster supported state sci such that

M
Ci

vij
!Cj

(sci ; scj) is true.

(3) By the inductive hypothesis, there must exist a solution to the subgraph

U(Ci) for each Cj referenced above. Since scj is consistent with this solu-

tion (item 2) and by the de�nition of a cluster the rest of the components

in the cluster containing Cj are unrelated to the components in U(Ci),

the solution to U(Ci) is consistent to sol.

(4) Thus, the solution to Cluster(C) can be combined with each of the solu-

tions to U(Ci) to form a complete solution to U(Cj) where Ci is a compo-

nent that is not contained within the Cluster(C), but directly in
uences

a component in Cluster(C).

Solution to U(C)) fully supported { Let sol equal to the solution to the sub-

graph U(C). Thus, since sol also provides a solution to any subgraph of U(C),

there exists a solution to Cluster(C) as well as all subgraphs U(Ci) such that

Ci directly in
uences C but is not an element of Cluster(C). Thus, each of

the states in sol are cluster supported. 2

Lemma 3.6 If the model is consistent, then for all solutions solu to the causally

upstream subgraph for C there exists at least one solution sold to the remainder of

the component graph such that solu and sold are consistent.

Proof: By the de�nition of causally upstream subgraph, the variables contained in

U(C) are connected to the variables contained in �U(C) via one of more causally di-

rected constraints within the causal ordering. These variables are simply exogenous

variables with respect to �U(C) whose behavior is unconstrained by �U(C). Thus, if

there is a solution to U(C) and the model is consistent, then there will exist at least

one solution to �U(C) that is consistent with U(C). 2

49

Theorem 3.4 If the model is consistent, then a state s is fully supported if and

only if there exists a solution to the component graph containing s.

Proof: By lemma 3.5 if s is cluster supported then there exists a solution sol to the

subgraph for U(C) where C is the cluster containing s. By lemma 3.6, if the model

is consistent, there must exist a solution to �U(C) that can be combined with sol to

form a complete solution. This argument can be reversed to support the theorem

in the opposite direction. 2

3.4.5.1 The algorithm

The global consistency algorithm is divided into two parts. The global-consistency-

test algorithm tests a state for global consistency while the global-consistency-

propagate algorithm propagates globally consistency through the component graph.

Both algorithms are simply straight{forward implementations of the de�nitions pro-

vided above. The algorithms are de�ned in �gures 3.3 and 3.4. Note that if s is

marked globally consistent then the propagate algorithm must �nd all solutions to

the subgraph de�ned by the cluster containing s such that

� each solution contains s, and

� each solution contains at least one other state that previously had not been

classi�ed as globally consistent.

This condition ensures that the e�ects of s being marked globally consistent are

propagated through the component graph without computing all possible solutions

to the cluster subgraph.

3.4.6 Results of the algorithm

This section presents a sequence of lemmas and theorems that support the following

statements:

(1) The global consistency test algorithm is sound and complete with respect to

the identi�cation of a state s as globally consistent.

(2) In combination, the test and propagation algorithms ensure that at any given

point during a simulation all states that participate in a solution to the com-

ponent graph are marked globally consistent.

50

Global Consistency Test Algorithm:

Given a component state s from a component C that is not globally
consistent:

1. For each component C0 such that C0
vab! C and C and C0 are not

contained within a cluster

� if there exists a state s0 2 GuideMapvab(s) that is marked glob-
ally consistent, then mark s0 as upstream supported with re-
spect to C0,

� otherwise return NIL.

2. Mark s upstream supported.

3. If s it is not contained within a cluster of size greater than 1, then
mark s globally consistent and return.

4. Otherwise, attempt to �nd a solution to the subgraph de�ned by
the cluster containing C that satis�es the following properties:

� the solution contains s, and

� all of the states within the solution are upstream supported.

If a solution is found, mark s as globally consistent.

5. Return.

The function GuideMapvab traverses the view/guide links and returns
the set of states that are mapped to s via the directed link labeled
vab.

Table 3.3: The Global Consistency Test Algorithm

51

Global Consistency Propagate Algorithm:

Given a state s from component C that has just been marked globally
consistent,

1. For each component C0 such that C
vab! C0 and C and C0 are not

contained within a cluster

� for all s0 such that s0 2 ViewMapvab(s), if s
0 was previously

not supported with respect to C, then mark s0 as upstream
supported with respect to C and global-consistency-test on s0.

2. If C is contained in a cluster of size greater than 1, then �nd an
ordered list of solutions sol = fsol1; sol2; : : : ; solng such that each
solution satis�es the following constraints:

� each solution contains s,

� all of the states within each solution are upstream supported,
and

� each solution soli contains at least one state that is not cur-
rently marked globally consistent and is not contained within
a solution solj where j < i.

3. For all states s0 such that s0 is contained within one of the solutions
and is not currently labeled globally consistent, mark s0 globally
consistent.

4. For all states marked globally consistent in step 3 propagate the
results by calling this algorithm recursively. (All of the states must
be marked before propagating to avoid recomputing the same solu-
tions to the cluster subgraph.)

The function ViewMapvab traverses the view/guide links and returns the
set of states that are s maps to via the directed link labeled vab. It is
equivalent to the set identi�ed by ViewedByvab(GuideOf (s)).

Table 3.4: The Global Consistency Propagation Algorithm

52

(3) The DecSIM algorithm does not preclude the generation of a state s that could

potentially participate in a solution to the component graph.

These conclusions are used to support the claims in section 3.5 regarding the sound-

ness and completeness of the DecSIM algorithm with respect to behavioral descrip-

tion generated.

Lemma 3.7 (Global consistency test is sound and complete) Given a state

s, the global-consistency-test algorithm marks s globally consistent if and only if

there exists a solution to the component graph containing s.

Proof: This lemma follows directly from theorem 3.4. The global consistency test

algorithm marks a state as globally consistent if and only if it is fully supported.

Thus, by theorem 3.4 there exists a solution to the component graph containing s. 2

The algorithm also guarantees detection of any e�ects that s may have on the global

consistency of other states within the component graph. Note that a state s can

only a�ect the global consistency of another state s0 if s participates in a solution

to the component graph containing s0.

Lemma 3.8 (Test and propagate sound and complete) For all component

states s, s is contained within a solution to the component graph if and only if

the global-consistency-test algorithm coupled with the global-consistency-propagate

algorithm identi�es the s as globally consistent.

Proof: Lemma 3.6 guarantees the soundness and completeness of the global con-

sistency test algorithm. Thus, all states marked participate in a solution to the

component graph.

If a state s participates in a solution, and global consistency test is called, then it

will be labeled globally consistent. Global consistency propagate ensures that any

states that can potentially participate in a solution are tested. If state s0 is contained

within the same cluster as s, then propagate identi�es all solutions to the cluster

graph containing fully supported states that are not currently globally consistent.

Thus, the solution containing s0 will be identi�ed and the state labeled. If s0 is

strictly downstream from the component containing s, then either the component

containing s0 is directly related to a component in the cluster or it is related by

a sequence of components. In either case, if it participates in a new solution, the

state must be supported by a sequence of globally consistent states relating all the

way back to the component containing s. Propagation will propagate the e�ects

53

of the new solution containing s through this sequence and identify s0 as globally

consistent. 2

Theorem 3.5 (Global consistency invariance theorem) At any given point

during a DecSIM simulation, a component state s is labeled globally consistent if

and only if there exists a solution to the component graph containing s.

Proof: This condition is initially established by the decomposition of the initial

state. By de�nition, the initial states within each component are all globally con-

sistent. The only way that the status of the set of component states can change is

by the generation of a new component state s. By lemma 3.7, s is labeled globally

consistent if and only if there exists a solution to the component graph. Lemma 3.8

states that the addition of s is propagated through the component graph. Thus, if

the condition being proved held before the introduction of s, then these algorithms

ensure that it holds after the introduction of s. Since we know that this condi-

tion holds at the initial state, we know that the algorithms maintain this condition

throughout the simulation. 2

Lemma 3.9 For a component state s, the set of states generated by the successor

generation algorithm in a DecSIM simulation is a superset of the corresponding

successor states within a standard QSIM simulation.

Before proving this lemma, we will �rst provide a more formal characteriza-

tion of the statement that is being made by establishing a relation between compo-

nent states and complete qualitative states.

Suppose that M is a non{decomposed QSIM model and s is a component

state corresponding to a decomposition ofM . Furthermore, assume that s describes

the set of variables Vi, which is a subset of the variables de�ned in M . Thus, s is

a projection of a set of complete qualitative states describing all of the variables

within M .

� Let, ��1(s) return the set S = fs1; s2; : : :smg of all consistent extensions of

s such that each extension contains a qualitative value for all of the variables

within the model.

� Let SS be the set of successor states for the states within S i.e. SS = fssjss 2

Succ(s)g where s 2 S.

54

� Finally, let CS correspond to the set of component states de�ned by the pro-

jection of the states in SS back onto the subset of variables Vi i.e. CS = fsjs =

�Vi(ss)g where ss 2 SS:

Formally, the lemma states that succ(s) � CS.

Proof: The QSIM successor{generation algorithm uses continuity to de�ne the

space of possible successor states and then eliminates states due to constraints within

the model. Since the set of component constraints is a subset of the constraints

within the model and since DecSIM uses the same successor generation algorithm

as QSIM, the set of successor states for s will a subset of those generated for the

corresponding complete qualitative states. 2

The only manner in which DecSIM restricts the generation of a component state is

by limiting the states that are simulated to globally consistent states.

Lemma 3.10 For a given component behavior b = fs1; s2; : : : ; sng, if sn is globally

consistent, then for all i such that 1 � i < n :: si is globally consistent.

Proof: Since sn is globally consistent, then by de�nition there exists a solution to

the component graph containing sn. Let sol represent this solution. By theorem 3.3,

we know that there exists a corresponding set of compatible component behaviors.

By the de�nition of compatible, this means that these behaviors can be composed

to generate a set of consistent full behaviors. Therefore, any pre�x of b terminating

in state si, where i < n, also corresponds to a consistent full behavior. Therefore,

by de�nition si is globally consistent. 2

Therefore, if in the current state of the simulation a state s does not par-

ticipate in a solution to the component graph, a successor of s cannot participate

in a solution to the component graph. Thus, restricting the simulation to globally

consistent states does not preclude the generation of a valid component behavior.

3.5 Theoretical Results

The DecSIM algorithm supports the following general claims:

(1) The behavioral description generated by DecSIM is equivalent to the repre-

sentation generated by QSIM except for the temporal ordering of events for

variables in separate components.

55

(2) The behavioral description generated by DecSIM, coupled with the constraints

on the temporal ordering of events speci�ed by the component{edge predicates

represented as view/guide links, is equivalent to the representation generated

by QSIM.

(3) A real{valued trajectory is described by the set of DecSIM component be-

haviors, coupled with the component graph predicates, if and only if it is

also described by the behavioral description generated by a standard QSIM

simulation.

The following theorems support claims (1) and (2). The third claim follows directly

from claim (2) since the set of qualitative behaviors is identical.

Theorem 3.6 (DecSIM Completeness Guarantee) Given a consistent model

M , if DecSIM generates a component behavior bi describing the subset of variables

Vi based upon a decomposition of M , then there exists a corresponding behavior B

within the behavior tree generated by QSIM such that �Vi(B) = bi.

Proof: Let si correspond to the terminal state in bi. By de�nition, si is fully

supported. Therefore, by theorem 3.4, there exists a solution sol = fs1; s2; : : :sng

to the component graph containing si. By theorem 3.3, the set of behavior seg-

ments fb1; b2; : : : bng such that si is the �nal state in bi are compatible. By the

de�nition of compatible, there must exist a composite behavior B such that B

is in the set of behaviors de�ned by the muti-way join of fb1; b2; : : : bng and for

i : 1 � i � n :: �Vi(B) = bi. Finally, by the QSIM soundness guarantee we know

that QSIM will produce B. 2

Theorem 3.7 (DecSIM Soundness Guarantee) Given a consistent model M

and a decomposition of the model into components fC1; C2; : : :Cmg where Ci de-

scribes variables Vi, if QSIM generates a behavior B, then DecSIM will generate the

set of behaviors fb1; b2; : : : bmg such that for i : 1 � i � m :: �Vi(B) = bi.

Proof: By induction on the length of B. Base case: Length of B equals 1.

B simply corresponds to the initial state. By de�nition the initial state for compo-

nent Ci is �s
Vi
(S).

Inductive step: Assume for jBj = n that DecSIM generates a set of component

behaviors.

For a behavior B of length n + 1, let the pre�x of B of length n be represented

by Bn and the set of behaviors generated by DecSIM be bn = fbn1 ; b
n
2 ; : : : ; b

n
mg.

Furthermore, let Sn+1 represent the state that extends Bn to B.

56

(1) By the inductive hypothesis, DecSIM generates the behavior set bn. By the-

orem 3.5 the set of component states sn = fsn1 ; s
n
2 ; : : : ; s

n
mg such that si is

the terminal state in bni is a solution to the component graph. Each one of

the states is marked globally consistent and will be placed on the agenda for

simulation.

(2) Since QSIM generates a behavior Bn+1 , by de�nition there exists a set of

compatible behaviors bn = fbn+1
1 ; bn+1

2 ; : : : ; bn+1
m g where bn+1

i describes the

set of variables in Vi. By theorem 3.2, the set of terminal states sn+1 =

fsn+11 ; sn+12 ; : : : ; sn+1m g is a solution to the component graph.

(3) For all components Ci, we know that �s
Vi
(Sn+1) 2 fsni [succ(s

n
i)g by continu-

ity. Since DecSIM does not restrict the generation of states except by limiting

the simulation to states marked globally consistent (lemmas 3.9 and 3.10), we

know that DecSIM will generate all of the states in this set.

(4) By theorem 3.5, if a solution exists within the component trees, DecSIM iden-

ti�es the states within the solution as globally consistent. By (2) we know

that a solution exists and by (3) we know that all of the states that comprise

this solution will be generated.

By induction, DecSIM will generate the set of component behaviors bn. 2

Theorem 3.8 Given a consistent model M , the set of qualitative behaviors de�ned

by the composition of all of the component behaviors generated by DecSIM for a

decomposition of M is equivalent to the set of qualitative behaviors generated by a

standard qualitative simulation for M .

Proof: By theorems 3.6 and 3.6 we know that each component behavior generated

by DecSIM corresponds to a behavior in the tree generated by QSIM and conversely

that each behavior generated by QSIM corresponds to a set of component behaviors.

Thus, all that is left is to show that the set of behaviors de�ned by the composition

of the component behavior trees does not include behaviors that are not generated

by QSIM.

(1) By the de�nition of composition all of the behaviors that are generated are

\valid" qualitative behaviors (i.e. successive states adhere to continuity con-

straints and each qualitative state assigns a valid qualitative value to each

variable).

57

(2) Furthermore, each component state ensures that the constraints restricting the

variables within the component are satis�ed. Constraints between component

behaviors are represented by shared variables. Thus, if a set of component

states can be combined (i.e. there is not a con
ict in the value for a variable),

then the state will satisfy the constraints within M .

Thus, all of the behaviors de�ned by the composition of the component behaviors

are consistent behaviors for the model M . If one of the composite behaviors is not

generated by QSIM, this would violate the QSIM soundness guarantee. 2

3.6 Other Issues

The presentation of the DecSIM algorithm has focused on the core simulation algo-

rithm that is used to generate a behavioral description for each component. This

section discusses various topics relevant to the detailed implementation of the Dec-

SIM algorithm.

3.6.1 Acausally related components

Currently, DecSIM handles an acausal relation as a pair of causal relations. Thus,

if there exists a constraint relating variables in components Ci and Cj whose causal

direction is ambiguous, then an edge from Ci to Cj will be created in the component

graph, as well as an edge from Cj to Ci. Thus, two separate view/guide trees will

be maintained and Ci and Cj will be contained within the same cluster.

While this solution simpli�es the algorithm, it introduces some ine�ciencies

with respect to both space and time. The view/guide trees generated for the two

links in the component graph will be roughly equivalent at any point during the

simulation. Certain behaviors may be slightly more extended within one than the

other as each component tree is incrementally extended. Conceptually, however,

the two view/guide trees describe the behavior of the same subset of variables.

Combining these trees into a single view/guide tree would provide a more compact

representation and would also combine the two component{edge predicates into one.

Representing a causally ambiguous relation in this way, however, would complicate

the characterization of the algorithm, since certain edges within the component

graph would be non-directed. In addition, it would complicate the code, since the

extension of a view/guide tree would depend upon two separate component trees.

58

3.6.2 Global inconsistency

Due to the incremental generation of the component trees, failure to identify a state

as globally consistent does not imply that the state is globally inconsistent.

De�nition 3.18 (Global inconsistency) A component state s is globally incon-

sistent if and only if it can be shown that for all possible extensions to the component

trees a solution to the component graph containing s does not exist.

If a solution containing a state s does not exist to the component graph, it is still

possible for a solution to be created if the predecessor of s participates in a solution

containing a state that has not been simulated. This is because after simulation

of the state, it is possible that the solution might be \extended" so that it or an

alternative solution contains s. Thus, to identify a state s as globally inconsistent,

it is necessary to evaluate its successor with respect to the solutions in which it

participates.

Initially, we believed that it was necessary to develop an algorithm that

could determine when a state became globally inconsistent. Later, it became clear

that classifying a state with respect to global inconsistency was not important.

Instead, DecSIM simply maintains on the component trees states that have not been

identi�ed as globally consistent. States that are not classi�ed as globally consistent,

however, are not displayed with the rest of the component tree when viewing the

results. Thus, the user only sees the behaviors that have been identi�ed as globally

consistent. If a DecSIM simulation runs to completion, then any state that is not

globally consistent is by de�nition globally inconsistent; failure to display these

states is an appropriate representation of the system behaviors. On the other hand,

if the simulation is in�nite or is terminated before completion, failure to display

these states is equivalent to the partial description that would have been provided

by a QSIM simulation terminated at the same point in time with respect to the

extension of the behaviors.

3.6.3 Detecting quiescence

QSIM identi�es a state as quiescent if all of the variables within the system are

steady. While a quiescent state is represented as a time{point state within the

behavioral description, it actually corresponds to an open time{interval in which the

dynamical system is able to remain for an in�nite amount of time. Thus, quiescent

states are not required to have successors. In fact, a stable system will only leave a

quiescent state if it is perturbed by an exogenous factor.

59

A direct extension of the quiescence{detection algorithm is insu�cient since

in general component states are in
uenced by external factors. DecSIM handles

quiescence in the same manner as consistency: a component state can be classi�ed

as locally quiescent and/or globally quiescent.

De�nition 3.19 (Locally quiescent) A component state s is labeled locally qui-

escent if and only if all of the variables within s are steady.

De�nition 3.20 (Globally quiescent) A component state s from component Cs

is globally quiescent if and only if s is locally quiescent and there exists a solution

to the causally upstream component graph sol containing s such that for each state

s0 2 sol s' is locally consistent.

The algorithms used to detect and propagate global quiescence are almost

identical to the algorithms used for global consistency.

3.6.4 Transitions

QSIM uses transitions to specify discontinuities in a variable or changes within the

model. In general, DecSIM introduces an entirely new paradigm for the develop-

ment of qualitative models that may fundamentally change the manner in which

transitions are speci�ed and handled. At this point in time, DecSIM does not han-

dle transitions. Extending the algorithm to handle a restricted set of transitions is

fairly straight{forward. Other types of transitions require additional information to

be speci�ed within the model.

A transition is speci�ed by a condition/e�ect pair. The condition speci�es a

region of the trajectory space while the e�ect is a function. If a time-point state s is

created that satis�es the condition, then the e�ect function is called to generate the

set of successor states for s. The e�ect function will inherit certain values, assert

certain values and infer other values.

Four di�erent types of transitions must be considered depending upon whether

the transition speci�cation extends beyond the component boundaries and whether

or not it speci�es a change in the model.

1. The model does not change (i.e. the transition speci�es a discontinuity in the

value of a variable) and both the transition condition and the e�ect function

refer only to variables that are contained within the same component.

2. The model does not change, but either the transition condition or the e�ect

function refer to variables within multiple components.

60

3. The model changes, but the change is limited to the constraints within a

component and the transition condition and e�ect both refer only to variables

within the same component.

4. The model changes and either the transition condition or the e�ect function

refer to variables within multiple components.

Changes in the model In general, transitions that specify a change in the model

require an extension to the manner in which a model is speci�ed. A partitioning

of the variables would be required for both models, along with a mapping between

the di�erent variable partitions following a transition. Specifying a model in this

manner could be quite cumbersome. Alternatively, the modeler could specify the

model using an extension of the component{connectionmodeling paradigm provided

by QSIM (Franke & Dvorak, 1990). This extension would allow the modeler to

specify model transitions on a component basis. Additional capabilities would be

required to allow him to specify the new qualitative values for each transition state

and the conditions under which a transition would occur.

Variable discontinuities extending across component boundaries In gen-

eral, if the condition leading to a discontinuity extends across component bound-

aries, then detecting the transition could signi�cantly increase the complexity of

the DecSIM algorithm. To detect a transition condition that extends across com-

ponent boundaries, the algorithm would need to detect solutions to the component

graph that satis�ed the transition condition. An algorithm similar to the global

consistency algorithm would be required to test for such a solution except that the

algorithm would need to detect all solutions that satisfy the transition conditions

not just one. Computing all solutions to the component graph could e�ectively

eliminate the bene�ts provided by a component{based simulation algorithm since

this computation would be equivalent to generating all temporal orderings of the

component behaviors. A similar problem occurs if the e�ect function extends across

component boundaries.

Discontinuities within a component Handling discontinuous changes that are

restricted to the variables within a component allows transition detection to be

performed using \local" information within each component. In addition, the e�ect

of the transition can simply be propagated through the component graph. If a

variable that is contained within another component changes discontinuously, then

this change must be propagated to the other components. Determining the e�ect of

61

a discontinuous change could be computed using a variation on Brajnik's continuity

relaxation algorithm (Brajnik, 1995).

3.6.5 Landmark Introduction

DecSIM fully supports QSIM's ability to introduce landmarks during a simulation.

For each variable, landmarks are initially introduced in the component tree that

contains the variable as a within partition variable. Landmarks, in turn, are then

generated within any view/guide trees describing this variable and �nally within the

downstream component trees. A mapping is maintained between landmarks within

the di�erent trees so that the equivalence of two qualitative values in di�erent trees

can be compared.

3.7 Empirical Evaluation

Empirical evaluation of the DecSIM algorithm demonstrates two results:

1. DecSIM performs exponentially better than QSIM on a range of component

graph topologies.

2. DecSIM generates a behavioral description that is equivalent to the description

generated by QSIM except for the temporal ordering of events for variables in

di�erent components.

3.7.1 Simulation complexity

Three di�erent models were used to evaluate DecSIM's run{time performance. Each

of the models was designed to be easily extendible by adding identical components to

the model. The models were selected to vary the topology of the component graph,

and the results were evaluated both with respect to execution time and space. The

following models were used:

(1) Cascade topology: A sequence of N cascaded tanks provides a causally se-

quenced chain of components. This topology clearly demonstrates the bene�ts

of a component{based simulation. In addition, this topology tests the impact

of causality along with the partitioning selected.

(2) Loop topology: A feedback loop with N components, each with its own

internal feedback loop, demonstrates the performance of the algorithm when

all of the components are contained within a single cluster. The model was

62

(a) Cascade topology

(b) Loop topology

(c) Chain topology

Three models, with very di�erent component{graph topologies, were used to evaluate how

the structure of the model impacts the complexity of the simulation. The circles correspond

to components within the decomposed model. Each component describes a simple feedback

loop. The arrows indicate the direction of causality within the model.

Figure 3.9: Component graph topology for models used to evaluate DecSIM

motivated by one developed by Ironi and Stephanelli (1994) that models the

glucose/insulin regulator system. Its structure is equivalent to a controlled N

tank cascade in which the in
ow of the top tank is controlled by the level of

the last tank.

(3) Chain topology: A sequence of N chained components where each com-

ponent causally in
uences the components on both sides demonstrates the

performance of the algorithm on a set of tightly coupled components. The

structure of this model to a sequence of cascaded tanks in which the out
ow

of tank i is controlled by the level of tank i+1. The actual model is a variation

of the glucose-insulin model referenced above.

Figure 3.9 provides a graphical representation of the topology for each model.

3.7.1.1 DecSIM vs QSIM

In all of the models tested, DecSIM was both exponentially faster and used exponen-

tially less memory than QSIM. Figures 3.10 through 3.12 display plots demonstrat-

ing these results. In each of the plots, the x-axis shows the number of components

63

Number Cascade Chained Loop
of Comp's QSIM DecSIM QSIM DecSIM QSIM DecSIM

2 0.204 0.815 3.075 6.79 0.757 5.587
3 0.621 1.6 10.94 19.903 16.149 8.147
4 2.2 3.12 37.55 25.984 89.418 12.67
5 7.09 5.49 139.3 36.712 493.88 23.28
6 21.92 6.32 676 62.405 2758 48.73
7 71.59 8.39 1633 70 14474 116.1
8 236 11.67 8101 77 nc 442.4
9 806 11.75 nt nt nt nt
10 nc 14.05 nt nt nt nt

Table 3.5: Results comparing DecSIM to QSIM for all three topologies

within the model while the y-axis shows either simulation time or space. Table 3.5

lists the data used to generate these plots. Each component is comprised of �ve

variables, so the number of variables in each model is simply 5n where n is the

number of components. All of the tests were run on a Sparc10 using Lucid Common

Lisp.

For the cascade topology, the behavioral description is �nite and thus the

simulation was run to completion. For the chain and loop topologies, however, the

feedback loop in the model causes an in�nite simulation. In the results reported, a

state-limit of 40 was used for each component tree. For the standard QSIM simula-

tion, the behavior tree was extended to roughly the same extent as the component

behaviors generated by DecSIM. This was accomplished by generating view trees on

the
y while performing a QSIM simulation and comparing the view tree against

the corresponding component tree. When all of the view trees had the same num-

ber of behaviors as the corresponding component tree, the QSIM simulation was

terminated. As the number of tanks approached 7 or 8, the QSIM simulation often

failed to terminate due to resource limitations. Table 3.6 summarizes the number

of behaviors generated for each of the topologies tested.

For all three topologies, DecSIM clearly outperforms a standard QSIM sim-

ulation demonstrating the bene�ts provided by DecSIM as the size of the model

increases. For example, a QSIM simulation for seven tanks con�gured in a loop

topology took over 200 minutes while DecSIM took less than 2 minutes. The other

topologies show similar di�erences for both execution time and space required for

64

0

100

200

300

400

500

600

700

800

900

2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(S

ec
)

Number of Cascades

Standard QSIM
DecSIM

(a) Execution Time

0

50

100

150

200

250

2 3 4 5 6 7 8 9 10

C
on

s
C

el
ls

 (
M

eg
a-

W
or

ds
)

Number of Cascades

Standard QSIM
DecSIM

(b) Space

Figure 3.10: DecSIM vs QSIM: Cascade con�guration

65

0

2000

4000

6000

8000

10000

12000

14000

16000

2 3 4 5 6 7 8

R
un

 T
im

e
(S

ec
)

Number of Components

Standard QSIM
DecSIM

(a) Execution Time

0

200

400

600

800

1000

1200

1400

1600

2 3 4 5 6 7 8

C
on

s
C

el
ls

 (
M

eg
a-

W
or

ds
)

Number of Components

Standard QSIM
DecSIM

(b) Space

Figure 3.11: DecSIM vs QSIM: Loop con�guration

66

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 3 4 5 6 7 8

R
un

 T
im

e
(S

ec
)

Number of Components

Standard QSIM
DecSIM

(a) Execution Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 3 4 5 6 7 8

C
on

s
C

el
ls

 (
M

eg
a-

W
or

ds
)

Number of Components

Standard QSIM
DecSIM

(b) Space

Figure 3.12: DecSIM vs QSIM: Chain con�guration

67

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(S

ec
)

Number of Cascades

DecSIM

(a) Cascade con�guration

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6 7 8

R
un

 T
im

e
(S

ec
)

Number of Components

DecSIM

(b) Loop Con�guration

0

10

20

30

40

50

60

70

80

2 3 4 5 6 7 8

R
un

 T
im

e
(S

ec
)

Number of Components

DecSIM

(c) Chain con�guration

Figure 3.13: DecSIM Only: Cascade, loop and chain con�gurations { Execution
time

68

Cascade Chained Loop
Number DecSIM QSIM DecSIM QSIM DecSIM QSIM

of Total Avg Total Total Avg Total Total Avg Total
Comp's Behs Behs Behs Behs Behs Behs Behs Behs Behs

2 3 2 2 16 8 12 42 18 26
3 5 2 4 60 20 35 53 18 60
4 9 2 8 101 25 61 68 17 127
5 13 3 16 128 25 179 85 17 288
6 17 3 32 180 30 677 104 17 544
7 21 3 64 212 30 644 121 17 917
8 25 3 128 228 28 1071 138 17 nc
9 29 3 256 nt nt nt nt nt nt
10 31 3 nc nt nt nt nt nt nt

nt { Not Tested

nc { Resource limitation prevented completion

Table 3.6: Number of Behaviors Generated for Di�erent Topologies

the simulation.

These results demonstrate QSIM's inability to scale to larger models. Dec-

SIM, on the other hand, performs quite well as the size of the model increases.

Figure 3.13 displays the run{time results just for the DecSIM simulation. Note that

both the cascade topology and the chain topology appear to be linear in the number

of components. The loop topology, on the other hand, is clearly exponential in the

number of components. Despite this exponential complexity, it is still signi�cantly

faster than a straight QSIM simulation, as shown in �gure 3.11. Figure 3.14 plots the

loop topology against the chain topology to highlight the di�erences. As discussed

in the previous section, this distinction is due to the backtracking that occurs when

�nding a solution to the component graph. In the loop topology, the algorithm often

extends to the very bottom of the search space before backtracking. For the chain

topology, the depth of the search prior to backtrack is usually only two or three

components. This distinction highlights the importance of the connectivity of the

components within each cluster. A number of existing constraint satisfaction opti-

mization techniques (Tsang, 1993) exist such as dependency{directed backtracking

could be used to address this problem, but none of them would completely eliminate

the need to backtrack.

To evaluate the impact of the partitioning algorithm and causality two ad-

ditional versions of the cascade topology were tested: one in which the variables

were completely partitioned (i.e. each variable was assigned a separate partition

69

0

50

100

150

200

250

300

350

400

450

2 3 4 5 6 7 8

R
un

 T
im

e
(S

ec
)

Number of Components

Loop Configuration
Chained Configuration

Figure 3.14: DecSIM: Chain con�guration vs Loop con�guration

generating a complete history{based representation) and another in which the stan-

dard partitioning (i.e. each tank being a separate partition) was used, but without

causality. Eliminating causality corresponds to removing the directionality of the

dependence between two connected tanks so that the topology of the component

graph is actually similar to the chain topology. Figure 3.15 describes the results

from the three di�erent versions of the cascade topology. As expected, the standard

partitioning that exploits causality performs the best; surprisingly, however, the

no{causality version exhibits a sharp exponential up{turn as the number of tanks

increases. Conversely, the full partitioning only performs slightly worse than the

standard partitioning. In all three, however, DecSIM still performs signi�cantly

better than QSIM. These results demonstrate the bene�ts provided by causality

within the component graph.

3.7.2 Soundness and completeness

To validate the theoretical results presented in section 3.5, we tested each of the

models within the evaluation corpus (see table 1.1 in section 1.3) using a variety of

variable partitionings. The results were automatically compared against a standard

QSIM simulation as follows:

� a standard QSIM simulation was performed,

70

0

20

40

60

80

100

120

140

160

2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(S

ec
)

Number of Cascades

No Causality
Full Partitioning

Standard Partitioning

Three di�erent partitionings of the cascade con�guration are compared:

Standard { the components correspond to the physical tanks and causality is used when
relating two connected tanks.

Full Partitioning { a full partitioning of the model where each component corresponds
to a single variable, and

No Causality { a standard partitioning that does not use causality to order the com-
ponents (i.e. the relationship between components is considered acausal and thus
view/guide trees are maintained in both directions).

Figure 3.15: DecSIM: Di�erent partitionings of the cascade con�guration

71

� the variable{view code that generates a view/guide tree was used to generate

a projection of the standard QSIM simulation onto the subsets of variables

contained within the components

� each view/guide tree was compared to the component tree to ensure that the

trees were identical7, and

� for an in�nite simulation, we controlled the extension of the QSIM tree to en-

sure that the two simulations explored similar regions of the trajectory space.

(i.e. The simulations were terminated at roughly equivalent points.)

For all of the models tested, DecSIM and QSIM generated identical results. These

results serve to reinforce the theoretical claims made in section 3.5.

3.8 Complexity Analysis

DecSIM is a qualitative simulation algorithm that exploits inherent structure within

the model to eliminate irrelevant distinctions due to unrelated events. The empir-

ical results reported in section 3.7 demonstrate that, for a variety of topological

con�gurations of the constraint graph, DecSIM yields an exponential improvement

in simulation time compared to a standard QSIM simulation. In fact, for certain

topological structures within the constraint graph, DecSIM is polynomial in the

number of variables within the model while QSIM is highly exponential.

DecSIM's decomposition of the model into components is a partitioning of

the constraint satisfaction problem into smaller, more{tractable problems using an

implicit representation of all possible solutions rather than an explicit enumeration.

DecSIM reduces the complexity of a simulation in two ways. First, by partitioning

the model, DecSIM reduces the solution space for the CSP. This feature alone can

provide an exponential reduction in the complexity of a simulation. More impor-

tantly, however, since the branching factor is dominated by unconstrained events,

separating loosely constrained variables into separate components eliminates the

primary source of branching. Thus, the simulation of each component may become

highly constrained resulting in a small number of solutions for each component.

The bene�ts provided by the DecSIM algorithm depend highly upon the

topology of the constraint network and the degree to which it lends itself to decom-

position. Furthermore, the variable partitioning clearly a�ects the complexity of the

simulation. While DecSIM cannot guarantee a tractable simulation for any model,

7Two trees are compared by matching qualitative states within the trees.

72

it does provide a simulation algorithm whose complexity is a function of the problem

speci�cation rather than an artifact of the simulation algorithm. The advantages

of a component simulation become more pronounced as components become more

tightly constrained and the interaction between components decreases.

Providing a detailed complexity analysis of a structure{based constraint sat-

isfaction algorithm is di�cult since the e�ciency of the algorithm is highly depen-

dent upon the structure of the problem. Furthermore, the complexity of a qualitative

simulation is also highly dependent upon the degree to which the constraints restrict

the space of possible solutions to the CSP.

Four di�erent factors a�ect the complexity of a DecSIM simulation:

� the degree of overlap between components,

� the size of the clusters within the component graph,

� the connectivity of the component graph within the clusters, and

� the degree to which a complete causal ordering can be inferred.

To demonstrate how each of these factors impact the complexity of the sim-

ulation, we �rst provide a characterization of the solution space, comparing DecSIM

to QSIM. Then we will discuss the worst{case execution time, assuming that all of

the components are contained within a single cluster. This analysis does not con-

sider the degree to which the constraints restrict the solution space. Since DecSIM

is guaranteed to generate an equivalent behavioral description, the degree to which

the model constrains the simulation is the same for DecSIM and QSIM. Our analysis

demonstrates that in the worst case the DecSIM run{time is within a factor k of

QSIM, where k is the number of components; moreover, n the best case, DecSIM is

exponentially faster than QSIM. Finally, we provide a more informal discussion of

these factors and their impact on DecSIM simulations.

