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Abstract—We present the results of a recent large-scale subjec-
tive study of video quality on a collection of videos distorted by
a variety of application-relevant processes. Methods to assess the
visual quality of digital videos as perceived by human observers
are becoming increasingly important, due to the large number
of applications that target humans as the end users of video.
Owing to the many approaches to video quality assessment
(VQA) that are being developed, there is a need for a diverse
independent public database of distorted videos and subjective
scores that is freely available. The resulting Laboratory for Image
and Video Engineering (LIVE) Video Quality Database contains
150 distorted videos (obtained from ten uncompressed reference
videos of natural scenes) that were created using four different
commonly encountered distortion types. Each video was assessed
by 38 human subjects and the difference mean opinion scores
(DMOS) were recorded. We also evaluated the performance
of several state-of-the-art, publicly-available full reference VQA
algorithms on the new database. A statistical evaluation of the
relative performance of these algorithms is also presented. The
database has a dedicated web presence that will be maintained
as long as it remains relevant and the data can be downloaded
from [1].

I. I NTRODUCTION

D IGITAL videos are increasingly finding their way into
the day-to-day lives of people via the explosion of video

applications such as digital television, digital cinema, Internet
videos, video teleconferencing, video sharing services such
as Youtube, Video On Demand (VoD), home videos and so
on. Digital videos typically pass through several processing
stages before they reach the end user of the video. Most
often, this end user is a human observer. The effect of most
processing stages is to degrade the quality of the video that
passes through it, although certain processing stages (for
example, in consumer devices) attempt to improve quality.
Methods for evaluating video quality play a critical role
in quality monitoring to maintain Quality of Service (QoS)
requirements; performance evaluation of video acquisition
and display devices; evaluation of video processing systems
for compression, enhancement, error concealment and so on;
and finally, perceptually optimal design of video processing
systems.

The only reliable method to assess the video quality per-
ceived by a human observer is to ask human subjects for their
opinion, which is termed subjective video quality assessment
(VQA). Subjective VQA is impractical for most applications
due to the human involvement in the process. However,
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subjective VQA studies provide valuable data to assess the
performance ofobjective or automatic methods of quality
assessment. In addition to providing the means to evaluate the
performance of state-of-the-art VQA technologies, subjective
studies also enable improvements in the performance of VQA
algorithms towards attaining the ultimate goal of matching
human perception.

In this paper, we first present a study that we conducted
to assess the subjective quality of videos. Our study included
10 uncompressed reference videos of natural scenes and 150
distorted videos (obtained from the references) using four
different distortion types commonly encountered in applica-
tions. Each video was assessed by 38 human subjects in a
single stimulus study with hidden reference removal, wherethe
subjects scored the video quality on a continuous quality scale.
This study and the resulting video database presented here,
which we call the Laboratory for Image and Video Engineering
(LIVE) Video Quality Database, supplements the widely used
LIVE Image Quality Database for still images [2]. We evaluate
the performance of leading, publicly available objective VQA
algorithms on the new LIVE Video Quality Database by using
standardized measures. This paper builds upon our earlier
work describing the LIVE Video Quality Database [3].

Currently, the only publicly available subjective data that
is widely used by the VQA community comes from the
study conducted by the Video Quality Experts Group (VQEG)
as part of its FR-TV Phase 1 project in 2000 [4]. There
have been significant advances in video processing technology
since 2000, most notably the development of the popular
H.264/MPEG-4 AVC compression standard. The test videos
in the VQEG study are not representative of present gen-
eration encoders and communication systems. By contrast,
the LIVE Video Quality Database described here includes
videos distorted by H.264 compression, as well as videos
resulting from simulated transmission of H.264 packetized
streams through error prone communication channels. The
VQEG study targeted secondary distribution of television,
so most of the videos in the VQEG study are interlaced.
Interlaced videos lead to visual artifacts in the referenceas
well as distorted videos when they are displayed in increas-
ingly common progressive scan monitors. Objective VQA
algorithms typically involve multiple processing steps which
require adjustment to handle interlaced signals. De-interlacing
creates visual artifacts associated with the particular algorithm
used, which is unacceptable in a VQA framework. Addition-
ally, interlaced videos are not representative of current trends
in the video industry such as multimedia, IPTV, video viewing
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on computer monitors, progressive High Definition Television
(HDTV) standards and so on. Videos in the LIVE Video Qual-
ity Database were all captured in progressive scan formats,
allowing researchers to focus on developing algorithms for
VQA. Further, the VQEG database was designed to address
the needs of secondary distribution of television and hence, the
database spans narrow ranges of quality scores - indeed, more
than half of the sequences are of very high quality (MPEG-
2 encoded at> 3Mbps). Overall, the VQEG videos exhibit
poor perceptual separation, making it difficult to distinguish
the performance of VQA algorithms. The LIVE Video Quality
Database spans a much wider range of quality - the low
quality videos were designed to be of similar quality found in
streaming video applications on the Internet (Youtube, wireless
videos, live streaming of low bandwidth videos, etc.).

Although the VQEG has several other completed and on-
going projects, none of the videos from subsequent studies
have been made public [5], [6]. Only subjective data has
been made available publicly from the VQEG FRTV Phase
2 study and the videos have not been made public, due to
several copyright and licensing issues [7]. The situation with
the VQEG Multimedia dataset is identical, wherein the VQEG
plans to release only the subjective data in September, 2009
and the videos will not be released publicly [8]. This is a grave
concern, since unavailability of the VQEG datasets seriously
limits the ability of researchers to benchmark the performance
of new, objective VQA models against the VQEG evaluations.
The LIVE Video Quality Database is publicly available for
download from [1] to facilitate comparative evaluation of
newer objective models and to advance the state-of-the-artin
perceptual quality evaluation systems.

II. D ETAILS OF SUBJECTIVE STUDY

A. Source Sequences

We used ten uncompressed, high quality, source videos of
natural scenes (as opposed to animation, graphics, text etc)
that are freely available for download from the Technical
University of Munich [9]. All videos provided by [9] were
filmed with professional, high end equipment and converted to
digital format with utmost care, guaranteeing that the reference
videos are distortion free. We only used the progressively
scanned videos in this database, thus avoiding problems with
video de-interlacing. We used the digital videos provided in
High Definition (HD) YUV 4:2:0 format and none of the
videos contain audio components. However, due to resource
limitations when displaying these videos, we downsampled
all videos to a resolution of 768X432 pixels. We chose this
resolution to ensure that the aspect ratio of the HD videos was
maintained, thus minimizing visual distortions. Additionally,
this resolution ensures that the number of rows and columns
are multiples of 16, as is often required by compression
systems such as MPEG-2. We downsampled each raw video
frame by frame using the “imresize” function in Matlab using
bicubic interpolation to minimize distortions due to aliasing.

Fig. 1 shows one frame of each reference video in the LIVE
Video Quality Database. All videos, except blue sky, are 10
seconds long. The blue sky sequence is 8.68 seconds long.

The first seven sequences have a frame rate of 25 frames
per second, while the remaining three (Park run, Shields, and
Mobile & Calendar) have a frame rate of 50 frames per second.
A short description of these videos is provided below.

