
A Short Introduction to Schemes

Brian Lawrence

October 28, 2013

Abstract

A while back a topologist friend asked me why the set of prime ideals of
a ring deserved to be singled out for study. Another friend, a symplectic
geometer, asked why anyone would want to put a scheme structure on
the paramaters that classify a type of object (i.e. construct a moduli
space). Algebraic geometry does have a reputation for being somewhat
impenetrable (and I won’t say it’s undeserved), but there are natural
reasons to ask these questions. In this talk I introduce schemes and show
how they relate to classical varieties. In particular, I discuss the value
of allowing rings with nilpotents, one of the major innovations of scheme
theory.

These are notes from a talk given at Stanford’s KIDDIE Colloquium
for first-year grads, Oct. 28, 2013. (I do not know whether KIDDIE
stands for anything.)

1 From Varieties to Schemes

Schemes are a generalization of classical algebraic varieties. My goal today
is show how basic geometric intuition can be translated into the language of
schemes (so nothing is lost in going from varieties to schemes) and how the
generality of scheme theory allows one to introduce useful new techniques (so
something is gained).

Since this talk is an intuitive introduction to schemes, I will feel free to give
impressionistic definitions and state imprecise theorems.

We begin by reviewing the classical notion of a variety. A variety is, loosely
speaking, a sort of “algebraic manifold,” but note that varieties need not be
smooth.

“Definition”. Given a field K and polynomials f1, . . . , fk in K[x1, . . . , xn],
define

V (f1, . . . , fk) = {x ∈ Kn|fi(x) = 0, 1 ≤ i ≤ k}.
An affine variety over K is a set of the form V (f1, . . . , fk) for some n and
f1, . . . , fk. A morphism of affine varieties is a map given by polynomials in
the coefficients. A variety is something that can be covered by finitely many
affine varieties. A morphism of varieties is a map that, when restricted to affine
varieties, gives a morphism of affine varieties.
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Examples. If k = 0 (no equations) we recover the set Kn, called affine n-space.
In the plane, the equation x2 = 0 cuts out a line. The equation x22 = 0 cuts

out the same line. There is no notion of “multiplicity.”
The circle x2 + y2 = 1 and the line y = 1 intersect in a single point. Again,

no multiplicity.
The equation xy = 0 cuts out a variety which is the union of two lines

and has a singular point at the origin (whatever that means). The equation
y2 = x2(x − 1) cuts out a variety that also has a singular point. Even over a
field like R or C these varieties are not manifolds.

One defines n-dimensional projective space by gluing affine spaces appropri-
ately. It is possible to describe subvarieties of projective space as subsets cut
out by equations, loosely speaking.

Now we need to make a subtle shift in perspective. Instead of the set of
points of an affine variety, we focus on the ring of polynomial functions on it.

Examples. The ring of polynomial functions on Kn is K[x1, . . . , xn].
The ring of polynomial functions on the circle x2 + y2 = 1 (defined over C,

say) is C[x, y]/(x2 + y2 − 1).
In many cases the ring of polynomials on the variety in Kn cut out by

f1, . . . , fk is exactly the ring K[x1, . . . , xn]/(f1, . . . , fk).
However, the ring of polynomials on the variety in K2 cut out by y2 = 0 is

K[x, y]/(y), not K[x, y]/(y2).

In scheme theory, the ring of functions is fundamental; the set of points and
topological structure are recovered from the ring.

“Definition”. An affine scheme, denoted Spec A, is the data of a ring A. A
morphism of affine schemes Spec A → Spec B, is a morphism of rings B → A,
with the arrow pointing in the opposite direction. An affine scheme over a
field k is a scheme Spec A where A is equipped with a k-algebra structure. A
morphism of affine schemes over k is a ring morphism respecting the k-algebra
structure.

Why is a morphism defined this way? Given a map of classical varieties,
functions defined on the target pull back to the source. In scheme theory we
take this as the definition of a morphism.