3.8.1 Solution space

A qualitative model de�nes a language that is used to generate a symbolic descrip-

tion of the potential behaviors of a dynamical system. This language de�nes a space

of distinct qualitative behaviors that are consistent with continuity. Our discussion

makes the following assumptions:

� there are n non-constant variables within the model,

� each variable can have v di�erent possible values,

73

� landmarks are not introduced,8 and

� a complete assignment of qualitative magnitudes completely de�nes the direc-

tion of change for each of the variables within the model.

The size of the qualitative trajectory space is determined by two factors: the branch-

ing factor within the tree and the depth of the tree.

Branching factor { If we assume that chatter does not occur, then all of the

branches within the qualitative trajectory space occur following a time{interval

state. Each variable that is changing can take on one of two possible values

{ it can remain the same or it can reach the landmark that it is approaching.

Thus, at each branching point there are 2n di�erent successor states since

there are a total of n di�erent variables in the model.

Tree depth { Since there are n di�erent variables, each with v di�erent values,

there are a total of vn di�erent unique time{interval states. Since non-chatter

branches only occur following a time{interval state, time{point states need

not be considered when evaluating the overall size of the tree.

Thus, the total size of the qualitative trajectory space (TS), given the as-

sumptions stated above, is
vn�

n
2

�
.

If DecSIM partitions the variables into k evenly sized components and each

component has b boundary variables, then the total number of variables within each

partition is (b+n=k), where b is at most (n�n=k). Note that if the constraint graph

is fully connected and no causal ordering can be inferred, then there are a total of

n variables within each component. Thus, the size of the trajectory space for each

component, represented CS, is

v(b+n=k)�
(b+ n=k)

2

�

Since there are k components, the total size of the trajectory space for all of the

components combined is k � CS.

8The introduction of landmarks can result in an in�nite behavioral description making it impossi-
ble to provide an upper{bound on the size of the behavior tree. The e�ect of landmark introduction
should have the same impact on both QSIM and DecSIM.

74

While DecSIM also maintains view/guide trees and links relating components

that share variables, the number of links is linear in the size of the component trees

so it will not a�ect the overall complexity.

The following two conclusions can be drawn from this analysis:

� as the degree of overlap between components approaches zero, the size of the

total solution space is reduced by an exponential factor k (i.e. for b = 0

CS = (2n=k)n=k so the total size for all components is k � (2n=k)n=k).

� as the degree of overlap approaches a fully connected constraint graph, the

size of the DecSIM solution space is within a factor of k (i.e. for b = (n�n=k)

which is its max value, CS = TS so the total size for all components is simply

k � TS.)

Note that this analysis is worst case. It does not take into account that

the unconstrained relations of the original solution space are ideally separated into

distinct components. Due to the types of constraints allowed by QSIM, a fully

connected qualitative model would be over constrained resulting in a simulation with

no consistent behaviors. While the worst{case scenario is unrealistic, it provides an

upper bound on the size of the behavioral descriptions.

3.8.2 E�ciency

The overall complexity of a standard QSIM simulation is determined by the size of

the representation that is being computed. As demonstrated in the previous section,

DecSIM can signi�cantly reduce the overall size of this representation. However, to

ensure that each component behavior is globally consistent, DecSIM must �nd a

solution to the component graph for each component state in the simulation.

The complexity of this task is determined by the size of the maximum cluster.

If the maximum cluster size is 1, then �nding a solution to the component graph

is linear in the number of components. To analyze a worst{case scenario we will

assume that all of the components are contained within a single cluster.

The CSP de�ned by the component graph has a total of k variables9 with

each variable having a potential domain size of CS. Thus, the worst{case complexity

9Note that a variable within the component CSP corresponds to the number of components and
is not the same as a variable within the model.

75

of this CSP is
k0

@ v(b+n=k)�
(b+ n=k)

2

� 1
A :

.

At �rst glance, this �gure suggests that potentially DecSIM is exponentially

more expensive than QSIM. However, a closer inspection of the extreme case in

which the constraint graph is fully connected with no causal ordering reveals that

this is not the case. For a fully connected constraint graph, the size of each com-

ponent trajectory space is simply TS. However, in this case all of the component

graphs are identical and the mapping between any two graphs is one{to{one. Thus,

a solution to the constraint graph CSP only needs to test one state within each of

the other components, thus completely eliminating the exponent k in the overall

complexity of this problem.

DecSIM is only required to �nd a single solution to the component graph,

while QSIM computes all solutions. The worst{case analysis of these two tasks is

the same; if there is only one solution, then they are equivalent. However, if the

space of consistent solutions is large, then �nding a single solution can be signif-

icantly faster than �nding all solutions. Finding a solution to a CSP is linear in

the number of variables if a solution can be found without backtracking. As the

space of consistent solutions increases, the likelihood of �nding a solution without

backtracking increases, once again eliminating the exponential factor.

This analysis highlights two important features of the DecSIM algorithm:

) As the overlap between components increases, the mapping between the states

within the components becomes tighter, thus reducing the overall complexity of

the constraint graph CSP.

) As the overlap between components decreases, the space of solutions to the

constraint graph CSP increases. As the space of solutions to the constraint

graph CSP increases, the bene�ts of a DecSIM algorithm also increases, since

DecSIM is only required to �nd a single solution while QSIM �nds all solutions.

In the limit as the overlap between components increases, the complexity of a

DecSIM simulation is within a constant factor k of a QSIM simulation. Conversely,

as the overlap between components decreases DecSIM can be exponentially faster

than QSIM.

76

3.8.3 Factors a�ecting complexity

As mentioned above, four factors a�ect the overall complexity of a DecSIM simula-

tion.

Overlap between components { Each component tree branches on distinctions

in both boundary variables and within partition variables. DecSIM's bene-

�ts depend upon the degree to which details of di�erent components can be

hidden from one another. If two components overlap so that an event in one

component is always manifested in the shared variables, then the behavioral

description for the individual component will be equivalent to the description

generated if both components were combined. Thus, the bene�ts provided by

DecSIM are inversely proportional to the overlap between component.

Cluster size { Partitioning the model into components divides the problem into

smaller pieces. Determining whether a component behavior is globally consis-

tent, however, is exponential in the cluster size. Thus, the overall complexity

of the simulation decreases as the average cluster size decreases.

Connectivity of the component graph { Within a given cluster, the connectiv-

ity of the component graph can also a�ect the overall complexity of the sim-

ulation. The cost of �nding a solution to the component graph is determined

by the amount of backtracking that occurs within the constraint satisfaction

algorithm. As the components within a cluster become more tightly related,

the depth of the search tree prior to backtracking decreases. For example, if

the components are connected in a large loop, then the algorithm may not

backtrack until it has assigned a value to each component. Conversely, if the

components are \chained" together in a more{sequential fashion, then con-

icts are often found sooner. (See section 3.7 for empirical results supporting

these claims.)

Causal ordering { Causality can be used to signi�cantly reduce the complexity of

a DecSIM simulation since it allows an independence relation to be asserted

between sets of components. In addition, causality simpli�es the represen-

tation of constraints relating two components since a directionality can be

inferred for the constraint.

77

3.9 Related Work

DecSIM uses a structure{based constraint satisfaction algorithm to as an alternative

to a standard qualitative simulation. There is related work within the �elds of both

qualitative reasoning and constraint satisfaction.

3.9.1 Qualitative reasoning

The problem of irrelevant distinctions resulting from event occurrence branching was

�rst addressed by Williams (1986) with the Temporal Constraint Propagator (TCP).

TCP forsakes the traditional state-based approach and independently describes the

behavior of each variable over time as a set of variable histories. The relevant

temporal relations between events are described separately. A temporal ordering of

events is only provided when their interaction a�ects the value of other quantities.

TCP provides a number of compelling concepts and many of the intuitions

behind the DecSIM algorithm are similar to the ideas proposed by Williams. In

particular, TCP is the only qualitative simulation algorithm that uses a history{

based representation. DecSIM, however, does not restrict itself to a history{based

representation. A state{based representation is very e�ective for a system of closely

interacting variables. Thus, DecSIM exploits the bene�ts of both representations. In

addition, using TCP to reason about physical systems requires a signi�cant amount

of work by the modeler, and it is unclear how this system can be extended to incor-

porate advances in other qualitative reasoning paradigms. While TCP introduces a

number of important ideas, many of them were not adequately addressed and the

research has not been extended to explore how a history{based simulation algorithm

can be used to reason about larger qualitative models.

Coiera (1992) presents a component simulation technique that handles mod-

els that can be divided into causally related components. Thus, it is similar to

DecSIM in that it exploits inherent structure to decompose a model into compo-

nents. Temporal ordering distinctions are eliminated by superimposing qualitative

predictions from two causally unrelated processes on a single downstream variable.

Coiera, however, only addresses the simulation of causally chained components. He

does not provide a technique for reasoning about feedback loops within a system.

Feedback loops are quite common in the devices that are analyzed using qualitative

simulation techniques and thus this restriction signi�cantly limits the impact that

these techniques can have when simulating larger models.

DeCoste (1994) addresses the problem of intractable branching within qual-

itative simulation using the Qualitative Process Theory (Forbus, 1984) framework

78

and the Qualitative Process Engine (QPE) simulation algorithm. As opposed to

computing the entire set of potential system behaviors, DeCoste uses a goal{directed

simulation method that focuses on distinctions relevant to the current task. Given a

description of the desired goal state, he computes an abstract plan that is gradually

re�ned to determine whether a path exists from the initial state to the goal state.

Thus, if a path exists he avoids the need to explore the entire trajectory space.

His approach is very e�ective if the information that is desired can be succinctly

expressed as a goal state. It is our experience, however, that the modeler is often

concerned with the overall behavior of the system. In particular, when developing

a model the modeler needs to understand the range of behaviors described to eval-

uate the accuracy of the model. Thus, simply restricting the simulation to the set

of trajectories leading to given goal state does not address the overall complexity

problem encountered when simulating larger models.

Clancy and Kuipers(1993) and Fouche and Kuipers (1990) both address ir-

relevant temporal correlations via post-processing abstraction techniques that com-

bine behaviors and states into a more{abstract representation following completion

of the simulation. Their work is actually similar to the functionality that is provided

by the generation of a view/guide tree. While both of these techniques provide a

more{compact representation for the modeler to analyze, neither of them address

the broader problem of simulation complexity.

3.9.2 Constraint satisfaction

A variety of structure{based constraint satisfaction techniques have been explored

in the constraint satisfaction literature. The techniques used here are most closely

related to two di�erent concepts/algorithms: directed arc consistency and tree-

clustering. These techniques rest upon two de�nitions:

1. A CSP is node consistent if and only if for all variables all values in the

variable's domain satisfy the local constraints on the variable.10

2. A constraint satisfaction problem is arc consistent if and only if every arc

in the constraint graph is arc consistent. An arc relating nodes x and y in

the constraint graph is arc consistent if and only if, for every value a in the

domain of x, there exists a value in the domain of y such that these two

values are compatible with the constraint speci�ed by the arc. Freuder (1982)

demonstrates that a backtrack{free algorithm can be used to solve a tree{

structured CSP that is node and arc consistent.
10In DecSIM, this is equivalent to saying that all component states are locally consistent.

79

Dechter and Pearl (Dechter & Pearl, 1988a) observe that node and arc consistency

are actually a stronger conditions than what is required for a backtrack{free search

algorithm. They introduce the slightly weaker concept of directed arc consistency.

A CSP is directed arc{consistent under an ordering of the variables if and only if, for

every value for variable x, there exists a compatible value for the variable y which

is after x in the ordering.

If this property is satis�ed by a tree{structured CSP, then to determine

whether a solution exists for a given value a for a variable x, it is su�cient to ensure

that a is consistent with a partial solution containing values only for the variables

prior to x in the ordering. In DecSIM, the ordering of the nodes is de�ned by

causality. Thus, to determine whether a state s is globally consistent, we are only

required to �nd a solution to the subgraph that is causally upstream.

DecSIM converts the component graph into a tree-structured representa-

tion by identifying clusters. This is conceptually equivalent to the tree{clustering

method (Dechter & Pearl, 1988b, 1989) for converting a CSP. Partitioning the com-

ponent graph into clusters limits backtracking to the regions of the constraint graph

contained within a cluster.

3.10 Future Work

DecSIM introduces an entirely new paradigm for qualitative simulation that requires

many existing techniques to be rethought. In addition, DecSIM signi�cantly extends

the range of models that can be studied using qualitative simulation, since it allows

larger more loosely{coupled systems to be simulated. In the past, a modeler needed

to impose simplifying assumptions on the behavior of certain components within

the model in order to reduce the overall complexity. These assumptions need no

longer be applied, unless they are required to restrict the space of potential system

behaviors.

The results presented here suggest four broad areas for future research that

are covered in the following subsections.

1. re�nements to the DecSIM algorithm

2. integrating and extending DecSIM so that it works in conjunction with other

qualitative simulation techniques

3. applying DecSIM to the simulation of larger models,

80

4. extending the core DecSIM algorithm to other constraint satisfaction prob-

lems.

3.10.1 Re�ning the DecSIM Algorithm

Partitioning algorithms { My dissertation research focuses on specifying a

component{based simulation algorithm. Additional research is required to

identify the characteristics of an optimal partitioning and to develop an al-

gorithm to automate model decomposition. Currently, DecSIM requires the

modeler to identify a partitioning of the variables. Providing such a partition-

ing can simply be viewed as part of the model building task. Automating this

process, however, will simplify the model building process and be bene�cial

when used in conjunction with automated model building systems (Rickel &

Porter, 1997). The problem of partitioning a graph into closely related com-

ponents has already been studied extensively in �elds such as graph theory

(Even, 1979) and constraint satisfaction (Tsang, 1993). Developing a parti-

tioning algorithm for DecSIM primarily requires a characterization of the task

so that existing research within these �elds can be applied.

Optimizing the DecSIM algorithm { The development of the DecSIM algo-

rithm has primarily focused on the speci�cation of a sound and complete solu-

tion that is e�cient with respect to the overall order of magnitude complexity

of the algorithm. In general, very little attention has been paid to speci�c

optimization techniques that could be applied. In particular, the current con-

straint satisfaction algorithm used to �nd solutions to the component graph

uses a straight{forward backtracking algorithm. For certain topological con-

�gurations of the component graph, this algorithm could be signi�cantly im-

proved using existing techniques from the constraint satisfaction �eld (Tsang,

1993).

3.10.2 Integrating DecSIM with other techniques

Component{based modeling { One reason that we have not focused on devel-

oping an automated partitioning algorithm is that we feel that DecSIM chal-

lenges the manner in which models are currently developed. As the size of a

model grows, it becomes signi�cantly more di�cult to maintain the model as

a single composite unit. In particular, it becomes di�cult to experiment with

alternative representations of di�erent components within the model since the

components are not explicitly represented.

81

The component{connection (CC) model building paradigm (Franke & Dvo-

rak, 1990; Kuipers, 1994) provides a representation language that allows the

modeler to de�ne independent component models that are connected to form

a larger, composite model. Currently, CC compiles the model into a standard

QSIM model prior to simulation. Integration of CC with DecSIM would allow

the modeler to directly simulate a CC model. This model{building paradigm

lends itself to the incremental development of a model and to the controlled

application of simplifying assumptions as required to constrain the resulting

set of component behaviors.

Semi{quantitative reasoning { Qualitative simulation is designed to allow the

modeler to represent imprecise qualitative information about a dynamical sys-

tem. Often, however, some quantitative information is available. Furthermore,

precision within the model may be required to restrict the simulation to the

region of the trajectory space that is relevant to the current task.

Semi{quantitative reasoning techniques are essential if qualitative simulation

is to address a wide range of applications since strictly qualitative informa-

tion often does not provide the precision required to address certain tasks.

A number of semi{quantitative techniques (Kay, 1991; Kay & Kuipers, 1993;

Berleant & Kuipers, 1988; Kuipers & Berleant, 1992) have been incorporated

into the QSIM framework. These extensions allow the modeler to specify func-

tional envelopes and quantitative bounds on landmark values along with other

quantitative information. Currently, none of these techniques work with Dec-

SIM, since they assume that the model is represented as a single component.

Additional research is required to determine how DecSIM can be extended to

incorporate these techniques.

Transitions { DecSIM needs to be extended to handle region transitions. As dis-

cussed in section 3.6.4, a number of alternative solutions exist. The solution

selected will depend upon other extensions such as the integration of DecSIM

with CC described above.

3.10.3 Applying DecSIM to larger models

The overall goal of the research described by this dissertation is to facilitate the

application of qualitative reasoning techniques to real{world problem solving ap-

plications. DecSIM extends the range of models that can be tractably simulated.

To further evaluate the bene�ts provided by DecSIM and the extensions that are

required, larger more{complex models must be developed and simulated.

82

Initially, we had hoped to evaluate DecSIM by testing it on a variety of ex-

isting models. When evaluating larger models that had been developed by various

researchers, we discovered that all of the working models were comprised of a fairly

evenly connected set of variables. In other words, the models did not lend them-

selves to decomposition. After further inspection, it became clear that this was

due to the limitations of the available simulation techniques. To obtain a working

model, the modeler often had to make simplifying assumptions with respect to the

representation of various components within the model (Kay, 1992). The larger

models that did not �t this description were usually highly unconstrained since the

modeler was unable to complete the model building process due to the complexity

of the simulation.

3.10.4 Extending DecSIM to other CSP problems

As discussed throughout the dissertation, qualitative simulation can be characterized

as a constraint satisfaction problem. The interesting characteristic of this problem

is the extension of the constraint satisfaction through time. DecSIM partitions

the CSP into components utilizing existing techniques within the CSP literature to

exploit structure and simplify the process of identifying the existence of a solution.

What is distinct is DecSIM's ability to incrementally reason through time about

the consistent solutions to the CSP. Extending this technique to a broader class of

CSP's requires a better characterization of the CSP along with an identi�cation of

other similar CSP problems.

One potential area for exploration is situation calculus model checking and

planning. In both cases, reasoning through time is required. Often, a description

of the entire space of solutions is not required although it is possible that it would

be bene�cial for certain applications. Computing a representation for the consistent

solution space requires techniques similar to DecSIM to ensure that the overall

description does not grow exponentially as the number of unrelated variables increase

within the problem speci�cation.

3.11 Conclusions

Intractable branching due to irrelevant distinctions is one of the major factors

hindering the application of qualitative reasoning techniques to large, real{world

problems. Many of these distinctions result from inherent limitations of a global,

state{based representation. DecSIM eliminates the need to explicitly enumerate all

possible solutions and instead provides a more compact representation that exploits

83

the existing structure within a model. Both theoretical and empirical evidence has

been presented to support the claim that DecSIM signi�cantly reduces the over-

all complexity of a qualitative simulation thus facilitating the application of these

techniques to larger, more complex problems.

84

Chapter 4

Eliminating Chatter through

Abstraction

The phenomenon of chatter is a major source of complexity when reasoning about

the behavior of a dynamical system using qualitative simulation. Eliminating this

source of irrelevant distinctions increases the range of models that can be simulated

and simpli�es the process of developing a qualitative model. Figure 4.1 demonstrates

how this problem can preclude the application of qualitative simulation techniques

to a speci�c task.

4.1 Chatter Branching

Chatter occurs due to ambiguity in the qualitative description and the inability of

some constraints to restrict the direction of change for a variable within certain

regions of the state space. For example, suppose variables x, y and z are related by

the constraint (ADD x y z) and x is constrained to be increasing while y is constrained

to be decreasing. Using just the ADD constraint, the simulator is unable to infer a

unique value for [_z]. If other constraints do not restrict [_z], then z will be free to

chatter. In another region of the state space, however (e.g. when both x and y are

increasing), the ADD constraint can be used to infer that z must also be increasing.

This example demonstrates an inherent limitation of the qualitative algebra. If two

opposing in
uences are a�ecting the same variable, then simply knowing the sign of

these in
uences does not provide enough information to determine which in
uence

dominates. A chattering region of the state space describes the behaviors in which

the dominant in
uence alternates back and forth.

Figure 4.2 demonstrates how chatter a�ects the simulation results for a model

85

1

↓ ↓ ↓.....↓ ↓ °

INF

0

T0 T0 T1

WATER.AMOUNT

↓ ↓ ↓.....↑↓ ↑↓ °

INF

0

T0 T0 T1

CROSS-SECTIONAL-AREA

(a) Behavior tree. (b) Behavior plots.

Rickel and Porter (Rickel & Porter, 1997) use qualitative simulation to answer prediction
questions within the domain of plant physiology. The TRIPEL algorithm automatically
generates a qualitative model from a large{scale botany knowledge base (Porter, Lester,
Murray, Pittman, Souther, Acker, & Jones, 1988) in response to a user query. Answers
are generated based upon the results of the simulation. Many of the models produced,
however, exhibit a great deal of chatter. Thus, TRIPEL demands an e�cient technique to
automatically eliminate chatter.

� In this example, the following question is presented to the system:
\What happens to the stomates when the leaves lose water?"

� Simulation of the simplest model generated by TRIPEL yields a single behavior (a)
in which the cross sectional area of the stomates decreases as the leaves lose water
(b).

� Dynamic chatter abstraction identi�es a total of seven chattering variables. States
that exhibit chatter are represented by a box in the behavior tree and a double arrow
in the behavior plots. Note that following the second time{point, the cross sectional
area of the stomates begins to chatter. This is because the model is unable to represent
relevant order{of{magnitude information after this point. The information provided
up to this point, however, is su�cient to answer the question in the proposed scenario.

� Without some form of automated chatter elimination, simulation of this model is
intractable, generating hundreds of behaviors, and the query cannot be answered.
While chatter{box abstraction can be used to simulate this model, dynamic chatter
abstraction o�ers a factor of 10 speed{up in simulation time. For some of the models
generated by TRIPEL, chatter{box abstraction is simply unable to complete the
simulation due to resource limitations.

Figure 4.1: Using qualitative simulation to answer prediction questions.

86

of three connected tanks. Chatter dominates the behavioral description and obscures

other relevant distinctions. When landmarks are introduced, chatter leads to an

in�nite simulation since the system can remain within the chattering region for

an arbitrary number of qualitative states. If landmark introduction is not used,

chatter still leads to intractable branching and an in�nite number of valid paths in

the behavioral description.

To eliminate chatter, the unconstrained region of the state space can be

identi�ed and abstracted into a single state within the behavioral description. Fig-

ure 4.3 describes the behavior of a single variable in the chattering region of the state

space. While one variable chatters in this region, relevant distinctions may occur in

the qualitative value of other variables in the model. We would like to eliminate the

irrelevant distinctions resulting from chatter branching while retaining the distinc-

tions in other non{chattering variables. A chatter{box de�nes the chattering region

of the state space.

De�nition 4.1 (Chatter{box) For a model containing a set of variables V , a

region of the qualitative state space RVc
1 is de�ned as a chatter{box if there exists

a partitioning of the variables into a set of chattering variables C and a set of non-

chattering variables NC such that

(1) for all v such that v 2 NC the qualitative value for v not abstracted,

(2) for all v such that v 2 C, there exists a region of the state space Rc, such that

Rc � RVc and Qval(v; Rc) = Qval(v; RVc), in which [_v] is unconstrained with

respect to the non{chattering variables, and

(3) RVc cannot be partitioned into two regions Ra and Rb such that the two regions

are non-adjacent.

where Qval(v; R) is the qualitative value of a variable v for the entire region R.

De�nition 4.2 (Adjacent regions) Two regions of the qualitative state space Ra

and Rb are adjacent if and only if either

(1) there exists two concise qualitative states Sa and Sb such that Sa 2 Ra and

Sb 2 Rb where either Sa is a consistent successor2 of Sb, or Sb is a consistent

successor of Sa, or

1The de�nition of a region of the qualitative state space is equivalent to the de�nition of an
abstract qualitative state.

2State A is a consistent successor of state B if both A and B are consistent and if there exists
the transition from B to A that is consistent with the QSIM continuity constraints.

87

A B C

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

↑
...

..↑.....↑.....↑.....↑.....↑.....↑.....↑

INF

0

T0 T1 T2 T3

amount (A)

°
...

..↑.....↑.....↑.....↑.....↑.....↑.....↑

INF

0

T0 T1 T2 T3

amount (B)

°
...

..↑.....↑.....↑.....↑.....↑.....↑.....↑

INF

0

T0 T1 T2 T3

amount (C)

↓.....↓.....↓.....↓.....↓.....↓.....↓.....↓

INF

N-0

0

MINF

T0 T1 T2 T3

Netflow (A)

↑.....↑
..

..
.°.....↓.....

°.
....↑.....°.....↓

INF

N-1

N-7

N-3

0

MINF

T0 T1 T2 T3

Netflow (B)

°.
....↑

.....↑.....↑.....↑.....↑.....↑.....↑
INF

0

MINF

T0 T1 T2 T3

Netflow (C)

(b) (c)

� In a qualitative model of three tanks arranged in sequence connected by tubes (a),
Net
owB(t) = In
owB(t) - Out
owB(t) is constrained only by continuity in the in-
terval (0;1).

� The simulation branches on all possible trajectories of Net
owB(t) while all other
variables are completely uniform. Chatter results in an ini�nte simulation that must
be halted at an arbitrary state limit if it is to terminate. A single behavior (c) from
the behavior tree (b) demonstrates the unconstrained movement of Net
owB(t).

� Other techniques such as higher order derivative (HOD) information and ignore{qdirs
(both discussed in section 4.2) are unable to eliminate chatter in Net
owB(t). In this
example, chatter box abstraction uses HOD information to eliminate chatter in other
variables.

Figure 4.2: Intractable branching due to chatter in the simulation of a W tube.

88

(0 inc)

(0 std)

(0 dec)

((0 A*) inc)

((0 A*) std)

((0 A*) dec)

(A* inc)

(A* std)

(A* dec)

The text in the �gure represents qualitative values while the arrows indicate qualitative
value transitions consistent with continuity.

� Qualitative value transitions consistent with continuity in the closed interval (0 A*)

are identi�ed by arcs within the �gure.

� The boxed area denotes the chattering region of the state space. Once the system
enters this region, the chattering variable can continue to cycle within the box.

� If landmarks are introduced, the simulation can remain within the boxed region for
an in�nite number of states since additional qualitative distinctions are introduced
whenever the variable becomes steady.

Figure 4.3: Possible qualitative value transitions for a QSIM variable.

(2) there exists three qualitative states Sa, Sb, and Sab such that Sa 2 Ra, Sb 2 Rb,

and Sab is on the boundary between Ra and Rb, where either Sab is a consistent

successor of Sa and Sb is a consistent successor of Sab, or Sab is a consistent

successor of Sb and Sa is a consistent successor of Sab.

De�nition 4.3 (Unconstrained qvalue) For a given region of the qualitative state

space R the qvalue of a variable v is unconstrained within an abstract region of its

description space Av with respect to a set of variables V if and only if

(1) for all concise qvalues in Av there exists a concise qualitative state within R

containing this qvalue,

8qv : qv 2 Av :: (9S : S 2 R :: Qval(v; S) = qv)

(2) for all concise qvalues in Av and for all concise qvalues for the variables in V ,

there exists a consistent completion of R containing these values.

8qv; va; qva :q 2 Av; va 2 V; qva 2 Qval(va; R) ::

(9S : S 2 R :: Qval(v; S) = qv ^Qval(va; S) = qva)

89

When Av is not speci�ed it is assumed that it is the entire description space

for the variable referenced.

Similarly, we can refer to simply the qmag or the qdir of a variable being uncon-

strained, in which case the statements above only apply to the appropriate portion

of a qvalue.

A state exits the chatter{box when a non{chattering variable changes value

or when a chattering variable exits the chattering region. Two chatter{boxes are

adjacent if a non{chattering variable changes value while another variable continues

to chatter. Note also that one chatter{box may be a proper subset of a larger

chatter{box if the set of chattering variables are also related by a subset relation.

A maximal chatter{box is de�ned as a chatter{box that is not contained in another

chatter{box.

The phenomenon of chatter becomes more complicated if a landmark exists

in the unconstrained region of the state space and the magnitude of the variable is

unconstrained around this landmark. This phenomenon is called landmark chatter

and it results in changes in both the magnitude and the direction of change for the

chattering variable. A special case of landmark chatter, called chatter around zero,

occurs when the landmark around which the chattering occurs is zero. In general,

this occurs when a variable and its derivative are represented as variables in a model

and both of them exhibit chatter. In this case, the derivative variable will chatter

around zero as its integral chatters. Chatter around zero is particularly di�cult to

handle since one variable changes sign. Figure 4.4 demonstrates this phenomenon

from the perspective of the transitions that are consistent with continuity.

4.1.1 Chatter versus oscillation

Chatter, as de�ned here, is a property of a region in the behavioral description (i.e.

a set of partial qualitative behaviors) and not of a single behavior. This is what

distinguishes chatter from oscillation; oscillation is a property of a single behavior.

Within a chattering region, certain behaviors will be oscillatory in nature. Some,

however, will increase, become steady and then begin increasing again while others

will exhibit a combination of these two behaviors.

This distinction helps to answer the question: \Is chatter an actual behavior

of the modeled system?" While in certain instances, chatter may be the result of

spurious behaviors3, in general chatter re
ects potential behaviors of the modeled

system (Kuipers, Chiu, Molle, & Throop, 1991). Since chatter is a property of a

3A qualitative behavior is spurious if there does not exist a corresponding real{valued trajectory.

90

(0 std)

(0 dec)

(0 inc)

((0 inf) std)

((0 inf) dec)

((0 inf) inc) (inf inc)

(inf std)

(inf dec)

(minf inc)

(minf std)

(minf dec)

((minf 0) inc)

((minf 0) std)

((minf 0) dec)

� If the qualitative magnitude and direction of change of a variable v are unconstrained
around a landmark and its direction of change is also unconstrained, then v can move
freely within this region of the state space.

� The �gure above shows the valid QSIM transitions consistent with continuity for
a variable with the quantity space (minf 0 inf). The boxed region identi�es the
chattering region of the state space for chatter around zero.

� Chatter around zero is particularly di�cult to handle since the sign of the variable
changes.

Figure 4.4: Chatter around zero: Possible QSIM transitions.

class of behaviors, a single real{valued trajectory will not exhibit chatter. However,

for any given path in a chattering region, the class of dynamical systems described by

the model may include an instance exhibiting this behavior. Figure 4.5 demonstrates

this for a two{tank cascade using a numerical simulation.

4.1.2 Eliminating chatter

While chatter may correspond to potential behaviors of the system, a disjunctive

enumeration of all possible combinations of values provides no useful information.

Furthermore, this enumeration obscures other distinctions within the description

and can result in an in�nite simulation. Eliminating this source of distinctions is

essential if qualitative simulation is to be used to reason about complex dynamical

systems.

Two general abstraction techniques have been developed to eliminate chatter:

chatter{box abstraction and dynamic chatter abstraction. While both techniques

can be used to eliminate chatter, in combination they provide the modeler with

a greater degree of
exibility. The next section provides a description of existing

techniques for eliminating chatter. This is followed by a detailed description of both

new algorithms. At the end of this chapter, both techniques are evaluated and a

91

��

� �	

A

B

Tank B Flows vs Time

Inflow B
Outflow B
Netflow B

Flow

Time
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 100.00 200.00 300.00 400.00

(a) (b)

� In a standard QSIM simulation of a two tank cascade, net
owB exhibits chatter. At
�rst glance, it might appear that the chattering behaviors are spurious and that the
actual behavior of the system net
owB simply rises monotonically to its maximum
value and then returns monotonically to zero.

� However, consider an actual pair of tanks in which the upper tank has a tall thin
stack (a) thus causing the monotonic relationship between out
owA and amountA to
have a sharp bend.a

� A numerical simulation of this example (b) shows that net
owB reaches a critical
point, begins to decrease and then rises sharply before beginning to decrease once
again. This is one of the behaviors described in the chattering region of the qualitative
behavior.

� By extending this example, so that the upper tank has an arbitrary number of de-
creases in the diameter of the upper tank, we can create an arbitrary number of \dips"
within the behavior of net
owB. This example demonstrates how chatter can re
ect
actual behaviors of a physical system.

aThis example is taken from (Kuipers, 1994) page 256.

Figure 4.5: Numerical Simulation of a Two Tank Cascade

92

comparison of the two techniques is provided.

4.2 Previous Solutions

Two previous methods have been developed for eliminating chatter. The higher{

order derivative (HOD) (Kuipers et al., 1991) technique uses the second and third{

order derivatives of the chattering variables to determine the direction of change; the

ignore qdirs approach simply ignores distinctions in the derivative of variables iden-

ti�ed by the modeler as chattering. Neither of these techniques provide a general{

purpose solution to the problem of chatter. In particular, neither can be used to

eliminate chatter around a landmark.

4.2.1 Higher{Order Derivatives

Qualitative simulation uses continuity to restrict the potential successor values of a

variable. Information about the sign of the �rst derivative (i.e. direction of change)

is used to restrict the potential successor values for the magnitude of a variable.

In a similar manner, the HOD technique uses information about the sign of the

second and third{order derivatives of a variable to constrain the value of the �rst

derivative. Expressions for the higher{order derivatives of a variable can either be

provided by the modeler or, when possible, automatically derived through algebraic

manipulation of the constraints within the model.

The HOD technique eliminates a chatter branch for a variable v by deriving

a value for the sign of the second or third{order derivative either at the time{point

ti or in the interval (ti�1 ti) preceding ti. This information is used to �lter spurious

behaviors that are inconsistent with continuity. If in the interval (ti�1 ti) the sign

of the second derivative is the same as the sign of the �rst derivative, then the �rst

derivative must be moving away from zero. Thus, v cannot become steady at ti;

therefore the corresponding behavior is spurious and can be �ltered.

In a similar manner, higher{order derivative information can be used to �lter

behaviors in which a v becomes steady at ti and then begins to change in the same

direction as it was in (ti�1 ti). These behaviors are �ltered when the sign of the

second derivative of v at ti is opposite the sign of its derivative in (ti�1 ti). When

this condition holds, the second derivative continues to change in the same direction

as it was in (ti�1 ti) and thus the variable begins to change in the opposite direction

following ti. If the sign of the second derivative is zero, then information about the

the third derivative is used in a similar manner.

93

Higher{order derivative information is e�ective at �ltering spurious behaviors

resulting in chatter in certain situations. The following problems, however, may be

encountered:

(1) Deriving expressions for the higher{order derivatives using variables repre-

sented within the model is not always possible and is often di�cult to do

automatically.

(2) The HOD constraint cannot be used when the expression evaluates to an

ambiguous sign.

(3) The automatic derivation of the HOD constraint applies additional assump-

tions about the functions described by M+ and M� constraints. If two vari-

ables, x and y, are related by a monotonically increasing function, the sign

equality assumption assumes that

[y00(t)] = [x00(t)]:

Recent results (Say, 1997) suggest that this restriction could signi�cantly re-

strict the class of dynamical systems modeled by the QDE.

While the HOD constraint can be quite useful, there are many instances in which

it is unable to eliminate chatter. The three tank W-tube described in �gure 4.2

provides a simple example in which HOD constraints are inadequate.

4.2.2 Ignore Qdirs

Ignore qdirs (Fouch�e & Kuipers, 1990) eliminates chatter by ignoring distinctions

in a variable's direction of change throughout the simulation, thus eliminating the

source of the ambiguity by providing a more{abstract description. This abstraction

technique is applied to variables identi�ed by the modeler prior to the simulation.

For some simpler models, simply ignoring the direction of change is an e�ec-

tive way to eliminate chatter without losing constraining power. For many models,

however, a variable's direction of change is ambiguous only within certain regions of

the state space. In other regions, this information may be relevant in constraining

the behavior of the system. In addition, ignoring the direction of change requires the

user to identify the variables prior to the simulation; furthermore, it may prevent

the application HOD constraints. In the W-tube example, ignoring the direction

of change of Net
owB prevents the application of the HOD constraint for other

variables causing a number of them to exhibit chatter.

