
Version 1.4 - Copyright University of Southern California

COCOMO II Model Definition Manual

Version 1.4 - Copyright University of Southern California

Acknowledgments
This work has been supported both financially and technically by the COCOMO II Program Affiliates: Aerospace, Air Force
Cost Analysis Agency, Allied Signal, AT&T, Bellcore, EDS, E-Systems, GDE Systems, Hughes, IDA, Litton, Lockheed
Martin, Loral, MCC, MDAC, Motorola, Northrop Grumman, Rational, Rockwell, SAIC, SEI, SPC, Sun, TI, TRW, USAF
Rome Lab, US Army Research Labs, Xerox.

Graduate Assistants: Chris Abts, Brad Clark, Sunita Devnani-Chulani

The COCOMO II project is being led by Dr. Barry Boehm

Version 1.4 - Copyright University of Southern California i

Table of Contents

CHAPTER 1: FUTURE SOFTWARE PRACTICES MARKETPLACE--1

1.1 OBJECTIVES---1
1.2 FUTURE MARKETPLACE MODEL---2

CHAPTER 2: COCOMO II STRATEGY AND RATIONALE--4

2.1 COCOMO II MODELS FOR THE SOFTWARE MARKETPLACE SECTORS--4
2.2 COCOMO II MODEL RATIONALE AND ELABORATION--4
2.3 DEVELOPMENT EFFORT ESTIMATES --6

2.3.1 Nominal Person Months --7
2.3.2 Breakage --7
2.3.3 Adjusting for Reuse --7
2.3.4 Adjusting for Re-engineering or Conversion --- -- 11
2.3.5 Applications Maintenance --- ----- 12
2.3.6 Adjusting Person Months -- ----- 13

2.4 DEVELOPMENT SCHEDULE ESTIMATES--- 13
2.4.1 Output Ranges -- ------- 13

CHAPTER 3: SOFTWARE ECONOMIES AND DISECONOMIES OF SCALE -- 15

3.1 APPROACH -- 15
3.1.1 Previous Approaches -- 15

3.2 SCALING DRIVERS --- 16
3.2.1 Precedentedness (PREC) and Development Flexibility (FLEX) --- 16
3.2.2 Architecture / Risk Resolution (RESL) -- ---- 17
3.2.3 Team Cohesion (TEAM) --- --- 17
3.2.4 Process Maturity (PMAT) -- ---- 19

CHAPTER 4: THE APPLICATION COMPOSITION MODEL--- 21

4.1 APPROACH -- 21
4.2 OBJECT POINT COUNTING PROCEDURE -- 21

CHAPTER 5: THE EARLY DESIGN MODEL -- 24

5.1 COUNTING WITH FUNCTION POINTS--- 24
5.2 COUNTING PROCEDURE FOR UNADJUSTED FUNCTION POINTS --- 25
5.3 CONVERTING FUNCTION POINTS TO LINES OF CODE --- 26
5.4 COST DRIVERS --- 26

5.4.1 Overall Approach: Personnel Capability (PERS) Example -- 27
5.4.2 Product Reliability and Complexity (RCPX) -- - 28
5.4.3 Required Reuse (RUSE)--- 28
5.4.4 Platform Difficulty (PDIF) --- 28
5.4.5 Personnel Experience (PREX) --- 29
5.4.6 Facilities (FCIL) --- 29
5.4.7 Schedule (SCED) -- 29

CHAPTER 6: THE POST-ARCHITECTURE MODEL -- 31

6.1 LINES OF CODE COUNTING RULES -- 31
6.2 FUNCTION POINTS --- 33
6.3 COST DRIVERS --- 33

6.3.1 Product Factors -- 33
6.3.2 Platform Factors --- 34

Version 1.4 - Copyright University of Southern California ii

6.3.3 Personnel Factors --- 35
6.3.4 Project Factors--- 37

CHAPTER 7: REFERENCES--- 41

CHAPTER 8: GLOSSARY AND INDEX -- 43

APPENDIX A: MASTER EQUATIONS--- 46

APPENDIX B: LOGICAL LINES OF SOURCE CODE COUNTING RULES --- 52

APPENDIX C: COCOMO II PROCESS MATURITY--- 57

APPENDIX D: VALUES FOR COCOMO II.1997--- 68

Chapter 1: Future Software Practices Marketplace

Version 1.4 - Copyright University of Southern California 1

Chapter 1: Future Software Practices Marketplace

"We are becoming a software company," is an increasingly-repeated phrase in organizations as diverse as finance,
transportation, aerospace, electronics, and manufacturing firms. Competitive advantage is increasingly dependent on the
development of smart, tailorable products and services, and on the ability to develop and adapt these products and services
more rapidly than competitors’ adaptation times.

Dramatic reductions in computer hardware platform costs, and the prevalence of commodity software solutions have
indirectly put downward pressure on systems development costs. This situation makes cost-benefit calculations even more
important in selecting the correct components for construction and life cycle evolution of a system, and in convincing
skeptical financial management of the business case for software investments. It also highlights the need for concurrent
product and process determination, and for the ability to conduct trade-off analyses among software and system life cycle
costs, cycle times, functions, performance, and qualities.

Concurrently, a new generation of software processes and products is changing the way organizations develop software.
These new approaches-evolutionary, risk-driven, and collaborative software processes; fourth generation languages and
application generators; commercial off-the-shelf (COTS) and reuse-driven software approaches; fast-track software
development approaches; software process maturity initiatives-lead to significant benefits in terms of improved software
quality and reduced software cost, risk, and cycle time.

However, although some of the existing software cost models have initiatives addressing aspects of these issues, these new
approaches have not been strongly matched to date by complementary new models for estimating software costs and
schedules. This makes it difficult for organizations to conduct effective planning, analysis, and control of projects using the
new approaches.

These concerns have led to the formulation of a new version of the Constructive Cost Model (COCOMO) for software effort,
cost, and schedule estimation. The original COCOMO [Boehm 1981] and its specialized Ada COCOMO successor [Boehm
and Royce 1989] were reasonably well-matched to the classes of software project that they modeled: largely custom, build-to-
specification software [Miyazaki and Mori 1985, Boehm 1985, Goudy 1987]. Although Ada COCOMO added a capability
for estimating the costs and schedules for incremental software development, COCOMO encountered increasing difficulty in
estimating the costs of business software [Kemerer 1987, Ruhl and Gunn 1991], of object-oriented software [Pfleeger 1991],
of software created via spiral or evolutionary development models, or of software developed largely via commercial-off-the-
shelf (COTS) applications-composition capabilities.

1.1 Objectives
The initial definition of COCOMO II and its rationale are described in this paper. The definition will be refined as additional
data are collected and analyzed. The primary objectives of the COCOMO II effort are:

• To develop a software cost and schedule estimation model tuned to the life cycle practices of the 1990’s and 2000’s.

• To develop software cost database and tool support capabilities for continuous model improvement.

• To provide a quantitative analytic framework, and set of tools and techniques for evaluating the effects of software
technology improvements on software life cycle costs and schedules.

These objectives support the primary needs expressed by software cost estimation users in a recent Software Engineering
Institute survey [Park et al. 1994]. In priority order, these needs were for support of project planning and scheduling, projec t
staffing, estimates-to-complete, project preparation, replanning and rescheduling, project tracking, contract negotiation,
proposal evaluation, resource leveling, concept exploration, design evaluation, and bid/no-bid decisions. For each of these
needs, COCOMO II will provide more up-to-date support than the original COCOMO and Ada COCOMO predecessors.

Chapter 1: Future Software Practices Marketplace

Version 1.4 - Copyright University of Southern California 2

1.2 Future Marketplace Model
Figure1 summarizes the model of the future software practices marketplace that we are using to guide the development of
COCOMO II. It includes a large upper "end-user programming" sector with roughly 55 million practitioners in the U.S. by the
year 2005; a lower "infrastructure" sector with roughly 0.75 million practitioners; and three intermediate sectors, involving
the development of applications generators and composition aids (0.6 million practitioners), the development of systems by
applications composition (0.7 million), and system integration of large-scale and/or embedded software systems (0.7 million)1

.

End-User Programming

(55,000,000 performers in US)

Application Generators
and Composition Aids

(600,000)

Application
Composition

(700,000)

System Integration
(700,000)

Infrastructure

 (750,000)

Figure 1: Future Software Practices Marketplace Model

End-User Programming will be driven by increasing computer literacy and competitive pressures for rapid, flexible, and user-
driven information processing solutions. These trends will push the software marketplace toward having users develop most
information processing applications themselves via application generators. Some example application generators are
spreadsheets, extended query systems, and simple, specialized planning or inventory systems. They enable users to determine
their desired information processing application via domain-familiar options, parameters, or simple rules. Every enterprise
from Fortune 100 companies to small businesses and the U.S. Department of Defense will be involved in this sector.

Typical Infrastructure sector products will be in the areas of operating systems, database management systems, user interface
management systems, and networking systems. Increasingly, the Infrastructure sector will address "middleware" solutions for
such generic problems as distributed processing and transaction processing. Representative firms in the Infrastructure sector
are Microsoft, NeXT, Oracle, SyBase, Novell, and the major computer vendors.

In contrast to end-user programmers, who will generally know a good deal about their applications domain and relatively little
about computer science, the infrastructure developers will generally know a good deal about computer science and relatively
little about applications. Their product lines will have many reusable components, but the pace of technology (new processor,
memory, communications, display, and multimedia technology) will require them to build many components and capabilities
from scratch.

Performers in the three intermediate sectors in Figure 1 will need to know a good deal about computer science-intensive
Infrastructure software and also one or more applications domains. Creating this talent pool is a major national challenge.

1 These figures are judgment-based extensions of the Bureau of Labor Statistics moderate-growth labor distribution scenario
for the year 2005 [CSTB 1993; Silvestri and Lukaseiwicz 1991]. The 55 million End-User programming figure was obtained
by applying judgment based extrapolations of the 1989 Bureau of the Census data on computer usage fractions by occupation
[Kominski 1991] to generate end-user programming fractions by occupation category. These were then applied to the 2005
occupation-category populations (e.g., 10% of the 25M people in "Service Occupations"; 40% of the 17M people in
"Marketing and Sales Occupations"). The 2005 total of 2.75 M software practitioners was obtained by applying a factor of 1.6
to the number of people traditionally identified as "Systems Analysts and Computer Scientists"

Chapter 1: Future Software Practices Marketplace

Version 1.4 - Copyright University of Southern California 3

The Application Generators sector will create largely prepackaged capabilities for user programming. Typical firms operating
in this sector are Microsoft, Lotus, Novell, Borland, and vendors of computer-aided planning, engineering, manufacturing,
and financial analysis systems. Their product lines will have many reusable components, but also will require a good deal of
new-capability development from scratch. Application Composition Aids will be developed both by the firms above and by
software product-line investments of firms in the Application Composition sector.

The Application Composition sector deals with applications which are too diversified to be handled by prepackaged solutions,
but which are sufficiently simple to be rapidly composable from interoperable components. Typical components will be
graphic user interface (GUI) builders, database or object managers, middleware for distributed processing or transaction
processing, hypermedia handlers, smart data finders, and domain-specific components such as financial, medical, or industrial
process control packages.

Most large firms will have groups to compose such applications, but a great many specialized software firms will provide
composed applications on contract. These range from large, versatile firms such as Andersen Consulting and EDS, to small
firms specializing in such specialty areas as decision support or transaction processing, or in such applications domains as
finance or manufacturing.

The Systems Integration sector deals with large scale, highly embedded, or unprecedented systems. Portions of these systems
can be developed with Application Composition capabilities, but their demands generally require a significant amount of up-
front systems engineering and custom software development. Aerospace firms operate within this sector, as do major system
integration firms such as EDS and Andersen Consulting, large firms developing software-intensive products and services
(telecommunications, automotive, financial, and electronic products firms), and firms developing large-scale corporate
information systems or manufacturing support systems.

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 4

Chapter 2: COCOMO II Strategy and Rationale

The four main elements of the COCOMO II strategy are:

• Preserve the openness of the original COCOMO;

• Key the structure of COCOMO II to the future software marketplace sectors described above;

• Key the inputs and outputs of the COCOMO II submodels to the level of information available;

• Enable the COCOMO II submodels to be tailored to a project’s particular process strategy.

COCOMO II follows the openness principles used in the original COCOMO. Thus, all of its relationships and algorithms will
be publicly available. Also, all of its interfaces are designed to be public, well-defined, and parametrized, so that
complementary preprocessors (analogy, case-based, or other size estimation models), post-processors (project planning and
control tools, project dynamics models, risk analyzers), and higher level packages (project management packages, product
negotiation aids), can be combined straightforwardly with COCOMO II. To support the software marketplace sectors above,
COCOMO II provides a family of increasingly detailed software cost estimation models, each tuned to the sectors’ needs and
type of information available to support software cost estimation.

2.1 COCOMO II Models for the Software Marketplace Sectors
The End-User Programming sector from Figure 1 does not need a COCOMO II model. Its applications are typically
developed in hours to days, so a simple activity-based estimate will generally be sufficient.

The COCOMO II model for the Application Composition sector is based on Object Points. Object Points are a count of the
screens, reports and third-generation-language modules developed in the application, each weighted by a three-level (simple,
medium, difficult) complexity factor [Banker et al. 1994, Kauffman and Kumar 1993]. This is commensurate with the level of
information generally known about an Application Composition product during its planning stages, and the corresponding
level of accuracy needed for its software cost estimates (such applications are generally developed by a small team in a few
weeks to months).

The COCOMO II capability for estimation of Application Generator, System Integration, or Infrastructure developments is
based on a tailorable mix of the Application Composition model (for early prototyping efforts) and two increasingly detailed
estimation models for subsequent portions of the life cycle, Early Design and Post-Architecture.

2.2 COCOMO II Model Rationale and Elaboration
The rationale for providing this tailorable mix of models rests on three primary premises.

First, unlike the initial COCOMO situation in the late 1970’s, in which there was a single, preferred software life cycle model,
current and future software projects will be tailoring their processes to their particular process drivers. These process drivers
include COTS or reusable software availability; degree of understanding of architectures and requirements; market window or
other schedule constraints; size; and required reliability (see [Boehm 1989, pp. 436-37] for an example of such tailoring
guidelines).

Second, the granularity of the software cost estimation model used needs to be consistent with the granularity of the
information available to support software cost estimation. In the early stages of a software project, very little may be known
about the size of the product to be developed, the nature of the target platform, the nature of the personnel to be involved in
the project, or the detailed specifics of the process to be used.

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 5

Figure 2, extended from [Boehm 1981, p. 311], indicates the effect of project uncertainties on the accuracy of software size
and cost estimates. In the very early stages, one may not know the specific nature of the product to be developed to better than
a factor of 4. As the life cycle proceeds, and product decisions are made, the nature of the products and its consequent size are
better known, and the nature of the process and its consequent cost drivers2 are better known. The earlier "completed
programs" size and effort data points in Figure 2 are the actual sizes and efforts of seven software products built to an
imprecisely-defined specification [Boehm et al. 1984]3. The later "USAF/ESD proposals" data points are from five proposals
submitted to the U.S. Air Force Electronic Systems Division in response to a fairly thorough specification [Devenny 1976].

Size (DSI)

+ Cost ($)

+

+

+
+
+
+

+

+

+
+

+
+
+

4x

2x

1.5x

1.25x

x

0.25x

0.5x

Relative

 Size

 Range

Completed
Programs

USAF/ESD
Proposals

Feasability Plans

and

Rqts.

Product

Design

Detail

Design

Devel.

and

Test

Concept of

Operation

Rqts.

Spec.

Product

Design

Spec.

Detail

Design

Spec.
Accepted

Software

Phases and Milestones

Figure 2: Software Costing and Sizing Accuracy vs. Phase

2 A cost driver refers to a particular characteristic of the software development that has the effect of increasing or decreasing
the amount of development effort, e.g. required product reliability, execution time constraints, project team application
experience.

3 These seven projects implemented the same algorithmic version of the Intermediate COCOMO cost model, but with the use
of different interpretations of the other product specifications: produce a "friendly user interface" with a "single-user file
system."

