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IMMERSED LAGRANGIAN FLOER THEORY

MANABU AkAHO & DOMINIC JOYCE

Abstract

Let (M, w) be a compact symplectic manifold, and L a compact
embedded Lagrangian submanifold in M. Fukaya, Oh, Ohta and
Ono [8] construct Lagrangian Floer cohomology, yielding groups
HF*(L,b; Apoy) for one or HF*((Ll,bl),(Lg,bg);Anov) for two
Lagrangians, where b, by, by are choices of bounding cochains, and
exist if and only if L, L1, Lo have unobstructed Floer cohomology.
These are independent of choices up to isomorphism, and have
important invariance properties under Hamiltonian equivalence.
Floer cohomology groups are the morphism groups in the derived
Fukaya category of (M,w), and so are an essential part of the
Homological Mirror Symmetry Conjecture of Kontsevich.

The goal of this paper is to extend [8] to immersed Lagrangians
¢ : L — M, with transverse self-intersections. In the embedded
case, Floer cohomology H F*(L,b; Apoy) is a modified, ‘quantized’
version of singular homology H,,—«(L; Apoy) over the Novikov ring
Anov. In our immersed case, HF*(L,b; Apoy) turns out to be a
quantized version of Hy,—«(L; Anoy) B @(pﬂp”eR Aoy - (P, 14),
where R = {(p—,p1) : p—,py € L, p— # py, 1(p-) = u(py)} is
a set of two extra generators for each self-intersection point of L,
and (p_,py) has degree 7,_ ) € Z, an index depending on how
L intersects itself at ¢(p_) = t(p4).

The theory becomes simpler and more powerful for graded La-
grangians in Calabi—Yau manifolds, when we can work over a
smaller Novikov ring Acy. The proofs involve associating a gapped
filtered Ao, algebra over AY  or AY, to ¢ : L — M, which is in-
dependent of nearly all choices up to canonical homotopy equiv-
alence, and is built using a series of finite approximations called
Ap,o algebras for N =0,1,2,....

1. Introduction

Let (M,w) be a compact symplectic manifold, and L a compact em-
bedded Lagrangian submanifold in M. Fukaya, Oh, Ohta and Ono
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[8] have undertaken the mammoth task of rigorously constructing La-
grangian Floer cohomology for such M, L. In brief, to each Lagrangian
L in M they associate a (gapped filtered) Ao algebra (QXRAS, ,m). A
bounding cochain b € QX®A?  is a solution of > ko Mk(b, ..., 0) =0
in QX¥®AY . Given such b, they define the Lagrangian Floer cohomol-
ogy HF*(L,b; Ayoy). If L does not admit a bounding cochain, we say L
has obstructed Lagrangian Floer cohomology. If Ly, Lo are transversely
intersecting Lagrangians in M with bounding cochains by, bs, they de-
fine the Lagrangian Floer cohomology HF*((Ll,bl), (Lg,bg);Anov) of
Li,Ly. These are the morphism groups in the derived Fukaya cate-
gory of (M,w), and so are an essential part of the Homological Mirror
Symmetry Conjecture of Kontsevich [14].

The purpose of this paper is to extend the work of Fukaya, Oh,
Ohta and Ono [8] to immersed Lagrangians L in M with immersion
t: L — M, with transverse self-intersections. This was done by the first
author [1] under the simplifying assumption that mo(M, (L)) = {1},
which eliminates the issues of disc bubbling, A, algebras and bounding
cochains. We now discuss the much more difficult general case.

Suppose ¢ : L — M is a compact immersed Lagrangian in (M,w),
such that (=!(p) is at most two points for each p € «(L), and when
v~ Y(p) = {py,p_} is two points the two sheets of L intersect transversely
at p, that is, de(7,, L) N de(T,_L) = {0} in T,M. We will construct a
gapped filtered A, algebra (QX®AY  m) associated to L, indepen-
dent of choices up to canonical homotopy equivalence, which general-
izes both the embedded case in Fukaya et al. [8, §3], and the gapped
filtered A, category associated to finitely many embedded Lagrangian
submanifolds by Fukaya [7]. Thus we can define bounding cochains b
for L, and Lagrangian Floer cohomology groups HF*(L,b;Ayoy) and
HF *((Ll,bl), (Lg,bg);AnOV), which are independent of choices up to
canonical isomorphism.

Fukaya et al. [8] mainly develop two subjects: geometry and alge-
bra. In the geometric part, they realize Ay g structures on some singu-
lar chains of an embedded Lagrangian submanifold L through moduli
spaces of isomorphism classes of stable maps from a genus 0 prestable
bordered Riemann surface with boundary attached to L. In the alge-
braic part, they develop the homotopy theory, or homological algebra,
of An i and gapped filtered A, algebras. Finally, they apply the ho-
motopy theory to the geometric realization, and obtain a gapped filtered
A algebra associated to an embedded Lagrangian submanifold.

Here we develop a generalization of their geometry, that is, we con-
struct Ay o structures associated to an immersed Lagrangian subman-
ifold with transverse self-intersections. Then we apply the homotopy
theory to our generalization, and obtain a gapped filtered A, algebra
associated to an immersed Lagrangian submanifold.
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Fukaya et al. also construct a gapped filtered A, bimodule associated
to a pair of transversely intersecting embedded Lagrangian submanifolds
[8], and a gapped filtered A, category associated to a finite number of
transversely intersecting embedded Lagrangian submanifolds [7]. Re-
garding a finite union of embedded Lagrangians as a single immersed
Lagrangian, their gapped filtered A, modules and categories become
part of our gapped filtered A, algebras.

Here is one reason why extending Lagrangian Floer cohomology to im-
mersed Lagrangians may be important. Using the embedded Lagrangian
Floer theory of [8], one can define the Fukaya category Fuk(M,w)em,
whose objects are roughly speaking pairs (L,b) of an embedded La-
grangian and a bounding cochain b for L, and the derived Fukaya cat-
egory Db(Fuk(M ,w)em). Kontsevich’s Homological Mirror Symmetry
Conjecture [14] says (roughly) that for (M,w) a symplectic Calabi-Yau
with mirror complex Calabi-Yau (M, .J), the derived Fukaya category
Db (Fuk(M , w)em) should be equivalent as a triangulated category to the
derived category DP(coh(M, J)) of coherent sheaves on (M, J).

The theory of this paper would yield an immersed Fukaya category
Fuk(M,w)iym using immersed Lagrangians, and the derived immersed
Fukaya category D° (Fuk(M, w)im ). We could then use D° (Fuk(M, w)im)
in place of D? (Fuk(M ,w)om) in Homological Mirror Symmetry. Actu-
ally, it seems likely that D°(Fuk(M,w)in) and D°(Fuk(M,w)en) are
equivalent categories, although D? (Fuk(M , w)im) has more objects.

Motivated by conjectures of Thomas and Yau [21] and more recent
ideas of Bridgeland [2] and the String Theorists Douglas and Aspin-
wall, we can state the following (approximate) conjecture, which is an
extension of the Homological Mirror Symmetry story: let (M, J,w, )
be a Calabi—Yau n-fold. Then there should exist a Bridgeland stabil-
ity condition (Z,P) on D’(Fuk(M,w)) depending on the holomorphic
(n,0)-form Q on M, such that each isomorphism class of stable objects
in D° (Fuk(M , w)) is represented by a unique special Lagrangian.

For this conjecture to hold, we need D (Fuk(M ,w)) to contain as
many actual geometric Lagrangians as possible. In particular, the con-
jecture should be false for D° (Fuk(M ,w)em) when n > 2, since then
there could exist (L, b) and (L’,) isomorphic in D (Fuk(M,w)iy) with
L embedded, and L’ special Lagrangian and immersed but not embed-
ded. If the conjecture were true for the embedded case, there would
exist an embedded special Lagrangian L” with (L”,b") isomorphic to
(L,b). But the uniqueness argument of Thomas and Yau [21, Th. 4.3]
applied to our immersed case implies that there cannot be two differ-
ent special Lagrangian representatives (L',’) and (L”, V") for [(L,b)],
a contradiction. Thus, to make our modified Thomas—Yau conjecture
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true we need at least to include immersed Lagrangians in the Fukaya
category, and perhaps also some classes of singular Lagrangians as well.

We begin with some background material on Kuranishi spaces, mul-
tisections, and virtual chains in §2, and on A algebras and Ay g al-
gebras in §3. Section 4 introduces the moduli spaces of isomorphism
classes of stable maps from a genus 0 prestable bordered Riemann sur-
face with boundary attached to an immersed Lagrangian submanifold.
They are Kuranishi spaces, with corners, whose boundaries are fibre
products of other such moduli spaces. Section 5 discusses orientations
of our moduli spaces.

Sections 6-11 construct gapped filtered A, algebras from immersed
Lagrangian submanifolds ¢ : L — M, and show they are indepen-
dent of choices such as the almost complex structure J, up to canon-
ical homotopy equivalence. First, in §6-8§7, we construct Ay alge-
bras (QXn,G,m) from ¢ : L — M for all N = 0,1,2,..., involving
different arbitrary choices for each N. In §8-89, we show that the
AN algebras of §6-§7 are unique up to Ay, homotopy equivalences
it (QXyN,G,m) — (QX'y,G,m’), and §10 proves that these j are unique
up to homotopy.

Section 11 passes from Ay o algebras (QX n, G, m) to gapped filtered
A algebras (QXY®AY ,m) by a limiting process as N — oo, and shows
that (QX®AY,,,m) is independent of choices up to canonical homotopy
equivalence. Section 12 defines graded Lagrangians in Calabi—Yau man-
ifolds, and explains how in the graded case we can redo §6—§11 using the
smaller Novikov ring A%,. Finally, §13 defines bounding cochains and
Lagrangian Floer cohomology, discusses some applications, and suggests
some questions and conjectures for future research.

By its very nature, this paper exists wholly in the shadow of Fukaya,
Oh, Ohta and Ono’s massive work [8]. Despite this, we have tried
hard to make our paper independent of [8], in the sense that it is self-
contained, requiring no more than the usual background for research
papers in the area, and readers do not need to read [8] to understand
our paper.

Acknowledgements. The authors would like to thank Kenji Fukaya,
Hiroshige Kajiura, Yong-Geun Oh, Hiroshi Ohta, Kauru Ono, Paul Sei-
del and Ivan Smith for useful conversations.

2. Background material on Kuranishi spaces and
multisections

We now summarize results from Fukaya, Ono et al. [9, §3-86], [8,
§A] on Kuranishi spaces, multisections and virtual chains that we will
need later. Where the notation of [9, 8] differs, for instance if Kuranishi
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neighbourhoods are (V, E,T', s,1) with V a manifold or (V, E, s, 1) with
V' an orbifold, we generally follow [8].

2.1. Kuranishi structures on topological spaces. We define Ku-
ranishi spaces, following Fukaya, Ono et al. [9, §5] and [8, §A1.1].

Definition 2.1. Let X be a compact, metrizable topological space.
A Kuranishi neighbourhood of p € X is a quintet (Vj,, Ep, I'p, sp, 1) such
that:

(i) Vp is a smooth finite-dimensional manifold, which may or may not
have boundary or corners;
(ii) E, — V) is a vector bundle over V;
(iii) I'p is a finite group which acts smoothly on V},, and acts compatibly
on F, preserving the vector bundle structure;
(iv) sp:V, — E, is a I'y-equivariant smooth section; and
(v) 1y is a homeomorphism from s, 1(0)/T, to a neighbourhood of p

-1
p

We call E, the obstruction bundle, and s, the Kuranishi map.

in X, where s7"(0) is the subset of V}, where the section s, is zero.

Here we follow [9, Def. 5.1] in taking E, to be a vector bundle, rather
than a finite-dimensional vector space as in [8, Def. A1.1].

Definition 2.2. Let (V,, E,,T'p, sp, ¥p) and (Vy, Eq, Ty, sq, 1) be Ku-
ranishi neighbourhoods of p € X and q € (s, 1(0)/T,) respectively.
We call a triple (¢pq, @pqs ipg) @ coordinate change if:

(a) hpg: Ty — T'p is an injective group homomorphism;

(b) ¢pq : Vg — Vj is an hpg-equivariant smooth embedding;

(C) (dpg, bpq) is an hyg-equivariant smooth embedding of vector bun-
dles F; — Ep;

(d) équ 0 8¢ = Sp O Ppg; and

(e) 1/}q = 7/}10 © Cbpq-

We define the notions of a germ of a Kuranishi neighbourhood and a
germ of a coordinate change in the obvious way.

Definition 2.3. A Kuranishi structure on X assigns a germ of a
Kuranishi neighbourhood (V,, E,, 'y, sp, 1) for each p € X and a germ
of a coordinate change (¢pg, dpq, hipg) for each ¢ € Yp(s,1(0)/Tp), such
that the following hold:

(i) dimV, —rank E, is independent of p; and

(i) if ¢ € ¢p(s,1(0)/T) and r € ¢y(s;1(0)/Ty) then hyg 0 hgr = hypy,

¢pq o ¢qr = ¢pr and ¢pq o ¢q7’ = ¢pr'
We call vdim X = dim V), — rank E,, the virtual dimension of the Ku-
ranishi structure. A topological space X with a Kuranishi structure is
called a Kuranishi space.
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The point of these definitions is that in many moduli problems in
geometry in which there are obstructions, the moduli spaces can be
equipped with Kuranishi structures in a natural way. This holds for the
moduli spaces of J-holomorphic maps from a bordered Riemann surface
studied by Fukaya et al. [8] and Liu [17], as we shall explain in §4.

2.2. Boundaries, strongly smooth maps, and fibre products.
We now define the boundary 0X of a Kuranishi space X, which is itself a
Kuranishi space of dimension vdim X — 1. To understand the definition,
recall that in Definition 2.1(i), V,, may be a manifold with boundary, or
with corners. An n-manifold M with boundary is locally modelled on
[0,€) x (—¢,€)"!, and an n-manifold M with corners is locally modelled
on [0, €)* x (—e, €)™ *, for small € > 0. If z lies in a codimension k corner
of M then k different (n — 1)-dimensional boundary strata of M meet at
x. The boundary OM is the set of pairs (x, B), where x € M and B is a
local choice of (n—1)-dimensional boundary stratum of M containing x.

Thus, if « lies in a codimension k£ corner of M then x is represented
by k distinct points (x, B;) in OM for i = 1,..., k. The point of making
OM a set of pairs (z, B) and not points x is that this way oM is a
manifold with corners, but if we defined M as the obvious subset of
M it would not be a manifold with corners near a codimension k& corner
of M for k > 1.

