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Abstract

The behavior of analytic and numerical adjoint solutions is examined for the quasi-1D Euler
equations. For shocked flow, the derivation of the adjoint problem reveals that the adjoint
variables are continuous with zero gradient at the shock and that an internal adjoint boundary
condition is required at the shock. A Green’s function approach is used to derive the analytic
adjoint solutions corresponding to isentropic and shocked transonic flow, revealing a loga-
rithmic singularity at the sonic throat and confirming the expected properties at the shock.
Numerical solutions obtained using both discrete and continuous adjoint formulations reveal
that there is no need to explicitly enforce the adjoint shock boundary condition. Adjoint
methods are demonstrated to play an important role in the error estimation of integrated
quantities such as lift and drag.

1 Introduction

Adjoint problems arise naturally in the formulation of methods for optimal aerodynamic
design and optimal error control. For design applications, the adjoint solution provides the
linear sensitivities of an objective function such as lift or drag to a number of design variables
which parameterise the shape. These sensitivities can then be used to drive an optimisation
procedure. Considerable effort has been dedicated to the development of optimal design
methods based on this approach [1-8]. More recently, adjoint methods have been recognised
as a means of achieving error control in fluid dynamics simulations [9-12]. In this context,
the adjoint solution relates the sensitivity of the objective function to the local truncation
errors in the flow discretisation. This information can then be used to provide an a posteriori
error estimate or to guide an adaptive meshing algorithm.

While significant effort has been dedicated to developing practical methods based on ad-
joint formulations, there has been little discussion of the properties of the adjoint solutions
themselves [13]. The present work investigates various issues concerning the derivation and
approximation of solutions to the quasi-1D adjoint Euler equations. The standard Lagrange
multiplier derivation of Jameson [1] is extended to include the effect of shocks in the formu-
lation of the analytic adjoint equations. Explicit inclusion of the steady Rankine-Hugoniot
conditions via an additional Lagrange multiplier demonstrates that at the shock, the adjoint
variables are continuous and that an internal adjoint boundary condition is required. This
is consistent with a characteristic viewpoint which indicates that one internal adjoint b.c. is
needed due to the disparity in the number of adjoint characteristics entering and leaving the
shock. However, the conclusions differ from those of previous investigators [14-16].

The discrete adjoint equations can be formulated in two ways, either by discretising the
analytic adjoint equations (the so-called ‘continuous’ approach) [1], or by transposing the dis-
crete equations obtained by linearising the discretised flow equations (the ‘discrete’ approach)
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[7]. Giles has previously shown that for quasi-1D flows with shocks, a conservative discreti-
sation which is second-order accurate in smooth regions of the flow produces a second-order
accurate approximation to the ‘lift’ integral [17]. Hence, the linearisation of such a method
(on which the discrete adjoint is based) must produce a linearised lift perturbation which is
at least first-order accurate. On the other hand, it is less clear whether the discretisation
of the analytic adjoint equations leads to the correct adjoint solution if there is no explicit
enforcement of the special shock condition.

To investigate this point, the paper derives the analytic solution to the adjoint equations
for shocked flow. This is accomplished by constructing the Green’s functions for the linearised
Euler equations, including the linearised Rankine-Hugoniot conditions, using an extension of
the approach developed by Giles and Pierce for shock-free quasi-1D flows [13]. The analytic
results compare very well with numerical results obtained using both the continuous and
discrete approaches. To understand why the continuous approach behaves correctly without
explicit enforcement of the adjoint shock boundary condition, a shooting method was used
to march the solution back from the exit across the shock. Disregarding the adjoint shock
b.c., but maintaining continuity at the shock, leads to a family of solutions of the adjoint
equations. Of these, it appears that the continuous approach selects the smoothest member
of the family, which corresponds to the analytic solution.

The final section of the paper discusses the use of adjoint solutions for error analysis. The
error in the lift integral is shown to be an inner product of the the adjoint flow variables and
the truncation error of the discretisation of the Euler equations. Estimating the truncation
error gives a method of accurately estimating the error in the lift integral. With a first-order
discretisation of the Euler equations, it is shown that the error estimate can be used to correct
the computed value of the lift integral and obtain second-order accuracy. Alternatively, the
error estimate could be used in the future as the basis for optimal grid adaptation [12].

