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Abstract—We present the results of a recent large-scale subjec- subjective VQA studies provide valuable data to assess the
tive study of video quality on a collection of videos distorted by performance ofobjective or automatic methods of quality
a variety of application-relevant processes. Methods to assedset assessment. In addition to providing the means to evalbate t
visual quality of digital videos as perceived by human observers . .
are becoming increasingly important, due to the large number perfgrmance of Stat(_a-of-the-art VQ_A technologies, stibjec
of applications that target humans as the end users of video. Studies also enable improvements in the performance of VQA
Owing to the many approaches to video quality assessmentalgorithms towards attaining the ultimate goal of matching
(VQA) that are being developed, there is a need for a diverse human perception.

independent public database of distorted videos and subjective In this paper, we first present a study that we conducted
scores that is freely available. The resulting Laboratory for Image ’

and Video Engineering (LIVE) Video Quality Database contains to assess the subjective q”a"t,y of videos. Our study iredud
150 distorted videos (obtained from ten uncompressed refereec 10 uncompressed reference videos of natural scenes and 150
videos of natural scenes) that were created using four differen distorted videos (obtained from the references) using four
commonly encount_ered distortion types. Each video was assessedfifferent distortion types commonly encountered in agplic

by 38 human subjects and the difference mean opinion SCOreS tinns. Each video was assessed by 38 human subjects in a

(DMOS) were recorded. We also evaluated the performance . le stimul tudy with hidd f |
of several state-of-the-art, publicly-available full reference \QA  Single stimulus study with hidden reference removal, witeee

algorithms on the new database. A statistical evaluation of the Subjects scored the video quality on a continuous qualijesc
relative performance of these algorithms is also presented. The This study and the resulting video database presented here,
database h{is a dgdicated web presence that will be maintainedwhich we call the Laboratory for Image and Video Engineering
EZrLor[]f] as it remains relevant and the data can be downloaded (LIVE) Video Quality Database, supplements the widely used

' LIVE Image Quality Database for still images [2]. We evatiat

the performance of leading, publicly available objectiv@A/
. INTRODUCTION algorithms on the new LIVE Video Quality Database by using

. . : o . . _standardized measures. This paper builds upon our earlier
IGITAL videos are increasingly finding their way |ntoWork describing the LIVE VideopQFl)JaIity Databzf\)se [3].

I.thf. day—to-cri]ay Il\égstolf tp(TopIg V|a(';he_telxp!05|r:)1; Otf w?eo Currently, the only publicly available subjective datattha
applications such as digtal television, digital cinemagetnet widely used by the VQA community comes from the

videos, video teleconferencing, video sharing servicesh su :
as Youtube, Video On Demand (VoD), home videos and study conducted by the Video Quality Experts Group (VQEG)

utube, . ¥ part of its FR-TV Phase 1 project in 2000 [4]. There
on. Digital videos typically pass through several PrOGESS! 1\ 4ve been significant advances in video processing teogwolo
stages pefore they reach the end user of the video. M ce 2000, most notably the development of the popular
often, th_|s end useris a human observer.. The effect_ of P 64/MPEG-4 AVC compression standard. The test videos
processing stages is to degrade the quality of the video t&? the VOEG study are not representative of present gen-

passes through it, although certain processing stages Phtion encoders and communication systems. By contrast,

example, in consumer devices) attempt 10 improve quall%e LIVE Video Quality Database described here includes

Methods for evaluating video quality play a critical rOIG\\/ideos distorted by H.264 compression, as well as videos

in quality monitoring to maintain Quality of Service (Q.O.S.)resulting from simulated transmission of H.264 packetized

requirements; performance evaluation of video vaumt'%treams through error prone communication channels. The

and display r:iewces; evaluation of video processing SSPNEG study targeted secondary distribution of television,
for compression, enhancement, error concealment and so Jois

d finall wall imal desi £ vid - s0’'most of the videos in the VQEG study are interlaced.
:;ste£2 Y. perceptually optimal design ot Video procegsin, o sced videos lead to visual artifacts in the referease

. . . well as distorted videos when they are displayed in increas-
The only reliable method to assess the video quality p%'gly common progressive scan monitors. Objective VQA

Ce'_"?d by a_h“ma” observer IS tq ask_human S_UbJECtS for thgl orithms typically involve multiple processing stepsieth
opinion, which is termed subjective video quality assesEme.

L L ) o equire adjustment to handle interlaced signals. De{atarg
(VQA). Subjective VQA IS |mpract|.cal for most aplollC"’mcmscreates visual artifacts associated with the particulgordthm
due to the human involvement in the process. Howev

?J’Sed, which is unacceptable in a VQA framework. Addition-
This research was supported by a grant from the Nationahseigoun- allY; interlaced videos are not representative of curretids
dation (Award Number: 0728748). in the video industry such as multimedia, IPTV, video viegvin
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on computer monitors, progressive High Definition Telewisi The first seven sequences have a frame rate of 25 frames
(HDTV) standards and so on. Videos in the LIVE Video Qualper second, while the remaining three (Park run, Shields, an
ity Database were all captured in progressive scan formatobile & Calendar) have a frame rate of 50 frames per second.
allowing researchers to focus on developing algorithms fér short description of these videos is provided below.

VQA. Further, the VQEG database was designed to addresg Bjye Sky- Circular camera motion showing a blue sky
the needs of secondary distribution of television and hethee and some trees

database spans narrow ranges of quality scores - indeed, mor, Rjver Bed- Still camera, shows a river bed containing

than half of the sequences are of very high quality (MPEG-  some pebbles and water

2 encoded at- 3Mbps). Overall, the VQEG videos exhibit , pedestrian area Still camera, shows some people walk-

poor perceptual separation, making it difficult to distirsdu ing about in a street intersection

the performance of VQA algorithms. The LIVE Video Quality , Tractor - Camera pan, shows a tractor moving across
Database spans a much wider range of quality - the low gome fields

quality videos were designed to be of similar quality found i, sunflower- Still camera, shows a bee moving over a
streaming video applications on the Internet (Youtubeeless sunflower in close-up

videos, live streaming of low bandwidth videos, etc.). « Rush hour- Still camera, shows rush hour traffic on a
Although the VQEG has several other completed and on- street

going projects, none of the videos from subsequent studies Station- Still camera, shows a railway track, a train and
have been made public [5], [6]. Only subjective data has some people walking across the track

been made available pUbllCly from the VQEG FRTV Phase « Park run- Camera pan, a person running across a park
2 study and the videos have not been made public, due tq Shields- Camera pans at first, then becomes still and
several copyright and licensing issues [7]. The situatidthn w zooms in; shows a person walking across a display
the VQEG Multimedia dataset is identical, wherein the VQEG  pointing at it

plans to release only the subjective data in September, 200 Mobile & Calendar - Camera pan, toy train moving

and the videos will not be released publicly [8]. This is avgra horizontally with a calendar moving vertically in the
concern, since unavailability of the VQEG datasets selyous  packground

limits the ability of researchers to benchmark the perfaroea

of new, objective VQA models against the VQEG evaluations.