• Blue Sky- Circular camera motion showing a blue sky
and some trees

• River Bed- Still camera, shows a river bed containing
some pebbles and water

• Pedestrian area- Still camera, shows some people walk-
ing about in a street intersection

• Tractor - Camera pan, shows a tractor moving across
some fields

• Sunflower- Still camera, shows a bee moving over a
sunflower in close-up

• Rush hour- Still camera, shows rush hour traffic on a
street

• Station- Still camera, shows a railway track, a train and
some people walking across the track

• Park run - Camera pan, a person running across a park
• Shields- Camera pans at first, then becomes still and

zooms in; shows a person walking across a display
pointing at it

• Mobile & Calendar - Camera pan, toy train moving
horizontally with a calendar moving vertically in the
background

B. Test Sequences

We created 15 test sequences from each of the reference
sequences using four different distortion processes - MPEG-
2 compression, H.264 compression, simulated transmissionof
H.264 compressed bitstreams through error-prone IP networks
and through error-prone wireless networks. The goal of our
study was to develop a database of videos that will challenge
automatic VQA algorithms. We included diverse distortion
types to test the ability of objective models to predict visual
quality consistently across distortions. Compression systems
such as MPEG-2 and H.264 produce fairly uniform distor-
tions/quality in the video, both spatially and temporally.Net-
work losses, however, causetransientdistortions in the video,
both spatially and temporally. Fig. 2 shows part of a frame
of the “Pedestrian Area” sequence corrupted by each of the
four distortion types in the LIVE Video Quality Database. Itis
clear that the visual appearance of distortion is very different
in each of these videos. MPEG-2 and H.264 compressed
videos exhibit typical compression artifacts such as blocking,
blur, ringing and motion compensation mismatches around
object edges. Notice, however, the difference in the distortions
created by the MPEG-2 and H.264 compression systems, such
as reduced blockiness in the H.264 compressed frame. Videos
obtained from lossy transmission through wireless networks
exhibit errors that are restricted to small regions of a frame.
Videos obtained from lossy transmission through IP networks
exhibit errors in larger regions of the frame. Errors in wireless
and IP networks are alsotemporally transientand appear as
glitches in the video. Almost half the videos in the LIVE Video
Quality Database contain spatio-temporally localized distor-
tions, while the VQEG Phase 1 dataset is largely comprised
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(a) Pedestrian Area (b) River Bed (c) Rush Hour

(d) Tractor (e) Station (f) Sunflower

(g) Blue Sky (h) Shield (i) Park Run

(j) Mobile & Calendar

Fig. 1: One frame from each of the ten reference videos used inthe study.

of compressed videos and contains only a few videos with
errors and spatio-temporally localized distortions.

The distortion strengths were adjusted manually so that
the videos obtained from each source and each distortion
category spanned a set of contours of equal visual quality. A
large set of videos were generated and viewed by the authors
and a subset of these videos that spanned the desired visual
quality were chosen to be included in the LIVE Video Quality
Database. To illustrate this procedure, consider four labels for
visual quality (“Excellent”, “Good”, “Fair” and “Poor”) and
one reference video (“Tractor”). Four MPEG-2 compressed
versions of “Tractor” are chosen to approximately match the
four labels for visual quality. Similar procedure is applied to
select H.264 compressed, wireless and IP distorted versions
of “Tractor”. Note that the “Excellent” MPEG-2 video and
“Excellent” H.264 video are designed to have the approximate
same visual quality and similarly for other distortion categories
and quality labels. The same selection procedure is then
repeated for every reference video. Note that an “Excellent”
test video obtained from “Sunflower” is designed to have
the approximate same visual quality as an “Excellent” test
video obtained from “Tractor” and similarly for other reference
videos. Our design of the distorted videos tests the abilityof
objective VQA models to predict visual quality consistently

across varying content and distortion types. The LIVE Video
Quality Database is unique in this respect and we believe that
adjusting distortion strength perceptually, as we have done
here, is far more effective towards challenging and distin-
guishing the performance of objective VQA algorithms than,
for instance, fixing the compression rates across sequencesas
is done in most studies including the VQEG FR-TV Phase
1 study [4]. The four distortion types are detailed in the
following sections.

1) MPEG-2 compression:The MPEG-2 standard is used
in a wide variety of video applications, most notably DVD’s
and digital broadcast television. There are four MPEG-2 com-
pressed videos corresponding to each reference in our database
and we will refer to this distortion category as “MPEG-2” in
the remainder of the paper. We used the MPEG-2 reference
software available from the International Organization for
Standardization (ISO) to compress the videos [10].

The bit rate required to compress videos for a specified
visual quality varies dramatically depending on the content.
The authors selected four compressed MPEG-2 videos for each
reference video by viewing compressed videos generated using
a wide variety of bit rates and selecting a subset that spanned
the desired range of visual quality. “Excellent” quality videos
were chosen to be quite close to the reference in visual quality.
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(a) (b)

(c) (d)

Fig. 2: (a) MPEG-2 compressed frame (b) H.264 compressed frame (c) IP loss simulated frame (d) Wireless loss simulated
frame

“Poor” quality videos were chosen to be of similar quality as
Youtube videos, without being obliterated by MPEG blocking
artifacts. The compression rates varied from 700 Kbps to 4
Mbps, depending on the reference sequence.

2) H.264 compression:H.264 is rapidly gaining popularity
due to its superior compression efficiency as compared to
MPEG-2. There are four H.264 compressed videos corre-
sponding to each reference in our database and we will refer
to this distortion category as “H.264” in the remainder of the
paper. We used the JM reference software (Version 12.3) made
available by the Joint Video Team (JVT) [11].

The procedure for selecting the videos was the same as that
used to select MPEG-2 compressed videos. The compression
rates varied from 200 Kbps to 5 Mbps.

3) Transmission over IP Networks:Videos are often trans-
mitted over IP networks in applications such as video tele-
phony and conferencing, IPTV and Video on Demand. There
are three “IP” videos corresponding to each reference in our
database that were created by simulating IP losses on an H.264
compressed video stream and we will refer to this distortion
category as “IP” in the remainder of the paper. The H.264
compressed video streams were created using the JM reference
software [11] and compression rates varied between 0.5-7
Mbps.

An in-depth study of the transport of H.264 video over
IP networks can be found in [12] and many of our design
considerations in the video communication system were based
on this study. IP networks offer best effort service and packet
losses occur primarily due to buffer overflow at intermediate
nodes in a network with congestion. The video sequences
subjected to errors in the IP environment contained between
one and four slices per frame and each packet contained one

slice; we only used these two options since they result in
packet sizes that are typical in IP networks. Using one slice
per frame has the advantage of reducing overhead due to IP
headers, but at the expense of robustness [12]. Using four
slices per frame increases robustness to error (likelihoodof an
entire frame getting lost is reduced), at the expense of reducing
compression efficiency.

Four IP error patterns supplied by the Video Coding Experts
Group (VCEG), with loss rates of 3%, 5%, 10% and 20%,
were used [13]. The error patterns were obtained from real-
world experiments on congested networks and are recom-
mended by the VCEG to simulate the Internet backbone
performance for video coding experiments. We created test
videos by dropping packets specified in the error pattern from
an H.264 compressed packetized video stream. To enable
decoding, we did not drop the first packet (containing the
Instantaneous Data Refresh (IDR)) and the last packet (since
the loss of this packet cannot be detected by the decoder). This
is equivalent to assuming that these packets were transmitted
reliably out of band. The resulting H.264 bitstream was then
decoded using [11] and the losses concealed using the built-in
error concealment mechanism (mode 2 - motion copy) [14].