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 6

Third, given the situation in premises 1 and 2, COCOMO II enables projects to furnish coarse-grained cost driver information
in the early project stages, and increasingly fine-grained information in later stages. Consequently, COCOMO II does not
produce point estimates of software cost and effort, but rather range estimates tied to the degree of definition of the estimation
inputs. The uncertainty ranges in Figure 2 are used as starting points for these estimation ranges.

With respect to process strategy, Application Generator, System Integration, and Infrastructure software projects will involve
a mix of three major process models, The appropriate models will depend on the project marketplace drivers and degree of
product understanding.

The Application Composition model involves prototyping efforts to resolve potential high-risk issues such as user interfaces,
software/system interaction, performance, or technology maturity. The costs of this type of effort are best estimated by the
Applications Composition model.

The Early Design model involves exploration of alternative software/system architectures and concepts of operation. At this
stage, not enough is generally known to support fine-grain cost estimation. The corresponding COCOMO II capability
involves the use of function points and a course-grained set of 7 cost drivers (e.g. two cost drivers for Personnel Capability
and Personnel Experience in place of the 6 COCOMO II Post-Architecture model cost drivers covering various aspects of
personnel capability, continuity, and experience).

The Post-Architecture model involves the actual development and maintenance of a software product. This stage proceeds
most cost-effectively if a software life-cycle architecture has been developed; validated with respect to the system’s mission,
concept of operation, and risk; and established as the framework for the product. The corresponding COCOMO II model has
about the same granularity as the previous COCOMO and Ada COCOMO models. It uses source instructions and / or
function points for sizing, with modifiers for reuse and software breakage; a set of 17 multiplicative cost drivers; and a set of
5 factors determining the project’s scaling exponent. These factors replace the development modes (Organic, Semidetached,
or Embedded) in the original COCOMO model, and refine the four exponent-scaling factors in Ada COCOMO.

To summarize, COCOMO II provides the following three-stage series of models for estimation of Application Generator,
System Integration, and Infrastructure software projects:

1. The earliest phases or spiral cycles will generally involve prototyping, using the Application Composition model
capabilities. The COCOMO II Application Composition model supports these phases, and any other prototyping activities
occurring later in the life cycle.

2. The next phases or spiral cycles will generally involve exploration of architectural alternatives or incremental development
strategies. To support these activities, COCOMO II provides an early estimation model called the Early Design model. This
level of detail in this model is consistent with the general level of information available and the general level of estimation
accuracy needed at this stage.

3. Once the project is ready to develop and sustain a fielded system, it should have a life-cycle architecture, which provides
more accurate information on cost driver inputs, and enables more accurate cost estimates. To support this stage, COCOMO
II provides the Post-Architecture model.

The above should be considered as current working hypotheses about the most effective forms for COCOMO II. They will be
subject to revision based on subsequent data analysis. Data analysis should also enable the further calibration of the
relationships between object points, function points, and source lines of code for various languages and composition systems,
enabling flexibility in the choice of sizing parameters.

2.3 Development Effort Estimates
In COCOMO II effort is expressed as Person Months (PM). All effort equations are presented in Appendix A. A person
month is the amount of time one person spends working on the software development project for one month. This number is
exclusive of holidays and vacations but accounts for weekend time off. The number of person months is different from the
time it will take the project to complete; this is called the development schedule. For example, a project may be estimated to
require 50 PM of effort but have a schedule of 11 months.

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 7

2.3.1 Nominal Person Months
Equation 1 is the base model for the Early Design and Post-Architecture cost estimation models. The inputs are the Size of
software development, a constant, A, and a scale factor, B. The size is in units of thousands of source lines of code (KSLOC).
This is derived from estimating the size of software modules that will constitute the application program. It can also be
estimated from unadjusted function points (UFP), converted to SLOC then divided by one thousand. Procedures for counting
SLOC or UFP are explained in the chapters on the Post-Architecture and Early Design models respectively.

The scale (or exponential) factor, B, accounts for the relative economies or diseconomies of scale encountered for software
projects of different sizes [Banker et al 1994a]. This factor is discussed in the chapter on Software Economies and
Diseconomies of Scale.

The constant, A, is used to capture the multiplicative effects on effort with projects of increasing size. The nominal effort for a
given size project and expressed as person months (PM) is given by Equation 1.

PM A SizeNOMINAL
B= × () EQ 1.

2.3.2 Breakage
COCOMO II uses a breakage percentage, BRAK, to adjust the effective size of the product. Breakage reflects the
requirements volatility in a project. It is the percentage of code thrown away due to requirements volatility. For example, a
project which delivers 100,000 instructions but discards the equivalent of an additional 20,000 instructions has a BRAK value
of 20. This would be used to adjust the project’s effective size to 120,000 instructions for a COCOMO II estimation. The
BRAK factor is not used in the Applications Composition model, where a certain degree of product iteration is expected, and
included in the data calibration.

2.3.3 Adjusting for Reuse
COCOMO adjusts for the reuse by modifying the size of the module or project. The model treats reuse with function points
and source lines of code the same in either the Early Design model or the Post-Architecture model.

Nonlinear Reuse Effects

Analysis in [Selby 1988] of reuse costs across nearly 3000 reused modules in the NASA Software Engineering Laboratory
indicates that the reuse cost function is nonlinear in two significant ways (see Figure 3):

• It does not go through the origin. There is generally a cost of about 5% for assessing, selecting, and assimilating the
reusable component.

• Small modifications generate disproportionately large costs. This is primarily due to two factors: the cost of
understanding the software to be modified, and the relative cost of interface checking.

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 8

Relative
cost

Amount Modified

1.0

0.75

0.5

0.25

0.25 0.5 0.75 1.0

0.55

0.70

1.0

0.046

Usual Linear
Assumption

Data on 2954
NASA modules

[Selby,1988]

Figure 3: Nonlinear Reuse Effects

[Parikh and Zvegintzov 1983] contains data indicating that 47% of the effort in software maintenance involves understanding
the software to be modified. Thus, as soon as one goes from unmodified (black-box) reuse to modified-software (white-box)
reuse, one encounters this software understanding penalty. Also, [Gerlich and Denskat 1994] shows that, if one modifies k out
of m software module the number N of module interface checks required is N = k * (m-k) + k * (k-1)/2. Figure 4 shows this
relation between the number of modules modified k and the resulting number of module interface checks required. The shape
of this curve is similar for other values of m. It indicates that there are nonlinear effects involved in the module interface
checking which occurs during the design, code, integration, and test of modified software.

The size of both the software understanding penalty and the module interface checking penalty can be reduced by good
software structuring. Modular, hierarchical structuring can reduce the number of interfaces which need checking [Gerlich and
Denskat 1994], and software which is well structured, explained, and related to its mission will be easier to understand.
COCOMO II reflects this in its allocation of estimated effort for modifying reusable software.

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 9

A Reuse Model

The COCOMO II treatment of software reuse uses a nonlinear estimation model, Equation 2. This involves estimating the
amount of software to be adapted, ASLOC, and three

45

39

44

30

17

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10

K

N

Figure 4: Number of Module Interface Checks vs. Fraction Modified

degree-of-modification parameters: the percentage of design modified (DM), the percentage of code modified (CM), and the
percentage of modification to the original integration effort required for integrating the reused software (IM).

The Software Understanding increment (SU) is obtained from Table 1. SU is expressed quantitatively as a percentage. If the
software is rated very high on structure, applications clarity, and self-descriptiveness, the software understanding and interface
checking penalty is 10%. If the software is rated very low on these factors, the penalty is 50%. SU is determined by taking the
subjective average of the three categories.

Very Low Low Nom High Very High

Structure Very low
cohesion, high
coupling,
spaghetti code.

Moderately low
cohesion, high
coupling.

Reasonably well-
structured; some
weak areas.

High cohesion, low
coupling.

Strong modularity,
information hiding in
data / control
structures.

Application
Clarity

No match
between
program and
application

ld i

Some correlation
between program
and application.

Moderate
correlation
between program
and application.

Good correlation
between program
and application.

Clear match between
program and
application world-
views.

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 10

Self-
Descriptiveness

Obscure code;
documentation
missing,
obscure or
obsolete

Some code
commentary and
headers; some
useful
documentation.

Moderate level of
code commentary,
headers,
documentations.

Good code
commentary and
headers; useful
documentation;
some weak areas.

Self-descriptive code;
documentation up-to-
date, well-organized,
with design rationale.

SU Increment to
ESLOC

50 40 30 20 10

Table 1: Rating Scale for Software Understanding Increment SU

The other nonlinear reuse increment deals with the degree of Assessment and Assimilation (AA) needed to determine whether
a fully-reused software module is appropriate to the application, and to integrate its description into the overall product
description. Table 2 provides the rating scale and values for the assessment and assimilation increment. AA is a percentage.

AA Increment Level of AA Effort

0 None
2 Basic module search and documentation
4 Some module Test and Evaluation (T&E), documentation
6 Considerable module T&E, documentation
8 Extensive module T&E, documentation

 Table 2: Rating Scale for Assessment and Assimilation Increment (AA)

The amount of effort required to modify existing software is a function not only of the amount of modification (AAF) and
understandability of the existing software (SU), but also of the programmer’s relative unfamiliarity with the software (UNFM).
The UNFM parameter is applied multiplicatively to the software understanding effort increment. If the programmer works
with the software every day, the 0.0 multiplier for UNFM will add no software understanding increment. If the programmer
has never seen the software before, the 1.0 multiplier will add the full software understanding effort increment. The rating of
UNFM is in Table 3.

UNFM Increment Level of Unfamiliarity

0.0 Completely familiar

0.2 Mostly familiar

0.4 Somewhat familiar

0.6 Considerably familiar

0.8 Mostly unfamiliar

1.0 Completely unfamiliar

Table 3: Rating Scale for Programmer Unfamiliarity (UNFM)

 AAF DM CM IM= + +0 4 0 3 0 3. () . () . ()

 ESLOC
ASLOC AA AAF SU UNFM

AAF=
+ +

≤
[(. ()())]

, .
1 0 02

100
0 5 EQ 2.

 ESLOC
ASLOC AA AAF SU UNFM

AAF=
+ +

>
[()()]

, .
100

05

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 11

Equation 2 is used to determine an equivalent number of new instructions, equivalent source lines of code (ESLOC). ESLOC
is divided by one thousand to derive KESLOC which is used as the COCOMO size parameter. The calculation of ESLOC is
based on an intermediate quantity, the Adaptation Adjustment Factor (AAF). The adaptation quantities, DM, CM, IM are
used to calculate AAF where :

• DM: Percent Design Modified. The percentage of the adapted software’s design which is modified in order to adapt
it to the new objectives and environment. (This is necessarily a subjective quantity.)

• CM: Percent Code Modified. The percentage of the adapted software’s code which is modified in order to adapt it to
the new objectives and environment.

• IM: Percent of Integration Required for Modified Software. The percentage of effort required to integrate the
adapted software into an overall product and to test the resulting product as compared to the normal amount of
integration and test effort for software of comparable size.

If there is no DM or CM (the component is being used unmodified) then there is no need for SU. If the code is being
modified then SU applies.

2.3.4 Adjusting for Re-engineering or Conversion
The COCOMO II reuse model needs additional refinement to estimate the costs of software re-engineering and conversion.
The major difference in re-engineering and conversion is the efficiency of automated tools for software restructuring. These
can lead to very high values for the percentage of code modified (CM in the COCOMO II reuse model), but with very little
corresponding effort. For example, in the NIST re-engineering case study [Ruhl and Gunn 1991], 80% of the code (13,131
COBOL source statements) was re-engineered by automatic translation, and the actual re-engineering effort, 35 person
months, was a factor of over 4 lower than the COCOMO estimate of 152 person months.

The COCOMO II re-engineering and conversion estimation approach involves estimation of an additional parameter, AT, the
percentage of the code that is re-engineered by automatic translation. Based on an analysis of the project data above, the
productivity for automated translation is 2400 source statements / person month. This value could vary with different
technologies and will be designated in the COCOMO II model as ATPROD. In the NIST case study ATPROD = 2400.
Equation 3 shows how automated translation affects the estimated nominal effort, PM.

PM A Size
ASLOC

AT

ATPRODno al
B

min ()= × +

























100
EQ 3.

The NIST case study also provides useful guidance on estimating the AT factor, which is a strong function of the difference
between the boundary conditions (e.g., use of COTS packages, change from batch to interactive operation) of the old code
and the re-engineered code. The NIST data on percentage of automated translation (from an original batch processing
application without COTS utilities) are given in Table 4 [Ruhl and Gunn 1991].

Re-engineering Target AT (% automated translation)

Batch processing 96%
Batch with SORT 90%
Batch with DBMS 88%

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 12

Batch, SORT, DBMS 82%
Interactive 50%

Table 4: Variation in Percentage of Automated Re-engineering

2.3.5 Applications Maintenance
COCOMO II uses the reuse model for maintenance when the amount of added or changed base source code is less than or
equal to 20% or the new code being developed. Base code is source code that already exists and is being changed for use in
the current project. For maintenance projects that involve more than 20% change in the existing base code (relative to new
code being developed) COCOMO II uses maintenance size. An initial maintenance size is obtained in one to two ways,
Equation 4 or Equation 6. Equation 4 is used when the base code size is known and the percentage of change to the base code
is known.

() [()]Size BaseCodeSize MCF MAFM = × × EQ 4.

The percentage of change to the base code is called the Maintenance Change Factor (MCF). The MCF is similar to the
Annual Change Traffic in COCOMO 81, except that maintenance periods other than a year can be used. Conceptually the
MCF represents the ratio in Equation 5:

MCF
SizeAdded SizeModified

BaseCodeSize
=

+
EQ 5.

Equation 6 is used when the fraction of code added or modified to the existing base code during the maintenance period is
known. Deleted code is not counted.

() ()Size SizeAdded SizeModified MAFM = + × EQ 6.

The size can refer to thousands of source lines of code (KSLOC), Function Points, or Object Points. When using Function
Points or Object Points, it is better to estimate MCF in terms of the fraction of the overall application being changed, rather
than the fraction of inputs, outputs, screens, reports, etc. touched by the changes. Our experience indicates that counting the
items touched can lead to significant over estimates, as relatively small changes can touch a relatively large number of items.

The initial maintenance size estimate (described above) is adjusted with a Maintenance Adjustment Factor (MAF), Equation
7. COCOMO 81 used different multipliers for the effects of Required Reliability (RELY) and Modern Programming Practices
(MODP) on maintenance versus development effort. COCOMO II instead used the Software Understanding (SU) and
Programmer Unfamiliarity (UNFM) factors from its reuse model to model the effects of well or poorly
structured/understandable software on maintenance effort.

MAF
SU

UNFM= + ×



1

100
EQ 7.

The resulting maintenance effort estimation formula is the same as the COCOMO II Post-Architecture development model:

()PM A Size EMM M

B

i
i

= × ×
=

∏
1

17

EQ 8.

The COCOMO II approach to estimating either the maintenance activity duration, TM, or the average maintenance staffing
level, FSPM, is via the relationship:

PM T FSPM M M= × EQ 9.

Most maintenance is done as a level of effort activity. This relationship can estimate the level of effort, FSPM, given TM (as in
annual maintenance estimates, where TM = 12 months), or vice-versa (given a fixed maintenance staff level, FSPM, determine
the necessary time, TM, to complete the effort).

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 13

2.3.6 Adjusting Person Months
Cost drivers are used to capture characteristics of the software development that affect the effort to complete the project. Cost
drivers have a rating level that expresses the impact of the driver on development effort, PM. These rating can range from
Extra Low to Extra High. For the purposes of quantitative analysis, each rating level of each cost driver has a weight
associated with it. The weight is called an effort multiplier (EM). The average EM assigned to a cost driver is 1.0 and the
rating level associated with that weight is called Nominal. If a rating level causes more software development effort, then its
corresponding EM is above 1.0. Conversely, if the rating level reduces the effort then the corresponding EM is less than 1.0.
The selection of effort-multipliers is based on a strong rationale that they would independently explain a significant source of
project effort or productivity variation.

The EMs are used to adjust the nominal person month effort. There are 7 effort-multipliers for the Early Design model and 17
effort-multipliers for the Post-Architecture model. Each set is explained with their models in later chapters. The full equations
are presented in Appendix A.

PM PM EMadjusted no al i
i

= ×




∏min EQ 10.

