
Dynamic Modeling of a Part Mating Problem:Threaded Fastener Insertion�Edward J. Nicolson and Ronald S. FearingDepartment of EE&CSUniversity of CaliforniaBerkeley, CA 94720AbstractA dynamic simulation of threaded insertion is developedbased on Euler's equations, impulsive forces, and a geometricdescription for threaded parts. Points of contact between thethreaded parts are determined and tracked during the sim-ulation. Reaction forces are computed based on the contactlocations and the velocity constraints given by the kinematicdescription. The simulation will be used to investigate the be-havior of the bolt during insertion into the nut under graspsti�ness and damper control.1 IntroductionAccording to a study by Nevins and Whitney [Nevins 80]the insertion and tightening of threaded fasteners is one ofthe twelve most common assembly tasks, yet little publishedwork has considered the type of control best suited for theassembly of threaded parts. There are many situations inwhich an automatic method for fastener insertion would bedesirable. Hazardous environments and assembly are primecandidates.Although manufacturers would like to replace them withsomething easier to assemble [Allen 88], threaded fastenersare unique in their ability to be reassembled many times andto develop a variable preload, or force of assembly. Thesetwo attributes make it unlikely that threaded fasteners willbe eliminated from assembly operations.In robotics literature screw threading is often referred toas a typical task, yet, unlike the smooth peg-in-hole problem,a robust control solution for inserting threaded fasteners hasnot been presented. Tao et. al. [Tao 90] implemented a boltthreading operation with generalized sti�ness controlled ma-nipulators. Tao chose to emulate a Remote Center of Com-pliance (RCC) type device. Whitney and his colleagues atthe Draper Laboratories [Nevins 80, Whitney 82] have shownthis type of sti�ness is best suited for the peg-in-hole prob-lem. Tao discovered that the sti�ness worked, but did notshow why or under what conditions. [Schimmels 90] presentsa method for constructing a damping matrix for an insertion�This work was funded in part by: California Microelectronics Fel-lowship, NSF Grant IRI-8810585, ONR DURIP Grant N00014-89-J-1463, NSF-PYI grant MIP-9057466, and Joint Services ElectronicsProject, California State Program MICRO.

problem in which canonical con�gurations have been identi-�ed. This method can not be used until such canonical con-�gurations are identi�ed for the threaded fastener problem.In [Loncaric 87] a sti�ness solution for threaded fasteners issuggested, without experimental veri�cation, as an exampleof a sti�ness control scheme.[Blaer 62] provides guidelines for the rotational speed ofa nut being �tted on to a bolt with a given axial sti�nesswhen there are no orientation errors. In this restricted case,when errors are allowed only for the position along the axis ofthe bolt, the geometry may be analyzed in a planar fashionand the control problem is one dimensional. The main resultshowed that if the bolt rotates too fast for a given axial springconstant and position for the spring equilibrium point, thenthe nut will not begin to thread. This result is backed up by1,000 trials with an experimental system.[Smith 80] provides a good overview of automatic screw-driver technology, unfortunately it is now ten years old. Themost interesting method described requires monitoring of thetorque and angle about the axis of rotation as the bolt isinserted. The plot of torque versus angle, called the \fas-tening signature," is compared against signatures for properand failed assemblies to determine if the insertion proceededcorrectly. In this manner Smith claims the ability to dis-criminate proper fastening from thread stripping and threadcrossing as well as detecting faulty fasteners.Current automatic insertion methods do not guaranteesuccessful insertion. Hence bolts are often started by handand then tightened with a machine. Manual threading usesheuristics, such as rotating the fastener the wrong way for halfa turn and then rotating in the correct direction, to ensureproper assembly.This paper investigates a model for the motion ofthreaded fasteners during mating that allows force controlschemes to be tested. In section 2 we give mathematicalequations to describe the surfaces of threaded parts. Withthese equations the free directions of motion under contact,or kinematics, are determined by the set of possible contacttypes and the corresponding constraint directions. Given themotion constraints, the dynamic equations of motion for thebolt are derived in section 3. With the kinematic and dy-namic models, a C language program was written to simulatethe motion. Section 4 discusses the general outline of thisprogram along with results of simulations of motion undergrasp sti�ness control.
