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Abstract  In the present paper the optimal quadrature formula for approximate evaluation of Fourier coefficients 
1 2
0

( )i xe x dxπ ω ϕ∫  is constructed for functions of the space (1)
2 [0,1]L . At the same time the explicit formulas for 

optimal coefficients, which are very useful in applications, are obtained. The obtained formula is exact for constant. 
In particular, as consequences of the main result the new optimal quadrature formulas for approximate evaluation of 

integrals 
1

0
co (s 2 )dx x xπ ϕω ⋅∫  and 

1

0
si (n 2 )dx x xπ ϕω ⋅∫  are obtained. Furthermore, the order of convergence of the 

constructed optimal quadrature formula is studied. 
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1. Introduction 
Computation of integrals of strongly oscillating functions 

is one of the more important problems of numerical 
analysis, because such integrals are encountered in 
applications in many branches of mathematics as well as 
in other science such as quantum physics, flow mechanics 
and electromagnetism. Main examples of strongly oscillating 
integrands are encountered in different transformation, for 
example, the Fourier transformation and Fourier-Bessel 
transformation. Standard methods of numerical integration 
frequently require more computational works and they 
cannot be successfully applied.  

The earliest formulas for numerical integration of 
rapidly oscillatory functions were given by Filon [3] in 
1928. The Filon’s approach for Fourier integrals  

 
[ ; ] ( ) ,

b i x
a

I f e f x dxωω = ∫  
is based on piecewise approximation of ( )f x  by arcs of 
the parabola on the integration interval. Then finite 
integrals on the subintervals are exactly integrated. The 
Filon’s approach was modified by many mathematicians 
and for integrals with different type highly oscillating 
functions many special effective methods such as Filon-
type method, Clenshaw-Curtis-Filon type method, Levin 
type methods, modifed Clenshaw-Curtis method, generalized 
quadrature rule, Gauss-Laguerre quadrature are worked 
out (see, for example, [2,4,5,6,8,9,10,14,16,21], for more 
review see, for instance, [7,11,13] and references therein). 

In [12] the authors studied approximate computation of 
univariate oscillatory integrals (Fourier coefficients) for 
the standard Sobolev spaces sH of periodic and non-
periodic functions with an arbitrary integer 1s ≥ . They 
found matching lower and upper bounds on the minimal 
worst case error of algorithms that use n  function or 
derivative values. They also found sharp bounds on the 
information complexity which is the minimal n  for which 
the absolute or normalized error is at most ε .  

In the work [18] the weight lattice optimal cubature 

formulas in the periodic Sobolev's space ( )
2 ( )mL Ω  were 

constructed. In particular, from the result of the work [18], 
in univariate case when the weight is the function 
exp( )ixσ  (where [0,2 ]x π∈  and σ is an integer), the 
Babuska's optimal quadrature formula for Fourier 
coefficients [1] was obtained. 

The present work is also devoted to one of such 
methods, i.e. to construction of optimal quadrature 
formulas in the sense of Sard for approximate calculation 
of Fourier integrals.  

We consider the following quadrature formula 

 
1 2
0

0
( ) ( ),

N
i xe x dx C hπ ω

β
β

ϕ ϕ β
=

≅ ∑∫  (1) 

here Cβ are coefficients, 1/ ,h N= 2 1i = − , N ∈ , 
ω∈ , 0,ω ≠ ( )xδ  is Dirac’s delta function, [0,1] ( )xε  is 
the indicator of the interval [0,1]. Functions ϕ  belong to 

the space (1)
2 [0,1]L , where 
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(1)
2

2

[0,1] { :[0,1] , is abs. cont. and
' [0,1]}L

L ϕ ϕ

ϕ

= →

∈

  

is the Sobolev space of complex valued functions and the 
inner product in this space is defined by the equality 

 
1

0
, '( ) '( ) ,x x dxϕ ψ ϕ ψ= ∫  (2) 

where ψ  is the conjugate function to the function ψ  and 
the norm of the function ϕ  is correspondingly defined by 
the formula  

 
1

(1)
22| [0,1] ,Lϕ ϕ ϕ= ， 

and 
1

0
'( ) '( )x x dxϕ ϕ < ∞∫ . 