The LIVE Video Quality Database is publicly available folB: T€St Sequences

download from [1] to facilitate comparative evaluation of We created 15 test sequences from each of the reference
newer objective models and to advance the state-of-thirarisequences using four different distortion processes - MPEG

perceptual quality evaluation systems. 2 compression, H.264 compression, simulated transmissgion
H.264 compressed bitstreams through error-prone IP nkswor
Il. DETAILS OF SUBJECTIVE STUDY and through error-prone wireless networks. The goal of our

study was to develop a database of videos that will challenge
automatic VQA algorithms. We included diverse distortion
We used ten uncompressed, high quality, source videostgbes to test the ability of objective models to predict aisu
natural scenes (as opposed to animation, graphics, text efgality consistently across distortions. Compressiortesys
that are freely available for download from the Technicaluch as MPEG-2 and H.264 produce fairly uniform distor-
University of Munich [9]. All videos provided by [9] were tions/quality in the video, both spatially and temporaNiet-
filmed with professional, high end equipment and converted work losses, however, causansientdistortions in the video,
digital format with utmost care, guaranteeing that therexfee both spatially and temporally. Fig. 2 shows part of a frame
videos are distortion free. We only used the progressivaety the “Pedestrian Area” sequence corrupted by each of the
scanned videos in this database, thus avoiding problentrs wibur distortion types in the LIVE Video Quality Databaseislt
video de-interlacing. We used the digital videos provided iclear that the visual appearance of distortion is very dhfie
High Definition (HD) YUV 4:2:0 format and none of thein each of these videos. MPEG-2 and H.264 compressed
videos contain audio components. However, due to resousddeos exhibit typical compression artifacts such as bk
limitations when displaying these videos, we downsamplddur, ringing and motion compensation mismatches around
all videos to a resolution of 768X432 pixels. We chose thisbject edges. Notice, however, the difference in the disius
resolution to ensure that the aspect ratio of the HD videas wereated by the MPEG-2 and H.264 compression systems, such
maintained, thus minimizing visual distortions. Additadly, as reduced blockiness in the H.264 compressed frame. Videos
this resolution ensures that the number of rows and columoistained from lossy transmission through wireless neteork
are multiples of 16, as is often required by compressi@xhibit errors that are restricted to small regions of a rlam
systems such as MPEG-2. We downsampled each raw vidédeos obtained from lossy transmission through IP netaork
frame by frame using the “imresize” function in Matlab usingxhibit errors in larger regions of the frame. Errors in \éss
bicubic interpolation to minimize distortions due to ali@ms  and IP networks are alsemporally transientand appear as
Fig. 1 shows one frame of each reference video in the LIV@itches in the video. Almost half the videos in the LIVE Vale
Video Quality Database. All videos, except blue sky, are 1Quality Database contain spatio-temporally localizedadis
seconds long. The blue sky sequence is 8.68 seconds Idaians, while the VQEG Phase 1 dataset is largely comprised

A. Source Sequences
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" (b) River Bed

(i) Park Run

(i) Mobile & Calendar

Fig. 1: One frame from each of the ten reference videos usdideirstudy.

of compressed videos and contains only a few videos witltross varying content and distortion types. The LIVE Video
errors and spatio-temporally localized distortions. Quality Database is unique in this respect and we believe tha
(Eijusting distortion strength perceptually, as we haveedon

. . . a
The distortion strengths were adjusted manually so thI‘w’jlere, is far more effective towards challenging and distin-

the videos obtained from each source and gach d'Stprt'Sﬁishing the performance of objective VQA algorithms than,
category spanned a set of contours of equal visual quality.

large set of videos were generated and viewed by the auth]:)OrrsinStance’ fixing the compression rates across sequersces
9 9 y IS &(ﬂone in most studies including the VQEG FR-TV Phase

and a subset of these videos that spanned the desired vigu . : . .
quality were chosen to be included in the LIVE Video Qualit?onsotvl:l?gg [;16]}'(:,[:3:; four distortion types are detailed in the

Database. To illustrate this procedure, consider fourl$atoe
visual quality (“Excellent”, “Good”, “Fair” and “Poor”) att 1) MPEG-2 compressionThe MPEG-2 standard is used
one reference video (“Tractor”). Four MPEG-2 compressdl & wide variety of video applications, most notably DVD's
versions of “Tractor” are chosen to approximate|y match t@d dlgltal broadcast television. There are four MPEG-2-com
four labels for visual quality. Similar procedure is apglim Pressed videos corresponding to each reference in ouratatab
select H.264 compressed, wireless and IP distorted versi@®d we will refer to this distortion category as "MPEG-2" in

of “Tractor”. Note that the “Excellent” MPEG-2 video andthe remainder of the paper. We used the MPEG-2 reference
“Excellent” H.264 video are designed to have the approxémagoftware available from the International Organization fo
same visual quality and similarly for other distortion gaages Standardization (ISO) to compress the videos [10].

and quality labels. The same selection procedure is thenThe bit rate required to compress videos for a specified
repeated for every reference video. Note that an “Excéllentisual quality varies dramatically depending on the conten
test video obtained from “Sunflower” is designed to hav&he authors selected four compressed MPEG-2 videos for each
the approximate same visual quality as an “Excellent” tesference video by viewing compressed videos generated usi
video obtained from “Tractor” and similarly for other reéeice a wide variety of bit rates and selecting a subset that sghnne
videos. Our design of the distorted videos tests the alility the desired range of visual quality. “Excellent” qualitydebs
objective VQA models to predict visual quality consistgntlwere chosen to be quite close to the reference in visualtguali
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(d)

Fig. 2: (a) MPEG-2 compressed frame (b) H.264 compressedefr@) IP loss simulated frame (d) Wireless loss simulated
frame

“Poor” quality videos were chosen to be of similar quality aslice; we only used these two options since they result in

Youtube videos, without being obliterated by MPEG blockingacket sizes that are typical in IP networks. Using one slice

artifacts. The compression rates varied from 700 Kbps topér frame has the advantage of reducing overhead due to IP

Mbps, depending on the reference sequence. headers, but at the expense of robustness [12]. Using four
2) H.264 compressionH.264 is rapidly gaining popularity slices per frame increases robustness to error (likelitodeah

due to its superior compression efficiency as compared datire frame getting lost is reduced), at the expense ofdiadu

MPEG-2. There are four H.264 compressed videos correempression efficiency.

sponding to each reference in our database and we will refeloyr |P error patterns supplied by the Video Coding Experts
to this distortion category as “H.264" in the remainder o thGroup (VCEG), with loss rates of 3%, 5%, 10% and 20%,
paper. We used the JM reference software (Version 12.3) mggigre used [13]. The error patterns were obtained from real-
available by the Joint Video Team (JVT) [11]. world experiments on congested networks and are recom-
The procedure for selecting the videos was the same as thanded by the VCEG to simulate the Internet backbone
used to select MPEG-2 compressed videos. The compressi@iformance for video coding experiments. We created test
rates varied from 200 Kbps to 5 Mbps. videos by dropping packets specified in the error pattenm fro
3) Transmission over IP Networks/ideos are often trans- 5 H 264 compressed packetized video stream. To enable
mitted over IP netwqus in applicatiqns such as video telgacoding, we did not drop the first packet (containing the
phony and conferencing, IPTV and Video on Demand. Thefgstantaneous Data Refresh (IDR)) and the last packete(sinc
are three “IP” videos corresponding to each reference in ol oss of this packet cannot be detected by the decodes). Th
database that were created by simulating IP losses on a”H-?ssequivalent to assuming that these packets were tramssmitt
compressed video stream and we will refer to this distortiq@|iaply out of band. The resulting H.264 bitstream was then
category as “IP” in the remainder of the paper. The H.264xc0ded using [11] and the losses concealed using theitbuilt-

compressed video streams were created using the JM re¢erefj¢or concealment mechanism (mode 2 - motion copy) [14].