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Figure 1: A cross-threaded bolt and nut con�guration.2 Threaded Parts2.1 TerminologyThe discussion of threaded fasteners is facilitated with theintroduction of some terms from [Blake 86] and [Bickford 81].Figure 2 illustrates the most important ones.A screw thread is a ridge of constant section, called thethread pro�le, wrapped in a helical fashion about a cylinder.The pitch is the spatial period of the thread pro�le. Theexternal screw thread is the thread on a bolt and the internalscrew thread is that on a nut. The root of the pro�le is at thesmallest diameter and the crest is at the largest. Note thatfor the nut the largest diameter, or internal thread majordiameter, is at the root, not at the crest. The 
ank is thestraight part of the thread joining the roots and the crests. Ifthe thread were extended to a full V the fundamental triangleheight would be reached. Instead it is rounded o� or 
attenedat the roots and crests.A clearance �t provides free-running assembly by themeans of a non-zero allowance. Allowance is the amount bywhich the external thread diameter is reduced as comparedto the internal thread. This paper discusses the allowanceratio which expresses allowance as a fraction of the internalthread major diameter.Threads do not start immediately on a nut or bolt, butundergo a thread run-up, also called an incomplete thread.The form and length of the run-up plays an important rolein the avoidance of cross-threading. Cross-threading, whichleads to an incomplete and wedged assembly, occurs whenthe �rst external thread crosses the internal thread in sucha way that the thread contacted on one side of the internalthread is not on the same revolution as the thread contactedon the opposite side. Figure 1 shows a bolt in a crossed threadcon�guration.2.2 Functional Description2.2.1 Thread Pro�leBased on the de�nitions given in section 2.1, a roundedcrest and root thread pro�le can be made with the followingfour variables.p: pitch.d: internal thread basic major diameter.a: allowance ratio, 0 � a � 1, where the actual allowance isa � dr: root and crest radius. The simulations in this paper user = p10 .
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Figure 2: Thread pro�le.The ratio dp determines if the bolt has �ne or coarse threads.Typically (dp )�ne = 2(dp )coarse.The thread pro�le can be parameterized by the followingfunction of position, t and thread pitch p. Figure 2 shows thefunction with p = 1 and r = p10. Note that fp and _fp arecontinuous functions. In this function t is understood to be tmod p.fp(t; p) =8>>>>><>>>>>: r �pr2 � t2 0 � t � p32 rp3t � r p32 r � t � p2 � p32 rp32 p� 3r +pr2 � (t� p2 )2 p2 � p32 r � t � p2 + p32 rp3(p � t)� r p2 + p32 r � t � p� p32 rr �pr2 � (t � p)2 p� p32 r � t � p2.2.2 The Screw Thread as a Generalized CylinderIf you extend the thread pro�le for an integral numberof threads and align the t-axis with the z-axis in a right handcoordinate system, a screw thread can be created by rotatingthe pro�le about the z-axis at a radius d2 and vertically shift-ing at the same time. The vertical shift is p( �2� ) where � isthe amount of rotation.A surface in <3 may be parameterized by 2 variables.The parameters z and � have been chosen. Thus a point onthe surface of the nut is given by the cylindrical coordinates:(rint(z; �); �; z). Similarly a point on the surface of the bolt isgiven by: (rext(z; �); �; z). rext and rint represent the externalthread radius and internal thread radius respectively. Forz < 0, rext is unde�ned. Similarly rint is unde�ned for z > 0.The image in Figure 1 was created using these functions. (Inthe �gure dp = 6:0; rp = 0:1; a = 0:05 .)rint(z; �) = 8>>>>>>>>><>>>>>>>>>: d2 ( � � � � 2�z � �p2���2�d2 � fp(�z; p���� ) ( 0 � � � �z � �p2���2�d2 � fp(p � (z + p2���2� ); p) ( 0 � � � 2�z � �p2���2�rext(z; �) = 8>>>>>>>>><>>>>>>>>>: d2(1� a)� (pp32 � 2r) ( 0 � � � �z � p �2�d2 (1� a)� (pp32 � 2r)+fp(z; p ���� ) ( � � � � 2�z � p �2�d2 (1� a)� (pp32 � 2r)+fp(z � p �2� ; p) ( 0 � � � 2�z � p �2�



3The descriptions include a linear thread run-up over 180degrees. Modifying the length of the run-up should have aconsiderable e�ect on the assembly. The origin of the nut andbolt, about which rotations will be described, lies at (0; 0; 0).In cartesian coordinates a point on the internal surface of thenut is given by the function xg(z; �). Correspondingly a pointon the surface of the bolt is given by xb(z; �). The subscriptg refers to the global or inertial frame, whereas the subscriptb refers to the body frame. In future analysis the nut will beassumed to be �xed in space, hence it is associated with theinertial frame.xg(z; �) = 264 rint(z; �) cos�rint(z; �) sin �z 375 ; xb(z; �) = 264 rext(z; �) cos�rext(z; �) sin �z 3752.2.3 Surface NormalsWe denote the unit normals on the nut and bolt by thefunctions n̂g(z; �) and n̂b(z; �) respectively. Note that thesurface normals vary continuously with the parameters z and�, except, of course, at z = 0. When contacts occur at theend of the nut or bolt, which is common during the initialinsertion, tangents to the circular bases are used to deter-mine the constrained and sliding directions. Thus for thecase of contacts between the ends of the two parts, the func-tion n̂t(�g; �b) is de�ned to indicate the constraint direction.It is of unit magnitude and is in the direction of the crossproduct of the tangents to the circles at the base of the boltand the top of the nut.2.3 Contacts under Rigid Body MotionGiven models for the nut and bolt, we must next determinewhen and where the parts come into contact and what theconstraints on motion are during contact.2.3.1 Rigid Body Motion NotationWe assume the nut to be �xed in space, thus the con-�guration of the bolt with respect to the nut is described bya rigid-body translation and rotation. We will denote the 6dimensional con�guration vector by c as:c = h x � iTwhere x 2 <3 and � 2 SO(3), the rotation space. The globalorigin is located at the center of the top of the nut. The originof the body, or bolt, frame is at the center of the base of thebolt. The components of � and x will be referred to as:� = h �x �y �z iT ; x = h xx xy xz iT :Figure 3 shows the two frames and the coordinate axes. Forcontact locations, the following notation is used:ugi = h zgi �gi iT ; ubi = h zbi �bi iT :Thus in global coordinates the location of the ith contact be-tween the nut and bolt is given by xg(ugi). The correspond-ing point of contact on the bolt, in bolt body coordinates, isxb(ubi). So for each contact i we must have:

NUT BOLT xbzxbyxbxx�z �y �xFigure 3: Rigid body notation.xg(ugi) = x+R(�)xb(ubi) (1)where R(�) is a rotation matrix. Similarly the surface nor-mals are related by:̂ng(ugi) = �R(�)n̂b(ubi) (2)The above relations will be called the contact constraint equa-tions.2.3.2 Finding Contact PointsTo determine if the nut and bolt are in contact when in aparticular con�guration c; numerical methods must be used.A review of current geometric intersection detection theoryreveals that only for situations in which one surface is para-metrically de�ned and the other implicitly de�ned is therea known numerical method that guarantees known accuracy[Ho�man 89, Patrikalakis 90]. Unfortunately we do not havean implicit description for the bolt. In [Ponce 87] a box basedmethod is presented which is computationally intensive, butaccurate for the intersections of straight generalized cylinderssuch as the nut and bolt. We can avoid these computation-ally intensive methods by utilizing the special geometry ofthreaded parts.There are \critical points" on the thread pro�le at whichcontact is most likely to occur. We argue that the contact lo-cation on at least one of the surfaces must be on a crest. Fromequation (2), we see that when contact occurs the normal ofthe external thread is opposite to that of the internal thread.The screw thread described is made up of a 
at, or rathera chamfer like section, the 
ank, and a highly curved part,the roots and crests. When the bolt is rotated, i.e. �x 6= 0or �y 6= 0, it is not possible for the internal thread 
ank totouch the external thread 
ank.This observation leads to a simple method for surfaceintersection detection. Consider approximating the bolt bya helix with radius the same as that at the crest of the boltthread. Given c we can determine if any points on this helixlie inside the surface of the nut by discretizing the helix. Byusing a few helixes spanning the rounded crest of the pro-�le we can get a coarse estimate for the intersection points.
