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Abstract. The use of intelligent systems for stock market predictions
has been widely established. In this paper, we investigate how the seem-
ingly chaotic behavior of stock markets could be well represented us-
ing Flexible Neural Tree (FNT) ensemble technique. We considered the
Nasdaq-100 index of Nasdaq Stock MarketSM and the S&P CNX NIFTY
stock index. We analyzed 7-year Nasdaq-100 main index values and 4-
year NIFTY index values. This paper investigates the development of
novel reliable and efficient techniques to model the seemingly chaotic
behavior of stock markets. The structure and parameters of FNT are
optimized using Genetic Programming (GP) like tree structure based
evolutionary algorithm and Particle Swarm Optimization (PSO) algo-
rithms, repectively. A good ensemble model is formulated by the Lo-
cal Weighted Polynomial Regression (LWPR). This paper investigates
whether the proposed method can provide the required level of perfor-
mance, which is sufficiently good and robust so as to provide a reliable
forecast model for stock market indices. Experimental results show that
the model considered could represent the stock indices behavior very ac-
curately.
Key Words: Flexible neural tree, GP-like tree structure based evolu-
tionary algorithm, particle swarm optimization, ensemble learning, stock
index

1 Introduction

Prediction of stocks is generally believed to be a very difficult task - it behaves
like a random walk process and time varying. The obvious complexity of the
problem paves the way for the importance of intelligent prediction paradigms.
During the last decade, stocks and futures traders have come to rely upon vari-
ous types of intelligent systems to make trading decisions [1], [2], [14], [15], [16],



[3], [19], [20]. Several intelligent systems have in recent years been developed
for modelling expertise, decision support and complicated automation tasks [3],
[4], [17], [18]. In this paper, we analyzed the seemingly chaotic behavior of two
well-known stock indices namely the Nasdaq-100 index of NasdaqSM [5] and
the S&P CNX NIFTY stock index [6]. The Nasdaq-100 index reflects Nasdaq’s
largest companies across major industry groups, including computer hardware
and software, telecommunications, retail/wholesale trade and biotechnology [5].
The Nasdaq-100 index is a modified capitalization-weighted index, which is de-
signed to limit domination of the Index by a few large stocks while generally
retaining the capitalization ranking of companies. Through an investment in
the Nasdaq-100 index tracking stock, investors can participate in the collective
performance of many of the Nasdaq stocks that are often in the news or have
become household names. Similarly, S&P CNX NIFTY is a well-diversified 50
stock index accounting for 25 sectors of the economy [6]. It is used for a variety of
purposes such as benchmarking fund portfolios, index based derivatives and in-
dex funds. The CNX Indices are computed using market capitalization weighted
method, wherein the level of the Index reflects the total market value of all the
stocks in the index relative to a particular base period. The method also takes
into account constituent changes in the index and importantly corporate actions
such as stock splits, rights, etc. without affecting the index value.

Our research is to investigate the performance analysis of FNT [9], [10], [11]
ensemble for modelling the Nasdaq-100 and the NIFTY stock market indices.
The hierarchical structure of FNT is evolved using GP with specific instructions.
The parameters of the FNT model are optimized by PSO algorithm [7]. We
analyzed the Nasdaq-100 index value from 11 January 1995 to 11 January 2002
[5] and the NIFTY index from 01 January 1998 to 03 December 2001 [6]. For
both the indices, we divided the entire data into almost two equal parts. No
special rules were used to select the training set other than ensuring a reasonable
representation of the parameter space of the problem domain [2].

2 The Flexible Neural Tree Model

The function set F and terminal instruction set T used for generating a FNT
model are described as S = F

⋃
T = {+2,+3, . . . ,+N}

⋃{x1, . . . , xn}, where
+i(i = 2, 3, . . . , N) denote non-leaf nodes’ instructions and taking i arguments.
x1,x2,. . .,xn are leaf nodes’ instructions and taking no other arguments. The out-
put of a non-leaf node is calculated as a flexible neuron model (see Fig.1). From
this point of view, the instruction +i is also called a flexible neuron operator
with i inputs.