The authors viewed and selected a diverse set of videos
suffering from different types of observed artifacts and span-
ning the desired range of quality. The type of observed artifact
varies depending on:

• Whether an Intra-coded frame (I frame) or Predicted
frame (P frame) is lost - I frame losses result in much
more severe and sustained video distortions (that last until
the next I-frame is received correctly).

• Whether each frame is transmitted in 1 packet or 4
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packets - Loss of an entire frame when transmitted as a
single slice results in much more significant distortions,
than when the frame is transmitted using 4 slices.

• Flexible Macroblock Ordering (FMO) - We used both
regular and dispersed modes of FMO in our simulations
[15]. In dispersed mode, we used four packet groups
formed by sub-sampling the frame by 2 along both rows
and columns. Loss of video packets in regular mode
results in severe artifacts in localized regions of the video,
while the impairments are not as severe in the dispersed
mode.

4) Transmission over wireless networks:Video transmis-
sion for mobile terminals is envisioned to be a major appli-
cation in 3G systems and the superior compression efficiency
and error resilience of H.264 makes it ideal for use in harsh
wireless transmission environments [15]. There are four videos
corresponding to each reference in our database that were
created by simulating losses sustained by an H.264 compressed
video stream in a wireless environment and we will refer to
this distortion category as “Wireless” in the remainder of the
paper. The H.264 compressed bitstreams were created using
the JM reference software [11] and compression rates varied
between 0.5-7 Mbps.

An in-depth study of the transport of H.264 video over
wireless networks can be found in [15]. Many of our design
considerations for the wireless simulations was based on
this study. A packet transmitted over a wireless channel is
susceptible to bit errors due to attenuation, shadowing, fading
and multi-user interference in wireless channels. We assume
that a packet is lost even if it contained a single bit error,
an assumption that is often made in practice [15]. Due to
this assumption, a longer packet is more likely to be lost
and shorter packet sizes are desirable in wireless networks.
We encoded the video stream using multiple slices per frame,
where each packet contained one slice. All packets contained
roughly the same number of bytes (approximately 200 bytes
per packet), making their susceptibility to bit errors almost
identical. We simulated errors in wireless environments using
bit error patterns and software available from the VCEG
[16]. The packet error rates using these bit error patterns
varied between 0.5-10%. The decoding and error concealment
techniques for the wireless simulations were identical to the
IP simulations.

Again, the authors viewed and selected videos suffering
from different types of observed artifacts and spanning the
desired range of quality. Observed artifacts in the wireless
environment also depend on whether an I or P packet is
lost and on the FMO mode. Due to the smaller packet sizes
in wireless applications, the observed artifacts are spatio-
temporally localized and appear different from the artifacts
observed in IP applications.

C. Subjective Testing Design

We adopted a single stimulus continuous procedure to ob-
tain subjective quality ratings for the different video sequences.
The choice of a single stimulus paradigm is well suited to
a large number of emerging multimedia applications, such

as quality monitoring for Video on Demand, IPTV, Internet
streaming etc. Additionally, it significantly reduces the amount
of time needed to conduct the study (given a fixed number of
human subjects) as compared to a double stimulus study. The
subjects indicated the quality of the video on a continuous
scale. The continuous scale allows the subject to indicate fine
gradations in visual quality. We believe this is superior tothe
ITU-R Absolute Category Rating (ACR) scale that uses a 5-
category quality judgment, as is used in recent VQEG studies
[6]. The subject also viewed each of the reference videos
to facilitate computation of Difference Mean Opinion Scores
(DMOS), a procedure known as hidden reference removal
[17], [18].

All the videos in our study were viewed by each subject,
which required one hour of the subject’s time. To minimize
the effects of viewer fatigue, we conducted the study in two
sessions of thirty minutes each.

We prepared playlists for each subject by arranging the
150 test videos in a random order using a random number
generator. We did not want the subjects to view successive
presentations of test videos that were obtained from the same
reference sequence, to avoid contextual and memory effects
in their judgment of quality. Once a playlist was constructed,
adjacent sequences were examined to determine if they corre-
sponded to the same content. If any such pairs were detected,
one of the videos was swapped with another randomly chosen
video in the playlist which did not suffer from the same
problem. This list was then split into two halves for the two
sessions.

We wanted to ensure that any differences in the use of the
quality judgment scale by the subject between sessions did not
affect the results of the study. For instance, a subject may be
very critical of the visual quality of a video in one session and
more forgiving in the other. To avoid this problem, we included
each reference video in both sessions in the hidden reference
removal process. We inserted each of the ten reference videos
into the playlists for each session randomly, again ensuring
that successive playback of the same content did not occur.
The DMOS scores were then computed for each videoper
sessionusing the quality score assigned to the reference video
in that session, as described in Section III.

D. Subjective Testing Display

We developed the user interface for the study on a Windows
PC using MATLAB, in conjunction with the XGL toolbox for
MATLAB developed at the University of Texas at Austin [19].
The XGL toolbox allows precise presentation of psychophys-
ical stimuli to human observers. It is extremely important to
avoid any errors in displaying the video such as latencies or
frame drops. This can significantly affect the results of the
study since the subject’s quality perception is affected not by
the video itself, but by the display issues. To ensure perfect
playback, all distorted sequences were processed and stored as
raw YUV 4:2:0 files. An entire video was loaded into memory
before its presentation began to avoid any latencies due to
slow hard disk access of large video files. The videos were
then played out at the appropriate frame rate for the subject
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to view. The XGL toolbox interfaces with the ATI Radeon
X600 graphics card in the PC and utilizes its ability to play
out the YUV videos. The videos were viewed by the subjects
on a Cathode Ray Tube (CRT) monitor to avoid the effects of
motion blur and low refresh rates on Liquid Crystal Display
(LCD) monitors. The entire study was conducted using the
same monitor and we calibrated the CRT monitor using the
Monaco Optix XR Pro device. The XGL toolbox avoids visual
artifacts by synchronizing the display so that the switching
between adjacent frames of the video occurs during the retrace
of the CRT scan. Since the videos had low frame rates (25
and 50 Hz), we set the monitor resolution to 100 Hz to avoid
artifacts due to monitor flicker. Each frame of the 50 Hz videos
was displayed for 2 monitor refresh cycles and each frame of
the 25 Hz videos was displayed for 4 monitor refresh cycles.

The screen was set at a resolution of 1024×768 pixels
and the videos were displayed at their native resolution to
prevent any distortions due to scaling operations performed
by software or hardware. The remaining areas of the display
were black. At the end of the presentation of the video, a
continuous scale for video quality was displayed on the screen,
with a cursor set at the center of the quality scale to avoid
biasing the subject’s quality percept. The quality scale had
five labels marked on it to help the subject. The left end of
the scale was marked “Bad” and the right end was marked
“Excellent”. Three equally spaced labels between these were
marked “Poor”, “Fair” and “Good”, similar to the ITU-R
ACR scale. Screenshots from the subjective study interface
are shown in Fig. 3. The subject could move the cursor along
the scale by moving a mouse. The subject was asked to press a
key to enter the quality score after moving the cursor to a point
on the scale that corresponded to his or her quality percept.
The subject was allowed to take as much time as needed to
enter the score. However, the subject could not change the
score once entered or view the video again. Once the score
was entered, the next video was displayed.