Definition 2.4. Let X be a Kuranishi space. We shall define a Ku-
ranishi space 0X called the boundary of X. The points of X are equiva-
lence classes [p, v, B] of triples (p,v, B), where p € X, (V,,, Ep, Ty, 5p, ¢p)
lies in the germ of Kuranishi neighbourhoods at p, v € V}, with s,(v) =0
and 1, (I'yv) = p, and B is a local boundary stratum of V), containing v.

Two triples (p,v, B), (¢,w,C) are equivalent if p = q and 7 - (v, B) =
(w,C) for some v € I'y; we also have an obvious notion of equivalence
for choices of different Kuranishi neighbourhoods (V,, E,, Iy, sp, 1),
(V). E,,, T, 5,,1,) in the germ at p. Basically, this just means that
points of X are p € X together with a choice of boundary stratum of
the Kuranishi neighbourhoods V), lying over p, up to the action of I',.

We can then define a unique natural topology and Kuranishi structure
on 9X, with (OVj, Eplav,,, Ty, splav,: ¥plov,/r,) a Kuranishi neighbour-
hood on 90X for each Kuranishi neighbourhood (V},, Ep, I'p, sp, 1) on X.
It is easy to verify that vdim 90X = vdim X — 1, and 0X is compact if
X is compact.

Here is [9, Def. 6.6]. The equivalent definition in [8, Def. A1.13]
instead uses good coordinate systems. Fukaya et al. [8, Def. A1.13] use
the notation weakly submersive rather than strong submersion.

Definition 2.5. Let X be a Kuranishi space, and Y be a topological
space. Roughly speaking, a strongly continuous map f : X — Y consists
of a continuous map f, : V, = Y with f,oy = f, for all v € T,
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for each Kuranishi neighbourhood (V,, E,,I',, sp, ) in X, such that
if (¢pg> Bpg» Pipg) 18 a coordinate change between (Vj, By, T, sp, 1) and
(Vi Eq, Ty, 5q,%4), then fpo¢,, = f,. But because Kuranishi spaces are
defined using germs of Kuranishi neighbourhoods, we define a strongly
continuous map f to be a system of germs of I'p-invariant continuous
maps fp : Vp, — Y, satisfying f, o ¢q = f; for germs of coordinate
changes. Then f induces a continuous map f : X — Y in the obvious
way. If Y is a smooth manifold and all f,, are smooth, we call f strongly
smooth, and if all f, are submersions, we call f a strong submersion.

Fukaya et al. [8, Def. A1.37] define fibre products of Kuranishi spaces.

Definition 2.6. Let X, X’ be Kuranishi spaces, Y be a smooth man-
ifold, and f : X — Y, f/ : X’ — Y be strongly smooth maps, at
least one of which is a strong submersion, inducing continuous maps
f:X —Yand f/: X’ - Y. Then we can form the fibre product
Xxy X' ={(p,p)) € X xX": f(p) = f'(¢)}, a paracompact Hausdorff
topological space. We also write X xy X’ as X x £y X " when we wish

to specify f, f’.

Let (p,p/) S X XYX/, (‘/;), Ep, Fp, Sp, ’l/}p), ( p//, EI/)/, P;/, 3;)/, wl/)/) be Suf—
ficiently small Kuranishi neighbourhoods in the germs at p,p’ in X, X',
and f,:V, =Y, f,, : V), = Y be smooth maps in the germs of . f
at p,p’ respectively. Define a Kuranishi neighbourhood in X xy X’ by
(Vo % gy Vi (Bp @ Ep) vy xy vy, Tp X Ty,

(SP D 3;’)’Vp><YVp”7 (wp X /l/};)’)‘vaYVI;/)'

Here V), X ¢y, 1 V;, is the fibre product of smooth manifolds, defined as

(1)

at least one of fp, fl’), is a submersion. It is a submanifold of V}, x V;f,,
so we can restrict £, ® £, s, @ s), and 1y, X 1, to it.

It is easy to verify that coordinate changes between Kuranishi neigh-
bourhoods in X and X’ induce coordinate changes between neighbour-
hoods (1). So the systems of germs of Kuranishi neighbourhoods and
coordinate changes on X, X’ induce such systems on X xy X’. This gives
a Kuranishi structure on X xy X', making it into a Kuranishi space.
Clearly vdim(X xy X') = vdim X + vdim X’ — dimY, and X xy X' is
compact if X, X’ are compact.

2.3. Tangent bundles and orientations. Here is [9, Def. 5.6]. The
equivalent definition in [8, Def. A1.14] involves a choice of good coordi-
nate system.

Definition 2.7. Let X be a Kuranishi space. Then X has a germ
of coordinate changes (¢pq, Ppq, hpg) between Kuranishi neighbourhoods
(Vs Ep, Ty sp,bp) and (Vy, Eq, Ty, s4,1,). We say that X has a tangent

bundle if associated to this germ of coordinate changes ((Jgpq, bpq, hpq) We
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have a germ of I';- and h,4-equivariant isomorphisms of vector bundles
over V:

GulBr) | Oy(TV:)
Sl By (@) (TV;)

where QAﬁpq : By — ¢p,(Ep) and dgpy @ TV, — ¢5,(TV,) are mor-
phisms of vector bundles over V,. These must agree on triple overlaps:
if (Vszp,Fpasp,wp), (Vq,Eq,ansq,wq) and (WyEraFr73r7¢r) are Ku‘
coordinate changes between them with QASPT <J5pq o ¢qr, ¢pr = ¢pq © ¢qr
and hy,, = hpq © hgr, then the following diagram of vector bundles over
V., must commute:

(2) Xpq

0 ?ZT(Eq) 0% (dpq) (?;'r(EP) project ¢;T(E”) 0
bqr(Er) bpr(Er) % (dpq(Eq))
Xgr Xpr \L ¢;T'(qu) l
0 Gu(TVe) %arld9ra) g3 (TV,)  project 5 (TVp) .0
(degr)(TVr) (dépr)(TVr) ¢35 (ddpq) (Pgr)* (TVq) )

We can now discuss orientations of Kuranishi spaces.

Definition 2.8. Let X be a Kuranishi space with a tangent bundle.
We say that the Kuranishi structure on X is oriented if associated to
the germ of Kuranishi neighbourhoods (V},, Ep,I'p, $p, 1) on X we are
given a germ of orientations of the fibres of the vector bundles £, TV,
varying continuously over V,,. These must be compatible on overlaps,
in the following sense. Let (ngpq, ®pg> hpg) be in the germ of coordinate
changes, and x,, be as in (2).

Thenifv € Vg and (e, ... el"), (t}, ..., t7) are bases of Egl, and T,V
such that (e} IR ;”,té, .., ty) is an oriented basis of (K, ®TV,)|y, and

(eps--- e p7¢PQ( B Opa(€]))s (ty oot (Apg) (), - (dopg) (1)
are bases of Eplg,. (v)s T, (v)Vp such that qu(e + ¢pq(E b)) = th +

(d¢pq)(TV) for 4 < k then (611)7 ct p7¢pq( )7"'7¢;Dq( )7 Pyt
t’;, (dppq)(ts), - - -, (dppg)(t7)) is an oriented basis for (B, EBTV D) bpq (v)-

2.4. Orientation conventions. Suppose X, X’ are Kuranishi spaces
with tangent bundles and orientations, Y is an oriented smooth mani-
fold, and f: X =Y, f/ : X’ = Y are strongly smooth maps. Then
by §2.2 we have Kuranishi spaces 0X and X xy X’. These can also be
given orientations in a natural way. We use the orientation conventions
of Fukaya et al. [8, §8.2].

Convention 2.9. First, our conventions for smooth manifolds:
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Let X be an oriented smooth manifold with boundary dX. Then
we define the orientation on X such that

TX|ox = Roue @ T(0X)

is an isomorphism of oriented vector spaces, where Ry is oriented
by an outward-pointing normal vector to 0.X.

Let X, X", Y be oriented smooth manifolds, and f: X — Y, f:
X' — Y be smooth submersions. Then df : TX — f*(TY) and
df : TX" — (f)*(TY) are surjective maps of vector bundles over
X, X’. Choosing Riemannian metrics on X, X’ and identifying the
orthogonal complement of Kerdf in TX with the image f*(TY)
of df, and similarly for f’, we have isomorphisms of vector bundles
over X, X":

TX 2Kerdf ® f*(TY) and TX = (f)*(TY)® Kerdf'.

Define orientations on the fibres of Kerdf, Kerdf’ over X, X’
such that (3) are isomorphisms of oriented vector bundles, where
TX TX' are oriented by the orientations on X, X', and f*(TY),
(f)*(TY) by the orientation on Y. Then we define the orientation
on X xy X’ so that

T(X xy X') 2 i (Kerdf) & (f o 7x)*(TY) & wi (Ker d )
> 1% (Kerdf) @ mi (TX')
=~ 1% (TX) & 7 (Kerdf')

are isomorphisms of oriented vector bundles. Here mx : X xy X' —
X and mx : X xy X’ — X' are the natural projections, and
forx = flomx:.

Note that the second line of (4) makes sense if f is a submer-
sion but f’ is only smooth, and the third line makes sense if f’
is a submersion but f is only smooth. Thus, our convention ex-
tends to fibre products X X sy X’ in which only one of f, f’ is a
submersion.

Here is how to extend (b) to X, X’ Kuranishi spaces:

()

Let X, X’ be oriented Kuranishi spaces, ¥ an oriented smooth
manifold, and f: X — Y, f : X’ — Y strong submersions. Take
Kuranishi neighbourhoods (V,, Ep, L'y, $p,¥p), ( p’,, E;,, F;,, s;,, 1%/)
for X, X', respectively. First, choose orientations of V,, and Vp’,,
and we have the orientation of V,, xy V; by Convention 2.9(b).
Secondly, the orientations of E, © T'V, and EI’,, S3) TV;, induce the
orientation of (E, & EZ’,,)|VPXYVI:I & Ty (Vp Xy V;f,). Then we

define an orientation of the Kuranishi neighbourhood (1) with the
following sign correction term:
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rank £/, (dim Vp—rank Ep—dimY')
(—1) P P P (EP@EI/)’NVPXYVZ:/GBT(I?,I?')(VED Xy Vp//),
where —1 means the opposite orientation. This orientation con-
vention is independent of the choice of Kuranishi neighbourhood.
It extends to only one of f, f’ a strong submersion as in (b).

If X is a Kuranishi space with tangent bundle and orientation, we will
write —X for the same Kuranishi space with the opposite orientation.
Here is [8, Lem. 8.2.3], except the second line of (5), which is elementary.

Proposition 2.10. Let X, Xo,... be Kuranishi spaces with tangent
bundles and orientations, Y,Y1,... be oriented smooth manifolds with-
out boundary, and f, : X7 = Y,... be strong submersions. Then the
following hold, in Kuranishi spaces with tangent bundles and orienta-
tions:

(a) For f1: X1 =Y and fy: Xo — Y we have
8(X1 Xy Xg) = (8X1) Xy X2 11 (—1)VdimX1+dimYX1 Xy (E?Xg)

and X1 Xy Xy = (_1)(vdimXl—dimY)(vdisz—dimY)X2 xy X7.

(5)

(b) For f1: X1 = Y1, fo:Xo— Y1 XYy and f5: X3 — Yo, we have
(X1 Xyl Xg) Xy2 X3 = X1 Xyl (X2 Xy2 Xg).
(¢) For f1: X1 = Y1 xYs, fo:Xo—Y) and fq: X3 — Yo, we have

Xl XY1><Y2 (X2 % Xg) — (_1)dimY2(dimY1+VdimX2)(X1 XYl XQ) XY2 X3.

2.5. Good coordinate systems. Good coordinate systems are conve-
nient choices of finite coverings of X by Kuranishi neighbourhoods, [9,
Def. 6.1], [8, Lem. A1.11].

Definition 2.11. Let X be a compact Kuranishi space. A good coor-
dinate system on X consists of a finite indexing set I, an order < on I,
a family {(Vi, EL T st ) ii € I} of Kuranishi neighbourhoods on X
with X = (J;c;Im®°, and for all ¢, j € I with j < i and Im ¢’ NIm )7 #
0, a quadruple (V¥ B, i hid ), where V¥ is a I'V-invariant open neigh-
bourhood of (¢7)~Y(Ime?) in VI, and (¢%,$",hi7) is a coordinate
change from (V% E7 |5, 17, 87|75, 97 |y45) to (V' B, T s*,4"). When-
ever i,j,k € I with k < j < i these should satisfy ¢¥ o ¢i¥ = ik,
Y o ¢k = ¢* and h o Wik = Kk over (¢7F)~L (V)N VIk O Vik,

Then Fukaya and Ono prove [9, Lem. 6.3], [8, Lem. A1.11}]:

Proposition 2.12. Let X be a compact Kuranishi space and {U,, :
a € A} an open cover of X. Then there exists a good coordinate system
on X such that for each i € I we have Im* C U, for some o € A.
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2.6. Chains and homology. Let Y be a smooth manifold. We now
explain the complexes we will use to define the homology of Y. We shall
work throughout with singular homology defined using smooth simplicial
chains on Y, following Fukaya et al. [8]. Write Ay, for the k-simplex

(6) {($07...,$k)€Rk+lixi207 x0+...+xk:1}.

The singular chain complex (C’ii(Y;Q),ﬁ) of Y has C§(Y;Q) the Q-
vector space with basis smooth maps f : Ay — Y, and boundary oper-
ator 0 : C3(Y;Q) — C},(Y;Q) given by

(7) 0: ZaeA Pa fa — ZaeA Zizo(_l)jpa(‘f[l ° ij)’

where for j = 0,...,k the map Ff HVAVSEEEE SUAVAS Ff(:z:o,...,xk_l) =
(z0y--,2j—1,0,2j,...,2_1). The singular homology HS(Y;Q) of YV is
the homology of (Cji(Y; Q), 8).