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Line/SurfaceFigure 4: Illustrations of contact types.These intersection estimates are improved by using a nonlin-ear algebraic equation solver.2.3.3 Types of ContactThere are two di�erent contact features that give rise tofour possible contact types. The two features are line andsurface. A line feature occurs at the end of the nut or bolt.The rest of the nut or bolt is characterized as a surface fea-ture. All contacts considered between the nut and bolt occurat single points. The only time when this is not the case oc-curs when the nut and bolt are perfectly aligned. In this casethere is a continuous line of contact along the helix. At allother times, the existence of an allowance causes the curva-tures of the two surfaces to be di�erent. Thus at a contactthe surfaces are tangent but the di�ering curvatures allow thecontact to be only at a single point. The four contact typesare shown in Figure 4.2.4 Motion Constraint During SlidingBy di�erentiating the contact constraint equation (1) withrespect to time we can de�ne the quantity vci [Cole 89]:vci = @xg@ug _ugi �R(�)@xb@ub _ubi = _x+ _R(�)xb(ubi) (3)vci is the velocity of the point of contact on the surface of the�xed object minus the velocity of the point of contact on thesurface of the moving object. When this quantity is zero, thencontact i is a rolling contact, otherwise it is a sliding contact.vci is thus called the sliding velocity of contact i. For the ithsliding contact, the constraint on the sliding velocity vci isgiven by: vci � n̂ci(ugi;ubi) = 0 (4)where the constraint direction n̂ci is given in Table 1.3 Dynamics Under Contact3.1 The Force ControllerAssume a controller applies a force which is a function ofthe displacement from an equilibrium con�guration and itsinstantaneous time derivatives. We denote the force appliedby the controller in the inertial frame by fa. It is applied at the

Type ConstraintBolt Feature/Nut Feature Direction, n̂ciSurface/Surface n̂g(ugi)or �R(�)n̂b(ubi)Surface/Line �R(�)n̂b(ubi)Line/Surface n̂g(ugi)Line/Line n̂t(ugi;ubi)Table 1: Constraint direction as determined by contact type.point ra in the bolt body frame. The inertial torque appliedby the controller about ra is denoted by � a. We denote theequilibrium con�guration by ce. Thus a linear grasp sti�nessand damper may be described by:ce(t) = ce(0) + _cet (5)" fa(c; ce; _c; _ce)� a(c; ce; _c; _ce)) # = K(ce � c) +B( _ce � _c) (6)where _ce is constant, K is positive de�nite, and B 2 <6�6.Thus when the bolt is in the equilibrium con�guration, andits velocity is the same as the nominal velocity, _ce, the forcecontroller applies no force or torque.3.2 Contact ForcesAt each contact point the reaction force applied to the boltwill be denoted by fi and the reaction torque by � i =(R(�)xb(ubi)) � fi. For sliding contacts it is convenient tode�ne the vector f̂i to denote the direction of the reactionforce applied by the nut to the bolt. This is not a unit vec-tor, but is de�ned as: f̂i = n̂ci � � vcikvcik (7)so that fi = fni f̂iwhere fni is the magnitude of the force applied in the directionof the constraint at contact i.3.3 Equations of MotionCreating a full dynamic simulation of the motion of the boltrequires numerical integration of a function that gives thetime derivative of the state variables as a function of thecurrent state. The current state, s, is:s = h c _c iT : (8)[Montana 88] derives the equations for the derivative of thecontact parameters given the velocity of the rigid body, so inthe following sections �x and �� are derived as functions of s,_ubi and _ugi.3.3.1 Useful Di�erential RelationsIn the derivation of the dynamic equations it is useful todecompose _R(�)xb(ubi) into a matrix times _�. The matrixP(�; r) and the vector pl(�; _�; r; _r), where r is a vector inbolt body coordinates, are de�ned for this purpose.