94

4.3 Chatter{Box Abstraction

The chatter{box abstraction algorithm eliminates chatter by abstracting each chat-

tering region of the state space into a single qualitative state in the behavioral

description. For each time{interval state, the following steps are performed:

Step 1: De�ne an upper bound on the potentially chattering region (i.e.

identify potentially chattering variables),

Step 2: Explore the chattering region via a recursive call to the simulation

algorithm to determine which variables actually exhibit chatter,

Step 3: Analyze the result of the recursive call to the simulation algorithm

to identify the exact boundaries of the chattering region, and

Step 4: Create and insert into the behavior tree abstract states describing

the chatter{box and its successors.

Potentially chattering variables are identi�ed via an analysis of the QDE constraints

to identify variables whose direction of change is potentially unconstrained. The

set of potentially chattering variables is used to identify an upper bound on the

chattering region of the state space. A focused envisionment is then used to explore

this region of the state space and determine which variables, if any, exhibit chatter.

A focused envisionment is a recursive call to the simulation algorithm de�ned as

follows:

De�nition 4.4 (Focused envisionment) A focused envisionment is an attain-

able envisionment that is restricted to a speci�ed region of the state space. States

created outside the de�ned region are suspended from simulation (i.e. their successors

are not computed).

Chatter box abstraction uses the results from this simulation to identify the

boundaries of the chatter{box, abstract this region into a single qualitative state,

and generate the successors for this state. A more detailed discussion of each of

these steps appears below. Figure 4.6 demonstrates the application of the algorithm

to the W-tube example from �gure 4.2.

4.3.1 Identifying potentially chattering region

Chatter box abstraction uses the identi�cation of the potentially chattering region of

the state space to bound the region to be explored during the focused envisionment.

Potentially chattering variables are identi�ed via an analysis of the QDE and the

95

QDE

Final Behavior Tree

Focused Envisionment Graph

Before chatter
abstraction

Behavior Tree

Identify
potentially
chattering

region

1)

Explore
chattering

region
(Qsim)

2) Identify
actual

chattering
region

3)

Abstract chattering
region and successor

states
4)

(a) chatter{box algorithm

°
. ↑ ↑ ↑

. °

INF

A-1

0

T0 T1 T2

amount (B)

°
. ↑ ↑ ↑

. °

INF

A-2

0

T0 T1 T2

amount (C)

↑
. ↑↓ ↓ ↓

°

INF

0

MINF

T0 T1 T2

d amount (B)

°
. ↑

. ° ↓ °

INF

N-1

0

MINF

T0 T1 T2

d amount (C)

(b) W-tube behavior plots

� In this example, the potentially chattering variables include Netflow-AC,
Crossflow-BC, Delta-BC, Netflow-B, Netflow-A, Crossflow-AB, and Delta-AB (see
�gure 4.7). Due to the application of HOD constraints during the focused envision-
ment, NetflowB is the only variable that actually exhibits chatter.

� In the focused envisionment graph, cycles are represented by dotted lines. The chat-
tering region is abstracted into a single state in the main simulation, represented by
a 2. The qdir in the chattering region is represented by a bi-directional arrow in the
behavior plot.

Figure 4.6: chatter{box abstraction algorithm applied to the W-tube.

96

current state. To handle chatter around landmarks, the algorithm expands the

potentially chattering region to include QSIM introduced landmarks and landmarks

identi�ed as chatter landmarks within the QDE.

Analysis of the QDE Kuipers et al. (Kuipers et al., 1991) present an algorithm

for identifying potentially chattering variables based strictly upon the constraints

within the model. This technique is used in the automatic derivation of HOD

constraints. We have extended the algorithm to include qualitative state information

when appropriate and to reason about the full set of constraints provided by QSIM.

Previously, the algorithm only handled a sub{set of QSIM's constraints.

There are two main steps to the algorithm:

Step 1 Partition the variables into chatter equivalence classes.

Step 2 Identify equivalence classes that cannot chatter.

Variables that are not included within non-chattering equivalence classes are con-

sidered to be potentially chattering.

De�nition 4.5 (Chatter equivalence) Variables V1 and V2 are considered chat-

ter equivalent within a region of the state space if and only if the sign of V 01 is

uniquely determined by the sign of V 02 and vice-a-versa.

The identi�cation of chatter equivalence classes is based upon the observation

that two variables are chatter equivalent if they are related by a monotonic function

constraint (e.g. M+ or M�) or a re�nement of a monotonic function constraint

(e.g. ADD(x; y; z) if either x, y, or z are constant). Note that the S+ and S�

constraints4 only apply the monotonicity restriction within a particular region of

the state space. Thus, the current qualitative state must be used to determine if

two variables related by an S+ or an S� constraint are chatter equivalent. Kuipers

et al. (1991) gives a complete listing of the conditions under which two variables

can be identi�ed as chatter equivalent.

A chatter equivalence class is identi�ed as non-chattering if either a variable

in the class is constant or its derivative is explicitly represented in the model. The

latter restriction, as discussed below, is relaxed if a variable's derivative is identi�ed

as potentially chattering around zero. Figure 4.7 demonstrates the detection of

potentially chattering variables for the W-tube example.

4The S constraints describe a saturation function in which two variables, x and y, are monoton-
ically related whenever x is within a region identi�ed by two landmarks speci�ed in the constraint.
When x is outside this region, y is constant.

97

Inflow−A

Amount−A

Delta−ABNetflow−A

Pressure−A

Crossflow−AB

ADD

ADD

Constant

M+

M+

d/dt

Outflow−C

Netflow−C

Delta−BC

Pressure−B

Netflow−B

Amount−B

Crossflow−BC

ADD

ADD

ADD

M+

M+

M+

Amount−C Pressure−C
M+

d/dt

d/dt

No Chatter

Potentially
Chattering

� The constraint graph identi�es the relationships between the variables in the QDE.
Binary constraints are represented as labeled arcs while the tertiary ADD constraint
is represented by an additional node in the graph. The derivative constraint is repre-
sented by a directed edge pointing toward the derivative variable.

� Chatter equivalency classes are grouped by the bold lines and labeled with respect to
whether or not the variables can potentially chatter. Variables related by anM+ con-
straint grouped in the same equivalence class. In addition, since Inflow-A is constant,
it is grouped into Crossflow-AB's equivalence class due to the ADD constraint.

� The equivalence classes containing Amount-A, Amount-B and Amount-C are identi�ed
as non{chattering since their derivatives are represented in the model.

Figure 4.7: W-tube Chatter Equivalence Classes

98

Landmark chatter Once the algorithm identi�es the set of potentially chatter-

ing variables, it is necessary to determine if any of these variables can potentially

chatter around neighboring landmarks. Two types of landmarks exist in the quan-

tity space of a variable: landmarks identi�ed in the model and those created during

the simulation. The landmarks in the model have been identi�ed as relevant by the

modeler. The chatter{box abstraction algorithm will not eliminate chatter around

such a landmark unless the modeler identi�es the variable and the landmark as a

potential chatter landmark in the QDE. In particular, chatter around zero is only

eliminated if the modeler speci�es this in the model. This restriction is applied to in-

crease the e�ciency of the algorithm since chatter around a user{de�ned landmark

is an unusual event that can be easily detected by the modeler.5 If a variable is

potentially chattering within an interval bounded by a landmark introduced during

the simulation or identi�ed as a chatter landmark in the model, then the poten-

tially chattering region of the state space is expanded to include both this landmark

and the interval on the other side of the landmark. The process continues until a

user{speci�ed, non{chatter landmark is encountered.

When chatter around zero occurs, it means the derivative constraint is un-

able to prevent chatter in the derivative variable. Thus, chatter equivalence classes

marked as non{chattering due to the existence of a derivative constraint must be

marked as potentially chattering.

Lemma 4.1 The region of the state space identi�ed as potentially chattering is a

superset of the actual chattering region of the state space.

Proof: Two variables x and y are identi�ed as chatter equivalent if and only if

[_x] = [_y] or [_x] = �[_y]. Thus, all of the variables in an equivalence class chatter

in unison. If the derivative of one of the variables in the class is constrained, then

the derivatives of all of the variables within the class are constrained. A chatter

equivalency class is identi�ed as non{chattering only if the derivative of a variable

within the class is constrained throughout the simulation by a single constraint. The

chattering region is extended to include all QSIM introduced landmarks and any

landmark within the model identi�ed as a potential chatter landmark. Kuipers et

al. (1991) contains a more detailed proof of this algorithm. 2

5For automated model building applications, an alternative operating mode detects chatter
around a landmark when it occurs in the main simulation and then backtracks to the preceding
focused envisionment and expands the potentially chattering region to include this landmark.

99

4.3.2 Focused envisionment

A focused envisionment is used to explore the potentially chattering region of the

state space to determine which variables chatter and whether chatter around a

landmark occurs. Performing the envisionment is a simple matter of creating an

initial time{point state from the time{interval state within the main simulation and

recursively calling the QSIM algorithm. An additional �lter detects when a state

exits the potentially chattering region. Such states are suspended from simulation.

4.3.3 Identifying the boundaries of the chattering region

The chatter box abstraction algorithm identi�es the actual chattering region of the

state space through an analysis of the focused envisionment graph. A variable v is

identi�ed as chattering if and only if there exists a branch following a time{point

state due to distinctions in the qualitative value of v. If this branch is due to

a change in the qualitative magnitude, then the variable is considered to chatter

around the distinguishing landmark. This information de�nes the actual chattering

region of the state space. States that exit this region are labeled as exit states.

Since the chatter{box de�nes a time{interval region of the state space, exit states

are required to be time{point states.

4.3.4 Abstract state and successor state creation

The chattering region of the envisionment graph is abstracted to a single state by

conjunctively combining the qualitative values of the variables in the graph. For

example, if a variable v is chattering around a landmark lj , then its qualitative

magnitude is simply represented as (lj�1; lj+1). This representation allows for the

description of a variable that simply alternates between increasing and steady or

decreasing and steady without changing in the opposite direction. Such phenomena

are described by the abstract qdirs (inc std) and (std dec) which correspond to

the representation of a closed interval at zero.

Exit states are used to create the successors of the abstract chatter state. A

chattering variable, however, may continue to chatter as a non{chattering variable

changes its qualitative value. This results in an exit state for each consistent value

assignment for the qdirs of the chattering variables. Exit states that are equivalent

with respect to the non{chattering variables are combined to create a single abstract

exit state. Since exit states are time{point states, the qualitative direction of change

is represented as a disjunctive list of potential values.

100

QV (v; ti)) QV (v; ti; ti+1)

hlj; (inc std)i hlj; stdi
hlj; (inc std)i h(lj; lj+1); inci
hlj; (std dec)i hlj; stdi
hlj; (std dec)i h(lj; lj�1); deci
h(lj; lk); (inc std dec)i h(lj; lk); (inc std dec)i
h(lj; lk); (inc std)i h(lj; lk); (inc std)i
h(lj; lk); (std dec)i h(lj; lk); (std dec)i

Table 4.1: Extensions to the QSIM I-Successor transition table

4.3.5 Time{point Successor Generation

Chatter{box abstraction extends the qualitative behavior language to include ab-

stracted qvalues. This extension requires a modi�cation to the part of the QSIM

successor{generation algorithm that computes the successors for a time{point state

with an abstract qvalue. For time{interval states, this extension to the representa-

tion language does not pose a problem since the chatter{box abstraction algorithm

computes the successors via the focused envisionment.

The QSIM successor{generation algorithm uses continuity to identify the

possible successor values for each variable. Extending the successor{generation al-

gorithm simply requires speci�cation of the successor values that are consistent with

continuity for an abstracted qdir. Table 4.3.5 contains the extensions required to

handle abstracted qdirs.

4.3.6 Results

The chatter{box abstraction algorithm eliminates chatter by transforming the be-

havioral description generated by QSIM into an alternative representation. Evalua-

tion of the algorithm requires an analysis of the extent to which this transformation

eliminates chatter without over{abstracting.

Theorem 4.1 Chatter{box abstraction eliminates all chatter branches from the ab-

stract behavioral description except chatter around a user{de�ned landmark not iden-

ti�ed as a chatter landmark.

Proof: The focused envisionment used to explore the chattering region of the state

space is simply an extension of the regular simulation. Thus, if a chatter branch oc-

curs in the main simulation following state Si, then a corresponding chatter branch

101

will occur in the focused envisionment for the time-interval preceding the chatter

branch since identi�cation of the potentially chattering variables provides an upper

bound on the chattering region of the state space (lemma 4.1). Chatter{box ab-

straction analyzes the results of the focused envisionment and abstracts the entire

chattering region into a single abstract qualitative state. Thus, Si would be included

within this abstract state and thus would not be generated as a successor.

Since the potentially chattering region only includes user de�ned{landmarks

identi�ed as potential chatter landmarks, then chatter can still occur around a user{

de�ned landmark not identi�ed as a chatter landmark. 2

Theorem 4.2 (Chatter elimination completeness) All variables detected as

chattering by the chatter{box abstraction algorithm exhibit chatter within the iden-

ti�ed region of the state space in the unabstracted behavior tree.

Proof: Chatter{box abstraction only identi�es a variable as chattering if there ex-

ists a chatter branch within the focused envisionment. Since a focused envisionment

is simply an extension of a standard simulation, any state within the focused envi-

sionment has a corresponding state within the non-abstracted behavior tree. Thus,

if a chatter branch occurs within the focused envisionment then a corresponding

chatter branch will occur in the unabstracted tree. 2

4.3.6.1 Real valued trajectories

It is also important to evaluate the set of real{valued trajectories described by

the abstracted behavioral description. Chatter box abstraction retains the focused

envisionment graphs used by the algorithm. These graphs describe the abstracted

region of the state space at the same level of detail as the unabstracted tree, except

that landmarks are not introduced. Augmenting the behavioral description with

information from the focused envisionment graphs results in a description that is

equivalent to the non{abstracted behavioral description and thus describes the same

set of real{valued trajectories.

De�nition 4.6 (Chatter extension) The chatter extension of an abstract behav-

ior tree is the behavior tree that results when each abstract state and its successors

are replaced by an \unfolding" of the corresponding focused envisionment graph.

To generate an extension of an abstract behavior tree we will use the following

mappings:

102

�entry(S) takes an abstracted time{interval state from the main simulation and

returns the time{interval state that follows the initial state of the focused

envisionment corresponding to S. (This state is identical to the state that

existed before the abstract state was generated.)

�fe(S) takes a state S within the chattering region of a focused envisionment graph

and returns the corresponding state within the main behavior tree. Thus,

for the non-exit states within the focused envisionment graph, it returns the

abstract time{interval state, and for an exit states, it returns the appropriate

successor of the abstract time{interval state.

A chatter extension of an abstract behavior tree can be generated as follows:

(1) For each abstract time{interval state Si, replace it with S0i such that S 0i =

�entry(Si),

(2) For each �nite path within the chattering region of the focused envisionment

that terminates in an exit state Sexit, generate a corresponding behavior seg-

ment that follows from S0i. Call the terminating state in this behavior segment

S0exit, and

(3) Generate a behavior segment that follows from S0exit for each extended behavior

that follows from �fe(S0exit).

Lemma 4.2 A chatter extension of an abstract behavior tree is equivalent to a

non{abstracted behavior tree generated by a standard QSIM simulation except for

the introduction of landmarks.

Proof: A focused envisionment graph uses the same algorithm to generate the

successors of each state within the graph with two exceptions:

� landmarks are not introduced, and

� the focused envisionment generates a graph instead of a tree.

If landmarks are not introduced, an envisionment graph is simply a more{concise de-

scription of the behaviors in a behavior tree. Thus, each path within an envisionment

graph corresponds to a behavior in a behavior tree. Thus, the two representations

are identical modulo the introduction of landmarks. 2

Lemma 4.3 The introduction of landmarks within a chattering region does not con-

strain the set of real{valued trajectories described by the behavioral description.

103

Proof: The introduction of a landmark lj0 within the interval (lj ; lj+1) for variable

v partitions the interval into two regions. This distinction only serves to re�ne the

space of real{valued trajectories if the constraints within the model can eliminate

a behavior that passes through one of these segments. Following a chatter branch,

however, behaviors are generated in both segments of the partitioned interval. If

the simulation were able to eliminate the behavior of the system within one of

these intervals, then chatter would not occur. The introduction of a landmark

within a chattering region adds a qualitative distinction that increases the number of

behaviors; however, this distinction fails to restrict the set of real{valued trajectories

described by the behavioral description. 2

Theorem 4.3 The set of real{valued trajectories described by the abstracted behav-

ioral description, coupled with the focused envisionment graphs, is the same as the

set of trajectories described by the unabstracted tree.

Proof: Since the set of qualitative behaviors described by the chatter extended

abstract tree is identical to the set of qualitative behaviors within an unabstracted

tree (lemma 4.2), and the introduction of landmarks within a chattering region fails

to re�ne the set of real{valued trajectories (lemma 4.3), then the set of real{valued

trajectories described by the two representations are identical. 2

Theorem 4.4 The set of real{valued trajectories described by the abstracted be-

havioral description is a super-set of the real{valued trajectories described by the

unabstracted tree.

Proof: Suppose Sa is an abstract state in the abstract behavior tree and Bfe is

the chattering region of the focused envisionment corresponding to Sa. Then, by

de�nition of the abstraction operation used to generate Sa,

8S : S 2 Bfe :: S � Sa

Since Sa does not constrain the transitions in the abstracted region of the state space,

any real{valued trajectory described by Bfe is also possible within Sa. Therefore,

the theorem follows from this fact, coupled with theorem 4.3. 2

Thus, chatter{box abstraction preserves the QSIM soundness guarantee. The

space of real{valued trajectories described by the abstracted tree, however, may be

larger than the space described by the unabstracted tree. This is due to the fact

that a single abstract state is used to describe the chattering region of the state

space. This state does not contain information correlating the direction of change

for chattering variables. Certain correlations may be precluded by the constraints

104

within the model. For example, if both A and B are chattering then their qdirs are

represented as a the conjunctive list (inc std dec). The representation allows any

combination for the qdir of these two variables. If these two variables are related

by an M+ constraint, then the model requires the qdir of the variables to be equal.

The abstracted behavioral description, therefore, describes real{valued trajectories

that are not described by the unabstracted tree.

Increasing the space of real{valued trajectories, however, has little e�ect on

the results generated by the simulation when performing a speci�c task since the

additional trajectories are limited to distinctions in the direction of change for the

chattering variables. In general, chatter only appears in intermediate variables or

explicit derivative variables represented in the model.

Theorem 4.5 The set of real{valued trajectories for non{chattering variables de-

scribed by the abstracted behavioral description is equivalent to the set of trajectories

described by the unabstracted tree.

Proof: By de�nition, non{chattering variables do not change qualitative

value within a chatter{box. Thus, the qualitative value of a non{chattering variable

is the same in the abstracted state as it is in the corresponding states of the non{

abstracted tree. Thus, the abstraction operation does not eliminate any distinctions

in a non{chattering variable. 2

4.3.7 Discussion

Chatter{box abstraction introduces the concept of a recursive call to the simulation

algorithm to explore a restricted region of the state space. One of the major advan-

tages of this approach is that it allows for the seamless integration of extensions to

the QSIM algorithm into the abstraction process. No modi�cations are required to

the chatter box abstraction algorithm as QSIM's inference ability is extended via

new constraints or extensions to the core algorithm.

The simulation of the W-tube model described in �gure 4.2 demonstrates

the bene�ts of this approach. HOD derivative constraints can eliminate chatter

in all of the variables except for NetflowB. The focused envisionment incorporates

the HOD reasoning without any special extensions. This feature is also exploited

when TeQSIM restricts the simulation via trajectory constraints. The focused envi-

sionment incorporates these constraints when it explores the potentially chattering

region of the state space without any special processing.

Unfortunately, a draw back of this approach is that it still encounters some

of the computational complexity problems due to intractable branching. Since the

105

focused envisionment explores the chattering region of the state space via simula-

tion, the size of the envisionment graph is exponential in the number of chattering

variables. The worst{case complexity of the graph is O(2(vt�vc)3eq) where vt is the

total number of non{constant variables, vc is the number of chattering variables and

eq is the number of chatter equivalency classes.6

Chatter{box abstraction works e�ectively for most of the qualitative mod-

els currently being developed; however, this technique encounters problems as the

number of chattering variables increases. Using a Sparc10, the size of the focused en-

visionment graph becomes a problem when about 6 or 7 chatter equivalency classes

simultaneously chatter within the same region of the state space.

4.4 Dynamic Chatter Abstraction

Dynamic chatter abstraction uses an abstraction technique similar to chatter{box

abstraction; however, as opposed to exploring the chattering region via simulation,

it uses an understanding of the restrictions that are asserted by each constraint in

the model, along with the current qualitative state, to determine if the derivative of

a variable is constrained. For example, in the W-tube model, the direction of change

for NetflowB is restricted only by the constraint NetflowB + Flow-BC = Flow-AB.

In the time{interval following the initial state, all three variables are increasing.

Thus, in this state the qdir of NetflowB is unconstrained and NetflowB is free to

chatter.

Dynamic chatter abstraction, however, reasons not only about the qualitative

values contained within the current state, but also about how these values change as

variables begin to chatter. Once NetflowB chatters, its derivative can change sign

and the addition constraint above no longer restricts the derivative of Flow-AB. If

Flow-AB is not prevented from chattering by other constraints, it is free to chatter

and must be identi�ed accordingly in the current chatter{box. Figure 4.8 shows

a more{complex example demonstrating how chatter can propagate through the

constraint graph.

Once the chattering variables are identi�ed, an abstract, time{interval state

describing the chattering region of the state space is created and inserted into the

behavior tree. Successors of this abstract state are computed through an extension

6There are three di�erent values for the qdir of each chattering variable resulting in 3eq di�erent
distinctions since all of the variables within an equivalency class chatter in unison. Each non{
chattering variable can in turn have up to 2 values (i.e. it can remain the same or reach the
approaching landmark). Thus, there can be a total of (2(vt�vc)3eq) states within the envisionment
graph.

106

In addition to reasoning about the current qualitative state, dynamic chatter abstraction
also reasons about how the state can change as variables begin to chatter.

� The arrow next to each variable corresponds to the variable's current direction of
change. Variables I, F, and G are all prevented from chattering by other constraints
in the model. For each ADD constraint, the operands are connected to one side, and
the result is connected to the other with the arrow head pointing toward the result.

� The derivative B is currently unconstrained and thus free to chatter. For each of the
other variables, however, there is at least one constraint preventing it from chattering.
In particular, note that A is only constrained by the ADD constraint relating A, F and
D.

� Once B begins to decrease following a chatter branch, the constraints on the deriva-
tive of C are released, allowing C to chatter. Similarly, once C begins to decrease, D
becomes free to chatter. This process repeats itself, causing the following sequence of
derivatives to change sign:

B ! C ! D ! E ! C ! B ! A !

Note that E's derivative must change sign before C and B can reverse sign and allow
A to chatter. If E were prevented from chattering, then a state in which A were free
to chatter would not be chatter reachable.

� All �ve of the variables listed above are included in the maximal chatter{box and
thus must be identi�ed as chattering.

Figure 4.8: Chatter Propagation

107

of the QSIM successor generation algorithm.

4.4.1 Detecting Chatter

For each time{interval state S, dynamic chatter abstraction determines if S is con-

tained within a chatter{box, and if so, identi�es the boundaries of the chatter{box

(i.e. the set of chattering variables). To determine if a variable v can chatter fol-

lowing a given state S before the system exits the chatter{box, two questions must

be answered:

Consistency - Is there a consistent state in which v is free to chatter?

Reachability - Can this state be reached from S only through changes occuring

in other chattering variables?

De�nition 4.7 (Chatter{reachable) A qualitative state S0 is considered chatter{

reachable with respect to state S if and only if there exists a consistent path b =

<s1; s2; : : : ; sn> where n � 1 such that

� S = s1, S
0 = sn,

� each qualitative change occuring in the path results from a chatter branch.

For given time{interval state S, a three{step process is used to answer these ques-

tions:

Step 1 Partition the variables into chatter equivalency classes as in the

chatter{box abstraction algorithm (see section 4.3.1 and �gure 4.7).

Step 2 For each equivalency class EQ, de�ne a chattering region predicate

Ceq describing the conditions under which the variables in EQ are

free to chatter. The predicate Ceq(S
0) where S 0 is an abstract

qualitative state, returns true if and only if the derivatives of the

variables in EQ are unconstrained in S0 with respect to the other

variables in the model.

Step 3 For each equivalency class EQ, if a chatter{reachable state that

satis�es Ceq exists, then classify the variables in EQ as chattering

for state S.

108

4.4.2 Chattering region predicate: Syntax and semantics

Ceq is a boolean predicate specifying necessary and su�cient conditions for the

variables in EQ to chatter. The predicate is a structured, boolean combination of

atomic propositions called assertions. Each assertion speci�es a constraint on the

qualitative value of the variables in an equivalency class. Assertions can specify

two types of constraints: an outer bound speci�es a set of qualitative values for the

variables within an equivalency class while an inner bound identi�es a region in which

S0 must be unconstrained. Some of the assertions specify conditions relative to the

qualitative value of the variable within the qualitative state, S, being evaluated by

the dynamic chatter abstraction algorithm. Note that this state is di�erent from

the state S0 that is the target of the predicate Ceq(S0). The constraints currently

used by QSIM require six di�erent assertion types. S and S0 are the states being

evaluated by the dynamic chatter abstraction algorithm and Ceq respectively.

(:same-qdir eq S) is true if and only if for all v such that v 2 Veq, Qdir(v; S0) =

Qdir(v; S), where Veq is the set of variables within equivalency class eq.

(:change-qdir eq) S is true if and only if for all v such that v 2 Veq, Qdir(v; S
0)

is the opposite of Qdir(v; S)).

(:qdir v qdir) , where v is a variable, is true if and only if Qdir(v; S0) = qdir.

(:chatter eq) is used to help determine if a state satisfying Ceq is chatter{reachable.

It is true if and only if the variables in eq have already been identi�ed as chat-

tering. While this assertion is included in Ceq, its semantics are not limited to

the state S0, and thus it is not formally included within the de�nition of Ceq.

(:uncon-qdir v qdir-list) , where qdir-list is a list of qdirs, is true if and only if

qdir-list � Qdir(v; S0) and for all qd such that qd 2 qdir-list, there exists a

consistent completion Sqd of S
0 where the Qdir(v; Sqd) = Qdir(v; S0).

(:uncon-qmag v (lml lmu)) , where (lml lmu) is an interval in the quantity space

for v, is true if and only if (lml lmu) � Qmag(v; S0), and for all qm such

that qm 2 (lml lmu) there exists a consistent completion Sqm of S0 where

Qmag(v; Sqm) = Qmag(v; S0).

The last two assertion types specify inner bounds on S0 while the �rst three specify

outer bounds. In general, these assertion types only make minimal use of the concept

of inner and outer bounds. The semantics of Ceq, however, have been de�ned in a

109

general manner so that additional assertion types can be speci�ed without extending

the semantics.

Assertions are combined using standard boolean semantics for the boolean

connectives AND and OR according to the following grammar.
Chattering region predicate ! (AND dependency+)

Dependency ! (OR condition+)

Condition ! (AND assertion+)
Each dependency corresponds to a constraint in the model that restricts the

derivatives of the variables in EQ with respect to other variables in the model; each

condition speci�es a di�erent condition under which the constraint fails to restrict

the derivatives of the variables in EQ. For Ceq(S
0) to be satis�ed, S0 must satisfy at

least one condition from each dependency. Figure 4.9 shows an example chattering

region predicate for the W-tube model.

4.4.3 De�ning a chattering region predicate

The assertions in a chattering region predicate depend upon the constraints in the

model. The following QSIM constraint types can restrict a variable's derivative

with respect to other equivalency classes: MULT, ADD, D/DT, and re�nements of the

multivariate M constraint.7 While constraints such as M+=�, S+=�, and U+=� all

restrict a variable's direction of change, the variables within these constraints are in

the same equivalency class and thus need not be considered in the speci�cation of

chattering region predicate.

For an equivalency class EQ, a dependency is added to Ceq for each constraint

C and for each variable v such that

� the constraint type of C matches one of the constraints listed above, and

� v is contained within both C and EQ.

The structure of the dependency is determined by the constraint type, the role of v

within the constraint (e.g. is it an operand or the result), and the qualitative values

of the variables in C in the current state:

(ADD x y z) {

The ADD constraint requires the following relationship to hold between the

derivatives of the variables:

[_x] + [_y] = [_z]

7Re�nements of this constraint include the signed{sum constraint (SSUM), the SUM constraint,
and the SUM-ZERO constraint. Kuipers (1994) de�nes the syntax and semantics for these constraints.

110

The following example demonstrates the chattering region predicate for equivalency node
EQ1 for the time{interval state S1 from the W-tube example. The following equivalency
classes (see �gure 4.7 for the derivation of these classes) are relevant to this example.

Class Name Variables Direction of change in state S1
EQ1 NetflowA dec

Flow-AB inc
Delta-AB inc

EQ2 PressureB inc
AmountB inc

EQ3 PressureA inc
AmountA inc

EQ4 NetflowB inc
EQ5 Flow-BC inc

Delta-BC inc

Two constraints in the model restrict the derivatives of the variables in EQ1 with respect
to variables not included within EQ1.

C1: Delta-AB + PressureB = �PressureA
C2: NetflowB + FlowBC = Flow-AB

The chattering region predicate Ceq1 de�nes the conditions under which the variables in
EQ1 are free to chatter.

Ceq1 Description

(AND (OR (AND (:change-qdir EQ2 S1)
(:change-qdir EQ3 S1))

(AND (:same-qdir EQ2 S1)
(:same-qdir EQ3 S1)))

Since Delta-AB is an operand in ADD con-
straint C1 and all of the variables are inc,
the derivatives of the variables in EQ2 and
EQ3 must either both stay the same or both
change to the opposite direction.

(OR (AND (:change-qdir EQ4 S1)
(:same-qdir EQ5 S1))

(AND (:same-qdir EQ4 S1)
(:change-qdir EQ5 S1))))

Since Flow-AB is the result in ADD con-
straint C2 and all of the variables are inc,
the derivatives for the variables in either
EQ4 or EQ5 must remain the same while
the derivatives in the other class change to
the opposite direction.

Figure 4.9: Example Chattering Region Predicate for the W-Tube

111

If v is an operand, then the other two variables must change in the same

direction. If v corresponds to x and that y and z are both changing in opposite

directions, then the following dependency is added:
(OR (AND (:change-qdir EQy S)

(:same-qdir EQz S))

(AND (:same-qdir EQy S)

(:change-qdir EQz S)))
where EQy and EQz refer to the equivalency classes containing variables y

and z respectively and S is the current qualitative state. If they are both

changing in the same direction, then the dependency would state that either

both equivalency classes change or both remain the same.

On the other hand, if v is the result, then the other two variables must change

in the same direction.

This example demonstrates why assertions may include a reference to the cur-

rent qualitative state. While the derivatives of the variables change in unison,

they are not necessarily equal (i.e. they could be of opposite signs). The syn-

tax allows us to specify the qdirs for all of the variables in the equivalency

class with a single statement. In addition, as we will see in the next section,

the :change-qdir assertion is useful when the algorithm determines if a state

is chatter{reachable.

(MULT x y z) {

Di�erentiating both sides of the MULT constraint yields an equation describing

the manner in which the derivatives of the variables are constrained.

[x][_y] + [_x][y] = [_z] (4.1)

The conditions under which v is unconstrained depend upon the value of

[v1] � [v2], where v1 and v2 are the other two variables in the constraint. For

example, if v is the result and [x] � [y] = [+], then [x]0 = [y]0. Thus, for _z

to be unconstrained in equation 4.1, [_x]0 must equal �[_y]0 to ensure that one

operand is positive and the other negative. Therefore, the qdirs of the other

two variables must change in opposite directions. The following table de�nes

whether the other two variables change in the same direction or in opposite

directions. The vertical axis corresponds to the sign of [v1]�[v2]; the horizontal

axis corresponds to the role of v.

112

result operand

+ opposite same

- same opposite

((M s1 s2 : : : sn) (x1 x2 : : : xn y)) {

For a multivariate M constraint to be satis�ed for the derivatives of the variables

in the constraint, one of the following conditions must be satis�ed for i; j in

0::n

� for all i, [si][_xi] = [0];

� for some i, [si][_xi] = [?];

� for some i and j, [si][_xi] = [+] and [sj][_xj] = [�].

Thus, for the derivative of a variable xi to be unconstrained, there must exist

j; k in 0::n such that [sj][xj] = �[sk][xk] with neither value equal to [0].

Therefore, for each pair of variables, excluding v, in the constraint, a condi-

tion is de�ned asserting this constraint. The assertions used in the condition

depend upon the current direction of change of the variables as well as the

sign of the direction of in
uence.

(D/DT x y) {

The derivative constraint asserts that [_x] = [y]0. Thus, as x chatters, y chatters

around zero. If the variable being considered, v, corresponds to x, the following

three assertions are included in the dependency:

(:uncon-qmag x (lml lmu)) where (lml lmu) is the interval around zero for

x. This assertion simply states that the qmag of x must be unconstrained

around zero.

(:chatter eqx) { For y to chatter, x must also be free to chatter since after

crossing zero x must be able to \turn around" and return to zero. Oth-

erwise, the variable is implicitly constrained. Note that this assertion

is di�erent from the :change-qdir assertion since it does not place any

constraints on the sign of the derivative of x. It simply states that it

must be identi�ed as chattering.

(:qdir x qd) where qd = �[x]0. This assertion requires y to approach zero.

This constraint is asserted to determine if there is a relationship between

_y and _x via other constraints in the model. If _y is constrained as x

approaches zero, then the variable cannot chatter.

113

4.4.4 Identifying the set of chattering variables

To determine if a given state S is contained in a chatter{box and, if so, to identify

the boundaries of the chatter{box, each chatter equivalency class must be evaluated.

The boolean predicate Chatter(S;EQ) is de�ned as follows:

Chatter(S;EQ) () 9S0 :Ceq(S
0)^

S0 is chatter{reachable from S.

where S and S0 are qualitative states. Chatter(S;EQ) means that S is contained in

a chatter box in which the variables in EQ chatter. If this predicate is TRUE, then

the variables in EQ must be abstracted within the current state.

The Chatter-test algorithm (table 4.2) identi�es the set of chattering variables

for a given time{interval state. Three labels are used to classify the equivalency

classes: :chatter, :nochatter, and :undetermined. Initially, Chatter-test labels

all of the equivalency classes :undetermined unless the equivalency class contains

a variable that is constrained from chattering by a single constraint.8 These classes

are marked :nochatter. Then, for each equivalency class whose status is still

:undetermined, the EQ-Chatter-Test algorthim (table 4.3) is used to evaluate the

predicate Chatter(S;EQ).

EQ-Chatter-Test uses a backtracking algorithm to incrementally generate an

abstract state that satis�es Ceq ensuring that the state is chatter reachable from the

current state S. The algorithm initializes a partial state S0 with information from S

that cannot change as a result of chatter and then gradually re�nes the state with

information from the assertions in Ceq. If an assertion of the form (:change-qdir

EQ0) or (:chatter EQ0) is encountered, then the algorithm checks the status of

EQ0. If it is still :undetermined, then EQ-Chatter-Test algorthm is called recur-

sively to compute a status for EQ0. If it is determined that the variables in EQ0

can chatter, then the information in the assertion is added to S0 and the algorithm

continues. The algorithm backtracks in the following three cases:

1. if the qualitative value information speci�ed in the assertion con
icts with

information contained within S0,

2. if an assertion requires an equivalency class with the status :nochatter to

chatter, or

3. if a cycle is encountered in the recursive calling sequence.