However, following Fukaya et al. [8], when we define A ¢ algebras and
Ay algebras below we will not use the full chain complex (C’ii(Y; Q), 8),
but certain subcompleres (QX,0). When we do this, we will use the
following conventions:

e X is a countable set of smooth maps f : Ap — Y, ranging over
different kK = 0,1,..., and allowing & > dim Y. We generally refer
to elements of X as f, taking the domain Ay of f (that is, the
choice of kK =0,1,...) to be implicit.

e QX is the graded Q-vector subspace of C%/(Y; Q) with basis X.

o If f € X maps Ay — Y, then foF;C € X for j =0,...,k.
Thus QX is closed under 9 by (7), and (QX,9) is a subcomplex
of (C’ii(Y; Q), 8). The inclusion QX — C$(Y; Q) induces a mor-
phism H,(QX,0) — H(Y;Q) from the homology of (QX,d) to
the singular homology of Y. We require X to be chosen so that
this morphism is an isomorphism.

e We shall also consider (completed) tensor products QX A% with
a Novikov ring Al,, = A, or Aney. Then (QX®AZL,0) is a

nov nov
complex of A} -modules.

The reason for using countably generated subcomplexes (QX,0) is
that in the construction of an A, algebra for a Lagrangian submanifold,
when we perturb our moduli spaces ./\_/lznfiln(a, B, J) to make them trans-
verse, just one perturbation is not enough, we need a different choice
of perturbation for each k-tuple (f1,..., fx) of chains fy,..., fx in our
chain complex QX. To keep these choices under control, we cannot
work with the full complex C$/(Y;Q), but only with countably gener-
ated subcomplexes QX, which are constructed together with associated
perturbations of _?filn(a,ﬁ, Jy fiy..o, fr) for fi,..., fr € X using an
inductive method. The following proposition will be an important tool
in constructing such X.
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Proposition 2.13. Let Y be a compact manifold, possibly with cor-
ners. Let W be a countable set of smooth maps f : Ap — Y, ranging

over different k = 0,1,.... Then there exists a countable set X of
smooth maps f : A, — Y, ranging over different k = 0,1, ..., with the
following properties:

(i) wcCax;

(ii) iof f: A — Y liesin X and k > 0 then foF}C tAp_1 = Y lies
i X forall j=0,...,k; and

(i) part (ii) implies that QX is closed under 0, and a subcomplex of
the singular chains C$(Y; Q). We require that the natural projec-
tion H,(QX,0) — HS(Y;Q) should be an isomorphism.

2.7. Multisections and virtual chains. In many geometric situa-
tions, if a moduli space X is singular or does not have the expected
dimension, then one can make a small perturbation to get a new mod-
uli space X’ which is smooth and of the expected dimension. The Ku-
ranishi structure formalism allows us to make these perturbations in
an abstract way. The basic idea is to choose a good coordinate system,
as in Definition 2.11, and then perturb the sections s* : Vi — E’ to
smooth §° : V' — E® which are transverse, that is, d5* : T,V* — E' is
surjective for each v € (5)71(0). Then (5%)~%(0) is a smooth manifold
of dimension vdim X. The perturbations 3%, 5’ must be compatible on
the overlaps V4.

However, it may be impossible to choose 3° both transverse and I'-
equivariant. To deal with this, Fukaya and Ono [9, §3], [8, §A1] intro-
duce multisections.

Definition 2.14. Let (V, E,T', s,v) be a Kuranishi neighbourhood
on some space X. For each n > 1, write S"E — V for the quotient of
the vector bundle E® — V = E x --- x E — V by the symmetric group
Sy. That is, the fibre of the bundle S"E over v € V' is (E|,)"/Sh.

Define an n-multisection s of the orbibundle £ — V to be a contin-
uous, ['-equivariant section of the bundle S"E — V. An n-multisection

s is called liftable if there exists § = (s1,...,sy,) : V — E™ with each s,
continuous such that s = 7o §, where 7 : E™ — S™FE is the projection.
Note that we do not require the s, for a = 1,...,n to be I'-equivariant.
A liftable n-multisection s is called smooth if it has a lift § = (s1,...,s,)

with each s, smooth, and transverse if these smooth s, are transverse,
that is, ds, : T,V — E is surjective for each v € s;(0). When V has
corners, we also require that the restriction of each s, to each codimen-
sion k corner of V should be transverse. This implies that s;'(0) is a
submanifold of V', of dimension dim V' — rank F, with corners.

For n,m > 1, there is an obvious map E™ — E™ in which each FE
factor of E™ is repeated m times. This induces a map S"E — S™"E.
Composing with this maps an n-multisection to an nm-multisection.
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An n-multisection s and an m-multisection s’ are called equivalent if
the induced nm-multisections coincide. A (smooth, or transverse) mul-
tisection s of E — V is defined to be an equivalence class of (smooth,
or transverse) n-multisections s over all n.

We now sketch the construction of virtual chains in Fukaya and Ono
[9, §3 & §6], [8, §A1], without going into detail. Let X be a compact
Kuranishi space with a tangent bundle and an orientation, which may
have boundary or corners, let Y be an orbifold, and g : X — Y a
strongly smooth map. By Proposition 2.12 we may choose a good coor-
dinate system I = (I, <, (V.. 9% i€ I) for X, and smooth maps
g' : V' — Y representing g for i € I, with g’ 0 ¢ = ¢’|;,i; when j < i
in I and Imv’ NIm+’ # (). By induction on i € I in the order <,
for each i € I Fukaya and Ono choose a sequence (s)°°; of smooth,
transverse multisections on (V¢ E* T s* 4"), such that st — s’ in the
C° topology as n — oo.

When j < i in I and Im+’ N Imy? # (), the (s il)oo | and (s},)%°
satisfy compatibility conditions: we have ¢¥ o s = st 0 ¢ on V¥ for
all n = 1,2,.... Furthermore, since X has a tangent bundle we have
1somorphlsms X” over V¥ as in (2), and Fukaya and Ono use these and
qﬁ” o 57, to prescribe s¢, on an open neighbourhood of ¢ (V”) in V2.

If the multisections s!, were single-valued sections of E?, then as they
are transverse (s:)~1(0) would be a smooth oriented I'-invariant sub-
manifold of V* of dimension vdim X, so (s%)~1(0)/I'* would be a smooth
orbifold. The compatibility conditions over V” mean that ¢¥ induces
a local diffeomorphism of (s)~1(0)/T* and (s7,)~1(0)/T7 over V¥ /T7.
Gluing the (si)71(0)/T'? for fixed n and all i € I together using ¢%
yields a smooth oriented orbifold X,,. When n >> 0, so that (s%)~1(0)
is C° close to (s*)~(0), this X,, would be both compact and Hausdorff,
so we would have perturbed X to a compact, smooth, oriented orbifold
X,, of dimension k = vdim X, which may have boundary or corners.

The smooth maps ¢* : V' — Y would glue together to give a smooth
map Gn : Xn — Y. We would then choose a triangulation of X, by
smooth singular simplices f, : Ay, — X, for a € A, a finite indexing set.
The virtual chain for (X, g) would then be VC(X,g) = 3" c 4 €a(gno fa)
in C’Zi(Y;Q), where €, is 1 if f, is orientation-preserving, and —1 if f,
is orientation-reversing. If 9X = ) then dX,, = ), so VC(X,g) = 0.
Then VC(X,g) is called the virtual cycle of (X,g), and its homology
class [VC(X,g)] € H(Y;Q) is independent of choices of I,s
and is called the virtual class of (X, g).

Although the multisections s’ are not in general single-valued sec-
tions of E?, we can still follow the method above, with some adaptations.
Represent s, by a liftable m-multisection on V* with lift (s, ..., Shom)-
Then each (s n’b) 1(0) is an oriented submanifold of V', not necessarily

n=1

7n7
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[i-invariant. In place of (sf,)~'(0), we write 7= >3, (s?, )7 (0), con-
sidered as a Q-linear combination of oriented submanifolds of V*, and
this is then I'-invariant, and essentially independent of the choice of
m-multisection and lift (Sil,l, e ,s;7m) representing 5. Here we do not
distinguish sheets of 1 Zgbzl(sihb)_l(O) that lie on top of each other
locally, but regard them as a single sheet and add up the multiplicities
L. So we regard (L Zznzl(sgb)_l(O))/F" as a kind of non-Hausdorff
suborbifold of V*/T%, with multiplicity in Q.

With this convention, we can glue the (L Zg”zl(sﬁhb)_l(O))/Fi for all
i € I using the ¢” to get a kind of compact, oriented, non-Hausdorff
orbifold X,, with multiplicity in Q, with a smooth map g, : X, — Y.
Fukaya and Ono then triangulate X, into k-simplices fo, : Ap — X,
such that on the interior f,(A}) of each simplex X, is Hausdorff and the
multiplicity is a constant ¢, € Q. The wvirtual chain or cycle VC(X,g)
is then defined to be >, 4(€aca)(Gn © fa) in CP(Y;Q), as in §2.6.

Perturbation data is the choices for constructing a virtual chain.

Definition 2.15. Let X be a compact Kuranishi space with a tangent
bundle and an orientation, Y an orbifold, and g : X — Y a strongly
smooth map. A set of perturbation data sx for (X, g) consists of a good
coordinate system I = (I, < (Vi 9% i€ I) for X, and smooth
maps g : Vi — Y representing g for i € I, with g’ o ¥ = ¢/|;,;; when
j <idin I and Im4'NIm? # (), and smooth, transverse multisections s°
on (V¢ E* T s 4") for i € I which are compatible on overlaps V¥ and
near ¢ (V%) as above, and such that each s° is sufficiently close to s
in C° that the construction of virtual chains above works; in particular,
gluing the (s5°)71(0)/T¢ for all i € I together as above should yield a
compact oriented non-Hausdorff manifold X with corners.

The last item in a set of perturbation data is a choice of triangulation
of X into k-simplices f, : Ay — X for a € A, where k = vdim X and A
is a finite indexing set, such that on the interior f(A7) of each simplex
X is Hausdorff and the multiplicity is a constant ¢, € Q. We shall
often use sx, or similar notation, to denote this collection of data. The
virtual chain or cycle VC(X,g,sx) constructed using this data sy is
then defined to be VC(X,g,5x) = Y ,ca(€aca)(g o fa) in CP(Y;Q),
where ¢, is 1 if f, is orientation-preserving, and —1 if f, is orientation-
reversing.

Remark 2.16. (a) Perturbation data involves not a series (s%,)%
for each (V7,...,9"), but only a single choice s°, which we think of
as s' for some fixed n > 0. Because of this, we have to require the
s’ to be ‘sufficiently close to s’ in C?’. This is rather unsatisfactory,
and will cause problems later; the reason why we have to introduce
ANy algebras, rather than going straight to A., algebras, is roughly
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speaking that we can make only finitely many choices of s' at once and
still have these ‘sufficiently close’ conditions satisfied.

(b) When we choose perturbation data sy for (X, g), we usually need
VC(X,g,sx) to lie in some chain complex QX as in §2.6. That is, we
need go f, : Ay — Y to lie in X for all a € A. When this happens we
will say that ‘the simplices of VC(X, g,sx) lie in X”. Actually, we first
choose more-or-less arbitrary perturbations sy, and then enlarge X so
that it contains the simplices of VC(X,g,s5x). We never try to choose
sx so that the simplices of VC(X,g,sx) lie in a fixed complex X, as
this would probably be impossible.

(c) Given perturbation data sx for (X, g), we can restrict it to pertur-
bation data sx|px for (0X,glsx) in a natural way, and then the vir-
tual chains satisfy OVC(X,g,s5x) = VC(0X,glox,5x|ox). Conversely,
given perturbation data syx for (0X,glgx), we often want to choose
perturbation data sx for (X,g) with sx|gx = sgx, or at least, we
want sx|gx and spx to be equivalent in some sense that implies that
VC(0X,glaox,sxlox) = VC(0X,glox,ssx). But there is a problem
here, that referred to in (a) above, as the condition sx|9x = s9x may
not be compatible with the condition that the s° in sx are ‘sufficiently
close to s in CV°.

3. Introduction to A, algebras and Ay i algebras

A algebras were introduced by Stasheff [20]. The following treat-
ment is based on Fukaya et al. [8], and uses their conventions. Two
survey papers by Keller [12, 13] are useful introductions; note that [13]
uses the conventions of [8], as we do, but [12] has different conventions
on signs and grading. We restrict to A, algebras over QQ, but one can
also work over any commutative ring R.

3.1. (Weak) A, algebras and morphisms. Following [8, §3.2.1],
we define

Definition 3.1. A weak A algebra (A,m) (over Q) consists of:
(a) A Z-graded Q-vector space A =,z A% and

" k copies

(b) graded Q-multilinear maps my : A x ---x A— A for k=0,1,...,
of degree +1. That is, m; maps A% x ... x A% — Ad++detl
for all di,...,d; € Z. When k = 0 we take mg € A'. Write
m = (Mg )k=0

These must satisfy the following condition. Call a € A pure if a €
A9\ {0} for some d € Z, and then define the degree of a to be dega = d.
Then we require that for all £ > 0 and all pure aq,...,a; in A we have

i—1
Z (_1)Zl:1 degalm/ﬁ (alv ceey Qi—1, Mpy (aiv oo 7ai+k2—1)7

8) .
i,k1,k2:1<i<ky, . —
Ko, k-Hha=h-+1 Githy --->0k) = 0.
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We call (A, m) an Ay, algebra if it is a weak A, algebra and my = 0.

rk : b
We sometimes write AX" for A x -+ x A, to distinguish it from the k™

graded subspace A* of A =@ ez Al

If (A, m) is an A, algebra, so that mg = 0, then (8) for k£ = 1 becomes
m; omy(a;) = 0. Thus my : A — A is a graded linear map of degree
+1 with m; om; = 0, so (4, m;) is a complex, and we can form its
cohomology H*(A) by

_ Kermy : AP — APH!
B Imm1 APl 5 AP

HP(A)

Then my for £ > 1 induce various operations on H*(A). For exam-
ple, (8) when k = 2 yields ma(my(ay),az) + (—1)%8%my(ar, my(az)) +
my(mg(aq,az)) = 0. This implies that the bilinear product e : HP(A) X
H9(A) — HP+I+L(A) given by

(a1 4+ Immy) e (az 4+ Imm,;) = (—1)(desatbdegazyy, (4, g0) + Tmm,
is well-defined. Then (8) when k = 3 implies that e is associative.

If (A, m) is only a weak A, algebra, with mg # 0, then (8) for k =1
yields

mp o ml(al) = —mg(mo,al) — (—1)d°g“1m2(a1,mo).

So we may no longer have m; om; = 0, and we cannot form the co-
homology H*(A). We regard my as the obstruction to (A, m;) being a
complex.

Equation (8) can be expressed more naturally using the bar complex
of (A, m).