2.4 Development Schedule Estimates
The initial version of COCOMO II provides a simple schedule estimation capability similar to those in COCOMO and Ada
COCOMO. The initial baseline schedule equation for all three COCOMO II stages is:

()[]TDEV PM
SCEDB= × ×+ × −3 0

100
0 33 0 2 1 01.

%. . (.) EQ 11.

where TDEV is the calendar time in months from the determination of a product’s requirements baseline to the completion of
an acceptance activity certifying that the product satisfies its requirements. PM is the estimated person-months excluding the
SCED effort multiplier, B is the sum of project scale factors (discussed in the next chapter) and SCED% is the compression /
expansion percentage in the SCED effort multiplier in Table 21.

As COCOMO II evolves, it will have a more extensive schedule estimation model, reflecting the different classes of process
model a project can use; the effects of reusable and COTS software; and the effects of applications composition capabilities.

Chapter 2: COCOMO II Strategy and Rationale

Version 1.4 - Copyright University of Southern California 14

2.4.1 Output Ranges
A number of COCOMO users have expressed a preference for estimate ranges rather than point estimates as COCOMO
outputs. The three-stage COCOMO II model enables the estimation of likely ranges of output estimates, using the costing and
sizing accuracy relationships in Figure 2. Once the most likely effort estimate E is calculated from the chosen Application
Composition, Early Design, or Post-Architecture model, a set of optimistic and pessimistic estimates, representing roughly
one standard deviation around the most likely estimate, are calculated as follows:

Stage Optimistic Estimate Pessimistic Estimate

1 0.50 E 2.0 E
2 0.67 E 1.5 E
3 0.80 E 1.25 E

Table 5: Output Range Estimates

The effort range values can be used in the schedule equation, Equation 11, to determine schedule range values.

Chapter 3: Software Economies and Diseconomies of Scale

Version 1.4 - Copyright University of Southern California 15

Chapter 3: Software Economies and Diseconomies of Scale

3.1 Approach
Software cost estimation models often have an exponential factor to account for the relative economies or diseconomies of
scale encountered in different size software projects. The exponent, B, in Equation 1 is used to capture these effects.

If B < 1.0, the project exhibits economies of scale. If the product’s size is doubled, the project effort is less than doubled. The
project’s productivity increases as the product size is increased. Some project economies of scale can be achieved via project-
specific tools (e.g., simulations, testbeds) but in general these are difficult to achieve. For small projects, fixed start-up costs
such as tool tailoring and setup of standards and administrative reports are often a source of economies of scale.

If B = 1.0, the economies and diseconomies of scale are in balance. This linear model is often used for cost estimation of
small projects. It is used for the COCOMO II Applications Composition model.

If B > 1.0, the project exhibits diseconomies of scale. This is generally due to two main factors: growth of interpersonal
communications overhead and growth of large-system integration overhead. Larger projects will have more personnel, and
thus more interpersonal communications paths consuming overhead. Integrating a small product as part of a larger product
requires not only the effort to develop the small product, but also the additional overhead effort to design, maintain, integrate,
and test its interfaces with the remainder of the product.

See [Banker et al 1994a] for a further discussion of software economies and diseconomies of scale.

3.1.1 Previous Approaches
The data analysis on the original COCOMO indicated that its projects exhibited net diseconomies of scale. The projects
factored into three classes or modes of software development (Organic, Semidetached, and Embedded), whose exponents B
were 1.05, 1.12, and 1.20, respectively. The distinguishing factors of these modes were basically environmental: Embedded-
mode projects were more unprecedented, requiring more communication overhead and complex integration; and less flexible,
requiring more communications overhead and extra effort to resolve issues within tight schedule, budget, interface, and
performance constraints.

The scaling model in Ada COCOMO continued to exhibit diseconomies of scale, but recognized that a good deal of the
diseconomy could be reduced via management controllables. Communications overhead and integration overhead could be
reduced significantly by early risk and error elimination; by using thorough, validated architectural specifications; and by
stabilizing requirements. These practices were combined into an Ada process model [Boehm and Royce 1989, Royce 1990].
The project’s use of these practices, and an Ada process model experience or maturity factor, were used in Ada COCOMO to
determine the scale factor B.

Ada COCOMO applied this approach to only one of the COCOMO development modes, the Embedded mode. Rather than a
single exponent B = 1.20 for this mode, Ada COCOMO enabled B to vary from 1.04 to 1.24, depending on the project’s
progress in reducing diseconomies of scale via early risk elimination, solid architecture, stable requirements, and Ada process
maturity.

COCOMO II combines the COCOMO and Ada COCOMO scaling approaches into a single rating-driven model. It is similar
to that of Ada COCOMO in having additive factors applied to a base exponent B. It includes the Ada COCOMO factors, but
combines the architecture and risk factors into a single factor, and replaces the Ada process maturity factor with a Software
Engineering Institute (SEI) process maturity factor (The exact form of this factor is still being worked out with the SEI). The
scaling model also adds two factors, precedentedness and flexibility, to account for the mode effects in original COCOMO,
and adds a Team Cohesiveness factor to account for the diseconomy-of-scale effects on software projects whose developers,
customers, and users have difficulty in synchronizing their efforts. It does not include the Ada COCOMO Requirements
Volatility factor, which is now covered by increasing the effective product size via the Breakage factor.

Chapter 3: Software Economies and Diseconomies of Scale

Version 1.4 - Copyright University of Southern California 16

3.2 Scaling Drivers
Equation 12 defines the exponent, B, used in Equation 1. Table 21 provides the rating levels for the COCOMO II scale
drivers. The selection of scale drivers is based on the rationale that they are a significant source of exponential variation on a
project’s effort or productivity variation. Each scale driver has a range of rating levels, from Very Low to Extra High. Each
rating level has a weight, W, and the specific value of the weight is called a scale factor. A project’s scale factors, Wi, are
summed across all of the factors, and used to determine a scale exponent, B, via the following formula:

B Wi= + × ∑101 0 01. . EQ 12.

For example, if scale factors with an Extra High rating are each assigned a weight of (0), then a 100 KSLOC project with
Extra High ratings for all factors will have ² Wi = 0, B = 1.01, and a relative effort E = 1001.01= 105 PM. If scale factors
with Very Low rating are each assigned a weight of (5), then a project with Very Low (5) ratings for all factors will have ²Wi=
25, B = 1.26, and a relative effort E = 331 PM. This represents a large variation, but the increase involved in a one-unit
change in one of the factors is only about 4.7%.

Scale Factors
(Wi)

Very Low Low Nominal High Very High Extra High

PREC thoroughly
unprecedented

largely
unprecedented

somewhat
unprecedented

generally
familiar

largely familiar throughly
familiar

FLEX rigorous occasional
relaxation

some

relaxation

general

conformity

some

conformity

general goals

RESLa little (20%) some (40%) often (60%) generally
(75%)

mostly (90%) full (100%)

TEAM very difficult
interactions

some difficult
interactions

basically
cooperative
interactions

largely

cooperative

highly

cooperative

seamless
interactions

PMAT Weighted average of "Yes" answers to CMM Maturity Questionnaire
Table 6: Scale Factors for COCOMO II Early Design and Post-Architecture Models

a % significant module interfaces specified, % significant risks eliminated.

3.2.1 Precedentedness (PREC) and Development Flexibility (FLEX)
These two scale factors largely capture the differences between the Organic, Semidetached and Embedded modes of the
original COCOMO model [Boehm 1981]. Table 7 reorganizes [Boehm 1981, Table 6.3] to map its project features onto the
Precedentedness and Development Flexibility scales. This table can be used as a more in depth explanation for the PREC and
FLEX rating scales given in Table 21.

Chapter 3: Software Economies and Diseconomies of Scale

Version 1.4 - Copyright University of Southern California 17

Feature Very Low Nominal / High Extra High

Precedentedness

Organizational understanding of product objectives General Considerable Thorough

Experience in working with related software systems Moderate Considerable Extensive

Concurrent development of associated new hardware
and operational procedures

Extensive Moderate Some

Need for innovative data processing architectures,
algorithms

Considerable Some Minimal

Development Flexibility

Need for software conformance with pre-established
requirements

Full Considerable Basic

Need for software conformance with external
interface specifications

Full Considerable Basic

Premium on early completion High Medium Low

Table 7: Scale Factors Related to COCOMO Development Modes

3.2.2 Architecture / Risk Resolution (RESL)
This factor combines two of the scale factors in Ada COCOMO, "Design Thoroughness by Product Design Review (PDR)"
and "Risk Elimination by PDR" [Boehm and Royce 1989; Figures 4 and 5]. Table 8 consolidates the Ada COCOMO ratings
to form a more comprehensive definition for the COCOMO II RESL rating levels. The RESL rating is the subjective
weighted average of the listed characteristics. (Explain the Ada COCOMO ratings)

3.2.3 Team Cohesion (TEAM)
The Team Cohesion scale factor accounts for the sources of project turbulence and entropy due to difficulties in
synchronizing the project’s stakeholders: users, customers, developers, maintainers, interfacers, others. These difficulties may
arise from differences in stakeholder objectives and cultures; difficulties in reconciling objectives; and stakeholder’s lack of
experience and familiarity in operating as a team. Table 9 provides a detailed definition for the overall TEAM rating levels.
The final rating is the subjective weighted average of the listed characteristics.

Chapter 3: Software Economies and Diseconomies of Scale

Version 1.4 - Copyright University of Southern California 18

Characteristic Very Low Low Nominal High Very High Extra
High

Risk Management Plan identifies
all critical risk items, establishes
milestones for resolving them by
PDR.

None Little Some Generally Mostly Fully

Schedule, budget, and internal
milestones through PDR
compatible with Risk
Management Plan

None Little Some Generally Mostly Fully

Percent of development schedule
devoted to establishing
architecture, given general
product objectives

5 10 17 25 33 40

Percent of required top software
architects available to project

20 40 60 80 100 120

Tool support available for
resolving risk items, developing
and verifying architectural specs

None Little Some Good Strong Full

Level of uncertainty in Key
architecture drivers: mission,
user interface, COTS, hardware,
technology, performance.

Extreme Significant Considerable Some Little Very
Little

Number and criticality of risk
items

> 10
Critical

5-10
Critical

2-4
Critical

1
Critical

> 5 Non-
Critical

< 5 Non-
Critical

Table 8: RESL Rating Components

Table 9: TEAM Rating Components

Characteristic Very Low Low Nominal High Very High Extra
HIgh

Consistency of stakeholder
objectives and cultures

Little Some Basic Considerable Strong Full

Ability, willingness of
stakeholders to accommodate
other stakeholders’ objectives

Little Some Basic Considerable Strong Full

Experience of stakeholders in
operating as a team

None Little Little Basic Considerable Extensive

Stakeholder teambuilding to
achieve shared vision and
commitments

None Little Little Basic Considerable Extensive

Chapter 3: Software Economies and Diseconomies of Scale

Version 1.4 - Copyright University of Southern California 19

3.2.4 Process Maturity (PMAT)
The procedure for determining PMAT is organized around the Software Engineering Institute’s Capability Maturity Model
(CMM). The time period for rating Process Maturity is the time the project starts. There are two ways of rating Process
Maturity. The first captures the result of an organized evaluation based on the CMM.

Overall Maturity Level
r CMM Level 1 (lower half)

r CMM Level 1 (upper half)

 r CMM Level 2

 r CMM Level 3

 r CMM Level 4

 r CMM Level 5

Key Process Areas
The second is organized around the 18 Key Process Areas (KPAs) in the SEI Capability Maturity Model [Paulk et al. 1993,
1993a]. The procedure for determining PMAT is to decide the percentage of compliance for each of the KPAs. If the project
has undergone a recent CMM Assessment then the percentage compliance for the overall KPA (based on KPA Key Practice
compliance assessment data) is used. If an assessment has not been done then the levels of compliance to the KPA’s goals are
used (with the Likert scale below) to set the level of compliance. The goal-based level of compliance is determined by a
judgement-based averaging across the goals for each Key Process Area. If more information is needed on the KPA goals, they
are listed in Appendix B of this document.

Key Process Areas Almost
Always
(>90%)

Frequent
ly (60-
90%)

About
Half

(40-60%)

Occasion
ally

(10-40%)

Rarely If
Ever

(<10%)

Does Not
Apply

Don’t
Know

1 Requirements Management r r r r r r r

2 Software Project Planning r r r r r r r

3 Software Project Tracking and
Oversight

r r r r r r r

4 Software Subcontract
Management

r r r r r r r

5 Software Quality Assurance r r r r r r r

6 Software Configuration
Management

r r r r r r r

7 Organization Process Focus r r r r r r r

8 Organization Process Definition r r r r r r r

9 Training Program r r r r r r r

Chapter 3: Software Economies and Diseconomies of Scale

Version 1.4 - Copyright University of Southern California 20

10 Integrated Software Management r r r r r r r

11 Software Product Engineering r r r r r r r

12 Intergroup Coordination r r r r r r r

13 Peer Reviews r r r r r r r

14 Quantitative Process
Management

r r r r r r r

15 Software Quality Management r r r r r r r

16 Defect Prevention r r r r r r r

17 Technology Change Management r r r r r r r

18 Process Change Management r r r r r r r

• Check Almost Always when the goals are consistently achieved and are well established in standard operating
procedures (over 90% of the time).

• Check Frequently when the goals are achieved relatively often, but sometimes are omitted under difficult
circumstances (about 60 to 90% of the time).

• Check About Half when the goals are achieved about half of the time (about 40 to 60% of the time).

• Check Occasionally when the goals are sometimes achieved, but less often (about 10 to 40% of the time).

• Check Rarely If Ever when the goals are rarely if ever achieved (less than 10% of the time).

• Check Does Not Apply when you have the required knowledge about your project or organization and the KPA, but
you feel the KPA does not apply to your circumstances.

• Check Don’t Know when you are uncertain about how to respond for the KPA. After the level of KPA compliance is
determined each compliance level is weighted and a PMAT factor is calculated, as in Equation 13. Initially, all KPAs
will be equally weighted.

5
100

5

181

18

− ×
















=
∑ KPA i

i

%
EQ 13.

Chapter 4: The Application Composition Model

Version 1.4 - Copyright University of Southern California 21

Chapter 4: The Application Composition Model

This model address applications that are too diversified to be created quickly in a domain specific tool such as a spreadsheet
yet are well enough known to be composed from interoperable components. Examples of these components-based systems are
graphic user interface (GUI) builders, database or object managers, middleware for distributed processing or transaction
processing, hypermedia handlers, smart data finders, and domain-specific components such as financial, medical, or industrial
process control packages.

4.1 Approach
Object Point estimation is a relatively new software sizing approach, but it is well-matched to the practices in the Applications
Composition sector. It is also a good match to associated prototyping efforts, based on the use of a rapid-composition
Integrated Computer Aided Software Environment (ICASE) providing graphic user interface builders, software development
tools, and large, composable infrastructure and applications components. In these areas, it has compared well to Function
Point estimation on a nontrivial (but still limited) set of applications.

The [Banker et al. 1991] comparative study of Object Point vs. Function Point estimation analyzed a sample of 19 investment
banking software projects from a single organization, developed using ICASE applications composition capabilities, and
ranging from 4.7 to 71.9 person-months of effort. The study found that the Object Points approach explained 73% of the
variance (R2) in person-months adjusted for reuse, as compared to 76% for Function Points.

A subsequent statistically-designed experiment [Kaufman and Kumar 1993] involved four experienced project managers
using Object Points and Function Points to estimate the effort required on two completed projects (3.5 and 6 actual person-
months), based on project descriptions of the type available at the beginning of such projects. The experiment found that
Object Points and Function Points produced comparably accurate results (slightly more accurate with Object Points, but not
statistically significant). From a usage standpoint, the average time to produce an Object Point estimate was about 47% of the
corresponding average time for Function Point estimates. Also, the managers considered the Object Point method easier to
use (both of these results were statistically significant).

Thus, although these results are not yet broadly-based, their match to Applications Composition software development
appears promising enough to justify selecting Object Points as the starting point for the COCOMO II Applications
Composition estimation model.