In the creation process of neural tree, if a nonterminal instruction, i.e.,
+i(i = 2, 3, 4, . . . , N) is selected, i real values are randomly generated and used
for representing the connection strength between the node +i and its children.
In addition, two adjustable parameters ai and bi are randomly created as flexible
activation function parameters. For developing the FNT, the flexible activation

function f(ai, bi, x) = e
−(

x−ai
bi

)2 is used. The total excitation of +n is netn =
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Fig. 1. A flexible neuron operator (left), and a typical representation of the FNT
with function instruction set F = {+2, +3, +4, +5, +6}, and terminal instruction set
T = {x1, x2, x3} (right)

∑n
j=1 wj ∗ xj , where xj(j = 1, 2, . . . , n) are the inputs to node +n. The output

of the node +n is then calculated by outn = f(an, bn, netn) = e−( netn−an
bn

)2 .
The overall output of flexible neural tree can be computed from left to right by
depth-first method, recursively.

2.1 Tree Structure Optimization

Finding an optimal or near-optimal neural tree is formulated as a product of
evolution. In our previous work, the probabilistic incremental program evolu-
tion (PIPE) and ant programming (AP) algorithm have been employed to find a
near-optimal neural tree [9], [12]. In this study, the crossover and selection oper-
ators used are same as those of standard GP. A number of neural tree mutation
operators are developed as follows:

(1) Changing one terminal node: randomly select one terminal node in the neural
tree and replace it with another terminal node;

(2) Changing all the terminal nodes: select each and every terminal node in the
neural tree and replace it with another terminal node;

(3) Growing: select a random leaf in hidden layer of the neural tree and replace
it with a newly generated subtree.

(4) Pruning: randomly select a function node in the neural tree and replace it
with a terminal node.

2.2 Parameter Optimization with PSO

The Particle Swarm Optimization (PSO) conducts searches using a population
of particles which correspond to individuals in evolutionary algorithm (EA). A



population of particles is randomly generated initially. Each particle represents
a potential solution and has a position represented by a position vector xi. A
swarm of particles moves through the problem space, with the moving velocity of
each particle represented by a velocity vector vi. At each time step, a function fi

representing a quality measure is calculated by using xi as input. Each particle
keeps track of its own best position, which is associated with the best fitness it
has achieved so far in a vector pi. Furthermore, the best position among all the
particles obtained so far in the population is kept track of as pg. In addition
to this global version, another version of PSO keeps track of the best position
among all the topological neighbors of a particle. At each time step t, by using the
individual best position, pi, and the global best position, pg(t), a new velocity
for particle i is updated by

vi(t + 1) = vi(t) + c1φ1(pi(t)− xi(t)) + c2φ2(pg(t)− xi(t)) (1)

where c1 and c2 are positive constant and φ1 and φ2 are uniformly distributed
random number in [0,1]. The term vi is limited to the range of ±vmax. If the
velocity violates this limit, it is set to its proper limit. Changing velocity this
way enables the particle i to search around its individual best position, pi, and
global best position, pg. Based on the updated velocities, each particle changes
its position according to the following equation:

xi(t + 1) = xi(t) + vi(t + 1). (2)

2.3 Procedure of the general learning algorithm

The general learning procedure for constructing the FNT model can be described
as follows.

1) Create an initial population randomly (FNT trees and its corresponding
parameters);

2) Structure optimization is achieved by the neural tree variation operators as
described in subsection 2.

3) If a better structure is found, then go to step 4), otherwise go to step 2);
4) Parameter optimization is achieved by the PSO algorithm as described in

subsection 2. In this stage, the architecture of FNT model is fixed, and it is
the best tree developed during the end of run of the structure search. The
parameters (weights and flexible activation function parameters) encoded in
the best tree formulate a particle.