Definition 3.2. Let (A, m) be a weak A, algebra. The tensor coal-
gebra T(A) of A'is T(A) = @, A®" where we write A% = Q. Tt is
graded in the obvious way, so that T'(A)% = Dy totd,—a AL ®...@ A,
It has a coproduct A : T(A) — T(A) @ T(A) given by

Alar @+ ®an) =35 _ola1 ® - @ ag) ® (ag+1 ® -+ @ an),

taking the £k = 0 and k = n terms to be 1 ® (a1 ® -+ ® ay,) and (a1 ®
-+ ® ap) ® 1 respectively. Define a linear map my : T(A) — T(A) for
k > 0 by

n—k+1
Mo @ @ap) = »  (—1)IEaTHBUg @@ g @
EUmg(a, e aee1) @ A ® - ® ag,
for all » > 0 and pure aq,...,a, in A. In the case k = n = 0 we set

mg(A) = dmg € A! for A € Q. Define d = > pe oM. Then d:T(A) —
T'(A) is a graded linear map of degree +1, and equation (8) is equivalent

todod =0, so that (T(A), d) is a complex, the bar complex of (A, m).
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Note too that mj and d are derivations for the coproduct A, so that
(T(A), A, d) is a differential graded coalgebra.

Here is the notion of morphism of A, algebras.

Definition 3.3. Let (A,m) and (B,n) be Ay algebras. An A
morphism § : (A,m) — (B,n) is f = (fx)x>1, where fj : A** 5 B for
k=1,2,... are graded Q-multilinear maps of degree 0, satisfying

i—1
Z (—1)Zi=rdeBag, o (an,. .. i,

(©) 1Si<y<k m_i(a,...,aj-1),a;,... ,ak)
= > 0 (i (@1, @y ), Fra—i (@415 - - i),
O<ky<ka<--<kj=k B @ a1 an))s
for all £ > 0 and pure aq,...,a; in A. We can rewrite (9) in terms of

the bar complexes of (A, m) and (B, n): define f : T(A) — T(B) by
flar® - @an) = Y fiy(ar, o an,) Ok (k415 a1,
0<k1<--<ki=n

(10)

e ®sz—sz1(&sz1+1’ ce ’akz)v

forallm > 0and aq,...,a, in A. Then (9) is equivalent to dgof = fod 4 :
T(A) — T(B), that is, f is a morphism of bar complexes (T'(A),ds) —
(T(B),dp). It also intertwines the coproducts Aq, Ag on T(A),T(B).

We call an A, morphism § : (4, m) — (B, n) strict if f, = 0 for k # 1,
an Ay, isomorphism if f1 : A — B is an isomorphism of vector spaces,
and a strict Ase isomorphism if it is both strict and an A, isomorphism.
When n = 1, equation (9) becomes f; omy =njof; : A — B. Thus f; is
a morphism of complexes (A, m;) — (B, n;), and induces a morphism of
cohomology groups (f1)« : H*(A) — H*(B). We call f a weak homotopy
equivalence, or quasi-isomorphism, if (f1)« is an isomorphism.

If (A,m),(B,n),(C,0) are A algebras and §: (A,m) — (B,n), g :
(B,n) — (C,0) are Ay morphisms, the composition gof: (A,m) —
(C,0) is given by

(11) (gof)n(al’ s ’an) ZZ g (f/ﬁ (alv s ’ak1)7 sz—lﬁ (ak1+17 v 7ak2)7

0<k1 < <kj=n . 7fkl—kl71 (akl—1+1’ c. ,akl)) .

On bar complexes this implies that (gof) = go f. Composition is
associative.

This definition of A, morphism also makes sense for weak Ao, al-
gebras, allowing n > 0 and ¢ < j in (9). In the weak case it would
look more natural to take f = (fx)r>0, and include fy terms in (9) and
(10). However, both (9) and (10) would then become infinite sums, for
instance, (10) when n = 0 would be f1(mg) = >, (fo, - - -, o). So we
would need an appropriate notion of convergence of series in A, B. But
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the definition of weak homotopy equivalence does not make sense for
weak Ay algebras, since H*(A), H*(B) are not defined.

3.2. Homotopy between A., morphisms and algebras. Now let
(A,m), (B,n) be Ay, algebras, and f,g : (A,m) — (B,n) be Ay mor-
phisms. We will define the notion of homotopy $ from § to g. Our defi-
nition is based on Keller [12, §3.7]. Fukaya et al. [8, §4.2.1-84.2.2] use
a different, more complicated definition, involving ‘models of [0, 1] x B’,
but they show in [8, Prop. 4.2.40] that the two definitions yield the same
notion of whether f, g are homotopic.

Definition 3.4. Let (A, m), (B,n) be A algebras, and f, g : (A, m)—
(B,n) be Ay, morphisms. A homotopy from § to g is $ = (9x)x>1, where

i : A" 5 Bfor k= 1,2,... are graded Q-multilinear maps of degree
—1, satisfying

(12) fn(al, ..., an) —gnlal, ... ay) =
> Wt (Fio (a1, -5 @50), Fiomin (@G0415 - 05)
s S g (@ s @)y Ok gy (@G, - Ay,
kg —tiy (Qhy 15 - vy Qhig)s v s Bl —kon 1 (@heyyy 4415 - - - ,akm))
Xii deg a;

+ Z(—l)’ ! n—jrirr(ar, o asmy_i(@ig1, .., a5), 541, .., an),
0<i<j<n

for all n > 0 and pure ay, ..., a, in A. We can rewrite (12) in terms of
the bar complexes of (A, m) and (B,n): define ) : T(A) — T(B) by

Har1® - @an)=> | filar,. . a5) @ Fjp gy (@41, -0, 05) @ @

0<j1<jo<--<5i< §. . . . . )
klngQ...<kmjl:n f]l_]l—l(a]l—1+17 s 7a]z)®'6k1—ﬂ (aJH-l? s 7ak1)
& Gko—k: (ak1+17 s 7ak2) @ O Gh—k 1 (a’kmfﬁ-lv s 7a/€m)7

for all n > 0 and ay,...,a, in A. Then ) satisfies AgpoH) = fRH+H®
§) oA, and (12) is equivalent to f — g = dg o + $Hoda, so that | and
g are homotopic as morphisms of chain complexes in the usual sense.

A algebras form a 2-category, with A,, morphisms as 1-morphisms,
and homotopies as 2-morphisms. We will sometimes write a homotopy
$H from f to g as  : §f = g, using 2-category notation. There are
various notions of composition between homotopies and A.,-morphisms:
given f, g, : (A,m) — (B,n) and  : f = g, J: g = bh, we can
define 3o § : f = h. Given f,g : (A,m) — (B,n), h : (B,n) —
(C,0) and § : f = g, we can define hoH : (hof) = (hog). Given
f: (A m) —» (B,n), g,bh: (B,n) = (C,0) and J : g = bh, we can
define Jof: (gof) = (hof). The definitions, as compositions of maps
§is Ok, Ok, Ok, I, are straightforward. They satisfy the usual 2-category
associativity properties.
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Definition 3.5. Let (A, m), (B,n) be A algebras, and f: (4, m) —
(B,n) an Ay, morphism. A homotopy inverse for § is an A, morphism
g : (B,n) —» (A,m) such that gof : (A,m) — (A4, m) is homotopic
to idy : (A,m) — (A,m), and fog : (B,n) — (B,n) is homotopic to
idg : (B,n) — (B,n). If f has a homotopy inverse, we call f a homotopy
equivalence, and we call (A, m), (B,n) homotopic.

The following theorem is proved by Fukaya et al. [8, Cor. 4.2.44,
Th. 4.2.45(1)]; see also Keller [12, §3.7], who cites the thesis of Prouté
(Paris, 1984).

Theorem 3.6. Let (A, m), (B,n) be As algebras. Then:

(a) Homotopy is an equivalence relation on A morphisms f: (A, m)—
(B,n).

(b) Homotopy is an equivalence relation on A algebras.

(¢) An Ass morphism § : (A,m) — (B,n) is a homotopy equivalence
if and only if it is a weak homotopy equivalence.

In practice, homotopy is a more useful notion of when two A, al-
gebras are ‘the same’ than either A, isomorphism or strict A, iso-
morphism. We are interested in properties of A, algebras which are
invariant under homotopy. Constructions of A, algebras generally de-
pend on some arbitrary choices (such as the almost complex structure
J below), and different choices yield homotopic but not (strictly) iso-
morphic A, algebras.

3.3. Minimal models, and sums over planar trees. An A, alge-
bra (B,n) is called minimal if n; = 0, so that H*(B) = B. If (A, m)
is an A, algebra, then one can make H*(A) into a minimal A al-
gebra (H*(A),n), such that there is an As-morphism 7 : (A,m) —
(H*(A),n) inducing the identity in cohomology. Thus (H*(A),n) is
homotopic to (A, m). We call (H *(A),n) a minimal model or canonical
model for (A, m). It is unique up to A isomorphism. We will explain a
proof of this using the method of sums over ‘planar rooted trees’ due to
Kontsevich and Soibelman [15, §6.4]; see also Markl [18] and Keller [13,
Th. 2.3].

Definition 3.7. A planar rooted tree is a finite, connected, simply-
connected graph T in the plane R?, whose vertices are divided into k+ 1
external vertices numbered 0,1, ..., k, and at least one internal vertices.
Each external vertex must be connected to exactly one edge, and the
external vertices should be cyclically ordered, in the sense that if we
embed T into the unit disc {22 +y? < 1} such that TN {z? +y? = 1} is
vertices 0,1, ..., k, then the external vertices appear in the cyclic order
0,1,...,k anticlockwise around the circle.
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Here when we say T is a graph in the plane, we mean that T is
embedded in R? up to continuous deformations. Since T is simply-
connected, such an embedding class of T is equivalent to prescribing
the cyclic order of the edges at each vertex.

We call vertex 0 the root of T, and vertices 1,...,k the leaves of T
Define a unique orientation on T such that each edge is oriented in the
direction of the minimal path to the root vertex. Then every vertex
except the root has exactly one outgoing edge, and the rest incoming
edges. We call an edge the root edge if it is connected to the root vertex,
a leaf edge if it is connected to a leaf vertex, and an internal edge if it
is connected to no distinguished vertices. (See Figure 3.1(a).)

) 4

Figure 3.1. (a) A planar rooted tree (b) operators assigned to it

Definition 3.8. Let (A, m) be an A, algebra. Then (A, m;) is a com-
plex. Let B be a graded vector subspace of A closed under my, such that
the inclusion i : B < A induces an isomorphism i, : H*(B,my|g) —
H*(A,my). We will construct n = (ng)x>1 making (B,n) into an A,
algebra homotopic to (A, m).

Since i, is an isomorphism, we can choose a graded vector subspace
C of A such that C NKerm; = {0} and A = B® C ® m;(C). Then
m; : C — my(C) is invertible, so there is a unique graded linear map
H:A— A of degree —1 with H(b) = H(c) = 0 and H om;(c) = ¢ for
allb € Band c € C. Let IIg : A — B be the projection, with kernel
C ®my(C). Then idy —IIp =m; o H + H omy on A.

For each planar rooted tree T" with k leaves, define a graded mul-
tilinear operator n, 1 : B x* 5 B of degree +1, as follows. To define
ng 7(b1,...,by), assign objects and operators to the vertices and edges
of T

e assign by, ...,b; to the leaf vertices 1, ...,k respectively.

e for each internal vertex with 1 outgoing edge and n incoming edges,
assign m,,.

e assign ¢ to each leaf edge.

e assign Il to the root edge.
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e assign —H to each internal edge.

This is illustrated in Figure 3.1(b). Then we define ny 7(b1,...,b;) to
be the composition of all these objects and morphisms, where we follow
the orientations of the edges, and at each interior vertex with 1 outgoing
edge and n incoming edges, we apply m, to the n inputs from the n
incoming edges in the order counting anticlockwise from the outgoing
edge. In the example of Figure 3.1, this yields

l‘lg,T(bl, ce ,bg) :H0m3(—HOm3(’i(b1), —Homg(i(bg), Z(bg)), —H(mo)),
— H omy(—H omy(i(bs),i(bs))),
— H o mg(—H (¢] mg(i(bfj),i(b7),i(bg)),i(bg))).

This includes an mg term, and so is zero in the A, algebra case.

Define n; = my|p, and for k > 2 define n, = >, ny 7, where the sum
is over all planar rooted trees T' with k leaves, such that every internal
vertex has at least three edges. (This excludes Figure 3.1. For filtered
A algebras we will also allow internal vertices with one or two edges.)
This condition implies that T" has at most 2k vertices and 2k — 1 edges,
so there are only finite many such trees T', and ny = Y, ny 7 is a finite
sum.

In a similar way, for each planar rooted tree T with k leaves, define
a graded multilinear operator iy 7 : B ¥ 5 A of degree 0, as follows.
Assign objects and operators to the vertices and edges of T

e assign by, ...,b; to the leaf vertices 1, ...,k respectively.
e for each internal vertex with 1 outgoing edge and n incoming edges,
assign m,,.

e assign ¢ to each leaf edge.
e assign —H to the root edge and to each internal edge.

Define i; 7(b1,...,b;) to be the composition of all these objects and
morphisms. Define iy : B — A by iy = ¢, and for & > 2 define i =
> r ik, where the sum is over all rooted planar trees T with k leaves,
such that every internal vertex has at least three edges. Then Markl
[18] proves:

Theorem 3.9. In Definition 3.8, (B,n) is an A algebra, and i :
(B,n) — (A,m) is an As, morphism, and a homotopy equivalence. If
we choose B = H*(A) to be a subspace representing H*(A), so that
n =my|p =0, then (B,n) is a minimal model for (A,m).

Markl [18] also gives much more complicated explicit formulae for a
homotopy inverse j : (4, m) — (B,n) for i and a homotopy $) from ioj
to id 4. Later we will need a special case of this construction.
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Definition 3.10. Let (A,m) and (D,0) be Ay algebras, and p :
(A,m) — (D, o) astrict, surjective Ao, morphism which is a weak homo-
topy equivalence. That is, pp = 0 for k # 1, and p1 : A — D is surjective
and induces an isomorphism (p1). : H*(A,my) — H*(D,01). In Defini-
tion 3.8, choose the subspaces B, C' of A such that C' @ my(C) = Ker py,
and p1|B : B — D is an isomorphism. This is possible as p; is surjective
and (p1)« is an isomorphism.