Where did the points go? The points of a classical variety can be recovered
as the maximal ideals in its ring of functions. This is the content of the following
theorem, a form of Hilbert’s Nullstellensatz.

Theorem. Every maximal ideal of the ring A = K[x1, . . . , xn]/(f1, . . . , fk) is
of the form (x1 − a1, . . . , xn − an), where (a1, . . . , an) is a common zero of the
polynomials fi. This gives a bijective correspondence between maximal ideals of
A and points of the classical variety.

This suggests the definition: a point of an affine scheme is a maximal ideal
of its ring. This would not be the right definition, as we will see soon, but it is
a step in the right direction.
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A morphism of affine schemes should give a map of points. How do we
construct that map? In other words, given a ring map B → A, what objects
(“points”) on A pull back to the same kind of object on B? The following result
is easy.

Lemma. Given a map of rings (commutative with identity) f : B → A, for
every prime ideal p of A, the set f−1(p) is a prime ideal of B.

It is not true, in general, than the inverse image of a maximal ideal is maxi-
mal. (But see below.) Hence we are led to define points as prime, not maximal,
ideals.

Definition. A point of an affine scheme Spec A is a prime ideal p of A. Hence,
a morphism of affine schemes induces a (set-theoretic) map on points, via the
above Lemma.

A point corresponding to a maximal ideal is sometimes called a “classical” or
“closed” point. For most purposes it is enough to consider only classical points.
But we will see that occasionally it is useful to also work with generic points.

Theorem. Under some mild hypotheses, a map of affine schemes takes classical
points to classical points.

Aside: the point set of an affine scheme comes with a topological structure,
called the Zariski topology. Also, it is possible to define a “scheme” in general,
by gluing affine schemes, and to give a definition for a “morphism” of schemes.
Thus, for example, we can define projective space Pn

R as a scheme.
We have seen that schemes allow us to recover at least the point set of a

classical variety. At this point it should not come as a surprise that any of the
classical algebro-geometric constructions can be carried over into schemes. But
why bother with schemes? Schemes generalize varieties in several ways. First,
schemes have generic (non-classical) points, as we have seen. Second, schemes
can be defined over arbitrary rings: Spec Z is a scheme, but it is not a variety
over any field. Third, schemes can have nilpotent elements: Spec k[x, y]/(y)
and Spec k[x, y]/(y2) are nonisomorphic affine schemes (since their rings are
not isomorphic), but there is no variety corresponding to Spec k[x, y]/(y2). For
the remainder of this talk we will discuss some applications of these three gen-
eralizations.

2 A Word about Generic Points

Let A be the ring C[x, y]. As we have seen, Spec A is supposed to be a scheme-
theoretic analogue of the complex plane C2. (It is traditional in algebraic ge-
ometry to use complex, not real, dimension. So a “curve” over C is a scheme of
complex dimension 1 and real dimension 2; a “surface” is of complex dimension
2 and real dimension 4, and so forth. The one exception is the phrase “Riemann
surface,” so called for historical reasons. Thus a Riemann surface is a curve,
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not a surface. In this talk I will draw C2 as a plane R2, and curves in C2 as real
curves in the real plane.)

What are the prime ideals of A? We have seen that the maximal ideals are
exactly those of the form (x− a, y− b); these correspond to points of the plane.
Any irreducible polynomial generates a prime ideal: so, for instance, (y) and
(y − x2) are prime ideals. Such an ideal naturally corresponds to its vanishing
locus, which is a curve in the plane. Finally, since A is an integral domain, the
zero ideal (0) is also a prime ideal. This corresponds to the whole plane. One
can show that these are all the prime ideals of C[x, y].

We can visualize the generic point associated to a prime ideal, say (y − x2),
as being located somewhere on the curve, but nowhere in particular. Does x = 0
at this generic point? No. Algebraically, evaluation at a point is given by the
quotient map A→ A/(y−x2), and x does not map to zero. Geometrically, x is
nonzero at a “general” point of the curve, so we should say x is nonzero at the
generic point. (This is probably why they are called generic points.) On the
other hand, y = x2 at the generic point, and at any closed point as well, of this
curve.