5) If the maximum number of local search is reached, or no better parameter
vector is found for a significantly long time then go to step 6); otherwise go
to step 4);

6) If satisfactory solution is found, then the algorithm is stopped; otherwise go
to step 2).



3 The FNT Ensemble

For most regression and classification problems, combining the outputs of sev-
eral predictors improves on the performance of a single generic one [22]. Formal
support to this property is provided by the so-called bias/variance dilemma [21],
based on a suitable decomposition of the prediction error. According to these
ideas, good ensemble members must be both accurate and diverse, which poses
the problem of generating a set of predictors with reasonably good individual
performances and independently distributed predictions for the test points. Di-
verse individual predictors can be obtained in several ways. These include: (i)
using different algorithms to learn from the data (classification and regression
trees, artificial neural networks, support vector machines, etc.), (ii) changing the
internal structure of a given algorithm (for instance, number of nodes/depth
in trees or architecture in neural networks), and (iii) learning from different
adequately-chosen subsets of the data set. The probability of success in strategy
(iii), the most frequently used, is directly tied to the instability of the learning
algorithm [2]. That is, the method must be very sensitive to small changes in
the structure of the data and/or in the parameters defining the learning process.
Again, classical examples in this sense are classification and regression trees and
artificial neural networks (ANNs). In particular, in the case of ANNs the insta-
bility comes naturally from the inherent data and training process randomness,
and also from the intrinsic non-identifiability of the model. In what follows, three
ensemble methods are employed for the stock index forecasting problems.

3.1 The Basic Ensemble Method

A simple approach to combining network outputs is to simply average them
together. The basic ensemble method (BEM) output is defined:

fBEM =
1
n

n∑

i=1

fi(x) (3)

This approach by itself can lead to improved performance, but doesn’t take into
account the fact that some FNTs may be more accurate than others. It has the
advantage that it is easy to understand and implement and can be shown not
to increase the expected error.

3.2 The Generalized Ensemble Method

A generalization to the BEM method is to find weights for each output that min-
imize the positive and negative classification rates of the ensemble. The general
ensemble method (GEM) is defined:

fBEM =
n∑

i=1

αifi(x) (4)



where the α′is are chosen to minimize the root mean square error between
the FNT outputs and the desired values. For comparison purpose, the optimal
weights of the ensemble predictor are optimized by using PSO algorithm.

3.3 The LWPR Method

To investigate more efficient ensemble method, a LWPR approximation approach
is employed in this work[13]. In this framework, the final output of FNT ensemble
is approximated by a local polynomial model, i.e.,

fLWPR =
M∑

i=1

βiti(x) (5)

where ti is a function that produces the ith term in the polynomial. For example,
with two inputs and a quadratic local model we would have t1(x) = 1, t2(x) = x1,
t3(x) = x2, t4(x) = x2

1, t5(x) = x1x2, t6(x) = x2
2. Equation (5) can be written

more compactly as

fLWPR = βT t(x) (6)

where t(x) is the vector of polynomial terms of the input x and β is the vector
of weight terms. The weight of the ith datapoint is computed as a decaying
function of Euclidean distance between xk and xquery. β is chosen to minimize

N∑

i=1

ω2
i (fLWPR − βT t(x)) (7)

where ωi is a Gaussian weight function with kernel width K:

ωi = exp(−Distance2(xi, xquery)/2K2). (8)

For this problem, an algorithm based on a multiresolution search of a quickly
constructible augmented kdtree without needing to rebuild the tree, has been
proposed for fast predictions with arbitrary local weighting functions [13].