8Constraints meeting this criterion include the CONSTANT, INCREASING, and DECREASING con-
straints, as well as the S+=� constraints if the range is outside of the bend points.

114

Chatter-test:

Given a time{interval state S, a partitioning of the variables into equiv-
alency classes, and a chattering region predicate for each equivalency
class,

1. For all EQi such that EQi is an equivalency class, if EQi con-
tains a variable constrained by a constraint of type CONSTANT,
INCREASING, or DECREASING then mark EQi :nochatter. Other-
wise, mark EQi undetermined.

2. For i from 1 to n where n is the number of equivalency classes

� if Status(EQi) = :undetermined then
Ret-val = EQ-Chatter-Test (EQi,Ceqi , nil)

� if Ret-val = :chatter

then set the status of EQi to :chatter,
else set the status of EQi to :nochatter.

Table 4.2: The Chatter-test Algorithm.

Figure 4.10 shows an example that demonstrates how cycles within the a segment

of the model can prevent a set of variables from chattering.

Once an abstract state satisfying all of the assertions is generated, the QSIM

state{completion algorithm is used to test the consistency of this state for all of

the constraints in the model. In addition, the algorithm must check to see if inner

bounds speci�ed by :uncon-qmag and :uncon-qdir assertions are satis�ed by this

state. Inner{bound assertions are processed by annotating the abstract state with

the inner bound. An inner bound is satis�ed if there is a consistent completion of

the state for each qualitative value contained within the inner bound.

EQ-Chatter-Test is divided into four separate agorithms: EQ-Chatter-Test,

Check-dependencies, Check-assertions, and Check-state-completions. Each of these

algorithms return one of the following three values: :chatter, :nochatter, and

:cycle. The status of an equivalency class EQ is determined as follows:

� If EQ-Chatter-Test ever returns either :chatter or :nochatter then the sta-

tus of EQ is updated accordingly; future calls to EQ-Chatter-Test will simply

return this value.

� If a non-recursive call to EQ-Chatter-Test returns the value :cycle, then the

status of EQ is set to :nochatter. If a recursive call to EQ-Chatter-Test

returns :cycle, then the status of EQ remains :undetermined.

115

A + B = D

[+] [�] = [+]

B + C = E

[�] [+] = [�]

C + D = F

[+] [�] = [+]

D + A = G
[�] [+] = [�]

Cycles in the constraint network can prevent a variable from chattering. While this problem
is unusual in standard chatter examples, it is more commonwhen eliminating chatter around
zero or when dealing with HOD constriants.

� In the model segment above, the sign of the derivative of each variable is displayed
below the variable. In addition, all four result variables (D;E; F;G) are assumed to
be constrained from chattering by other variables in the model.

� In the current state, none of the variables are free to chatter. For A to chatter _B has
to change sign �rst (eq. 1). Thus, A depends upon B. Similarly, B depends upon C,
C upon D, and D upon A.

� Dynamic chatter abstraction must detect the cycle and determine that none of the
variables can chatter when evaluating the chattering region predicates. If a propaga-
tion algorithm is used, then this condition cannot be detected.

� Once one of the result variables constrained by the rest of the model changes sign,
then all of the variables start chattering.

Figure 4.10: Cycle can prevent chatter

116

EQ-Chatter-Test:

Given an equivalency node EQ, a corresponding chattering region pred-
icate Ceq and a stack of previously visited equivalency nodes call-stack,

1. If status(EQ) 6= :undetermined then return status(EQ).

2. If EQ 2 call-stack, then return :cycle.

3. Generate a qualitative state S0 from S as follows:

For all v such that v is a variable in the model:

� if equivalency-class(v) has the status :nochatter then
Qval(v; S0) := Qval(v; S).

� if the integral of v is not explicitly represented within the
model then Qmag(v; S0) := Qmag(v; S).a

The rest of the values are left unde�ned.

4. Push EQ onto the call-stack,
call Check-dependencies(D;S0; call� stack) and return the value
returned by the call to Check-dependencies. D = D1; : : : ; Dn is a
list of the dependencies in Ceq.

aThis condition assumes that if a variable's derivative is not explicitly represented within the
model, then it will not chatter around zero. This assumption is discussed in more detail in
section 4.4.6 on landmark chatter.

Table 4.3: The EQ-Chatter-test Algorithm.

A brief description of each algorithm is provided below, while tables 4.3, 4.4,

4.5 and 4.6 contain a more detailed description.

EQ-Chatter-Test EQ-Chatter-Test (table 4.3) is the root algorithm that deter-

mines whether the variables within an equivalency class EQ are free to chatter. If

the status of the equivalency class is still :undetermined, the algorithm initializes

the partial state S0 and calls Check-dependencies with the dependencies contained

within EQ's chattering region predicate. This call returns the value provided by

Check-dependencies. If the algorithm has been called recursively and EQ is already

in the calling stack, then the algorithm returns :cycle.

Check-dependencies Check-dependencies (table 4.4) receives a list of dependen-

cies and a partial state S0. It performs a recursive depth{�rst search of the depen-

dencies, attempting to �nd a re�nement of S0 that satis�es at least one condition

117

Check-dependencies:

Given a set of dependencies fD1; : : : ; Dng, a partial state S0 and a stack
of previously visited equivalency nodes call-stack,

1. If there are no dependencies left, then call Check-state-
completions(S0) and return the value returned.

2. Else, select a dependency Di and for each condition Scij within
Di,

(a) Call Check-assertions(A; S0;call-stack) where
A = fA1; : : : ; Ang is the set of assertions within Cij . Set
Result to the value returned.

(b) If Result = :cycle then set Cycle-Found to be TRUE.

(c) If Result = :chatter then,

� Create a copy of S0 called S00 and update S00 with the
assertions in Cij .

� Call Check-dependencies(fD2; : : : ; Dng; S
00;call-stack). If

this returns
:chatter then return :chatter,
:cycle then set Cycle-Found to be TRUE and continue.
:nochatter then continue.

3. If a value has not been returned yet, then if Cycle-Found is TRUE
then return :cycle. Otherwise, return :nochatter.

Table 4.4: The Check-dependencies Algorithm.

within each dependency. It selects a dependency from the list and iterates through

the conditions. Check-assertions is called with each condition to see if S0 can be

appropriately re�ned. If it can, then the algorithm is called recursively with the

re�nement of S 0 and the remainder of the dependecies.

If Check-dependencies is called with a null dependency list, then the partial

state S0 has satis�ed all of the dependencies. Check-state-completions is called with

S0 to see if there is a consistent completion and to determine if the inner bound

annotations are satis�ed. The value returned by Check-dependencies is determined

by the following rule:

� If a recursive call to Check-dependencies or Check-state-completions returns

:chatter, then return this value.

� Else, if a call to Check-dependencies, Check-state-completions, or

118

Check-assertions:

Given a set of assertions fA1; : : : ; Ang, a partial state S0 and the call-
stack,

1. For each assertion Ai in fA1; : : : ; Ang,

(a) If Ai is a :same-qdir or :qdir assertion, then test to see if
the values can be asserted in S0. If they cannot be asserted,
return :nochatter.

(b) If Ai is a :uncon-qmag or :uncon-qdir assertion, then test
to see if the speci�ed inner bound can be asserted. An inner
bound cannot be asserted if S0 already has a more{re�ned
description for the variable in Ai.

(c) If Ai is a :change-qdir or :chatter assertion referring to
equivalency class EQi, then

� If EQi 2 call-stack, return :cycle.

� Check to see if the values can be asserted in S0. If they
cannot, return :nochatter.

� Call EQ-Chatter-Test(EQi;Ceqi,call-stack). If it returns
either :nochatter or :cycle, then return this value.
Otherwise continue.

2. If a value has not been returned, return :chatter.

Table 4.5: The Check-assertions Algorithm.

Check-assertions returns :cycle, then return this value.

� Otherwise, return :nochatter.

Check-assertions Check-assertions (table 4.5) receives a conjunctive list of as-

sertions, a partial state S 0, and the call stack. It tests each assertion to determine

whether it is consistent with S 0. If an assertion requires an equivalency class EQ to

chatter and EQ is in the call stack, Check-assertions returns :cycle . If EQ is not

in the call stack, it calls EQ-Chatter-Test recursively to see if EQ can chatter.

If all of the assertions can be satis�ed, then :chatter is returned. However,

if one of the assertions cannot be satis�ed, then return :nochatter.

Check-state-completions Check-state-completions (table 4.6) determines

whether there is a consistent completion to the partial state S0. Such a result

119

Check-state-completions:

Given an annotated partial state S0,

1. If there are no inner bounds, attempt to �nd one consistent com-
pletion S0c such that

Qdir(v; S) = Qdir(v; S0c)_ Status(EQv) = : chatter:

for all v where v is a variable within the model whose value is
unspeci�ed in S0. If a completion is found, return :chatter. If
a completion satisfying the �rst condition is found, but a recur-
sive call to EQ-Chatter-Test returns the value of :cycle when
attempting to evaluate the status of EQv, then return :cycle.
Otherwise, return :nochatter.

2. If there are inner bounds, then a completion satisfying the condi-
tion above must be found for each qualitative value in the inner
bounds. This ensures that S0 is unconstrained in the region spec-
i�ed by the inner bounds.

Table 4.6: The Check-state-completions Algorithm.

ensures that the values asserted within S0 are consistent with all of the constraints

in the model. The QSIM state{completion algorithm has been re�ned to generate

completions in an incremental manner. The algorithm \prefers" completions that

are closest to the current qualitative state. If a completion requires a variable v to

chatter (i.e. its qdir is di�erent than in the current state) and v is not speci�ed within

S0, then EQ-Chatter-Test must be called recursively to ensure that the variable can

chatter. If the only consistent completions result in EQ-Chatter-Test returning

:cycle, then Check-state-completions returns :cycle.

Check-state-completions must also ensure that the inner bound annotations

are consistent with S0. For an inner bound to be consistent, S0 must be uncon-

strained in the region speci�ed by the inner bound. Thus, a completion must be

found for each qualitative value contained within the inner bounds. Once again,

if the completion requires a variable to chatter EQ-Chatter-Test must be called

recursively.

120

4.4.5 W-tube example

Figure 4.11 describes the chatter{detection algorithm for a pair of equivalency classes

in the W-tube model. Ceqi is represented as an AND{OR graph, providing an e�ec-

tive graphical representation for demonstrating the sequence of steps in the algo-

rithm. Without using HOD information, evaluation of the entire dependency graph

yields a total of seven chattering variables. This is consistent with the results of

a standard QSIM simulation without any form of chatter elimination. The vari-

ables that do not chatter (the variables within the chatter equivalency classes for

Amount-A, Amount-B and Amount-C) are constrained from chattering by a sequence

of cycles in the dependency graph. For these variables to chatter, their deriva-

tives must chatter around zero. The cycles are such that NetflowA depends upon

NetflowB to chatter �rst, NetflowB requires NetflowC to chatter �rst and NetflowC

in turn requires NetflowA to chatter �rst. Due to this cycle, none of the variables

can chatter. This is an example of the situation where constraint propagation is too

weak an inference method to determine that a variable will not chatter.

4.4.6 Landmark chatter

4.4.6.1 Chatter around zero

The most common and problematic form of landmark chatter is chatter around

zero. One of the reasons that it is problematic is that chatter around zero involves

the magnitude of a variable being unconstrained as opposed to just the direction

of change. Zero, however, is often a relevant landmark that separates a chattering

region from a non{chattering region. Thus, it is important to selectively identify

and eliminate chatter around zero only when it occurs.

Dynamic chatter abstraction handles chatter around zero without any addi-

tional processing. The algorithm described above does not assume that the deriva-

tive constraint prevents the integral variable from chattering. Instead, information

about the constraining power of the derivative constraint is represented via asser-

tions in Ceq. For example, if a variable's derivative is explicitly represented in the

model, then both the qmag and the qdir of the derivative variable must be uncon-

strained and the qdir of the derivative variable must head toward zero. If both a

variable and its derivative are identi�ed as chattering, then the derivative variable

will exhibit chatter around zero and its qualitative magnitude is also abstracted.

121

NetflowA (dec)
Flow−AB (inc)
Delta−AB (inc)

EQ−1

opp
opp same

same
samesameopp

opp

PressureB (inc)
AmountB (inc)

PressureA (inc)
AmountA (inc)

PressureA Flow−AB

(a) (b)

andand andand

and

oror

C−2: NetflowB + Flow−BC =C−1: Delta−AB + PressureB =

EQ−2 EQ−3
NetflowB (inc)

EQ−4

Flow−BC (inc)
Delta−BC (inc)

EQ−5
NetflowA (dec)
Flow−AB (inc)
Delta−AB (inc)

EQ−1

Flow−AB
C−2: NetflowB + Flow−BC =

and

NetflowB (inc)
EQ−4

or

samesameopp
opp

andand

Flow−BC (inc)
Delta−BC (inc)

EQ−5

(d)(c)

Chatter equivalency class EQ1 is evaluated as follows for the time{interval state S1 following
the initial state. To simplify the structure of the display, nodes EQ4 and EQ1 are displayed
in two places in the above graph. (The order of the traversal of the AND{OR subgraphs
has been slightly modi�ed for the sake of this presentation.)
Evaluating EQ1

Step-1 Instantiate a partial state description Sp with the qualitative value for
InflowA since it is constant and thus cannot chatter. All of the other vari-
ables can potentially chatter. Push EQ1 onto the call stack CS.

Step-2 To satisfy constraint C1 traverse link (a). This link requires the variables in
EQ2 and EQ3 to remain the same. Add this information to Sp.

Step-3 To satisfy constraint C2, traverse link (b). This link requires the variables in
EQ4 to change their direction of change, so the variables in EQ4 must be
free to chatter. Since EQ4 is classi�ed as :undetermined, call the algorithm
recursively to determine its status.

Evaluating EQ4

Step-4 Traverse link (c) in the above graph. To satisfy this link, both EQ1 and
EQ5 must be free to chatter. A cycle, however, occurs in the calling
sequence since EQ1 2 CS. Therefore, the algorithm backtracks.

Step-5 Traverse link (d). Since this link is satis�ed by the current state, classify
EQ4 as chattering and return (i.e. NetflowB will chatter.)

Step-6 EQ4 is therefore free to chatter. Augment Sp with the qualitative value
information to satisfy link (b).

Step-7 The QSIM state completion algorithm is called to ensure that there exists
a consistent completion of Sc. Variables that have not been identi�ed as
chattering must retain their current qualitative values within this completion.
A state is identi�ed and EQ1 is classi�ed as chattering.

Figure 4.11: Chatter detection for the W-tube.

122

4.4.6.2 Non-zero landmark chatter

Conceptually, there is no reason chatter around a non{zero landmark could not be

detected in a manner similar to the detection of normal chatter. Standard chatter

occurs when a variable's derivative is unconstrained around zero. To comprehen-

sively handle chatter around a non{zero landmark, our analysis would need to be

generalized and extended to reason about the manner in which the qualitative mag-

nitude of a variable can be constrained. Constraints, however, can restrict the

magnitude of a variable in more{complex fashions because of corresponding values.

This causes an increase in both the algorithmic complexity and the computational

complexity of the solution. Moreover, chatter around a non{zero landmark is not a

major problem since most variables that chatter often only contain the landmarks

minf, 0 and inf.

Instead, we use a more straight{forward approach in which chatter around

non{zero landmarks is detected by a conservative algorithm after the set of chat-

tering variables is identi�ed. The algorithm is augmented by the ability to identify

a landmark as a chatter landmark within the QDE, thus causing the algorithm to

identify it as a chatter landmark when it neighbors a chattering region.

Landmark chatter algorithm A variable chatters because its derivative is un-

constrained. If a variable is chattering and the chattering region is bordered by a

non-zero landmark, then the variable will chatter around this landmark unless

(1) attaining the landmark causes the qdir of the variable to be constrained, or

(2) the model prevents the variable from reaching the landmark while remaining

within the chattering region.

Condition (1) can only occur if there is a constraint that in essence \prop-

agates" this new qmag in such a manner that the qdir is now constrained. Note,

however, that for most of the constraints, the qmag of a variable does not a�ect

the qdir. Since it is the qdir that must be constrained if the variable is to stop

chattering, in most cases condition (1) will not prevent a variable from chattering

around a landmark. Table 4.7 describes when this condition is satis�ed for each

constraint.

Condition (2), on the other hand, can prevent a variable from chattering

because corresponding values may prevent the variable from reaching the landmark.

For example, suppose

123

� (ADD A B C) is a constraint and the quantity spaces and values for the vari-

ables are

V ar Qspace Qvalue

A (minf 0 A* inf) ((0 A*) inc)

B (minf 0 B* inf) ((0 B*) dec)

C (minf 0 C* inf) ((0 C*) inc)

� the corresponding value (A* B* C*) exists, and

� A and B are prevented from chattering by other constraints while C is not

prevented from chattering by other constraints.

In this example, C is free to chatter, but not around C*, because the corresponding

value prevents C from crossing C* unless A or B change qualitative magnitude as well.

This example demonstrates how a constraint can prevent a variable from chattering

around a landmark.

The following algorithm identi�es non-zero chatter landmarks by gradually

extending the region identi�ed as chattering around neighboring landmarks that are

identi�ed as chatter landmarks.

Step 1: Perform a static analysis of the QDE to identify non-chatter land-

marks. A landmark is a non-chatter landmark if it is a threshold

landmark for an S constraint or a U constraint or if it is a non-

terminal landmark that is unreachable. This analysis is repeated

each time a new QDE is used and the results are stored on the

QDE.

Step 2: Dynamically identify non-chatter landmark equivalency classes. For

each chatter equivalence class, analyze the corresponding values

(cvalues) on each constraint relating variables in the equivalency

class. Two landmarks are chatter equivalent if their respective vari-

ables are the only two non-constant variables in a constraint and

the landmarks are contained in the same corresponding value. La-

bel each class

:undetermined.

Step 3: Label a non-chatter landmark equivalency class :nochatter if the

class contains a non-chatter landmark or if it contains 0 and the

variable does not chatter around zero.

124

Constraint A�ect qmag change has on qdir

M , M+=�,
SSUM ,
SUM-ZERO,
ADD

Change in the qmag does a�ect the qdir of a variable.

MULT Sign changes in a variable can a�ect the constraints on the qdir of a
variable within the model. Note, however, that this only occurs when
a variable crosses zero. Chatter around zero is a special case that is
handled separately, so we do not need to worry about it here.

D=DT Once again, if a variable crosses zero, this a�ects the qdir of the integral
variable. Currently, we are only concerned with non-zero landmarks.

S + =� A change in qmag can a�ect the qdir of the other variable. If the
variable on the X axis crosses either of the threshold landmarks, then
the variable on the Y axis is constrained to be steady. This means
that if two variables are related by an S+/- constraint, both variables
are chattering, and X crosses a threshold, then the Y variable will stop
chattering. While it is possible for X to chatter around this landmark,
such a scenario only results from a bug in the model since the threshold
landmark is supposed to be signi�cant. Therefore, if a landmark LM is a
threshold landmark in an S+/- constraint, chatter around this landmark
will not be asserted.

U + =� A change in qmag can a�ect the qdir of the other variable. When the
maximum/minimumpoint of the U is reached, the relationships between
the qdirs of the variables change and thus the sign of the derivative of one
of the variables will change. This can a�ect whether or not other vari-
ables will chatter, which can in turn a�ect whether or not the variables
related by a U+ constraint will chatter. It may be possible to determine
if the system will chatter around the landmark by determining which
variables chatter once the relation changes. Similar to S+/-, however,
this threshold was identi�ed as "signi�cant" by the modeler. Thus, at
this point we will identify the threshold landmarks as non-chatter land-
marks until an example is produced for which this is unsatisfactory.

Table 4.7: How a change in magnitude can a�ect the direction of change.

125

Step 4: For each landmark contained within an :undetermined equivalency

class, attempt to �nd a consistent state S0 in which the qualitative

magnitude for the corresponding variable is on the \other side" of

the landmark. S 0 should satisfy the following conditions:

{ For all v where v is a non-chattering variable, Qval(v; S0) =

Qval(v; S).

{ For all v where v is a chattering variable that does not chat-

ter around zero, Qmag(v; S0) = Qmag(v; S)(�1 01) where

Qmag(v; S)(�1 01) is the qmag of v in S projected onto the

quantity space (�1 01).

If a completion cannot be found, then mark the landmark chatter

equivalency class :nochatter.

Step 5: Mark all :undetermined equivalency classes :chatter.

Step 6: For each chattering variable, recursively extend the chattering in-

terval by testing the bounding landmarks to determine if they are

chatter landmarks. Given a landmark lm, a direction :up or :down,

and the labeled landmark equivalency classes, use the following al-

gorithm to identify an upper and a lower bound for the chattering

interval.

{ If lm is a terminating landmark or 0, return lm.

{ If lm is unreachable, return lm.

{ If lm is in an equivalency class labeled :nochatter, return lm.

{ Otherwise, call the algorithm recursively with the next land-

mark in the quantity space in the direction identi�ed by the

input argument.

Open Issues As mentioned above, the algorithm described here is not intended to

be comprehensive. Instead, it provides an e�cient means to eliminate most instances

of non-zero landmark chatter. Furthermore, the modeler can identify a landmark as

either a non{chatter landmark or a chatter landmark in the QDE. The label for the

landmark equivalency class containing a landmark identi�ed in the QDE is labeled

as speci�ed by the modeler.

Some of the existing open issues with the algorithm include:

� The assumption that the threshold landmarks in the U and S constraints are

non-chatter landmarks may be too conservative.

126

� The algorithm treats zero as a special landmark. It is possible that zero will

not be a special landmark and that chatter around it may need to be classi�ed

and detected in a manner similar to chatter around other landmarks.

� Currently, the algorithm identi�es \non-chatter landmark equivalency classes"

in a very conservative manner. In particular, if three variable are related via

an ADD constraint and all are non-constant, then no relation is asserted even

though one may exist.

4.4.7 Abstract state creation and successor generation

Once the set of chattering variables is identi�ed, the algorithm creates an abstract

state with an abstracted qdir of (inc std dec) for each of the chattering variables.

We have extended the QSIM state{successor algorithm to handle such abstract

states.

If the qualitative value of a variable over a time{interval is

h(lj; lk) (inc std dec)i, where k > j, then at the ensuing time{point state the

following values are consistent with continuity:

h(lj; lk)(inc std dec)i

hlj ; (std dec)i

hlk(inc std)i

For each time{point state, the successor table is extended in the same manner

as in chatter{box abstraction (see table 4.3.5). Since a time{point state can also have

an abstracted qdir, each time{point must be tested to determine when a variable

stops chattering. A variable stops chattering when a related variable changes and

begins to constrain the chattering variable. To detect chatter termination, the state{

completion algorithm attempts to �nd a consistent state for each possible qdir. If

a qdir does not participate in a consistent completion, then it is �ltered out of the

list of possible qdirs.

Lemma 4.4 (Qualitative successor extension) The extensions to the QSIM

qualitative value successor tables for abstract qualitative states de�ned above and in

table 4.3.5 from section 4.3.5 preserve the QSIM guarantee that all possible successor

values that are consistent with continuity are generated.

Proof: Both extensions de�ne the successor values for an abstract qualitative value

qva as the union of successor values for each non{abstracted value in qva adjusted

to eliminate distinctions that have been eliminated in qva. Thus, each value in a

127

successor to the non{abstracted values in qva is also in the successors of qva. 2

4.4.8 Results

Dynamic chatter abstraction has been evaluated both theoretically and empirically.

This section presents theorems that demonstrate its e�ectiveness at eliminating chat-

ter. Dynamic chatter abstraction is evaluated both with respect to the qualitative

behaviors generated as well as the set of real{valued trajectories described by the

behavioral description.

In this section, we summarize the discussion and omit the lengthier proofs.

Please refer to appendix B for a more complete presentation and detailed proofs of

all theorems.

4.4.8.1 Ceq: Sound and complete

Lemma 4.5 For a given equivalency class EQ and time{interval state

S describing the interval (tj ; tk), if the qdir of v is unconstrained except

with respect to other variables in EQ for all v such that v 2 EQ, then

the variables in EQ will chatter following time point state tk.

The proof appears in appendix B.

Lemma 4.6 The conditions speci�ed in Ceq for each QSIM constraint

type T de�ne necessary and su�cient conditions for the variables in EQ

to be unconstrained by a constraint of type T .

The proof appears in appendix B.

Lemma 4.7 If an abstract state S satis�es Ceq, then the derivatives of

the variables in EQ are unconstrained in S except with respect to other

variables in EQ. (i.e. A variable v1 may be related to a variable v2 by

an M+ constraint. Thus, _v1 is constrained with respect to _v2; however,

they are contained in the same equivalency class and thus the exception

applies.)

The proof appears in appendix B.

128

Theorem 4.6 (Ceq soundness) For a given abstract time{interval state

S describing the interval (tj ; tk) and an equivalency class EQ, if S sat-

is�es Ceq then the variables in EQ will chatter following time point tk.

Proof: Since S satis�es Ceq, the variables in EQ are unconstrained ex-

cept with respect to each other (lemma 4.5). Therefore, by lemma 4.7

the variables will chatter following time point tk . 2

Theorem 4.7 (Ceq completeness) Assuming that the chatter equiva-

lency class partitioning is complete, the predicate Ceq de�nes necessary

conditions on an abstract qualitative state for the variables in EQ to

chatter.

The proof appears in appendix B. While this theorem requires the parti-

tioning algorithm to be complete, it is not the case that Ceq fails to detect

chatter in all instances where Ceq is incomplete. On the contrary, since

the dependencies record the conditions under which a variable is uncon-

strained, it may be possible to use the information within the predicate to

detect implicit chatter equivalency relationships between variables that

arises because of the interaction of multiple constraints. Moreover, in all

of the models tested, dynamic chatter abstraction detected all instances

of chatter encountered.

4.4.8.2 Chatter-test: Sound and complete

Theorem 4.8 (Chatter-test soundness) For a given qualitative state

S and an equivalency class EQ, if Chatter-test(S;EQ) identi�es the

variables in EQ as chattering, then there exists an abstract state S0 such

that S0 both satis�es Ceq and is chatter{reachable from S, assuming that

the paths supporting each change in S0 from S can be combined into a

consistent sequence of states.

The proof appears in appendix B.

Theorem 4.9 (Chatter-test completeness) For a given qualitative state

S and an equivalency class EQ if there exists a state S0 satisfying Ceq

that is chatter{reachable from S, then Chatter-test(S;EQ) identi�es the

variables in EQ as chattering.

129

The proof appears in appendix B.

4.4.8.3 Real valued trajectories

Theorem 4.10 (QSIM soundness retained) The set of real{valued

trajectories described by an abstracted behavior tree that is generated us-

ing dynamic chatter abstraction includes all real{valued trajectories de-

scribed by that corresponding an unabstracted behavior tree that exhibits

chatter.

Proof: Dynamic chatter abstraction performs a strict abstraction oper-

ation. Thus, dynamic chatter abstraction replaces a time{interval state

S with a state Sa such that S � Sa. Thus, the set of precise numer-

ical values consistent with S is a subset of the set consistent with Sa.

Furthermore, by the qualitative successor{extension lemma (lemma 4.4),

the successors of Sa contain all possible successor values for the precise

numerical values in Sa that are consistent with continuity. Therefore,

since each state and each transition are a superset of the values described

by a non{abstracted tree, the set of real{valued trajectories described by

an abstracted tree is a superset of those described by the corresponding

non{abstracted tree exhibiting chatter. 2

Note that the abstraction operation performed by dynamic chatter ab-

straction does introduce additional real{valued trajectories that do not

appear in the non{abstracted behavior. There are two potential sources

for these trajectories:

Abstraction operation { As with chatter{box abstraction, the rep-

resentation used to describe an abstract state is not su�ciently

re�ned to describe the correlations between chattering variables in

the same equivalency class. As discussed in section 4.3.6, this loss

of precision is simply a cost of abstraction; it does not, in general,

a�ect the usefulness of the results.

Abstract state successor computation { Dynamic chatter abstrac-

tion purposely does not explore all paths through the potentially

chattering region. Rather, it determines which variables will chat-

ter, generates an abstract state, and then uses the extension to the

QSIM successor tables to compute the successors to this abstract

state. The algorithm uses the model constraints to ensure that each

130

successor state is consistent. However, there is no guarantee that

there exists a path through the chattering region that ends in each

successor of the abstract state. Thus, it is conceptually possible

that a successor of an abstract state would not have a correspond-

ing state within the unabstracted tree.

In practice, we have not encountered this situation. Chatter{box

abstraction does not su�er from this limitation since it computes all

paths through the chattering region. Thus, we have tested this con-

dition by comparing the results from dynamic chatter and chatter{

box abstraction. In all of the cases examined, the behavioral de-

scriptions for these two approaches were identical.

The reason that this condition has not proved to be a problem is

because of the unconstrained nature of chatter. Since chattering

variables are loosely constrained within the chattering region, it is

very likely that a path exists through the chattering region for each

potential exit state.

4.4.9 Complexity

Dynamic chatter abstraction uses a backtracking algorithm that in e�ect solves a

constraint satisfaction problem. Thus, the worst{case complexity of the algorithm

is exponential in the number of potentially chattering equivalency classes; however,

in empirical evaluations of the algorithm we have not encountered an exponential

time factor.

The algorithm complexity is determined by the manner in which the variables

are constrained in the model and the number of chattering variables. In general,

the complexity is driven by two factors:

(1) the ratio of the number of potentially chattering equivalency classes to the

number of equivalency classes that exhibit chatter, and

(2) the density of the constraints that may or may not prevent an equivalency

class from chattering (e.g. ADD and MULT).

The ratio of potentially chattering classes to chattering classes is important

because of the recursive nature of the algorithm and frequency of cycles within the

execution sequence. If a cycle occurs in a recursive calling sequence, then only the

class on which the algorithm was initially called can be labeled :nochatter since

131

the other classes may not encounter the cycle when called as the root class.9 If a

class is identi�ed as chattering, however, this is not a�ected by the occurrence of a

cycle. Furthermore, once a class is labeled the algorithm does not need to be called

recursively on it. Thus, if the number of potentially chattering classes is high while

the number of chattering classes is low, then the algorithm may have to backtrack

a large number of times. Even when this occurs, however, the algorithm is still able

to perform well since con
icts are often quickly detected.

The density of constraints that lead to assertions within the chattering region

predicates also a�ect the complexity of the algorithm especially when there are a

large number of potentially chattering classes that do not exhibit chatter. When

evaluating a chattering region predicate, all of the di�erent combinations of the dif-

ferent conditions from each dependency must be considered. For example, if a given

equivalency class EQ participates in 4 ADD constraints, then for each ADD constraint

the corresponding dependency will have two disjunctive conditions that need to be

tested. All of the di�erent combinations results in 24 or 16 di�erent possibilities. Of

course, having a single equivalency class involved in four ADD constraints is unlikely.

If the variables in EQ end up chattering then all 16 options do not need to be tested.

However, if the class does not chatter, then they will all be tested. This is why the

ratio is important in this example.

The analysis above provides a brief evaluation of some of the factors that

a�ect the complexity of the algorithm. As larger problems are encountered a more

thorough analysis may be required if the algorithm begins to slow down. At this

point, however, the bene�ts of performing a more detailed complexity analysis in

conjunction with algorithmic optimizations is limited due to the performance of the

algorithm on the models tested. The performance numbers are discussed in detail

in section 4.5.

4.5 Empirical Evaluation

Both the chatter{box and dynamic chatter algorithms have been empirically eval-

uated using a corpus of over 20 models obtained from various researchers within

the �eld of qualitative reasoning. Many of these models have been used to evaluate

other techniques presented within this dissertation as well. Table 1.1 in section 2

provides a brief description of some of the models tested.

The empirical evaluation has been used to establish two results:

9This is one area where the algorithm could be signi�cantly improved by recording information
about cycles and leverage the work that has been done previously.

132

(1) to reinforce theoretical results and demonstrate that both algorithms eliminate

chatter without over{abstracting, and

(2) to compare and contrast execution times of alternative solutions for eliminat-

ing chatter.

In all models within table 1.1, both abstraction techniques eliminated all

instances of chatter without over{abstracting. This result was established by per-

forming a standard simulation and querying the results to determine which variables

chattered and when they chattered. Moreover, as expected, the resulting behavioral

description was far more concise in all of the examples tested, since chatter causes

intractable branching. Table 4.8 gives a detailed analysis of the results for several

of these models, comparing execution time for chatter{box and dynamic chatter

abstraction. Note that dynamic chatter performed signi�cantly better.

We tested the asymptotic behavior of three chatter elimination techniques

(ignore-qdirs, chatter{box abstraction, and dynamic chatter abstraction) using an

extendible cascading tank model. In this model, the netflow variables for each tank

exhibit chatter. The model is extendible since the number of tanks can be increased.

The results from these tests are listed in table 4.9 and plotted in �gure 4.12.10 Note

that execution time increases exponentially for both chatter{box abstraction and

ignore qdirs. For ignore qdirs this is caused by the inconsistent-ignore-�lter (see

section 4.6). For chatter{box abstraction, we were unable to complete the simulation

for models with six or more tanks because of resource limitations.

Figure 4.13 shows only the dynamic chatter abstraction simulation results so

that the reader can get a better sense of the asymptotic behavior of this abstraction

technique. In this example, execution time appears to be polynomial in the number

of tanks. Of course, this is not a general result, although in our experience the

execution time of the dynamic chatter abstraction algorithm is extremely low. The

results in table 4.8 reinforce this conclusion. The numbers in this table, however,

measure the total execution time for the model and therefore do not isolate the cost

per state. The execution time increases due to event branching.

4.6 Related Work

Both the ignore qdirs and higher{order derivative techniques eliminate chatter within

certain models (see section 4.2). Neither technique, however, provides a general so-

10In the plot, the dynamic chatter abstraction line cannot be seen because it is so close to the
x-axis.

133

Number of Behaviors Simulation
time (sec)

No chatter Abstract
abstraction chatter

Model Vars Chat
Vars

Env Beh
tree (no

lms)

Beh
tree (w/

lms)

Dyn
Chat

Chat
Box

W{Tube 16 1 3 > 1845 1 0.9 3.4
Glucose-insulin
Interaction

11 2 155 > 2807 41 14 52

Van der Pol
Equationa

10 4 43 > 1788 12b 2.3 15

Controlled
Hot/Cold tanka

14 5 24 > 601c 14 5.0 48.2

Turgor Stomates 19 7 509 > 2598 1 2.4 20.5
Cooling Planta 15 10 659 > 4095 1 7.7 418
Heart Model 42 28 689 > 2784 200 100 c

� Each model was tested both with and without chatter abstraction. Both an envision-
ment and a behavior tree simulation (without landmark introduction) were performed
without chatter abstraction using a state{limit of 5000. The number of behaviors are
listed above. Note that while an envisionment often yields fewer behaviors, the total
number of qualitatively distinct behaviors is the same, as there are an in�nite number
of paths within the envisionment graph.

� Both types of abstraction generated the same number of behaviors; dynamic chatter
abstraction, however, was signi�cantly faster than chatter{box abstraction.

� HOD constraints were used whenever applicable. Ignore qdirs does not work on
models exhibiting chatter around zero. On other models, ignore qdirs can be used,
however, it requires a signi�cant amount of work by the modeler to identify which
variables are chattering.

aExhibits chatter around zero
bOscillatory behavior results in in�nite behavior tree. Simulation terminated once the structure

within the tree could be determined.
cCould not be simulated to completion due to resource limitations.