The following difference 

 

1 2
0

0
( , ) ( ) ( )

( ) ( )

N
i xe x dx C h

x x dx

π ω
β

β
ϕ ϕ ϕ β

ϕ

=

∞

−∞

= − =

=

∑∫

∫





 (3) 

is said to be the error of the formula (1), where 

 2
[0,1]

0
( ) ( ) ( )

N
i xx e x C x hπ ω

β
β

ε δ β
=

= − −∑  (4) 

is the error functional of the formula (1). 
Since the space (1)

2 [0,1]L  is a Hilbert space, then by the 
Cauchy-Schwarz inequality  

 (1) (1)*
2 2( , ) [0,1] . [0,1] ,L Lϕ ϕ≤   (5) 

where (1)*
2 ][0,1L  is the conjugate space of the space 

(1)
2 [0,1]L . 
Since the difference (3) is estimated with the help of the 

norm of the error functional  

 (1)*
2

(1)[0,1] 12

s[0,1] , )up ( .
L

L
ϕ

ϕ
=

=   (6) 

Therefore, the estimation of the error of the quadrature 
formula (1) over functions of the space (1)

2 [0,1]L  is 
reduced to finding the norm (6) of the error functional   
in the conjugate space (1)*

2 ][0,1L . Clearly the norm of the 
error functional depends on coefficients Cβ . The problem 
of finding the minimum of the norm of the error functional 
  by coefficients Cβ  when the nodes are fixed (in our 
case the distances between neighbor nodes of the formula 
(1) are equal, i.e. , 0,1,..., , 1 /x h N h Nβ β β= = = ) is 
called Sard’s problem and the obtained formula is called 
the optimal quadrature formula in the sense of Sard. This 
problem was first investigated by Sard [15] which 
corresponds to the case 0ω =  of the quadrature formula 
(1). 

The main aim of the present work is to solve the Sard 
problem for the quadrature formula of the form (1) in the 
space (1)

2 [0,1]L  using the Sobolev method for 0ω ≠ , i.e. 
to find the coefficients Cβ , that satisfy the following 
equality  

 (1)* (1)*
2 2| inf | .

C
L L

β
=



   (7) 

Thus in order to construct optimal quadrature formulas 
of the form (1) in the sense of Sard we need to solve the 
following problems 

Problem 1. Find the norm of the error functional   of 
the quadrature formulas of the form (1) in the space (1)*

2 .L  
Problem 2. Find the coefficients Cβ  that satisfy 

equality (7). 
The paper is organized as follows: in Section 2 the 

extremal function of the quadrature formula (1) is found 
and with the help of this function the representation of the 
norm of the error functional is obtained. In Section 3, 
using Lagrange method, the system of linear equations for 
the optimal coefficients is obtained and the existence and 
uniqueness of the solution of this system is discussed. In 
Section 4 we give the method for solution of this system 
which allows to get the explicit formulas for optimal 
coefficients and we obtain the explicit formulas for the 
optimal coefficients that are very useful in applications. 
Finally, in Section 5 we calculate the norm of the optimal 
error functional.  

2. Extremal Function and the Norm of the 
Error Functional 

In this section we solve Problem 1. To evaluate the 
norm of the error functional   in (1)*

2L space we use 
extremal function of the quadrature formula (1). The 
function ψ



 is called the extremal for the given functional 
  (see [19]) if the following holds  

 ( ), .ψ ψ= ⋅
 

   (8) 

Since the space (1)
2 [0,1]L is a Hilbert space, then the 

extremal function ψ


 in this space is found with the help 
of Riesz theorem. Then for the functional   and for any 
function ϕ  of the space (1)

2 [0,1]L  there exists a unique 

function ψ


 of the space (1)
2 [0,1]L  for which the following 

holds  

 ( ), , ,ψ ϕ ψ=
 

  (9) 

where ,ϕ ψ


 is the inner product defined in the space 
(1)
2 [0,1]L . Since the error functional   defined on the 

space (1)
2 [0,1]L , then from equality (9) we get the 

following condition which means exactness of the 
quadrature formula (1) on constant term, i.e. 