As p is a strict Ao morphism, we have pjom; = 0j0(py X ---xpy) for
all j =1,2,.... Since Kerllg = Kerp; and Im H C Ker py, this implies
that IIgom;(ay,...,ai—1,—H(a;), ait1,...,a;) =0forallaj,...,a; € A
and ¢ = 1,...,j. Applying this to the root vertex of 1T, we see that
n, 7 = 0 in Definition 3.8 whenever 7" has an internal edge. Thus, the
only nonzero ny, 7 is the unique 7" with one internal vertex and k leaves,
and we have ny =IIgpomyo (i x ---x 1) for all k =1,2,.... Comparing
this with p; omy = 0, o (p1 X -+ X p1) and noting that p1|B : B — D is
an isomorphism, we see that p1|B : B — D identifies my, and oy, for k =
1,2,.... Hence, p1|p induces a strict Ao, isomorphism (B,n) — (D, o).

Now define a graded multilinear operator qy, : D*" = A of degree 0
by q =i o ((p1|B)~" x -+ x (p1|B)~"), and write g = (qx)k>1. Then
Theorem 3.9 implies that q : (D,0) — (A,m) is an Ao, morphism, and
a homotopy equivalence. Tt is easy to check that poq: (D,0) — (D,o0) is
the identity on (D, 0), so q is a homotopy inverse for p : (A, m) — (D, 0).
We have proved:

Corollary 3.11. Let p : (A,m) — (D,0) be a strict, surjective Ao
morphism of As algebras which is a weak homotopy equivalence. Then
we can construct an explicit homotopy inverse q : (D,0) — (A,m) for p
using sums over planar trees.

3.4. Novikov rings, and modules over them. To define Lagrangian
Floer cohomology, we have to consider sums involving infinitely many
terms, coming from .J-holomorphic discs of larger and larger area. To
ensure these sums converge, we work over a ring of formal power series
known as a Nowvikov ring, as in Fukaya et al. [8, Conv. 4—Conv. 6, §1.7].
We consider two kinds, general Novikov rings Aney, Ad, and Calabi—
Yau Novikov rings Acy, A2y, to be used in §11, §13, and §12-§13, re-
spectively.

The reason for having two kinds is this. In Ayey, A, terms T e”
keep track of J-holomorphic discs in M with boundary in L, area A, and
Maslov index 2u. However, if M is Calabi-Yau and L is graded then all
J-holomorphic curves in M with boundary in L have Maslov index 0,
so the e are unnecessary, and we can use the smaller rings Acy, A2, .

We restrict to Novikov rings over Q.
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Definition 3.12. Let T and e be formal variables, graded of degree
0 and 2, respectively. Define four universal Novikov rings (over Q) by

(13) AnOV:{Zin a;TYet s a; €Q, N €R, p1; €7, lim;_y o0 )\i:oo},
(14) Ady={>2 a;TNer 1 a; €Q, N €[0,00), p; €Z, lim; 00\ =00},
(15) Acy= {Z;ﬁo a; TV :a; € Q, N\ € R, im0 \; = oo},

(16) AgY: {Z;ﬁo a; TN 2 a; € Q, \; € [0,00), lim; o0 Aj = oo}.

Then A%, C Apoy and A%, C Ay are Q-vector spaces. For brevity
we shall write A%, to mean either AY = or Aney, and A¥, to mean
either AgY or Acy. Define multiplications ‘-’ by (Z;ﬁo aiT’\ie“i) .
(o520 b T e5) = Y05 g aib Tt ielits on A, and similarly for
A%y. Here since \;,v; — oo as ¢,j — oo, the sum over 4,5 can be
rewritten as a sum over k = 0,1, ... such that \;, +v; — oo as k — oo,
and so it lies in A} . With these multiplications, A}, A&, are com-
mutative Q-algebras with identity 1 = 17%° or 17°.

The condition that lim; ,o, A; = oo in (13)—(16) is equivalent to saying
that for all C' > 0, there are only finitely many (A;, pt;) or A; in the sums
with A\; < C. We will often write similar conditions this way. Define

filtrations of A}, , A%, by

nov’

PG, = {0 aiThet € A, : A > Aoralli=0,1,...},

S A
FMG = {30 T € byt N > Aforalli =0,1,...},

for A € R. Then FAA%, C FYA%,, if A > v, and (FMAL,) - (FYAS

nov nov nOV) =
FAMYAr cand AY = FOA oy, and FA ALy, = THAD

nov-*

These filtrations induce topologies on A}, A%, and notions of con-
vergence for sequences and series, which have nothing to do with the
topology on Q or convergence in Q. An infinite sum Y p- oy in A,
converges in A%, if and only if for all A € R we have ap € F A, for
all except finitely many k£ =0,1,2,....

As T, e are graded of degrees 0,2, we can regard Anoy, A%, as graded
rings. Write Agf))v, A%@ for the degree k parts of Anov, A2, for k € Z.

nov?
Then
Aff)'f,) = {Zz’oio a; T ek : a; € Q, M € R, lim; 00 A; = oo}, Aﬁ%’i“’ =0,

for k € Z. Note that v € A,y can have nonzero components v(2k) ¢

A%f,) for infinitely many k € Z, butv =3, , v(Z¥) holds as a convergent
sum in Apoy. Identifying e = 1 gives Aqy = Ag%)v and AgY = A%g).

We can also consider modules over A} and A%,. Let V be a graded

vector space over Q. Then V ®qg A}, is a A},,-module, which is graded

with grading (V&AL )l = D i re Vig A;(gli), and filtered with filtration
FNV®AL,,) = VRFA?, for A € R. If V is not finite-dimensional then

HOV) nov
V ®q A}y 1s not complete, so we pass to the completion with respect to
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the filtration FA(V ® A, ), which we write as V®gAZ,,. Similarly, we

nov nov:*

will work with A}, -modules V ®g Af, and their completions V&gAL, .

3.5. Gapped filtered A, algebras. Next we define gapped filtered
A algebras, following Fukaya et al. [8, §3.2.2], and extend the material
of §3.2-83.3 to them. The rest of the section, §3.5-83.7, can be done
either over AY_ or A%,. We shall work over A% . as it is more general;
the changes for the A, case are obvious. For instance, in Definition
3.13(i) for A%, we would take G C [0,00) closed under addition with

0 € G and GN[0,C] finite for C > 0, and write my, =}y ™m).

Definition 3.13. A gapped filtered Ay algebra (AQAY.,m) is:

(a) A Z-graded Q-vector space A = @ 5 A%, so that AQAJ, is a
graded filtered A% -module.

(b) Graded A° -multilinear maps my, : (AQAY )*" — AQAO  for

nov
k=0,1,2,..., of degree +1. Write m = (my)x>o0.
These must satisfy the following conditions:

(i) there exists a subset G C [0,00) X Z, closed under addition, such
that G N ({0} x Z) = {(0,0)} and G N ([0,C] x Z) is finite for any
C > 0, and my, for £ > 0 may be written my = Z(/\,u)eg TrelmH,
for unique Q-multilinear maps mg’“ : A — A graded of degree
1—2p. When k = 0, we take mg € (A®AY, )1 and m)# € A1=2#;

(ii) my? = 0, in the notation of (i); and
(i) call a € ARAY pureif a € (ASAY, )@\ {0} for some d € Z, and
then define the degree of a to be dega = d. Then we require that
(8) holds for all £ > 0 and all pure ay,...,a in AQA?

nov:*

There is a unique smallest choice of subset G satistfying (i). Part (iii)
may be rewritten in terms of the mg’“ as follows: for all £ > 0, all
(A, p) € G and all pure ay,...,a; in A, we have

i—1
E d A1, Ao,
(17) (_1)21:1 egalmkll m (al, . ,ai_l,mkj #2 (CLZ‘, e ,ai+k2_1),
i,k1,k2,A 1, 2,01, 02 1<i<ky, k220, Qjgloo - - ak‘) = 0.
ki+ko=k+1, M+ 2=, p1+p2=p t+k2 ’

Note that a gapped filtered A, algebra (A®AY ,m) is a weak Ay

nov?
algebra in the sense of Definition 3.1, with extra structure. Also, if

(A, 1) = (0,0) then as GN ({0} x Z) = {(0,0)}, equation (17) reduces to

i—1
—rdegay...0,0 0,0/,,.
§ (_1)2:[71 & lmk1 (a17"'7ai—17mk2 (aly"'yai-i-k‘g—l))
i,k1,ko:1<i<ky, i —
k220, k1 +ho=k+1 Ak - -5 a) =0,

for all & > 0 and all pure ay,...,a; in A. Thus, if (AQA2  m) is

a gapped filtered A, algebra, then (4, m%°) is an A, algebra, where
m%0 = (m?%),0. In particular, (4, m?) is a complex, and we can form
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its cohomology H*(A, mY?). Generalizing §3.3, we call a gapped filtered
Ao algebra (AQAY ) minimal if m$0 = 0.

nov?

A gapped filtered A, algebra (A®A?lov, m) is called strict if mg = 0.
Then (iii) implies that m; om; = 0, so (AQAS  m my) is a complex of
A% -modules, and we can form its cohomology H*(A®AY  , m;), which
is a graded filtered A%  -module. Also, (A®Apey,m;) is a complex of
Apoy-modules, whose cohomology H*(A®Apey,m1) is a graded filtered
Anov-module. These are the kinds of cohomology we will use to define

Lagrangian Floer cohomology.

The term gapped [8, Def. 3.2.26] refers to condition (i) above. This
structure arises naturally in J-holomorphic curve problems, and is use-
ful for inductive arguments. We generalize Definitions 3.3-3.5 to the
gapped filtered case.

Definition 3.14. Let (A®A%  ,m) and (B&AY  ,n) be gapped fil-

tered Ao, algebras. A gapped filtered Ao morphism §: (AQAS  ,m) —

(B&AY ,,n) is f = (fx)r=0, Where f : (A®A910V)X’“ — B®AY,, for
k=0,1,... are graded A  -multilinear maps of degree 0, satisfying
(i) there exists a subset G’ C [0,00) X Z, closed under addition,
such that ¢’ N ({0} x Z) = {(0,0)} and G' N ([0,C] x Z) is fi-
nite for any C' > 0, and the maps fx for k& > 0 may be writ-
ten fr = Z( Ap)E T e“fk’“, for unique Q- multlhnear maps f

A" 5 B graded of degree —2u. When k = 0, we take g €

(B&AY,, )@ and )+ € B~
(ii) f3° = 0, in the notation of () and
(iii) for all £ > 0 and pure ay,...,a; in AQAY . we have
Z (-1 )Zl 1deg Fr—jti +1(a1, sy A1,
(18) I<isysk m;_i(a;,...,a;-1),a;,... ,ak)
= Z 0 (Fiy (@1, - - aky), Fromter (Qky 115 - - - Gy ),
Oshishasshi=k Tk (@1 - ary))-
As for (17), equation (18) may be rewritten using the fp*, m)*, n)* as
(19) Yoo (nEmdEapui (.,
ff)\]zili i pa = mj‘z’fz(a,-, 1), a)
— Z nl’\o’”‘) (fil”“ (a1,...,ak), fzj_”,il (kg 11y s Qhy)s
s g AT L (@t ak)s

for all k > 0, pure ay,...,ax in A, A > 0 and p € Z.

Note the difference between (9) and (18): as we now allow fy to be
nonzero, the second line of (18) isasumover 0 < k; < ks < - <k =n
rather than over 0 < k1 < ko < .-+ < k; = n. Thus, the second
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line of (18) is an infinite sum, as for instance it includes the terms
n(fo, .-, f0,fnla1, ..., ay)) for all I > 1. We claim that the second
line of (18) is a convergent sum in the complete filtered AY -module
B&AY ., in the sense of §3.4. This is more-or-less equivalent to (19)
being finite sums for all A, p.

To see this, let Ao = min(g g)x£(xn)eg’ A, Which is well-defined and
positive by (i), unless G’ = {(0,0)}, in which case fo = 0 and the result
is trivial. Then fo € F*(B®AY ) by (ii). Now for any given N > 0,
there are only finitely many terms in the second line of (18) including
fewer that N fo’s. Thus, there are only finitely many terms which do
not lie in FN*(B&AY ). Since NA\g — oo as N — oo, this implies
that for any A € [0,00), all but finitely many terms in the second line
of (18) lie in FA(B®AY,,), so it is a convergent sum.

A gapped filtered Ao, morphism § : (AQAY .m) — (B&AY ,n) is
called strict if f, = 0 for k # 1, and a gapped filtered A, isomorphism

if f1 : AQAY, — B®AY ., is an isomorphism.
If f : (ARAY,,m) — (B®AY .,n) is a gapped filtered A, mor-

phism, then {0 : (4,m%%) — (B,n%%) is an A, morphism, where
00 = (f%o)k>1. We call § a weak homotopy equivalence of gapped fil-
tered A, algebras if >0 : (A, m%%) — (B,n%%) is a weak homotopy
equivalence of A, algebras in the sense of Definition 3.3, that is, if {9
induces an isomorphism H*(A4,m{%) — H*(B,n?).

If (A®AY ,,m),(B&AS, ,n), (C’@Agov, 0) are gapped filtered A
algebras and f : (AN, ,m) = (B&AY ,n), g: (B&AS ,n) —
(C® A9, ,0) are gapped filtered A, morphisms, the composition gof :

(AR AY,,,m) = (CRAY,, 0) is

(gof) atg,. .. an Zgl f/ﬁ alv"'7ak1)7fk2—k1(ak1+17"'7ak2)7
0<k1<-<kj=n

(20)
o Tk (@ 1, a,)),

which is (11) but allowing equalities in the sum over 0 < k; < ky < -+ <
k; = n. As for (18), this is an infinite, convergent sum. Composition is
associative.

Let f,g : (A®AS ,m) — (B&®AY 1) be gapped filtered A, mor-
phisms of gapped filtered Ao, algebras. A homotopy from § to g is
H = (ﬁk)k>0, where )y, : (A®A910V)Xk — B®AY | for k = 0,1,... are
graded AU -multilinear maps of degree —1, satisfying

(i) there exists a subset G” C [0,00) x Z, closed under addition,
such that G” N ({0} x Z) = {(0,0)} and G" N ([0,C] x Z) is fi-
nite for any C' > 0, and the maps $; for £ > 0 may be written
N = Z J)EG! T)‘e”YJg’”, for unique Q-multilinear maps .627” :
AXE B graded of degree —1 — 2u. When k£ = 0, we take
$o € (B&AY,) ™Y and H)# € B2,

(ii) H%? =0, in the notation of (i); and
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(iii) for all » > 0 and pure ay,...,a, in AQAY, , we have
(21) fn(at,...,an) —gnla,...,ay) =
Yo mrmr (Fan o a5) Fmg (@ ag),
SIS T @y 10 05), Ok =i (@1 k),
Szt (W15 -5 Ahy)s - s S (Wi 15 - - > Qi)
S degay

+ Z(—l)’:1 n—jrivi(ar, .. a5, (a1, .., 05), 0541, .., an),
0<ig<jsn
which is (12), but allowing equalities in 0 < j3 < -+ < ky, = n
and 0 < i < j < n. As for (18) and (20), (21) is a convergent
infinite sum.
Let f: (A®AY ,m) — (BRAY ., n) be a gapped filtered A, mor-
phism. A homotopy inverse for § is a gapped filtered A, morphism

g : (Bo&AY ,n) — (A®AY ,m) such that gof : (A®Agov, m) —
(A®AY ,m) is homotopic to ids : (A®AY ,m) — (ARAY ,m), and
fog: (B&AY ,n) — (BRAY ,n) is homotopic to idp : (BRAY ,n) —

(B®Agov, n). If f has a homotopy inverse, we call f a homotopy equiva-
lence, and we call (A®AY  m), (B&AS, ,n) homotopic.