2 Adjoint problem formulation

The quasi-1D Euler equations for steady flow in a duct of cross-section hA(z), on the interval
—1 <z <1, may be written as

d dh
R(U,h) = —(hF)— —P =0,
dx dx
where
p Pq 0
U=|pg|, F=|pi’+p]|, P=|p
pE pqH 0
If the solution contains a shock at zs, the Rankine-Hugoniot jump condition
[FI'2 =0

connects the smooth solutions on either side.
For design applications, linearisation of R with respect to perturbations in the flow solu-
tion u and the geometry h produces

- (L ay - P (P L) -
R:Lu—f_(dgj(hAu) de) (dwp d$(hF)>_0, (2.1)

where A = (0F/0U) and B = (0P/0U). For error analysis applications, we shall subse-
quently see that f is instead the truncation error.
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If the objective function of interest is the ‘lift’

1 Ts 1
Jz/ pdxz/ pdm—i—/pdx,
-1 -1 Ts

the lift perturbation is then

T 1
I:/ g dx -I—/ g'u dz — [p]z;i g, (2.2)
—1 Ts s

where g = (Op/0U)T, and the third term includes the effect of a linearised displacement in
the shock location §.

Using continuous Lagrange multipliers v to enforce the differential flow constraints on
either side of the shock, and a Lagrange multiplier vs to enforce the Rankine-Hugoniot
conditions at the shock, the augmented nonlinear objective function is

Ts 1 T 1
J:/ pdr + / pdx—/ vTRdx—/ vIR do — hst[F]z{,
—1 Tg —1 Ts 8

where hg = h(zs). Linearising this with respect to perturbations in the geometry E, the shock
location § and the flow solution u gives

Tg 1 +
I = / g dzx +/ g'u dr — [p]7e o
—1 Ts s

T 1
—/ v (Lu — f) dz — / v (Lu — f) dz
-1 Ts

J.

S

dF
— hgol [Au]ig: — hg! [ ]

dx

T

After integration by parts and rearrangement, this yields

Ts 1
I = / v! f dx +/ v! f dx
—1 T

T 1
—/ (L*v —g)Tu ds — / (L*v — g)Tu dz

—1 T

+
dF 1" o+
-5 <h5vsT [%L +[p I_>
- hs(vs_v(x;r))T Au|;pj + hs(vs—v(zy

S ))T AU| -
— [thAu]l_l,

Ts

where the adjoint operator L* is defined by

L*v = —hATd—v _ dh

T
dz dasB v

The basic idea of the adjoint approach is to define the adjoint problem so as to eliminate
the explicit dependence of I on u and 4, giving the adjoint form of the objective function

I = /xSvadaz +/xlvad3: _ /1 o fdz . (2.3)

-1 -1
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To eliminate the dependence on u, v must satisfy the adjoint o.d.e.
L*v—¢g=0, (2.4)
and at the shock v and vy must satisfy
v(wy) = v =v(z)),

proving that the adjoint variables are continuous across the shock. Removing the dependence
of I on ¢ then requires that

T dF zi o+
hSU (:ES) % B - — [p]z“; y
zs

which is an internal boundary condition at the shock. Noting that

af

aF)* _1dh ]
dr ~hdz |,

Ts
this reduces to the simple b.c.

o) = () N (25)

Finally, the inlet and exit boundary conditions for the adjoint problem are defined so as to
remove the explicit dependence of

[thAu] 1_1

on u. At a boundary where the flow equations have n incoming characteristics, and hence n
imposed boundary conditions, the adjoint equations will thus have (3—n) b.c.’s corresponding
to an equal number of incoming adjoint characteristics [13].

The duality of the flow (primal) and adjoint (dual) problems is evident from the fact
that the inhomogeneous term f in the primal problem (2.1) enters the functional in the
dual problem (2.3), and correspondingly, the inhomogeneous term ¢ in the dual problem
(2.4) appears in the functional of the primal problem (2.2). The advantage of the adjoint
formulation of the objective function in the context of design optimisation is that each design
variable produces a different linear source term f, but the corresponding adjoint solution
remains unchanged as it depends only on the choice of objective function. Therefore, the
evaluation of I requires just one flow calculation and one adjoint calculation, and is relatively
independent of the number of design variables [1].