Topologically, the closure of this generic point contains the point itself plus
every closed point of the curve.

Similarly, the generic point associated to (0) is somewhere in the plane, but
not at any particular point and not on any particular curve. Its closure is the
plane itself.

The following argument gives a typical application of generic points. (It is
not a complete proof – I’ve just included it to give a vague idea of how such a
proof might go.)

“Theorem”. A reasonably nice affine scheme X over a field, whose ring has
no nilpotent elements, is smooth on a dense open set.

Proof. The set of smooth points of X is open, essentially by the Jacobi criterion.
Let Xi be the irreducible components of X, and let pi be the generic point of
Xi. Using the fact that the ring has no nilpotent elements, one shows that Xi

is smooth at pi. But then the smooth locus of Xi, being an open set containing
the generic point, must be dense; and patching the Xi’s together one finds that
the smooth locus of X is itself dense.

3 A Word about Arbitrary Rings

It is useful in number theory to view a scheme “over Z” as a family of schemes,
one over each of the finite fields Fp and one over Q. The scheme-theoretic
picture provides geometric intuition, and many scheme-theoretic results, initially
of a geometric nature, have arithmetic meaning in this context. Due to time
constraints I will not discuss this.
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4 Some Applications of Nilpotents

Let X be the complex plane Spec A = Spec C[x, y]. As we have seen, for any
point p = (a, b) of X, evaluation at p gives a map A → C; this map is exactly
the quotient map of A by the maximal ideal (x− a, y − b) of X.

Now suppose we have a tangent vector v to the plane at p. For any f ∈ A,
we can ask for the derivative of f along v at p; the result is a complex number.
Thus we get some sort of map A→ C. But it’s not a map of C-algebras, or even
a map of rings; instead it satisfies a Leibniz rule. This isn’t very convenient.

The following algebraic procedure encodes the same information in a more
elegant way. Given f , write formally

f(p+ εv) = f(p) +Dv(f)ε+O(ε2).

Then the Leibniz rule for differentiation tells us exactly that

(fg)(p) +Dv(fg)ε = (f(p) +Dv(f)ε) (f(p) +Dv(f)ε) +O(ε2).

In other words, the data of p and v give a map of rings

A→ C[ε]/ε2.

The value of f at p is given by the constant term in the image; the derivative is
given by the ε term. In other words, composing with the map

C[ε]/ε2 → C[ε]/ε = C

gives evaluation at p.
But we said earlier that a map of rings is by definition a morphism of affine

schemes! The first map, evaluation at p, gives a map from Spec C into X.
Clearly Spec C is a single point, it gets mapped to the point p of X, everything
tautologically works and there is nothing more to say. What’s going on with the
second map? We can see that Λ = Spec C[ε]/ε2 is again a single point, and as
expected it also maps to the point p of X. But the map carries more information
than that: it also somehow “remembers” the vector v. So it’s probably better
to thing of Λ as somehow coming with a tangent vector, even though Λ is just a
single point. To specify a map of Λ into a scheme S we have to specify both the
point p that is the image and the tangent vector to p in S which is the image
of d/dε, so to speak.

The composition of ring maps above can be seen geometrically as follows:
the point Spec C maps into the point with tangent vector Λ, which maps into
X.

Of course we could construct even “larger” points. A map from Spec C[ε]/ε3

would carry second-order information as well as a tangent vector; a map from
Spec C[ε]/εn would carry even higher-order information. Adjoining nilpotents
ε2, ε3, and so forth allows for a multidimensional tangent space. The rings whose
spectra we are considering here are called Artin local rings and they are very
useful in studying the local properties of schemes, as we will see.

We say a ring is “reduced” if it has no nonzero nilpotents; we also say that
the corresponding scheme is reduced.
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4.1 Multiplicity and Intersection Theory

Let’s go back to the question of multiplicity, which arose when we discussed
classical varieties.