E. Subjects and Training

All subjects taking part in the study were recruited from the
undergraduate Digital Image and Video Processing class (Fall,
2007) at the University of Texas at Austin. The subject pool
consisted of mostly male students. The subjects were not tested
for vision problems. Each video was ranked by 38 subjects.

Each subject was individually briefed about the goal of the
experiment and viewed a short training session before starting
the experiment. Subjects viewed six training videos in their
first session of participation and three training videos in their
second session. Subjects were asked to provide quality scores
for the training videos also to familiarize themselves withthe
testing procedure. The training videos were not part of the
database and contained different content. The training videos
were of 10 seconds duration and were also impaired by the
same distortions as the test videos. We selected the training
videos to span the same range of quality as the test videos, to
give the subject an idea of the quality of videos they would be
viewing in the study and to enable suitable use of the quality
scale by the subject.

III. PROCESSING OFSUBJECTIVE SCORES

Let sijk denote the score assigned by subjecti to video
j in sessionk = {1, 2}. Since our focus in this paper
is on full reference objective VQA algorithms that assume
a “perfect” reference video, we compute difference scores
between the test video and the corresponding reference to
discount any subject preferences for certain reference videos.
First, difference scoresdijk are computed per session by
subtracting the quality assigned by the subject to a video from
the quality assigned by the same subject to the corresponding
reference videoin the same session. Computation of difference
scores per sessions helps account for any variability in theuse
of the quality scale by the subject between sessions:

dijk = sijrefk − sijk (1)

The difference scores for the reference videos are 0 in both
sessions and are removed. The difference scores per session
are then converted to Z-scoresper session[20]:

µik =
1

Nik

Nik
∑

j=1

dijk (2)

σik =

√

√

√

√

1

Nik − 1

Nik
∑

j=1

(dijk − µik)2 (3)

zijk =
dijk − µik

σik

(4)

whereNik is the number of test videos seen by subjecti in
sessionk. Again, note that Z-scores are computed per session
to account for any differences in the use of the quality scale
(differences in the location and range of values used by the
subject) between sessions.

Every subject sees each test video in the database exactly
once, either in the first session or in the second session. The
Z-scores from both sessions are then combined to create a
matrix {zij} corresponding to the Z-score assigned by subject
i to video j, wherej = {1, 2, . . . , N} indexesN = 150 test
videos in the LIVE Video Quality Database.

A subject rejection procedure specified in the ITU-R BT
500.11 recommendation is then used to discard scores from
unreliable subjects [21]. Note that Z-scores in (4) accountfor
any differences in subject preferences for reference videos, use
of the quality scale between subjects, and differences in use
of the quality scale by a subject between sessions. We believe
that the processing and subject rejection procedure used here
is superior to the VQEG studies for these reasons [4], [7],
[8]. The ITU-R BT 500.11 recommendation first determines
if the scores assigned by a subject are normally distributedby
computing the kurtosis of the scores. The scores are considered
normally distributed if the kurtosis falls between the values of
2 and 4. If the scores are normally distributed, the procedure
rejects a subject whenever more than 5% of scores assigned
by him falls outside the range of two standard deviations from
the mean scores. If the scores are not normally distributed,
the subject is rejected whenever more than 5% of his scores
falls outside the range of 4.47 standard deviations from the
mean scores. In both situations, care is taken to ensure that



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ?,NO. ?,2009 7

(a) (b)

Fig. 3: (a) Screenshot from the subjective study interface displaying the video to the subject. (b) Screenshot from the subjective
study interface that prompts the subject to enter a quality score for the video they completed viewing.

subjects who are consistently pessimistic or optimistic intheir
quality judgments are not eliminated [21]. In our study, 9 out
of the 38 subjects were rejected at this stage. We found that
the reason for the large number of rejected subjects is the
borderline reliability of four subjects. The 5% criterion used
in the subject rejection procedure translates to 7.5 videosin
the LIVE Video Quality Database. Four of the nine rejected
subjects scored 8 videos outside the expected range in the
LIVE study and were rejected by the procedure.

Z-scores were then linearly rescaled to lie in the range of
[0, 100]. Assuming that Z-scores assigned by a subject are
distributed as a standard Gaussian, 99% of the scores will lie
in the range [-3,3] and we found that all Z-scores in our study
fell inside this range. Re-scaling was hence accomplished by
linearly mapping the range [-3,3] to [0,100] using:

z′ij =
100(zij + 3)

6
(5)

Finally, the Difference Mean Opinion Score (DMOS) of
each video was computed as the mean of the rescaled Z-scores
from theM = 29 remaining subjects after subject rejection.

DMOSj =
1

M

M
∑

i=1

z′ij (6)

The LIVE Video Quality Database was designed to sam-
ple a range of visual quality in an approximately uniform
fashion, as described in Section II-B. To illustrate this, we
show histograms of the DMOS scores obtained from the
LIVE Video Quality Database and the VQEG FRTV Phase
1 database in Figure 4. Figure 4 shows that the LIVE Video
Quality Database exhibits reasonably uniform distribution of
scores along the DMOS axis, while the VQEG FRTV Phase
1 database exhibits poor perceptual separation with a large
number of videos of very high quality and far fewer videos of
poor quality.

The DMOS scores in the LIVE Video Quality Database
lie in the range [30,82], as seen in Figure 4. This range
may appear small to readers used to seeing subjective scores
obtained using the highly popular Double Stimulus Continuous
Quality Scoring (DSCQS) paradigm for subjective testing [21].

The DSCQS method was also used in the VQEG Phase 1
study, where the subjects score the quality of the referenceand
test videos on a [0,100] scale and DMOS is computed as the
difference between the scores assigned to the reference andtest
video. The LIVE Video Quality Database, on the other hand,
uses a single stimulus paradigm with hidden reference removal
and DMOS is computed asZ-scoresassigned by subjects, and
not as differences between scores assigned to the referenceand
test videos. We believe that conversion of difference scores to
Z-scores, as we have done here, is very important to account
for differences in use of the scale by subjects. Assuming that
Z-scores assigned by a subject are distributed as a standard
Gaussian, 99% of Z-scores will lie in the range [-3,3] that
corresponds to DMOS scores in the range [0,100]. [30,82] on
the DMOS scale used in the LIVE Video Quality Database
corresponds to mean Z-scores in the range [-1.2,1.92], which
corresponds to approximately 86% of the area of the standard
normal distribution. We believe that this range is reasonable
for mean Z-scores, with individual Z-scores fluctuating beyond
this range to extreme points on the scale.