A final observation is that the adjoint equation (2.4) and the adjoint shock b.c. (2.5)
together cause the gradient of the adjoint variables to vanish at the shock. This may be seen
by writing (2.4) using Jacobians based on the non-conservative flow variables U, = (p, q,p)7,
so that the adjoint equation becomes,

qa ¢ 3¢ 0 0
h|p 200 5p+ 500 == 0 :
0 1 g 1+ Ry,

and the adjoint shock b.c. produces (dv/dz) = 0 at the shock.



Properties of Adjoint Solutions )

3 Analytic adjoint solutions

3.1 Outline of approach

To verify the properties of the adjoint solutions and to provide a reference for comparison
with numerical results, the analytic adjoint solutions are now derived for both isentropic and
shocked transonic flows.

The derivation uses a Green’s function approach [13] in which we consider the linearised
problem with point source terms

Lu;(w,€) = £;(€)d(z — ©), (3.1)

where §(z) is the Dirac delta function. Using the adjoint form of the objective function (2.3),
the corresponding linearised objective is

1
1;(¢) = / o7 (@) £5(€)8(x — €) di = o () £(€).

-1

Given three linearly independent vectors f;(£), the three simultaneous equations can then be
solved for the adjoint variables

o (6) = (©OILEIB©) (AO1LEI:©) (3.2)

The approach is then to choose f;(£), solve the linearised flow equations to obtain the
flow perturbation u;(z, {) and the shock displacement d, evaluate I;(£) using (2.2) and finally
obtain v(§) from (3.2).

3.2 Isentropic transonic flow

The key to carrying out the procedure described above is to choose a set of source vectors
fj(&) which lead to relatively simple solutions to the linearised flow equations. We begin
by considering isentropic flow through a converging-diverging duct with inlet, throat and
outlet located at © = —1,0, +1, respectively. The nonlinear equations ensure that mass flux
mh = pgh, stagnation enthalpy H and stagnation pressure py all remain constant along
the duct. Therefore, solutions to the linear homogeneous equations must introduce uniform
perturbations to these three quantities. The general solution to the linear homogeneous
equations may then be written in the form

a OU ou
o) = i ]+ G

a b
po,M Po M

where the three vectors are linearly independent and a, b and c¢ represent the uniform per-
turbations to mh, H and pg. To simplify the analysis, perturbations to stagnation enthalpy
and pressure are introduced at fixed Mach number rather than at fixed mass flux, so that b
and ¢ both imply an additional uniform perturbation to mh. By contrast, a does not perturb
either H or pyg.

If we now consider the inhomogeneous equations with source terms f;(£)d(z — &), the
corresponding solutions

W) =ale i 5o @) Fn O G| el G

H,po po,M BPO HM
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must satisfy the homogeneous equations on either side of £, and therefore a,b, ¢ will have
uniform values aq,by,c; for z < & and a9, by,co for x > £. The jump conditions for the
constants are obtained by integrating the dominant terms in (3.1) from z = ¢ to x = £,
giving

h(¢) <(a2—a1)% g—i(f)‘ + (b2 — b1) 2—2(5)

Hapo

+ (2 — 1) 8_F(£)‘HM> = [;(6)-

po,M 9po

This jump condition suggests that by choosing the three linearly independent source vectors

1
_ h(E) oF ‘ _
fl(é.) - h(f) am(é-) Hapo Ig{ )
= h oF =h ;?Zg
SORRCL GGl
pq
5O = ho go@] =" ey
Po HM Po oqH

the perturbations will have the simple properties

fl(g) = 0'2_@1:17 bQ:bla C2 = C1,
f206) = ba—b1=1, ca=c1, az=a, (3.3)

fg(f) = 62—61:1, a2 = ay, bgzbl.

For each source vector f;(£), the three remaining unknowns in the corresponding solution
uj(z,&) are determined by the three homogeneous boundary conditions appropriate to the
Mach regime under consideration. These homogeneous boundary conditions are equivalent to
demanding that there is no perturbation to the boundary conditions for the original nonlinear
problem.

For isentropic transonic flow, there are two boundary conditions on H and pg at the
subsonic inlet and no boundary conditions at the supersonic exit. The third requirement is
that the Mach number remains unity at the throat.

