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Abstract

A dynamic simulation of threaded insertion is developed
based on Fuler’s equations, impulsive forces, and a geometric
description for threaded parts. Points of contact between the
threaded parts are determined and tracked during the sim-
ulation. Reaction forces are computed based on the contact
locations and the velocity constraints given by the kinematic
description. The simulation will be used to investigate the be-
havior of the bolt during insertion into the nut under grasp
stiffness and damper control.

1 Introduction

According to a study by Nevins and Whitney [Nevins 80]
the insertion and tightening of threaded fasteners is one of
the twelve most common assembly tasks, yet little published
work has considered the type of control best suited for the
assembly of threaded parts. There are many situations in
which an automatic method for fastener insertion would be
desirable. Hazardous environments and assembly are prime
candidates.

Although manufacturers would like to replace them with
something easier to assemble [Allen 88], threaded fasteners
are unique in their ability to be reassembled many times and
to develop a variable preload, or force of assembly. These
two attributes make it unlikely that threaded fasteners will
be eliminated from assembly operations.

In robotics literature screw threading is often referred to
as a typical task, yet, unlike the smooth peg-in-hole problem,
a robust control solution for inserting threaded fasteners has
not been presented. Tao et. al. [Tao 90] implemented a bolt
threading operation with generalized stiffness controlled ma-
nipulators. Tao chose to emulate a Remote Center of Com-
pliance (RCC) type device. Whitney and his colleagues at
the Draper Laboratories [Nevins 80, Whitney 82] have shown
this type of stiffness is best suited for the peg-in-hole prob-
lem. Tao discovered that the stiffness worked, but did not
show why or under what conditions. [Schimmels 90] presents
a method for constructing a damping matrix for an insertion
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problem in which canonical configurations have been identi-
fied. This method can not be used until such canonical con-
figurations are identified for the threaded fastener problem.
In [Loncaric 87] a stiffness solution for threaded fasteners is
suggested, without experimental verification, as an example
of a stiffness control scheme.

[Blaer 62] provides guidelines for the rotational speed of
a nut being fitted on to a bolt with a given axial stiffness
when there are no orientation errors. In this restricted case,
when errors are allowed only for the position along the axis of
the bolt, the geometry may be analyzed in a planar fashion
and the control problem is one dimensional. The main result
showed that if the bolt rotates too fast for a given axial spring
constant and position for the spring equilibrium point, then
the nut will not begin to thread. This result is backed up by
1,000 trials with an experimental system.

[Smith 80] provides a good overview of automatic screw-
driver technology, unfortunately it is now ten years old. The
most interesting method described requires monitoring of the
torque and angle about the axis of rotation as the bolt is
inserted. The plot of torque versus angle, called the “fas-
tening signature,” is compared against signatures for proper
and failed assemblies to determine if the insertion proceeded
correctly. In this manner Smith claims the ability to dis-
criminate proper fastening from thread stripping and thread
crossing as well as detecting faulty fasteners.

Current automatic insertion methods do not guarantee
successful insertion. Hence bolts are often started by hand
and then tightened with a machine. Manual threading uses
heuristics, such as rotating the fastener the wrong way for half
a turn and then rotating in the correct direction, to ensure
proper assembly.

This paper investigates a model for the motion of
threaded fasteners during mating that allows force control
schemes to be tested. In section 2 we give mathematical
equations to describe the surfaces of threaded parts. With
these equations the free directions of motion under contact,
or kinematics, are determined by the set of possible contact
types and the corresponding constraint directions. Given the
motion constraints, the dynamic equations of motion for the
bolt are derived in section 3. With the kinematic and dy-
namic models, a C language program was written to simulate
the motion. Section 4 discusses the general outline of this
program along with results of simulations of motion under
grasp stiffness control.



Figure 1: A cross-threaded bolt and nut configuration.

2 Threaded Parts
2.1 Terminology

The discussion of threaded fasteners is facilitated with the
introduction of some terms from [Blake 86] and [Bickford 81].
Figure 2 illustrates the most important ones.