i/logtp\gare [11] and compression rates varied between 0'5'7The authors viewed and selected a diverse set of videos

An in-depth study of the transport of H.264 video ove?l.Jfferlng ”0'.”” different types .Of observed artifacts andn;p
. ._ning the desired range of quality. The type of observedaanttif
IP networks can be found in [12] and many of our de5|g\r/1 ; . ’
. ) . . o aries depending on:
considerations in the video communication system werecase
on this study. IP networks offer best effort service and pack « Whether an Intra-coded frame (I frame) or Predicted
losses occur primarily due to buffer overflow at intermegliat ~ frame (P frame) is lost - | frame losses result in much
nodes in a network with congestion. The video sequences more severe and sustained video distortions (that ladt unti
subjected to errors in the IP environment contained between the next I-frame is received correctly).

one and four slices per frame and each packet contained one Whether each frame is transmitted in 1 packet or 4
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packets - Loss of an entire frame when transmitted asaa quality monitoring for Video on Demand, IPTV, Internet
single slice results in much more significant distortionstreaming etc. Additionally, it significantly reduces theaunt
than when the frame is transmitted using 4 slices. of time needed to conduct the study (given a fixed number of
« Flexible Macroblock Ordering (FMO) - We used botthuman subjects) as compared to a double stimulus study. The
regular and dispersed modes of FMO in our simulatiorsaibjects indicated the quality of the video on a continuous
[15]. In dispersed mode, we used four packet groupsale. The continuous scale allows the subject to indicate fi
formed by sub-sampling the frame by 2 along both rowgradations in visual quality. We believe this is superiotite
and columns. Loss of video packets in regular mod&U-R Absolute Category Rating (ACR) scale that uses a 5-
results in severe artifacts in localized regions of the @jdecategory quality judgment, as is used in recent VQEG studies
while the impairments are not as severe in the dispersgd. The subject also viewed each of the reference videos
mode. to facilitate computation of Difference Mean Opinion Score

4) Transmission over wireless networksideo transmis- (DMOS), a procedure known as hidden reference removal
sion for mobile terminals is envisioned to be a major appli17], [18].
cation in 3G systems and the superior compression efficiency?All the videos in our study were viewed by each subject,
and error resilience of H.264 makes it ideal for use in harg#hich required one hour of the subject’s time. To minimize
wireless transmission environments [15]. There are fodeas the effects of viewer fatigue, we conducted the study in two
corresponding to each reference in our database that we@ssions of thirty minutes each.
created by simulating losses sustained by an H.264 congatess We prepared playlists for each subject by arranging the
video stream in a wireless environment and we will refer t650 test videos in a random order using a random number
this distortion category as “Wireless” in the remainder fué t generator. We did not want the subjects to view successive
paper. The H.264 compressed bitstreams were created uglfgsentations of test videos that were obtained from theesam
the JM reference software [11] and compression rates vari&ference sequence, to avoid contextual and memory effects
between 0.5-7 Mbps. in their judgment of quality. Once a playlist was constrdcte

An in-depth study of the transport of H.264 video ovefdjacent sequences were examined to determine if they-corre
wireless networks can be found in [15]. Many of our desigpPonded to the same content. If any such pairs were detected,
considerations for the wireless simulations was based 8Re of the videos was swapped with another randomly chosen
this study. A packet transmitted over a wireless channel igleo in the playlist which did not suffer from the same
susceptible to bit errors due to attenuation, shadowirdinga Problem. This list was then split into two halves for the two
and multi-user interference in wireless channels. We assufi€ssions.
that a packet is lost even if it contained a single bit error, We wanted to ensure that any differences in the use of the
an assumption that is often made in practice [15]. Due wality judgment scale by the subject between sessionsatid n
this assumption, a longer packet is more likely to be logffect the results of the study. For instance, a subject neay b
and shorter packet sizes are desirable in wireless network@ry critical of the visual quality of a video in one sessioa
We encoded the video stream using multiple slices per franfeore forgiving in the other. To avoid this problem, we incdd
where each packet contained one slice. All packets comtairgach reference video in both sessions in the hidden referenc
roughly the same number of bytes (approximately 200 bytegmoval process. We inserted each of the ten referencesrideo
per packet), making their susceptibility to bit errors afinointo the playlists for each session randomly, again engurin
identical. We simulated errors in wireless environmeniagis that successive playback of the same content did not occur.
bit error patterns and software available from the VCE®he DMOS scores were then computed for each vigeo
[16]. The packet error rates using these bit error patterfgssiorusing the quality score assigned to the reference video
varied between 0.5-10%. The decoding and error concealm#éhthat session, as described in Section III.
techniques for the wireless simulations were identicalhi® t
IP simulations. _— . .

Again, the authors viewed and selected videos sufferian Subjective Testing Display
from different types of observed artifacts and spanning theWe developed the user interface for the study on a Windows
desired range of quality. Observed artifacts in the wiele§C using MATLAB, in conjunction with the XGL toolbox for
environment also depend on whether an | or P packet N¥ATLAB developed at the University of Texas at Austin [19].
lost and on the FMO mode. Due to the smaller packet sizE8€ XGL toolbox allows precise presentation of psychophys-
in wireless applications, the observed artifacts are spatical stimuli to human observers. It is extremely importamt t

temporally localized and appear different from the artéac@void any errors in displaying the video such as latencies or
observed in IP applications. frame drops. This can significantly affect the results of the

study since the subject’s quality perception is affectetibyo
o i , the video itself, but by the display issues. To ensure perfec
C. Subjective Testing Design playback, all distorted sequences were processed andi stere
We adopted a single stimulus continuous procedure to ataw YUV 4:2:0 files. An entire video was loaded into memory
tain subjective quality ratings for the different video seqces. before its presentation began to avoid any latencies due to
The choice of a single stimulus paradigm is well suited tslow hard disk access of large video files. The videos were
a large number of emerging multimedia applications, suthen played out at the appropriate frame rate for the subject
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to view. The XGL toolbox interfaces with the ATl Radeon [1l. PROCESSING OFSUBJECTIVE SCORES
X600 graphics card in the PC and utilizes its ability to play
out the YUV videos. The videos were viewed by the subjects
on a Cathode Ray Tube (CRT) monitor _to §v0|d the eﬁgcts on full reference objective VQA algorithms that assume
motion qur. and low refrgsh rates on Liquid Crystal plspla% “perfect” reference video, we compute difference scores
(LCD) moﬂ'tors- The ent|r.e study was conduct.ed using trbefetween the test video and the corresponding reference to
same monitor and we calibrated the CRT monitor using :f

Let s;;, denote the score assigned by subjéedob video
in sessionk = {1,2}. Since our focus in this paper

) . _ X scount any subject preferences for certain referenceogid
Monaco Optix XR Pro device. The XGL toolbox avoids visu irst, difference scores;;, are computed per session by

artifacts by synchronizing the display so that the SV"itghinsubtracting the quality assigned by the subject to a videm fr
between adjacent frgmes of thg video occurs during thecestr e quality assigned by the same subject to the corresppndin
of the CRT scan. Since the. videos ha}d low frame rates ( erence videin the same sessio€omputation of difference
angl 50 Hz), we set _the r_nomtor resolution to 100 Hz to VOt ores per sessions helps account for any variability inusige
artlfac_ts dueto m0n|torﬂ|_cker. Each frame of the 50 Hz vu;zleoof the quality scale by the subject between sessions:
was displayed for 2 monitor refresh cycles and each frame of

the 25 Hz videos was displayed for 4 monitor refresh cycles. dijk = Sijuk — Sijk (1)

The screen was set at a resolution of 10768 pixels . ] ]
and the videos were displayed at their native resolution to The difference scores for the reference videos are 0 in both

prevent any distortions due to scaling operations perfdrmgessions and are removed. The diffe_rence scores per session
by software or hardware. The remaining areas of the displ@e then converted to Z-scorper sessiorj20]:

were black. At the end of the presentation of the video, a | DN

continuous scale for video quality was displayed on theestre ik = N dijk 2)

with a cursor set at the center of the quality scale to avoid ik 55

biasing the subject’s quality percept. The quality scald ha Nt

five labels marked on it to help the subject. The left end of oo = 1 Z(di'k i) 3)

the scale was marked “Bad” and the right end was marked Niw —1 = !