 ( ),1 0.=  (10) 
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It follows that the extremal function ψ


 is a solution of 
the following boundary problem  

 
( ) 1

0

''( ) ( ),

'( ) | 0.x
x

x x

x

ψ

ψ =
=

= −

=







 (11) 

From S.L.Sobolev result [19,20] about extremal 
function of quadrature formulas, in particular when 1m = , 
we get the following result. 
Theorem 1. The solution of the boundary problem (11) is 
the extremal function ψ



 and has the form: 

 ( ) ( )* ( ) ,x x G x dψ = − +


  

where 

 | |( )
2
xG x =  (12) 

and d  is a complex number. 
Recall that *  is the convolution and the convolution of 

two functions is defined by the formula  

 
( )* ( ) ( ) ( ) ( ) ( ) .x x x y y dy y x y dyϕ ψ ϕ ψ ϕ ψ

∞ ∞

−∞ −∞

= − = −∫ ∫
 

Taking into account the definition of convolution and 
equality (4) we calculate the convolution ( )* ( )x G x , i.e. 

 

1
2

00

( )* ( ) ( ) ( )

( ) ( ),
N

i y

x G x y G x y dy

e G x y dy C G x hπ ω
β

β
β

∞

−∞

−

=

= − =

= − − −

∫

∑∫

 

 
where   and Cβ  are conjugate to   and Cβ , 
respectively.  

Then keeping in mind (9), (10) and (12) we have  

 

( )

( )

2

2
[0,1]

0

1
2

00

, ( ) ( )

( ) ( )* ( )

( ) ( )

( ) ( ) .

N
i x

N
i y

x x dx

x x G x dx

x e C x h

e G x y dy C G x h dx

π ω
β

β

π ω
β

β

ψ ψ

ε δ β

β

∞

−∞
∞

−∞
∞

=−∞

−

=

= = =

− =

 
 = − − − ×
 
 

 
 × − − −
 
 

∫

∫

∑∫

∑∫

 

  

 

 (13) 

Further, simplifying the last equality we get 

 ( )

2

0 0

1
2 2

0 0
1 1

2 2

0 0

( )

( )

( ) .

N N

N
i x i x

i x i y

C C G h h

C e C e G x h dx

e e G x y dxdy

γβ
β γ

π ω π ω
β β

β

π ω π ω

β γ

β

= =

−

=

−


= − − −



− + − +


+ − 



∑ ∑

∑ ∫

∫ ∫



 (14) 

We show that the right hand side of (13) is real. 

Really, let  

 ,R IC C iCβ β β= +  (15) 

where RCβ  and ICβ  are real. 

Using Euler’s formula 2 cos2 sin 2i xe x i xπ ω πω πω= +  
we get the following equalities 

 
( )

0 0

0 0

( )

( ),

N N

N N
R R I I

C C G h h

C C C C G h h

γβ
β γ

β γ β γ
β γ

β γ

β γ

= =

= =

− =

= + −

∑ ∑

∑∑
 

 
2 2

2 cos 2 2 sin 2 ,

i x i x

R I

C e C e

C x C x

π ω π ω
β β

β βπω πω

−+ =

= +
 

 

1 1
2 2

0 0

( )i x i ye e G x y dxdyπ ω π ω− − =∫ ∫
 

 
( )

1 1

0 0

cos 2 ( ) ( ) .x y G x y dxdyπω= − −∫ ∫
 

Keeping in mind the last three equalities, from (14) for 
the norm of the error functional we have 

 

( )

( )

2

0 0

1

0 0
1

0 0
1 1

0 0

( )

2 cos 2 ( )

2 sin 2 ( )

cos 2 ( ) ( ) .