Table 4.8: Evaluation of Dynamic Chatter and Chatter{Box Abstraction

134

Chatter Execution Time (sec)
of Tanks # of Total Box Chatter Ignore Dynamic

Chattering # of Env Box Qdirs Chatter
Vars Vars Size

2 Cascade 1 9 9 0.369 0.107 0.067
3 Cascade 2 13 46 1.232 0.252 0.543
4 Cascade 3 17 249 6.586 0.805 0.523
5 Cascade 4 21 1312 39.67 2.609 0.98
6 Cascade 5 25 6759 287.6 8.768 1.552
7 Cascade 6 29 29.52 2.377
8 Cascade 7 33 102.9 3.443
9 Cascade 8 37 363.5 4.966
10 Cascade 9 41 1284 6.905
� Tests were run on a Sparc 10 using Lucid Common Lisp. Execution time measures
the processing time for a single state.

� Blank entries correspond to simulations that could not be completed due to resource
limitations.

Table 4.9: Comparison of chatter abstraction techniques for the N{tank cascade

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(S

ec
)

Number of Tanks

Chatter Abstraction Execution Time (sec)

Chatter Box
Ignore-Qdirs

Dynamic Chatter

Figure 4.12: Comparison of chatter abstraction techniques for the N{tank cascade

135

0

1

2

3

4

5

6

7

2 3 4 5 6 7 8 9 10

R
un

 T
im

e
(S

ec
)

Number of Tanks

Dynamic Chatter Abstraction Execution Time (sec)

Dynamic Chatter

Figure 4.13: Dynamic chatter abstraction results for the N{tank cascade

lution that eliminates chatter in all cases.

HOD Constraints { The abstraction techniques proposed in this thesis are not

intended to replace the use of higher{order derivatives to eliminate chatter.

Instead, they complement HOD constraints, allowing them to be used when

applicable. When available, HOD constraints can eliminate spurious behav-

iors and re�ne the behavioral description. However, in many cases the HOD

technique is unable to eliminate all of the chatter in the model.

Ignore-qdirs { Ignore qdirs is similar to the abstraction techniques presented here

in that it eliminates distinctions in a variable's direction of change. It di�ers

from our abstraction techniques in several ways:

� Ignore-qdirs applies the abstraction operation throughout the simulation.

Often, however, derivative information can be useful in constraining the

simulation within certain regions of the state space. The abstraction

techniques described here are selectively applied only to the regions in

which a variable's derivative is unconstrained.

� Ignore qdirs requires the operator to identify the set of chattering vari-

ables prior to the simulation. Often this can involve a cumbersome, itera-

tive process involving multiple simulations to identify the set of chattering

136

variables. Then as additional information is added to the model, these

assertions must be withdrawn if the derivatives become constrained. Ig-

noring the direction of change in a variable that does not exhibit chatter

may introduce additional spurious behaviors into the simulation.

� Ignore qdirs cannot eliminate landmark chatter { more speci�cally, chat-

ter around zero. This problem becomes more common as larger models

are simulated.

In addition, ignore-qdirs can be expensive in certain models. When ignoring

a variable's direction of change, the inconsistent-ignore �lter is used to ensure

that there is at least one completion that is consistent with continuity for the

ignored derivatives. Ignore-qdirs calls the QSIM state{completion algorithm to

identify these completions. This process can become expensive as the number

of chattering variables increases. Section 4.5 demonstrates that ignore-qdirs

can require an exponential amount of time.

The problem of intractable branching due to chatter was also addressed by

DeCoste (DeCoste, 1994) in the context of Qualitative Process Theory models (For-

bus, 1984). DeCoste suggests that distinctions in the direction of change can simply

be ignored when a unique value cannot be identi�ed. Conceptually, this approach

is similar to the one taken here. However, DeCoste does not discuss how to deter-

mine when a unique value can or cannot be determined. Furthermore, he suggests

that it is a simple operation. While for simpler models, this may be the case,

more{complicated models often do not lend themselves to straight propagation to

determine if there is a unique value for a variable's direction of change (see �g-

ure 4.10). Finally, DeCoste does not consider the problem of chatter around zero or

other landmarks.

4.7 Discussion

The abstraction algorithms proposed here provide distinct bene�ts. Dynamic chat-

ter abstraction provides a scalable solution that to e�ciently solves the problem of

chatter. However, it is less modular than chatter{box abstraction. Since the algo-

rithm incorporates information about how the simulation algorithm processes the

constraints in the model, extensions to the simulation algorithm may require mod-

i�cations to the dynamic chatter abstraction algorithm. Furthermore, there is no

guarantee that an arbitrary extension will lend itself to the type of reasoning that

is performed by the dynamic chatter abstraction algorithm. On the other hand,

137

chatter{box abstraction uses the basic QSIM simulation algorithm as its main infer-

ence engine. As a result, extensions to the simulation algorithm can be incorporated

without modi�cations to the chatter abstraction algorithm.

Currently, for example, dynamic chatter abstraction cannot reason about tra-

jectory constraints speci�ed by TeQSIM. Thus, if a trajectory constraint restricts a

variable from chattering, dynamic chatter abstraction may still abstract the behavior

of the variable, which in turn may a�ect other variables in the model. For chatter{

box abstraction, however, trajectory constraints are applied as in a non{abstracted

simulation thus supporting the integration of these two techniques.

While at �rst glance the execution time for chatter{box abstraction may

cause concern about the utility of this technique, chatter{box abstraction provides

a very e�ective and e�cient technique for eliminating chatter for the majority of

the models currently being developed, In general, the number of chattering variables

in any single region of the state space is small, and thus the exponential nature of

the algorithm does not play a role. In cases where a larger number of variables

chatter, the modeler can often reduce the complexity of the focused envisionment

by using ignore-qdirs for a subset of the variables. Often, for larger models, a number

of variables chatter throughout the simulation. Thus, ignore qdirs does not cause

over{abstraction. The component{based simulation technique provided by DecSIM

may provide a solution for larger models, since the number of chattering variables

within any one component would be reduced.

4.8 Future Work

Chatter{box and dynamic chatter abstraction are two comprehensive and practical

solutions to chatter. Both, of course, could be re�ned and extended to improve

performance or extend the range of applicability. Some of the potential extensions

are discussed below:

1. The main advantage of chatter{box abstraction is its ability to be seamlessly

integrated with extensions to the QSIM baseline. However, due to complexity

problems it does not scale as the size of the model increases. Various ex-

tensions could reduce the impact of the exponential branching in the focused

envisionments:

� A focused envisionment identi�es chattering variables from a set of po-

tentially chattering variables. Once it has been determined that all of

the variables in the set of potentially chattering variables exhibit chatter,

138

then it is not necessary to explore the rest of the chattering region of the

state space.11 Instead, a technique similar to dynamic chatter abstraction

could be used to generate an abstract state and compute its successors.

� To avoid repeatedly exploring the same region of the state space, the al-

gorithm could maintain and use an index of the regions already explored.

If a system re-enters an indexed region, then the results from the previous

focused envisionment would be used to generate the abstract state and

its successors.

2. Dynamic chatter abstraction uses constraint satisfaction to identify the set

of chattering variables for a given state. Currently, it uses a fairly straight{

forward, backtracking algorithm. The e�ciency of the algorithm could be

signi�cantly improved in one of two ways:

� Dynamic chatter abstraction uses a sound and complete constraint sat-

isfaction algorithm to determine if a variable chatters. The worst{case

complexity of this algorithm, however, is exponential. Alternatively, con-

straint propagation (Tsang, 1993) provides a polynomial{time algorithm

that is potentially incomplete (i.e. it may identify a non{chattering vari-

able as chattering). A propagation algorithm detects chattering using

the following steps:

(a) Identify variables that are restricted from chattering due to a single

constraint independent of the other variables in the model. (e.g.

If a variable is constant then it cannot chatter). These variables

are labeled as :nochatter and the rest of the variables are labeled

:undetermined.

(b) Propagate this status through the constraint graph by selecting con-

straints with only a single potentially chattering variable v and de-

termining if the constraint restricts v from chattering. This process

continues no more information can be inferred.

(c) Once step 2 completes, i� a variable's status is still :undetermined

then it is identi�ed as a chattering variable.

While propagation works in many cases, for certain models it may identify

a non{chattering variable as chattering due to cycles in the constraint

graph. (See �gure 4.10 for an example where propagation is too weak.)

11Additional exploration simply delineates the di�erent combinations of values and identi�es the
exit states.

139

Propagation, however, could be used improve the e�ciency of the current

constraint satisfaction algorithm by quickly classifying certain variables

as non{chattering. This could signi�cantly reduce the exponential com-

plexity of the constraint satisfaction portion of the algorithm by elimi-

nating the need to test certain equivalency classes. While a constraint

propagation algorithm has been developed and tested, it is not currently

integrated into the dynamic chatter abstraction algorithm.

� Ordering algorithms could be developed for the equivalency nodes, de-

pendencies, and conditions. Currently, the ordering of these elements is

fairly close to random. An intelligent heuristic for ordering could greatly

reduce the portion of the search space that is explored.

4.9 Conclusions

Chatter branching is a major source of irrelevant distinctions that has often hin-

dered the application of qualitative simulation techniques to larger, more realistic

problems. In particular, it can be quite frustrating when encountered by inexperi-

enced modelers from other disciplines trying to use qualitative simulation to solve

a particular problem. The techniques presented here provide two fully automated

techniques that can be used to eliminate all instances of chatter, thus allowing the

model building to focus on issues relevant to the problem that he is trying to address.

140

Chapter 5

Temporally Constrained QSIM

(TeQSIM)

Qualitative simulation uses a structural, equation{based model to describe the time{

invariant relationships among the variables of a system. Simulation generates a de-

scription of the potential time{varying behaviors of the class of systems described

by the model. The modeler, however, may have additional information about the

behavior of the system that he would like to incorporate into the model. Alter-

natively, he may only be interested in the behavior of the system within certain

restricted regions of the trajectory space. Currently, however, the modeler is unable

to incorporate this type of information into the simulation process because of the

restricted nature of the modeling language.

Temporally Constrained QSIM (TeQSIM) extends the expressiveness of the

modeling language, allowing the modeler to express behavioral information via tra-

jectory constraints. Trajectory constraints are expressed primarily through temporal

logic expressions, containing both qualitative and quantitative information, which

provide a declarative language for specifying both time{variant and time{invariant

constraints. In addition, discontinuous change expressions are used to inject discon-

tinuities into the simulation to control the behavior of exogenous variables.

Figure 5.1 shows how the di�erent sources of constraining power contribute to

TeQSIM's results. TeQSIM processes trajectory constraints by integrating temporal

logic model checking into the qualitative simulation process resulting in three main

bene�ts:

1. Behavior �ltering tests each partial behavior segment against the trajectory

constraints as the behaviors are incrementally generated. A behavior is elim-

141

TeQSIM

Trajectory Space

QSIM

Constraints
Trajectory

Constraints
ContinuityStructural

Constraints

TeQSIM uses three sources of information to constrain a simulation:

Structural constraints are speci�ed as equations relating variables within the model; implicit

Continuity constraints restrict the relationship between variable values across time to ensure
the continuity of each variable; and

Trajectory constraints are speci�ed via temporal logic expressions restricting the behavior of
individual variables and the interactions between the behaviors of related variables.

Each point in the diagram above represents a real valued trajectory. A qualitative behavior corre-
sponds to a region within this space of trajectories.

� Discontinuous changes speci�ed by the user cause a relaxation of the continuity constraints
applied during simulation (dotted line surrounding the continuity constraints).

� Incorporating external events into the simulation extends the set of trajectories that are con-
sistent with the structural constraints (dotted line surrounding the structural constraints).

� The qualitative behaviors generated by QSIM correspond to the trajectories consistent with
both the unextended structural constraints and the unrelaxed continuity constraints (thick
boundary region) while the set of behaviors generated by TeQSIM corresponds to those
trajectories consistent with all three constraint types (shaded region).

Figure 5.1: TeQSIM constraint interaction

142

inated from the simulation when it can be shown that all of its possible com-

pletions fail to model the set of temporal logic expressions. Thus, the space

of the behavioral description is restricted to include only behaviors that can

satisfy the temporal logic expressions.

2. Behavior re�nement integrates the numeric information in the temporal logic

expressions into the qualitative simulation in order to provide a more{precise

numerical description. This process restricts an individual behavior to include

only those real{valued interpretations that model the set of temporal logic

expressions thus improving the precision of the prediction.

3. Injecting discontinuous changes into the simulation allows the modeler to con-

trol the behavior of exogenous variables by either temporally{bound external

events or qualitative changes occuring in the simulation.

Trajectory constraints can be used to specify the behavior of time{varying

input variables for non{autonomous systems; to reduce the complexity of a sim-

ulation by focusing the simulation on a region of the state space; to incorporate

observations into the simulation; and to reason about boundary condition problems

by specifying available information about �nal or intermediate states.

This chapter describes both the syntax and the semantics used to specify

trajectory constraints in TeQSIM and presents the model{checking algorithm that

processes these constraints. This is followed by an example that demonstrates how

trajectory constraints can be used to extract additional information from a qual-

itative simulation. Finally, results are presented that prove the model{checking

algorithm sound and complete with respect to the trajectory constraints.

5.1 TeQSIM Overview

TeQSIM accepts as input a model (i.e. a QDE), an initial state, and a trajectory

speci�cation. The trajectory speci�cation is comprised of three types of expressions:

temporal logic expressions, discontinuous change expressions and external event dec-

larations. An external event declaration de�nes a named, quantitatively bounded

event that is not represented in the QDE. The declaration of external events in-

troduces new relevant time{points that are inserted during the simulation. For

example, the declaration (event open :time (2 4)) de�nes a time{point called

open that is quantitatively constrained to occur at time t 2 [2; 4]. References to ex-

ternal events included in both temporal logic and discontinuous change expressions

allow the modeler to temporally constrain the information contained within these

143

expressions and specify correlations between external events and events generated

during the simulation. Currently, the speci�cation of external events is limited to a

totally ordered sequence. 1

The term trajectory constraint refers to both temporal logic and discontin-

uous change expressions. Temporal logic expressions (also called temporal logic

constraints) are the primary method in TeQSIM to specify trajectory constraints

and provide a unifying framework for �ltering behaviors since discontinuous change

expressions can be translated into an equivalent temporal logic expression.

5.1.1 Temporal logic constraint language

Temporal logic constraints are speci�ed in TeQSIM using a variation of a proposi-

tional linear-time temporal logic (PLTL) (Emerson, 1990) called the temporal logic

constraint language (TLCL). TLCL combines state formul�, that express informa-

tion about an individual state, with temporal operators such as until, always, and

eventually. These operators extend the state formul� across time.

The atomic state formul� used within TLCL describe qualitative and quan-

titative information about individual states. For example, (qvalue X ((0 X*)

inc)) states that variable X is between 0 and X* and increasing. Propositions such

as value-<= and value-in are used to specify numeric bounds and numeric ranges,

respectively. Boolean combinations of these atomic propositions are also allowed.

Temporal operators are applied to create path formul� to extend the informa-

tion within the state formul� across time. A path formula is de�ned recursively as

either a state formula or a composition of two or more path formul� via a temporal

operator. Path formul� are evaluated against sequences of states (i.e. behaviors).

A path formula comprised of a single state formula is true of a behavior if it is true

of the �rst state in the behavior.

Following Shults and Kuipers (1997), we have adopted as basic temporal

operators until, next, and strong-next have de�ned additional ones using boolean

operators. The path formula (until p q), where both p and q are path formul�,

is true for a behavior if p holds for all su�xes of the behavior preceding the �rst

one where q holds (i.e. p is true until q becomes true for the �rst time), while

(strong-next p) is true for a behavior if it contains at least two states and p holds

in the behavior starting at the second state. Next is similar to strong-next except

1We have considered removing this restriction and allowing a partially ordered set of external
events; however, at this point the applications that we have considered do not require this addi-
tional expressiveness. Furthermore, partially ordered external events increase the complexity of the
simulation since all possible orderings must be considered.

144

that it is also true if the behavior consists of a single state. Other temporal operators

can be de�ned as abbreviations from these two. The following abbreviations are

used in the example in the next section. Their expansions, along with a complete

description of the syntax and the semantics for both state and path formul� is

provided in section 5.3.
(always p) p is always true.

(between p q r) between the �rst occurrence of p and the following occur-

rence of q, r is true.

(occurs-at p q) q is true at the �rst occurrence of p.

(starts p q) q is true from the �rst occurrence of p.

(follows p q) q is true from just after the �rst occurrence of p.

5.1.2 Discontinuous change expressions

Discontinuous change expressions de�ne when a particular discontinuity can occur

and specify its immediate e�ects (i.e. new values for the variables that change dis-

continuously). This information is propagated through the model to determine the

variables a�ected by the discontinuous change. Thus, the expression

(disc-change (qvalue X (X* std)) ((inflow (if* inf) :range (400 440))))

states that when X reaches X� and is std, inflow will instantaneously move into

the interval (if* inf) and that the value of X will be within the range (400 440).

These expressions both expand (since discontinuous changes are not normally

generated) and constrain (since behaviors that do not exhibit the change are �ltered)

the state{space explored during the simulation. The discontinuous change proces-

sor injects the changes into the simulation by relaxing the continuity constraints

imposed by QSIM. To restrict the simulation to behaviors that exhibit the speci�ed

discontinuity, discontinuous change expressions are translated into temporal logic

constraints.

5.2 Problem solving with TeQSIM

The TeQSIM algorithm has been tested on a range of examples demonstrating a

variety of tasks. The following example demonstrates how TeQSIM can be used to

derive numeric bounds for a parameterized proportional controller. In addition, this

example demonstrates the speci�cation of a time{varying exogenous input to allow

simulation of a non{autonomous system.

145

5.2.1 Parameter identi�cation example

The model consists of a simple tank with a regulated output
ow rate governed by

the equations _V = I � f(L; v) and L = g(V). V denotes the volume of liquid in the

tank, L the level, I the input
ow rate, v the valve opening and f(�; �) the output

ow rate. f and g are partially known monotonic functions bounded by certain

numeric functions.

TeQSIM can be used to help design a controller that maintains a constant

water level (L = Ls) in the tank despite variations in the input
ow rate. A

proportional controller is added to the model to open or close the valve by an

amount proportional to the error: E = L� Ls and v = vs +KE.

TeQSIM derives bounds on the constant K that ensure that the closed-loop

behavior of the system satis�es a set of performance criteria speci�ed via trajec-

tory constraints: a perturbation to the input
ow rate, bounds on the overshoot

of the controller, and bounds on the time required to return to the nominal state

following the termination of the perturbation. The speci�cation of such information

via trajectory constraints is straightforward, and the computation of the solution is

relatively inexpensive. These bounds are used by the quantitative reasoning compo-

nent of QSIM to infer bounds on K. Figure 5.2 shows the syntax of these trajectory

constraints and �gure 5.3 gives the results of the simulation.

Both components of TeQSIM{ qualitative simulation and trajectory speci�-

cation { are crucial to the solution of a problem of this nature. Qualitative simulation

provides a discretization of trajectories essential for supporting a search mechanism.

In addition, each qualitative behavior is re�ned via forward and backward propaga-

tion of quantitative information in the constraints. Trajectory constraints drive the

system by specifying the behavior of the exogenous variable (i.e. input
ow rate)

and the controller's performance. This information cannot be represented within

the QDE.

These results require careful interpretation. TeQSIM does not generate a

proof that all real{valued systems satisfying the QDE behave in the speci�ed man-

ner when K is within the predicted range. QSIM�s incompleteness means that the

resulting behavior may be spurious. To address this, TeQSIM adds a relative guar-

antee that if a solution exists, it satis�es the predicted quantitative bounds. Other

methods like Monte Carlo simulations (Brajnik, 1997) can be applied to ensure that

a solution exists.

This example demonstrates how trajectory constraints can be used to sim-

ulate non-autonomous systems and perform parameter identi�cation. TeQSIM can

also help meet other design goals for the controlled tank system. Some examples

146

(event b-open1 :time 5)

(event e-open1 :time 6)

(event b-open2 :time 40)

(event e-open2 :time 41)

b−open1
[5 5]

e−open1
[6 6]

b−open2
[40 40]

e−open2
[41 41]

Time

? ?

??

steady

increasing

unspecified?

Key:
Inflow

[200 220]

[400 440]

(a) External event declaration (b) Desired input trajectory for Inflow

Temporal logic expression Description

1 (and (occurs-at (qvalue error (e* dec))

(value-<= time 60))

(follows (qvalue error (e* dec))

(qvalue error ((0 e*))))

The system must settle (i.e. the
error must go below e* and re-
main there) within 19 seconds
of the end of the perturbation
(i.e. at t=60s).

2 (always (value-<= outflow 320)) The out
ow must remain below
320 cm3/s.

3 (until (and (value-in inflow (200 220))

(qvalue valve (NIL std)))

(event b-open1))

The in
ow is constant in the
range (200 220) until the begin-
ning of the �rst opening action.

4 (between (event b-open1)

(event e-open1)

(qvalue inflow (NIL inc)))

Between events b-open1 and
e-open1 (i.e. the duration of
the �rst opening action) the in-

ow is increasing.

5 (occurs-at (event e-open1)

(value-in inflow (400 440)))

In
ow is steady and in the
range (400 440) after the �rst
opening action.

...

(c) Trajectory constraints (closing action not described)

� The external event declaration (a) de�nes four external events that correspond to the
beginning and end of an opening and a closing action. The description of the time{
varying input (b) uses temporal logic constraints that refer to these four external
events (c{3,4,5).

� Trajectory constraints are also used to place an upper bound on the settling time
along with a bound on the out
ow rate (c{1,2).

Figure 5.2: Trajectory speci�cation for parameter identi�cation example of a regu-
lated tank{
ow controller

147

°.....°.....°
...

..↑
...

..°.....°.....°.....°.....°.....↓.....↓.....↓.....°.....°.....°.....°.....°

INF

I-29 [400 440]

IF* [200 220]

0 [0 0]

T0 T1 T2 T3 T4 T5 T6 T7 T8

INFLOW

°.....°.....°
...

..↑.....↑.....↑.....↑.....↑.....↑.....↑
...

..°.....↓.....↓.....↓.....↓.....↓.....°

TOP [100 100]

L-39 [45.9 50.9]

L* [40 42]

0 [0 0]

T0 T1 T2 T3 T4 T5 T6 T7 T8

LEVEL

°.....°.....°.
....↑

.....↑.....↑.....↑.....↑.....↑.....↑.
....°.....↓.....↓.....↓.....↓.....↓.....°

INF

O-85 [272. 320]

O-52 [200 220]

0 [0 0]

MINF

T0 T1 T2 T3 T4 T5 T6 T7 T8

OUTFLOW

°.....°.....°.
....↑

.....↑.....↑.
....↑

....
.↑.....↑.....↑.

....°.....↓.....↓.....↓.....↓.....↓.....°

INF

E-59 [3.94 10.9]

E* [2 2]

0 [0 0]

MINF

T0 T1 T2 T3 T4 T5 T6 T7 T8

ERROR

°.....°.....°.....°.....°.....°.....°.....°.....°.....°.....°.....°.....°.....°.....°.....°.....°

INF

K* [0.00398 0.0804]

0 [0 0]

T0 T1 T2 T3 T4 T5 T6 T7 T8

K

↑.....↑.....↑.....↑.....↑.....↑.....↑.....↑
.....↑

.....↑.....↑.....↑.....↑.....↑.....↑.....↑

INF
T8 [46.5 +INF]
T7 [46.5 60]
T6 [41 41]
T5 [40 41]
T4 [40 40]

T3 [6 23.3]
T2 [6 6]
T1 [5 5]
T0 [0 0]

T0 T1 T2 T3 T4 T5 T6 T7

TIME

� TeQSIM generates a single behavior using the trajectory constraints speci�ed in �g-
ure 5.2. Notice that the behavior of Inflow matches the speci�cation and that the
bounds on outflow and time have been applied.

� Numerical information speci�ed within the trajectory constraints is used to derive an
upper and lower bound ([0.00398 0.0804]) for the constant K. The bounds can be
seen in the time{plot for K.

Figure 5.3: Time plots generated by TeQSIM

148

are presented in table 5.1.

5.3 Trajectory Speci�cation Language: syntax and se-

mantics

As mentioned above, TLCL is the primary method for specifying trajectory con-

straints. First, we will present the syntax and semantics for TLCL then we will

describe the syntax and the semantics for the external event declaration and the

discontinuous change expressions.

5.3.1 Temporal logic constraint language:

syntax and semantics

TeQSIM uses temporal logic constraints to incrementally guide and re�ne the qual-

itative simulation. Two extensions are required to traditional propositional linear{

time temporal logics:

� A three{value logic is used that allows an expression to be conditionally en-

tailed when quantitative information in the expression can be applied to a

behavior to re�ne the description. A re�nement condition speci�es numerical

bounds extracted from the TL expressions. Application of these conditions

to the behavior eliminates the region of the state space that extended beyond

the quantitative information speci�ed in the TL expression.

� To apply the model{checking algorithm incrementally during the simulation,

an undetermined result may occur when the behavior is insu�ciently deter-

mined to evaluate the truth of a TL expression.

The following subsection gives a formal description of the syntax and seman-

tics of TLCL. The syntax and semantics are derived from work done by Emerson

(Emerson, 1990) and Kuipers and Shults (Kuipers & Shults, 1994).

5.3.2 Syntax

The propositional part of the language includes the following set SF of state formul�

(where v denotes a QSIM variable, R[v; s] the range of potential values for v in state

s, vs the unknown value of v in s, and n, ni denote extended real numbers (i.e.

n; ni 2 < [f�1g):

149

Continuous
feedback
control

A control law can be expressed in terms of a set of formul� relat-
ing the value of the monitored variable (say Level) to the required
of the control variable (say Valve). The resulting closed{loop be-
haviors can then be analyzed with respect to the controller's goal.
The following trajectory constraint gives a partial speci�cation of
a control law that avoids the tank over
owing. It states that the
valve opening must be increasing whenever the magnitude of Level
is greater than high and the valve hasn't yet reached its maximum
opening max.

(always (between (qvalue Level ((high nil) nil))
(or (qvalue Level (high dec))

(qvalue Valve (max nil)))
(qvalue Valve (nil inc))))

Continuous

feed{
forward

control

A control law can be expressed in terms of a set of formul� relating
a predicted value of the monitored variable to the current value or
trend of the control variable.
The following trajectory constraint speci�es that if the tank can
potentially over
ow then the valve opening should be increased
until either it reaches its maximum value or level becomes smaller
than high.

(always (implies (eventually (qvalue Level (top nil)))
(until (qvalue Valve (nil inc))

(or (qvalue Level (high dec))
(qvalue Valve (max nil))))))

Goal Ori-

ented
Simulation

The statements reported below can be used to check whether the
tank will over
ow within a speci�ed time frame. Since TeQSIM
is sound, if no behaviors are produced then the modeled system
can not violate these constraints (assuming that the QDE model
is valid).
The following trajectory constraint limits the simulation to behav-
iors in which the tank Level reaches high within 150 seconds.

(and (event horizon :time 150)
(before (qvalue Level (high nil)) (event horizon)))

Table 5.1: Applying TeQSIM to other tasks using the regulated tank model.

150

(qvalue v (qmag qdir)) , where qmag is a landmark or open interval de�ned by

a pair of landmarks in the quantity space associated with v and qdir is one

of finc, std, decg. NIL can be used anywhere to match anything. Such

a proposition is true in state s exactly when the qualitative value of v in s

matches the description (qmag qdir).

(value-<= v n) is true in state s if and only if 8x 2 R[v; s] : x � n; it is false if

and only if 8x 2 R[v; s] : n < x; it is unknown otherwise. In such a case the

re�nement condition is that the least upper bound of the possible real values

of v is equal to n (i.e. vs � n). (value->= v n) is similar.

(value-in v (n1 n2)) is true in state s if and only if R[v; s] � [n1; n2], and it is

false if and only if R[v; s] \ [n1; n2] = ;. It is unknown otherwise, and the

re�nement condition is that the greatest lower bound is equal to n1 and the

least upper bound is equal to n2 (i.e. n1 � vs ^ vs � n2).

Non{atomic propositions are de�ned using standard boolean operators (and, not);

standard propositional abbreviations (true, false, or, implies, iff) are also al-

lowed. As in (Kuipers & Shults, 1994), other proposition schema are de�ned that

allow TeQSIM to reference attributes of states computed by QSIM (like whether a

state is quiescent, is stable or occurs at in�nite time).

Path formul� are constructed from state formul� by combining them us-

ing temporal operators. Apart from the boolean operators, the temporal operators

next, strong-next and until are primitive, while the others can be derived from

these primitives using syntactic translation rules. strong-next is included in ad-

dition to next because we deal also with �nite paths and must provide su�cient

expressiveness.

The set of path formul� PF is de�ned by the following rule (where p 2 SF

and ' 2 PF):

' ::= pj(' and ')j(not ')j(strong-next ')j(next ')j(until ' '):

The following abbreviations are used:

151

(or p q) � (not (and (not p) (not q)))

(releases p q) � (not (until (not p) (not q)))

(before p q) � (not (until (not p) q))

(eventually p) � (until true p)

(always p) � (releases false p)

(never p) � (always (not p))

(starts p q) � (releases p (implies p (always q)))

(follows p q) � (releases p

(implies p (strong-next (always q))))

(occurs-at p q) � (releases p (implies p q))

(between p q r) � (releases p

(implies p (strong-next (until r q))))

These formul� are translated into a positive normal form that is de�ned

as follows: (i) until, releases, next and strong-next are the only temporal

operators in the formula, (ii) the scope of every not in the formula is an atomic

proposition, and (iii) such a scope does not include any proposition constructed using

value-<=, value->= or value-in. The �rst two requirements do not restrict the

expressiveness of the language since the abbreviations shown above can be used to

transform a formula into a form that satis�es these conditions. The last requirement

is due to the speci�c representation of numeric information in QSIM, which allows

neither open numeric intervals nor disjunction of intervals.

5.3.3 Semantics

The semantics of a temporal logic path formul� are de�ned using an interpretation

structure M = <S; �;�; I; C;M> where2:

� S is a set of states;

� �:S ! S is a partial function that maps states to their successors (we are

de�ning a linear{time logic on �nite and in�nite paths, hence each state has

at most one successor).

� I:SF � S ! ft; f; ?g is an assignment of truth values to propositions and

states (? denotes the \ambiguous" truth value).

� � is a set of re�nement conditions. � is closed with respect to the standard

boolean operators f^;:g and contains the distinguished item Ctrue; a re�ne-

2These structures are extended form their standard de�nition (e.g. (Emerson, 1990)) to accom-
modate the re�nement process.

152

ment condition is an entity that speci�es how a state has to be re�ned (see

below).

� C:SF � S ! � is a function (condition generator) that maps state formul�

and states into re�nement conditions that determine how the state should

be modi�ed when the formula, interpreted on that state, has an ambiguous

truth value. We require that (i) C('; s) = Ctrue if and only if I('; s) = t, (ii)

C('; s) = :Ctrue if and only if I('; s) = f , and (iii) C('; s) is de�ned when

I('; s) =?.

� M: ��S ! S is a function (state modi�er) that maps a condition and a state

into a re�ned state. For any state s, M(Ctrue; s) = s and M(:Ctrue; s) = ?.

We require that if ' is an atomic proposition then re�nement conditions are neces-

sary and su�cient for resolving the ambiguity, i.e. if C = C('; s) then

I(';M(C; s)) = t and I(';M(:C; s)) = f (unless C = Ctrue, in which case

M(:C; s) = ?, or C = :Ctrue, when we have M(C; s) = ?,).

Given an interpretation M , a path is de�ned as a sequence of states x =

<s0; s1; : : :> such that for any pair of consecutive states (si; si+1), �(si) = si+1.

The length of a path is denoted by jxj, which can be in�nite. For all non{negative

integers i < jxj, xi denotes the sub{path <si; : : :>, x(i;j) denotes <si; : : : ; sj>,

and x(i) denotes si. A full{path extension of a �nite path x, denoted by bx, is an
in�nite path that has x as a pre�x. Finally, M is naturally extended to paths: if

x = <s0; : : :> then x0 = M(C; x) = <s00; : : :> where s0i = M(C; si) for all i. If for

some j M(C; sj) = ?, then M(C; x) = ?.

An interpretation M is subsumed by M 0 (written M � M 0) if and only if

M 0 contains all the states and conditions of M and the four functions of M are

restrictions of those of M 0).

QSIM computes, in �nite time, a set of behaviors, each representing a class

of trajectories of the system being simulated. Although a QSIM behavior is a �nite

structure, it may represent in�nite trajectories of the simulated system, as quiescent

states are �nite descriptions of �xed{point trajectories. A behavior b = (s0; : : : ; sn)

implicitly identi�es a minimal (with respect to �) interpretation structure Mb such

that:

1. S = fs0; : : : ; sng.

2. (si; si+1) belongs to the QSIM relations successor or transition and �(si) =

si+1 for all i = 0; : : : ; n� 1

3. � consists of the set of all possible numerical bounds on QDE variables. These

bounds can be represented as (boolean combinations of) inequalities between

153

the unknown value of the variable on a state and a real number; for example,

the condition that the QDE variable X in state s has to be less than 5 is

\Xs < 5".

4. I is determined by the qualitative values, numerical bindings and statuses of

states; I may give ? only for propositions including value-<=, value->= and

value-in as speci�ed in section 4.1;

5. C is determined by numerical bindings in states;

6. M is determined by QSIM's the numerical inference capabilities.

A behavior b is closed if and only if QSIM detected that sn is a quiescent state

or that sn is a transition state that has no possible successors (signaling that the

trajectory of the dynamical system has reached a boundary of the operating region

of the model). For a closed behavior b, the full{path extensions bb = b. In the rest

of the paper, when discussing a behavior b, we will implicitly assume to deal with

interpretations M that subsume Mb.

Formul� with quantitative information may lead to ambiguity when evalu-

ated (i.e. the behavior only models a portion of the range speci�ed). Ambiguity,

however, is not purely a syntactic property, but rather depends on state informa-

tion. For example, (value-<= X .3) will be (unconditionally) true on a state s

where R[X; s] = [0; 0:25], but only conditionally true on s0 where R[X; s0] = [0; 1:0].

Because of ambiguity, to de�ne the semantics of formul� we need to introduce

two entailment relations. The �rst one, called models (j=), is used to character-

ize non{ambiguous true formul�; the second one, called conditionally{models (j=?)

characterizes formul� that are ambiguous. The de�nition below gives the semantics

of the language.

De�nition 5.1 (Models and Conditionally{Models) Given an interpretation

M , the relations models (j=) and conditionally{models (j=?) are de�ned as follows

(we will write x j=� ' to mean (x j= ' or x j=? '), and x j=�= ' to mean that it is not

the case that x j=� '):

State formul� (a ranges over atomic propositions, p and q over SF , and s over

S):

154

s j= a i� I(a; s) = t

s j=? a i� I(a; s) =?

s j= (p and q) i� s j= p and s j= q

s j=? (p and q) i� s j=� p and s j=� q and j=? occurs at least once

s j= (not p) i� s j=�= p

s j=? (not p) i� s j=? p:

Path formul� (p 2 SF and '; 2 PF and x is a non{empty path):

x j= p i� x(0) j= p

x j=? p i� x(0) j=? p

x j= (strong-next ') i� jxj > 1 and x1 j= '

x j=? (strong-next ') i� jxj > 1 and x1 j=? '

x j= (next ') i� jxj > 1 implies x1 j= '

x j=? (next ') i� jxj > 1 implies x1 j=? '

x j= (until ') i� 9i � 0 : (xi j= and 8j < i : xj j= ')

x j=? (until ') i� 9i � 0 : (xi j=� and

8j < i : xj j=� ') and

j=? occurs at least once

x j= (releases ') i� 8i � 0 : xi j= or

9j � 0 : xj j= ' and 8k � j : xk j=

x j=? (releases ') i� 8i � 0 : xi j=� or

9j � 0 : xj j=� ' and 8k � j : xk j=� and

j=? occurs at least once

The semantics of (' and)and(not ') are similar to the propositional case.