“Excellent”. Three equally spaced labels between these wer door — 11

marked “Poor”, “Fair” and “Good”, similar to the ITU-R Zijk = Qigk — Hik 4)
Oik

ACR scale. Screenshots from the subjective study interface
are shown in Fig. 3. The subject could move the cursor alomdiere N;;. is the number of test videos seen by subjeat
the scale by moving a mouse. The subject was asked to presegsionk. Again, note that Z-scores are computed per session
key to enter the quality score after moving the cursor to atpoito account for any differences in the use of the quality scale
on the scale that corresponded to his or her quality percefstifierences in the location and range of values used by the
The subject was allowed to take as much time as neededstibject) between sessions.
enter the score. However, the subject could not change thdevery subject sees each test video in the database exactly
score once entered or view the video again. Once the scoree, either in the first session or in the second session. The
was entered, the next video was displayed. Z-scores from both sessions are then combined to create a
matrix {z;;} corresponding to the Z-score assigned by subject

, . i to video j, wherej = {1,2,..., N} indexesN = 150 test
E. Subjects and Training videos in the LIVE Video Quality Database.

All subjects taking part in the study were recruited from the A subject rejection procedure specified in the ITU-R BT
undergraduate Digital Image and Video Processing cladk (F&800.11 recommendation is then used to discard scores from
2007) at the University of Texas at Austin. The subject poainreliable subjects [21]. Note that Z-scores in (4) accdant
consisted of mostly male students. The subjects were rtettesany differences in subject preferences for reference gidese
for vision problems. Each video was ranked by 38 subjectsof the quality scale between subjects, and differences én us

Each subject was individually briefed about the goal of thef the quality scale by a subject between sessions. We leeliev
experiment and viewed a short training session beforerggartthat the processing and subject rejection procedure used he
the experiment. Subjects viewed six training videos inrtheis superior to the VQEG studies for these reasons [4], [7],
first session of participation and three training videoshieit [8]. The ITU-R BT 500.11 recommendation first determines
second session. Subjects were asked to provide qualitgscaf the scores assigned by a subject are normally distribbyed
for the training videos also to familiarize themselves whk computing the kurtosis of the scores. The scores are capside
testing procedure. The training videos were not part of thmrmally distributed if the kurtosis falls between the \edwof
database and contained different content. The trainingodad 2 and 4. If the scores are normally distributed, the procadur
were of 10 seconds duration and were also impaired by theects a subject whenever more than 5% of scores assigned
same distortions as the test videos. We selected the tgainby him falls outside the range of two standard deviationsfro
videos to span the same range of quality as the test videostite mean scores. If the scores are not normally distributed,
give the subject an idea of the quality of videos they would ke subject is rejected whenever more than 5% of his scores
viewing in the study and to enable suitable use of the qualitglls outside the range of 4.47 standard deviations from the
scale by the subject. mean scores. In both situations, care is taken to ensure that
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Please provide a quality score for the entire video sequence and then press any key

Excellent

Excellent

(b)

Fig. 3: (a) Screenshot from the subjective study interfasplaying the video to the subject. (b) Screenshot from thgestive
study interface that prompts the subject to enter a quatityesfor the video they completed viewing.

subjects who are consistently pessimistic or optimistithigir The DSCQS method was also used in the VQEG Phase 1
quality judgments are not eliminated [21]. In our study, @ owstudy, where the subjects score the quality of the referande
of the 38 subjects were rejected at this stage. We found thest videos on a [0,100] scale and DMOS is computed as the
the reason for the large number of rejected subjects is ttiéference between the scores assigned to the referendestnd
borderline reliability of four subjects. The 5% criteriosad video. The LIVE Video Quality Database, on the other hand,
in the subject rejection procedure translates to 7.5 videosuses a single stimulus paradigm with hidden reference ramov
the LIVE Video Quality Database. Four of the nine rejectednd DMOS is computed &-scoresassigned by subjects, and
subjects scored 8 videos outside the expected range in tioe as differences between scores assigned to the refeaadce
LIVE study and were rejected by the procedure. test videos. We believe that conversion of difference sctwe
Z-scores were then linearly rescaled to lie in the range @fscores, as we have done here, is very important to account
[0,100]. Assuming that Z-scores assigned by a subject di@ differences in use of the scale by subjects. Assuming tha
distributed as a standard Gaussian, 99% of the scores &vill i-scores assigned by a subject are distributed as a standard
in the range [-3,3] and we found that all Z-scores in our studyaussian, 99% of Z-scores will lie in the range [-3,3] that
fell inside this range. Re-scaling was hence accomplished torresponds to DMOS scores in the range [0,100]. [30,82] on
linearly mapping the range [-3,3] to [0,100] using: the DMOS scale used in the LIVE Video Quality Database
100(z5; + 3) corresponds to mean Z-scores in the range [-1.2,1.92],hwhic
z;j = + (5) corresponds to approximately 86% of the area of the standard
normal distribution. We believe that this range is reast;ab
Finally, the Difference Mean Opinion Score (DMOS) ofor mean z-scores, with individual Z-scores fluctuatingdoey
each video was computed as the mean of the rescaled Z-scefigSrange to extreme points on the scale.
from the M = 29 remaining subjects after subject rejection.

IV. OBJECTIVEVQA ALGORITHMS

M
DMOS; = %ZZ;J (6) The performance of several publicly available objective
=l VQA algorithms was evaluated on the LIVE Video Quality
The LIVE Video Quality Database was designed to saniatabase. One of the problems we faced was the lack of free
ple a range of visual quality in an approximately uniforn@vailability of many VQA algorithms, since many popular
fashion, as described in Section 1I-B. To illustrate thie wVQA algorithms and tools are licensed and sold for profit.
show histograms of the DMOS scores obtained from tHéese include the Picture Quality Analyzer from Tektronix
LIVE Video Quality Database and the VQEG FRTV Phask?2]; the Perceptual Evaluation of Video Quality (PEVQ)rfro
1 database in Figure 4. Figure 4 shows that the LIVE Vidéapticom [23]; the V-Factor from Symmetricom [24]; VQA
Quiality Database exhibits reasonably uniform distributas ~ solutions from SwissQual [25] and Kwill Corporation [26]dan
scores along the DMOS axis, while the VQEG FRTV Phaggveral others [27]. Our testing was limited to freely aaii
1 database exhibits poor perceptual separation with a larg@A algorithms. Naturally, we will broaden our test set as
number of videos of very high quality and far fewer videos dhore algorithms become freely available.
poor quality. We tested the following VQA algorithms on the LIVE Video
The DMOS scores in the LIVE Video Quality Databas&uality Database.
lie in the range [30,82], as seen in Figure 4. This ranges. Peak Signal to Noise Ratio (PSNR)a simple function
may appear small to readers used to seeing subjective scores of the Mean Squared Error (MSE) between the reference
obtained using the highly popular Double Stimulus Contirgio and test videos and provides a baseline for objective VQA
Quality Scoring (DSCQS) paradigm for subjective testinb|[2 algorithm performance.
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Fig. 4: Histogram of the DMOS scores in fifteen equally spdoied between the minimum and maximum DMOS values for
(a) LIVE Video Quality Database and (b) VQEG FRTV Phase 1 base