N N
R R I I

N
R

N
I

C C C C G h h

C x G x h dx

C x G x h dx

x y G x y dxdy

β γ β γ
β γ

β
β

β
β

β γ

πω β

πω β

πω

= =

=

=


= − + −



− ⋅ − −

− ⋅ − +


+ − − 



∑ ∑

∑ ∫

∑ ∫

∫ ∫



 (16) 

And from (10), keeping in mind (15), we have the 
following equalities  

 
1 1

0 00 0

cos 2 0, sin 2 0.
N N

R IC xdx C xdxβ β
β β

πω πω
= =

= = = =∑ ∑∫ ∫ (17) 

Therefore, Problem 1 is solved. 

3. Linear System for Optimal Coefficients 

Here we solve Problem 2. To find the minimum of the 
expression (16) under the condition (17) we apply 
Lagrange method of undetermined coefficients. Consider 
the function  

 

2
0 0

1

00

1

00

( ,..., , ,..., , , )

2 cos 2

2 sin 2 .

R R I I R I
N N

N
R R

N
I I

C C C C d d

d xdx C

d xdx C

β
β

β
β

πω

πω

=

=

Ψ = +

 
 + − +
 
 
 
 + −
 
 

∑∫

∑∫



 (18) 
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Equating partial derivatives of the function (18) by 
,R IC Cβ β 0,1,....Nβ =  and by ,R Id d  we get the following 

system of linear equations  

 

0
1

0

( )

cos 2 ( ) ,

0,1,..., ,

N
R RC G h h d

x G x h dx

N

γ
γ

β γ

πω β

β

=
− + =

= ⋅ −

=

∑

∫  (19) 

 

0
1

0

( )

sin 2 ( ) ,

0,1,..., ,

N
I IC G h h d

x G x h dx

N

γ
γ

β γ

πω β

β

=
− + =

= ⋅ −

=

∑

∫  (20) 

 
0

0,
N

RCγ
γ =

=∑  (21) 

 
0

0.
N

ICγ
γ =

=∑  (22) 

Multiplying (20) and (22) by i  and adding to (19) and 
(21), respectively, using denotations (15) and 

,R Id d id= +  for the coefficients of the optimal 
quadrature formulas of the form (1) we get the following 
system of linear equations 

 

0
1

2

0

( )

( ) ,

0,1,..., ,

N

i x

C G h h d

e G x h dx

N

γ
γ

π ω

β γ

β

β

=
− + =

= ⋅ −

=

∑

∫  (23) 

 
0

0.
N

Cγ
γ =

=∑   (24) 

Existence and uniqueness of the solution of system 
(23)-(24) are proved in [12,13], i.e. the square of the norm 
(14) of the error functional  , being multidimensional 
quadratic function of the coefficients Cβ , has a unique 

minimum in certain value of C Cββ =


.  
As it was said in the first section the quadrature formula 

(1) with coefficients Cβ


( 0,1,..., )Nβ = , corresponding to 
this minimum is called the optimal quadrature formula in 

the sense of Sard and Cβ


( 0,1,..., )Nβ =  are called the 
optimal coefficients.  

Below, for the purposes of convenience, the optimal 

coefficients Cβ


 will be denoted as Cβ . 
The method of solution of system (23)-(24) 

Here we give the method of solution of system (23)-
(24). In this section we use similar method, suggested by 
S.L.Sobolev [19,20] for finding coefficients of optimal 

quadrature formulas in the space ( )
2 (0,1)mL . Here we 

mainly use the concept of functions of discrete argument 
and operations on them. Theory of discrete argument 
functions is given in [19]. For completeness we give some 
definitions about functions of discrete argument from [19].  

Definition 1. A function ( )hϕ β  is called function of 
discrete argument if it is defined on some set of integer 
values of β . 

Definition 2. We define the inner product of two 
functions ( )hϕ β  and ( )hψ β  as the following number  

 [ , ] ( ) ( )h h
β

ϕ ψ ϕ β ψ β
∞

=−∞
= ⋅∑ , (25) 

If the series on the right hand side of equality (25) 
converges absolutely. 