The de�nition of releases given here agrees with its syntactic equivalence.

To properly handle the re�nement process, TeQSIM must restrict the usage

of ambiguous formul� _This restriction is required because an arbitrary ambiguous

formula may yield several alternative re�nement conditions. A disjunction of re-

�nement conditions cannot be applied to states without requiring a change in the

successor function � and without allowing disjunctive state information; this would

be incompatible with the QSIM representation. Two di�erent types of disjunc-

tion can result from certain ambiguous formul�. A state disjunction stems from a

disjunction of ambiguous state formul�. For example, when interpreted against a

particular state (or (value-<= X 0.5), (value->= Y 15)) may yield the condi-

tion (Xs � 0:5 _ Ys � 15). When applying such a condition to a state, M(C; s)

155

yields two states { s0 in which Xs0 � 0:5 and s00 where Ys00 � 15. A path disjunction,

on the other hand, occurs when an ambiguous formula is included in a path formula

in such a manner that a sub{formula can be conditionally true for more than one

sub{path. For example, in the path formula (until p (value-<= X 0.5)), a dis-

junction occurs across sub{paths regarding when the condition (X � 0:5) should be

applied.

The following de�nitions restrict the syntax to formul� that are well{behaved.

A potentially ambiguous formula is: (i) any atomic proposition constructed using

one of the following operators value-<=, value->= or value-in, or (ii) a path

formula containing a potentially ambiguous sub{formula. Admissible formul� are

those formul� ' that satisfy the following conditions:

1. ' is in positive normal form,

2. if ' = (until p q) then q is not potentially ambiguous,

3. if ' = (releases p q) then p is not potentially ambiguous, and

4. if ' = (p or q) then at most one of p and q is potentially ambiguous.

The following lemma guarantees that checking a model against an admissible

formula does not lead to disjunction of conditions.

Lemma 5.1 For all admissible formul� ' and for any interpretation M and path

x, if x j=? ' then any necessary and su�cient condition C for making x a model for '

(i.e. M(C; x) j= ' and M(:C; x) j=�= ') is either a single condition or a conjunction

of conditions.

The proof follows from properties of M on propositions after a case{by{case induc-

tive analysis of formul�.

Even though the restriction to admissible formul� reduces expressiveness,

it does not hinder the practical applicability of TeQSIM. As long as important

distinctions are qualitatively represented (using landmarks or events), most tra-

jectory constraints can be cast into admissible formul�. For example, the con-

straint that \until the level goes above 50, the input
ow rate must be below 200"

could be expressed with the following non{admissible formula (until (value-<=

InFlow 200) (value->= Level 50)), where the two distinctions (200 and 50) do

not correspond to qualitative landmarks. By adding a landmark to the quantity

space of Level corresponding to the value 50, and by assigning the range [50; 50]

to such a landmark, we can rewrite the formula in an admissible form (i.e. (until

(value-<= InFlow 200) (qvalue Level (lm-50 nil)))) without losing any in-

formation. However, introducing new landmark in a qualitative model increases the

156

number of qualitative distinctions that the simulator detects, and this is why one

often wants to use formul� that provide numeric constraints using operators like

value-<=.

5.3.4 External event declaration

TeQSIM speci�es external events via a totally ordered sequence of external event

declarations given in an external event list. Each declaration is of the form:

(event event-name :time (lb up))

where event-name gives a symbolic name for the event, lb a lower bound on the

temporal occurence of the event, and ub an upper bound. The temporal bounds can

be omitted, in which case the bounds are assumed to be (�1 1). If lb and ub are

equal, then a single value can be speci�ed.

The semantics of the external event list are de�ned by translating the list

into a set of TLCL expressions. The external event list (E1; E2; : : : ; En), containing

n event declarations, establishes the following set of TLCL expressions:

(1) For i from 1 to n� 1, add the following expression:

(before Ei Ei+1)

(2) For i from 1 to n, where Ei is of the form (event event-namei :time (lbi
ubi)), add the following expression:

(occurs-at (value-in time (lbi ubi)) (event event-namei))

where (event event-namei) refers to the qualitative state in which event-

namei occurs.
3

5.3.5 Discontinuous change expressions

Discontinuous change expressions are speci�ed with the following syntax:

(disc-change preconds e�ects)

where preconds is a boolean combination of qvalue propositions and e�ects is a

list of expressions of the form (variable qmag [:range range]). This expression is

translated into the temporal logic path formula

3External events are injected into the simulation by adding a real{time variable to the model.
This expression is replaced by a reference to this real{time variable. This is discussed in more detail
in section 5.4.

157

(occurs-at preconds (strong-next e�ects0))

where e�ects0 is a conjunction of formulae (qvalue variable (qmag NIL)) and

(value-in variable range) derived from e�ects. This expression is true for a be-

havior if and only if e�ects0 is true for the state immediately following the �rst

state in which preconds is true. This formula is added to the list of temporal logic

formulae used to guide and re�ne behaviors.

5.4 TeQSIM Theory and Architecture

TeQSIM is divided into two main components: the preprocessor modi�es the QDE

model and decomposes the trajectory speci�cation into temporal logic and discontin-

uous change expressions, and the simulation and model checking component, which

integrates temporal logic model checking into the simulation process by �ltering and

re�ning qualitative behaviors according to a set of temporal logic expressions and

injects discontinuous changes into the simulation. Figure 5.4 gives an overview of

the system architecture.

External events are incorporated into the simulation by the addition of an

auxiliary variable that represents \real time" with a landmark corresponding to

each event. The addition of this variable causes QSIM to branch on di�erent or-

derings between external events and internal qualitative events identi�ed during the

simulation. The occurrence of the external events is restricted by the applicable

quantitative bounds and trajectory constraints speci�ed by the modeler.

Temporal logic and discontinuous change expressions are allowed to directly

reference events in the event list using the form (event e1), where e1 is the name

of an external event. These references are replaced by the appropriate formula

containing a reference to the real{time variable and the landmark corresponding to

the event. The addition of the real{time variable incorporates external events into

the simulation in a seamless manner that does not require special handling during

the simulation and model{checking component of the algorithm.

This section brie
y describes how theDiscontinuous Change Processor injects

changes into the simulation and then gives a detailed discussion of how the Temporal

Logic Guide algorithm (TL{Guide) incorporates temporal logic model checking into

the simulation.

158

QDE
Modifier

QSIM

Filtered and Refined
Behavior TreeQDE &

Initial State
Initial State

Modified QDE &

Simulation
&

Model Checking

TL

TL−Guide

Preprocessor

Expressions

Discontinuous
Change

Processor

Discontinuous
Change

Trajectory Specification
Trajectory

Specification
Translator

Discrete Event
 List

Constraints

TeQSIM is an extension of the QSIM qualitative simulation algorithm. It contains four
main components:

QDE Modi�er { adds an auxiliary real{time variable to the QDE along with the appro-
priate constraints. The quantity space for the variable is derived from the external
event list.

Trajectory Speci�cation Translator { decomposes and translates the trajectory spec-
i�cations into temporal logic and discontinuous change expressions. References to
discrete events within both the temporal logic and discontinuous event expressions
are replaced with the appropriate references to the real{time variable and the corre-
sponding qualitative magnitude.

TL{Guide { performs temporal logic model checking during the simulation in order to
�lter and re�ne behaviors to satisfy the set of TL expressions.

Discontinuous Change Processor { injects discontinuous changes into the simulation
by identifying states that satisfy the preconditions of a change and then propagating
the e�ect to derive a new state.

Figure 5.4: TeQSIM architecture.

159

5.4.1 Discontinuous Change Processor

The Discontinuous Change Processor monitors states as they are created and tests

them against the preconditions of applicable discontinuous change expressions. For

a qualitative state s and a discontinuous change expression e, a new state is inserted

into the simulation following state s if the preconditions in e are satis�ed by s and

a discontinuous change is required to assert the e�ects. A new, possibly incomplete,

state s0 is created by asserting the qualitative values speci�ed in the e�ect and

inheriting values from s for variables that are not a�ected by the discontinuous

change via continuity relaxation (see below). All consistent completions of s0 are

computed and inserted as transition successors of s. Each discontinuous change

expression can only be applied once within each behavior.

Qualitative reasoning uses continuity constraints to restrict the possible changes

that can occur within a system. In order to predict the e�ects of discontinuous

changes, however, continuity constraints must be relaxed, which leads to a combi-

natorial explosion of possible outcomes. TeQSIM uses Brajnik's continuity relax-

ation algorithm (Brajnik, 1995) to propagate the e�ects of a discontinuous change

through the model by identifying variables that are necessarily continuous and vari-

ables that are potentially discontinuous. If only one variable in a non{di�erential

constraint is not known to be continuous, then it is inferred to be necessarily con-

tinuous. Such a technique assumes that state variables (i.e. those that are integrals

of model variables) and input variables are necessarily continuous unless mentioned

in the discontinuous change expression.

5.4.2 TL{Guide model checking algorithm

Model checking and behavior re�nement is performed by the Temporal Logic Guide

algorithm. Each time QSIM extends a behavior by the addition of a new state, the

behavior is passed to the TL{Guide. The behavior is �ltered if there is su�cient in-

formation within the partially formed behavior to determine that all completions of

the behavior fail to satisfy the set of TL expressions. If the behavior can potentially

model the set of TL expressions, then it is re�ned by incorporating relevant quanti-

tative information contained within the TL expressions. Otherwise the behavior is

retained unchanged. The incremental nature of the algorithm allows behaviors to

be �ltered and re�ned as early as possible during the simulation.

Given a potentially partial behavior4 b, TL{Guide computes (among other

things) a truth value from the set fT; F; Ug. A de�nite answer (i.e. T or F) is provided

4A partial behavior is a behavior that has not been fully extended via simulation.

160

when b contains su�cient information to determine the truth value of the formula.

For example, a non{closed behavior b will not be su�ciently determined with respect

to the formula (eventually p) if p is not true for any su�x of b, since pmay become

true in the future.

A behavior is considered to be su�ciently determined with respect to a for-

mula whenever there is enough information within the behavior to determine a single

truth value of the formula for all completions of the behavior. If a behavior is not

su�ciently determined for a formula, then U is returned and the behavior is not

�ltered out by TeQSIM. Notice that indeterminacy is a property independent from

ambiguity: the former is related to incomplete paths, while the latter deals with

ambiguous information present in states of a path5.

De�nition 5.2 (Su�ciently determined) A behavior b is su�ciently determined

for a positive normal formula ' (written b� ') i� jbj > 0 and one of the following

conditions is met:

1. b is a closed behavior, or ' is a proposition

2. ' = (p1 and p2) and either 8i : b� pi or 9i : b j=�= pi and b� pi

3. ' = (p1 or p2) and either 8i : b� pi or 9i : b j=� pi and b� pi

4. ' = (strong-next p) and b1 � p

5. ' = (next p) and b1 � p

6. ' = (until p q) and 9i < jbj : (bi j=� q and bi�q and 8j < i : bj j=� p and bj�p)

7. ' = (until p q) and 9i < jbj : (bi j=�= p and bi�p and 8j � i : bj j=�= q and bj�q)

8. ' = (releases p q) and 9i < jbj : (bi j=� p and bi � p and 8j � i : bj j=�

q and bj � q)

9. ' = (releases p q) and 9i < jbj : (bi j=�= q and bi � q and 8j < i : bj j=�=

p and bj � p).

Table 5.2 gives a graphical representation of conditions 6-9.

The relation � is important because it implies that the truth of a formula is

invariant with respect to the extension of a behavior. More speci�cally:

Lemma 5.2 (On extensions) For any �nite path x of an interpretation and any

positive normal formula ' such that x� ',

5Inferences within the model{checking algorithm are limited to the information contained within
the behavior. Thus, even though the constraint (constant X) is included within a model, the
model{checking algorithm will not be able to determine that the formula (eventually (qvalue X

(nil inc))) is false for all completions of a non{closed behavior.

161

case formula example result

6 ' = (until p q) b: ooooooioooooooo

p: ++++++

q: +

b j=� '

7 ' = (until p q) b: ooooooooooioooo

p: -

q: -----------

b j=�= '

8 ' = (releases p q) b: oooooooiooooooo

p: +

q: ++++++++

b j=� '

9 ' = (releases p q) b: oooooooiooooooo

p: -------

q: -

b j=�= '

Assuming that b is not closed, conditions 6 through 9 in the de�nition of su�ciently deter-
mined de�ne the conditions shown graphically above.

� Symbols + and - at position i means that the formula is true or false respectively
when checked against the sub{behavior starting at i.

Table 5.2: Conditions for a behavior being su�ciently determined

162

x j= ' () 8bx : bx j= ';_

x j=? ' () 8bx : bx j=? ';_
x j=�= ' () 8bx : bx j=�= '

The proof is by induction on formula length.

As QSIM extends a behavior with a new state s, the model{checking al-

gorithm evaluates the truth of a temporal{logic path formula ' by evaluating a

modi�ed version of ' against s. (In other words, it does not have to re-evaluate the

entire behavior with respect to '.) Incremental evaluation of a temporal logic ex-

pression is achieved by progressively decomposing each path formula into two parts:

a present component and a future component. A path formula ' is true if and only

if the present component is true on the current state and the future component is

true on the behavior starting from the successor state.

A progressed formula is a path formula in which these two components have

been made explicit. Function � achieves this: �[�] is applied to a positive normal

formula ' and returns a new formula equivalent to ' which is a boolean combination

of sub{formul� that are either propositions or path formul� scoped by next or

strong-next. � is de�ned as follows:

�[p] = p; if p 2 SF

�[(not p)] = (not �[p])

�[(p and q)] = �[p] and �[q]

�[(p or q)] = �[p] or �[q]

�[(next p)] = (next p)

�[(strong-next p)] = (strong-next p)

�[(until p q)] = �[q] or (�[p] and (strong-next (until p q)))

�[(releases p q)] = �[q] and (�[p] or (next (releases p q)))

We also ensure that a progressed formula is in disjunctive normal form (DNF) {

i.e. it is a disjunction of terms, each of which is a conjunction of literals. A literal

is either an atomic proposition, (not p) where p is a proposition, (next �), or

(strong-next �) where � is a path formula.

The following lemma gives an important characterization of progressed for-

mul�:

163

Lemma 5.3 (Equivalence) For any path x and normalized formula ':

x j= ' () x j= �[']

x j=? ' () x j=? �[']

x� ' () x��[']

The proof is by induction on formula length.

The function P extracts a \present component" from a progressed formula

by removing sub{formul� starting with next operators. Notice how dependence on

s plays a role only for the strong-next formula: in all other cases s is ignored. For

the strong-next formula, the state is retained because checking the closedness of

the behavior ending at the current state is the \present component" and this cannot

be accomplished by relying solely on syntax. The present formula extractor P [�; �]

maps a progressed formula ' =
W
�j and a state s into a proposition p such that p

represents what must be true in s if ' has to be true on s and its successors. It is

de�ned as follows:

P ['; s] =
_
P [�j; s]

P [�; s] =

8<
:
FALSE if <s> is closed and � contains a strong-next literal

� 0 otherwise, where � 0 results from � after removing all next

and strong-next literals.

In addition, since the output of P is a proposition, we assume that a simpli�cation

step occurs, removing all redundant TRUEs and FALSEs from the resulting formula

(for example (P or FALSE) is simpli�ed into P).

P removes all temporal sub{formul� from its input. For example,

P [(P or (next Q)); s] = P and P [(P and (next Q)); s] = P . In a closed behav-

ior, terms containing a strong-next literal are \short{circuited" to FALSE.

The function F , on the other hand, is responsible for characterizing the

future component of a formula. The future component depends on which sub{

formul� of the present component are true or false. For example, if the formula is

(Q or (P and (next '))), where Q and P are propositions, then when Q is true

the future component is the formula TRUE, whereas if Q is false and P true the

future component is '.

F [�; �] maps a progressed formula ' =
W
�j and a state s into another formula

'0 that represents what must be true for the future of s if ' is true from s:

F ['; s] =
_
F [�j; s]

164

F [�; s] (assume � = (
^
pj)^ (

^
(next �j))^ (

^
(strong-next
j))

where pj are propositions)

=

8><
>:
FALSE if exists pk : s j=

�= P [pk; s]

(
V
�j) ^ (

V

j) if s j=� P [�; s] and <s> is not closed

TRUE if s j=� P [�; s] and <s> is closed

In this case too we assume that a simpli�cation step occurs, removing all redundant

TRUE's and FALSE's from the resulting formula.

Notice that if a term contains a strong-next literal and the behavior is

closed then the term is \dropped" from the result. For example,

F [(P and (next Q)); s] =

8<
:
TRUE if s j=� P and s is closed

Q if s j=� P and s is not closed

FALSE otherwise

F [(P or (next Q)); s] =

�
TRUE if s j=� P or s is closed

Q otherwise

F [(P or (strong-next Q)); s] =

8><
>:
TRUE if s j=� P

Q if s j=�= P and s is not closed

FALSE if s j=�= P and s is closed

So far, we have de�ned formal tools that are used to provide a formal de�-

nition of the incremental model checking algorithm. Next, we describe the model{

checking algorithm, beginning with the procedure that checks whether a state is a

model of a state formula and computes re�nement conditions.

The function 	 : ('; s) ! (v; c) maps an admissible state formula ' and

a state s into a pair (v; c) where v 2 fT; Fg and c is a necessary and su�cient

re�nement condition (possibly Ctrue or :Ctrue) obtained via the condition generator

(see the interpretation structure in section 5.3.3). The function 	 is de�ned as

follows:

	[p; s] = (T; C) () s j=� p and M(C; s) j= p and M(:C; s) j=�= p; and

	[p; s] = (F;:Ctrue) () s j=�= p

The function � is used to evaluate a progressed path formul�_(i.e. Formul�

that are the output of �). � is called an extended propositional interpretation

since it \short{circuits" the temporal operators in the progressed formula (that is,

the sub{formul� whose top{level operator is next or strong-next). This function

determines whether the present component of a formula is true, conditionally true,

or false with respect to a state and whether the behavior consisting of that state only

165

is su�ciently determined with respect to the formula. In addition, � also computes

the future component of the formula.

� : ('; s) ! (v; c; '0) maps an admissible progressed formula ' and a state

s into a triple (v; c; '0) = (�v ['; s];�c['; s];�f['; s]) where v 2 fT; F; Ug, c is a

re�nement condition and '0 is the future component of ':

' �v ['; s] �c['; s]

proposition 	v ['; s] 	c['; s]

(not p)

�
T if �v[p; s] = F

F otherwise

�
Ctrue when �v ['; s] = T;

:Ctrue when �v ['; s] = F;

(next �)

�
T if <s> is closed

U otherwise
Ctrue

(strong-next �)

�
F if <s> is closed

U otherwise

�
:Ctrue if �v ['; s] = F

Ctrue otherwise

V
�j

8<
:
F if 9j : �v [�j ; s] = F

T if 8j : �v [�j ; s] = T

U otherwise

�
:Ctrue if �v ['; s] = FV
�c[�j ; s] otherwise

W
�j

8<
:
F if 8j : �v [�j ; s] = F

T if 9j : �v [�j ; s] = T

U otherwise

�
:Ctrue if �v['; s] = FW
�c[�j ; s] otherwise

' �f ['; s]

proposition

�
TRUE if �v['; s] = T

FALSE otherwise

(not p)

�
TRUE if �v['; s] = F

FALSE otherwise

(next �)

�
TRUE if �v['; s] = T

� otherwise

(strong-next �)

�
FALSE if �v['; s] = F

� otherwise

V
�j

8><
>:
TRUE if �v ['; s] = T

FALSE if �v ['; s] = FV
�f [�j ; s] otherwise

W
�j

8><
>:
TRUE if �v['; s] = T

FALSE if �v['; s] = FW
�f [�j ; s] otherwise

Notice that since ' is in positive normal form, when ' = (not p), p cannot be

potentially ambiguous, and therefore �f ['; s] is a trivial re�nement condition.

Given a behavior b = <s0; : : : ; sn> and an admissible formula ', the evalu-

166

ation sequence is de�ned as:

'0 = �[']

vi = �v ['i; si]

ci = �c['i; si]

'i+1 = �[�f ['i; si]]:

The following lemma characterizes useful properties of the evaluation se-

quence.

Lemma 5.4 (Properties of the evaluation sequence)

bi j= 'i =) bi+1 j= 'i+1 (5.1)

bi j=� 'i () bi+1 j=� 'i+1 (5.2)

b(i;j) � 'i () b(i+1;j)
� 'i+1 (5.3)

b(i;i) �= 'i () vi = U (5.4)

b(i;i) � 'i ^ si j=
� 'i () vi = T (5.5)

b(i;i) � 'i ^ si j=
�= 'i () vi = F (5.6)

s j= P ['; s] () �c['; s] � Ctrue (5.7)

F ['; s] � �f ['; s] (5.8)

The proof follows from the de�nitions of P , F , and �.

5.4.3 Temporal Logic Guide algorithm

TL{Guide takes as input a non empty QSIM behavior b and an admissible formula '

representing the user{de�ned temporal logic constraints. TL{Guide incrementally

steps through the behavior calling, TLG{1 as each new state is examined. The

process terminates once it can be determined whether or not b models '.

TL{Guide(b; ') :

i := 0;

repeat

v :=TLG{1(b(0;i); ');

i := i+ 1;

until i = jbj or v

167

The core of TL{Guide is the procedure TLG{16 TLG{1 takes as input a

non{empty behavior and an admissible formula '. It uses � to evaluate the pro-

gressed version of ' on the last state of the behavior and applies conditions when

appropriate.

TLG{1(<s0; : : : ; si>;') :

done := false;

if i = 0

then f := �[']

else f := si�1.future;

(v; c; g) := �[f; si];

case v

T: apply{conditions(c; si); done := true;

F: refute(<s0; : : : ; si>); done := true;

U: apply{conditions(c; si);

endcase;

if v = U then si.future := �[g];

return(done)

The procedure apply{conditions applies re�nement conditions to a state while refute

marks a behavior as inconsistent and removes it from the simulation agenda.

The TL{Guide algorithm invokes � and � to compute the evaluation se-

quence of the behavior b = <s0; : : : ; si> with respect to '. A progressed version of

the formula is stored on the �nal state for use in future calls to the function. Only

the last two states are used in a single call to the function.

A problem arises in this algorithm when a term in a progressed formula leads

to re�nement conditions whose application must be delayed until other terms in the

formula are resolved into a de�nite truth value (i.e. T or F). The following example

demonstrates this problem. Suppose ' = (P or (next �)) where P =(value-<=

V .3). Assume that P is conditionally true for a state s. Thus, <s> � ' and

<s> �= (next �); notice that while <s> j=? ', this may not necessarily hold in the

future. In fact, suppose the subsequent state is s0:

� if <s0> j= � then <s; s0> j= '

� if <s0> j=�= � then <s; s0> j=? '

� if <s0> �= � then the algorithm must continue.

6TeQSIM implements TL{Guide by interleaving simulation steps (i.e. extending a behavior
with a new state) with calls to TLG{1 as each state is created.

168

In this case, extending the behavior with a new state did not change the status

of �', but it did change the status of j=� ', resolving it into a stricter entailment

relation.

The cause of this problem is the interaction between the local nature of �

and the concept of conditional entailment. Application of re�nement conditions

when ambiguity exists between j= and j=? results in the unnecessary elimination of

real{valued trajectories that are potentially consistent. Since QSIM is unable to

retract quantiative information once it is applied to a state, the application of the

re�nement conditions must be delayed until the sub{formula in the non{ambiguous

branch of the disjunction becomes su�ciently determined.

The following necessary and su�cient conditions characterize the situation

described above in the evaluation of a progressed formula ' = � _ �1 _ : : : �k for a

behavior b:

(i) b j=? P [�; b(0)]

(ii) the set f�j : b�= �jg is not empty

(iii) none of the other terms �h are such that b j=� �h and b� �h.

When these conditions are satis�ed, then:

b j=? P ['; b(0)] 6) b j=? '

which says that re�nement conditions that are su�cient and necessary for the

present component may not be necessary for the entire formula. When this sit-

uation occurs, ' is called a condition delaying expression, the re�nement condition

generated is called a delayed condition, and the �j mentioned in condition (ii) are

called the triggers for the delayed condition.

After extending b into b0, the delayed condition may be resolved. Thus if

a trigger becomes de�nitely true, then its delayed condition is no longer necessary

any more (that is if b0 � �j ^ b
0 j= �j then condition (iii) is no longer true and

we get b0 � ' ^ b0 j= '). On the other hand, if a trigger becomes de�nitely false

but (ii) still holds (that is, there are other triggers), nothing has changed for the

delayed condition. If (ii) does not hold, however, then the delayed condition becomes

necessary (b0 � �j ^ b0 j=�= �j and not (ii) implies b0 j=? ' ^ b0 � ').

Once the model{checking algorithm detects the problem describe above, it

performs the following steps:

1. if the formula ' is su�ciently determined, then model checking | which would

normally cease | must continue evaluating the triggers;

169

2. delayed conditions must be stored until their triggers are resolved and either

condition (ii) or (iii) does not hold any more;

3. if a trigger evaluates to true, then its delayed condition must be dropped;

4. if a trigger evaluates to false, its delayed condition must be applied unless

there are other triggers;

5. multiple delayed conditions may need to be stored as the algorithm progresses

through the behavior.

The complete solution is based on an intertwined implementation of � and

TLG{1, allowing the problem to be detected and handled e�ciently.

5.5 Results

TeQSIM eliminates all behaviors that are inconsistent with either the structural

constraints or the trajectory constraints. While QSIM can only be proven to be

sound with respect to the structural constraints, TeQSIM can be proven to be both

sound and complete with respect to the temporal logic expressions speci�ed within

the trajectory constraints. The following theorem characterizes the correctness and

completeness of the TL{Guide algorithm. The proof of the theorem is contained in

appendix C.

Theorem 5.1 (TL{Guide is sound and complete) Given a QSIM behavior b

and an admissible formula ' then TL{Guide:

1. refutes b if and only if b is su�ciently determined (b�') and for all full{path

extensions bb of b, bb does not model ' (bb j=�= ').
2. retains b without modi�cation if and only if

(a) b is su�ciently determined (b� ') and b models ' (b j= '); or

(b) b is not su�ciently determined (b�= ') and there is no necessary condition

C for re�ning b into a model for ' (i.e. 6 9C 6= Ctrue such that if b00 =

M(:C; b) then for all full{path extensions bb00: bb00 j=�= ').
3. replaces b with b0 if and only if

(a) b is su�ciently determined (b j=? '), b conditionally models ' (b�'), and

there exists a necessary re�nement condition C such that applying the

re�nement condition to b generates a new behavior b0 such that b0 models

' (9C : C 6= Ctrue such that b0 =M(C; b) j= ' and if there exists b00 such

that b00 =M(:C; b) then for all full{path extensions bb00: bb00 j=�= '); or
170

(b) b is not su�ciently determined (b �= '), but there exists a necessary re-

�nement condition C (i.e. 9C : C 6= Ctrue :: if b
00 =M(:C; b) then for all

full{path extensions bb00: bb00 j=�= ') and b0 =M(C; b).

5.6 Problem Solving with Trajectory Information

TeQSIM's ability to specify trajectory information, discontinuous changes and ex-

ternal events is a powerful extension to qualitative simulation; these capabilities

broaden the range of relevant dynamical system theory problems that can be simu-

lated with qualitative simulation techniques. In particular, trajectory speci�cations

may refer to dependent or independent variables of a piecewise{continuous dynam-

ical system described by ordinary di�erential equations. In the following classes

of dynamical system theory problems, the role that the constrained variables play

within the model make them important test cases for TeQSIM. Both classes can be

simulated e�ectively only by incorporating trajectory information into a qualitative

simulation.

Simulation of non{autonomous systems: Trajectory speci�cations for input vari-

ables describe their time{varying behavior and drive the simulation. The

speci�cation of discontinuous changes in the input variables enables the user

to model external actions that occur on faster time{scales than the simulation.

This is useful when modeling

� situations where limited knowledge is available regarding the transient

period during which the action occurs,

� situations where the transient is by itself uninteresting, or

� a discrete event system (e.g. a digital controller) acting upon an otherwise

continuous plant.

Solution of boundary condition problems: Trajectory constraints can be used

to specify information about the behavior of dependent variables at various

time points, thereby restricting the space of solutions of the di�erential equa-

tion. Available boundary condition information may include:

� knowledge about intermediate or �nal states of the system, or

� knowledge about observed variables.

Trajectory information combined with qualitative simulation, uni�es these

two classes, allowing TeQSIM to solve problems that combine features of both

171

classes. Table 1 outlines some of the tasks that we have examined that bene�t

from TeQSIM's incorporation oftrajectory information.

5.7 Related Work

TeQSIM smoothly integrates temporal logic model checking into the qualitative

simulation process. The ideas and techniques involved are related to work in the

�elds of qualitative reasoning and temporal logic.

5.7.1 Qualitative reasoning

The incorporation of trajectory information into a qualitative simulation has not

been extensively explored in the literature. DeCoste (1994) introduces su�cient

discriminatory envisionments to determine whether a goal region is possible, impos-

sible, or inevitable from each state of the space. This is accomplished by generating

the simplest state description that is su�cient for inferring these discriminations.

Though similar in spirit, our work is: (i) more general, because TeQSIM enables the

user to address a wide category of problems, not limited to determining reachability

of a state; (ii) semantically well{founded because of its foundation in temporal logic

and (iii) formally proved to provide guaranteed results.

Washio and Kitamura (1995) present a technique that uses temporal logic

to perform a history{oriented envisionment to �lter predictions. TeQSIM, within

a more rigorously formalized framework, provides a more{expressive language, it

re�nes behaviors as opposed to just �ltering them, and it incorporates discontinuous

changes into behaviors.

The integration of temporal logic model checking and qualitative simulation

was initially investigated by Kuipers and Shults (1994, 1997). These authors a

branching{time temporal logic to prove properties about continuous systems by

testing the entire behavioral description against a temporal logic expression. The

appropriate truth value depends upon whether or not the description satis�es the

expression. Our work focuses on constraining the simulation as opposed to querying

it after the simulation is completed.

Forbus (1989) explicitly introduces the concept of discrete action, with pre

and post{conditions, in the action{augmented envisionment. The purely qualitative

total envisionment so produced includes all possible instantiations of known ac-

tions. Forbus allows only instantaneous actions and adopts heuristic criteria (based

on minimality of the change in the description) to handle discontinuities. No pro-

vision is made to handle quantitative information, nor to prove correctness of the

172

Goal ori-
ented
simulation

Input: A description of the desired (or undesired) behavior.
Output: Behaviors that are \consistent" with the goal speci�cation.
Relation: By specifying the desired behavior and invoking TeQSIM, a

modeler can gain an understanding of these behaviors. Spec-
ifying undesired behaviors allows the modeler to determine
whether these behaviors exist and to decide how they can be
avoided when they do exist.

Analysis
of
discrete
actions

Input: A list of discontinuous changes resulting from actions and
trajectory constraints specifying when the actions can be
performed.

Output: The behaviors resulting from the actions.
Relation: Multiple simulations can be performed to evaluate alternative

courses of actions.

Analysis
of control
responses

Input: Trajectory constraints specifying the desired closed{loop behav-
ior of the system and an environmental perturbation.

Output: A description of a controller response to the perturbations that
is necessary for achieving the closed{loop behavior speci�ed as
input.

Relation: All potential control responses satisfying the closed{loop be-
havior are included within the behavioral description. If there
is no consistent behavior, then the desired closed{loop behav-
ior cannot be achieved by any controller in response to the
perturbation.

Parameter
identi-
�cation

Input: A model containing a partial description of a controller and tra-
jectory constraints describing the desired behavior of the con-
troller and a perturbation.

Output: Behaviors containing quantitative bounds on the unknown con-
troller parameters.

Relation: The range of potential values for unknown controller parameters
that are necessary to achieve the desired behavior.

Analysis
of feed-
back con-
trol laws

Input: Speci�cation of a control law via trajectory constraints.
Output: A description of the resulting closed{loop behaviors.
Relation: The control law is speci�ed by relating the value of the moni-

tored variable with the required value, or trend, of the control
variable.

Table 5.3: Tasks to which TeQSIM has been applied.

173

discontinuity{handling mechanism.

Discontinuities have also been investigated by Nishida and Doshita (1987),

who propose two methods for handling discontinuities caused by external agents

or generated autonomously within a system (e.g. change in operating regime):

(i) approximating a discontinuous change by a quick continuous change and (ii)

introducing \mythical states" to describe how a system is supposed to evolve during

a discontinuous change. The former requires complex machinery to compute the

limit of the quick change, while the latter is based on heuristic criteria for selecting

appropriate states. Both methods are interesting, but their e�ectiveness and formal

properties are di�cult to ascertain.

Iwasaki and colleagues (1995) discuss a semantics for discontinuous changes

that is more appropriate when dealing with hybrid systems. Their work leads to

the adoption of a complex non{standard analysis semantics for reals and the devel-

opment of a mechanism similar to continuity relaxation but requiring user{supplied

frame axioms.

5.7.2 Temporal logic

The trajectory{speci�cation language described here is similar to other formalisms

for specifying temporal constraints. Our language is strictly more expressive than

both Allen's interval algebra (Allen, 1984) and Dechter, Meiri and Pearl's temporal

constraint networks (Dechter, Meiri, & Pearl, 1991) due to its ability to arbitrarily

compose path formul� using temporal operators. All of the relations de�ned by

Allen can be expressed using the composition of temporal operators in addition to

more complex relations. The usage of the language in TeQSIM is also di�erent:

instead of asserting temporal constraints in a database of assertions and query-

ing whether certain combinations of facts are consistent, TeQSIM checks that a

database of temporally related facts generated by QSIM satisfy a set of temporal

logic constraints.

Bhat et al. (1995) present an algorithm for CTL* model checking that uses

a set of inference rules that compute formula progression in a similar to TeQSIM.

Our algorithm di�ers from theirs in two ways. First, Bhat et al. do not deal with

re�nement, and this has the consequence that their algorithm does not have to

handle (delayed or not) re�nement conditions. Second, their algorithm drives the

extension of paths, in the sense that the successor of a state is actually generated

only when all formul� have been progressed to next operators. TL{Guide, on the

other hand, is embedded in the QSIM architecture which drives the model checking

activity.

174

Bacchus and Kabanza utilize temporal logic within the domains of forward

chaining planning (Baccus & Kabanza, 1995) and reactive planning (Bacchus &

Kabanza, 1996). They use temporal logic to constrain the path selected to reach a

goal state and to express search control information. One of the primary di�erences

between their work and ours is that planning is generally concerned with �nding

a single solution that satis�es the constraints, whereas qualitative simulation must

generate all solution paths. Bacchus and Kabanza also use a similar incremental

model{checking algorithm that uses formula progression.

5.8 Discussion and Future Work

TeQSIM de�nes a general methodology for incorporating arbitrary trajectory in-

formation into the qualitative simulation process. The incremental nature of the

model{checking algorithm aggressively �lters and re�nes behaviors as early as pos-

sible in order to minimize the complexity of the simulation. In terms of model

checking complexity, (assuming that the most expensive operation is checking a

proposition, i.e. computing), TL{Guide applies � at most once on each state of

the behavior. � evaluates the present component of the formula, which is a boolean

formula in disjunctive normal form. With a caching mechanism, this operation can

be performed by evaluating each proposition at most once. Therefore, TL{Guide

performs essentially O(Nn) propositional checks when the temporal constraints con-

tain N di�erent atomic propositions and the behavior contains n states. Further-

more, in all the examples tested for this project, the practical time{complexity of

a TeQSIM simulation is dominated by the qualitative simulation phase, not model

checking. In fact, TeQSIM often decreases the complexity of the simulation by

�ltering behaviors that are not relevant to the current task.