4.2 Object Point Counting Procedure
The COCOMO II Object Point procedure for estimating the effort involved in Applications Composition and prototyping
projects is a synthesis of the procedure in Appendix B.3 of [Kauffman and Kumar 1993] and the productivity data from the 19
project data points in [Banker et al. 1994].

Definitions of the terms are as follows:

• NOP: New Object Points (Object Point count adjusted for reuse)

• srvr: number of server (mainframe or equivalent) data tables used in conjunction with the SCREEN or REPORT.

• clnt: number of client (personal workstation) data tables used in conjunction with the SCREEN or REPORT.

• %reuse: the percentage of screens, reports, and 3GL modules reused from previous applications, pro-rated by degree
of reuse.

The productivity rates are based on an analysis of the year-1 and year-2 project data in [Banker et al. 1991]. In year-1, the
CASE tool was itself under construction and the developers were new to its use. The average productivity of NOP/person-
month in the twelve year-1 projects is associated with the Low levels of developer and ICASE maturity and capability. In the
seven year-2 projects, both the CASE tool and the developers’ capabilities were considerably more mature. The average

Chapter 4: The Application Composition Model

Version 1.4 - Copyright University of Southern California 22

productivity was 25 NOP/person-month, corresponding with the High levels of developer and ICASE maturity.

As another definitional point, note that the use of the term "object" in "Object Points" defines screens, reports, and 3GL
modules as objects. This may or may not have any relationship to other definitions of "objects", such as those possessing
features such as class affiliation, inheritance, encapsulation, message passing, and so forth. Counting rules for "objects" of
that nature, when used in languages such as C++, will be discussed in the chapter on the Post Architecture model.

1. Assess Object-Counts: estimate the number of screens, reports, and 3GL components that will comprise this
application. Assume the standard definitions of these objects in your ICASE environment.

2. Classify each object instance into simple, medium and difficult complexity levels depending on values of
characteristic dimensions. Use the following scheme:

For Screens For Reports

and source of data tables # and source of data tables

Number of
Views

contained

Total < 4

(< 2 srvr

< 3 clnt)

Total < 8

(2/3 srvr

3-5 clnt)

Total 8+

(> 3 srvr

> 5 clnt)

Number of
Sections

contained

Total < 4

(< 2 srvr

< 3 clnt)

Total < 8

(2/3 srvr

3-5 clnt)

Total 8+

(> 3 srvr

> 5 clnt)

< 3 simple simple medium 0 or 1 simple simple medium

3 - 7 simple medium difficult 2 or 3 simple medium difficult

> 8 medium difficult difficult 4 + medium difficult difficult

3. Weigh the number in each cell using the following scheme. The weights reflect the relative effort required to implement
an instance of that complexity level.:

Object Type Complexity-Weight

Simple Medium Difficult

Screen 1 2 3
Report 2 5 8

3GL Component 10

4. Determine Object-Points: add all the weighted object instances to get one number, the Object-Point count.

5. Estimate percentage of reuse you expect to be achieved in this project. Compute the New Object Points to be developed,
Equation 14..

EQ 14.

6. Determine a productivity rate, PROD = NOP / person-month, from the following scheme

Chapter 4: The Application Composition Model

Version 1.4 - Copyright University of Southern California 23

Developers’ experience and capability Very Low Low Nominal High Very High
ICASE maturity and capability

PROD 4 7 13 25 50

7. Compute the estimated person-months:

PM
NOP

PROD
= EQ 15.

Chapter 5: The Early Design Model

Version 1.4 - Copyright University of Southern California 24

Chapter 5: The Early Design Model

This section covers the Early Design model using Unadjusted Function Points (UFP) as the sizing metric. This model is used
in the early stages of a software project when very little may be known about the size of the product to be developed, the
nature of the target platform, the nature of the personnel to be involved in the project, or the detailed specifics of the process
to be used. This model could be employed in either Application Generator, System Integration, or Infrastructure development
sectors. For discussion of these marketplace sectors see Chapter 1.

5.1 Counting with Function Points
The function point cost estimation approach is based on the amount of functionality in a software project and a set of
individual project factors [Behrens 1983] [Kunkler 1985] [IFPUG 1994]. Function points are useful estimators since they are
based on information that is available early in the project life cycle. A brief summary of function points and their calculation
in support of COCOMO II is as follows.

Function points measure a software project by quantifying the information processing functionality associated with major
external data or control input, output, or file types. Five user function types should be identified as defined in Table 10.

External Input (Inputs) Count each unique user data or user control input type that (i) enters the
external boundary of the software system being measured and (ii) adds or
changes data in a logical internal file.

External Output (Outputs) Count each unique user data or control output type that leaves the external
boundary of the software system being measured.

Internal Logical File
(Files)

Count each major logical group of user data or control information in the
software system as a logical internal file type. Include each logical file (e.g.,
each logical group of data) that is generated, used, or maintained by the
software system.

External Interface Files
(Interfaces)

Files passed or shared between software systems should be counted as
external interface file types within each system.

External Inquiry (Queries) Count each unique input-output combination, where an input causes and
generates an immediate output, as an external inquiry type.

 Table 10: User Function Types

Each instance of these function types is then classified by complexity level. The complexity levels determine a set of weights,
which are applied to their corresponding function counts to determine the Unadjusted Function Points quantity. This is the
Function Point sizing metric used by COCOMO II. The usual Function Point procedure involves assessing the degree of
influence (DI) of fourteen application characteristics on the software project determined according to a rating scale of 0.0 to
0.05 for each characteristic. The 14 ratings are added together, and added to a base level of 0.65 to produce a general
characteristics adjustment factor that ranges from 0.65 to 1.35.

Each of these fourteen characteristics, such as distributed functions, performance, and reusability, thus have a maximum of
5% contribution to estimated effort. This is inconsistent with COCOMO experience; thus COCOMO II uses Unadjusted
Function Points for sizing, and applies its reuse factors, cost driver effort multipliers, and exponent scale factors to this sizing
quantity.

Chapter 5: The Early Design Model

Version 1.4 - Copyright University of Southern California 25

5.2 Counting Procedure for Unadjusted Function Points
The COCOMO II procedure for determining Unadjusted Function Points is described here. This procedure is used in both the
Early Design and the Post-Architecture models.

1. Determine function counts by type. The unadjusted function counts should be counted by a lead technical person based on
information in the software requirements and design documents. The number of each of the five user function types should be
counted (Internal Logical File4 (ILF), External Interface File (EIF), External Input (EI), External Output (EO), and External
Inquiry (EQ)).

2. Determine complexity-level function counts. Classify each function count into Low, Average and High complexity levels
depending on the number of data element types contained and the number of file types referenced. Use the following
scheme:

For ILF and EIF For EO and EQ For EI

Record
Elements

Data Elements File
Types

Data Elements File
Types

Data Elements

1 - 19 20 - 50 51+ 1 - 5 6 - 19 20+ 1 - 4 5 - 15 16+

1 Low Low Avg 0 or 1 Low Low Avg 0 or 1 Low Low Avg

2 - 5 Low Avg High 2 - 3 Low Avg High 2 - 3 Low Avg High

6+ Avg High High 4+ Avg High High 3+ Avg High High

3. Apply complexity weights. Weight the number in each cell using the following scheme. The weights reflect the relative
value of the function to the user.

Function Type Complexity-Weight
Low Average High

Internal Logical 7 10 15
External Interfaces 5 7 10

External Inputs 3 4 6

External Outputs 4 5 7

External Inquiries 3 4 6

4. Compute Unadjusted Function Points. Add all the weighted functions counts to get one number, the Unadjusted Function
Points.

4 Note: The word file refers to a logically related group of data and not the physical implementation of those groups of data.

Chapter 5: The Early Design Model

Version 1.4 - Copyright University of Southern California 26

5.3 Converting Function Points to Lines of Code
To determine the nominal person months given in Equation 1 for the Early Design model, the unadjusted function points have
to be converted to source lines of code in the implementation language (assembly, higher order language, fourth-generation
language, etc.) in order to assess the relative conciseness of implementation per function point. COCOMO II does this for
both the Early Design and Post-Architecture models by using tables such as those found in [Jones 1991] to translate
Unadjusted Function Points into equivalent SLOC.

Language SLOC / UFP

Ada 71

AI Shell 49

APL 32

Assembly 320

Assembly (Macro) 213

ANSI/Quick/Turbo Basic 64

Basic - Compiled 91

Basic - Interpreted 128

C 128

C++ 29

ANSI Cobol 85 91

Fortan 77 105

Forth 64

Jovial 105

Lisp 64

Modula 2 80

Pascal 91

Prolog 64

Report Generator 80

Spreadsheet 6

 Table 11: Converting Function Points to Lines of Code

5.4 Cost Drivers
The Early Design model uses KSLOC for size. Unadjusted function points are converted to the equivalent SLOC and then to
KSLOC. The application of project scale factors is the same for Early Design and the Post-Architecture models and was
described in Chapter 3l. In the Early Design model a reduced set of cost drivers are used. The Early Design cost drivers are
obtained by combining the Post-Architecture model cost drivers from Table 21. Whenever an assessment of a cost driver is
between the rating levels always round to the Nominal rating, e.g. if a cost driver rating is between Very Low and Low, then
select Low. The effort equation is the same as given in Equation 10. See Appendix A for comprehensive equation.

Chapter 5: The Early Design Model

Version 1.4 - Copyright University of Southern California 27

5.4.1 Overall Approach: Personnel Capability (PERS) Example
The following approach is used for mapping the full set of Post-Architecture cost drivers and rating scales onto their Early
Design model counterparts. It involves the use and combination of numerical equivalents of the rating levels. Specifically, a
Very Low Post-Architecture cost driver rating corresponds to a numerical rating of 1, Low is 2, Nominal is 3, High is 4, Very
High is 5, and Extra High is 6. For the combined Early Design cost drivers, the numerical values of the contributing Post-
Architecture cost drivers, Table 12,

Early Design Cost Driver Counterpart Combined
Post-Architecture Cost Drivers

RCPX RELY, DATA, CPLX, DOCU
RUSE RUSE

PDIF TIME, STOR, PVOL

PERS ACAP, PCAP, PCON

PREX AEXP, PEXP, LTEX

FCIL TOOL, SITE

SCED SCED

Table 12: Early Design and Post-Architecture Effort Multipliers

are summed, and the resulting totals are allocated to an expanded Early Design model rating scale going from Extra Low to
Extra High. The Early Design model rating scales always have a Nominal total equal to the sum of the Nominal ratings of its
contributing Post-Architecture elements.

An example will illustrate this approach. The Early Design PERS cost driver combines the Post-Architecture cost drivers
analyst capability (ACAP), programmer capability (PCAP), and personnel continuity (PCON). Each of these has a rating
scale from Very Low (=1) to Very High (=5). Adding up their numerical ratings produces values ranging from 3 to 15. These
are laid out on a scale, and the Early Design PERS rating levels assigned to them, as shown in Table 21.

Extra
Low

Very Low Low Nominal High Very
High

Extra High

Sum of ACAP, PCAP,
PCON Ratings

3, 4 5, 6 7, 8 9 10, 11 12, 13 14, 15

Combined ACAP and
PCAP Percentile

20% 39% 45% 55% 65% 75% 85%

Annual Personnel
Turnover

45% 30% 20% 12% 9% 5% 4%

Table 13: PERS Rating Levels

The Nominal PERS rating of 9 corresponds to the sum (3 + 3 + 3) of the Nominal ratings for ACAP, PCAP, and PCON, and
its corresponding effort multiplier is 1.0. Note, however that the Nominal PERS rating of 9 can result from a number of other
combinations, e.g. 1 + 3 + 5 = 9 for ACAP = Very Low, PCAP = Nominal, and PCON = Very High.

The rating scales and effort multipliers for PCAP and the other Early Design cost drivers maintain consistent relationships
with their Post-Architecture counterparts. For example, the PERS Extra Low rating levels (20% combined ACAP and PCAP
percentile; 45% personnel turnover) represent averages of the ACAP, PCAP, and PCON rating levels adding up to 3 or 4.

Maintaining these consistency relationships between the Early Design and Post-Architecture rating levels ensures consistency
of Early Design and Post-Architecture cost estimates. It also enables the rating scales for the individual Post-Architecture cost
drivers, Table 21, to be used as detailed backups for the top-level Early Design rating scales given below.

Chapter 5: The Early Design Model

Version 1.4 - Copyright University of Southern California 28

5.4.2 Product Reliability and Complexity (RCPX)
This Early Design cost driver combines the four Post-Architecture cost drivers Required Software Reliability (RELY),
Database size (DATA), Product complexity (CPLX), and Documentation match to life-cycle needs (DOCU). Unlike the
PERS components, the RCPX components have rating scales with differing width. RELY and DOCU range from Very Low to
Very High; DATA ranges from Low to Very High, and CPLX ranges from Very Low to Extra High. The numerical sum of
their ratings thus ranges from 5 (VL, L, VL, VL) to 21 (VH, VH, EH, VH).

Table 21 assigns RCPX ratings across this range, and associates appropriate rating scales to each of the RCPX ratings from
Extra Low to Extra High. As with PERS, the Post-Architecture RELY, DATA CPLX, and DOCU rating scales in Table 21
provide detailed backup for interpreting the Early Design RCPX rating levels.

Extra
Low

Very
Low

Low Nominal High Very High Extra High

Sum of RELY, DATA,
CPLX, DOCU Ratings

5, 6 7, 8 9 - 11 12 13 - 15 16 - 18 19 - 21

Emphasis on reliability,
documentation

Very
little

Little Some Basic Strong Very
Strong

Extreme

Product complexity Very
simple

Simple Some Moderate Complex Very
complex

Extremely
complex

Database size Small Small Small Moderate Large Very Large Very Large

Table 14: RCPX Rating Levels

5.4.3 Required Reuse (RUSE)
This Early Design model cost driver is the same as its Post-Architecture counterpart, which is covered in the chapter on the
Post-Architecture model. A summary of its rating levels is given below and in Table 21.

Very Low Low Nominal High Very High Extra High

RUSE none across project across program across product
line

across multiple
product lines

Table 15: RUSE Rating Level Summary

5.4.4 Platform Difficulty (PDIF)
This Early Design cost driver combines the three Post-Architecture cost drivers execution time (TIME), main storage
constraint (STOR), and platform volatility (PVOL). TIME and STOR range from Nominal to Extra High; PVOL ranges from
Low to Very High. The numerical sum of their ratings thus ranges from 8 (N, N, L) to 17 (EH, EH, VH).

Table 21 assigns PDIF ratings across this range, and associates the appropriate rating scales to each of the PDIF rating levels.
The Post-Architecture rating scales in Table 21 provide additional backup definition for the PDIF ratings levels.

Chapter 5: The Early Design Model

Version 1.4 - Copyright University of Southern California 29

Low Nominal High Very High Extra High

Sum of TIME, STOR, and
PVOL ratings

8 9 10 - 12 13 - 15 16, 17

Time and storage constraint Û 50% Û 50% 65% 80% 90%

Platform volatility Very stable Stable Somewhat volatile Volatile Highly volatile

Table 16: PDIF Rating Levels

5.4.5 Personnel Experience (PREX)
This Early Design cost driver combines the three Post-Architecture cost drivers application experience (AEXP), platform
experience (PEXP), and language and tool experience (LTEX). Each of these range from Very Low to Very High; as with
PERS, the numerical sum of their ratings ranges from 3 to 15.

Table 21 assigns PREX ratings across this range, and associates appropriate effort multipliers and rating scales to each of the
rating levels.

Extra
Low

Very
Low

Low Nominal High Very High Extra
High

Sum of AEXP, PEXP, and
LTEX ratings

3, 4 5, 6 7, 8 9 10, 11 12, 13 14, 15

Applications, Platform,
Language and Tool Experience

Û 3 mo. 5 months 9 months 1 year 2 years 4 years 6 years

Table 17: PREX Rating Levels

5.4.6 Facilities (FCIL)
This Early Design cost driver combines the two Post-Architecture cost drivers: use of software tools (TOOL) and multisite
development (SITE). TOOL ranges from Very Low to Very High; SITE ranges from Very Low to Extra High. Thus, the
numerical sum of their ratings ranges from 2 (VL, VL) to 11 (VH, EH).

Table 21 assigns FCIL ratings across this range, and associates appropriate rating scales to each of the FCIL rating levels. The
individual Post-Architecture TOOL and SITE rating scales in Table 21 again provide additional backup definition for the
FCIL rating levels.