Definition 3. We define convolution of two functions 
( )hϕ β  and ( )hψ β  the inner product 

 ( )* ( ) [ ( ) ( )]h h h h hϕ β ψ β ϕ γ ψ β γ= ⋅ − =  

 
( ) ( ).h h h

γ
ϕ γ ψ β γ

∞

=−∞
= ⋅ −∑

 
Now we return to our problem. Suppose 0Cβ =  for 

0β < and Nβ > . Then, using the above definitions, we 
rewrite system (23)-(24) in the convolution form 

 * ( ) ( ), 0,1,..., ,C G h d f h Nβ β β β+ = =  (26) 

 
0

0.
N

Cγ
γ =

=∑  (27) 

Here 

 
2

2
2 1( ) ,

(2 )

i hi i h ef h
i

π ω βπ ω π ω ββ
π ω

− − +
=  (28) 

where the function ( )G x  is defined by (12). 
Problem 3. Find Cβ  and d  which satisfy the system 

(26)-(27) for given ( )f hβ . 
Further we investigate Problem 3 which is equivalent to 

Problem 2 and instead of Cβ  we introduce the functions  

 ( ) * ( ),v h C G hββ β=  (29) 

 ( ) ( ) .u h v h dβ β= +  (30) 

In this statement it is necessary to express the 
coefficients Cβ  by the function ( )u hβ . For this we have 
to construct such operator ( )D hβ  which satisfies the 
equality  

 ( )* ( ) ( ),hD h G h hβ β δ β=  (31) 

where
0, 0,

( )
1, 0,

h
β

δ β
β
≠

=  =
 i.e. ( )hδ β  is discrete delta 

function. 
In the works [17,19] the discrete analogue of the 

differential operator 2 2/m md dx  was investigated and in 
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the work [17] was constructed. In particular, from the 
results of [17] for 1m =  we get the following theorems. 

Theorem 2. The discrete analogue of the differential 
operator 2 2/d dx  satisfying equality (31) has the form 

 2

0, | | 2,
1( ) 1, | | 1,

2, 0.
D h

h

β
β β

β

≥
= =
− =

 (32) 

Theorem 3. The discrete analogue ( )D hβ  of the 

differential operator 2 2/d dx  satisfies the following 
equalities 

1) ( )*1 0,
2) ( )*( ) 0,
3) ( )* ( ) ( ).

D h
D h h
D h G h h

β
β β
β β δ β

=
=
=

 

Then taking account (30), (31) and Theorems 2 and 3 
for the optimal coefficients we have 

 ( )* ( ).C hD h u hβ β β=  (33) 

Thus, if we find ( )u hβ  then optimal coefficients will 
be found from (33). To calculate convolution (33) we have 
to find the representation of the function ( )u hβ  for all 
integer values of β . From (26) we obtain that 

( ) ( )u h f hβ β= for 0,1,2,..., Nβ = . Now we find the 
representation of ( )u hβ  for 0β < and Nβ > . 

Since 0Cβ =  for 0β < and Nβ > , then  

 ( )* ( ) 0, [0,1].C D h u h hβ β β β= = ∉  
Suppose 0β < , then keeping in mind (12) and (27) we 

have 

 
0

1( ) ( ),
2

N
v h C hγ

γ
β γ

=
= ∑  (34) 

Similarly, for Nβ <  

 
0

1( ) ( ),
2

N
v h C hγ

γ
β γ

=
= − ∑  (35) 

Then, from (30) taking into account (34) and (35), we get  

 
0

0

1 ( ) , 0,
2

( ) ( ), 0 ,

1 ( ) , .
2

N

N

C h d

u h f h N

C h d N

γ
γ

γ
γ

γ β

β β β

γ β

=

=


+ ≤


= ≤ ≤

− + ≥


∑

∑

 

where ( )f hβ  is defined by (28).  
We denote 

 
0 0

1 1( ), ( ).
2 2

N N
d d C h d d C hγ γ

γ γ
γ γ− +

= =
= + = −∑ ∑  (36) 

Then taking account of the last representation of the 
function ( )u hβ , we get the following problem which is 
equivalent to Problem 3. 