4 Experiments

We considered 7-year stock data for the Nasdaq-100 Index and 4-year for the
NIFTY index. Our target is to develop efficient forecast models that could pre-
dict the index value of the following trade day based on the opening, closing and
maximum values of the same on a given day. The assessment of the prediction
performance of the different ensemble paradigms were done by quantifying the
prediction obtained on an independent data set. The Root Mean Squared Error
(RMSE), Maximum Absolute Percentage Error (MAP) and Mean Absolute Per-
centage Error (MAPE) and Correlation Coefficient (CC) were used to study the



Table 1. Empirical comparison of RMSE results for four learning methods

Best-FNT BEM GEM LWPR

Nasdaq-100 0.01854 0.01824 0.01635 4.41× 10−5

NIFTY 0.01315 0.01258 0.01222 1.96× 10−7

Table 2. Statistical analysis of four learning methods (test data)

Best-FNT BEM GEM LWPR

Nasdaq-100

CC 0.997542 0.997610 0.997757 0.999999

MAP 98.1298 98.3320 97.3347 0.4709

MAPE 6.1090 6.3370 5.7830 0.0040

NIFTY

CC 0.996908 0.997001 0.0997109 0.999999

MAP 28.0064 34.3687 26.8188 7.65× 10−4

MAPE 3.2049 2.9303 2.6570 1.92× 10−5

performance of the trained forecasting model for the test data. MAP is defined
as follows:

MAP = max(
|Pactual,i − Ppredicted,i|

Ppredicted,i
× 100) (9)

where Pactual,i is the actual index value on day i and Ppredicted,iis the forecast
value of the index on that day. Similarly MAPE is given as

MAPE =
1
N

N∑

i=1

(
|Pactual,i − Ppredicted,i|

Ppredicted,i
)× 100 (10)

where N represents the total number of days.
We used instruction set I = {+2,+3,. . ., +6,x0, x1,x2} for modeling the

Nasdaq-100 index and instruction set I = {+2,+3, . . . , +8, x0, x1,x2, x3, x4}
for modeling the NIFTY index. We have conducted 10 FNT models for predict-
ing the Nasdaq-100 index and the NIFTY index, respectively. And then three
ensemble methods discussed in Section 3 are employed to predict the both index.

Table 1 summarizes the test results achieved for the two stock indices using
the four different approaches. Performance analysis of the trained forecasting
models for the test data was shown in Table 2. Figures 2 and 3 depict the
test results for the one day ahead prediction of the Nasdaq−100 index and the
NIFTY index respectively.
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Fig. 2. Test results showing the performance of the different methods for modeling the
Nasdaq-100 index
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Fig. 3. Test results showing the performance of the different methods for modeling the
NIFTY index

5 Conclusions

In this paper, we have demonstrated how the chaotic behavior of stock indices
could be well represented by FNT ensemble learning paradigm. Empirical results
on the two data sets using FNT ensemble models clearly reveal the efficiency of
the proposed techniques. In terms of RMSE values, for the Nasdaq-100 index and
the NIFTY index, LWPR performed marginally better than other models. For
both index (test data), LWPR also has the highest correlation coefficient and the
lowest value of MAPE and MAP values. A low MAP value is a crucial indicator
for evaluating the stability of a market under unforeseen fluctuations. In the
present example, the predictability assures the fact that the decrease in trade is
only a temporary cyclic variation that is perfectly under control. Our research



was to predict the share price for the following trade day based on the opening,
closing and maximum values of the same on a given day. Our experiment results
indicate that the most prominent parameters that affect share prices are their
immediate opening and closing values. The fluctuations in the share market are
chaotic in the sense that they heavily depend on the values of their immediate
forerunning fluctuations. Long-term trends exist, but are slow variations and
this information is useful for long-term investment strategies. Our study focus
on short term, on floor trades, in which the risk is higher. However, the results
of our study show that even in the seemingly random fluctuations, there is an
underlying deterministic feature that is directly enciphered in the opening, clos-
ing and maximum values of the index of any day making predictability possible.
Empirical results also show that LWPR is a distinguished candidate for the FNT
ensemble or neural networks ensemble.
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