3.2.1 Change in mh at fixed H,pg

For f1, the inlet boundary conditions ensure that b = ¢ = 0 and the throat condition requires
that a equals zero at the throat. Therefore, as = 0 for £ < 0 and a1 = 0 for £ > 0, leading to
the solution

1 oU
HE ) G| <o,
=05y |, €0

Hence, if ¢ < 0, the mass flux upstream of z = ¢ is reduced by a unit amount, whereas if
& > 0, the mass flux downstream of z = £ is increased by a unit amount.
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The objective function is

1
[ s @] ds, g<o,
_1 h(z) om0
no=9 (3.4
p

— —(2) de , £>0.

/5 h(z) O H.po

Since
KL P
om" |y, 1-M?%

and M is linear through a choked throat, then

1
@(3:)‘ ~—, as x—0.
om Hpo T

It follows that
I (&) ~log(§), as £—0,

so there is a logarithmic singularity in the adjoint variables at a sonic throat.

3.2.2 Change in H at fixed py, M

In this case, the inlet conditions on H and pg require by = ¢ = 0 and the throat condition
gives a = 0. The solution is then

oUu
u2($7§) :H(Qf—f) —(ZE) )
OH po,M
and the corresponding objective function, I5(), is zero because g—g(gz) = 0.

po,M

3.2.3 Change in pg at fixed H, M

Now, the inlet conditions on H and pg yield b = ¢; = 0, and the Mach number is fixed at the
throat, so again @ = 0. The solution and linear functional thus become

oU top

= ’ T = dx.
oo & o 3(8) T

uz(z,§) = H(z — §)

T
¢ dpo ‘H,M

3.2.4 Sample solution

The analytic objective functions I(£) and adjoint solutions v(&) corresponding to isentropic
transonic flow are shown in Fig. 1. The logarithmic singularity in I» at the throat is reflected
in the singularities of all three adjoint variables.

3.3 Shocked flow

For shocked flow, there are two boundary conditions on H and py at the subsonic inlet and
one boundary condition on p at the subsonic exit. The nonlinear equations once again ensure
constant mass flux and stagnation enthalpy throughout the duct, but the stagnation pressure
now has different constant values on either side of the shock. Consequently, solutions to the
linearized equations must now admit different but constant stagnation pressure perturbations
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Analytic Objective Functions Analytic Adjoint Variables
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X X

Figure 1: Objective functions and adjoint variables for isentropic transonic flow conditions.

on either side of the shock. To account for the shock, the form of the solution must be
generalised to

T @)| e G| elman (o)

UN\NT, T =al\r,T
J( ) saf) ( ) sag) oM ap[] oo

HapO
where the perturbations a, b, and ¢ may now be discontinuous at the shock location z as
well as at &.
3.3.1 Shock movement
The displacement in the shock can be calculated from the normal shock relation
—1 2 7/771
D2 1+ 5 M,
02 = po1f (M), M) =|=— — 1. )

por =pon SO, ¢ )(m)&+%M?

with shock jump conditions

. 2

where the subscripts 1 and 2 represent quantities upstream and downstream of the shock,
respectively. The perturbations to the stagnation pressure then satisfy

H:pO)
where 0 is the resulting displacement of the shock and

(Ll ey

8M( )‘
— (2 —
om Hpo M 1— M2

M M
0 15-+ a1 0 1

or h(z) Om

(z) : (3.5)

T=Tg

co = c1 f(My) + por f' (M) (

If h(x) is a piecewise differentiable function, then M /0x may be evaluated analytically using
the area Mach number relation

2 _ (v+1)/(v-1)
() = ()|
h* M? |y +1 2

The throat is sonic so the sonic area h* is identically equal to the throat area hy.
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3.3.2 Change in mh at fixed H,pg

Perturbation between the inlet and the throat (—1 < £ < 0)

Since the throat is choked and H and pg are fixed at the inlet, the form of the solution
and objective function will be the same as for the isentropic transonic case when ¢ < 0

§
wy (@, 25, &) = —H(E —x)ﬁ g—ZL(m) H’po, L(§) = _/1 ﬁ g—fl(x)‘H,po dx.

The two new scenarios to consider are when ¢ is between the throat and the shock and
between the shock and the exit. In either case, the mass flux perturbation a will cause
the shock to move and the solution will need to ensure that the perturbations to mass flux
and stagnation enthalpy remain constant across the shock, in addition to satisfying the exit
boundary condition on pressure.