o Structural SlIMilarity (SSIM)is a popular method for VOQM methods were adopted by the American National
quality assessment of still images [28], [29], that was Standards Institute (ANSI) as a national standard, and as
extended to video in [30]. The SSIM index was ap- International Telecommunications Union Recommenda-
plied frame-by-frame on the luminance component of tions (ITU-T J.144 and ITU-R BT.1683, both adopted in
the video [30] and the overall SSIM index for the video  2004). VQM is freely available for download from [39].
was computed as the average of the frame level qualitye V-VIF is the name we give to the VQA model proposed
scores. Matlab and Labview implementations of SSIM in [40] that extends the Visual Information Fidelity (VIF)
are available from [31]. criterion for still images proposed in [41] to video using

o Multi-scale SSIM (MS-SSIM3 an extension of the SSIM temporal derivatives. A software implementation of this
paradigm, also proposed for still images [32], that has index was obtained from the authors.
been shown to outperform the SSIM index and many « MOtion-based Video Integrity Evaluation (MOVIE) index
other still image quality assessment algorithms [33]. is a VQA index that was recently developed at LIVE
We extended the MS-SSIM index to video by applying  [42], [43]. A software implementation of MOVIE is freely
it frame-by-frame on the luminance component of the available for research purposes [31]. Three different ver-
video and the overall MS-SSIM index for the video was  sions of the MOVIE index - the Spatial MOVIE index,
computed as the average of the frame level quality scores. the Temporal MOVIE index and the MOVIE index - were
A Matlab implementation of MS-SSIM is available for tested in our study.
download from [31].

o Speed SSIMs the name we give to the VQA modeIA

proposed in [34], that uses the SSIM index in conjunction o )
with statistical models of visual speed perception de- Ve tested the performance of all objective models using two

scribed in [35]. Using models of visual speed perceptidﬁetrics - the ‘Spearman Rank Order Cor_re_lation Coeffic_ient
was shown to improve the performance of both PSNPROCC) which measures the monotonicity of the objec-
and SSIM in [34]. We evaluated the performance dfVe model prediction with respect to human scores and the
this framework with the SSIM index, which was showr”€arson Linear Correlation Coefficient (LCC) after noredin

to perform better than using the same framework Witﬁ-gression, which measures the prediction accuracy. The LC

PSNR [34]. A software implementation of this index wa& computed after performing a non-linear regression on the
obtained from the authors. objective VQA algorithm scores using a logistic functione W

Visual Signal to Noise Ratio (VSNRY a quality as- used the logistic function and the procedure outlined int¢4]

sessment algorithm proposed for still images [36] arfi} the objective model scores to the DMOS scores. _

is available for download from [37]. We applied VSNR L€t Q; represent the quality that a VQA algorithm predicts

frame-by-frame on the luminance component of the vidd8" video j in the LIVE Video Quality Database. A four

and the overall VSNR index for the video was COmputeearameter, monotonic logistic function was used to fit the

as the average of the frame level VSNR scores. VQA algorithm prediction to the subjective quality scores.

o Video Quality Metric (VQM)is a VQA algorithm de- g B1 — B @)

veloped at the National Telecommunications and Infor- Qj = P2+ 7(@.7763)

mation Administration (NTIA) [38]. Due to its excellent L+e & 1l

performance in the VQEG Phase 2 validation tests, theNon-linear least squares optimization is performed using
the Matlab function “nlinfit” to find the optimal parameters

. Performance of Objective Models
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(4 that minimize the least squares error between the vectoradf humans in evaluating the quality of a given video. The

subjective scores (DMQOS; = 1,2, ...150) and the vector of optimal or “null” model obtained from the subjective study

fitted objective scoresq;,j =1,2,...,150). Initial estimates predicts the quality of a given video as the averaged Z-score

of the parameters were chosen based on the recommendagicnoss subjects, which was defined as the DMOS. The residual

in [4]. We linearly rescaled VQA algorithm scores before-pedifferences between the null model and individual quality

forming the optimization to facilitate numerical convemge. scores assigned by each subject to a given video cannot be

The SROCC and the LCC are computed between the fittpredicted by any objective model. Hence, the null model has

objective scores(’;) and the subjective scores (DMQS a baseline residual that corresponds to the residual betwee
Tables la and Ib show the performance of all models individual subjective scores from different subjects ahd t

terms of the SROCC and the LCC respectively for each digveraged DMOS score and is given by:

tortion type and for the entire LIVE Video Quality Database. ) o )

Scatter plots of objective scores vs. DMOS for all the al- Null Residual (individual ratings)

gorithms on the entire LIVE Video Quality Database, along = {zgj —DMOS;,i=1,2,...M andj =1,2,...N} (8)

with the best fitting logistic functions, are shown in Fig. 5. gjmijar residuals can be defined for each of the objective
Our results clearly demonstrate that a carefully constdicty,~ 5 algorithms tested in the study. The residual errors

database of videos can expose the significant limitations tween individual subjective scores and the VQA algorithm
PSNR as a VQA measure. All the VQA algorithms teSt‘zgrediction of quality are given by:

in our study improve upon PSNR. Speed SSIM improves

upon using just the SSIM index. The best performing VQA Model Residual (individual ratings)

algorithm amongst the ones tested in our study, in terms  _ (2, - Q) i=1,2,...Mandj=1.2,...N} (9)

of both the SROCC and LCC after non-linear regression, _ ) )

is the temporal MOVIE index. One of the three versions AN F-test is performed on the ratio of the variance of the
of the MOVIE index (Spatial MOVIE, Temporal MOVIE model residual to the variance of the null residual a%95
and the MOVIE index) is the best performing algorithn$ignificance. The null hypothesis is that the variance of the
individual distortion category also. The performance ofiQ A threshold F-ratio can be determined based on the number
MS-SSIM and Spatial MOVIE on the LIVE Video Quality Of degrees of freedom in the numerator and denominator and
Database is comparable. Superior performance of Tempdf¥ Significance level of the F-test. Values of the F-ratrgéa

MOVIE and MOVIE on the LIVE Video Quality Databasethan the threshold would cause us to reject the null hypathes
clearly illustrates the importance of modeling visual ronti @nd conclude that the performance of the objective model is

perception in VQA. not statistically equivalento the null or optimal model.
The variance of the residuals from the null model and each
of the ten objective VQA models, as well as the number
B. Statistical Evaluation of samples in each category, is shown in Table lla. The