The following extensions would increase the expressiveness of the trajectory

speci�cation language described here.

Limited �rst{order expressiveness { TeQSIM's temporal logic is limited to

propositional expressions and is thus unable to quantify over attributes of

states. Certain trajectory constraints require references to values in other

states within the behavior. For example, the description of a decreasing os-

cillation requires the ability to compare the magnitude of a variable across

states. A limited form of �rst{order temporal logic may provide a language

that is su�ciently expressive for these concepts without incuring excessive

computational complexity costs.

175

Metric temporal logic { TeQSIM behaviors are potentially in�nite structures be-

cause of the introduction of landmarks during simulation. Deriving a de�nite

answer for formulae such as (eventually p) is not always possible when po-

tentially in�nite behaviors are involved since it is always possible for p to occur

in the future. Metric temporal logic (Alur & Henzinger, 1993) allows a horizon

for a temporal logic expression to be de�ned, allowing statements like \within

50 seconds, the tank level reaches 70 inches." These statements are only ex-

pressible within our logic using an externally de�ned event. Extending the

logic would give the modeler more
exibility to express relevant constraints.

Discontinuous change speci�cation { In the current version of TeQSIM we

provide very simple means for representing and reasoning about discontin-

uous changes. While su�cient for certain kinds of problems (e.g. driving the

simulation by controlling the behavior of an exogenous variable), these are

insu�cient for others (e.g. identifying repetitive actions performed by a con-

troller). We have considered two possible extensions to TeQSIM to address

these issues:

� supporting more{complex relationships between the precondition and the

e�ect using additional temporal logic operators. For example, the mod-

eler may want to identify a sequence of states over which the action can be

performed or express information about the possibility of a discontinuous

change.

� allowing preconditions to be speci�ed using an arbitrary temporal logic

expression. This would extend the range of addressable feed{forward

control problems.

Functional envelopes | The semi{quantitative reasoning (Berleant & Kuipers,

1988) part of TeQSIM uses interval bounds and static functional envelopes

for monotonic functions to derive quantitative information about a behavior.

NSIM (Kay & Kuipers, 1993) derives dynamic envelopes describing a variable's

behavior with respect to time. Currently, only interval information can be

speci�ed by TeQSIM trajectory constraints. Extending the language to include

information about temporal bounding envelopes would increase the precision

of the solutions computed by TeQSIM.

176

5.9 Conclusions

Qualitative simulation and temporal logic provide two alternative formalisms for

reasoning about change across time. TeQSIM integrates these two paradigms by in-

corporating trajectory information speci�ed via temporal logic into the qualitative

simulation process. Behaviors that do not model the set of temporal logic expres-

sions are �ltered during simulation. Numeric information speci�ed within the TL

expressions can be integrated into the simulation to provide a more precise numer-

ical description for the behaviors which model these expressions. Not only does

TeQSIM fundamentally extend the range of problems that can be addressed via

qualitative simulation, it also provides the modeler with a powerful tool that can be

used to control the simulation to address some of the complexity problems discussed

presented in the rest of this dissertation.

The correctness of the TL{guide algorithm along with the correctness of

QSIM guarantee that all possible trajectories of the modeled system compatible

with the model, the initial state and the trajectory constraints are included in the

generated behaviors. In addition, the completeness of TL{guide ensures that all

behaviors generated by TeQSIM are potential models of the trajectory constraints

speci�ed by the modeler.

177

Chapter 6

Future Directions

The overall goal of our research has been to identify and address problems that

have hindered the application of qualitative reasoning techniques to large, real{

world problems. Two primary problems have been identi�ed: the complexity of the

simulation algorithm and ambiguity within the behavioral description.

In the past, much of the concern has focused on the complexity of both

the simulation algorithm and the resulting behavioral description. The techniques

presented here provide a scalable simulation algorithm that avoids irrelevant dis-

tinctions. By decomposing the model, DecSIM eliminates combinatoric branching

due to the complete temporal ordering of unrelated events while chatter abstraction

eliminates irrelevant distinctions that result in an in�nite simulation and intractable

branching when a variable's derivative is unconstrained. These techniques, cou-

pled with existing methods for querying and analyzing the results of a simulation,1

provide the modeler with a
exible qualitative simulation algorithm that provides

various methods to analyze the results of a simulation. While these techniques

do not completely solve the problem of a complex simulation and/or behavioral

description,2 they greatly reduce the impact of these problems, thus focusing at-

tention on the degree to which the information contained within the behavioral

description can be used to solve relevant problems.

An ambiguous behavioral description describing both desired and undesired

behaviors results when there is insu�cient information within the model to suf-

1Temporal{logic (Shults & Kuipers, 1997) can be used to query the results of a simulation
to extract information while post{processing abstraction techniques (Clancy & Kuipers, 1993;
Clancy et al., 1997) can reduce the complexity of the behavioral description by focusing on speci�c
distinctions.

2Since qualitative simulation is inherently intractable, simulation complexity will always be an
issue that must be addressed.

178

�ciently constrain the simulation. TeQSIM addresses the problem of ambiguous

behavioral descriptions by providing the modeler with a declarative language for

specifying behavioral constraints. While TeQSIM extends the range of problems

that can be addressed using qualitative simulation, it does not completely address

the core question that still must be answered:

\Is the type of information traditionally contained within a qualitative or

semi{quantitative model su�cient to infer interesting and novel results

that can be used to e�ectively solve relevant real{world problems?"

Thus, the main question to be answered focuses on information content as opposed to

computational complexity. We feel that this is the core issue that must be addressed

in future research within the �eld of qualitative simulation. Furthermore, we feel

that the best way to address this question is to integrate qualitative simulation

techniques into a larger problem solving context to determine the extent to which

these techniques can be used to solve realistic problems.

This chapter describes future directions for research along two dimensions:

(1) how qualitative simulation can be integrated with other techniques to provide

a more comprehensive solution to the problem of using imprecise information

to reason about the physical world for both common{sense reasoning and

engineering problem solving applications, and

(2) what speci�c advances are required within the �eld of qualitative simulation

for these techniques to be applied to a broader range of problems.

The next two sections discuss these two topics. In general, we focus our discussion on

how qualitative simulation can be applied to solve problems; thus we avoid references

to the bene�ts provided by the speci�c techniques described in this dissertation.

6.1 Using qualitative simulation within a larger prob-

lem solving context

Before discussing how qualitative simulation can be used in a larger, problem{solving

context, we provide a brief discussion on how arti�cial intelligence techniques in

general have been used in real{world applications. This discussion demonstrates

the importance of hybrid solutions that integrate multiple inference techniques.

179

6.1.1 Using arti�cial intelligence to solve real{world problems

In many sub{�elds within computer science, such as operating systems, compilers,

databases, etc, the boundaries of the �eld are often determined by a moderately

well{de�ned problem. For example, the �eld of databases is concerned with tech-

niques for maintaining, storing, and accessing large amounts of data in an e�cient

manner. De�ning the �eld of arti�cial intelligence (AI), however, has proven to be

quite di�cult since the problem being addressed is rather broad and often poorly

de�ned. In any ten introductory AI books, one is likely to �nd at least �ve or six

(if not ten) di�erent de�nitions for the term arti�cial intelligence. Furthermore, the

�eld has been sub{divided into disciplines that are de�ned either by a very broad,

general problem (e.g. machine learning, knowledge representation, natural language

understanding, and planning) or by a set of techniques (e.g. neural networks and

uncertain reasoning). In either case, it is often di�cult to tie arti�cial intelligence

to a set of speci�c applications that can be addressed with a single technique.

In the 1970's and 1980's, a number of advances were made in various disci-

plines within AI in the development of general techniques for solving computation-

ally hard problems. Machine learning developed algorithms for learning a compact,

structured representation for the information contained in a large data set (Shavlik

& Dietterich, 1990), planning and scheduling developed e�cient algorithms for iden-

tifying an optimal sequence of actions to achieve a speci�ed goal (Allen, Hendler,

& Tate, 1990), and qualitative reasoning developed techniques for deriving an ab-

stract behavioral description for an imprecise structural model of a dynamical sys-

tem (Weld & de Kleer, 1990). These are just a few of the advances that were made

over this period.

Translating these advances into compelling applications, however, proved

di�cult since many of these techniques did not provide a complete solution to a

speci�c, real{world problem. Recently, however, many of these techniques have

been integrated with other methods both from within the �eld of AI and from other

disciplines resulting in impressive applications and lucrative businesses.

� NASA researchers have integrated planning, scheduling and qualitative rea-

soning techniques with a real{time executive to monitor, diagnose and control

a deep space probe for the Deep Space One mission (Pell, Bernard, Chien,

Gat, Muscettola, Nayak, Wagner, & Williams, 1997).

� SRI's Multiagent Planning Architecture (MPA) has been used to perform bat-

tle �eld planning for the Joint Forces Command and Control (JFCC). MPA

integrates planning, scheduling and temporal reasoning agents into a
exible

180

agent architecture (Wilkins, Meyers, desJardins, & Berry, 1997).

� The new �eld of knowledge discovery in databases (KDD) uses machine learn-

ing along with various statistical and data warehousing techniques to identify

patterns and \discover knowledge" within large sets of unstructured data.

KDD systems have proved useful for identifying consumer shopping patterns,

detecting credit card fraud, and processing credit card applications (Fayyad,

Piatetsky-Shapiro, Smyth, & Uthurusamy, 1996).

� I2 Technologies, Red Pepper software, and Magnugistics are just a few of

the companies o�ering advanced planning and scheduling products within the

burgeoning �eld of enterprise resource planning (ERP). These companies in-

tegrate planning and scheduling algorithms within a large, integrated software

system to perform tasks such factory
oor planning, job{shop scheduling, and

raw materials distribution.

� Trilogy Corporation, a highly successful company recently featured on the

cover of Forbes Magazine, uses constraint satisfaction techniques to perform

product con�guration for sales force automation.

These are just a few of the many real{world applications that utilize arti�cial in-

telligence techniques. All of these examples, however, integrate multiple techniques

when solving the speci�ed problem.

6.1.2 Applying qualitative simulation to real{world problem solv-

ing tasks

Qualitative simulation provides a set of techniques for deriving a behavioral de-

scription for an imprecisely de�ned, structural model of a dynamical system. These

techniques are relevant both for common sense reasoning and engineering problem

solving applications. By themselves, however, these techniques do not provide a

complete solution to the problem of reasoning about dynamic change in the physi-

cal world. Instead, they are just part of the overall solution. The next two subsec-

tions describe how qualitative simulation can be integrated with other techniques

to provide an overall solution to the general tasks of common{sense reasoning and

engineering problem solving. To address the problem of common{sense reasoning,

we propose integrating qualitative simulation with other AI techniques while for

engineering problem solving we propose integration with methods currently used by

engineers to reason about dynamical systems.

181

6.1.2.1 Common{sense reasoning

Common{sense reasoning about the physical world requires an understanding of

how objects and forces interact with each other to perform common tasks that hu-

mans perform on a regular basis. Traditionally, common{sense reasoning uses a

logic or frame{based representation to describe the entities and relationships within

the domain of interest along with both general and special purpose inference tech-

niques (Davis, 1990). Using a general purpose inference engine to reasoning about

autonomous change, however, can be di�cult due to the myriad of in
uences that

may a�ect a dynamical system.

Qualitative simulation provides a powerful, special{purpose inference engine

for reasoning about dynamic change within the world. In the TRIPEL system,

Rickel and Porter (Rickel & Porter, 1997) demonstrate how qualitative simulation

can be integrated with a large{scale knowledge{base to answer queries within the

domain of plant physiology. TRIPEL uses automated model building techniques to

generate a model at the appropriate level of detail for the given query from model

fragments within the knowledge{base. By using qualitative simulation, TRIPEL is

able to derive a rich behavioral description that can be used to answer a variety of

questions.

TRIPEL demonstrates how qualitative simulation can be part of an overall

solution to a common{sense reasoning task. TRIPEL, however, focuses on the task

of automated model building; thus, it limits the degree of interaction between the

knowledge{base and the qualitative simulator is limited to extracting information

from the knowledge{base to build the model. In addition, the queries are restricted

to questions requiring inferences that can be made via qualitative simulation.

A more comprehensive solution requires

� a
exible interface to the inference capabilities provided by the qualitative

simulator so that these capabilities can be used in a variety of ways (e.g.

a query about the relationships between variables when the system is in a

steady{state would not require a complete dynamic simulation),

� additional techniques for controlling the simulation (e.g. goal directed simula-

tion techniques to focus the simulation on the information required to answer

a speci�c query),

� a declarative, logic{based language for incorporating additional information

into the simulation,3

3TeQSIM already provides this capability; however, a more expressive language would provide

182

� automated tools for extracting information from the behavioral description

and the ability to incorporate the results from a simulation back into the

knowledge{base so that additional inference techniques can process the infor-

mation,

� an executive control component that determines when to perform a qualitative

simulation to address a given task and in what manner,

� an explanation facility to support and explain the inferences made during the

simulation, and

� more sophisticated automated modeling techniques that can be used to build

a component{based model and to re�ne the model as needed based upon the

results of a preliminary simulation.

In general, the overall goal is to fully integrate the qualitative simulation

algorithm into a more general{purpose, knowledge{based system that uses the qual-

itative simulation algorithm as a special purpose inference engine to solve certain

specialized tasks. A system of this nature would be particularly useful for devel-

oping an advanced tutoring systems for one of the natural sciences. Integrating

qualitative simulation into a knowledge{based system allows the tutoring system

to answer a wide range of questions. In particular, qualitative simulation can be

used to identify behaviors that are precluded due to the structural properties of the

modeled system and to explain how the structural properties of the system a�ect

the resulting behavior.

6.1.2.2 Engineering problem solving

In recent years, a large portion of the qualitative reasoning community has focused

on developing techniques that can be applied to various engineering problem solving

tasks such as monitoring, diagnosis, design and control (Iwasaki & Farquhar, 1996;

Ironi, 1997). Qualitative and semi{quantitative simulation can be used in various

ways to address these tasks. For example, when developing a robust controller,

semi{quantitative simulation can be used to measure the response of the system to

various perturbations. Alternatively, qualitative simulation can be used during the

initial design phase to evaluate alternative designs with respect to a set of desired

properties.

As mentioned above, however, qualitative simulation can only be used to

solve part of the overall problem. As more information is required, qualitative

more
exibility when specifying information.

183

simulation and even semi{quantitative simulation often fail to provide the desired

precision. A wide variety of quantitative techniques are commonly used by engineers

to reason about the behavior of a dynamical system. For qualitative simulation to be

relevant within a more general problem solving context, it must be fully integrated

with these quantitative techniques so that the user can use all of the available

information to reason at multiple levels of detail.

While semi{quantitative simulation integrates qualitative and quantitative

techniques, it does this from a \QSIM{centric" perspective in which the quantita-

tive inferences are driven and controlled by the qualitative simulation.4 It is our

view that qualitative and quantitative inference techniques must be integrated as

equal partners such that neither system depends upon the other.5 Integrating qual-

itative information with existing numeric techniques requires a generalized model

representation language that exhibits the following features:

� the syntax of the representation language should be driven by the informa-

tion being speci�ed and not a speci�c inference algorithm (e.g. the current

syntax used to specify QSIM models must be replaced with a more{standard,

equation{based syntax that is more intuitive for an engineer to manipulate),

� the language should be compositional in nature such that individual compo-

nents can be described independently and then combined as need to form

larger components,6

� the language should support multiple levels of description so that all of the

available information can be speci�ed (e.g. at a minimum, the language should

support structural, qualitative, semi{quantitative, and ordinary di�erential

equations.7),

� the language should support structural as well as behavioral information about

individual components, and

4Recent advances such as NSIM (Kay & Kuipers, 1993) can operate as a stand alone system;
however, additional research is still required.

5An appropriate analogy would be an integrated software package such as Microsoft O�ce
which provides a set of independent software applications that are able to interact with the other
applications as needed.

6We avoid using the term model fragment since it is commonly used within the compositional
modeling literature. Our view of a component is less granular that what is commonly thought of
as a model fragment. Thus, an individual component might correspond to detailed model of an
engine or even an entire boiler assembly.

7A structural di�erential equation (SDE) describes the basic structure of the system. For exam-
ple, the SDE for a bathtub might take the form _x = q � u � f(x) where x is the amount of water
in the tub, q the in
ow and u the drain opening.

184

� the language should support the explicit speci�cation of assumptions about

the structure and behavior of individual components.

These requirements are very similar to the features currently provided within the

various compositional modeling languages that have been developed within the �eld

of qualitative reasoning (Falkenhainer & Forbus, 1991; Farquhar, 1993; Farquhar,

Iwasaki, Fikes, & Bobrow, 1996). These languages, however, have been developed

as general purpose languages that can be used for both common{sense reasoning

applications as well as engineering problem solving. It is our opinion that these two

tasks are often very di�erent and that to address engineering problem solving tasks,

the syntax and structure of the language should be driven more by the tools that

are currently used by engineers as opposed to existing AI techniques. Furthermore,

the existing compositional modeling languages were designed to support automated

model building techniques. While automated techniques for combining components

may be required, we are not interested in completely automating this process, as we

view the engineer as an integral part of the model building process.

Speci�cally, we are interested in exploring how QSIM and other qualitative

inference techniques can be integrated with existing tools for

� algebraic manipulation (e.g. Mathematica)

� numerical simulation (e.g. MATLAB), and

� data acquisition (e.g. LabView)

providing a multi-purpose tool box for reasoning about the behavior of a dynamical

system.

The generalized representation language is intended to support model re-

�nement and exploration through the incremental speci�cation of more detailed or

alternative descriptions. It can the thought of as a \knowledge{base" describing

the modeled system. Furthermore, the system would support the integration of in-

formation derived using multiple inference techniques. For example, results from a

Monte Carlo simulation might be used to generate a qualitative behavioral descrip-

tion which could be queried using temporal logic. Alternatively, semi{quantitative

simulation could be used to identify critical regions of the trajectory space that

would be explored in detail using more precise quantitative techniques.

The overall goal of this proposal is to integrate qualitative simulation with

existing quantitative techniques to provide a general{purpose tool box that can be

used to address a variety of engineering problem solving tasks. Thus, engineers

would be able to exploit the bene�ts provided by qualitative inference techniques

185

within a familiar environment while avoiding many of the shortcomings encountered

when using qualitative simulation by itself.

6.2 Advances within the �eld of qualitative simulation

This section provides a brief description of speci�c advances that are required within

the �eld of qualitative simulation.

Identifying \likely" behaviors { The soundness guarantee provided by qualita-

tive simulation ensures that the behavioral description contains all possible

real{valued trajectories consistent with the qualitative model. The behav-

ioral description, however, does not provide any information regarding the

likelihood of a given behavior. This limitation can be problematic since the

behavioral description may include a number of undesirable behaviors that

are highly unlikely to occur. While absolute guarantees may be necessary in

certain limited applications such as designing a nuclear power plant, in most

applications, it is su�cient to provide probabilistic guarantees. Furthermore,

this information could be used to reduce the complexity of the simulation by

pruning unlikely behaviors.

To generate a behavioral description containing information about the likeli-

hood of a given behavior , additional information must be incorporated into

the model. Probability information could be incorporated into the model in

various ways.

1. The likelihood of a given event or a sequence of events could be speci�ed

by the modeler or derived through an analysis of historical information.

This information could be used to determine the likelihood of a dynamic

behavior.

2. If qualitative simulation is used for diagnosis, the likelihood of a given

failure mode within speci�c components could be speci�ed.

3. When using a semi{quantitative model, quantitative bounds and func-

tional envelopes could be augmented with probability distributions.

Alternatively, probability information could be inferred using an auxiliary

technique such as Monte Carlo simulation to determine the likelihood of a

given behavior (Brajnik, 1997).

These ideas are very preliminary. One of the drawbacks of these ideas is that

the probability information is incorporated directly into the qualitative sim-

186

ulation process. This is similar to how semi{quantitative simulation handles

quantitative information. A more challenging, but potentially more promis-

ing approach would allow a qualitative simulation algorithm to communicate

asynchronously with Bayesian network inference algorithm (Shafer & Pearl,

1990) such that each algorithm could run independent of the other. The two

algorithms would exchange information, task each other as needed and re�ne

their descriptions independently.

Incorporating additional information and specifying assumptions { The

precision of the behavioral description is dependent upon the information con-

tained within the model. TeQSIM extends the expressiveness of the modeling

language; however, various types of information still cannot be represented

within the QSIM framework. Ideally, you would like to provide the modeler

with an expressive, high{level language for specifying additional information

and explicitly representing assumptions to be applied during the simulation.

For example, the modeler might be interested in specifying order{of-magnitude

information or a default assumption such as: \assume that A is greater than

B unless this leads to a contradiction." This language should also allow the

modeler to eliminate certain distinctions and select speci�c behaviors of in-

terest. For example, the modeler may be interested in eliminating behaviors

in which two unrelated events occur simultaneously to reduce the complexity

of the simulation. Note that this extension weakens the soundness guarantee;

however, it does so in a controlled manner and provides the modeler with a

more
exible tool.

Extracting information from a simulation { A qualitative behavioral descrip-

tion provides a rich source of information about the potential behavior of a

dynamical system. As the size of the system grows, however, it becomes more

di�cult to understand and extract information from this description simply

through a manual analysis. Instead, automated techniques are required for

extracting information and answering questions. Shults and Kuipers (Shults

& Kuipers, 1997) use temporal logic to query the results of the simulation;

however, the expressiveness of the language is limited to propositional expres-

sions. Thus, this language cannot be used to describe certain phenomenon

such as an increasing or decreasing oscillation or to describe global properties

of the entire behavioral description. A more expressive language is required

both to query the results of a simulation and to represent the information

extracted from the behavioral description in a logic{based language that can

187

be processed by other inference techniques.

Simplifying the model building process { Building a qualitative model is a

di�cult process that often requires multiple iterations before the appropri-

ate model is obtained. While a number of automated modeling techniques

have been developed (Rickel & Porter, 1997; Nayak, 1992), these techniques

do not provide the degree of control that may be required when developing a

detailed model of a given system. The following extensions would simplify the

model building process:

� More sophisticated explanation facilities are required to explain the re-

sults of the simulation and answer questions about why a given behavior

may or may not be included. Clancy, Brajnik and Kay (Clancy et al.,

1997) provides some preliminary explanation facilities for QSIM; however,

additional research is still required.

� An equation{based modeling language that allows an engineer to specify

relationships in a more intuitive manner is required.

� An automated model re�nement procedure is required to analyze the

results of the simulation and identify potential revisions to re�ne the

behavioral description. This technique would help a modeler explore

alternative modi�cations when re�ning a model.

Generating a �nite behavioral description { The introduction of landmarks

within the QSIM framework allows the representation of behaviors such as in-

creasing and decreasing oscillations. However, the introduction of landmarks

can also results in an in�nite behavioral description. Ideally, QSIM would

generate a closed{form behavioral description representing the asymptotic be-

havior of the system. Weld (Weld, 1986) uses aggregation to generate such a

description for a single behavior. These ideas would need to be extended to

identify patterns within the behavioral description and to develop a language

for representing these patterns using a �nite representation.

6.3 Conclusions

In this chapter, we described some preliminary ideas for the integration of qualitative

simulation with other techniques to provide a more comprehensive problem{solving

engine. It is our opinion, that research of this nature is required to determine

188

the relevant contributions provided by qualitative simulation and to identify new

directions for research within the �eld.

189

Chapter 7

Conclusions

Various research e�orts (Williams & Nayak, 1996; Shimomura, Ogawa, Tanigawa,

Umeda, & Tomiyama, 1996; Forbus, 1996) have recently begun to �eld applications

that utilize qualitative reasoning techniques to perform tasks such as monitoring,

diagnosis, control and tutoring. In general, however, these applications do not

utilize sophisticated qualitative simulation techniques because of the complexity of

the simulation process and the cost of building large{scale models. Instead, they

use either quantitative techniques or causal dependency graphs to reason about the

behavior of the system.

Qualitative simulation provides a powerful tool for reasoning about the be-

havior of an imprecisely de�ned dynamical system but its application to real{world

problems has been severely limited by several practical limitations.

(1) Traditionally, simulation is performed at a single level of detail, highlighting

a �xed set of distinctions. Often, irrelevant distinctions lead to an intractable

simulation for larger, more realistic models.

(2) The complexity of the behavioral description often makes it di�cult to extract

information from the behavioral description and evaluate the results of the

simulation.

(3) Developing qualitative models is often a di�cult process. Phenomena such

as chatter often complicate this process, thus discouraging an individual at-

tempting to develop a model.

(4) The expressiveness of the qualitative modeling language of is restricted to a

�xed set of structural constraints. Representation of information that does

not �t into this paradigm requires extensions to the simulation algorithm.

190

My dissertation directly addresses all four of these problems by providing

techniques that reduce the complexity of a qualitative simulation and extend the

expressiveness of the modeling language. Eliminating exponential branching due to

irrelevant distinctions enables the development of larger, more interesting models.

Furthermore, as these distinctions are eliminated from the behavioral description,

the process of developing a qualitative model is simpli�ed because it is easier to

evaluate the results of the simulation.

Each of the three techniques proposed here, independently address a speci�c

problem that has hindered the application of qualitative simulation techniques.

7.0.1 DecSIM

The ability of a composite, state{based representation to provide a compact rep-

resentation of a potentially exponential solution space is inherently limited. The

abstract representation used by qualitative simulation to describe a dynamical sys-

tem is inherently unconstrained. Thus, for larger, more interesting systems to be

simulated, an alternative representation is required.

DecSIM solves this problem by providing an alternative representation that

partitions the variables into components. By sub-dividing the problem, DecSIM can

exponentially reduce the size of the solution space. DecSIM implicitly represents the

set of all solutions by maintaining links between the solutions to the sub{problems

in order to represent constraints on how the solutions can be combined. DecSIM

uses these constraints to ensure that each solution to a sub{problem corresponds to

a complete solution.

By decomposing a model, DecSIM can exponentially speed{up the simulation

for many problems, while generating a behavioral representation that is guaranteed

to be equivalent to the representation provided by a standard QSIM simulation.

Moreover, the bene�ts of a DecSIM simulation increase with the size of the model

and as the variables become more loosely constrained.

7.0.2 Chatter abstraction techniques

Chatter branching is a common and major source of irrelevant distinctions; it leads

to an in�nite behavioral description and makes the results of the simulation unus-

able. Chatter occurs when the system enters an unconstrained region of the trajec-

tory space. The two automated techniques proposed in this thesis eliminate chatter

through abstraction. Both identify the unconstrained regions of the trajectory space

and abstract them into a single qualitative state in the behavioral description. Chat-

191

ter box abstraction leverages the inference capabilities of the simulation algorithm

while dynamic chatter abstraction provides a more{e�cient solution by avoiding the

need to explore all possible paths through the chattering region. Both techniques

have been shown to eliminate all instances of chatter without over{abstraction. By

solving the problem of chatter, my work eliminates one of the major road blocks

that have hindered the application of qualitative simulation techniques to larger,

more{realistic systems.

7.0.3 TeQSIM

Qualitative simulation and temporal logic are two alternative formalisms for reason-

ing about change across time. TeQSIM integrates these two paradigms by smoothly

incorporating trajectory information, speci�ed via temporal logic, into the qual-

itative simulation process. During simulation, TeQSIM �lters behaviors that do

not model the set of temporal logic expressions and integrates numeric information

speci�ed within the TL expressions into the simulation to provide a more precise

numerical description for the behaviors which model these expressions. Not only

does TeQSIM fundamentally extend the range of problems that can be addressed

via qualitative simulation, but it also provides the modeler with a powerful tool that

can be used to control the simulation, allowing him to address some of the inherent

complexity problems of qualitative simulation.

7.0.4 Concluding Remarks

The three techniques presented here, DecSIM, chatter abstraction, and TeQSIM,

address two of the primary problems that have hindered the application of qualita-

tive simulation techniques within real{world problem solving scenarios: simulation

complexity and ambiguity within the behavioral description. The resulting qualita-

tive simulation algorithm provides a powerful tool for reasoning about the behavior

of imprecisely de�ned dynamical system enabling other researchers to explore how

these techniques can be applied to address novel and interesting problems.

192

Appendix A

DecSIM Theorems, Lemmas

and Proofs

Lemma A.1 (Component edge lemma) For each edge within the component

graph such that A
vab! B, the component edge predicate M

A
vab
!B

(ai; bj) is true if

and only if the following statements are satis�ed:

(1) ai =vab bj,

(2) ai is an initial state i� bj is an initial state,

(3) If ai and bj are not initial states, (M
A
vab
!B

(ai�1; bj�1) _ (M
A
vab
!B

(ai; bj�1) _

(M
A
vab
!B

(ai�1; bj)

Proof: The view and guide links are de�ned such that the view mapping is many{

to{one while the guide mapping is one{to{many. Thus, M
A
vab
!B

(ai; bj) is true if and

only if both ai and bj map to the same state in the view/guide tree. Furthermore,

this state describes the variables vab. This will be used throughout the proof.

If M
A
vab
!B

(ai; bj)) conditions 1-3 { Since both ai and bj map to the same state

describing vab, ai =vab bj . Furthermore, both mapping functions only map

initial states to initial states.

According to the de�nition of the ViewedByvab function, if ai maps to a state

s then ai�1 must either map to s or to its predecessor. A similar condition

exists for the GuideOf mapping function. By composing these de�nitions

either the predecessors of ai and bj map to each other or one of them maps to

the predecessor of the other.

193

If conditions 1-3) M
A
vab
!B

(ai; bj) { Once again, demonstrating this is simply a

composition of the de�nition of the ViewedByvab and GuideOf functions.

2

Lemma A.2 IfMAB(si; sj) andMAB(si+1; sj+1) and either si is a time{point state

while sj is a time{interval state or vice-a-versa thenMAB(si+1; sj) andMAB(si; sj+1)

are also true.

Proof: Two cases will be consisdered:

Case 1: Suppose si, sj , si+1 and sj+1 are all equivalent with respect to the

shared variables. By lemma 3.4, MAB(si+1; sj) and MAB(si; sj+1)

are true.

Case 2: Suppose si, sj , si+1 and sj+1 are not equivalent with respect to

the shared variables. Then a transition must occur in a shared

variable from si to si+1 and an identical transtion must occur from

sj to sj+1. However, the QSIM transition table does not allow for

a transition that is valid both from a time{point to a time{interval

as well as from a time{interval to a time{point. Thus, this is a

contradiction and therefore the assumption is false.

Therefore, MAB(si+1; sj) and MAB(si; sj+1) are true. 2

Theorem A.1 (Compatible behavior theorem) A given pair of component be-

havior segments fa1; a2; : : :ang and fb1; b2; : : : bmg from components A and B respec-

tively are compatible if and only if

� if A
vab! B is an edge in the component graph then M

A
vab
!B

(an; bm) is true, and

� if B
vba! A is an edge in the component graph then M

B
vba
!A

(bm; an) is true.

Proof: Proof by induction on the total number N of the globally consistent states

in both component behaviors.

Throughout the proof, we will use to symbol MAB(ai; bj) as shorthand for the ex-

pression if de�ned then M
A
vab
!B

(ai; bj) and M
B
vba
!A

(bj; ai) are true.

Base case: N = 2. Both component behaviors have a single, initial state. If the

states are compatible, then by de�nition any shared variables must be equivalent

194

and the predicates must be satis�ed. Conversely, if the predicates are satis�ed, then

the shared variables are equivalent and since both stats are time{point state the

behaviors are compatible.

Inductive step: Assume the lemma is true for N = n +m� 1.

If compatible) MAB { It is given that fa1; a2; : : :ang and fb1; b2; : : : bmg are com-

patible. Let (S1; S2; : : :Sp) correspond to a composite behavior for these two

behaviors where each Si corresponds to a pair of states aj and bk that are com-

bined to form the composite state. By the de�nition of a composite behavior

Sp = <an; bm> Therefore, an =vab bm. Sp�1 can correspond to either:

Case 1: <an�1; bm>,

Case 2: <an; bm�1>, or

Case 3: <an�1; bm�1>.

Case 1: Sp�1 = <an�1; bm> The behaviors terminating in an�1 and bm are

compatible. Thus, by the inductive hypothesis, MAB(an�1; bm). By

lemma 3.4, since MAB(an�1; bm) and an =vab bm, then MAB(an; bm).

Cases 2 and 3: The argument is identical to Case 1 since lemma 3.4 accounts

for all three cases in the same lemma.

If MAB) compatible { It is given that MAB(an; bm) is true. By lemma 3.4,

an =vab bm and either

Case 1: (MAB(an�1; bm�1) ,or

Case 2: (MAB(an; bm�1), or

Case 3: (MAB(an�1; bm)

Case 1: MAB(an�1; bm�1) { Since the combined length of the behaviors ter-

minating in an�1 and bm�1 is less than n + m, by the inductive hy-

pothesis we know that the behaviors terminating in these two states

are compatible. Thus, there exists a corresponding composite behavior

CB = (S1; S2; : : :Sp) with Sp = <an�1; bm�1>. Since an =vab bm,

(1) if an�1 and bm�1 are both time{point states then Sp is a time{point

state and an and bm are time{interval states. Thus the composite be-

havior can be extended by a time{interval state Sp+1 corresponding

to the combination of an and bm.

195

(2) Similarly, if an�1 and bm�1 are both time{interval states, then their

successors are both time{point states and the composite behavior

can be extended by a time{point state Sp+1 corresponding to the

combination of an and bm.

(3) If one of the states is a time{point state and one is a time interval

state, the by lemma A.2 MAB(si+1; sj) and MAB(si; sj+1) are true.

Suppose that si is the time{point state and sj is a time{interval

state. By the de�nition of a composite behavior, Sp must correspond

to a time{point state. Composite behavior CB0 can be de�ned as

an extension of CB by adding a composite state Sp+1 = <si+1; sj>

and Sp+2 = <si+1; sj+1>. Thus, CB
0 is a composite behavior corre-

sponding to the component behaviors terminating in si+1 and sj+1.

2

Theorem A.2 (Compatible behavior set theorem) A set of component behav-

iors fb1; b2; : : : ; bng each from a di�erent component are compatible if and only if

for all i; j < n bi and bj are compatible.

Proof: Both directions are proven simply through an extension of theorem 3.1.

If compatible) each pair is compatible { If fb1; b2; : : : ; bng are compatible then there

exists a corresponding composite behavior CB = (S1; S2; : : :Sp). For any

given pair of components Ci and Cj , the projection of CB onto the variables

described by Ci and Cj corresponds to a composite behvaior for behaviors bi
and bj . Thus, bi and bj are compatible.

If each pair compatible) set is compatible { Select two behaviors bi and bj. Since

they are compatible they can be combined into a composite behavior CBij .

By theorem 3.1, we know that all of the comonent edge predicates are satis�ed.

Furthermore, the predicates have been satis�ed starting from the initial state.

Thus, the CBij is in turn compatible with each of the remaining comonent

behaviors. Thus, combine CBij with another component behavior and form

a new composite behavior. Continue combining the composite behavior with

additional component behaviors until all of the component behaviors have been

incorporated into a single composite behavior. Thus, the set of behaviors is

compatible. 2

196

Appendix B

Dynamic Chatter Abstraction:

Theorems and Proofs

This appendix contains a complete listing of the proofs and theorems for dynamic

chatter abstraction. Some of the results presented in section 4.4.8 are duplicated

here to simplify the process of reading and evaluating the results. The theorems

within the appendix are broken up into three sections: 1) theorems and proofs

relating to Ceq, 2) theorems and proofs relating to Chatter-test and theorems and

proofs relating to the real valued trajectories described by an abstracted tree.