A serew thread is a ridge of constant section, called the
thread profile, wrapped in a helical fashion about a cylinder.
The pitch is the spatial period of the thread profile. The
external screw thread is the thread on a bolt and the internal
serew thread is that on a nut. The root of the profile is at the
smallest diameter and the crest is at the largest. Note that
for the nut the largest diameter, or internal thread major
diameter, is at the root, not at the crest. The flank is the
straight part of the thread joining the roots and the crests. If
the thread were extended to a full V the fundamental triangle
height would be reached. Instead it is rounded off or flattened
at the roots and crests.

A clearance fit provides free-running assembly by the
means of a non-zero allowance. Allowance is the amount by
which the external thread diameter is reduced as compared
to the internal thread. This paper discusses the allowance
ratio which expresses allowance as a fraction of the internal
thread major diameter.

Threads do not start immediately on a nut or bolt, but
undergo a thread run-up, also called an incomplete thread.
The form and length of the run-up plays an important role
in the avoidance of c¢ross-threading. Cross-threading, which
leads to an incomplete and wedged assembly, occurs when
the first external thread crosses the internal thread in such
a way that the thread contacted on one side of the internal
thread is not on the same revolution as the thread contacted
on the opposite side. Figure 1 shows a bolt in a crossed thread
configuration.

2.2 Functional Description
2.2.1 Thread Profile

Based on the definitions given in section 2.1, a rounded
crest and root thread profile can be made with the following
four variables.

p: pitch.
d: internal thread basic major diameter.

a: allowance ratio, 0 < a < 1, where the actual allowance is
a*d

: root and crest radius. The simulations in this paper use
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Figure 2: Thread profile.
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2.2.2 The Screw Thread as a Generalized Cylinder

It you extend the thread profile for an integral number
of threads and align the ¢-axis with the z-axis in a right hand
coordinate system, a screw thread can be created by rotating
the profile about the z-axis at a radius % and vertically shift-
ing at the same time. The vertical shift is p(5=) where 6 is
the amount of rotation.

A surface in ®® may be parameterized by 2 variables.
The parameters z and € have been chosen. Thus a point on
the surface of the nut is given by the cylindrical coordinates:
(rint(2,0),0,z). Similarly a point on the surface of the bolt is
given by: (res(2,0),0,2). repr and 1y represent the external
thread radius and internal thread radius respectively. For
z < 0, repy 1s undefined. Similarly r;,; is undefined for z > 0.
The image in Figure 1 was created using these functions. (In
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The descriptions include a linear thread run-up over 180
degrees. Modifying the length of the run-up should have a
considerable effect on the assembly. The origin of the nut and
bolt, about which rotations will be described, lies at (0,0,0).
In cartesian coordinates a point on the internal surface of the
nut is given by the function x,(z, ). Correspondingly a point
on the surface of the bolt is given by x,(z,6). The subscript
g refers to the global or inertial frame, whereas the subscript
b refers to the body frame. In future analysis the nut will be
assumed to be fixed in space, hence it is associated with the
inertial frame.

Tint(7,0) cos 6 Text(%,0) cos b
Tmt(Z,O) sin 0 5 Xb(270) = Text(Z,O) sin @
z z

X4(2,0) =

2.2.3 Surface Normals

We denote the unit normals on the nut and bolt by the
functions f,(z,0) and fy(z,0) respectively. Note that the
surface normals vary continuously with the parameters z and
0, except, of course, at z = 0. When contacts occur at the
end of the nut or bolt, which is common during the initial
insertion, tangents to the circular bases are used to deter-
mine the constrained and sliding directions. Thus for the
case of contacts between the ends of the two parts, the func-
tion N,(0,,0,) is defined to indicate the constraint direction.
It is of unit magnitude and is in the direction of the cross
product of the tangents to the circles at the base of the bolt
and the top of the nut.

2.3 Contacts under Rigid Body Motion

Given models for the nut and bolt, we must next determine
when and where the parts come into contact and what the
constraints on motion are during contact.