The results presented in Tables la and Ib show differencéiémerator and denominator degrees of freedom in the F-test
in the performance of different objective VQA algorithmds obtained by subtracting one from the number of samples.
in terms of both performance criteria. In this section, wéhe threshold F-ratio at 95 significance is also shown in
attempt to answer the question of whether this difference tiie table. None of the VQA algorithms tested in our study
performance is statistically significant. We test the stal Wwere found to be statistically equivalent to the null model
significance of the results presented in Section IV-A using t Of the theoretically optimal model corresponding to human
different statistical tests suggested in [7]. The samestwste judgment in any of the five categories (Wireless, IP, H.264,
also used in the statistical analysis performed on the LIMAPEG-2 or All Data). The same conclusion was reached in
still image quality database [33]. The first is an F-test Hame the VQEG Phase 2 study [7] and the LIVE still image quality
individual rating scores obtained from different subjeatsich ~ study [33], wherein none of the algorithms tested in each of
tests whether the performance of any objective VQA modgiese studies were found to be equivalent to the theortical
matches the performance of humans. This test is presente@@imal model. Apparently, despite significant progreksye
Section IV-B1. The second test is an F-test based on theserritmains considerable opportunity to improve the perforrean
between the average DMOS scores and model predictiofobjective VQA algorithms!
which tests whether the performance of one objective model2) F-Test Based on Average Quality Scorde residual
is statistically superior to that of a competing model. Tiaist €rror between the quality predictions of an objective VQA
is presented in Section IV-B2. We discuss the assumptiof@del and the DMOS values on the LIVE Video Quality
on which the statistical significance tests are based in@ectPatabase can be used to test the statistical superioritpef o
IV-B3. See [44] for a description of statistical significartests VQA model over another. The residual errors between the
and F-tests. objective algorithm prediction and the DMOS value is given

1) F-Test Based on Individual Quality ScoreFhere is PY:
inherent variability amongst subjects in the quality judgrm
of a given video. The performance of an objective model can
be, and is expected to be, only as good as the performance

Model Residual (average ratings)
={Q; —DMOS;,j =1,2,...N} (10)



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ?,NO. ?,2009 10

Algorithm Wireless IP H.264 MPEG-2 | All Data Algorithm Wireless P H.264 MPEG-2 | All Data
PSNR 0.4334 0.3206 0.4296 0.3588 0.3684 PSNR 0.4675 0.4108 0.4385 0.3856 0.4035
SSIM 0.5233 0.4550 0.6514 0.5545 0.5257 SSIM 0.5401 0.5119 0.6656 0.5491 0.5444
MS-SSIM 0.7285 0.6534 0.7051 0.6617 0.7361 MS-SSIM 0.7170 0.7219 0.6919 0.6604 0.7441
Speed SSIM 0.5630 0.4727 0.7086 0.6185 0.5849 Speed SSIM 0.5867 0.5587 0.7206 0.6270 0.5962
VSNR 0.7019 0.6894 0.6460 0.5915 0.6755 VSNR 0.6992 0.7341 0.6216 0.5980 0.6896
VQM 0.7214 0.6383 0.6520 0.7810 0.7026 VQM 0.7325 0.6480 0.6459 0.7860 0.7236
V-VIF 0.5507 0.4736 0.6807 0.6116 0.5710 V-VIF 0.5488 0.5102 0.6911 0.6145 0.5756
Spatial MOVIE 0.7927 0.7046 0.7066 0.6911 0.7270 Spatial MOVIE 0.7883 0.7378 0.7252 0.6587 0.7451
Temporal MOVIE | 0.8114 | 0.7192 | 0.7797 | 0.8170 | 0.8055 Temporal MOVIE | 0.8371 0.7383 | 0.7920 | 0.8252 | 0.8217
MOVIE 0.8109 0.7157 0.7664 0.7733 0.7890 MOVIE 0.8386 | 0.7622 0.7902 0.7595 0.8116
(a) Spearman Rank Order Correlation Coefficient (b) Linear Correlation Coefficient

TABLE I: Comparison of the performance of VQA algorithms.€eThest performing algorithm is highlighted in bold font for
each category.

Prediction Model Wireless IP H.264 MPEG-2 | All Data
Null Model 105 98.61 97.73 99.24 100.18 Prediction Model Wireless IP H.264 MPEG-2 | All Data
PSNR 189.77 171.83 193.18 179.04 201.07 PSNR 86.87 75.66 97.84 81.78 101.55
SSIM 180.59 164.33 166.02 165.83 184.99 SSIM 77.46 67.91 69.98 68.24 85.36
MS-SSIM 156.77 140.78 159.37 152.21 153.97 MS-SSIM 53.07 43.58 63.15 54.30 54.15
Speed SSIM 174.91 159.07 157.00 157.94 177.87 Speed SSIM 71.64 62.48 60.73 60.16 78.20
VSNR 160.13 139.53 170.49 159.74 163.40 VSNR 56.50 42.28 74.55 61.99 63.63
VQM 155.34 149.62 166.57 13411 157.59 VQM 51.59 52.72 70.54 35.73 57.79
V-VIF 179.48 164.43 161.84 158.35 180.78 V-VIF 76.32 68.02 65.70 60.57 81.12
Spatial MOVIE 145.40 138.94 153.89 153.07 153.80 Spatial MOVIE 41.40 41.68 57.54 55.16 53.96
Temporal MOVIE 137.16 142.47 | 142.75 | 128.72 | 139.32 Temporal MOVIE 32.99 4532 | 46.14 | 30.21 39.41
MOVIE 136.62 | 137.38 143.06 137.87 141.32 MOVIE 32.41 | 40.07 | 46.45 39.59 41.41
Number of samples| 1160 870 1160 1160 4350 Number of samples| 40 30 40 40 150
Threshold F-ratio 1.1015 1.1181 1.1015 1.1015 1.0512 Threshold F-ratio 1.7045 1.8608 | 1.7045 1.7045 1.3104
(a) Variance of the residuals between individual subjecteores and VQA (b) Variance of the residuals between VQA algorithm predict and
algorithm prediction. DMOS values.

TABLE II: The best performing VQA algorithm is highlighted ibold font for each category. (a) F-ratios for each objectiv
model can be computed as the ratio of the variance of the nredlual to that of the null residual. F-ratios larger thaa t
threshold F-ratio indicate that the objective model is rtatistically equivalent to the null or optimal model. (b)r&tios to
compare two objective models can be computed as the ratibeof/ériances of the model residuals from the two models,
with the larger variance placed in the numerator. F-ratogdr than the threshold F-ratio indicate that the perfocaaf the
objective model in the numerator is statistically infertorthat in the denominator.

An F-test is performed on the ratio of the variance of theerformance of VQM is superior to PSNR, SSIM and VSNR
residual error from one objective model to that of anothend the performance of MOVIE is superior to PSNR and
objective model at 9% significance level. The null hypothesisSSIM on the MPEG-2 dataset. Additionally, the performance
states that variances of the error residuals from the twferdif of Temporal MOVIE is superior to PSNR, SSIM, MS-SSIM,
ent objective models are equal. The variance of the resid@&peed SSIM, VSNR and V-VIF on the MPEG-2 dataset.
errors between model predictions and the DMOS for all the The performance of Temporal MOVIE, which is the best
objective models tested in our study for all the categories gerforming algorithm on the entire LIVE Video Quality
shown in Table IIb. The F-ratio is always formed by placingatabase, is statistically superior to the performanceliof a
the objective model with the larger residual error variaitce g|gorithms tested in the study, with the exception of MOVIE.
the numerator. Threshold F-ratios can be determined basedrpe MOVIE index is statistically superior to PSNR, SSIM,
the number of samples in each category and the significangigeed SSIM, VSNR and V-VIF on the entire LIVE Video
level. The threshold F-ratio and the number of samples ¢hyality Database. Spatial MOVIE, MS-SSIM and VQM are
each category are also listed in Table Ilb. An F-ratio ratiguperior to PSNR, SSIM, Speed SSIM and V-VIF on the entire
larger than the threshold indicates that the performandbeof | |vE Video Quality Database. Finally, the performance of