Here is the analogue of Theorem 3.6, in Fukaya et al. [8, Th. 4.2.45(2)].

Theorem 3.15. Let (A®AY. ,m), (B&AY, ., n) be gapped filtered Ase
algebras. Then:

(a) Homotopy is an equivalence relation on gapped filtered Ao mor-
phisms § : (ASASy, m) — (BEAD,n).

(b) Homotopy is an equivalence relation on gapped filtered A alge-
bras.

(c) A gapped filtered As, morphism | : (AQAY ,m) — (BRAY  ,n)
18 a homotopy equivalence if and only if it is a weak homotopy
equivalence.

We can also generalize the ideas of §3.3 to the gapped filtered case.
Here are the analogues of Definition 3.8 and Theorem 3.9.

Deﬁmtlon 3.16. Let (A®AS  ,m) be a gapped filtered A, algebra.
Then (A m{’ ) is a complex. Let B be a graded vector subspace of
A closed under moo’ such that the inclusion ¢ : B < A induces an
isomorphism i, : H*(B,m{% ) — H*(A,m{%). We will construct
n = (N)k=0 maklng (B®A?wv, n) into a gapped filtered A, algebra
homotopic to (A®AY ,m).

Since i, is an isomorphism, we can choose a graded vector subspace
C of A such that C N Kerm{® = {0} and A = B C @ m?%(C). Then

0. ¢ — m§(0) is invertible, so there is a unique graded linear map
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H : A — A of degree —1 with H(b) = H(c) = 0 and H om{’(c) = ¢
for all b € B and c € C. Let Ilg : A — B be the projection, with
kernel C' ® m{°(C). Then idy —lp = m% 0 H + Homd" on A. Let
i BOAY,, < AQAS ., H : AOAY, — AGAY, and Ip : AQAS, —
B&A)

0 be the A% -linear extensions of i, H, .

For each planar rooted tree T' with k leaves, define a graded multi-
linear operator ny 7 : (B®A30V)X’“ — B®AY_ of degree +1, as follows.
To define ny 7(b1,...,by), assign objects and operators to the vertices

and edges of T

e assign by, ...,bg to the leaf vertices 1, ...,k respectively.

e for each internal vertex with 1 outgoing edge and n incoming edges,
n # 1, assign m,,.

e for each internal vertex with 1 outgoing edge and 1 incoming edge,
assign my; — m{0.

e assign 7 to each leaf edge.

e assign I3 to the root edge.

e assign —H to each internal edge.

Let ng 7(b1,...,b;) be the composition of all these objects and mor-
phisms, as in Definition 3.8. Define ny, : (B&AY, )" — BRAY by
9.0 k=1
(22) ny, = my + ZT n1,T; )
ZTnk7T, k:0,273,47...,

where the sums are over all planar rooted trees T' with k leaves.

The sums in (22) are infinite sums, since such trees 7' can contain
arbitrarily large numbers of internal vertices with 1 edge, which are
weighted by mg, or with 2 edges, which are weighted by m; — m%%. We
claim they are convergent. To see this, let G be as in Definition 3.13(i),
and set \g = min g gy(x,xeg A- Then A\g > 0, provided G # {(0,0)}, and
mo € FY(AQAY ), and my — md0 : FAAGAY ) — FA0(AQAY )
for all A € [0,00). Therefore, if 7" has N internal vertices with 1 or
2 edges, then ng 7 maps to FN(B&AY, ). As there are only finitely
many rooted planar trees T' with k leaves and fewer than N internal
vertices with 1 or 2 edges, and Ny — oo as N — oo, it follows that
(22) is convergent.

In a similar way, for each planar rooted tree T' with k leaves, define a
graded multilinear operator iy 7 : (BRAY, )< — AGAL_ of degree 0,
as follows. Assign objects and operators to the vertices and edges of T':

e assign by, ...,b; to the leaf vertices 1, ...,k respectively.

e for each internal vertex with 1 outgoing edge and n incoming edges,
n # 1, assign m,,.

e for each internal vertex with 1 outgoing edge and 1 incoming edge,
assign my — md0.

e assign 7 to each leaf edge.
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e assign —H to the root edge and to each internal edge.
Define i; 7(b1,...,b;) to be the composition of all these objects and
morphisms. Define ij, : (B&AS )< — AGAL | by

nov
i = i—'_ ZT ilvT7 k = 17
‘ dorieTs k=0,2,3,4,...,

where the sums are over all planar rooted trees T' with k leaves. As for
(22), these are convergent infinite sums.

Theorem 3.17. In Definition 3.16, (B®Anov, n) is a gapped filtered
A algebra, and i - (B&AY,,,n) — (ASAL, m) is a gapped filtered Ao,
morphism, and a homotopy equivalence. If we choose B = H*(A,m?’o)
to be a subspace representing H*(A,m$%), so that n° = m9%5 = 0,

then (B&AY . n) is a minimal model for (AQAY )
As for Corollary 3.11, we prove:

Corollary 3.18. Let p : (A®AS ,m) — (DRAY . 0) be a strict,
surjective gapped filtered Ao morphism of gapped filtered A algebras
which is a weak homotopy equivalence. Then we can construct an ex-
plicit homotopy inverse q : (DRAY . 0) — (A®RAY ,,m) for p using
sums over planar trees.

3.6. Bounding cochains. As in Definition 3.13, to define Lagrangian
Floer cohomology we need strict gapped filtered A, algebras. Bounding
cochains are a method of modifying gapped filtered A, algebras to make
them strict, introduced by Fukaya et al. [8, §2.4.5, §3.6].

Definition 3.19. Let (A®AY ., m) be a gapped filtered A, algebra,
and suppose b € FA(A®A0

nov)( ) for some A\ > 0. Define graded A -

multilinear maps m? : (ARAY )" — AN, for k = 0,1,2,..., of

degree +1, by

mi(ar,. . a) = Y Mpgngtein (b, oy, al,g, b ag,b, "2,
0,1k 20 b b ag, b, ™).

This is an infinite sum, but converges as b € FA(A®A? ) for A > 0.
Write m® = (mf);>0. We call b a bounding cochain for (AQAS,,,m) if
mf = 0, that is, if

This is called the Maurer—Cartan equation, or Batalin—Vilkovisky master
equation.

It is then easy to prove [8, Prop. 3.6.10]:

Lemma 3.20. In Definition 3.19, (AQA? ,mP) is a gapped filtered
Ao algebra, which is strict if and only if b is a bounding cochain. More-

over, §: (A®A? ) — (A®AL ., m) defined by fo = b, f1 = idaga0,,

nov 7
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and fr, = 0 for k > 2 is an Ay isomorphism. Thus (AQAY,m®) is
homotopy equivalent to (AQAY,,m).

Thus, if b is a bounding cochain then (A®AY, ,m%) is a complex, and
we may form its cohomology H*(A®AY, ,m%), which is a A%  -module.

nov? nov

We can also work over Ao, rather than AY | so that (A®An0v,mlf) is

nov?

a complex, with cohomology H*(A®Apey, m?).

3.7. An i algebras. Stasheff [20] introduced Ag algebras [8, §4.4.2],
a finite approximation to A, algebras. An Ag algebra (A4,m) is as
in Definition 3.1 with mg = 0, except that m = (my)&_, rather than
(m)52,, and (8) holds for £ = 1,...,K rather than £k = 1,...,00.
Similarly, Ay, i algebras [8, §7.2.6] are a finite approximation of gapped
filtered Ao, algebras. We omit the phrase ‘gapped filtered’ used in [8].
Here is the Ay g analogue of Definitions 3.13 and 3.14.

Definition 3.21. Let G C [0,00) x Z be closed under addition with
GN ({0} xZ) =4(0,0)} and GN ([0, C] x Z) finite for any C > 0. Define
|.Il: G — N by

d
(23) [\ w)ll=max{d : (A, u)= ;(Ai, pi)s (0,0)# Ny i) €G }+[A]

for (0,0) # (A, u) € G, where [A] is the greatest integer < A, and
|(0,0)|| = 0. (This differs by 1 from ||(A, )| in [8, Def. 7.2.61].)

Let N,K > 0. An Ay algebra (A, G, m) consists of a Z-graded
Q-vector space A = P,y A? G as above, and a family m of graded
Q-multilinear maps mﬁ’“ c A" 5 A of degree 1 — 2y for all (A\,u) € G
and & > 0 such that either (a) ||[(A\,p)]| +k —1 < N+ K, or (b)
A\ w)ll+k—1=N+K and [|(A\, u)|| —1 < N, satisfying equation (17)
for all (A, ) € G and k > 0 such that (a) or (b) hold.

Now suppose (A,G,m) and (B,G,n) are Ay i algebras. Modifying
the first part of Definition 3.14, an Ay x morphism § : (A,G,m) —
(B, G,n) consists of Q-multilinear maps fﬁ’“ A" 5B graded of degree
—2u for all (A, 1) € G and k > 0 such that (a) or (b) hold, with f}* =
0, satisfying equation (19) for all (\,x) € G, k > 0 such that (a) or
(b) hold and pure aj,...,ar € A. Note that we use the same G for
(A,G,m), (B,G,n) and f, and we regard G as fixed once and for all. The
issue of changing G will be addressed in the proof of Theorem 11.2.

Composition of Ay kg morphisms is defined in the obvious way. If
f:(A,G,m) — (B,G,n) is an Ay x morphism then {° : A — B is a
well-defined morphism of complexes (A, m{?) — (B,n$?), and induces
(599), : H*(A,md0) — H*(B,n0). We call f a weak homotopy equiva-
lence if (§9'0), is an isomorphism. We can also define homotopy $ : f = g
between Ay g-morphisms f, g : (4,6, m) — (B,G,n) by rewriting (21)
in terms of the 52# and only requiring it to hold for (\, u), k satisfying
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(a) or (b). Thus we define homotopy inverse and homotopy equivalence.

Here is the analogue of Theorems 3.6 and 3.15, [8, Rem. 7.2.71].

Theorem 3.22. Let (A,G,m),(B,G,n) be Ay k algebras. Then:

(a) Homotopy is an equivalence relation on Ay x morphisms § : (A,
g,m) — (B,G,n).

(b) Homotopy is an equivalence relation on Ay i algebras.

(c) An AN,k morphism | : (A,G,m) — (B,G,n) is a homotopy equiv-
alence if and only if it is a weak homotopy equivalence.

For simplicity, in the rest of the paper we will take K = 0, and
consider only Ay algebras. These are sufficient for our purposes, and
fixing K = 0 reduces conditions (a) and (b) of Definition 3.21 to the
single inequality ||(\, p)|| + & —1 < N.

If N > N > 0 then any Ay o algebra (A4,G,m) induces an Ay
algebra (A, G, m) by taking m to be the subset of m)»* with ||(A, u)||+k—
1 < N. Similarly, an Ay, morphism f: (A G,m) — (B,G,1n) restricts
to an Ay, morphism f : (4,G,m) — (B,G,n) on the corresponding
An algebras. Conversely, we can ask about extending Ay algebras
and Ay o morphisms to Ay o algebras and Ay ; morphisms. Our next
theorem follows from Fukaya et al. [8, Th. 7.2.72 & Lem. 7.2.128].

Theorem 3.23. Let f: (A,G,m) — (B,G,n) be an Ay morphism of
AN algebras which is a weak homotopy equivalence. Suppose N > N,
and (B,G,n) is an Ay o algebra extending (B,G,n). Then:

(a) there exists an Ay algebra (A,G,m) extending (A,G,m), and an
Ay o morphism § : (A,G,m) — (B,G,0) extending f which is a
weak homotopy equivalence; and

(b) if (A,G,m) is an Ay o algebra extending (A,G,m), and g : (A,G,
m) — (B,G,n) is an Ay morphism which restricts to an Ay
morphism g : (A,G,m) — (B,G,n) which is Ay homotopic to
f, then  extends to an Ay, morphism | : (A,G,m) — (B,G,n)
which is Ay o homotopic to g.

All of §3.5-§3.7 also works over A%, rather than A% . with the obvi-
ous changes.

4. Moduli spaces

Next we discuss moduli spaces of isomorphism classes of stable maps
from a genus 0 prestable bordered Riemann surface with immersed La-
grangian boundary conditions. Most of the arguments are the same as
in the embedded case of Fukaya et al. [8, §7.1] and Liu [17], but we put
some extra data on the boundary of our stable maps.
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4.1. Definition of the moduli spaces M (a, 3, J). We first de-
fine stable J-holomorphic maps from prestable holomorphic discs with
marked points.

Definition 4.1. Let (M,w) be a compact 2n-dimensional symplectic
manifold with a compatible almost complex structure .JJ, and ¢ : L — M
a compact Lagrangian immersion. Suppose that all the self-intersection
points of the immersion ¢ are transverse double self-intersections.

Let X be a genus 0 prestable bordered Riemann surface, that is, 3
is a possibly singular Riemann surface with boundary 9% such that the
double ¥ Upy, ¥ is a connected and simply connected compact singular
Riemann surface whose only singularities are nodes. Let k& be a non-
negative integer, and choose mutually distinct smooth points zg, ..., zx
on 0% (that is, zg,..., 2, are not nodes), and write 2 = (zo,...,2k)-
Let u : ¥ — M be a J-holomorphic map with u(0%X) C «(L). We
call the triple (3,2, u) stable if the automorphism group Aut(X, Z,u)
of biholomorphisms f : ¥ — ¥ with uwo f = w and f(z;) = z; for i =
0,...,k is finite. Equivalently, (X, 2z, u) is stable if for each irreducible
component Y’ of ¥, u|ys is not constant, or

e the number of singular points on Y’ is at least 3 when Y/ is diffeo-
morphic to a sphere,

e the number of marked or singular points on 9% plus twice the
number of singular points on X'\ 9%’ is at least 3 when X’ is
diffeomorphic to a disc.