2.3.1 Rigid Body Motion Notation

We assume the nut to be fixed in space, thus the con-
figuration of the bolt with respect to the nut is described by
a rigid-body translation and rotation. We will denote the 6
dimensional configuration vector by ¢ as:

c=[x 0]

where x € ®* and 8 € SO(3), the rotation space. The global
origin is located at the center of the top of the nut. The origin
of the body, or bolt, frame is at the center of the base of the
bolt. The components of 8 and x will be referred to as:

T T
0=[0. 0, 0.] . x=[xz 2, z.]
Figure 3 shows the two frames and the coordinate axes. For
contact locations, the following notation is used:

T T
Uy = [ Zg 091‘ ] ; Up, = [ 2y, Oy, ]

Thus in global coordinates the location of the " contact be-
tween the nut and bolt is given by x,(u,,). The correspond-
ing point of contact on the bolt, in bolt body coordinates, is
xXp(up, ). So for each contact ¢ we must have:

Xbm
X
BOLT by
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Figure 3: Rigid body notation.

Xy (uy,) = x + R(8)x(us,) (1)

where R() is a rotation matrix. Similarly the surface nor-
mals are related by:

ny(u,,) = —R(0)1h;(uy,) (2)

The above relations will be called the contact constraint equa-
tions.

2.3.2 Finding Contact Points

To determine if the nut and bolt are in contact when in a
particular configuration ¢, numerical methods must be used.
A review of current geometric intersection detection theory
reveals that only for situations in which one surface is para-
metrically defined and the other implicitly defined is there
a known numerical method that guarantees known accuracy
[Hoffman 89, Patrikalakis 90]. Unfortunately we do not have
an implicit description for the bolt. In [Ponce 87] a box based
method is presented which is computationally intensive, but
accurate for the intersections of straight generalized cylinders
such as the nut and bolt. We can avoid these computation-
ally intensive methods by utilizing the special geometry of
threaded parts.

There are “critical points” on the thread profile at which
contact is most likely to occur. We argue that the contact lo-
cation on at least one of the surfaces must be on a crest. From
equation (2), we see that when contact occurs the normal of
the external thread is opposite to that of the internal thread.
The screw thread described is made up of a flat, or rather
a chamfer like section, the flank, and a highly curved part,
the roots and crests. When the bolt is rotated, i.e. 8, # 0
or 8, # 0, it is not possible for the internal thread flank to
touch the external thread flank.

This observation leads to a simple method for surface
intersection detection. Consider approximating the bolt by
a helix with radius the same as that at the crest of the bolt
thread. Given ¢ we can determine if any points on this helix
lie inside the surface of the nut by discretizing the helix. By
using a few helixes spanning the rounded crest of the pro-
file we can get a coarse estimate for the intersection points.
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Figure 4: Tllustrations of contact types.

These intersection estimates are improved by using a nonlin-
ear algebraic equation solver.

2.3.3 Types of Contact

There are two different contact features that give rise to
four possible contact types. The two features are line and
surface. A line feature occurs at the end of the nut or bolt.
The rest of the nut or bolt is characterized as a surface fea-
ture. All contacts considered between the nut and bolt occur
at single points. The only time when this is not the case oc-
curs when the nut and bolt are perfectly aligned. In this case
there is a continuous line of contact along the helix. At all
other times, the existence of an allowance causes the curva-
tures of the two surfaces to be different. Thus at a contact
the surfaces are tangent but the differing curvatures allow the
contact to be only at a single point. The four contact types
are shown in Figure 4.

2.4 Motion Constraint During Sliding

By differentiating the contact constraint equation (1) with
respect to time we can define the quantity v, [Cole 89]:

B an . aXb . . d
¢ = gu, U T ROG W =X 4 RO(w,) ()

Ve

V., is the velocity of the point of contact on the surface of the
fixed object minus the velocity of the point of contact on the
surface of the moving object. When this quantity is zero, then
contact 2 is a rolling contact, otherwise it is a sliding contact.
v, is thus called the sliding velocity of contact ¢. For the '
sliding contact, the constraint on the sliding velocity v, is
given by:

Ve ﬁcz‘(ugm ubi) =0 (4)

where the constraint direction n., is given in Table 1.