IV. OBJECTIVE VQA A LGORITHMS

The performance of several publicly available objective
VQA algorithms was evaluated on the LIVE Video Quality
Database. One of the problems we faced was the lack of free
availability of many VQA algorithms, since many popular
VQA algorithms and tools are licensed and sold for profit.
These include the Picture Quality Analyzer from Tektronix
[22]; the Perceptual Evaluation of Video Quality (PEVQ) from
Opticom [23]; the V-Factor from Symmetricom [24]; VQA
solutions from SwissQual [25] and Kwill Corporation [26] and
several others [27]. Our testing was limited to freely available
VQA algorithms. Naturally, we will broaden our test set as
more algorithms become freely available.

We tested the following VQA algorithms on the LIVE Video
Quality Database.

• Peak Signal to Noise Ratio (PSNR)is a simple function
of the Mean Squared Error (MSE) between the reference
and test videos and provides a baseline for objective VQA
algorithm performance.
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Fig. 4: Histogram of the DMOS scores in fifteen equally spacedbins between the minimum and maximum DMOS values for
(a) LIVE Video Quality Database and (b) VQEG FRTV Phase 1 Database

• Structural SIMilarity (SSIM)is a popular method for
quality assessment of still images [28], [29], that was
extended to video in [30]. The SSIM index was ap-
plied frame-by-frame on the luminance component of
the video [30] and the overall SSIM index for the video
was computed as the average of the frame level quality
scores. Matlab and Labview implementations of SSIM
are available from [31].

• Multi-scale SSIM (MS-SSIM)is an extension of the SSIM
paradigm, also proposed for still images [32], that has
been shown to outperform the SSIM index and many
other still image quality assessment algorithms [33].
We extended the MS-SSIM index to video by applying
it frame-by-frame on the luminance component of the
video and the overall MS-SSIM index for the video was
computed as the average of the frame level quality scores.
A Matlab implementation of MS-SSIM is available for
download from [31].

• Speed SSIMis the name we give to the VQA model
proposed in [34], that uses the SSIM index in conjunction
with statistical models of visual speed perception de-
scribed in [35]. Using models of visual speed perception
was shown to improve the performance of both PSNR
and SSIM in [34]. We evaluated the performance of
this framework with the SSIM index, which was shown
to perform better than using the same framework with
PSNR [34]. A software implementation of this index was
obtained from the authors.

• Visual Signal to Noise Ratio (VSNR)is a quality as-
sessment algorithm proposed for still images [36] and
is available for download from [37]. We applied VSNR
frame-by-frame on the luminance component of the video
and the overall VSNR index for the video was computed
as the average of the frame level VSNR scores.

• Video Quality Metric (VQM)is a VQA algorithm de-
veloped at the National Telecommunications and Infor-
mation Administration (NTIA) [38]. Due to its excellent
performance in the VQEG Phase 2 validation tests, the

VQM methods were adopted by the American National
Standards Institute (ANSI) as a national standard, and as
International Telecommunications Union Recommenda-
tions (ITU-T J.144 and ITU-R BT.1683, both adopted in
2004). VQM is freely available for download from [39].

• V-VIF is the name we give to the VQA model proposed
in [40] that extends the Visual Information Fidelity (VIF)
criterion for still images proposed in [41] to video using
temporal derivatives. A software implementation of this
index was obtained from the authors.

• MOtion-based Video Integrity Evaluation (MOVIE) index
is a VQA index that was recently developed at LIVE
[42], [43]. A software implementation of MOVIE is freely
available for research purposes [31]. Three different ver-
sions of the MOVIE index - the Spatial MOVIE index,
the Temporal MOVIE index and the MOVIE index - were
tested in our study.

A. Performance of Objective Models

We tested the performance of all objective models using two
metrics - the Spearman Rank Order Correlation Coefficient
(SROCC) which measures the monotonicity of the objec-
tive model prediction with respect to human scores and the
Pearson Linear Correlation Coefficient (LCC) after non-linear
regression, which measures the prediction accuracy. The LCC
is computed after performing a non-linear regression on the
objective VQA algorithm scores using a logistic function. We
used the logistic function and the procedure outlined in [4]to
fit the objective model scores to the DMOS scores.

Let Qj represent the quality that a VQA algorithm predicts
for video j in the LIVE Video Quality Database. A four
parameter, monotonic logistic function was used to fit the
VQA algorithm prediction to the subjective quality scores.

Q′

j = β2 +
β1 − β2

1 + e
−

(

Qj−β3

|β4|

) (7)

Non-linear least squares optimization is performed using
the Matlab function “nlinfit” to find the optimal parameters
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β that minimize the least squares error between the vector of
subjective scores (DMOSj , j = 1, 2, . . . 150) and the vector of
fitted objective scores (Q′

j , j = 1, 2, . . . , 150). Initial estimates
of the parameters were chosen based on the recommendation
in [4]. We linearly rescaled VQA algorithm scores before per-
forming the optimization to facilitate numerical convergence.
The SROCC and the LCC are computed between the fitted
objective scores (Q′

j) and the subjective scores (DMOSj).
Tables Ia and Ib show the performance of all models in

terms of the SROCC and the LCC respectively for each dis-
tortion type and for the entire LIVE Video Quality Database.
Scatter plots of objective scores vs. DMOS for all the al-
gorithms on the entire LIVE Video Quality Database, along
with the best fitting logistic functions, are shown in Fig. 5.
Our results clearly demonstrate that a carefully constructed
database of videos can expose the significant limitations of
PSNR as a VQA measure. All the VQA algorithms tested
in our study improve upon PSNR. Speed SSIM improves
upon using just the SSIM index. The best performing VQA
algorithm amongst the ones tested in our study, in terms
of both the SROCC and LCC after non-linear regression,
is the temporal MOVIE index. One of the three versions
of the MOVIE index (Spatial MOVIE, Temporal MOVIE
and the MOVIE index) is the best performing algorithm
using SROCC or LCC as a performance indicator for each
individual distortion category also. The performance of VQM,
MS-SSIM and Spatial MOVIE on the LIVE Video Quality
Database is comparable. Superior performance of Temporal
MOVIE and MOVIE on the LIVE Video Quality Database
clearly illustrates the importance of modeling visual motion
perception in VQA.

B. Statistical Evaluation

The results presented in Tables Ia and Ib show differences
in the performance of different objective VQA algorithms
in terms of both performance criteria. In this section, we
attempt to answer the question of whether this difference in
performance is statistically significant. We test the statistical
significance of the results presented in Section IV-A using two
different statistical tests suggested in [7]. The same tests were
also used in the statistical analysis performed on the LIVE
still image quality database [33]. The first is an F-test based on
individual rating scores obtained from different subjects, which
tests whether the performance of any objective VQA model
matches the performance of humans. This test is presented in
Section IV-B1. The second test is an F-test based on the errors
between the average DMOS scores and model predictions,
which tests whether the performance of one objective model
is statistically superior to that of a competing model. Thistest
is presented in Section IV-B2. We discuss the assumptions
on which the statistical significance tests are based in Section
IV-B3. See [44] for a description of statistical significance tests
and F-tests.