For (¥, Z,u) as above, we would like to think of the boundary 0% as
a circle, but this is not true if ¥ has boundary nodes. Let St = {z €
C : |z| = 1} be a circle with the counter-clockwise orientation. The
boundary 9% has the orientation induced by the complex structure,
and there is a continuous and orientation-preserving map [ : S — 9%
unique up to reparameterization such that

e the inverse image of a singular point of 9% consists of two points,
e the inverse image of a smooth point of d% consists of one point.

Write ¢; = 17 1(2;), fori =0,... k.

In the embedded case [8, §2.1], one defines moduli spaces My 1(3, J)
of isomorphism classes [%, Z, u] of triples (X, Z,u). But in our immersed
case, we need to keep track of some extra information. In Definition
4.1, wol is a continuous map S* — +(L). We want to know whether this
can be locally lifted to a continuous map @ : S' — L with to@ = uol.
This is only a problem at the self-intersection points of «(L). For such
a point p € M we have :7'(p) = {p,,p_}, that is, two points p,,p_ in
L map to one point p in M, and ¢(L) near p in M has two sheets, the
images under ¢ of disjoint open neighbourhoods of p; and p_.

If wuol(¢) = p for some ¢ € S!, it can happen that u ol jumps at
¢ between the two sheets of +(L) near p in M, and so u ol cannot be
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lifted to a continuous @ : S' — L near ¢, since @ would have to jump
discontinuously between p; and p_ at (. The meaning of the next
definition is that we consider triples (3, Z,u) in which u o [ jumps at ¢
between two sheets of (L) in this way if and only if ( = (; for 7 in a
fixed subset I C {0,...,k}, and that we also prescribe p = u((;) and
the limits p,,p_ of @(¢’) as ¢’ — ¢; in S' from either direction.

Definition 4.2. Let (M,w) be a compact 2n-dimensional symplectic
manifold with a compatible almost complex structure J, and ¢ : L —
M a compact Lagrangian immersion with only transverse double self-
intersections. Define R to be the set of ordered pairs (p_,py) € L x L
such that p_ # p; and ¢(p—) = ¢(p4+), and define an involution o : R —
R by o(p-,p+) = (p+,0-)-

Fix k > 0. Let I C {0,...,k} be a subset, « : I — R a map,
and B € Hao(M,1(L);Z) a relative homology class. Consider quintuples
(3,2, u,l,u), where X is a genus 0 prestable bordered Riemann surface,
and 2 = (zp, ..., 2x) for distinct smooth points 2, ..., zx on 93 (that is,
20, - .., 2k are not nodes), and u : ¥ — M is a J-holomorphic map with
uw(0%) C (L) and (¥, 2, u) stable, and | : St — 9% is as in Definition 4.1
with ¢; = [71(2;) for all i, and @ : ST\ {¢; : i € [} — L is a continuous
map, satisfying the following conditions:

o u,([X]) =B € Hao(M,(L);Z), with [X] € Ha(X,0%;Z) the funda-
mental class;

e (y,...,( are ordered counter-clockwise on S*;

eoui=uolonS'\{¢:iecI}; and

° (limgTQ ﬂ(e\/__wg),limgw ﬂ(e\/__lggl)) = a(i) in R, for all ¢ € I.

We call two quintuples (X, 2, u,l, @) and (X', 2,4/,1',a’) isomorphic
if there exist a biholomorphic map ¢ : ¥ — Y’ and an orientation-
preserving homeomorphism @ : S' — S! such that

e Wop=u,and p(z;) =2z fori=0,...,k,

e pol=1'op,and @ op=uon S\ {¢:icl}
Denote by ./\_/(ffnfiln(a, B, J) the set of the isomorphism classes [, 2, u, [, u]
of such quintuples (X, Z, u, [, @). Then we may define a natural, compact,
Hausdorff topology on _?filn(a, B, J) called the C*° topology, following
Fukaya et al. [8, §7.1] and Liu [17, §5.2].

Define the evaluation maps ev; : _glj_‘iln(oz, B,J) — LIl R by

(24) evi([Z, 5 u L) = { ) € L AL
ali) R, i€l

fori=0,...,k, andev:/ﬂ?ﬂn(a,ﬁ,ﬂ — LII R by

ﬂ(éb) GLv 0¢17

(25) ev([E,Z,u,l,ﬁ]) = {an(o) €ER, 0€l,
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where ¢ : R — R is the involution above. Following Fukaya et al.
[8, §3.4 & §7.1] and Liu [17] we may define a Kuranishi structure on

_glj_‘iln(oz, B, J), with corners and a tangent bundle, and the continuous

maps ev;,ev extend to strong submersions ev;,ev : _znjiln(a,ﬂ, J) —
LIIR.
We shall also write
(26) _ffnfiln(ﬁa J) = H[g{o,...,k}, /\_/(fenfiln(aaﬁa J).
a:l—+R

Since by (33) below the virtual dimension of Mkmjiln(oz, B,J) depends
on I, a, this is technically not a Kuranishi space, only a disjoint union
of Kuranishi spaces of different dimensions. We define strong submer-
sions ev;,ev : _znfiln(ﬁ,J) — L II R to be ev;,ev on each compo-
nent M2 (o, B, J).

4.2. The boundary of _?filn(a, B, J). Following Fukaya et al. [8,
§7.2] we can give an expression for the boundaries of our moduli spaces.
We postpone discussing the orientations in (27) until §5.

Theorem 4.3. In the situation of Definition 4.2, there is an iso-
morphism of unoriented Kuranishi spaces, using the fibre product of
Definition 2.6:

oMpEr(a, 8, 0)= ] ME2 (g, B, J) X ev, LITR.ev;

k1+ko=k+1, 1<i<ky, [1U;Io=I, y zymain
a1Usao=a, f1+P2=P5 ‘ Mk1—|—1(a17 /817 J)7

where we define Iy U; Is C {0,...,k} and a3 U; g : Iy U; I — R by
LUL={j:jel,j<iUljt+i—1:j€l, 0<j}
U{j+ke—1:j5€m,i<j},
(28) a1(4), for0<j<i,
(qUiao)(j) =qas(j—i+1), for1<j—i+1<ky,
a1(j—ka+1), fori<j—ko+1<ky,

(27)

A {main

and we use the same notation for the evaluation maps ev; : lirl(oq,

B1,J) = LI R and ev : ./\_/lgﬁri(ag,ﬂg,J) — LIIR.

Here (27) is a fairly straightforward consequence of the construction of
the Kuranishi structure on ./\_/lznjiln(a, B,J), as near the boundary strata
of _}gnjiln(a, B,J) the Kuranishi neighbourhoods (V,,...,1,) are built
from Kuranishi neighbourhoods on terms in the right hand side of (27),

using gluing theorems to desingularize boundary nodes in ¥. In (27)

we choose to write the fibre product as ./\_/l}gﬂri(ag,ﬁg, J) Xev,LIIR.ev;
(a1, B1,J), although it would be more obvious to write it as

A {main A {main

le(oq, B1,J) Xev,; LIIR.ev k2+1(0z2,52, J), following Fukaya et al.
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[8, Prop. 8.3.3]. As we will explain in Remark 5.14(b), because of pecu-
liarities of the immersed case, when we orient our moduli spaces in §5,
the signs in our formulae will look simpler and more natural with the
fibre product order in (27).

4.3. The virtual dimension of _gljiln(a,ﬁ, J). We shall compute
the virtual dimension of ./\_/(znfiln(a, B, J), modifying Fukaya [7, Th. 3.2],
who calculates the virtual dimension of moduli spaces of holomorphic
discs with boundary attached to a union Ly U --- U Ly of transversely
intersecting embedded Lagrangians, so that LoU---U Ly is an immersed
Lagrangian submanifold with transverse double self-intersections, and
also Fukaya et al. [8, Prop. 3.7.59], who perform the same calculation
for Lo U Lq.

Definition 4.4. Let
(29) Y ={(z,y) € R? : either <0, 22 + 3> < lorz >0, |y < 1}.

Choose a smooth family A\, , y={Ap_p ) (@, 9) }a,
subspaces of T, M for each (p—,p4) € R, where p =

y)eay of Lagrangian
u(p-) = t(p+), with
) (2.y) = du(T,_ L), ify=1,

e OV T Aoy, 1), iy = -1

If (p—,p+) € R then o(p—,py) = (p4+,p-) € R, and we require A\, )
and A(,, ,_) to berelated by A\, , )(%,y) = Ap_ p,) (@, —y). When L is
oriented, as it will be from §5 onwards, we take A,_ ) to be a smooth
family of oriented Lagrangian subspaces, which agree with d¢(7},__ L) as
oriented subspaces when y = +1.

Consider the differential operator

_ 9 o
0 Oy iy = 5+ Jpa_y WY, 0V T, M, N pyy)

— LYY ; T,M @ A%Y),

for ¢ > 2, where Wh4(Y, 0Y; T, M, A(p_,p,)) is the Sobolev space of the
Whi-maps £ : Y — T,M with &(z,y) € Ap_p,)(2,y), for (z,y) € dY,
and L1(Y; T,M®@A%1Y") is the one of the Li-maps ¢ : Y — T, M@A"1Y".
Following [8, Def. 3.7.62], define

(31) Np—py) = ind 5&7),,“)’

the Fredholm index of (30). Since A\, ,, \(%,y) = A\p_ p,) (7, —y), it is
easy to check that

(32) Np—ps) T Npip-) = N
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Note that n,_,,) depends on the choice of A¢,_ ) up to isotopy.
When A(,_ ) is a family of oriented Lagrangian subspaces, different
choices of A(,_ 4y add an even number to 7,_, ). Thus the only in-
variant information is whether 7, ., ) is even or odd, which depends
on whether the transverse, oriented subspaces du(7},_L) and du(T,, L)
intersect positively or negatively in T, M.

In §4.6 we will use this freedom to require that n,_ .y > 0 for all
(p—,p+) € R, and ask that A,_ ;) is chosen generically, which ensures
jchat Ker .(‘9)@77“) has dlmens.lon.n(pjp”, and Coker 8,\@77“) = 0. This
is not strictly necessary, but it simplifies the arguments.

There is an important case in which it is natural to fix the ng_ ;. ),
however, to be discussed in §12. Suppose that (M,w) is the symplectic
manifold underlying a Calabi—Yau manifold, and that L is a graded
immersed Lagrangian submanifold, in the sense of Definition 12.1. Then
we can choose A¢,_ ;. to be a family of graded Lagrangian subspaces
of T,M, which agree with dL(Tp;L) as graded Lagrangian subspaces
when y = +1. This requirement determines 7g,_,.) uniquely in Z,
independently of the choice of A,_, ). Also in this case the Maslov
index ur(B) below is automatically zero, provided the A( are taken
to be graded.

We can now define the Maslov index pr(/3), and compute the virtual
dimension of ./\_/lznfiln(oz, B,J).

P—,p+)

Definition 4.5. For [X, 2 u,l,u] € _}aniln(a,ﬂ, J), we take € > 0
and a continuous map 9 : S! — S' such that
o )i S\ Uje eV : 0 € [—e,e]} = S'\{¢ i€ 1}isan
orientation preserving homeomorphism,
o p({eV71( 10 € [—e.e]}) = G, fori €1,
and define

A, o(2) = de(Thoy (L), for z € S! \Uiel{eﬁgﬁi 10 € (—¢,0)},
A Aa(i) © hi(z), for z € {eV=19¢;: 0 € (—e,¢)} with i € I,

where h; : {eV"1¢; : 0 € (—e,e)} — Y is a diffeomorphism with
olim hi(eV=10¢;) = (00,1) and lim R;(e¥ () = (00, —1).
——c

0—e
The symplectic vector bundle v*(T'M) with u*(w) is isomorphic to the
trivial one ¥ x C" — X. Denote this trivialization by f : «*(TM) — C",
and f o A,p is a loop in the Grassmannian of Lagrangian subspaces
in C".

Write pup(B) for the Maslov index of f o A, g, in the sense of Fukaya
et al. [8, §2.1.1]. That is, ur(5) € Z is the contraction of the homology
class of f o A, with a certain class in the 1-cohomology of the Grass-
mannian of Lagrangian subspaces in C". If L is oriented, as it will be
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from §5 onwards, then ur(8) is even. As above and in §12, if (M,w)
is Calabi-Yau and L is graded, we can define the A,_ . ) using graded
Lagrangian subspaces, and then pz(5) = 0 for all S.

Now pr,(8) depends on the choices of families A,_ .y for (p—,p4) €
R above up to isotopy, and hence in effect on the 7, , ). We regard
these as fixed once and for all, and suppress the dependence of the
Maslov index on them in our notation. In fact ur(8) is independent
of the other choices involved, except 3, which justifies our writing it as
wr(B). That is, ur(B) is independent of k, I, o, [2, 2, u,l, ], v, h;, and
the trivialization of (u*(TM),u*(w)). To see this, note that morally
pr(B) = B e (M, (L)), where B € Hy(M,u(L); Z) and ¢1 (M, (L)) €
H?(M,(L);Z) is the relative first Chern class for w on (M,1(L)). The
reason ur () can be independent of I, « is that 8 partially determines
I, o, enough so that the dependence of iz (8) on I, « is determined by S.