3 Dynamics Under Contact
3.1 The Force Controller

Assume a controller applies a force which is a function of
the displacement from an equilibrium configuration and its
instantaneous time derivatives. We denote the force applied
by the controller in the inertial frame by f,. It is applied at the

Type Constraint
Bolt Feature/Nut Feature | Direction, n,,
Surface/Surface n,(uy,)
or —R(G)ﬁb(ubi)
Surface/Line —R(0)i,(uyp,)
Line/Surface n,(uy,)
Line/Line n;(uy,,u,)

Table 1: Constraint direction as determined by contact type.

point r, in the bolt body frame. The inertial torque applied
by the controller about r, is denoted by 7,. We denote the
equilibrium configuration by c¢.. Thus a linear grasp stiffness
and damper may be described by:

| ‘ce(t) = c.(0) + et (5)
[ fu(c.c..¢ ¢) ] = K(c.—c¢)+B(é.—¢) (6)

T.(c,c., ¢, ¢.))

y e’

where ¢, is constant, K is positive definite, and B &€ 6%,
Thus when the bolt is in the equilibrium configuration, and
its velocity is the same as the nominal velocity, c., the force
controller applies no force or torque.

3.2 Contact Forces

At each contact point the reaction force applied to the bolt
will be denoted by f; and the reaction torque by 7; =
(R(0)x3(us,)) x f;. For sliding contacts it is convenient to
define the vector ﬂ to denote the direction of the reaction
force applied by the nut to the bolt. This is not a unit vec-
tor, but is defined as:

(7)

Ve,
so that

f,=f.f

where f,, is the magnitude of the force applied in the direction
of the constraint at contact ¢.

3.3 Equations of Motion

Creating a full dynamic simulation of the motion of the bolt
requires numerical integration of a function that gives the
time derivative of the state variables as a function of the
current state. The current state, s, is:

s:[c é]T. (8)

[Montana 88] derives the equations for the derivative of the
contact parameters given the velocity of the rigid body, so in
the following sections x and 8 are derived as functions of s,
u, and ug,.

3.3.1 Useful Differential Relations

In the derivation of the dynamic equations it is useful to
decompose R(G)Xb(ubi) into a matrix times 8. The matrix
P(0,r) and the vector pl(e,é,r,f), where r is a vector in
bolt body coordinates, are defined for this purpose.



R(O)r = P(0.r)0 (9)
Z(R(O)r) = PO.r)f+p(6,6.05)  (10)

The relation between 6 and w,, the angular velocity of the
bolt in the inertial frame, is given by:

w, = S(6)8. (11)

One must be careful to watch for singularities in S to avoid
problems inverting it. In the case of a zyx fixed axis rotation,
its determinant is cos 0,,.

3.3.2 Euler’s Equations

The derivations for the accelerations are based on the
following two equations: the first is Euler’s equation of mo-
tion for a rotating rigid body written in the body frame, the
second equates the sum of forces in the inertial frame to the
derivative of the translational momentum. These two equa-
tions are decoupled about the center of mass of the moving

object [Goldstein 80].

In‘-‘-"b + wy X Inwb = Z T (12)

MXey, = chm (13)

Here I, is the inertia tensor about the center of mass in the
body frame and x.,, is the location of the center of mass of
the bolt in the inertial frame. To put these equations in terms

of the state variable ¢ we make use of equation (10) and the
shorthand:

P, = P(Q,Xcm) 5 Plem = pl(0,9,xcm,0)

to obtain:

Xcm = x+ chm =X+ Pcme
}“(cm = X+ chm
= X ‘I’ Pcme —I' Pi..
where r.,, is the constant vector from the bolt origin to the

center of mass in the bolt body frame. The sum of the forces
applied to the bolt is:

chm = fa —I'Zfz

As the forces are not applied at the center of mass, but at
points in the body frame, they contribute to the net torque.
Thus the net torque in the body frame is:

ZT?? = R'r, + (ry — Tem) X (RTfa) +
> [xe(up,) — ren] x (RTf)

where 7, is the controller torque in the inertial frame. To
simplify future expressions, n;(8,8) will be defined as:

n(6,0) = (R'SH) x (L,RTSH) + (I,RT'S + L,RTS)H. (14)