5.4.7 Schedule (SCED)
The Early Design cost driver is the same as its Post-Architecture counterpart. A summary of its rating levels is given in Table
21 below.

Chapter 5: The Early Design Model

Version 1.4 - Copyright University of Southern California 30

Extra Low Very Low Low Nominal High Very
High

Extra High

Sum of TOOL and
SITE ratings

2 3 4, 5 6 7, 8 9, 10 11

TOOL support Minimal Some Simple
CASE tool

Basic life-
cycle tools

Good;
moderatel

Strong;
moderatel

Strong; well
integrated

Multisite conditions Weak
support of
complex
multisite
development

Some
support of
complex
M/S devel.

Some
support of
moderately
complex
M/S devel.

Basic
support of
moderatel
y complex
M/S devel.

Strong
support of
moderatel
y complex
M/S devel.

Strong
support of
simple
M/S devel.

Very strong
support of
collocated or
simple M/S
devel.

Table 18: FCIL Rating Levels

Very Low Low Nominal High Very High Extra High

SCED 75% of nominal 85% 100% 130% 160%

Table 19: SCED Rating Level Summary

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 31

Chapter 6: The Post-Architecture Model

This model is the most detailed and it is intended to be used when a software life-cycle architecture has been developed. This
model is used in the development and maintenance of software products in the Application Generators, System Integration, or
Infrastructure sectors, see Figure 1.

6.1 Lines of Code Counting Rules
In COCOMO II, the logical source statement has been chosen as the standard line of code. Defining a line of code is difficult
due to conceptual differences involved in accounting for executable statements and data declarations in different languages.
The goal is to measure the amount of intellectual work put into program development, but difficulties arise when trying to
define consistent measures across different languages. To minimize these problems, the Software Engineering Institute (SEI)
definition checklist for a logical source statement is used in defining the line of code measure. The Software Engineering
Institute (SEI) has developed this checklist as part of a system of definition checklists, report forms and supplemental forms to
support measurement definitions [Park 1992, Goethert et al. 1992].

Figure 5 shows a portion of the definition checklist as it is being applied to support the development of the COCOMO II
model. Each checkmark in the "Includes" column identifies a particular statement type or attribute included in the definition,
and vice-versa for the excludes. Other sections in the definition clarify statement attributes for usage, delivery, functionality,
replications and development status. There are also clarifications for language specific statements for ADA, C, C++, CMS-2,
COBOL, FORTRAN, JOVIAL and Pascal. The complete checklist is in Appendix B.

Some changes were made to the line-of-code definition that depart from the default definition provided in [Park 1992]. These
changes eliminate categories of software which are generally small sources of project effort. Not included in the definition are
commercial-off-the-shelf software (COTS), government furnished software (GFS), other products, language support libraries
and operating systems, or other commercial libraries. Code generated with source code generators is not included though
measurements will be taken with and without generated code to support analysis.

The "COCOMO II line-of-code definition" is calculated directly by the Amadeus automated metrics collection tool [Amadeus
1994] [Selby et al. 1991], which is being used to ensure uniformly collected data in the COCOMO II data collection and
analysis project. We have developed a set of Amadeus measurement templates that support the COCOMO II data definitions
for use by the organizations collecting data, in order to facilitate standard definitions and consistent data across participating
sites.

To support further data analysis, Amadeus will automatically collect additional measures including total source lines,
comments, executable statements, declarations, structure, component interfaces, nesting, and others. The tool will provide
various size measures, including some of the object sizing metrics in [Chidamber and Kemerer 1994], and the COCOMO
sizing formulation will adapt as further data is collected and analyzed.

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 32

Definition Checklist for Source Statements Counts

Definition Name: Logical Source Statements Date:___________

 (basic definition) Originator: COCOMO II

Measurement Unit: Physical source lines
 Logical source statements

Statement Type Definition Data Array Includes Excludes
 When a line or statement contains more than one type, classify it
 as the type with the highest precedence.
1. Executable Order of precedence Æ
2. Nonexecutable
3. Declarations
4. Compiler directives
5. Comments
6. On their own lines
7. On lines with source code
8. Banners and nonblank spacers
9. Blank (empty) comments
10. Blank lines
How produced Definition Data Array Includes Excludes
1. Programmed
2. Generated with source code generators
3. Converted with automated translators
4. Copied or reused without change
5. Modified
6. Removed
Origin Definition Data Array Includes Excludes
1. New work: no prior existence
2. Prior work: taken or adapted from
3. A previous version, build, or release
4. Commercial, off-the-shelf software (COTS), other than libraries
5. Government furnished software (GFS), other than reuse libraries
6. Another product
7. A vendor-supplied language support library (unmodified)
8. A vendor-supplied operating system or utility (unmodified)
9. A local or modified language support library or operating system
10. Other commercial library
11. A reuse library (software designed for reuse)
12. Other software component or library

1

2
3

4
5
6
7
8

ä
ä

ä
ä

ä

ä
ä

ä
ä
ä

ä

ä

ä
ä
ä
ä

ä
ä

ä
ä

ä
ä
ä
ä
ä
ä
ä
ä

ä
ä

Figure 5: Definition Checklist

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 33

6.2 Function Points
For the Post-Architecture model function point estimation, the calculations proceed by converting Unadjusted Function Points
to KSLOC as discussed in the chapter on the Early Design model. COCOMO II allows some components to be sized using
function points, and others (which function points may not describe well, such as real-time or scientific computations) in
SLOC. All size is express in KSLOC and this is used as shown in Eqation 10. Appendix A has the master equation for the
Post-Architecture model.

6.3 Cost Drivers
These are the 17 effort multipliers used in COCOMO II Post-Architecture model to adjust the nominal effort, Person Months,
to reflect the software product under development. They are grouped into four categories: product, platform, personnel, and
project. Figure 21 lists the different cost drivers with their rating criterion (found at the end of this section). Whenever an
assessment of a cost driver is between the rating levels always round to the Nominal rating, e.g. if a cost driver rating is
between High and Very High, then select High. The counterpart 7 effort multipliers for the Early Design model are discussed
in the chapter explaining that model

6.3.1 Product Factors

Required Software Reliability (RELY)

This is the measure of the extent to which the software must perform its intended function over a period of time. If the effect
of a software failure is only slight inconvenience then RELY is low. If a failure would risk human life then RELY is very
high.

Very Low Low Nominal High Very High Extra High

RELY slight
inconvenience

low, easily
recoverable
losses

moderate, easily
recoverable
losses

high financial
loss

risk to
human life

Data Base Size (DATA)

This measure attempts to capture the affect large data requirements have on product development. The rating is determined by
calculating D/P. The reason the size of the database is important to consider it because of the effort required to generate the
test data that will be used to exercise the program.

D

P

DataBaseSize Bytes

ogramSize SLOC
=

()

{Pr ()
EQ 16.

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 34

DATA is rated as low if D/P is less than 10 and it is very high if it is greater than 1000.

Very Low Low Nominal High Very High Extra High

DATA DB bytes/
Pgm SLOC <

10

10 Û D/P < 100 100 Û D/P <
1000

D/P Ú 1000

Product Complexity (CPLX)

Table 20 (found at the end of this section) provides the new COCOMO II CPLX rating scale. Complexity is divided into five
areas: control operations, computational operations, device-dependent operations, data management operations, and user
interface management operations. Select the area or combination of areas that characterize the product or a sub-system of the
product. The complexity rating is the subjective weighted average of these areas.

Required Reusability (RUSE)

This cost driver accounts for the additional effort needed to construct components intended for reuse on the current or future
projects. This effort is consumed with creating more generic design of software, more elaborate documentation, and more
extensive testing to ensure components are ready for use in other applications.

Very Low Low Nominal High Very High Extra High

RUSE none across
project

across
program

across
product line

across multiple product
lines

Documentation match to life-cycle needs (DOCU)

Several software cost models have a cost driver for the level of required documentation. In COCOMO II, the rating scale for
the DOCU cost driver is evaluated in terms of the suitability of the project’s documentation to its life-cycle needs. The rating
scale goes from Very Low (many life-cycle needs uncovered) to Very High (very excessive for life-cycle needs).

Very Low Low Nominal High Very High Extra High

DOCU Many life-
cycle needs
uncovered

Some life-
cycle needs
uncovered

Right-sized
to life-cycle
needs

Excessive for
life-cycle
needs

Very excessive
for life-cycle
needs

6.3.2 Platform Factors
The platform refers to the target-machine complex of hardware and infrastructure software (previously called the virtual
machine). The factors have been revised to reflect this as described in this section. Some additional platform factors were
considered, such as distribution, parallelism, embeddedness, and real-time operations. These considerations have been
accommodated by the expansion of the Module Complexity ratings in Equation 20.

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 35

Execution Time Constraint (TIME)

This is a measure of the execution time constraint imposed upon a software system. The rating is expressed in terms of the
percentage of available execution time expected to be used by the system or subsystem consuming the execution time
resource. The rating ranges from nominal, less than 50% of the execution time resource used, to extra high, 95% of the
execution time resource is consumed.

Very Low Low Nominal High Very High Extra High

TIME Û 50% use of available
execution time

70% 85% 95%

Main Storage Constraint (STOR)

This rating represents the degree of main storage constraint imposed on a software system or subsystem. Given the remarkable
increase in available processor execution time and main storage, one can question whether these constraint variables are still
relevant. However, many applications continue to expand to consume whatever resources are available, making these cost
drivers still relevant. The rating ranges from nominal, less that 50%, to extra high, 95%.

Very Low Low Nominal High Very High Extra High

STOR Û 50% use of
available storage

70% 85% 95%

Platform Volatility (PVOL)

"Platform" is used here to mean the complex of hardware and software (OS, DBMS, etc.) the software product calls on to
perform its tasks. If the software to be developed is an operating system then the platform is the computer hardware. If a
database management system is to be developed then the platform is the hardware and the operating system. If a network text
browser is to be developed then the platform is the network, computer hardware, the operating system, and the distributed
information repositories. The platform includes any compilers or assemblers supporting the development of the software
system. This rating ranges from low, where there is a major change every 12 months, to very high, where there is a major
change every two weeks.

Very Low Low Nominal High Very High Extra High

PVOL major change every 12 mo.;
minor change every 1 mo.

major: 6 mo.;
minor: 2 wk.

major: 2 mo.;
minor: 1 wk.

major: 2 wk.;
minor: 2 days

6.3.3 Personnel Factors

Analyst Capability (ACAP)

Analysts are personnel that work on requirements, high level design and detailed design. The major attributes that should be
considered in this rating are Analysis and Design ability, efficiency and thoroughness, and the ability to communicate and
cooperate. The rating should not consider the level of experience of the analyst; that is rated with AEXP. Analysts that fall in
the 15th percentile are rated very low and those that fall in the 95th percentile are rated as very high..

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 36

Very Low Low Nominal High Very High Extra High

ACAP 15th percentile 35th percentile 55th percentile 75th percentile 90th percentile

Programmer Capability (PCAP)

Current trends continue to emphasize the importance of highly capable analysts. However the increasing role of complex
COTS packages, and the significant productivity leverage associated with programmers’ ability to deal with these COTS
packages, indicates a trend toward higher importance of programmer capability as well.

Evaluation should be based on the capability of the programmers as a team rather than as individuals. Major factors which
should be considered in the rating are ability, efficiency and thoroughness, and the ability to communicate and cooperate. The
experience of the programmer should not be considered here; it is rated with AEXP. A very low rated programmer team is in
the 15th percentile and a very high rated programmer team is in the 95th percentile.

Very Low Low Nominal High Very High Extra High

PCAP 15th percentile 35th percentile 55th percentile 75th percentile 90th percentile

Applications Experience (AEXP)

This rating is dependent on the level of applications experience of the project team developing the software system or
subsystem. The ratings are defined in terms of the project team’s equivalent level of experience with this type of application.
A very low rating is for application experience of less than 2 months. A very high rating is for experience of 6 years or more..

Very Low Low Nominal High Very High Extra High

AEXP Û 2 months 6 months 1 year 3 years 6 years

Platform Experience (PEXP)

The Post-Architecture model broadens the productivity influence of PEXP, recognizing the importance of understanding the
use of more powerful platforms, including more graphic user interface, database, networking, and distributed middleware
capabilities.

Very Low Low Nominal High Very High Extra High

PEXP Û 2 months 6 months 1 year 3 years 6 year

Language and Tool Experience (LTEX)

This is a measure of the level of programming language and software tool experience of the project team developing the
software system or subsystem. Software development includes the use of tools that perform requirements and design
representation and analysis, configuration management, document extraction, library management, program style and
formatting, consistency checking, etc. In addition to experience in programming with a specific language the supporting tool
set also effects development time. A low rating given for experience of less than 2 months. A very high rating is given for
experience of 6 or more years.

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 37

Very Low Low Nominal High Very High Extra High

LTEX Û 2 months 6 months 1 year 3 years 6 year

Personnel Continuity (PCON)

The rating scale for PCON is in terms of the project’s annual personnel turnover: from 3%, very high, to 48%, very low.

Very Low Low Nominal High Very High Extra High

PCON 48% / year 24% / year 12% / year 6% / year 3% / year

6.3.4 Project Factors

Use of Software Tools (TOOL)

Software tools have improved significantly since the 1970’s projects used to calibrate COCOMO. The tool rating ranges from
simple edit and code, very low, to integrated lifecycle management tools, very high.

Very Low Low Nominal High Very High Extra High

TOOL edit, code,
debug

simple,
frontend,
backend
CASE, little
integration

basic lifecycle
tools,
moderately
integrated

strong, mature
lifecycle tools,
moderately
integrated

strong, mature,
proactive
lifecycle tools,
well integrated
with processes,
methods, reuse

Multisite Development (SITE)

Given the increasing frequency of multisite developments, and indications that multisite development effects are significant,
the SITE cost driver has been added in COCOMO II. Determining its cost driver rating involves the assessment and averaging
of two factors: site collocation (from fully collocated to international distribution) and communication support (from surface
mail and some phone access to full interactive multimedia).

Very Low Low Nominal High Very High Extra High

SITE:
Communications

Some phone,
mail

Individual
phone, FAX

Narrowband
email

Wideband
electronic
communication.

Wideband elect.
comm,
occasional video
conf.

Interactive
multimedia

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 38

Required Development Schedule (SCED)

This rating measures the schedule constraint imposed on the project team developing the software. The ratings are defined in
terms of the percentage of schedule stretch-out or acceleration with respect to a nominal schedule for a project requiring a
given amount of effort. Accelerated schedules tend to produce more effort in the later phases of development because more
issues are left to be determined due to lack of time to resolve them earlier. A schedule compress of 74% is rated very low. A
stretch-out of a schedule produces more effort in the earlier phases of development where there is more time for thorough
planning, specification and validation. A stretch-out of 160% is rated very high.

Very Low Low Nominal High Very High Extra High

SCED 75% of nominal 85% 100% 130% 160%

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 39

Control Operations
Computational

Operations
Device-dependent

Operations
Data Management

Operations
User Interface
Management
Operations

Very Low Straight-line code with a few
non-nested structured
programming operators: DOs,
CASEs, IFTHENELSEs.
Simple module composition
via procedure calls or simple
scripts.

Evaluation of
simple expressions:
e.g., A=B+C*(D-E)

Simple read, write
statements with
simple formats.

Simple arrays in main
memory. Simple
COTS-DB queries,
updates.

Simple input forms,
report generators.

Low Straightforward nesting of
structured programming
operators. Mostly simple
predicates

Evaluation of
moderate-level
expressions: e.g.,
D=SQRT(B**2-
4.*A*C)

No cognizance
needed of particular
processor or I/O
device
characteristics. I/O
done at GET/PUT
level.

Single file subsetting
with no data structure
changes, no edits, no
intermediate files.
Moderately complex
COTS-DB queries,
updates.

Use of simple
graphic user
interface (GUI)
builders.

Nominal Mostly simple nesting. Some
intermodule control. Decision
tables. Simple callbacks or
message passing, including
middleware-supported
distributed processing

Use of standard
math and statistical
routines. Basic
matrix/vector
operations.

I/O processing
includes device
selection, status
checking and error
processing.