In the plane, the equation y2 = 0 cuts out a non-reduced line, while the
equation y = 0 cuts out a reduced line. Contrast this with the situation of
varieties, where both equations cut out the same variety.

Similarly, the scheme-theoretic intersection of the line y = 1 with the circle
x2+y2 = 1 is given by the two equations y = 1 and x2 = 0. This scheme is a non-
reduced point. (In fact, it is isomorphic to the scheme Λ above.) Furthermore,
if we define the degree of an affine scheme over k to be the dimension of its
coordinate ring as a k-vector space, then the intersection has degree 2. In fact,
the intersection of any line with any conic (in the projective plane) has degree
2. Thus non-reduced schemes give an elegant definition of multiplicity, in which
Bezout’s Theorem holds.

Theorem. Suppose C1 and C2 are two curves in the projective plane with no
common component, defined by equations of degrees d1 and d2, respectively.
Then their intersection is a scheme of degree d1d2.

Similarly, consider n homogenous polynomials on Pn over a field, of degrees
d1, . . . , dn. If the scheme they cut out has no components of dimension greater
than zero, then its degree is d1 · · · dn.

4.2 Deformation Theory

In algebraic geometry as elsewhere, there are some natural classification ques-
tions which arise. For instance: Classify elliptic curves up to isomorphism.
Classify curves of genus g and degree d in P3. Classify line bundles L on a given
elliptic curve E.

What sort of answer should we hope for? Consider the problem of classifying
elliptic curves. Over an algebraically closed field k, elliptic curves are classified
by their j-invariant. In other words, every elliptic curve has a well-defined j-
invariant; two elliptic curves have the same j-invariant if and only if they are
isomorphic; and one knows exactly which values the j-invariant can take on.
So, we’re done, right? This seems like a satisfactory result.

But now consider the following setup. Suppose we have a map of schemes
X → S, such that the fiber over every point of S is an elliptic curve. (Feel free to
assume the map is flat – a technical condition that we won’t worry about here.
Don’t worry about generic points either, but it’s also reasonable to request that
the fiber over each generic point be an elliptic curve as well.) For every s ∈ S
we can compute the j-invariant of the elliptic curve over s, so we get a function
on the points of S. (Specifically, every closed point of S gets mapped to some
value in k.) Now we ask, is this function algebraic? In other words, does it come
from a map of schemes from S to the j-line? It seems reasonable to hope for
this, but it certainly does not follow from the “pointwise” classification result
cited above.
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Thus we need a stronger result. We would like to have a scheme structure
on the j-line, so every (flat) family of elliptic curves over S gives a scheme-
theoretic map to the j-line. Ideally, we would also like to have a universal
elliptic curve Euniv over the j-line J , so that any family of elliptic curves over S
is the pullback of Euniv through a unique map S → J . In fact for elliptic curves
this is not possible: if E is an elliptic curve with nontrivial automorphisms, then
it is possible to produce a map X → S such that each fiber is isomorphic to E,
but (loosely speaking) “going around a loop” on S takes the fiber through an
automorphism. That is, there are nontrivial E-bundles on S.

This issue doesn’t arise for subschemes of a given scheme, or for vector
bundles on a given scheme – in these cases, there is always a well-defined moduli
space. Even when there is not a moduli space with all the functorial properties
we want it’s still possible to weaken some hypotheses and make inroads on the
problem. But this is beyond the scope of today’s talk.

So suppose for simplicity that we’re in a situation where there is a well-
defined moduli space. For instance, suppose we want to classify degree-zero
line bundles on a curve C of genus g. (I have not defined line bundles.) It is
well-known that a moduli space exists. What is its dimension? Is it smooth?