After substituting into Euler’s equations we have:

ILRTS6 = RTr, + (r, —ron) x (RTf,) —n, +
> bo(ws,) = ren] x (RTF) (15)

K3

mX = fa - m(Pcme —I_ plcm) —I_ ZfZ (16)

3.3.3 Solving for the Accelerations

As was stated earlier, we consider the case of all contacts
sliding. We show a method for deriving the equations of mo-
tion for n contacts with n velocity constraints. The resulting
6 + n equations are linear in the 6 accelerations and n force
magnitudes.

The velocity and acceleration constraints are given by:

Ve rDe, =0, v D + v, -, =0. (17)

Using the shorthand:

Pu, = P(0,x(w,)) , pu, =pi(8,8,x(w,), £x,(w,))
combine equations (3) and (10) to get:
vci =X + beze + plmbi .

Now equations (15) and (16) and the constraint equa-
tions (17) may be combined in a 6+ n square matrix equation
which can be solved for the accelerations and force magni-
tudes. For example, for 2 points of contact we solve the 8 x 8
matrix equation:

I RTS 0 RT'E‘l X RT{‘Q X
! (x5 (s, )A_ Tem) [x3 (s, )A_ Tem)
m13><3 mPcm —fl —f2
(Pgbl IA101 )T IA101 0 0
(Png IA102 )T ﬁcz 0 0
?] RTr, + (rg — rem) X (RTfa) -1y
X . fa — MPi.y, .
Jra - Pl N, — Ve Ij101
fn2 _pl$b2 : ﬁCQ — Ve o IAIC2

3.4 Impulses

This phenomena of impact is modeled by applying impulses
at the edge of the friction cone at the onset of contact. A
fraction of the impulse, given by the coefficient of restitu-
tion [Lankarani 90], is added to the impulse that cancels the
velocities so that the collision is modeled as being partially
elastic.

Each contact ¢ applies an impulse of magnitude A; at
the contact point x,(uy,) in the direction £, (In computing
f, from equation (7) we take the projection of v, onto the
tangent plane at the contact.) We wish to determine the
magnitudes of the impulses that cause a change of momen-
tum which results in the motion of the bolt satisfying the

constraint equations. Let };{m and @ be the linear and rota-
tional velocities at the center of mass after the impulses are
applied. Then the initial and final momenta are related by:
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Figure 5: Simulation program structure

(X — Xem) = A (18)

LRTS(O—80) = S [x(u) —ron] x M\RTE (19)
To reduce the order of the system of equations to be solved,
x is eliminated by the use of:

. . 2 1 A
x=x+P.,(0 —0)+—> \f
m <
and the velocity constraints:

Ve -N,, = (x+ Py 0) - n, =0.

Thus there are n equations of which the ;¥ is:

. 2 1 A
X+ P04 Py, — P, )0 + —> Afi| -0, =0. (20)
m =

Equations (19) and (20) give 34+ n equations linear in the
3 rotational velocities and the n impulse magnitudes. The A;
are then multiplied by (1.0 + 7) where ~ is the coefficient of
restitution. The resulting impulses are applied to the bolt.

4 Simulation of Motion

The results developed in the previous two sections were used
to create a program producing an animated simulation of a
bolt threading into a nut. The program loops through two
procedures: a state update routine and a contact configura-
tion checking routine. This is shown in Figure 5.

4.1 Switching Contact Configurations

This routine tests the current configuration of the bolt to de-
termine the number and type of contacts. If the configuration
has changed the simulation has probably proceeded through
the intersection of the nut and bolt. Thus the trajectory is
followed backwards to find the point of time during the last
update at which the configuration changed. This method is
similar to [Baraff 90]. Figure 6 gives a flow outline of this
routine.

| Check for Changesin Contact Configuration |

| Check Current Contacts

| Stop Tracking Distant Contacts |

v |Check for Merging of Contacts |

|Fi nd New Contacts

Compute Points on Nut and Bolt Helixes
that Intersect Other Surface

Find Clusters of Intersection Points and
Estimate Contact Location

Ignore Detected Contacts Corresponding
to Currently Tracked Contacts

y
— | New Contact Points?