Multi-file input and
single file output.
Simple structural
changes, simple edits.
Complex COTS-DB
queries, updates.

Simple use of
widget set.

High Highly nested structured
programming operators with
many compound predicates.
Queue and stack control.
Homogeneous, distributed
processing. Single processor
soft real-time control.

Basic numerical
analysis:
multivariate
interpolation,
ordinary differential
equations. Basic
truncation, roundoff
concerns.

Operations at
physical I/O level
(physical storage
address
translations; seeks,
reads, etc.).
Optimized I/O
overlap.

Simple triggers
activated by data
stream contents.
Complex data
restructuring.

Widget set
development and
extension. Simple
voice I/O,
multimedia.

Very High Reentrant and recursive
coding. Fixed-priority
interrupt handling. Task
synchronization, complex
callbacks, heterogeneous
distributed processing. Single-
processor hard real-time
control.

Difficult but
structured numerical
analysis: near-
singular matrix
equations, partial
differential
equations. Simple
parallelization.

Routines for
interrupt diagnosis,
servicing, masking.
Communication
line handling.
Performance-
intensive embedded
systems.

Distributed database
coordination.
Complex triggers.
Search optimization.

Moderately
complex 2D/3D,
dynamic graphics,
multimedia.

Extra High Multiple resource scheduling
with dynamically changing
priorities. Microcode-level
control. Distributed hard real-
time control.

Difficult and
unstructured
numerical analysis:
highly accurate
analysis of noisy,
stochastic data.
Complex
parallelization.

Device timing-
dependent coding,
micro-programmed
operations.
Performance-
critical embedded
systems.

Highly coupled,
dynamic relational
and object structures.
Natural language data
management.

Complex
multimedia, virtual
reality.

Table 20: Module Complexity Ratings versus Type of Module

Chapter 6: The Post-Architecture Model

Version 1.4 - Copyright University of Southern California 40

Very Low Low Nominal High Very High Extra High

RELY slight inconvenience low, easily
recoverable
losses

moderate, easily
recoverable losses

high financial
loss

risk to human
life

DATA DB bytes/
Pgm SLOC <
10

10 Û D/P < 100 100 Û D/P <
1000

D/P Ú 1000

CPLX see Table 20

RUSE none across project across program across product
line

across multiple
product lines

DOCU Many life-cycle
needs uncovered

Some life-cycle
needs
uncovered.

Right-sized to
life-cycle needs

Excessive for
life-cycle needs

Very excessive
for life-cycle
needs

TIME Û 50% use of
available

execution time

70% 85% 95%

STOR Û 50% use of
available storage

70% 85% 95%

PVOL major change
every 12 mo.;
minor change
every 1 mo.

major: 6 mo.;
minor: 2 wk.

major: 2 mo.;

minor: 1 wk.

major: 2 wk.;

minor: 2 days

ACAP 15th percentile 35th percentile 55th percentile 75th percentile 90th percentile

PCAP 15th percentile 35th percentile 55th percentile 75th percentile 90th percentile

PCON 48% / year 24% / year 12% / year 6% / year 3% / year

AEXP Û 2 months 6 months 1 year 3 years 6 years

PEXP Û 2 months 6 months 1 year 3 years 6 year

LTEX Û 2 months 6 months 1 year 3 years 6 year

TOOL edit, code, debug simple,
frontend,
backend CASE,
little integration

basic lifecycle
tools, moderately
integrated

strong, mature
lifecycle tools,
moderately
integrated

strong, mature,
proactive
lifecycle tools,
well integrated
with processes,
methods, reuse

SITE:
Collocation

International Multi-city and
Multi-company

Multi-city or
Multi-company

Same city or
metro. area

Same building
or complex

Fully
collocated

SITE:
Communications

Some phone, mail Individual
phone, FAX

Narrowband email Wideband
electronic
communication.

Wideband
elect. comm,
occasional
video conf.

Interactive
multimedia

SCED 75% of nominal 85% 100% 130% 160%

Table 21: Post-Architecture Cost Driver Rating Level Summary

Chapter 7: References

Version 1.4 - Copyright University of Southern California 41

Chapter 7: References

Amadeus (1994), Amadeus Measurement System User’s Guide, Version 2.3a, Amadeus Software Research, Inc., Irvine,
California, July 1994.

Banker, R., R. Kauffman and R. Kumar (1994), "An Empirical Test of Object-Based Output Measurement Metrics in a
Computer Aided Software Engineering (CASE) Environment," Journal of Management Information Systems (to appear,
1994).

Banker, R., H. Chang and C. Kemerer (1994a), "Evidence on Economies of Scale in Software Development," Information
and Software Technology (to appear, 1994).

Behrens, C. (1983), "Measuring the Productivity of Computer Systems Development Activities with Function Points," IEEE
Transactions on Software Engineering , November 1983.

Boehm, B. (1981), Software Engineering Economics, Prentice Hall.

Boehm, B. (1983), "The Hardware/Software Cost Ratio: Is It a Myth?" Computer 16(3), March 1983, pp. 78-80.

Boehm, B. (1985), "COCOMO: Answering the Most Frequent Questions," In Proceedings, First COCOMO Users’ Group
Meeting, Wang Institute, Tyngsboro, MA, May 1985.

Boehm, B. (1989), Software Risk Management, IEEE Computer Society Press, Los Alamitos, CA.

Boehm, B., T. Gray, and T. Seewaldt (1984), "Prototyping vs. Specifying: A Multi-Project Experiment," IEEE Transactions
on Software Engineering, May 1984, pp. 133-145.

Boehm, B., and W. Royce (1989), "Ada COCOMO and the Ada Process Model," Proceedings, Fifth COCOMO Users’
Group Meeting, Software Engineering Institute, Pittsburgh, PA, November 1989.

Chidamber, S. and C. Kemerer (1994), "A Metrics Suite for Object Oriented Design," IEEE Transactions on Software
Engineering, (to appear 1994).

Computer Science and Telecommunications Board (CSTB) National Research Council (1993), Computing Professionals:
Changing Needs for the 1990’s, National Academy Press, Washington DC, 1993.

Devenny, T. (1976). "An Exploratory Study of Software Cost Estimating at the Electronic Systems Division," Thesis No.
GSM/SM/765-4, Air Force Institute of Technology, Dayton, OH.

Gerlich, R., and U. Denskat (1994), "A Cost Estimation Model for Maintenance and High Reuse," Proceedings, ESCOM
1994, Ivrea, Italy.

Goethert, W., E. Bailey, M. Busby (1992), "Software Effort and Schedule Measurement: A Framework for Counting Staff
Hours and Reporting Schedule Information." CMU/SEI-92-TR-21, Software Engineering Institute, Pittsburgh, PA.

Goudy, R. (1987), "COCOMO-Based Personnel Requirements Model," Proceedings, Third COCOMO Users’ Group
Meeting, Software Engineering Institute, Pittsburgh, PA, November 1987.

IFPUG (1994), IFPUG Function Point Counting Practices: Manual Release 4.0, International Function Point Users’ Group,
Westerville, OH.

Jones, C. (1991), Applied Software Measurement, Assuring Productivity and Quality, McGraw-Hill, New York, N.Y.

Kauffman, R., and R. Kumar (1993), "Modeling Estimation Expertise in Object Based ICASE Environments," Stern School
of Business Report, New York University, January 1993.

Kemerer, C. (1987), "An Empirical Validation of Software Cost Estimation Models," Communications of the ACM, May
1987, pp. 416-429.

Chapter 7: References

Version 1.4 - Copyright University of Southern California 42

Kominski, R. (1991), Computer Use in the United States: 1989, Current Population Reports, Series P-23, No. 171, U.S.
Bureau of the Census, Washington, D.C., February 1991.

Kunkler, J. (1983), "A Cooperative Industry Study on Software Development/Maintenance Productivity," Xerox Corporation,
Xerox Square --- XRX2 52A, Rochester, NY 14644, Third Report, March 1985.

Miyazaki, Y., and K. Mori (1985), "COCOMO Evaluation and Tailoring," Proceedings, ICSE 8, IEEE-ACM-BCS, London,
August 1985, pp. 292-299.

Parikh, G., and N. Zvegintzov (1983). "The World of Software Maintenance," Tutorial on Software Maintenance, IEEE
Computer Society Press, pp. 1-3.

Park R. (1992), "Software Size Measurement: A Framework for Counting Source Statements." CMU/SEI-92-TR-20, Software
Engineering Institute, Pittsburgh, PA.

Park R, W. Goethert, J. Webb (1994), "Software Cost and Schedule Estimating: A Process Improvement Initiative",
CMU/SEI-94-SR-03, Software Engineering Institute, Pittsburgh, PA.

Paulk, M., B. Curtis, M. Chrissis, and C. Weber (1993), "Capability Maturity Model for Software, Version 1.1", CMU-SEI-
93-TR-24, Software Engineering Institute, Pittsburgh PA 15213, Feb. 1993.

Paulk, M., C. Weber, S. Garcia, M. Chrissis, and M. Bush (1993a), "Capability Maturity Model for Software, Version 1.1",
CMU-SEI-93-TR-25, Software Engineering Institute, Pittsburgh PA 15213, Feb. 1993

Pfleeger, S. (1991), "Model of Software Effort and Productivity," Information and Software Technology 33 (3), April 1991,
pp. 224-231.

Royce, W. (1990), "TRW’s Ada Process Model for Incremental Development of Large Software Systems," Proceedings,
ICSE 12, Nice, France, March 1990.

Ruhl, M., and M. Gunn (1991), "Software Reengineering: A Case Study and Lessons Learned," NIST Special Publication
500-193, Washington, DC, September 1991.

Selby, R. (1988), "Empirically Analyzing Software Reuse in a Production Environment," In Software Reuse: Emerging
Technology, W. Tracz (Ed.), IEEE Computer Society Press, 1988., pp. 176-189.

Selby, R., A. Porter, D. Schmidt and J. Berney (1991), "Metric-Driven Analysis and Feedback Systems for Enabling
Empirically Guided Software Development," Proceedings of the Thirteenth International Conference on Software
Engineering (ICSE 13), Austin, TX, May 13-16, 1991, pp. 288-298.

Silvestri, G. and J. Lukaseiwicz (1991), "Occupational Employment Projections," Monthly Labor Review 114(11), November
1991, pp. 64-94.

Chapter 8: Glossary and Index

Version 1.4 - Copyright University of Southern California 43

Chapter 8: Glossary and Index

(Index part to still be done)

3GL Third Generation Language

AA Percentage of reuse effort due to assessment and assimilation

AAF Adaptation Adjustment Factor

AAM Adaptation Adjustment Multiplier

ACAP Analyst Capability

ACT Annual Change Traffic

AEXP Applications Experience

ASLOC Adapted Source Lines of Code

AT Automated Translation

BRAK Breakage. The amount of controlled change allowed in a software development before requirements are

"frozen."

CASE Computer Aided Software Engineering

CM Percentage of code modified during reuse

CMM Capability Maturity Model

COCOMO Constructive Cost Model

Cost Drivers A particular characteristic of the software development that has the effect of increasing or decreasing the

amount of development effort, e.g. required product reliability, execution time constraints, project team

application experience.

COTS Commercial Off The Shelf

CPLX Product Complexity

CSTB Computer Science and Telecommunications Board

DATA Database Size

DBMS Database Management System

DI Degree of Influence

DM Percentage of design modified during reuse

DOCU Documentation to match lifecycle needs

EDS Electronic Data Systems

ESLOC Equivalent Source Lines of Code

FCIL Facilities

FP Function Points

GFS Government Furnished Software

Chapter 8: Glossary and Index

Version 1.4 - Copyright University of Southern California 44

GUI Graphical User Interface

ICASE Integrated Computer Aided Software Environment

IM Percentage of integration redone during reuse

KASLOC Thousands of Adapted Source Lines of Code

KESLOC Thousands of Equivalent Source Lines of Code

KSLOC Thousands of Source Lines of Code

LEXP Programming Language Experience

LTEX Language and Tool Experience

MODP Modern Programming Practices

NIST National Institute of Standards and Technology

NOP New Object Points

OS Operating Systems

PCAP Programmer Capability

PCON Personnel continuity

PDIF Platform Difficulty

PERS Personnel Capability

PEXP Platform Experience

PL Product Line

PM Person Months. A person month is the amount of time one person spends working on the software

development project for one month.

PREX Personnel Experience

PROD Productivity rate

PVOL Platform Volatility

RCPX Product Reliability and Complexity

RELY Required Software Reliability

RUSE Required Reusability

RVOL Requirements Volatility

SCED Required Development Schedule

SECU Classified Security Application

SEI Software Engineering Institute

SITE Multi-site operation

SLOC Source Lines of Code

STOR Main Storage Constraint

SU Percentage of reuse effort due to software understanding

T&E Test and Evaluation

Chapter 8: Glossary and Index

Version 1.4 - Copyright University of Southern California 45

TIME Execution Time Constraint

TOOL Use of Software Tools

TURN Computer Turnaround Time

UNFM Programmer Unfamiliarity

USAF/ESD U.S. Air Force Electronic Systems Division

VEXP Virtual Machine Experience

VIRT Virtual Machine Volatility

VMVH Virtual Machine Volatility: Host

VMVT Virtual Machine Volatility: Target

Appendix A: Master Equations

Version 1.4 - Copyright University of Southern California 46

Appendix A: Master Equations

These are the different models. They are presented here in a unified form to show the relationships between
the different factors used in the equations. These models are for whole project data only. The Early Design
and Post-Architecture models differ from the presented models when performing component-level
estimation. It is assumed that multiplication and division have precedence over addition and subtraction in
the equations. The main body of this manual explains when each model is used and defines the different
factors.

9. Application Composition
New Object Points are determined by:

NOP
ObjectPo s use

=
− −(int) (% Re)100

100
EQ 17.

A productivity rate, PROD, is estimated from a subjective average of developer’s experience and the ICASE
maturity/capability:

Developers experience
and capability

Very Low Low Nominal High Very High

ICASE maturity and
capability

Very Low Low Nominal High Very High

PROD 4 7 13 25 50

Estimate effort with:

PM
NOP

PROD
= EQ 18.

Appendix A: Master Equations

Version 1.4 - Copyright University of Southern California 47

10. Early Design
Estimate effort with:Estimate effort with:

[]PM A Size EM PM
B

i
i M

= × × +
=

∏’

1

7

where

PM
ASLOC

AT

ATPRODM =





100

B SFj
j

= + ×
=

∑101 0 01
1

5

. .

Size Size
BRAK’ = × +



1

100
EQ 19.

()Size KNSLOC KASLOC
AJ

AAM= + ×
−



 ×

100

100

()()
AAM

AA AAF SU UNFM
AAF=

+ × +
≤





(/
, .

1 0 02

100
0 05 or

()AA AAF SU UNFM

AAF
+ + ×

>




()
, .

100
0 05

() () ()AAF DM CM IM= + +0 4 0 3 0 3. . .

Appendix A: Master Equations

Version 1.4 - Copyright University of Southern California 48

Symbol Description

A Constant, provisionally set to 2.5

AA Assessment and assimilation

ADAPT Percentage of components adapted (represents the
effort required in understanding software)

AT Percentage of components that are automatically
translated

ATPROD Automatic translation productivity

BRAK Breakage: Percentage of code thrown away due to
requirements volatility

CM Percentage of code modified

DM Percentage of design modified

EM Effort Multipliers: RCPX, RUSE, PDIF, PERS,
PREX, FCIL, SCED

IM Percentage of integration and test modified

KASLOC Size of the adapted component expressed in
thousands of adapted source lines of code

KNSLOC Size of component expressed in thousands of new
source lines of code

PM Person Months of estimated effort

SF Scale Factors: PREC, FLEX, RESL, TEAM,
PMAT

SU Software understanding (zero if DM = 0 and CM =
0)

UNFM Programmer Unfamiliarity with Software

Appendix A: Master Equations

Version 1.4 - Copyright University of Southern California 49

11. Post-Architecture
Estimate effort with:

[]PM A Size EM PM
B

i
i M

= × × +
=

∏’

1

17

where

PM
ASLOC

AT

ATPRODM =





100

B SFj
j

= + ×
=

∑101 0 01
1

5

. .