1) F-Test Based on Individual Quality Scores:There is
inherent variability amongst subjects in the quality judgment
of a given video. The performance of an objective model can
be, and is expected to be, only as good as the performance

of humans in evaluating the quality of a given video. The
optimal or “null” model obtained from the subjective study
predicts the quality of a given video as the averaged Z-score
across subjects, which was defined as the DMOS. The residual
differences between the null model and individual quality
scores assigned by each subject to a given video cannot be
predicted by any objective model. Hence, the null model has
a baseline residual that corresponds to the residual between
individual subjective scores from different subjects and the
averaged DMOS score and is given by:

Null Residual (individual ratings)

= {z′ij − DMOSj , i = 1, 2, . . . M and j = 1, 2, . . . N} (8)

Similar residuals can be defined for each of the objective
VQA algorithms tested in the study. The residual errors
between individual subjective scores and the VQA algorithm
prediction of quality are given by:

Model Residual (individual ratings)

= {z′ij − Q′

j , i = 1, 2, . . . M and j = 1, 2, . . . N} (9)

An F-test is performed on the ratio of the variance of the
model residual to the variance of the null residual at 95%
significance. The null hypothesis is that the variance of the
model residual is equal to the variance of the null residual.
A threshold F-ratio can be determined based on the number
of degrees of freedom in the numerator and denominator and
the significance level of the F-test. Values of the F-ratio larger
than the threshold would cause us to reject the null hypothesis
and conclude that the performance of the objective model is
not statistically equivalentto the null or optimal model.

The variance of the residuals from the null model and each
of the ten objective VQA models, as well as the number
of samples in each category, is shown in Table IIa. The
numerator and denominator degrees of freedom in the F-test
is obtained by subtracting one from the number of samples.
The threshold F-ratio at 95% significance is also shown in
the table. None of the VQA algorithms tested in our study
were found to be statistically equivalent to the null model
or the theoretically optimal model corresponding to human
judgment in any of the five categories (Wireless, IP, H.264,
MPEG-2 or All Data). The same conclusion was reached in
the VQEG Phase 2 study [7] and the LIVE still image quality
study [33], wherein none of the algorithms tested in each of
these studies were found to be equivalent to the theoretically
optimal model. Apparently, despite significant progress, there
remains considerable opportunity to improve the performance
of objective VQA algorithms!

2) F-Test Based on Average Quality Scores:The residual
error between the quality predictions of an objective VQA
model and the DMOS values on the LIVE Video Quality
Database can be used to test the statistical superiority of one
VQA model over another. The residual errors between the
objective algorithm prediction and the DMOS value is given
by:

Model Residual (average ratings)

= {Q′

j − DMOSj , j = 1, 2, . . . N} (10)
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Algorithm Wireless IP H.264 MPEG-2 All Data
PSNR 0.4334 0.3206 0.4296 0.3588 0.3684
SSIM 0.5233 0.4550 0.6514 0.5545 0.5257
MS-SSIM 0.7285 0.6534 0.7051 0.6617 0.7361
Speed SSIM 0.5630 0.4727 0.7086 0.6185 0.5849
VSNR 0.7019 0.6894 0.6460 0.5915 0.6755
VQM 0.7214 0.6383 0.6520 0.7810 0.7026
V-VIF 0.5507 0.4736 0.6807 0.6116 0.5710
Spatial MOVIE 0.7927 0.7046 0.7066 0.6911 0.7270
Temporal MOVIE 0.8114 0.7192 0.7797 0.8170 0.8055

MOVIE 0.8109 0.7157 0.7664 0.7733 0.7890
(a) Spearman Rank Order Correlation Coefficient

Algorithm Wireless IP H.264 MPEG-2 All Data
PSNR 0.4675 0.4108 0.4385 0.3856 0.4035
SSIM 0.5401 0.5119 0.6656 0.5491 0.5444
MS-SSIM 0.7170 0.7219 0.6919 0.6604 0.7441
Speed SSIM 0.5867 0.5587 0.7206 0.6270 0.5962
VSNR 0.6992 0.7341 0.6216 0.5980 0.6896
VQM 0.7325 0.6480 0.6459 0.7860 0.7236
V-VIF 0.5488 0.5102 0.6911 0.6145 0.5756
Spatial MOVIE 0.7883 0.7378 0.7252 0.6587 0.7451
Temporal MOVIE 0.8371 0.7383 0.7920 0.8252 0.8217

MOVIE 0.8386 0.7622 0.7902 0.7595 0.8116
(b) Linear Correlation Coefficient

TABLE I: Comparison of the performance of VQA algorithms. The best performing algorithm is highlighted in bold font for
each category.

Prediction Model Wireless IP H.264 MPEG-2 All Data
Null Model 105 98.61 97.73 99.24 100.18
PSNR 189.77 171.83 193.18 179.04 201.07
SSIM 180.59 164.33 166.02 165.83 184.99
MS-SSIM 156.77 140.78 159.37 152.21 153.97
Speed SSIM 174.91 159.07 157.00 157.94 177.87
VSNR 160.13 139.53 170.49 159.74 163.40
VQM 155.34 149.62 166.57 134.11 157.59
V-VIF 179.48 164.43 161.84 158.35 180.78
Spatial MOVIE 145.40 138.94 153.89 153.07 153.80
Temporal MOVIE 137.16 142.47 142.75 128.72 139.32

MOVIE 136.62 137.38 143.06 137.87 141.32
Number of samples 1160 870 1160 1160 4350
Threshold F-ratio 1.1015 1.1181 1.1015 1.1015 1.0512

(a) Variance of the residuals between individual subjective scores and VQA
algorithm prediction.

Prediction Model Wireless IP H.264 MPEG-2 All Data
PSNR 86.87 75.66 97.84 81.78 101.55
SSIM 77.46 67.91 69.98 68.24 85.36
MS-SSIM 53.07 43.58 63.15 54.30 54.15
Speed SSIM 71.64 62.48 60.73 60.16 78.20
VSNR 56.50 42.28 74.55 61.99 63.63
VQM 51.59 52.72 70.54 35.73 57.79
V-VIF 76.32 68.02 65.70 60.57 81.12
Spatial MOVIE 41.40 41.68 57.54 55.16 53.96
Temporal MOVIE 32.99 45.32 46.14 30.21 39.41

MOVIE 32.41 40.07 46.45 39.59 41.41
Number of samples 40 30 40 40 150
Threshold F-ratio 1.7045 1.8608 1.7045 1.7045 1.3104

(b) Variance of the residuals between VQA algorithm predictions and
DMOS values.

TABLE II: The best performing VQA algorithm is highlighted in bold font for each category. (a) F-ratios for each objective
model can be computed as the ratio of the variance of the modelresidual to that of the null residual. F-ratios larger than the
threshold F-ratio indicate that the objective model is not statistically equivalent to the null or optimal model. (b) F-ratios to
compare two objective models can be computed as the ratio of the variances of the model residuals from the two models,
with the larger variance placed in the numerator. F-ratios larger than the threshold F-ratio indicate that the performance of the
objective model in the numerator is statistically inferiorto that in the denominator.

An F-test is performed on the ratio of the variance of the
residual error from one objective model to that of another
objective model at 95% significance level. The null hypothesis
states that variances of the error residuals from the two differ-
ent objective models are equal. The variance of the residual
errors between model predictions and the DMOS for all the
objective models tested in our study for all the categories are
shown in Table IIb. The F-ratio is always formed by placing
the objective model with the larger residual error variancein
the numerator. Threshold F-ratios can be determined based on
the number of samples in each category and the significance
level. The threshold F-ratio and the number of samples in
each category are also listed in Table IIb. An F-ratio ratio
larger than the threshold indicates that the performance ofthe
VQA algorithm in the numerator of the F-ratio is statistically
inferior to that of the VQA algorithm in the denominator. The
results of the statistical significance test are reported inTable
III.