VQA algorithm in the numerator of the F-ratio is statistlgal vQM is superior to that of PSNR and SSIM on the entire
inferior to that of the VQA algorithm in the denominator. Thg |VE Video Quality Database.

results of the statistical significance test are reportetiainle 3) Assumptions of the F-testThe F-test that we use

Il : .

assumes that the residuals are independent samples from a
To summarize the results in Table 1, the performanceormal distribution and is fairly robust to this assumptjdd].

of Temporal MOVIE and MOVIE is statistically superior toFor additional verification of the robustness of the F-tésts

that of PSNR, SSIM, Speed SSIM, VSNR and V-VIF anthe underlying assumptions, we also performed bootstcppe

the performance of Spatial MOVIE is superior to that oF-tests on both the individual quality scores and the awerag

PSNR, SSIM, VSNR and V-VIF on the wireless dataset. Ttguality scores [45]. For instance, bootstrapped F-tests on

performance of all algorithms are statistically equivalemthe the average quality scores were performed by selecting

IP dataset. The performance of Temporal MOVIE and MOVIEalues from the vectors of model residuals in (10) randomly

are statistically superior to PSNR on the H.264 dataset. Thith resampling for each of the two models under test and
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Fig. 5: Scatter plots of objective VQA scores vs. DMOS for\atleos in the LIVE Video Quality Database. Also shown is
the best fitting logistic function.

computing the F-ratio. This procedure is repeated 10,00084i the same mean and variance as the vector of model residuals
to obtain the sampling distribution of the F-ratio. We vilbga in (10). The F-ratio was then computed between each pair of
verified that the sampling distribution of the F-ratio isfedd objective models. This procedure was repeated 10,000 times
to the right of 1 for all cases where statistical significander each pair to obtain the sampling distribution of the F-
was established. Due to space limitations, we only shawatio when the assumptions of the F-test are exactly met. The
the sampling distribution of the F-ratio on the entire LIVEesulting sampling distribution is also shown in Figure 6 in
Video Quality Database for each of the six models whosiotted lines. It is seen that the two sampling distributians
performance is statistically superior to PSNR in Figure 6. quite close to each other, which shows that any deviations
of the distribution of the residual data from the assumptibn
For additional verification of the assumptions of the Findependent and Gaussian residuals do not affect the sesfult

test, we performed another simulation where we generatedthe statistical tests greatly. This simulation was alsdaqpered
independent samples from a standard normal distribution wi
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| [ ML | M2 [ M3 | WM& | M5 [ M6 | M7 [ M8 | M9 | M0 |
ML | ----- | ----- 0| ----- —~-0|---00] ----- 0---0/0-000]/0-000
M2 | ----- | ----- 0 | ----- -0 | ---00] ----- 0---0[0--00]0--00
M3 -1 1 ----- ool | c--- | c---- T ----- 00 | -----

M& | ----- | ----- TS0 | c---- | c---- 0| ----- 0---0] 0--00] 0---0

M5 -1 T | ----- | —---- | —---- “0- | ~---- | ----- 0--00| 0---0

M6 T1 | ---11| ----- ool | ---1- | ----- T ----- -0 -0

M7 | ----- | ----- TS0 | c---- | c---- 0| ----- 0---0] 0--00] 0---0

M8 | 1---1 | 1---1] ----- T---1| ----- | ----- T---1] ----- 00 | -----

MO | 1-111|1--11 T1[1--11|1--11 T [1--11 TI| ----- | -----

MIO | 11111 1--11] ----- T---1]1---1 T [ L1---1| -----] ----- ] -----

TABLE III: Results of the F-test performed on the residuaitween model predictions and DMOS values. Each entry in
the table is a codeword consisting of 5 symbols. The symbalgeespond to the “Wireless”, “IP”, “H.264", “MPEG-2" and
“All Data” in that order. A symbol value of “1” indicates thdhe statistical performance of the VQA model in the row is
superior to that of the model in the column. A symbol value @f indicates that the statistical performance of the model i
the row is inferior to that of the model in the column and “-'tipates that the statistical performance of the model in the
row is equivalent to that of the model in the column. Noticattthe matrix is symmetric and that the codewords at trarspos
locations in the matrix are binary complements of each otldr through M10 are PSNR, SSIM, MS-SSIM, Speed SSIM,

VSNR, VOM, V-VIF, Spatial MOVIE, Temporal MOVIE and MOVIE spectively.

for the F-tests based on individual quality scores with fideth as extremely practical and well-suited to benchmark video

conclusions. processing algorithms, especially since both algorithmaat
perform computationally intensive operations such as onoti
C. Discussion of Results estimation. Since both algorithms are freely available for

. . . . . download (although VQM is restricted for commercial use)
The intention of this study has been to provide an |nd:=[:27]’[39], these can be easily used to analyze the perfocean

pendent, academic VQA resource that is freely available 0. Vi . . :
o of a video processing algorithm, provided that the perfarcea
download, free from commercial interests, broadly represe_.

tative of applications, and that will be continuously vijtsince S|mulat|on§ have aval!able a reference f‘?r co_mparlso_n.
the database will be updated over time. Future human studied M€ notion that using computed motion information can
are also planned that will extend the scope of the curredystu/MProve VQA algorithm performance is strongly validated
The study has been a rather large undertaking. Of course, B the study. For example, “Speed SSIM" [34] exhibits
results of the human study and of the algorithm comparisofidostantially improved performance relative to simpleg-
do not represent a final statement, since in coming ye&<@/€) SSIM [29]. One wonders at how well “Speed SSIM”
new theories and algorithms will continue to be developdBight perform if made multi-scale, which would require some
in this exciting area, existing algorithms will be improved”on't”"'al Qe3|gn. Nevertheless, the distinction in penria_nce.
and some unavailable (proprietary) algorithms may be effer2€tween simple SSIM and MS-SSIM suggests that this might
for comparison (we continue our efforts to obtain these). A% @ fruitful development. Likewise, the still image algbm
video applications continue to evolve, the set of distaico VSNR [36] also performed well, suggesting that a future
be considered as “representative” will naturally changerovV€rsion of this algorithm that seeks to incorporate tempora
time as well. New developments will be posted on the Liviformation should be encouraged.
VQA website [1] on a regular basis. The Temporal MOVIE index, described in detail in [42],
The results that we obtained here affirm long-held belief43], yielded the best overall performance and is staadic
regarding the failure of “classical” measures of video gy superior to all other algorithms tested in this study witle th
to predict the human sense of quality. Most notably, the Jongxception of MOVIE. Before discussing this performance,
used PSNR has been shown to perform very poorly agaitét note that the MOVIE algorithm tested on this database
human subjectivity, far worse than any of the perceptuali§ unchanged from the one reported in the literature and
relevant algorithms considered. We hope that this resiitshesuccessfully tested on the VQEG database. The algorithm was
lay to rest, at long last, the notion that the PSNR is a radiablfrozen” before the data from the human studies provided
predictor, measure, or optimizer of video (or image) qyalat here were completely captured, analyzed, and used to cempar
least for applications where humans are the video “recgliveralgorithms. As described in [42], [43], the few parameters
If we succeed in hastening the demise of the PSNR, ther(tfiree masking constants) in the MOVIE index were selected
will, perhaps, be the most gratifying and important prochfct t0 take values equal to the nearest order of magnitude of an
this effort. appropriate energy term. While it is possible that parameter
The correlation study comparing the various VQA algoiddling” could improve any VQA algorithm (for example,
rithms against the large set of human data produced a numt& VQM algorithm has been trained on the VQEG FRTV
of useful results and some surprising ones as well. Gobdpase 1 database as part of the process of selecting its many
performance of two of the algorithms (MS-SSIM [32] andParameters), this has not been done with the MOVIE index.
the VQM from NTIA [38]) affirm both of these algorithms Instead, the success of the MOVIE index lies in two
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Fig. 6: Sampling distribution of the F-ratio obtained ushwmptstrap simulations for the F-test based on averagetgusalores.
Sampling distributions are shown for all VQA models that atatistically superior to PSNR on the entire LIVE Video
Quality Database. Note that the sampling distributionsshiifted to the right of 1. Also shown in dotted lines is the pling
distribution of the F-ratio when random samples are geadrai exactly satisfy the assumptions of the F-test. Notettiea
sampling distribution obtained from the data and the samgptiistribution obtained from simulated data that satibfy E-test

assumptions are very similar.