Size Size
BRAK’ = × +



1

100
EQ 20.

()Size KNSLOC KASLOC
AJ

AAM= + ×
−



 ×

100

100

()()
AAM

AA AAF SU UNFM
AAF=

+ × +
≤





(/
, .

1 0 02

100
0 05 or

()AA AAF SU UNFM

AAF
+ + ×

>




()
, .

100
0 05

() () ()AAF DM CM IM= + +0 4 0 3 0 3. . .

Appendix A: Master Equations

Version 1.4 - Copyright University of Southern California 50

Symbol Description

A Constant, provisionally set to 2.5

AA Assessment and assimilation

ADAPT Percentage of components adapted (represents the
effort required in understanding software)

AT Percentage of components that are automatically
translated

ATPROD Automatic translation productivity

BRAK Breakage: Percentage of code thrown away due to
requirements volatility

CM Percentage of code modified

DM Percentage of design modified

EM Effort Multipliers: RELY, DATA, CPLX, RUSE,
DOCU, TIME, STOR, PVOL, ACAP, PCAP,

IM Percentage of integration and test modified

KASLOC Size of the adapted component expressed in
thousands of adapted source lines of code

KNSLOC Size of component expressed in thousands of new
source lines of code

PM Person Months of estimated effort

SF Scale Factors: PREC, FLEX, RESL, TEAM,
PMAT

SU Software understanding (zero if DM = 0 and CM =
0)

UNFM Programmer Unfamiliarity with Software

Appendix A: Master Equations

Version 1.4 - Copyright University of Southern California 51

12. Schedule Estimation
Determine time to develop (TDEV) with an estimated effort, PM, that excludes the effect of the SCED
effort multiplier:

()[]TDEV A PM
SCEDB= × ×+ × −0 33 0 2 1 01

100
. . (.) %

where EQ 21.

B SFj
j

= +
=

∑101 0 01
1

5

. .

Symbol Description

A Constant, Provisionally set to 3.0

SCED% The compression / expansion percentage in the
SCED effort multiplier

PM Person Months of estimated effort from Early
Design or Post-Architecture models (excluding the

SF Scale Factors: PREC, FLEX, RESL, TEAM,
PMAT

TDEV Time to develop

Appendix B: Logical Lines of Source Code Counting Rules

Version 1.4 - Copyright University of Southern California 52

Appendix B: Logical Lines of Source Code
Counting Rules5

What is a line of source code? This checklist, adopted from the Software Engineering Institute, attempts to
define a logical line of source code. The intent is to define a logical line of code while not becoming too
language specific for use in collection data to validate the COCOMO II model.

13. Statement type Includes Excludes
When a line or statement contains more than one type, classify it as the
type with the highest precedence. Order of precedence is in ascending
order.

1. Executable ä

2. Non-executable:

3. Declarations ä

4. Compiler directives ä

5. Comments:

6. On their own lines ä

7. On lines with source code ä

8. Banners and non-blank spacers ä

9. Blank (empty) comments ä

10. Blank lines ä

14. How produced Includes Excludes
1. Programmed ä

2. Generated with source code generators ä

3. Converted with automated translators ä

4. Copied or reused without change ä

5. Modified ä

6. Removed ä

15. Origin Includes Excludes
1. New work: no prior existence ä

2. Prior work: taken or adapted from:

3. A previous version, build, or release ä

4. Commercial, off-the-shelf software (COTS), other than libraries ä

5 Park R. (1992), “Software Size Measurement: A Framework for Counting Source Statements.” CMU/SEI-
92-TR-20, Software Engineering Institute, Pittsburgh, PA.

Appendix B: Logical Lines of Source Code Counting Rules

Version 1.4 - Copyright University of Southern California 53

5. Government furnished software (GFS), other than reuse libraries ä

6. Another product ä

7. A vendor-supplied language support library (unmodified) ä

8. A vendor-supplied operating system or utility (unmodified) ä

9. A local or modified language support library or operating system ä

10. Other commercial library ä

11. A reuse library (software designed for reuse) ä

12. Other software component or library ä

16. Usage Includes Excludes
1. In or as part of the primary product ä

2. External to or in support of the primary product ä

17. Delivery Includes Excludes
1. Delivered:

2. Delivered as source ä

3. Delivered in compiled or executable form, but not as source ä

4. Not delivered:

5. Under configuration control ä

6. Not under configuration control ä

18. Functionality Includes Excludes
1. Operative ä

2. Inoperative (dead, bypassed, unused, unreferenced, or unaccessible):

3. Functional (intentional dead code, reactivated for special purposes) ä

4. Nonfunctional (unintentionally present) ä

19. Replications Includes Excludes
1. Master source statements (originals) ä

2. Physical replicates of master statements, stored in the master code ä

3. Copies inserted, instantiated, or expanded when compiling or linking ä

4. Postproduction replicates-as in distributed, redundant, or ä
reparameterized systems

Appendix B: Logical Lines of Source Code Counting Rules

Version 1.4 - Copyright University of Southern California 54

20. Development status Includes Excludes
Each statement has one and only one status, usually that of its parent unit.

1. Estimated or planned ä

2. Designed ä

3. Coded ä

4. Unit tests completed ä

5. Integrated into components ä

6. Test readiness review completed ä

7. Software (CSCI) tests completed ä

8. System tests completed ä

21. Language Includes Excludes
List each source language on a separate line.

1. Separate totals for each language ä

22. Clarifications (general) Includes Excludes
1. Nulls, continues, and no-ops ä

2. Empty statements, e.g. ";;" and lone semicolons on separate lines ä

3. Statements that instantiate generics ä

4. Begin...end and {...} pairs used as executable statements ä

5. Begin...end and {...} pairs that delimit (sub)program bodies ä

6. Logical expressions used as test conditions ä

7. Expression evaluations used as subprograms arguments ä

8. End symbols that terminate executable statements ä

9. End symbols that terminate declarations or (sub)program bodies ä

10. Then, else, and otherwise symbols ä

11. Elseif statements ä

12. Keywords like procedure division, interface, and implementation ä

13. Labels (branching destinations) on lines by themselves ä

Appendix B: Logical Lines of Source Code Counting Rules

Version 1.4 - Copyright University of Southern California 55

23. Clarifications (language specific) Includes Excludes

23.1 Ada

1. End symbols that terminate declarations or (sub)program bodies ä

2. Block statements, e.g. begin...end ä

3. With and use clauses ä

4. When (the keyword preceding executable statements) ä

5. Exception (the keyword, used as a frame header) ä

6. Pragmas ä

23.2 Assembly

1. Macro calls ä

2. Macro expansions ä

23.3 C and C++

1. Null statement, e.g. ";" by itself to indicate an empty body ä

2. Expression statements (expressions terminated by semicolons) ä

3. Expression separated by semicolons, as in a "for" statement ä

4. Block statements, e.g. {...} with no terminating semicolon ä

5. ";", ";" or ";" on a line by itself when part of a declaration ä

6. ";" or ";" on a line by itself when part of an executable statement ä

7. Conditionally compiled statements (#if, #ifdef, #ifndef) ä

8. Preprocessor statements other than #if, #ifdef, and #ifndef ä

23.4 CMS-2

1. Keywords like SYS-PROC and SYS-DD ä

23.5 COBOL

1. "PROCEDURE DIVISION", "END DECLARATIVES", etc. ä

23.6 FORTRAN

1. END statements ä

2. Format statements ä

3. Entry statements ä

23.7 JOVIAL

1.

Appendix B: Logical Lines of Source Code Counting Rules

Version 1.4 - Copyright University of Southern California 56

23.8 PASCAL

1. Executable statements not terminated by semicolons ä

2. Keywords like INTERFACE and IMPLEMENTATION ä

3. FORWARD declarations ä

24. Summary of Statement Types

24.1 Executable statements

Executable statements cause runtime actions. They may be simple statements such as assignments, goto’s,
procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls, no-ops, empty statements, and
FORTRAN’s END. Or they may be structured or compound statements, such as conditional statements,
repetitive statements, and "with" statements. Languages like Ada, C, C++, and Pascal have block statements
[begin...end and {...}] that are classified as executable when used where other executable statements would
be permitted. C and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

24.2 Declarations

Declarations are nonexecutable program elements that affect an assembler’s or compiler’s interpretation of
other program elements They are used to name, define, and initialize; to specify internal and external
interfaces; to assign ranges for bounds checking; and to identify and bound modules and sections of code.
Examples include declarations of names, numbers, constants, objects, types, subtypes, programs,
subprograms, tasks, exceptions, packages, generics, macros, and deferred constants. Declarations also
include renaming declarations, use clauses, and declarations that instantiate generics. Mandatory begin...end
and {...} symbols that delimit bodies of programs and subprograms are integral parts of program and
subprogram declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION, DATA
DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION, SYS-
PROC and SYS-DD. Declarations, in general, are never required by language specifications to initiate
runtime actions, although some languages permit compilers to implement them that way.

24.3 Compiler Directives

Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems) to perform
special actions. Some, such as Ada’s pragma and COBOL’s COPY, REPLACE, and USE, are integral parts
of the source language. In other languages like C and C++, special symbols like # are used along with
standardized keywords to direct preprocessor or compiler actions. Still other languages rely on
nonstandardized methods supplied by compiler vendors. In these languages, directives are often designated
by special symbols such as #, $, and {$}.

This page left intentionally blank.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 57

Appendix C: COCOMO II Process Maturity

For the authoritative source on Key Process Areas in the Capability Maturity Model see: Paulk, M.C., C.V.
Weber, S.M. Garcia, M.B. Chrissis, and M. Bush, "Key Practices of the Capability Maturity Model,
Version 1.1," CMU/SEI-93-TR-25, Software Engineering Institute, Pittsburgh, Pa., February 1993
("Appendix C: Abridged Version of the Key Practices" is especially convenient in this reference). This
document is available via FTP from ftp.sei.cmu.edu.

The source of this textual information was taken from: "Maturity Questionnaire", Zubrow, D.; Hayes, W.;
Siegel, J.; Goldenson, D., CMU/SEI-94-SR-7, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, June 1994.

25. Requirements Management
The purpose of Requirements Management is to establish a common understanding between the customer
and the software project of the customer’s requirements that will be addressed by the software project.
Requirements Management involves establishing and maintaining an agreement with the customer on the
requirements for the software project. The agreement covers both the technical and nontechnical (e.g.,
delivery dates) requirements. The agreement forms the basis for estimating, planning, performing, and
tracking the software project’s activities throughout the software life cycle. Whenever the system
requirements allocated to software are changed, the affected software plans, work products, and activities
are adjusted to remain consistent with the updated requirements.

Definitions

allocated requirements (system requirements allocated to software) - The subset of the system
requirements that are to be implemented in the software components of the system. The allocated
requirements are a primary input to the software development plan. Software requirements analysis
elaborates and refines the allocated requirements and results in software requirements that are documented.

software plans - The collection of plans, both formal and informal, used to express how software
development and/or maintenance activities will be performed. Examples of plans that could be included:
software development plan, software quality assurance plan, software configuration management plan,
software test plan, risk management plan, and process improvement plan.

software work product - Any artifact created as part of defining, maintaining, or using a software process,
including process descriptions, plans, procedures, computer programs, and associated documentation, which
may or may not be intended for delivery to a customer or end user.

Goals

1. System requirements allocated to software are controlled to establish a baseline for software
engineering and management use.

2. Software plans, products, and activities are kept consistent with the system requirements allocated to
software.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 58

26. Software Project Planning
The purpose of Software Project Planning is to establish reasonable plans for performing the software
engineering activities and for managing the software project. Software Project Planning involves developing
estimates for the work to be performed, establishing the necessary commitments, and defining the plan to
perform the work.

Definitions

commitment - A pact that is freely assumed, visible, and expected to be kept by all parties.

software plans - The collection of plans, both formal and informal, used to express how software
development and/or maintenance activities will be performed. Examples of plans that could be included:
software development plan, software quality assurance plan, software configuration management plan,
software test plan, risk management plan, and process improvement plan.

Goals

1. Software estimates are documented for use in planning and tracking the software project.

2. Software project activities and commitments are planned and documented.

3. Affected groups and individuals agree to their commitments related to the software project.

27. Software Project Tracking and Oversight
The purpose of Software Project Tracking and Oversight is to provide adequate visibility into actual
progress so that management can take corrective actions when the software project’s performance deviates
significantly from the software plans. Corrective actions may include revising the software development
plan to reflect the actual accomplishments and replanning the remaining work or taking actions to improve
the performance. Software Project Tracking and Oversight involves tracking and reviewing the software
accomplishments and results against documented estimates, commitments, and plans, and adjusting these
plans based on the actual accomplishments and results.

Definitions

commitment - A pact that is freely assumed, visible, and expected to be kept by all parties.

software plans - The collection of plans, both formal and informal, used to express how software
development and/or maintenance activities will be performed. Examples of plans that could be included:
software development plan, software quality assurance plan, software configuration management plan,
software test plan, risk management plan, and process improvement plan.

software work product - Any artifact created as part of defining, maintaining, or using a software process,
including process descriptions, plans, procedures, computer programs, and associated documentation, which
may or may not be intended for delivery to a customer or end user.

Goals

1. Actual results and performances are tracked against the software plans.

2. Corrective actions are taken and managed to closure when actual results and performance deviate
significantly from the software plans.

3. Changes to software commitments are agreed to by the affected groups and individuals.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 59

28. Software Subcontract Management
The purpose of Software Subcontract Management is to select qualified software subcontractors and
manage them effectively. Software Subcontract Management involves selecting a software subcontractor,
establishing commitments with the subcontractor, and tracking and reviewing the subcontractor’s
performance and results. These practices cover the management of a software (only) subcontract, as well as
the management of the software component of a subcontract that includes software, hardware, and possibly
other system components.

Definitions

documented procedure - A written description of a course of action to be taken to perform a given task
[IEEE-STD-610 Glossary]

event-driven review/activity - A review or activity that is performed based on the occurrence of an event
within the project (e.g., a formal review or the completion of a life-cycle stage).

periodic review/activity - A review/activity that occurs at a specified regular time interval, rather than at
the completion of major events.

Goals

1. The prime contractor selects qualified software subcontractors.

2. The prime contractor and the software subcontractor agree to their commitments to each other.

3. The prime contractor and the software subcontractor maintain ongoing communications.

4. The prime contractor tracks the software subcontractor’s actual results and performance against its
commitments.

29. Software Quality Assurance
The purpose of Software Quality Assurance (SQA) is to provide management with appropriate visibility
into the process being used by the software project and of the products being built. Software Quality
Assurance involves reviewing and auditing the software products and activities to verify that they comply
with the applicable procedures and standards and providing the software project and other appropriate
managers with the results of these reviews and audits.

Definitions

audit - An independent examination of a work product or set of work products to assess compliance with
specifications, standards, contractual agreements, or other criteria. [IEEE-STD-610 Glossary]

periodic review/activity - A review/activity that occurs at a specified regular time interval, rather than at
the completion of major events.

policy - A guiding principle, typically established by senior management, which is adopted by an
organization or project to influence and determine decisions.

procedure - A written description of a course of action to be taken to perform a given task.[IEEE-STD-610
Glossary]

software quality assurance (SQA) - (1) A planned and systematic pattern of all actions necessary to
provide adequate confidence that a software work product conforms to established technical requirements.
(2) A set of activities designed to evaluate the process by which software work products are developed
and/or maintained.

standard - Mandatory requirements employed and enforced to prescribe a disciplined, uniform approach to
software development.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 60

Goals

1. Software quality assurance activities are planned.

2. Adherence of software products and activities to the applicable standards, procedures, and
requirements is verified objectively.

3. Affected groups and individuals are informed of software quality assurance activities and results.

4. Noncompliance issues that cannot be resolved within the software project are addressed by senior
management.

30. Software Configuration Management
The purpose of Software Configuration Management (SCM) is to establish and maintain the integrity of the
products of the software project throughout the project’s software life cycle. Software Configuration
Management involves identifying the configuration of the software (i.e., selected software work products
and their descriptions) at given points in time, systematically controlling changes to the configuration, and
maintaining the integrity and traceability of the configuration throughout the software life cycle. The work
products placed under software configuration management include the software products that are delivered
to the customer and the items that are identified with or required to create these software products.