5_R(�)r = P(�; r) _� (9)ddt( _R(�)r) = P(�; r)�� + pl(�; _�; r; _r) (10)The relation between _� and !o, the angular velocity of thebolt in the inertial frame, is given by:!o = S(�) _�: (11)One must be careful to watch for singularities in S to avoidproblems inverting it. In the case of a zyx �xed axis rotation,its determinant is cos �y.3.3.2 Euler's EquationsThe derivations for the accelerations are based on thefollowing two equations: the �rst is Euler's equation of mo-tion for a rotating rigid body written in the body frame, thesecond equates the sum of forces in the inertial frame to thederivative of the translational momentum. These two equa-tions are decoupled about the center of mass of the movingobject [Goldstein 80].In _!b + !b � In!b = X � b (12)m�xcm = X fcm (13)Here In is the inertia tensor about the center of mass in thebody frame and xcm is the location of the center of mass ofthe bolt in the inertial frame. To put these equations in termsof the state variable c we make use of equation (10) and theshorthand:Pcm = P(�;xcm) ; plcm = pl(�; _�;xcm;0)to obtain: _xcm = _x+ _Rrcm = _x+Pcm _��xcm = �x+ �Rrcm= �x+Pcm�� + plcmwhere rcm is the constant vector from the bolt origin to thecenter of mass in the bolt body frame. The sum of the forcesapplied to the bolt is:X fcm = fa +X fi:As the forces are not applied at the center of mass, but atpoints in the body frame, they contribute to the net torque.Thus the net torque in the body frame is:X � b = RT� a + (ra � rcm)� (RT fa) +Xi [xb(ubi)� rcm]� (RT fi)where � a is the controller torque in the inertial frame. Tosimplify future expressions, nl(�; _�) will be de�ned as:nl(�; _�) = (RTS _�)� (InRTS _�) + (In _RTS+ InRT _S) _�: (14)

After substituting into Euler's equations we have:InRTS�� = RT� a + (ra � rcm)� (RT fa)� nl +Xi [xb(ubi)� rcm]� (RT fi) (15)m�x = fa �m(Pcm�� + plcm) +Xi fi: (16)3.3.3 Solving for the AccelerationsAs was stated earlier, we consider the case of all contactssliding. We show a method for deriving the equations of mo-tion for n contacts with n velocity constraints. The resulting6 + n equations are linear in the 6 accelerations and n forcemagnitudes.The velocity and acceleration constraints are given by:vci � n̂ci = 0 ; _vci � n̂ci + vci � _̂nci = 0: (17)Using the shorthand:Pxbi = P(�;xb(ubi)) ; plxbi = pl(�; _�;xb(ubi); ddtxb(ubi))combine equations (3) and (10) to get:_vci = �x+Pxbi�� + plxbi :Now equations (15) and (16) and the constraint equa-tions (17) may be combined in a 6+n square matrix equationwhich can be solved for the accelerations and force magni-tudes. For example, for 2 points of contact we solve the 8�8matrix equation:2666664 InRTS 0 RT f̂1�[xb(ub1)� rcm] RT f̂2�[xb(ub2)� rcm]mI3�3 mPcm �f̂1 �f̂2(PTxb1n̂c1)T n̂c1 0 0(PTxb2n̂c2)T n̂c2 0 0 3777775 �26664 ���xfn1fn2 37775 = 26664 RT� a + (ra � rcm)� (RT fa)� nlfa �mplcm�plxb1 � n̂c1 � vc1 � _̂nc1�plxb2 � n̂c2 � vc2 � _̂nc2 377753.4 ImpulsesThis phenomena of impact is modeled by applying impulsesat the edge of the friction cone at the onset of contact. Afraction of the impulse, given by the coe�cient of restitu-tion [Lankarani 90], is added to the impulse that cancels thevelocities so that the collision is modeled as being partiallyelastic.Each contact i applies an impulse of magnitude �i atthe contact point xb(ubi) in the direction f̂i. (In computingf̂i from equation (7) we take the projection of vci onto thetangent plane at the contact.) We wish to determine themagnitudes of the impulses that cause a change of momen-tum which results in the motion of the bolt satisfying theconstraint equations. Let _~xcm and _~� be the linear and rota-tional velocities at the center of mass after the impulses areapplied. Then the initial and �nal momenta are related by:
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No YesFigure 5: Simulation program structurem( _~xcm � _xcm) = Xi �i f̂i (18)InRTS( _~� � _�) = Xi [xb(ubi)� rcm]� �iRT f̂i (19)To reduce the order of the system of equations to be solved,_~x is eliminated by the use of:_~x = _x+Pcm( _� � _~�) + 1mXi �if̂iand the velocity constraints:~vci � n̂ci = ( _~x+Pxbi _~�) � n̂ci = 0:Thus there are n equations of which the jth is:" _x+Pcm _� + (Pxbj �Pcm) _~� + 1mXi �if̂i# � n̂cj = 0: (20)Equations (19) and (20) give 3+n equations linear in the3 rotational velocities and the n impulse magnitudes. The �iare then multiplied by (1:0 + 
) where 
 is the coe�cient ofrestitution. The resulting impulses are applied to the bolt.4 Simulation of MotionThe results developed in the previous two sections were usedto create a program producing an animated simulation of abolt threading into a nut. The program loops through twoprocedures: a state update routine and a contact con�gura-tion checking routine. This is shown in Figure 5.4.1 Switching Contact Con�gurationsThis routine tests the current con�guration of the bolt to de-termine the number and type of contacts. If the con�gurationhas changed the simulation has probably proceeded throughthe intersection of the nut and bolt. Thus the trajectory isfollowed backwards to �nd the point of time during the lastupdate at which the con�guration changed. This method issimilar to [Bara� 90]. Figure 6 gives a 
ow outline of thisroutine.