The moduli space Pic0C satisfies a property which should be seen as analo-
gous to the desired universal property above – there is a classifying space Pic0C,
and then any family of degree-zero line bundles on C, parametrized by S, in-
duces a map S → Pic0C. Somewhat more precisely: there is a universal line
bundle P on Pic0C×C, and for any scheme S and any (reasonable) line bundle
L on S ×C (which should be thought of as a “line bundle on each fiber Cs, for
s ∈ S) there is a unique map S → Pic0C such that L is more-or-less isomorphic
to the pull-back of P to S × C.

The point I would like to make is the following. Take Λ be the spectrum
of the Artin local ring k[ε]/ε2, as before. Then “line bundles on C over Λ” (I
am being deliberately imprecise) are in bijection with maps from Λ to Pic0C.
But such maps correspond to tangent vectors in Pic0C, so by using nonreduced
schemes we can get our hands on the tangent space to Pic0C at any point.

Specifically, a point p of Pic0C corresponds to a degree-zero line bundle L
on C. A tangent vector at p corresponds to a line bundle over Λ, which pulls
back to L over the reduced point in Λ. But (if you know all the machinery) it is
very easy to classify these. They are classified (more or less) by the cohomology
group H1(OC). It does not matter what this means – it is a fundamental
quantity which is known to have dimension g as a vector space over k. In short,
we find by an easy calculation that the tangent space to Pic0C at any point
has dimension g. We can do this sort of calculation in general, not just for this
particular problem; thus it is in general relatively easy to find the dimension of
the tangent space to any moduli space.

Our problem is not yet solved. Schemes can have singular points, and at
those points the tangent space as we have defined it has higher dimension than
the dimension of the variety itself. For example, the scheme cut out by xy = 0 in
the plane has a tangent space of dimension 2 at the origin. Worse, a nonreduced
scheme can have extra dimensions in its tangent space at every point. The
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tangent space to the scheme Λ has dimension 1; the tangent space to the double
line at any point has dimension 2. In the case of our moduli spaces, we need
to determine whether all the tangent directions we have found can be extended
into the space Pic0C.

In general one might attack this problem by classifying line bundles over a
larger base than Λ, say Λn = Spec k[ε]/εn, for n = 3, 4, . . .. Hopefully, we can
determine which first-order deformations (i.e. objects over Λ) extend to second-
order deformations (over Λ3), and which of these extend further, and so on. In
the limit, we would have objects over a power series ring, and we might hope
to get information about the moduli space in the large. This is the subject of
deformation theory.

In our particular case one can show by other means that Pic0C must have
dimension g. Since the tangent space at any point has dimension g, we deduce
that Pic0C is smooth at every point.

In fact, building up from Artin local rings is a common method of proof.
Typically, one wishes to prove some result globally on a variety or scheme.
One shows that it is true for Artin local rings, perhaps by induction on the
dimension, from the case of a field or the ring Λ. Taking a limit one obtains the
result in some “formal” sense, over a power series ring. For many results the
global result follows from the result over a power series ring. (For example, a
function on an irreducible variety whose power series expansion at a point is 0
must be identically 0.)

5 References

Ravi’s notes are an excellent exposition of scheme theory. In particular my
discussion of schemes and their points drew from Chapter 3 and Section 4.2 .
Bezout’s Theorem in the plane is Exercise 18.6K; the generalization to projective
n-space follows from the discussion in Section 20.1.

On a less elementary level:
Hartshorne’s book Deformation Theory is a detailed introduction to the

subject named in its title.
Mumford’s Lectures on Curves on an Algebraic Surface has a construction

of the Picard scheme Pic0X.
The introduction to Grothendieck’s EGA 1 has an exposition of the technique

of proof mentioned at the end of the talk. See the section from pages 8 to 9,
starting from the second paragraph: “La technique generale....”

Mumford’s Abelian Varieties has some proofs that run along those lines, but
are written more concretely. (For example, there is no mention of “faithfully flat
descent.”) The scheme-theoretic proof of the Theorem of the Cube in Chapter
10 and the proof of the Lemma on irreducible fibers in Chapter 18 are good
examples.
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