Problem 4. Find the solution of the equation 

 ( )* ( ) 0 [0,1]D h u h for hβ β β= ∉  (37) 

having the form 

 
, 0,

( ) ( ), 0 ,

, .

d
u h f h N

d N

β
β β β

β

−

+

 ≤


= ≤ ≤


≥

 (38) 

Clearly that Problem 4 is equivalent to Problem 3 and 
Problem 2 respectively. Here d−  and d+  are unknowns. 
These unknowns can be found from (37). For 1β = −  and 

1Nβ = +  from (37) we get the following system 

 

( )
( )

( ) ( 2 ) (0) (0) ( ) 0,

( ) ( ) ( 2 ) (0) ( ) 0.

D h u h u D u h

D h u Nh u Nh h D u Nh h

⋅ − + + ⋅ − =


⋅ + + + ⋅ + =  
Hence using (32) and (38), we have 

 1 1, .
4 4

d d
i iπ ω π ω

− += = −  (39) 

Then 

 ( )1 0,
2

d d d+ −= + =   (40) 

 
0

1( ) .
2

N
C h

iγ
γ

γ
π ω=

=∑  

So that for ( )u hβ  from (38), taking into account (39), we 
have 

 

1 , 0,
4

( ) ( ), 0 ,
1 , ,

4

i
u h f h N

N
i

β
π ω

β β β

β
π ω

 ≤


= ≤ ≤
 − ≥


 (41) 

where ( )f hβ  is defined by equality (28). 
Now, using the last equality from (33) can be calculated 

optimal coefficients. 

4. Coefficients of the Optimal Quadrature 
Formulas (1) 

For the coefficients of the optimal quadrature formulas 
of the form (1) the following theorem holds. 

Theorem 4. Coefficients of the optimal quadrature 
formulas of the form (1) in the sense of Sard when 

0ω ≠ in the space (1)
2 [0,1]L  have the form  

 

2
0 2

2
2

2

2

1 2 ,
(2 )

2(cos 2 1) ,
(2 )

1,2,..., 1,

1 2 .
(2 )

i h

i h

i h
N

e i hC
h i

hC e
h i

N

e i hC
h i

π ω

π ω β
β

π ω

π ω
π ω

πω
π ω

β

π ω
π ω

−

− −
=

−
= ⋅

= −

− +
=







 (42) 
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Proof. Let 0,1,..., Nβ = , then from (33) we get  

 
( )

( )* ( )
( ) ( ) ( ) (0) ( ).

C hD h u h
hD h u h h u h h hD u h

β β β

β β β

= =

= ⋅ + + − + ⋅



 

Now using equalities (32) and (41), from the last 
equality for 0,1,..., Nβ =  we correspondingly get the 

explicit formulas for the coefficients Cβ


, which are given 
in the statement of the theorem.  

Theorem 4 is proved. 

Note that the formulas for the optimal coefficients C β



 
are decomposed into two parts – real and imaginary parts. 
Therefore from Theorem 4 we get the following. 

Corollary 1. The coefficients of the optimal quadrature 
formulas of the form  

 1
0

0
cos 2 ( ) ( ),R

N
x dxx C h

β
βπ ϕ ϕω β

=
⋅ ≅ ∑∫



 

in the sense of Sard when 0ω ≠  in the space (1)
2 [0,1]L  of 

real valued function have the form  

 

0 2 2

2 2

2 2

1 cos 2 ,
4

2(1 cos 2 ) cos 2 ,
4

1,2,..., 1,

1 cos 2 .
4

R

R

R
N

hC
h

hC h
h

N

hC
h

β

πω
π ω

πω πω β
π ω

β

πω
π ω

−
=

−
= ⋅

= −

−
=







 (43) 

Corollary 2. The coefficients of the optimal quadrature 
formulas of the form 

 1
0

0
sin 2 ( ) ( ),I

N
x dxx C h

β
βπ ϕ ϕω β

=
⋅ ≅ ∑∫



 

in the sense of Sard when 0ω ≠  in the space (1)
2 [0,1]L  of 

real valued functions have the form  

 

0 2 2

2 2

2 2

2 sin 2 ,
4

2(1 cos 2 ) sin 2 ,
4

1,2,..., 1,

sin 2 2 .
4

I

I

I
N

h hC
h

hC h
h

N

h hC
h

β

πω πω
π ω

πω πω β
π ω

β

πω πω
π ω

−
=

−
= ⋅

= −

−
=







 (44) 

5. The Norm of the Optimal Error 
Functional 

In this section we investigate order of convergence of 
the constructed optimal quadrature formula of the form (1) 
with the coefficients which are presented in Theorem 4.  