Perturbation between the throat and the shock (0 < & < xy)

The choked condition at the throat requires that all perturbations are zero for z < &.
For consistency with the shock jump subscripts, perturbations between & and the shock
are denoted by a1, b1, c; and perturbations between the shock and the exit are denoted by
as, by, co. At £, there is a unit mass flux perturbation at constant H and pyp, so

a1=1, b1=0, 01=0.

Furthermore, H remains constant for any shock location so by = 0. For physical consistency,
the perturbation to mass flux across the shock must be constant, and so

H,M)

Also, to avoid perturbing the exit pressure, we require
H,M)

ag  Op 9p

o) e o)
(h(fE) om g Opo

These two equations determine the two unknowns as and ¢z and equation (3.5) then deter-

mines the shock movement 4. The perturbed solution is then

om

B—po(x)

a1 = as + ¢ (h(x)

z=z

=0.

r=1

uy (7, 75,&) = h(lx) [arH(z =€) + (a2 — a))H (2 — )] g—WU@(gj)

oU
+ o H(z—x5) — ()
H:I)O 8p0

H,M

and the corresponding objective function is

[T a9 ' ay Op 9p
I (¢) _/6 h(z) a_m(x)‘H,podw_l-/xs(h(fE) a—m(l")‘H’pO-i- c2 a—po(w)

Perturbation between the shock and the exit (zs < & < 1)

All perturbations are now zero for x < x4, SO

a1=b1=01=0,
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since perturbations introduced in the subsonic region following the shock cannot affect the
supersonic zone except through shock movement. Perturbations between the shock and ¢ are
now denoted by as, by, co and perturbations between ¢ and the exit are denoted by as, bs, c3.

For compatibility with the upstream flow, there must be no perturbation to H across
the shock, so b = b3 = 0. The perturbation to the stagnation pressure must be uniform
throughout the subsonic region, so c; = ¢3 = ¢. At &, the source term produces a unit
perturbation in mass flux so

az — ag = 1.

To match the flow upstream of the shock, there must be no mass flux perturbation on the
downstream side of the shock
H,M)

Also, to ensure zero perturbation of the exit static pressure we require,

a3 Op Op
( —(az)‘ +c a—po(az) H’M>

h(z) om™ |y,
giving three equations for the three unknowns. The perturbed solution then has the form

i oMl = 2.) + (03 = ) (o = O] 5 (0)

om

gm = 0.
dpo

z=z

as + ¢ (h(x) (x)

=0,

r=1

+cH(x —z5) m—

Ul(gj T 5) =
’ ’ H7p0 apo

with objective function

€ ay Op Vas Op ' op
ne=[ 22 dz + / — dz + / ==

3.3.3 Change in H at fixed py, M

Ahead of the shock, the perturbation to stagnation pressure ¢ must be zero due to the inlet
boundary condition, and the mass flux perturbation ¢ must be zero due to the choked throat.
The inlet condition on H ensures the perturbation to stagnation enthalpy is zero for z < &,
and the unit jump in b at ¢ will produce a constant perturbation in H across the shock,
without affecting the exit condition on pressure.

There still exists that possibility that a and ¢ are non-zero constants following the shock,
balancing to produce zero mass flux perturbation at the shock

om
a+ch(zx) —(z =0,
( (z) 8po( ) HM) .
and zero pressure perturbation at the exit
a Op dp
——(az)‘ +c —(x) =0.

However, the determinant of this system is nonzero, so there is only the trivial solution
a = ¢ = 0. Hence, the solution and objective function in the shocked case have the form

oUu

up(,7,,€) = H(o — €) 5o-(2)

po,M

and there is no displacement of the shock.
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3.3.4 Change in pg at fixed H, M

For shocked flow with a unit jump in stagnation pressure, the presence of the shock affects
the perturbed solution for all locations of £. This is in contrast to the shocked case with a
jump in mass flux, where the solution remained unchanged from the isentropic transonic case
for ¢ < 0. The two scenarios to consider in the present case are when ¢ is between the inlet
and the shock, and between the shock and the exit.

Perturbation between the inlet and the shock (—1 < & < xy)

As in the shock-free case, there is no perturbation for z < £. Denoting the perturbations
between £ and the shock by ai,b1,c; and those after the shock by ao,bs, co, we have by
definition

01:0, b1:0, 61:1.