-
|Fi nd Time at which New Contact Occurred |

‘L | Find Contact Parameters using Gradient Descent |

| | Apply Impulses

B -

Figure 6: Configuration Analysis Procedure

4.2 Integrating the State

Updating the state is based on integrating the equations of
motion over a designated time period assuming that the con-
tact configuration does not change over this period. Nu-
merical integration of the dynamic equations is accomplished
by using a variable-step fourth-order runge-kutta algorithm.
The variable step size is desirable due to the changing config-
urations and hence equations. The evaluation of the state
derivative involves solving square and rectangular matrix
equations. The Linpack Fortran libraries are used for this.

4.3 Simulations

We simulated the motion of a 10 gram bolt with a 1.0mm
thread pitch, an allowance ratio of 0.05, and a radius of
3.0mm under underdamped grasp stiffness control. Referring
to equations (5) and (6), we chose:

. T
¢ = [0 0 —1omm o o —3gpdearees

c(0) = [0000 1°0]
K = diag| K, Ky |

K, = [0.1 0.1 0.01}%
K, = [035 035 0.35}1;2.

B was chosen based on the inertia to give a damping ratio of
0.1 for each degree of freedom near the configuration ¢ = 0.
The control force is applied at r,, which was chosen to be
3.0mm beneath the base of the bolt along its axis.



Figure 7: Snapshots from the simulation.
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Figure 8: Contact force magnitudes in Newtons and displace-
ment from equilibrium position, ¢(¢) — ¢.(¢), in mm and de-
grees
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Figure 9: Magnified portion of the previous figure showing
the underdamped response and backtracking.

Figure 7 shows snapshots from the simulation. Contact
forces and displacements from the equilibrium position are
shown in Figure 8. For c. as given above, the bolt and nut
make their first contact at the crests of their first thread. This
is a singular configuration in that the bolt can be displaced
vertically in either direction by a half pitch in order to mate
correctly. For the stiffness chosen the bolt is displaced by
-0.5mm, as shown by x. between times t = .6 and t = 1.2
in Figure 8, resulting in a net upward force applied along
the z-axis by the controller. As Ky is large compared to K.,
there is little change in the orientation. This is also due to
the fact that the initial orientation error was small, only 1
degree, and the allowance ratio was large, 5%, so the parts
could be mated with a final error of 1 degree. This “slop
angle” is discussed further in [Nicolson 90].

We should also explain the chattering behavior shown in
Figure 8. This is due to the coefficient of restitution, chosen
to be 0.5, and the damping ratio, chosen to be 0.1. As half
of the force of contact goes into accelerating the bolt off the
surface and the motion is underdamped, the bolt bounces
along during insertion, similar to a ball bearing bouncing on
an anvil. The ball bearing would bounce more, in fact, as a
typical coefficient of restitution would be 0.8 [Lankarani 90]
and there would be no damping. The undamped behavior
of x and 8 is clear in Figure 9 which shows a time-magnified
portion of the trajectory. In particular x, shows how the bolt
impacts the nut during vertical upward motion.

The effect of the backtracking discuused in section 4.1
may also be noticed in Figure 9. For example, note that at



t = 1.11 the trajectory branches. The trajectory segments
that terminate indicate the motion that would have occurred
had a contact not occurred. As the contact was detected by
the intersection algorithm after the actual contact occurred,
the simulation backtracked along the trajectory until the con-
straint equations were best satisfied.

5 Extensions and Conclusions

In this paper a method for simulating the motion of a bolt
threading into a nut has been presented. The method is based
on a generalized cylindrical description of a screw thread,
impulsive forces, and computation of contact forces from dy-
namic motion equations. This method was implemented and
sample simulation results are shown. We will plan to use the
simulation to analyze control strategies and investigate the
effect of thread design parameters on assembly. The method
could be adapted for mating problems with other generalized
cylindrical parts.
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