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Find Contact Parameters using Gradient Descent Figure 6: Con�guration Analysis Procedure4.2 Integrating the StateUpdating the state is based on integrating the equations ofmotion over a designated time period assuming that the con-tact con�guration does not change over this period. Nu-merical integration of the dynamic equations is accomplishedby using a variable-step fourth-order runge-kutta algorithm.The variable step size is desirable due to the changing con�g-urations and hence equations. The evaluation of the statederivative involves solving square and rectangular matrixequations. The Linpack Fortran libraries are used for this.4.3 SimulationsWe simulated the motion of a 10 gram bolt with a 1.0mmthread pitch, an allowance ratio of 0.05, and a radius of3.0mm under underdamped grasp sti�ness control. Referringto equations (5) and (6), we chose:_ce = h 0 0 �1:0mms 0 0 �360degreess iTce(0) = h 0 0 0 0 1� 0 iTK = diag h Kx K� iKx = h 0:1 0:1 0:01 i NmmK� = h 0:35 0:35 0:35 i N mmdegree :B was chosen based on the inertia to give a damping ratio of0.1 for each degree of freedom near the con�guration c = 0.The control force is applied at ra, which was chosen to be3.0mm beneath the base of the bolt along its axis.
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Figure 7: Snapshots from the simulation.

Figure 8: Contact force magnitudes in Newtons and displace-ment from equilibrium position, c(t)� ce(t), in mm and de-grees

Figure 9: Magni�ed portion of the previous �gure showingthe underdamped response and backtracking.Figure 7 shows snapshots from the simulation. Contactforces and displacements from the equilibrium position areshown in Figure 8. For ce as given above, the bolt and nutmake their �rst contact at the crests of their �rst thread. Thisis a singular con�guration in that the bolt can be displacedvertically in either direction by a half pitch in order to matecorrectly. For the sti�ness chosen the bolt is displaced by-0.5mm, as shown by xz between times t = :6 and t = 1:2in Figure 8, resulting in a net upward force applied alongthe z-axis by the controller. As K� is large compared to Kx,there is little change in the orientation. This is also due tothe fact that the initial orientation error was small, only 1degree, and the allowance ratio was large, 5%, so the partscould be mated with a �nal error of 1 degree. This \slopangle" is discussed further in [Nicolson 90].We should also explain the chattering behavior shown inFigure 8. This is due to the coe�cient of restitution, chosento be 0.5, and the damping ratio, chosen to be 0.1. As halfof the force of contact goes into accelerating the bolt o� thesurface and the motion is underdamped, the bolt bouncesalong during insertion, similar to a ball bearing bouncing onan anvil. The ball bearing would bounce more, in fact, as atypical coe�cient of restitution would be 0.8 [Lankarani 90]and there would be no damping. The undamped behaviorof x and � is clear in Figure 9 which shows a time-magni�edportion of the trajectory. In particular xz shows how the boltimpacts the nut during vertical upward motion.The e�ect of the backtracking discuused in section 4.1may also be noticed in Figure 9. For example, note that at
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