directions: first, the use of perceptually relevant moddls believe that these results powerfully illustrate the need f
human visual perception in space and time. As describednrodeling visual motion processing in VQA. It is interesting
[43], MOVIE utilizes specific (Gabor receptive field) modelghat the performance of Temporal MOVIE is better than that
of cortical area V1 to dissemble video data into multi-scalef MOVIE overall. However, this difference in performance
space-time primitives. The Gabor receptive field model h&s not statistically significant and further, MOVIE perfasm
produced dominant approaches to many fundamental visioetter than Temporal MOVIE on the wireless and IP videos
engineering problems, such as texture analysis [46], [4T},terms of LCC and on the VQEG database [43].
motion analysis [48], computational stereo [49], and humanin our view, it is plausible that MOVIE might approach
biometrics [50], [51]. MOVIE also uses a specific model of théhe limits of performance that might be obtained by VQA
relatively well-understood extra-cortical area V5 (alswWwn algorithms without taking into account other factors, sash
as area MT) to effect a biologically plausible model of visushuman attention, foveation, and salience [54]. These iego
motion processing [52]. Using these models, MOVIE deployer future studies.
SSIM-like multi-scale processing to compute local scalaeg Broadly, this study shows that there are a number of
comparisons that can be supported from an informatioalgorithms that perform significantly better than tradigb
theoretic viewpoint under natural scene statistical n®fs8]. methods with a high degree of statistical confidence. We have
the opinion that these and future algorithms should play an
Looking at the break-down of MOVIE into its spatialincreasingly important role in the benchmarking and design
and temporal components, it may be observed that Spad@lvideo processing systems.
MOVIE attains a level of performance very similar to that
of MS-SSIM and VQM - overall, in nearly every category
and statistically. Indeed, Spatial MOVIE may be viewed as a
perceptual matched version of MS-SSIM, owing to its use of A subjective study to evaluate the effects of present gen-
spatio-temporal basis functions. Temporal MOVIE performaration video compression and communication technologies
considerably better than Spatial MOVIE and every other-algon the perceptual quality of digital video was presenteds Th
rithm tested in our study and the improvement is shown to Istudy included 150 videos derived from ten reference videos
statistically significant, despite not being tuned to diespatial using four distortion types and were evaluated by 38 subject
distortions (of which the database contains many). MOVIEhe resulting LIVE Video Quality Database is unique in terms
also shows excellent performance and is statistically soipe of content and distortion and is publicly available for @
to PSNR, SSIM, Speed SSIM, VSNR, VQM and V-VIF. Weurposes [1]. We presented an evaluation of the performance

V. CONCLUSIONS ANDFUTURE WORK
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of several publicly available objective VQA models on this[2]
database.

A distinguishing feature of our database was that the didl
tortion strengths were adjusted perceptually to test tliktyab
of VQA models to perform consistently well across content4]
types. Two of the distortion types in our database resulting
from video transmission through lossy wireless and IP nefs)
works cause distortions that are transient, both spatéadly
temporally. This is another distinguishing and importesgect
of the database. VQA algorithms need to be able to accour
for such transient distortions. Regarding the evaluatién o
objective quality indices using the linear (Pearson) dati@n (7]
(LCC), a logistic function was used to fit the data to account
for non-linearities in the objective model. It can be argueds]
that it would be convenient for an objective model to have
a linear relationship with subjective quality judgmentsice
it would allow for easier interpretation and use of the VQAI[9]
algorithm. Of course, VQA and still image quality assessmeﬁo]
algorithms generally do not exhibit linear behavior refatio
human subjective judgments (Section I1V-A). Non-lineastin
the objective model can be accounted for by calibrationiwith[11]
the model, with the added caveat that subjective judgmeﬁlﬁ]
of quality can vary with subjective data processing, contex
calibration, and range of subjective qualities being cdersd. [13]
While linearity of a model relative to subjectivity is convent [14]
for interpretation, in our view, correlation measures thanot
rely on any linearity assumptions, such as SROCC, that are in
dependent of any function mapping between the objective ah
subjective scores are particularly useful for direct atton
comparisons. [16]

As part of our study, we also recorded quality scores in
continuous time provided by the subject as they are viewinpgy,
the video. This provides a description of the quality of the
video as a function of time. We intend to make use of thi$®]
data in the future to design pooling strategies for objectiv
VQA algorithms that can correlate with human data scorgs9]
The single stimulus subjective testing paradigm with hidde
reference removal used in the LIVE Video Quality Databaézeo]
makes it amenable to testing the performance of no-referenc
VQA algorithms. No-reference VQA is a far less mature field
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“A subjective study to evaluate video quality assessmergralgns,” in
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(2000) Final report from the video quality experts graupthe validation
of objective quality metrics for video quality assessmentnlj@].
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A. Webster, “Progress and future plans for VQEG,” IBTSI
STQ Workshop on Multimedia Quality of Seryic2008. [On-
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STQWORKSHOP/VQEGArthurWebster.pdf
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Technol, vol. 13, no. 7, pp. 645-656, Jul. 2003.

(1999) Proposed error patterns for Internet experisig@inline]. Avail-
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(2007) H.264/MPEG-4 AVC reference software manual. {On
line]. Available: http://iphome.hhi.de/suehring/tml/JN2@Reference%
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8] T. Stockhammer, M. M. Hannuksela, and T. Wiegand, “H.254@

in wireless environmentsJEEE Trans. Circuits Syst. Video Technol.
vol. 13, no. 7, pp. 657-673, Jul. 2003.
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M. H. Pinson and S. Wolf, “Comparing subjective video lifyaesting
methodologies,” inProc. SPIE - Visual Communications and Image
Processing 2003.

(2008) The XGL Toolbox. [Online]. Available: http:/2B.83.207.86/
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A. M. van Dijk, J.-B. Martens, and A. B. Watson, “Qualigsessment
of coded images using numerical category scaling,Pioc. SPIE -
Advanced Image and Video Communications and Storage Tede®
1995.

21] ITU-R Recommendation BT.500-11, “Methodology for thebmctive

than full reference VQA and the focus to date has largely be[en
on application-specific metrics that measure the percéptua
strength of specific distortions typical in applicationsisias [22]
compression, network transmission of video and so on.

intend to work on the elusive goal of generic no-reference
VQA in the future and hope that the LIVE Video Quality(24]
Database will prove valuable in advancing the state-ofattie [
in this field also. [26]
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