The perturbation to H must be constant across the shock so by = 0. Constant mass flux
perturbation at the shock requires

& (h(ac) O () )
H,M

Ipo
and zero perturbation to the exit pressure is ensured by setting

(“2 @(x)‘ to 2 () )
H,M

h(z) Om" |5, dpo
providing two equations for the two unknowns. The solution then has the form

BU a9 BU
30 | ) ) o

=g

=0,

r=1

uz (2, 25,8) = [e1H(z — &) + (c2 — e))H(z — x4)] 5—(2) ()

H7p0

with corresponding objective function
1
as O 0
d:v—i—/ 2 9P (:v)‘ +co P (z)
H,M Ts h(l’) 8m H.,po 8p0

Perturbation between the shock and the exit (zs < & < 1)

Ts o
hie,206) = [ o 5 (a)
¢ Po

) dx — (p2—p1) 0.

HM

There are now no perturbations upstream of the shock, so
a1 = b1 = C = 0.

Perturbations in the region between the shock and ¢ are denoted by aso,bs,co and those
between ¢ and the exit are denoted by as, b3, cs3.

Compatibility at the shock and the fact that mh and py are perturbed at constant H,
together imply that there are no perturbations to stagnation enthalpy following the shock,
so by = by = 0. Perturbations to the mass flux must be constant throughout the subsonic
region (ag = a3 = a) since the jump condition at & corresponds solely to a unit perturbation
in stagnation pressure

C3 — Cy = 1.

Zero mass flux perturbation at the shock then gives

a+c ( om (z) )
HM

po




12 Giles & Pierce

Analytic Objective Functions Analytic Adjoint Variables
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Figure 2: Objective functions and adjoint variables for shocked flow conditions.

H,M)

providing three equations for three unknowns. The solution has the form

and zero perturbation to the exit pressure requires

(“ ‘9”(3:)\ to 2

i =0,
h(z) Om" |y, dpo

r=1

ou a oU
(a0, = oMl — ) 4 s — e~ O i )| b g =) )|
with corresponding objective function
Y a 0Op £ Op Y op
I :/——zp daz-l-/c—zp dx-l-/c—zp dx — —p1)6.
3(8) .. h(z) 8m( )H’po N 2 8;00( )H’M ¢ 3 Bpo( )H’M (p2 —p1)

3.3.5 Sample solution

The objective functions I(£) and adjoint variables v(£) are shown in Fig. 2 for shocked flow.
Again, the sonic throat produces a logarithmic singularity in the adjoint variables. At the
shock, the objective functions are discontinuous but the adjoint variables are continuous with
zero gradient, as proved earlier.

4 Properties of numerical solutions

The analytic adjoint solution for shocked flow is compared with first-order accurate numerical
solutions computed using both the discrete and continuous formulations in Fig. 3. The
internal adjoint boundary condition (2.5) is not explicitly enforced using either approach.
However, both numerical solutions compare very well with the analytic results, capturing the
singularity at the sonic point without oscillation, and correctly predicting continuity and zero
gradients at the shock.

Some explanation is required for the correct behavior of the numerical adjoint solutions
at the shock, since the internal boundary condition has not been explicitly incorporated in
the discretisation. Giles has previously shown that for shocked flow [17], a second-order
discretisation that degenerates to first-order accuracy at shocks still produces a second-order
lift prediction. Therefore, linearisation of this discretisation should produce a linearised lift
perturbation that is at least first-order accurate. Hence, we expect that the discrete adjoint
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Discrete Formulation Continuous Formulation
T T

Analytic

1-l° ° Computeg

Analytic

o o Computed §

15 -05 0 0.5 1 15 -05 0 0.5 1
X

Figure 3: Adjoint solutions for shocked flow using discrete and continuous formulations

formulation, which is based on this linearised discretisation, must behave correctly to first
order at the shock.

By contrast, the reason for the correct behavior of the continuous formulation is not
immediately evident. Maintaining continuity at the shock, but choosing different values for
the shock boundary condition leads to a one-parameter family of adjoint solutions. The effect
of varying the value of the shock b.c. can be studied by modifying the value of the single
outgoing characteristic variable at the exit and marching the solution upstream to the throat
using a simple shooting method. Three different solutions obtained using this approach are
shown in Fig. 4, where it is evident that a smooth solution is produced only when using the
correct value of the shock boundary condition. This suggests that the numerical dissipation
in the discretization of the continuous approach could be responsible for producing the correct
adjoint behavior at the shock, since even in the absence of an explicit boundary condition,
the dissipation will seek out the smoothest solution, which is also the analytic solution.