B.1 Ceq: Sound and complete

Lemma B.1 For a given equivalency class EQ and time{interval state S describing

the interval (tj ; tk), if for all v such that v 2 EQ, the qdir of v is unconstrained

except with respect to other variables in EQ, then the variables in EQ will chatter

following time point state tk.

Proof: By the de�nition of a chatter equivalency class, we know that for any two

variables x and y within EQ they are constrained such that either [_x] = [_y] is always

true or that [_x] = �[_y] is always true. Thus, the variables in EQ can all become

steady at tk since neither the constraints relating these variables nor the constraints

in the rest of the model restrict this behavior. Similarly, following tk all of the vari-

ables can resume changing in the same direction as before or all of them can begin

changing in the opposite direction. The branch following tk is a chatter branch and

thus the variables are chattering. 2

197

Lemma B.2 The conditions speci�ed within Ceq for each QSIM constraint type T

de�ne necessary and su�cient conditions for the variables in EQ to be unconstrained

with respect to a constraint of type T .

Lemma B.3 If an abstract state S satis�es Ceq, then the derivatives of the variables

in EQ are unconstrained within S except with respect to other variables in EQ.

Proof: Since S satis�es Ceq we know that S must satisfy at least one condition

within each dependency for Ceq . A dependency exists for each constraint C within

the model that can constrain the direction of change for the variables in EQ. Thus,

by lemma 4.6 we know that for all C such that C is a constraint within the model

referring to a variable in EQ the variables in EQ are unconstrained with respect

to C. Thus, the variables in EQ are unconstrained by the model with respect to

variables not contained within EQ. 2

Theorem B.1 (Ceq soundness) For a given abstract time{interval state S de-

scribing the interval (tj ; tk) and an equivalency class EQ, if S satis�es Ceq then

the variables in EQ will chatter following time point tk.

Proof: Since S satis�es Ceq the variables in EQ are unconstrained except with re-

spect to each other (lemma 4.5). Therefore, by lemma 4.7 the variables will chatter

following time point tk . 2

Theorem B.2 (Ceq completeness) Assuming that the chatter equivalency class

partitioning is complete, the predicate Ceq de�nes necessary conditions on an abstract

qualitative state for the variables in EQ to chatter.

Proof: Assume that there exists a state S in which the variables in EQ are free to

chatter. Furthermore, assume that Ceq(S) is false.

� There must be at least one dependency D in Ceq which is not satis�ed. There

must be a constraint within the model corresponding toD. Call this constraint

CD. Let the variables contained within CD not contained within VEQ be

represented by VCD . Furthermore, if VEQ corresponds to the set of variables

in EQ, let VEQ�CD = VEQ \ VCD .

� By lemma 4.6 we know that the conditions in D specify necessary and su�cient

conditions for the derivative of the variables in VEQ�CD to be unconstrained

with respect to VCD . Therefore, the derivatives of the variables in VEQ�CD
must be constrained with respect to VCD .

198

� Since the variables in VEQ�CD chatter following S, some of the variables in

VCD must also chatter in unison.

� However, this is a contradiction with the assumption that the chatter equiva-

lency partitioning algorithm is complete. Therefore, if a state exhibits chatter

in the variables in EQ then it must satisfy the predicate Ceq.

2

While this conclusion requires the partitioning algorithm to be complete, it is not

the case that Ceq fails to detect chatter in all instances where Ceq is incomplete. On

the contrary, since the dependencies record the conditions under which a variable

is unconstrained, it may be possible to use the information within the predicate

to detect implicit chatter equivalency relationships between variables due to the

interaction of multiple constraints. In addition, note that in all of the models tested

dynamic chatter abstraction detected all instances of chatter encountered.

B.2 Chatter-test: Sound and complete

Theorem B.3 (Chatter-test soundness) For a given qualitative state S and an

equivalency class EQ if Chatter-test(S;EQ) identi�es the variables in EQ as chat-

tering then there exists an abstract state S0 such that S0 satis�es Ceq and is chatter

reachable from S assuming that the paths supporting each change in S0 from S can

be combined into a consistent sequence of states.

The main task in proving this theorem is explaining the assumption. First,

we will introduce two new de�nitions to assist us in this task:

De�nition B.1 (Su�cient chatter support) A set of equivalency classesN pro-

vides su�cient chatter support for an equivalency node EQ to chatter if and only if

the variables in EQ can chatter given that the only other classes allowed to chatter

are contained within N . The set is minimal if and only if there does not exist a

proper subset of N that also provides su�cient chatter support for EQ. Note that

there may be more than one set that o�ers minimal su�cient chatter support for a

given equivalency class.

De�nition B.2 (Chatter support structure) For equivalency classEQm, a par-

tially ordered, set of equivalency classes N = f(EQ1; : : : ; EQmg is a chatter support

structure SupEQm for EQm ordered by the predicate �sup if and only if

(1) N o�ers su�cient chatter support for EQm,

199

(2) the partial ordering predicate �sup satis�es the condition that

For all EQi : EQi 2 SupEQm :: SupEQi= fEQjjEQj �sup EQig.

Thus, condition (2) provides a recursive de�nition for the partial order such that a

chatter support structure for each class within N is also de�ned.

Once again, N is minimal if there does not exist a proper subset of N that

is also a chatter support structure for EQm.

The di�cult portion of the proof is demonstrating that S0 is chatter reach-

able from S. To simplify the process of the proof, I will �rst provide an informal

discussion of the algorithm along with an explanation of the assumption.

Let N be a minimal chatter support structure for EQ. Each path within N

provides a di�erent sequence of changes that need to be free to happen to satisfy one

of the dependencies within Ceq. Each path can be thought of as an abstract plan.

For example, the sequence A;B;C would mean that �rst A has to be free to chatter

and then change signs, then B and then C. It is an abstract plan because it does

not specify when something needs to change back. Thus, for example sometimes a

variable A has to change signs to allow B to change signs, but then A has to change

back before C can begin to chatter. (see �gure 4.8). Note that dynamic chatter

abstraction does not compute all of the paths in the chattering region. Instead, it

simply ensures that the path is possible due to variables chattering.

If we think of the partial order de�ned uponN as a graph, then a support path

for EQm is a path within N starting from a leaf node that ends in EQm. Dynamic

chatter abstraction ensures that for each dependency within Ceq that there exists a

set of support paths that ensure that all of the variables that need to change for S0 to

be reached are free to chatter. It does not, however, test to see if the support paths

can be combined to form a consistent sequence of states leading for S to S0. Thus,

we assume that the support paths can be combined in such a manner to generate

such a sequence of states.

While at �rst, this assumption might seem unjusti�ed, we have yet to en-

counter an example where it is not satis�ed. This is due to the unconstrained nature

of chatter. Since the direction of change for the variables in a chattering region are

highly unconstrained it is very likely that there will be some sequence of changes

that can occur that will lead to S0 making it chatter reachable. Computing all

of these paths can be exponentially expensive and thus we avoid performing this

computation.

Proof:

200

Consistent state satisfying Ceq {Chatter-test only identi�es an equivalency class

EQ as chattering if it can identify a state S0 that satis�es Ceq. Thus, by the

completeness theorem for Ceqwe know that the variables in EQ will be free to

chatter in S0.

S0 is chatter reachable from S { Let N be a minimal chatter support structure

for EQ. Chatter-test implicitly computes such a structure in segments. The

portion of the structure relating a class EQ to the classes immediately pre-

ceding it in the structure is computed the �rst time that EQ-Chatter-Test is

called in which it returns :chatter. Since this must occur for each equiva-

lency class identi�ed as chattering, the entire structure will be computed by

Chatter-test. Since Chatter-test backtracks on cycles the entire structure can

be represented as support paths rooted at leaf nodes. The equivalency classes

in the leaf nodes are free to chatter in S. Once they chatter, then the next set

of classes will chatter assuming that the paths can be combined. This process

repeats itself until S 0 is reached from S via a chatter reachable path.

Note that if cycles were allowed in N , then the assumption would not be

su�cient to guarantee that S0 was chatter reachable from S. (See �gure 4.10.)

2

Theorem B.4 (Chatter-test completeness) For a given qualitative state S and

an equivalency class EQ if there exists a state S0 satisfying Ceq that is chatter

reachable from S, then Chatter-test(S;EQ) identi�es the variables in EQ as chat-

tering.

Proof: Chatter-test restricts its search of the qualitative state space in two ways:

(1) it initializes a partial state with the qualitative value information for the vari-

ables identi�ed as non{chattering due to static conditions, and

(2) it restricts its search when either

(a) an equivalency class that must change is identi�ed as non{chattering, or

(b) a cycle occurs in the calling sequence.

Thus, to show that Chatter-test will detect S0 and therefore identify the variables

as chattering, we need to show that the restrictions listed above will not prevent

Chatter-test from detecting S. To do this, we will use the fact that there exists a

201

path from S to S0 in which each change is due to a chattering variable changing the

sign of its derivative as stated in the antecedent.

Restriction 1:

Since there exists a path from S to S0 only containing changes in chat-

tering variables, S and S0 can only di�er in distinctions due to chatter.

Thus, S an S0 are identical with respect to non{chatter distinctions and

therefore the assertion in restriction 1 does not prevent the algorithm

from identifying S0.

Restriction 2a:

This restriction will not prevent S0 from being found by the same argu-

ment as presented for restriction 1.

Restriction 2b:

� Select the shortest chatter reachable path between S and S0 such that variables

do not change sign simultaneously unless they are constrained to do so by the

model.

{ For example, suppose x and y are both free to chatter following a given

state si and their derivatives are not constrained with respect to each

other. Thus, the path in which they chatter simultaneously can be ex-

tended to the path where x chatters and then y chatters resulting in the

same qualitative state.

Call this path b = (s1; : : : ; sn) such that s1 = S and sn = S 0.

� Thus, each pair of time{interval states si and si+2 separated by a time{point

state si+1 di�er only in the direction of change for the variables within a single

equivalency class.

� Represent b as a sequence of equivalency classes (C1; C2; : : : ; Cn=2) where

each Ci corresponds to an equivalency class that changed sign between states

s(n�1)=2 and s(n+1)=2. Collapse this sequence to eliminate duplicates by re-

moving equivalency classes that appear earlier within the list resulting in the

sequence beq = (EQ1; EQ2; : : : ; EQm) where m � n=2. This sequence is called

the equivalency dependency sequence.

{ These duplicates can be removed since Chatter-test does not compute the

exact path that leads to S0. It simply ensures that each of the equivalency

classes that must change are free to chatter.

202

{ Note that for a given EQi that the set fEQ1; : : : ; EQi�1g is the set of

equivalency nodes that must be identi�ed as chattering to satisfy Ceqi

for the given path. Therefore, it can be said that EQi depends upon

fEQ1; : : : ; EQi�1g to chatter.

{ While it is possible that there will be other equivalency dependency se-

quence for EQ, beq is the minimal set since b is the shortest path between

S and S0.1

� By induction on the length of this sequence we will show that there exists a

path in the calling sequence of Chatter-test where a cycle does not occur. Let

m equal to the length of the sequence.

Base case: m = 0

A sequence of length zero occurs when the path from S to S0 includes

a single state. Thus, S = S0 and the conditions in Ceq can be

satis�ed without requiring any variable to :change-qdir.

Inductive step:

Assume: for a sequence of length m � 1 or less a cycle does not

occur.

Assume that for a state S0 to satisfy Ceq for equivalency class EQ

that beq is of length m. Chatter-test is called recursively for each

equivalency node EQj where j � m when an assertion requiring

EQj to chatter is encountered.

(1) The equivalency dependency sequence for EQj is

beqj = (EQ1; : : : ; EQj�1).

(2) Thus, the length of beqj is j � 1 and EQ 3 beqj .

Thus, due to item 2 and the inductive hypothesis, a cycle will not

occur in the recursive call to Chatter-test. 2

B.3 Real valued trajectories

Theorem B.5 (QSIM soundness retained) The set of real{valued trajectories

described by an abstracted behavior tree generated using dynamic chatter abstrac-

1Note that there may be other minimal equivalency dependency sequences since there may be
other paths of equal length to b that will result in a di�erent set of dependent equivalency classes.

203

tion includes all real{valued trajectories described by an unabstracted behavior tree

exhibiting chatter.

Proof: Dynamic chatter abstraction performs a strict abstraction operation. Thus,

for a given time{interval state S, dynamic chatter abstraction replaces it with a

state Sa such that S � Sa. Thus, the set of precise numerical values consistent with

S is a subset of the set consistent with Sa. Furthermore, by the qualitative succes-

sor extension lemma (lemma 4.4), the successors of Sa contain all possible successor

values for the precise numerical values in Sa consistent with continuity. Therefore,

since each state and each transition is a superset of the values described by a non{

abstracted tree, the set of real{valued trajectories described by an abstracted tree

is a subset of those described by a non{abstracted tree exhibiting chatter. 2

Note that the abstraction operation performed by dynamic chatter abstrac-

tion does introduce additional real{valued trajectories no included within the non{

abstracted behavior. There are two potential sources for these trajectories:

Abstraction operation { As with chatter box abstraction, the representation

used to describe an abstract state is not su�ciently re�ned to describe the

correlations between chattering variables contained within the same equiva-

lency class.

As discussed in section 4.3.6, this loss of precision is simply a cost of abstraction

and in general does not impact the usefulness of the results generated.

Abstract state successor computation { Dynamic chatter abstraction purposely

does not explore all paths through the potentially chattering region. Instead,

it determines what variables will chatter, generates an abstract state and then

uses the extension to the QSIM successor tables to compute the successors to

this abstract state. The constraints within the model are used to ensure that

each successor state is consistent. However, there is no guarantee that there

exists a path through the chattering region that ends in each successor of the

abstract state. Thus, conceptually it is possible that a successor of an abstract

state would not have a corresponding state within the unabstracted tree.

In practice, we have not encountered this situation in any of the models tested.

Chatter box abstraction does not su�er from this limitation since it computes

all paths through the chattering region. Thus, we can test for this condition

by comparing the results from dynamic chatter abstraction against the results

using chatter box abstraction. In all of the models tested, the behavioral

descriptions were identical.

204

The reason that this condition has not proved to be a problem is due to

the unconstrained nature of chatter. Since chattering variables are loosely

constrained within the chattering region, it is very likely that there will exist

a path through the chattering region for each potential exit state.

205

Appendix C

TeQSIM Soundness and

Completeness Theorem Proof

Theorem C.1 (TL{Guide is sound and complete) Given a QSIM behavior b =

<s0; : : : ; sn> and an admissible formula ' then TL{Guide:

1. refutes b i� for all full{path extensions bb: bb j=�= ' and b� '.

2. retains b without modifying it i�

(a) b j= ' and b� '; or

(b) b�= ' and there is no necessary condition C for re�ning b into a model

for ' (i.e. 6 9C 6= Ctrue such that if b00 = M(:C; b) then for all full{path

extensions bb00: bb00 j=�= ').
3. replaces b with b0 i�

(a) b j=? ' and b� ' and exists C 6= Ctrue such that b0 =M(C; b) j= ' and C

is necessary (i.e. if there exists b00 such that b00 = M(:C; b) then for all

full{path extensions bb00: bb00 j=�= '); or
(b) b �= ' and there is a necessary condition C 6= Ctrue (such that if b00 =

M(:C; b) then for all full{path extensions bb00: bb00 j=�= ') and b0 =M(C; b).

Proof. Let (vi; ci; 'i) be the evaluation sequence of b with respect to '. Numbers

in parentheses refer to statements of lemma 4.

(1,=)): If b is refuted then vn = F. Therefore (6) leads to bn�'n^ b
n j=�= 'n.

From bn �'n it follows that (3) bn�1 �'n�1 until b
0
�'0. From bn j=�= 'n it follows

(2) that bn j=�= 'n�1. And by repeating this we get b0 j=�= '0 from which the extensions

lemma brings 8bb : bb j=�= '.
206

(1,(=): Assuming that for any arbitrary extension bb of b, bb j=�= ' and b� '

implies that (extensions lemma) b j=�= ' and (equivalence lemma) b0 j=�= '0 and b
0
�'0.

The latter implies (3) that b1 � '1 and so forth until bn � 'n. Similarly we get

b1 j=�= '1 and so forth until bn j=�= 'n. Now bn �'n ^ b
n j=�= 'n leads (6) to vn = F and

to refutation of b.

(2, =)): If b is retained then vn = T or U. If vn = T then (5) bn j=� 'n and bn�

'n. Then this implies (1) bn�1 j=� 'n�1 and so forth until b0 j=� '0. Similarly for

b0�'0. At this point the equivalence lemma leads to b j=� ' and, as the behavior is

not modi�ed, then b�'. If vn = U then (4) implies bn�= 'n,and repeated application

of (3) leads to b0 �= '0 and then to b�= '. To prove that no conditions needs to be

applied, observe that if the behavior is not modi�ed then all ci have to be either

Ctrue (which is trivial) or delayed conditions that have not been applied, that is they

are not necessary.

(2.a, (=): From the hypothesis b j= ' the equivalence lemma leads to

b0 j= '0; by repeatedly applying (1) we get that b1 j= '1; : : : ; b
n j= 'n and since

b � ' it follows that there are no delayed conditions that might be applied, hence

bi j= P ['i; si] and therefore ci = Ctrue and TLG{1 never re�nes any state of b.

(2.b, (=): Observe that from b �= ' the equivalence lemma yields b0 �= '0

and that by repeatedly applying (3) we get bi�= 'i for all i from 0 to n. Since bi�= �

implies b(i;i) �= �, then vi = U holds and none of the b(0;i) is ever refuted. To prove

that b is not re�ned if there is no necessary re�nement condition, let's assume the

contrary, i.e. that b is re�ned. Therefore there is at least one cj 6� Ctrue that is

applied to b. Hence bj j=? 'j . cj is also necessary for b, in the sense that any model

of ' has to agree with cj . Or, in other terms, if a behavior agrees with :cj then

it cannot be a model for '. To prove this observe that if :cj is applied to b(j) we

obtain a new behavior b0. But b0j j=�= 'j and so forth until b0 j=�= '. In addition b0j�'j
and down to b0 � '. At this point the extensions lemma yields that none of the

possible extensions of b0 is a model for ', contrary to our hypothesis.

(3, =)): If b has been re�ned then at least one of the ci is 6� Ctrue, and

vn = T or U. If vn = T then bn j=� 'n and bn � 'n. The former implies that b j=
� '

and the latter b� '. In fact, b j=? ', because if b j= ' were true, b would have been

retained. Applying C to b gives a new behavior b0 and b0 j= '. Therefore in the case

vn = T behavior b is a potential model of '. In case vn = U then bn �= 'n and then

the conclusion b�= ' follows. To prove that condition C is necessary, observe that if

b is re�ned with C then at least one of the ci has to be 6� Ctrue and applied. Then

si j=? P ['i; si] and therefore C is necessary and su�cient.

207

(3, (=): We have to prove that b is re�ned using a condition C that is

necessary and su�cient. Since C has to be a conjunction of elementary conditions,

we have to prove that TL{Guide applies all of these conditions and nothing more.

Take any element c0 of C. Then c0 refers to a state sj and sj j=
? P ['j; sj] and, since

	 is complete, cj � c0. cj is either applied directly or it is delayed (in which case,

since c0 is necessary then the trigger of c0 has to be de�nitely false and c0 is applied).

In neither case TL{Guide applies any additional conditions. 2

208

Appendix D

QSIM References

This appendix contains relevant information extracted from Kuipers(Kuipers, 1994)

to assist the reader.

D.0.1 QSIM Transition Tables

The following table lists the valid transitions for a variable from either a time{point

state or a time{interval state. The values speci�ed in these tables are computed

using the Intermediate Value and the Mean Value Theorems and have proven to be

sound and complete with respect to the underlying numerical values described.

� P-Successors: point to interval.

QV (v; ti)) QV (v; ti; ti+1)

<lj ; std> <lj ; std>

<lj ; std> <(lj ; lj+1); inc>

<lj ; std> <(lj�1; lj); dec>

<lj ; inc> <(lj ; lj+1); inc>

<lj ; dec> <(lj�1; lj); dec>

<(lj ; lj+1); inc> <(lj ; lj+1); inc>

<(lj ; lj+1); dec> <(lj ; lj+1); dec>

<(lj ; lj+1); std> <(lj ; lj+1); std>

<(lj ; lj+1); std> <(lj ; lj+1); inc>

<(lj ; lj+1); std> <(lj ; lj+1); dec>

� I-Successors: interval to point.

209

QV (v; ti; ti+1)) QV (v; ti+1)

<lj; std> <lj ; std>

<(lj; lj+1); inc> <lj+1; std>

<(lj; lj+1); inc> <lj+1; inc>

<(lj; lj+1); inc> <(lj ; lj+1); inc>

�1z<(lj; lj+1); inc> <(lj ; lj+1); std>

<(lj; lj+1); dec> <lj ; std>

<(lj; lj+1); dec> <lj ; dec>

<(lj; lj+1); dec> <(lj ; lj+1); dec>

<(lj; lj+1); dec> <(lj ; lj+1); std>

<(lj; lj+1); std> <(lj ; lj+1); std>

210

Bibliography

Allen, J., Hendler, J., & Tate, A. (Eds.). (1990). Readings in Planning. Morgan

Kaufmann, San Mateo,CA.

Allen, J. F. (1984). Towards a general theory of action and time. Arti�cial Intel-

ligence, 23, 123{154.

Alur, R., & Henzinger, T. (1993). Real{time logics: complexity and expressiveness.

Information and Computation, 104 (1), 35{77.

Bacchus, F., & Kabanza, F. (1996). Planning for temporally extended goals. In

Clancey, B., & Weld, D. (Eds.), Proc. of the Thirteenth National Conference on

Arti�cial Intelligence. AAAI Press.

Baccus, F., & Kabanza, F. (1995). Using temporal logic to control search in a

forward channing planner. In Proc. of the Third European Workshop on Planning.

AAAI Press.

Berleant, D., & Kuipers, B. (1988). Using incomplete quantitative knowledge

in qualitative reasoning. In Proc. of the Sixth National Conference on Arti�cial

Intelligence, pp. 324{329.

Bhat, G., Cleaveland, R., & Grumberg, O. (1995). E�cient on{the{
y model

checking for CTL*. In Proc. of Conference on Logic in Computer Science (LICS{

95).

Brajnik, G. (1995). Introducing boundary conditions in semi{quantitative sim-

ulation. In Ninth International Workshop on Qualitative Reasoning, pp. 22{31

Amsterdam.

Brajnik, G. (1997). Statistical properties of qualitative behaviors. In Proc. of the

Eleventh International Workshop on Qualitative Reasoning about Physical Systems,

pp. 233{240. Cortona, Italy.

211

Brajnik, G., & Clancy, D. J. (1996a). Guiding and re�ning simulation using tempo-

ral logic. In Proc. of the Third International Workshop on Temporal Representation

and Reasoning (TIME'96) Key West, Florida. IEEE Computer Society Press. To

appear.

Brajnik, G., & Clancy, D. J. (1996b). Temporal constraints on trajectoriesin qual-

itative simulation. In Proc. of the Tenth International Workshop on Qualitative

Reasoning about Physical Systems, pp. 22{31. Fallen Leaf Lake, CA.

Brajnik, G., & Clancy, D. J. (1997). Focusing qualitative simulation using temporal

logic: theoretical foundations. Annals of Mathematics and Arti�cial Intelligence.

To appear.

Bredeweg, B. (1992). Expertise in Qualitative Prediction of Behavior. Ph.D. thesis,

Department of Social Science and Informatics University of Amsterdam, Amster-

dam, The Netherlands.

Clancy, D., & Kuipers, B. (1993). Behavior abstraction for tractable simulation.

In Proc. of the Seventh International Workshop on Qualitative Reasoning about

Physical Systems, pp. 57{64.

Clancy, D. J., Brajnik, G., & Kay, H. (1997). Model revision: Techniques and

tools for analyzing simulation results and revising qualitative models. In Proc.

of the Eleventh International Workshop on Qualitative Reasoning about Physical

Systems, pp. 53{66. Cortona, Italy.

Clancy, D. J., & Kuipers, B. J. (1997a). Dynamic chatter abstraction: A scalable

technique for avoiding irrelevant distinctions during qualitative simulation. In Proc.

of the Eleventh International Workshop on Qualitative Reasoning about Physical

Systems, pp. 67{76. Cortona, Italy.

Clancy, D. J., & Kuipers, B. J. (1997b). Model decomposition and simulation:

a component based qualitative simulation algorithm. In Kuipers, B. J., & Webber,

B. (Eds.), Proc. of the Fourteenth National Conference on Arti�cial Intelligence.

AAAI Press.

Clancy, D. J., & Kuipers, B. J. (1997c). Static and dynamic abstraction solves

the problem of chatter in qualitative simulation. In Kuipers, B. J., & Webber,

B. (Eds.), Proc. of the Fourteenth National Conference on Arti�cial Intelligence.

AAAI Press.

212

Coiera, E. W. (1992). Qualitative superposition. Arti�cial Intelligence, 56, 171{

196.

Davis, E. (1990). Representations of Commonsense Knowledge. Morgan Kaufmann

Publishers, Inc.

de Kleer, J., & Brown, J. S. (1985). A qualitative physics based on con
uences. In

Hobbs, J. R., & Moore, R. C. (Eds.), Formal Theories of the Commonsense World,

chap. 4, pp. 109{183. Ablex, Norwood, New Jersey.

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Arti�cial

Intelligence, 49, 61{95.

Dechter, R., & Pearl, J. (1988a). Network{based heurisitcs for constriant-

satisfaction problems. Arti�cial Intelligence, 34, 1{38.

Dechter, R., & Pearl, J. (1988b). Tree-clustering schemes for constraint processing.

In Proceedings of the Seventh National Conference on Arti�cial Intelligence Los

Altos, CA. Morgan Kaufman.

Dechter, R., & Pearl, J. (1989). Tree{clustering for constraint networks. Arti�cial

Intelligence, 38, 353{366.

DeCoste, D. (1994). Goal{directed qualitative reasoning with partial states. Tech.

rep. 57, The Institute for the Learning Sciences, University of Illinois at Urbana{

Champaign.

Doyle, J., & Sacks, E. (1992). Proglemena to any future qualitative physics. Com-

putational Intelligence, 8, 187{209.

Emerson, E. (1990). Temporal and modal logic. In van Leeuwen, J. (Ed.), Handbook

of Theoretical Computer Science, pp. 995{1072. Elsevier Science Publishers/MIT

Press. Chap. 16.

Even, S. (1979). Graph Algorithms. Computer Science Press, Rockville, Maryland.

Falkenhainer, B., & Forbus, K. (1991). Compositional modeling: �nding the right

model for the job. Arti�cial Intelligence, 51, 95{143.

Farquhar, A., Iwasaki, Y., Fikes, R., & Bobrow, D. (1996). A compositional mod-

eling language. In Proc. of the Tenth International Workshop on Qualitative Rea-

soning about Physical Systems. Fallen Leaf Lake, CA.

213

Farquhar, A. (1993). Automated Modeling of Physical Systems in the Presence

of Incomplete Knowledge. Ph.D. thesis, Department of Computer Sciences, the

University of Texas at Austin. Available as technical report UT-AI-93-207.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Ad-

vances in Knowledge Discovery and Data Mining. AAAI Press / MIT Press, Cam-

bridge, Massachusetts.

Forbus, K. (1984). Qualitative process theory. Arti�cial Intelligence, 24, 85{168.

Forbus, K. (1989). Introducing actions into qualitative simulation. In IJCAI{89,

pp. 1273{1278.

Forbus, K. D. (1996). Self{explanatory simulators for middle{school science ed-

ucation: A progress report. In Proc. of the Tenth International Workshop on

Qualitative Reasoning about Physical Systems, pp. 52{56. Fallen Leaf Lake, CA.

Fouch�e, P., & Kuipers, B. (1990). An assessment of currrent qualitative simulation

techniques. In Proc. of Fourth International Worskhop on Qualitative Reasoning

about Physical Systems, pp. 195{205.

Franke, D., & Dvorak, D. (1990). CC: Component-connection models for qual-

itative simulation { a user's guide. Tech. rep. AI90{126, Arti�cial Intelligence

Laboratory, Department of Computer Sciences, University of Texas at Austin.

Freuder, E. C. (1982). A su�cient condition for backtrack-free search. Communi-

cations of the ACM, 32, 755{761.

Hayes, P. J. (1985). The second naive physics manifesto. In Hobbs, J., & Moore,

B. (Eds.), Formal Theories of the Commonsense World. Ablex Publishing Corp.

Ironi, L. (Ed.). (1997). Proceedings of the Eleventh International Workshop on

Qualitative Reasoning about Physical Systems. Cortona, Italy.

Ironi, L., & Stefanelli (1994). QCMF: a tool for generating qualitative models for

compartmental structures. In 8th International Workshop on Qualitative Reasoning

about Physical Systems Nara, Japan.

Iwasaki, Y. (1988). Causal ordering in a mixed strcuture. In Proc. of the Seventh

National Conference on Arti�cial Intelligence, pp. 313{318. AAAI Press / The

MIT Press.

214

Iwasaki, Y., & Farquhar, A. (Eds.). (1996). Proceedings of the Tenth International

Workshop on Qualitative Reasoning about Physical Systems. AAAI Press. Fallen

Leaf Lake, CA.

Iwasaki, Y., Farquhar, A., Saraswat, V., Bobrow, D., & Gupta, V. (1995). Modeling

time in hybrid systems: how fast is \instantaneous"?. In IJCAI{95, pp. 1773{1780

Montr�eal, Canada. Morgan Kaufmann Publishers, Inc.

Kay, H., & Kuipers, B. (1993). Numerical behavior envelopes for qualitative mod-

els. In Proc. of the Eleventh National Conference on Arti�cial Intelligence. AAAI

Press/MIT Press.

Kay, H. (1991). Monitoring and diagnosis of multi-tank
ows using qualitative

reasoning. Master's thesis, Arti�cial Intelligence Laboratory, The University of

Texas at Austin.

Kay, H. (1992). A qualitative model of the space shuttle reaction control sys-

tem. Tech. rep. TR AI92-188, Arti�cial Intelligence Laboratory, Department of

Computer Sciences, University of Texas at Austin.

Kuipers, B. (1994). Qualitative Reasoning: modeling and simulation with incom-

plete knowledge. MIT Press, Cambridge, Massachusetts.

Kuipers, B., & Berleant, D. (1992). Combined qualitative and numerical simulation

with Q3. In Faltings, B., & Struss, P. (Eds.), Recent advances in qualitative physics,

pp. 3{16. MIT Press.

Kuipers, B., Chiu, C., Molle, D. D., & Throop, D. (1991). Higher{order derivative

constraint in qualitative simulation. Arti�cial Intelligence, 51, 343{379.

Kuipers, B., & Shults, B. (1994). Reasoning in logic about continuous change. In

Principles of Knowledge Representation and Reasoning (KR{94). Morgan Kauf-

mann Publishers, Inc.

Nayak, P. (1994). Causal approximations. Arti�cial Intelligence, 70.

Nayak, P. (1992). Automated Modeling of Physical Systems. Ph.D. thesis, Depart-

ment of Computer Science, Stanford University.

Nishida, T., & Doshita, S. (1987). Reasoning about discontinuous change. In

AAAI{87, pp. 643{648.

215

Pell, B., Bernard, D., Chien, S., Gat, E., Muscettola, N., Nayak, P., Wagner, M.,

& Williams, B. (1997). An autonomous spacecraft agent prototype. In Proceedings

of the First International Conference on Autonomous Agents. ACM Press.

Porter, B., Lester, J., Murray, K., Pittman, K., Souther, A., Acker, L., & Jones,

T. (1988). Ai research in the context of a multifunctional knowledge base: The

botany knowledge base project. Technical report AI88{88, Arti�cial Intelligence

Laboratory, The University of Texas at Austin.

Rickel, J., & Porter, B. (1994). Automated modeling for answering prediction

questions: selecting the time scale and system boundary. In Proc. of the 12th

National Conference on Arti�cial Intelligence. AAAI Press / The MIT Press.

Rickel, J., & Porter, B. (1997). Automated modeling of complex systems to answer

prediction questions. Arti�cial Intelligence, 93, 201{260.

Say, A. C. C. (1997). Limitations imposed by the sign{equality assumption in

qualitative simulation. In Proceedings of the Eleventh International Workshop on

Qualitative Reasoning about Physical Systems, pp. 165{174. Cortona, Italy.

Shafer, G., & Pearl, J. (Eds.). (1990). Readings in Uncertain Reasoning. Morgan

Kaufmann, San Mateo, CA.

Shavlik, J. W., & Dietterich, T. G. (Eds.). (1990). Readings in Machine Learning.

Morgan Kaufmann, San Mateo,CA.

Shimomura, Y., Ogawa, K., Tanigawa, S., Umeda, Y., & Tomiyama, T. (1996).

Development of self|maintenance photocopiers. In Proc. of the Tenth Interna-

tional Workshop on Qualitative Reasoning about Physical Systems, pp. 225{234.

Fallen Leaf Lake, CA.

Shults, B., & Kuipers, B. J. (1997). Proving properties of continuous systems:

qualitative simulation and temporal logic. Arti�cial Intelligence, 92, 91{129.

Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press, San

Diego, CA.

Washio, T., & Kitamura, M. (1995). A fast history{oriented envisioning method

introducing temporal logic. In Ninth International Workshop on Qualitative Rea-

soning (QR{95), pp. 279{288 Amsterdam, NL.

Weld, D. S. (1986). The use of aggregation in causal simulation. Arti�cial Intelli-

gence, 30, 1{17.

216

Weld, D. S., & de Kleer, J. (Eds.). (1990). Readings in Qualitative Reasoning About

Physical Systems. William Kaufman.

Wilkins, D. E., Meyers, K., desJardins, M., & Berry, P. (1997). Summary

of multiagent planning architecture.. Working Document. SRI Project 7150.

http://www.ai.sri.com/ wilkins/mpa/mpa.ps.

Williams, B. C., & Nayak, P. P. (1996). A model{based approach to reactive self-

con�guring systems. In Proc. of the Tenth International Workshop on Qualitative

Reasoning about Physical Systems, pp. 274{282. Fallen Leaf Lake, CA.

Williams, B. (1991). A theory of interactions: Unifying qualitative and quantitative

algebraic reasoning. Arti�cial Intelligence, 51, 39{94.

Williams, B. C. (1986). Doing time: Putting qualitative reasoning on �rmer ground.

In Proc. of the Fourth National Conference on Arti�cial Intelligence, pp. 105{113.

217

Vita

Daniel Joseph Clancy was born in New Orleans, Louisiana on January 11, 1964, the

son of Joseph Ignatius Clancy and Mary Ethel Clancy. Dan's father died shortly

before he was born in a plane crash, and his mother remarried two years later to

Gerald E. Siefken who raised Dan. After graduating from Jesuit High School in

New Orleans, Louisiana, he attended Duke University. He received a Bachelor of

Arts with a double major in Drama and Computer Science. Upon graduation, he

moved to Boston, Massachusetts and worked for MITRE Corporation for 4 years as

a Software/Systems Engineer. In August of 1989, he entered the Masters Program

in Computer Science at the University of Texas at Austin and later transfered to

the Doctoral program. In the summer of 1993, he worked at the NASA and in the

summer of 1994 he worked at Xerox Webster Research Center. He also has worked

as a consultant at Trilogy Corporation in Austin, Texas, since October of 1996. Dan

married Suzanne Marie Burke on May 28, 1995. They are currently expecting their

�rst child.

Permanent Address: 1507 Oxford Ave.

Austin, TX 78704

This dissertation was typed by the author.

218