Definitions

configuration item - An aggregation of hardware, software, or both, that is designated for configuration
management and treated as a single entity in the configuration management process. [IEEE-STD-610
Glossary]

documented procedure - A written description of a course of action to be taken to perform a given task.
[IEEE-STD-610 Glossary]

software baseline - A set of configuration items (software documents and software components) that has
been formally reviewed and agreed upon, that thereafter serves as the basis for future development, and that
can be changed only through formal change control procedures

software work product - Any artifact created as part of defining, maintaining, or using a software process,
including process descriptions, plans, procedures, computer programs, and associated documentation, which
may or may not be intended for delivery to a customer or end user.

Goals

1. Software configuration management activities are planned.

2. Selected software work products are identified, controlled, and available.

3. Changes to identified software work products are controlled.

4. Affected groups and individuals are informed of the status and content of software baselines.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 61

31. Organization Process Focus
The purpose of Organization Process Focus is to establish the organizational responsibility for software
process activities that improve the organization’s overall software process capability. Organization Process
Focus involves developing and maintaining an understanding of the organization’s and projects’ software
processes and coordinating the activities to assess, develop, maintain, and improve these processes. The
organization provides long-term commitments and resources to coordinate the development and
maintenance of the software processes across current and future software projects via a group such as a
software engineering process group. This group is responsible for the organization’s software process
activities.

Definitions

periodic review/activity - A review/activity that occurs at a specified regular time interval, rather than at
the completion of major events.

software process - A set of activities, methods, practices, and transformations that people use to develop
and maintain software and the associated products (e.g., project plans, design documents, code, test cases,
and user manuals)

software process assessment - An appraisal by a trained team of software professionals to determine the
state of an organization’s current software process, to determine the high-priority software process-related
issues facing an organization, and to obtain the organizational support for software process improvement.

software engineering process group (SEPG) - A group of specialists who facilitate the definition,
maintenance and improvement of the software process used by the organization. In the key practices, this
group is generically referred to as "the group responsible for the organization’s software process activities."

Goals

1. Software process development and improvement activities are coordinated across the organization.

2. The strengths and weaknesses of the software processes used are identified relative to a process
standard.

3. Organization-level process development and improvement activities are planned.

32. Organization Process Definition
The purpose of Organization Process Definition is to develop and maintain a usable set of software process
assets that improve process performance across the projects and provide a basis for cumulative, long- term
benefits to the organization. Organization Process Definition involves developing and maintaining the
organization’s standard software process, along with related process assets, such as descriptions of software
life cycles, process tailoring guidelines and criteria, the organization’s software process database, and a
library of software process-related documentation.

Definitions

audit - An independent examination of a work product or set of work products to assess compliance with
specifications, standards, contractual agreements, or other criteria.

organization’s standard software process - The operational definition of the basic process that guides the
establishment of a common software process across the software projects in an organization. It describes the
fundamental software process elements that each software project is expected to incorporate into its defined
software process. It also describes the relationships (e.g., ordering and interfaces) between these software
process elements.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 62

software quality assurance (SQA) - (1) A planned and systematic pattern of all actions necessary to
provide adequate confidence that a software work product conforms to established technical requirements.
(2) A set of activities designed to evaluate the process by which software work products are developed
and/or maintained.

Goals

1. A standard software process for the organization is developed and maintained.

2. Information related to the use of the organization’s standard software process by the software projects is
collected, reviewed, and made available.

33. Training Program
The purpose of the Training Program key process area is to develop the skills and knowledge of individuals
so they can perform their roles effectively and efficiently. Training Program involves first identifying the
training needed by the organization, projects, and individuals, then developing or procuring training to
address the identified needs. Some skills are effectively and efficiently imparted through informal vehicles
(e.g., on- the-job training and informal mentoring), whereas other skills need more formal training vehicles
(e.g., classroom training and guided self-study) to be effectively and efficiently imparted. The appropriate
vehicles are selected and used.

Definitions

periodic review/activity - A review/activity that occurs at a specified regular time interval, rather than at
the completion of major events.

software engineering group (SEG) - The collection of individuals (both managers and technical staff) who
have responsibility for software development and maintenance activities (i.e., requirements analysis, design,
code, and test) for a project. Groups performing software related work, such as the software quality
assurance group, the software configuration management group, and the software engineering process
group, are not included in the software engineering group.

Goals

1. Training activities are planned.

2. Training for developing the skills and knowledge needed to perform software management and
technical roles is provided.

3. Individuals in the software engineering group and software-related groups receive the training
necessary to perform their roles.

34. Integrated Software Management
The purpose of Integrated Software Management is to integrate the software engineering and management
activities into a coherent, defined software process that is tailored from the organization’s standard software
process and related process assets. Integrated Software Management involves developing the project’s
defined software process and managing the software project using this defined software process. The
project’s defined software process is tailored from the organization’s standard software process to address
the specific characteristics of the project. The software development plan is based on the project’s defined
software process and describes how the activities of the project’s defined software process will be
implemented and managed.

Definitions

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 63

organization’s standard software process - The operational definition of the basic process that guides the
establishment of a common software process across the software projects in an organization. It describes the
fundamental software process elements that each software project is expected to incorporate into its defined
software process. It also describes the relationships (e.g., ordering and interfaces) between these software
process elements.

policy - A guiding principle, typically established by senior management, which is adopted by an
organization or project to influence and determine decisions.

project’s defined software process - The operational definition of the software process used by a project.
The project’s defined software process is a well-characterized and understood software process, described in
terms of software standards, procedures, tools, and methods. It is developed by tailoring the organization’s
standard software process to fit the specific characteristics of the project.

tailoring - To modify a process, standard, or procedure to better match process or product requirements.

Goals

1. The project’s defined software process is a tailored version of the organization’s standard software
process.

2. The project is planned and managed according to the project’s defined software process.

35. Software Product Engineering
The purpose of Software Product Engineering is to consistently perform a well-defined engineering process
that integrates all the software engineering activities to produce and support correct, consistent software
products effectively and efficiently. Software Product Engineering involves performing the engineering
tasks to build and maintain the software using the project’s defined software process and appropriate
methods and tools. The software engineering tasks include analyzing the system requirements allocated to
software, developing the software architecture, designing the software, implementing the software in the
code, and testing the software to verify that it satisfies the specified requirements

Definitions

project’s defined software process - The operational definition of the software process used by a project.
The project’s defined software process is a well-characterized and understood software process, described in
terms of software standards, procedures, tools, and methods. It is developed by tailoring the organization’s
standard software process to fit the specific characteristics of the project.

organization’s standard software process - The operational definition of the basic process that guides the
establishment of a common software process across the software projects in an organization. It describes the
fundamental software process elements that each software project is expected to incorporate into its defined
software process. It also describes the relationships (e.g., ordering and interfaces) between these software
process elements.

software work product - Any artifact created as part of defining, maintaining, or using a software process,
including process descriptions, plans, procedures, computer programs, and associated documentation, which
may or may not be intended for delivery to a customer or end user.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 64

Goals

1. The software engineering tasks are defined, integrated, and consistently performed to produce the
software.

2. Software work products are kept consistent with each other.

36. Intergroup Coordination
The purpose of Intergroup Coordination is to establish a means for the software engineering group to
participate actively with the other engineering groups so the project is better able to satisfy the customer’s
needs effectively and efficiently. Intergroup Coordination involves the software engineering group’s
participation with other project engineering groups to address system-level requirements, objectives,
process, and issues. Representatives of the project’s engineering groups participate in establishing the
system-level requirements, objectives, and plans by working with the customer and end users, as
appropriate. These requirements, objectives, and plans become the basis for all engineering activities.

Definitions

software engineering group (SEG) - The collection of individuals (both managers and technical staff) who
have responsibility for software development and maintenance activities (i.e., requirements analysis, design,
code, and test) for a project. Groups performing software related work, such as the software quality
assurance group, the software configuration management group, and the software engineering process
group, are not included in the software engineering group.

commitment - A pact that is freely assumed, visible, and expected to be kept by all parties.

Goals

1. The customer’s requirements are agreed to by all affected groups.

2. The commitments between the engineering groups are agreed to by the affected groups.

3. The engineering groups identify, track, and resolve intergroup issues.

37. Peer Reviews
The purpose of Peer Reviews is to remove defects from the software work products early and efficiently. An
important corollary effect is to develop a better understanding of the software work products and of defects
that might be prevented. Peer Reviews involve a methodical examination of software work products by the
producers’ peers to identify defects and areas where changes are needed. The specific products that will
undergo a peer review are identified in the project’s defined software process and scheduled as part of the
software project planning activities.

Definitions

peer review - A review of a software work product, following defined procedures, by peers of the
producers of the product for the purpose of identifying defects and improvements.

software work product - Any artifact created as part of defining, maintaining, or using a software process,
including process descriptions, plans, procedures, computer programs, and associated documentation, which
may or may not be intended for delivery to a customer or end user

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 65

Goals

1. Peer review activities are planned.

2. Defects in the software work products are identified and removed.

38. Quantitative Process Management
The purpose of Quantitative Process Management is to control the process performance of the software
project quantitatively. Quantitative Process Management involves taking measurements of the process
performance, analyzing these measurements, and making adjustments to maintain process performance
within acceptable limits. When the process performance is stabilized within acceptable limits, the project’s
defined software process, the associated measurements, and the acceptable limits for the measurements are
established as a baseline and used to control process performance quantitatively.

Definitions

organization’s standard software process - The operational definition of the basic process that guides the
establishment of a common software process across the software projects in an organization. It describes the
fundamental software process elements that each software project is expected to incorporate into its defined
software process. It also describes the relationships (e.g., ordering and interfaces) between these software
process elements.

process capability - The range of expected results that can be achieved by following a process.

process performance - A measure of the actual results achieved by following a process.

project’s defined software process - The operational definition of the software process used by a project.
The project’s defined software process is a well-characterized and understood software process, described in
terms of software standards, procedures, tools, and methods. It is developed by tailoring the organization’s
standard software process to fit the specific characteristics of the project.

Goals

1. The quantitative process management activities are planned.

2. The process performance of the project’s defined software process is controlled quantitatively.

3. The process capability of the organization’s standard software process is known in quantitative terms.

39. Software Quality Management
Software Quality Management involves defining quality goals for the software products, establishing plans
to achieve these goals, and monitoring and adjusting the software plans, software work products, activities,
and quality goals to satisfy the needs and desires of the customer and end user. Quantitative product quality
goals are established based on the needs of the organization, customer, and end user for high-quality
products. So that these goals may be achieved, the organization establishes strategies and plans, and the
project specifically adjusts its defined software process, to accomplish the quality goals.

Definitions

software quality goal - Quantitative quality objectives defined for software work product.

Goals

1. The project’s software quality management activities are planned.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 66

2. Measurable goals for software product quality and their priorities are defined.

3. Actual progress toward achieving the quality goals for the software products is quantified and
managed.

40. Defect Prevention
Defect Prevention involves analyzing defects that were encountered in the past and taking specific actions
to prevent the occurrence of those types of defects in the future. The defects may have been identified on
other projects as well as in earlier stages or tasks of the current project. Trends are analyzed to track the
types of defects that have been encountered and to identify defects that are likely to recur. Both the project
and the organization take specific actions to prevent recurrence of the defects.

Definitions

causal analysis meeting - A meeting, conducted after completing a specific task, to analyze defects
uncovered during the performance of that task.

common cause (of a defect) - A cause of a defect that is inherently part of a process or system. Common
causes affect every outcome of the process and everyone working in the process.

Goals

1. Defect prevention activities are planned.

2. Common causes of defects are sought out and identified.

3. Common causes of defects are prioritized and systematically eliminated.

41. Technology Change Management
Technology Change Management involves identifying, selecting, and evaluating new technologies, and
incorporating effective technologies into the organization. The objective is to improve software quality,
increase productivity, and decrease the cycle time for product development. The organization establishes a
group (such as a software engineering process group or a technology support group) that works with the
software projects to introduce and evaluate new technologies and manage changes to existing technologies.
Particular emphasis is placed on technology changes that are likely to improve the capability of the
organization’s standard software process. Pilot efforts are performed to assess new and unproven
technologies before they are incorporated into normal practice. With appropriate sponsorship of the
organization’s management, the selected technologies are incorporated into the organization’s standard
software process and current projects, as appropriate.

Definitions

documented procedure - A written description of a course of action to be taken to perform a given task.
[IEEE-STD-610 Glossary]

organization’s standard software process - The operational definition of the basic process that guides the
establishment of a common software process across the software projects in an organization. It describes the
fundamental software process elements that each software project is expected to incorporate into its defined
software process. It also describes the relationships (e.g., ordering and interfaces) between these software
process elements.

Appendix C: COCOMO II Process Maturity

Version 1.4 - Copyright University of Southern California 67

Goals

1. Incorporation of technology changes are planned.

2. New technologies are evaluated to determine their effect on quality and productivity.

3. Appropriate new technologies are transferred into normal practice across the organization.

42. Process Change Management
Process Change Management involves defining process improvement goals and, with senior management
sponsorship, proactively and systematically identifying, evaluating, and implementing improvements to the
organization’s standard software process and the projects’ defined software processes on a continuous basis.
Training and incentive programs are established to enable and encourage everyone in the organization to
participate in process improvement activities. Improvement opportunities are identified and evaluated for
potential payback to the organization. Pilot efforts are performed to assess process changes before they are
incorporated into normal practice. When software process improvements are approved for normal practice,
the organization’s standard software process and the projects’ defined software processes are revised as
appropriate.

Definitions

documented procedure - A written description of a course of action to be taken to perform a given
task.[IEEE-STD-610 Glossary]

organization’s standard software process - The operational definition of the basic process that guides the
establishment of a common software process across the software projects in an organization. It describes the
fundamental software process elements that each software project is expected to incorporate into its defined
software process. It also describes the relationships (e.g., ordering and interfaces) between these software
process elements.

project’s defined software process - The operational definition of the software process used by a project.
The project’s defined software process is a well-characterized and understood software process, described in
terms of software standards, procedures, tools, and methods. It is developed by tailoring the organization’s
standard software process to fit the specific characteristics of the project.

Goals

1. Continuous process improvement is planned.

2. Participation in the organization’s software process improvement activities is organization wide.

3. The organization’s standard software process and the projects’ defined software processes are improved
continuously.

This page left intentionally blank.

Appendix D: Values for COCOMO II.1997

Version 1.4 - Copyright University of Southern California 68

Appendix D: Values for COCOMO II.1997

This Appendix has the values for the COCOMO II.1997 model that is a result of calibration on 83 projects.

W(i) Very Low Low Nominal High Very High Extra High

Precedentedness 4.05 3.24 2.43 1.62 0.81 0.00

Development Flexibility 6.07 4.86 3.64 2.43 1.21 0.00

Architecture / Risk
Resolution

4.22 3.38 2.53 1.69 0.84 0.00

Team Cohesion 4.94 3.95 2.97 1.98 0.99 0.00

Process Maturity 4.54 3.64 2.73 1.82 0.91 0.00

Table 1: Scale Factors

Cost Driver Rating

Very Low Low Nominal High Very High Extra High

RELY 0.75 0.88 1.00 1.15 1.39

DATA 0.93 1.00 1.09 1.19

CPLX 0.75 0.88 1.00 1.15 1.30 1.66

RUSE 0.91 1.00 1.14 1.29 1.49

DOCU 0.89 0.95 1.00 1.06 1.13

TIME 1.00 1.11 1.31 1.67

STOR 1.00 1.06 1.21 1.57

PVOL 0.87 1.00 1.15 1.30

ACAP 1.50 1.22 1.00 0.83 0.67

PCAP 1.37 1.16 1.00 0.87 0.74

PCON 1.24 1.10 1.00 0.92 0.84

AEXP 1.22 1.10 1.00 0.89 0.81

PEXP 1.25 1.12 1.00 0.88 0.81

LTEX 1.22 1.10 1.00 0.91 0.84

TOOL 1.24 1.12 1.00 0.86 0.72

SITE 1.25 1.10 1.00 0.92 0.84 0.78

SCED 1.29 1.10 1.00 1.00 1.00

Table 2: Cost Drivers

Multiplicative Constant for Effort = 2.45

Multiplicative Constant for Schedule = 2.66