The conclusion of this analysis is that there is no clear preference for either the continuous
or the discrete approach in regard to the treatment of sonic points or shocks.

5 Error analysis by adjoint methods

Previously, the adjoint flow equations were derived in the context of aerodynamic design,
with a perturbation in the duct height h(x) producing a perturbation to the lift. However,
adjoint equations also play an important role in error analysis, predicting the error in the
computed lift due to the truncation error of the numerical discretization.

Consider a discretisation of the Euler equations using first-order characteristic smooth-

Adjoint Variables Adjoint Variables Adjoint Variables
1 T T 1 T T T 1 T T T T
\¢}
0.5 0.5 v 0.5
v 1
1 |
N~y - ]
[0} V. 0 v, [0} v,

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X X

Figure 4: Adjoint solutions marched from the exit to the throat using exit b.c.’s with 0.5, 1.0
and 2.0 times the analytic value of the outgoing characteristic adjoint variable.
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Figure 5: Pressure convergence on three  Figure 6: Convergence of the lift error, the
meshes. correction and the remaining error.

ing. For simplicity, we will consider only subsonic flows for which the numerical solution
U; is smooth. Performing a modified equation analysis [18,19] by substituting Taylor series
expansions for each discrete variable results in the modified o.d.e.

d dh ) _d [Az dU

Treating the truncation error f in the same way as the design perturbation source term f in
Section 2, the perturbation to the lift is once more given by (2.3), where the adjoint solution
is exactly the same as before.

By evaluating this integral using computed values for the adjoint solution and truncation
error, the error in the computed lift can be accurately estimated. This error estimate can
then be used to correct the computed lift value. As an example, consider the subsonic test
case of Fig. 5, where pressure plots are shown for three different computational grids. The
first order accuracy of the discretisation results in very poor agreement with the analytic
solution, which is symmetric about z = 0. The log-log plot of Fig. 6 displays three sets of
data for meshes ranging from 64 to 4,096 cells: the error in the computed lift, the adjoint
error estimate and the remaining lift error after subtracting the correction from the computed
value. The superimposed lines have slopes of —1 and —2, showing that the error and the
error estimate are both first-order, as predicted, and the remaining error after applying the
correction is second-order.

For higher order methods in multiple dimensions (e.g. second-order methods for Navier-
Stokes calculations on unstructured 3D grids), it would be much more difficult to estimate the
truncation error, and hence, to derive precise lift and drag error estimates. A more practical
alternative is to use the adjoint integral error estimate (2.3) as the basis for optimal grid
adaptation. Consider a local region of the grid. Doubling the grid resolution will produce
a factor two reduction in the truncation error (for the first order discretisation) at the cost
of introducing O(Az~!) additional grid points. Thus, the error reduction per grid point is
O(Azv" f). An optimal adaptation strategy is to introduce additional grid points in the
regions in which Az vTf is greatest. In implementing such a strategy, an accurate evaluation
of the truncation error and adjoint solution is not necessary; a good order-of-magnitude
estimate might be sufficient.

This optimal grid adaptation strategy looks very similar to other refinement strategies
which focus on minimising the truncation error. The important distinction is the use of the
adjoint solution which defines the influence of the local truncation error on the computed
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quantity of most interest, such as the lift. In the shock-free transonic flow case this would
focus attention on the throat region where the logarithmic singularity in the adjoint variables
indicates that local truncation errors produce significant errors in the overall lift prediction.

6 Conclusions

A number of analytic and numerical properties of solutions to the quasi-1D adjoint Euler
equations have been examined. Derivation of the adjoint problem for shocked flow demon-
strates that the adjoint variables are continuous with zero gradient at the shock, and that a
single adjoint shock b.c. is required. The analytic adjoint solution is then derived for isentropic
and shocked transonic flow, revealing a logarithmic singularity at the sonic point. Numeri-
cal experiments with both the discrete and continuous adjoint formulations suggest that the
adjoint solution behaves correctly at the shock without explicit enforcement of the internal
boundary condition. An adjoint approach to a posteriori error analysis is then demonstrated
and the implications for developing an optimal adaptive algorithm are discussed.
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