It is known that the absolute value of the error of the 
optimal quadrature formula (1) with coefficients (42) is 
estimated using the Cauchy-Schwarz inequality as follows 

 (1) (1)*
2 2( , ) [0,1] . [0,1] ,L Lϕ ϕ≤



   

where functions ϕ  belong to the space (1)
2 [0,1]L . This 

means that in order to find upper bound of the error of the 
constructed optimal quadrature formula we should 

calculate (1)*
2 [0,1]L



 . 

The following hold. 
Theorem 5. The square of the norm of the error 

functional (2) of the optimal quadrature formula (1) on 
the space (1)

2 [0,1]L  has the forms 

 
2

(1)*
2 2 2

1 2(1 cos 2 )| 1
(2 ) (2 )

hL
h
πω

πω πω

 −
= −  

 



  (45) 

and  

 

2
(1)* 2 2 2 4
2

4 4 6 8

1 1|
12 90

1 ( ).
1260

L h h

h O h

π ω

π ω

= −

+ +





 (46) 

Proof. We rewrite the equality (16) in the following form 

 

2
0

10

0
1

0 0

0
10

0
1

0 0

| |
2

| |cos 2
2

| |cos 2
2

| |
2

| |sin 2
2

| |sin 2
2

cos(2 (

N
R

N
R

N
R

N
I

N
I

N
I

h hC

C
x hx dx

x hC x dx

h hC

C
x hx dx

x hC x dx

x y

γ
γ

β
β

γ
γ

γ
γ

β
β

γ
γ

β γ

βπω

βπω

β γ

βπω

βπω

πω

=

=

=

=

=

=

 − 
 
 = −
 −
− 
 
 

−
+

 − 
 
 −
 −
− 
 
 

−
+

− −

∑
∑

∫

∑ ∫

∑
∑

∫

∑ ∫

















1 1

0 0

| |)) .
2

x y dxdy−
∫ ∫

 

Taking into account (40) we get that 0R Id d= = . 
Then from (19) and (20) we have  

 
1

0 0

| | | |cos 2 0
2 2

N
R h h x hC x dxγ

γ

β γ βπω
=

− −
− =∑ ∫



 

and 
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1

0 0

| | | |sin 2 0,
2 2

N
I h h x hC x dxγ

γ

β γ βπω
=

− −
− =∑ ∫



 

respectively. Keeping in mind the last two equalities we 
obtain 

 

2 1

0 0
1

0 0
1 1

0 0

| |cos 2
2

| |sin 2
2

| |cos(2 ( )) .
2

N
R

N
I

x hC x dx

x hC x dx

x yx y dxdy

γ
γ

γ
γ

βπω

βπω

πω

=

=

−
=

−
+

−
− −

∑ ∫

∑ ∫

∫ ∫









 

Hence calculating the definite integrals and using (43) 
and (44), after some simplifications we get (45). Finally, 
expanding the expression (45) in a series in powers of h 
we have (46). Theorem 5 is proved. 

Remark. Order of convergence of the constructed 
optimal quadrature formula (1) with coefficients (42) is 

( )O h . 

6. Conclusion 

Thus in the present work we have constructed the 
optimal quadrature formula for approximate calculation of 

the Fourier coefficients 
1 2
0

( )i xe x dxπ ω ϕ∫  of functions from 

the Sobolev space (1)
2 [0,1]L . And we have obtained the 

explicit formulas for the optimal coefficients which are 
very useful in applications. The obtained quadrature 
formula is exact for the constant term. In particular, as a 
corollary from the main result the optimal quadrature 
formulas for approximate calculation of integrals 

1

0
co (s 2 )dx x xπ ϕω ⋅∫ и

1

0
si (n 2 )dx x xπ ϕω ⋅∫  have been 

obtained. Furthermore, we have studied the order of 
convergence of our optimal quadrature formula. 
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