To summarize the results in Table III, the performance
of Temporal MOVIE and MOVIE is statistically superior to
that of PSNR, SSIM, Speed SSIM, VSNR and V-VIF and
the performance of Spatial MOVIE is superior to that of
PSNR, SSIM, VSNR and V-VIF on the wireless dataset. The
performance of all algorithms are statistically equivalent on the
IP dataset. The performance of Temporal MOVIE and MOVIE
are statistically superior to PSNR on the H.264 dataset. The

performance of VQM is superior to PSNR, SSIM and VSNR
and the performance of MOVIE is superior to PSNR and
SSIM on the MPEG-2 dataset. Additionally, the performance
of Temporal MOVIE is superior to PSNR, SSIM, MS-SSIM,
Speed SSIM, VSNR and V-VIF on the MPEG-2 dataset.

The performance of Temporal MOVIE, which is the best
performing algorithm on the entire LIVE Video Quality
Database, is statistically superior to the performance of all
algorithms tested in the study, with the exception of MOVIE.
The MOVIE index is statistically superior to PSNR, SSIM,
Speed SSIM, VSNR and V-VIF on the entire LIVE Video
Quality Database. Spatial MOVIE, MS-SSIM and VQM are
superior to PSNR, SSIM, Speed SSIM and V-VIF on the entire
LIVE Video Quality Database. Finally, the performance of
VQM is superior to that of PSNR and SSIM on the entire
LIVE Video Quality Database.

3) Assumptions of the F-test:The F-test that we use
assumes that the residuals are independent samples from a
normal distribution and is fairly robust to this assumption[44].
For additional verification of the robustness of the F-teststo
the underlying assumptions, we also performed bootstrapped
F-tests on both the individual quality scores and the average
quality scores [45]. For instance, bootstrapped F-tests on
the average quality scores were performed by selectingN

values from the vectors of model residuals in (10) randomly
with resampling for each of the two models under test and
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Fig. 5: Scatter plots of objective VQA scores vs. DMOS for allvideos in the LIVE Video Quality Database. Also shown is
the best fitting logistic function.

computing the F-ratio. This procedure is repeated 10,000 times
to obtain the sampling distribution of the F-ratio. We visually
verified that the sampling distribution of the F-ratio is shifted
to the right of 1 for all cases where statistical significance
was established. Due to space limitations, we only show
the sampling distribution of the F-ratio on the entire LIVE
Video Quality Database for each of the six models whose
performance is statistically superior to PSNR in Figure 6.

For additional verification of the assumptions of the F-
test, we performed another simulation where we generatedN

independent samples from a standard normal distribution with

the same mean and variance as the vector of model residuals
in (10). The F-ratio was then computed between each pair of
objective models. This procedure was repeated 10,000 times
for each pair to obtain the sampling distribution of the F-
ratio when the assumptions of the F-test are exactly met. The
resulting sampling distribution is also shown in Figure 6 in
dotted lines. It is seen that the two sampling distributionsare
quite close to each other, which shows that any deviations
of the distribution of the residual data from the assumptionof
independent and Gaussian residuals do not affect the results of
the statistical tests greatly. This simulation was also performed
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 - - - - - - - - - - - - - - 0 - - - - - - - - - 0 - - - 0 0 - - - - - 0 - - - 0 0 - 0 0 0 0 - 0 0 0
M2 - - - - - - - - - - - - - - 0 - - - - - - - - - 0 - - - 0 0 - - - - - 0 - - - 0 0 - - 0 0 0 - - 0 0
M3 - - - - 1 - - - - 1 - - - - - - - - - 1 - - - - - - - - - - - - - - 1 - - - - - - - - 0 0 - - - - -
M4 - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - 0 - - - - - 0 - - - 0 0 - - 0 0 0 - - - 0
M5 - - - - 1 - - - - 1 - - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - 0 - - 0 0 0 - - - 0
M6 - - - 1 1 - - - 1 1 - - - - - - - - - 1 - - - 1 - - - - - - - - - - 1 - - - - - - - - - 0 - - - - 0
M7 - - - - - - - - - - - - - - 0 - - - - - - - - - - - - - - 0 - - - - - 0 - - - 0 0 - - 0 0 0 - - - 0
M8 1 - - - 1 1 - - - 1 - - - - - 1 - - - 1 - - - - - - - - - - 1 - - - 1 - - - - - - - - 0 0 - - - - -
M9 1 - 1 1 1 1 - - 1 1 - - - 1 1 1 - - 1 1 1 - - 1 1 - - - - 1 1 - - 1 1 - - - 1 1 - - - - - - - - - -
M10 1 1 1 1 1 1 - - 1 1 - - - - - 1 - - - 1 1 - - - 1 - - - - 1 1 - - - 1 - - - - - - - - - - - - - - -

TABLE III: Results of the F-test performed on the residuals between model predictions and DMOS values. Each entry in
the table is a codeword consisting of 5 symbols. The symbols correspond to the “Wireless”, “IP”, “H.264”, “MPEG-2” and
“All Data” in that order. A symbol value of “1” indicates thatthe statistical performance of the VQA model in the row is
superior to that of the model in the column. A symbol value of “0” indicates that the statistical performance of the model in
the row is inferior to that of the model in the column and “-” indicates that the statistical performance of the model in the
row is equivalent to that of the model in the column. Notice that the matrix is symmetric and that the codewords at transpose
locations in the matrix are binary complements of each other. M1 through M10 are PSNR, SSIM, MS-SSIM, Speed SSIM,
VSNR, VQM, V-VIF, Spatial MOVIE, Temporal MOVIE and MOVIE respectively.

for the F-tests based on individual quality scores with identical
conclusions.

C. Discussion of Results

The intention of this study has been to provide an inde-
pendent, academic VQA resource that is freely available to
download, free from commercial interests, broadly represen-
tative of applications, and that will be continuously vital, since
the database will be updated over time. Future human studies
are also planned that will extend the scope of the current study.

The study has been a rather large undertaking. Of course, the
results of the human study and of the algorithm comparisons
do not represent a final statement, since in coming years
new theories and algorithms will continue to be developed
in this exciting area, existing algorithms will be improved,
and some unavailable (proprietary) algorithms may be offered
for comparison (we continue our efforts to obtain these). As
video applications continue to evolve, the set of distortions to
be considered as “representative” will naturally change over
time as well. New developments will be posted on the LIVE
VQA website [1] on a regular basis.

The results that we obtained here affirm long-held beliefs
regarding the failure of “classical” measures of video “quality”
to predict the human sense of quality. Most notably, the long-
used PSNR has been shown to perform very poorly against
human subjectivity, far worse than any of the perceptually
relevant algorithms considered. We hope that this result helps
lay to rest, at long last, the notion that the PSNR is a reliable
predictor, measure, or optimizer of video (or image) quality - at
least for applications where humans are the video “receivers”.
If we succeed in hastening the demise of the PSNR, then it
will, perhaps, be the most gratifying and important productof
this effort.

The correlation study comparing the various VQA algo-
rithms against the large set of human data produced a number
of useful results and some surprising ones as well. Good
performance of two of the algorithms (MS-SSIM [32] and
the VQM from NTIA [38]) affirm both of these algorithms

as extremely practical and well-suited to benchmark video
processing algorithms, especially since both algorithms do not
perform computationally intensive operations such as motion
estimation. Since both algorithms are freely available for
download (although VQM is restricted for commercial use)
[27],[39], these can be easily used to analyze the performance
of a video processing algorithm, provided that the performance
simulations have available a reference for comparison.

The notion that using computed motion information can
improve VQA algorithm performance is strongly validated
by the study. For example, “Speed SSIM” [34] exhibits
substantially improved performance relative to simple (single-
scale) SSIM [29]. One wonders at how well “Speed SSIM”
might perform if made multi-scale, which would require some
non-trivial design. Nevertheless, the distinction in performance
between simple SSIM and MS-SSIM suggests that this might
be a fruitful development. Likewise, the still image algorithm
VSNR [36] also performed well, suggesting that a future
version of this algorithm that seeks to incorporate temporal
information should be encouraged.

The Temporal MOVIE index, described in detail in [42],
[43], yielded the best overall performance and is statistically
superior to all other algorithms tested in this study with the
exception of MOVIE. Before discussing this performance,
we note that the MOVIE algorithm tested on this database
is unchanged from the one reported in the literature and
successfully tested on the VQEG database. The algorithm was
“frozen” before the data from the human studies provided
here were completely captured, analyzed, and used to compare
algorithms. As described in [42], [43], the few parameters
(three masking constants) in the MOVIE index were selected
to take values equal to the nearest order of magnitude of an
appropriate energy term. While it is possible that parameter
“fiddling” could improve any VQA algorithm (for example,
the VQM algorithm has been trained on the VQEG FRTV
Phase 1 database as part of the process of selecting its many
parameters), this has not been done with the MOVIE index.

Instead, the success of the MOVIE index lies in two
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Fig. 6: Sampling distribution of the F-ratio obtained usingbootstrap simulations for the F-test based on average quality scores.
Sampling distributions are shown for all VQA models that arestatistically superior to PSNR on the entire LIVE Video
Quality Database. Note that the sampling distributions areshifted to the right of 1. Also shown in dotted lines is the sampling
distribution of the F-ratio when random samples are generated to exactly satisfy the assumptions of the F-test. Note that the
sampling distribution obtained from the data and the sampling distribution obtained from simulated data that satisfy the F-test
assumptions are very similar.

directions: first, the use of perceptually relevant models of
human visual perception in space and time. As described in
[43], MOVIE utilizes specific (Gabor receptive field) models
of cortical area V1 to dissemble video data into multi-scale
space-time primitives. The Gabor receptive field model has
produced dominant approaches to many fundamental vision
engineering problems, such as texture analysis [46], [47],
motion analysis [48], computational stereo [49], and human
biometrics [50], [51]. MOVIE also uses a specific model of the
relatively well-understood extra-cortical area V5 (also known
as area MT) to effect a biologically plausible model of visual
motion processing [52]. Using these models, MOVIE deploys
SSIM-like multi-scale processing to compute local scale-space
comparisons that can be supported from an information-
theoretic viewpoint under natural scene statistical models [53].

Looking at the break-down of MOVIE into its spatial
and temporal components, it may be observed that Spatial
MOVIE attains a level of performance very similar to that
of MS-SSIM and VQM - overall, in nearly every category
and statistically. Indeed, Spatial MOVIE may be viewed as a
perceptual matched version of MS-SSIM, owing to its use of
spatio-temporal basis functions. Temporal MOVIE performs
considerably better than Spatial MOVIE and every other algo-
rithm tested in our study and the improvement is shown to be
statistically significant, despite not being tuned to detect spatial
distortions (of which the database contains many). MOVIE
also shows excellent performance and is statistically superior
to PSNR, SSIM, Speed SSIM, VSNR, VQM and V-VIF. We

believe that these results powerfully illustrate the need for
modeling visual motion processing in VQA. It is interesting
that the performance of Temporal MOVIE is better than that
of MOVIE overall. However, this difference in performance
is not statistically significant and further, MOVIE performs
better than Temporal MOVIE on the wireless and IP videos
in terms of LCC and on the VQEG database [43].

In our view, it is plausible that MOVIE might approach
the limits of performance that might be obtained by VQA
algorithms without taking into account other factors, suchas
human attention, foveation, and salience [54]. These are topics
for future studies.

Broadly, this study shows that there are a number of
algorithms that perform significantly better than traditional
methods with a high degree of statistical confidence. We have
the opinion that these and future algorithms should play an
increasingly important role in the benchmarking and design
of video processing systems.

V. CONCLUSIONS ANDFUTURE WORK

A subjective study to evaluate the effects of present gen-
eration video compression and communication technologies
on the perceptual quality of digital video was presented. This
study included 150 videos derived from ten reference videos
using four distortion types and were evaluated by 38 subjects.
The resulting LIVE Video Quality Database is unique in terms
of content and distortion and is publicly available for research
purposes [1]. We presented an evaluation of the performance
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of several publicly available objective VQA models on this
database.

A distinguishing feature of our database was that the dis-
tortion strengths were adjusted perceptually to test the ability
of VQA models to perform consistently well across content
types. Two of the distortion types in our database resulting
from video transmission through lossy wireless and IP net-
works cause distortions that are transient, both spatiallyand
temporally. This is another distinguishing and important aspect
of the database. VQA algorithms need to be able to account
for such transient distortions. Regarding the evaluation of
objective quality indices using the linear (Pearson) correlation
(LCC), a logistic function was used to fit the data to account
for non-linearities in the objective model. It can be argued
that it would be convenient for an objective model to have
a linear relationship with subjective quality judgments, since
it would allow for easier interpretation and use of the VQA
algorithm. Of course, VQA and still image quality assessment
algorithms generally do not exhibit linear behavior relative to
human subjective judgments (Section IV-A). Non-linearities in
the objective model can be accounted for by calibration within
the model, with the added caveat that subjective judgment
of quality can vary with subjective data processing, context,
calibration, and range of subjective qualities being considered.
While linearity of a model relative to subjectivity is convenient
for interpretation, in our view, correlation measures thatdo not
rely on any linearity assumptions, such as SROCC, that are in-
dependent of any function mapping between the objective and
subjective scores are particularly useful for direct algorithm
comparisons.

As part of our study, we also recorded quality scores in
continuous time provided by the subject as they are viewing
the video. This provides a description of the quality of the
video as a function of time. We intend to make use of this
data in the future to design pooling strategies for objective
VQA algorithms that can correlate with human data scores.
The single stimulus subjective testing paradigm with hidden
reference removal used in the LIVE Video Quality Database
makes it amenable to testing the performance of no-reference
VQA algorithms. No-reference VQA is a far less mature field
than full reference VQA and the focus to date has largely been
on application-specific metrics that measure the perceptual
strength of specific distortions typical in applications such as
compression, network transmission of video and so on. We
intend to work on the elusive goal of generic no-reference
VQA in the future and hope that the LIVE Video Quality
Database will prove valuable in advancing the state-of-the-art
in this field also.
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