The following proposition is a straightforward modification of Fukaya
[7, Th. 3.2] and Fukaya et al. [8, Prop. 7.1.1] to the immersed case, fol-
lowing [8, Prop. 3.7.59]. In effect, in constructing v, A, g above we are
defining a desingularized moduli problem, with embedded Lagrangian
boundary conditions. The virtual dimension of this desingularized mod-
uli problem is computed as in [8, Prop. 7.1.1], and is the right hand side
of (33) omitting the term — 3, 7q(;)- But the effect of desingularizing
by gluing in A, ;) at z; is to increase the virtual dimension by 74,
so to recover the virtual dimension of the original moduli problem we

subtract ;.7 Ma(i)-

Proposition 4.6. The virtual dimension of _znfiln(a,ﬁ, J) is

(33) vdim MY (o, B, ) = pr(B) +k =2+ 1 — e Nagi)-

4.4. The moduli spaces M?filn(a,ﬁ,J, fis--oy fr). We add smooth
simplicial chains to our moduli spaces.

Definition 4.7. For ¢ = 1,...,k,let a; > O and f; : A,, = LII R
be a smooth map, where A, is the a;-simplex of (6), so that f; €
CSH(LII R) is a smooth simplicial chain. Define the Kuranishi space
_}aniln(a,ﬂ, J, fi,..., fr) to be the fibre product

(34) Mgljiln(a7ﬁ7Jvf17"'vfk) =

Mgljlln(a757 J) Xevy X xevy,(LIIR)E, f1 XX fi, (Aal Xoeee X Aak)'
Here ev; maps to L if ¢ ¢ I and to R if i € I. Also, the fibre
product is over 1,... &k although I C {0,...,k}, so we have to ex-
clude 0. Thus, (34) is in effect a fibre product over the manifold
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[Ticqr,. ey L x ILien oy B, which has dimension n(k — |1\ {0}]). So
we see from (33) and Definition 2.6 that

(35 Vdim-/\_/l;gnjiln(a757 Jvflv"'vfk) =
pL(B) +k —=24n =3 NaG) T Dogigr(@i — 1) + D0 sier G-
Let f: A, — LII R be a smooth map. Since f is connected, it must

map either to L, or to some unique (p_,p+) in R. Define the shifted
cohomological degree of f: Ay — LII R to be

n—a—1, f(A,) C L,
NMp—py) —C— 1, f(As) ={(p-,p+)} CR.

In effect, we are defining a new grading on the chains C$'(L I R; Q) =
CI(L;Q) @ D porer CF{(p-,p4+)};Q), such that deg C3(L; Q) =

n—a—1and deg C3({(p_,p+)}Q) = p_pyy —a— 1.

Note that our notation differs from that of Fukaya et al. [8] in the
embedded case. Fukaya et al. define the cohomological degree of f :
A, — L in C${(L; Q) to be deg f = n — a, that is, deg f is in effect the
codimension of f(A,) in L. But then they work throughout with the
shifted complex C$(L;Q)[1] in which f has grading deg’ f = deg f — 1,
as in [8, §3.2.1]. So our deg f corresponds to Fukaya et al.’s shifted
degree deg’ f, which is why we call it the shifted cohomological degree.

We prefer this convention as it simplifies many of the dimensions and
signs expressed in terms of deg f1,...,deg f, below, and also the shifted
complexes C5(L; Q)[1], QX[1] which are ubiquitous in [8] are replaced
below by unshifted complexes C%(L; Q), QX, simplifying the notation.
We undo the shift when we define Lagrangian Floer cohomology in (144).
We will explain the reason for grading f: A, — {(p—,p+)} by deg f =
N(p_,py) — @— 1 in Definition 4.14.

Observe that Mo, 8, J, f1,..., fr) = 0 unless fi : Ay, — LIIR
maps to L if i ¢ I, and to (i) € R if i € I. Then combining (35) and
(36) yields

vdim _;gnfiln(avﬁﬂLfl)"')fk) =
(37) pr(B) —2+n— Zf , deg f;, 0¢l1,
pL(B) —2+n— 35  deg fi —1a0), 0€ L.

This also holds in the other cases, as then M (av, 8, J, f1,. .., fr) = 0.
From (5) and (27), 0 _}Cnfiln(a, By J, f1,..., fr) is given without orien-
tations by

(36)  degf= {

(38) HHMgljlln B7J7f17"'7fi—l7fiOFqu7fi+17’”7fk)

i=17=0
Haj\_/lznfiln(avﬂv J) ><ev1 X xevy,(LILR)k, f1 XX fi (Aa1 X X Aak)a
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where Fjai i Ag,—1 — Ay, is as in §2.6.
Write M2 (e, 81, J, f1, -+ fim1; fivkys - -+, fi) for the fibre prod-
uct
(39) _glﬁii-ri (alv b, J)Xev1 X XeVi_1 X eViyy X--xXevy (LIIR)*F1~1,
JiXe X fic1 X fit ks X"'ka(Aal X oo X Dgy X Aai+k2 Xooe X Aflk)’

where k1 + ko = k + 1. Then as for (37) we calculate that

(40) vdim _gfiri(alaﬁlathlw”7fi—1;fi+k27"'7fk) =
pL(f1)—1+n —Z;;ll deg‘)"j—Z?:iJr,€2 deg f;, 0,i¢ 14,

(B1)—
pr(Br)—14+n—>""") deg f; — Y5, deg fi—nay0), O€l, i ¢ I,
ML(ﬂl)—lJrn—Zé;ll deg fj—ZﬁLsz deg fj—na,6), O0¢nh, i€ I,
pr(Br)—1+4n —Zz-;ll deg f;-—ZﬁLHkQ deg fj—"a, (0) — Moy (i), 0,1 € I1,
Combining (27), (38) and (39) shows that

(41) a'/\_/(?-ﬁiln(auﬁathlu”wfk)g
k

HHJ\_/lznjiln(a757 Juflu"'7fi—17fi OF]['li7fi+17"' 7fk)

i=1 j=0
inl H ko102, B2y I, fis ooy fitky—1)Xev, LR ev;
k1+ko=k+1, 1<i<ky, A ymain .
LU Io=I, a1U;as=0, k1+1(a17 /817 J7 f17 ey fi—17 fi+k27 sy fk)7
B1+pB2=p
in unoriented Kuranishi spaces.
As for (26), we shall also write

(42) M?j?(ﬂ) J7 f17 ceey fk) = H[g{07___,k}, -A_/lglj%[n(a7 57 J7 f17 cee 7fk)
a:I—R

Again, this is a disjoint union of Kuranishi spaces of different dimen-
main

sions. We define a strong submersion ev : MP (B, J, f1,..., fr) —
L1I R to be ev on each component _gljiln(a,ﬁ, I fiyeoy fr)-

4.5. Adding families of almost complex structures. We can gen-
eralize all the material above to smooth families of almost complex struc-
tures J; for ¢t € T, with 7 a smooth manifold. We will need this in §8-§9
with 7 = [0, 1], and in §10 with 7 a semicircle S and a triangle T'.

Definition 4.8. Suppose (M,w) is a compact 2n-dimensional sym-
plectic manifold, 7 an oriented smooth manifold, which may be non-
compact and may have boundary or corners, and J; for t € 7 a smooth
family of almost complex structures on M compatible with w. Let
t: L — M be a compact Lagrangian immersion. Suppose that all the
self-intersection points of the immersion ¢ are transverse double self-
intersections.
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Generalizing Definition 4.2, define M (a, 3, J; : t € T) to be the
set of (t, [E,Z,u,l,ﬂ]) fort € T and [X, Z,u,l,u] € _?filn(a,ﬁ, Ji). De-
fine w7 : ./\_/lznjiln(a,ﬂ, Jy:teT)—T by nr: (t, [Z,Z,u,l,zj]) — ¢ and
ev;,ev : ./\_/lznfiln(a,ﬂ, Jy:t € T)— LIIR by ev;,ev : (t, [Z,Z,u,l,zj]) —
ev,-,ev([E,Z,u,l,ﬂ]).

As for the case of M}gnjlln(a,ﬂ, J) in §4.1, we may define a natu-
ral, Hausdorff topology on MM (a, B8, J; = t € T) called the C™
topology, such that mw7,ev;,ev are continuous. If 7 is compact then
Mpait(a, B, J; : t € T) is compact.

We can then define a Kuranishi structure on MP7 (o, B, Jp 1t € T),
with corners and a tangent bundle, and m7,ev;,ev extend to strong
submersions w1,ev;,ev. For each t' € T there is an isomorphism of
Kuranishi spaces

(43) _gljiln(a7 57 Jt’) = {t/} XL,TJI'T /\_/(gljiln(a, B, Jt :t e 7—),

where ¢ : {t'} — T is the inclusion, and the right hand side is a fibre
product of Kuranishi spaces, which is well-defined as 77 is a strong
submersion.

There is one subtle point here: the Kuranishi structures on each
side depend on choices made during the constructions, and (43) holds
provided the choices for the Kuranishi structures on M?filn(a, B, Jy)
and Mo, 8, J; : t € T) are compatible. If 7 = [0,1] then for any
allowed choices for _}Cnfiln(a, B, Jy) and _}Cnfiln(a, B,J1), we can choose
the Kuranishi structure on M (a, 8, J; : t € T) so that (43) holds
when ¢ = 0,1. We will usually suppress this issue of needing to make
compatible choices of Kuranishi structures.

Here are the generalizations of Theorem 4.3 and Proposition 4.6.

Theorem 4.9. In the situation of Definition 4.8, there is an isomor-
phism of unoriented Kuranishi spaces:

(44)  OMPEN(a, B, Ty it € T) = MPMa, B, J; : t € OT) 1T

A fmain .
H k2+1(a27 527 Jyite T)XTrTXev,TX(LHR),ﬂ'TXevi
k1+ko=k+1, 1<i<ky, A ymain .
LU I>=I, a1U;ae=q, Mk1+1(a17 ﬁl? Jt 1te T)7 (Ind
B1+pB2=p

(45) vdim MM (o, B,y st € T)
= /LL(B) +k—2+n- Zie[ Na(i) +dim 7.

We can also add smooth simplicial chains, following Definition 4.7.
The obvious way to do this is to start with f; : Ag, — LII R for i =
1,...,k, and take M’ (c, B,J; : t € T) X evy x-rxevi, (LIIR)F, f1 X+ fi
(Ag, X -+ x Ag,) as in (34). But for our later purposes we need to do
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something different: we use simplicial chains on 7 x (L II R), so that
fi maps A, — T x (LI R), and then we define MM (a, 8, J; : t €
T, fi,..., fx) by a fibre product over (7 x (L II R))*. Thus, roughly

speaking we want to write
MPE, B, Ty it €T, ey fr) = M, B, Jy : t € T)

(46)
X (mwrxevi)x-x(mrxevy),(Tx(LIR))E, f1 XX fy (Aa1 X X Aak)’

However, there is a problem with (46). Although 77 X evy X -+ X
evy, : M (a, B, J; : t € T) = T x (LILR)" is a strong submersion, if
dim7 > 0and k > 1 then (wyrxevy)X- X (wrxevy) : _znfiln(a,ﬁ, Jp
t € T) — (T x(LILR))* is not a strong submersion, as it does not locally
map onto 7%, but only onto the diagonal {(t,...,t) eTk:te T}.
Since f1 X - - X fi may also not be a strong submersion, the fibre product
in (46) is not well-defined.

We fix this by including an extra factor in the fibre product, which
modifies the Kuranishi structures and makes the strongly smooth maps
into strong submersions. The same problem holds for the moduli spaces

mam (M L {J1s}s B;twp(z); P) in Fukaya et al. [8, §4.6.2], but
appears to the authors to have been overlooked.

Definition 4.10. First suppose for simplicity that 7 is of dimension
m and embedded in R™. For k > 0, define a new Kuranishi structure
rpt on R™ by the global Kuranishi neighbourhood (V,™, E}", si*, ¥}"),
where V;™ = (R™)**1 and Ef* = (R™)k! x (R™)k, the trivial vector
bundle over V;™ with fibre (R™). Define sf* : V™ — EM by s :
(vo,...,vk) — ((vo,...,vk),(vl — Vg, ...,V — vo)), for vg,...,v; €
R™. Then (s{")71(0) = {(v,...,v) € (R™* : v € R™}. Define
Y (s7)7H0) = R™ by ¢ (v,...,v) —v. Define m; : V* - R™
for 1=0,...,k by 7 : (vo,...,v5)—v;. Then 7; represents a strongly
smooth map 7; : (R™, k") = R™, with mwox- - xay : (R™, k) — (R™)k+1
a strong submersion.

Now for i = 1,...,k, let a; > 0 and f; : Ay, = T x (LI R) be a
smooth map. Define the Kuranishi space

MM a, B, Jy s t€T, fr, o, fr) =
U7 (R ) X mm ey MET (@ B, 0y t€T))
X (w1 xevy)x-- X (mpxevy),(TX(LILR)®, f1 X+ X fi (Aa1 X X Aak)'

Unlike (46), this is well-defined, as 7o and (71 x evy)x- - -X(7), X evy) are
strong submersions. Also, the Kuranishi structure of (R™,«}") is un-
changed by diffeomorphisms of R”. Thus, by composing the embedding
T — R™ with a diffeomorphism of R, we see that the Kuranishi struc-
ture of ./\_/lgljiln(oz,ﬁ, Jy t €T, f1,..., frx) is locally independent of the

choice of embedding of 7 in R™. In fact, since the Kuranishi structure
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depends only locally on 7 < R™, and any 7 can be locally embedded
in R™, the Kuranishi structure of Mgljiln(a,ﬁ, Je t €T, f1,.., fr) 18
well-defined even if 7 cannot be globally embedded in R™.

As for (35), but using (45), (47) and vdim(R™, }*) = m, we see that

vdim MPS™ (o, B, 0t € T, f1,.., fu) = (1— k) dim T+
pr(B) +k—=2+n—=73 M@ + ZO;EigZI(ai —n) + D o sier G-

As in §4.4, it is convenient to rewrite this using a notion of shifted
cohomological degree. Let f : A, — T x (L II R) be a smooth map.
Generalizing (36), define

(49) deg f— dim7 +n—a—1, f(A) CT x L,
dim T +np_py—a—1, f(Al) ST x{(p—,p+)} CT xR.

(48)

Then combining (48) and (49) yields a generalization of (37):
Vdim/\_/(znjiln(a757 Jt S 7-7 f17 U] 7fk) =

(50) pr(B) — 2+ dim T +n — zf | deg fi, 0¢1,
pr(B) =2+ dimT +n— Y1, deg fi = na(), 0€ 1.

This illustrates something we will see in §5.5, that to generalize from
one complex structure J to a family J; : t € T, in dimensions or signs
we usually change n to dim 7"+ n, and make no other changes.

Write g‘aﬂ(al,ﬁl, Je:t €T, f1,..y fim1; fitkyy- - -, [) for the fibre
product

(51) ((Rm7 HZ'{) X 7o, R™ 7 _gﬁi—ri(ahﬂla Jiite T))
X (w1 xevy) X (i—1 Xevi_1) X (Tip1XeVig1) X - x(wklxevkl),(Tx(LUR))krl,
f1><"'><fz‘71><fi+k2><"'><fk(AalX X Qg XA, i+ ko 'XAak)'

Its virtual dimension is given by the sum of (40) with dim7. As for
(41) but using (44), and requiring k£ > 0, we find that

<w> OMEEN (0, B, Tyt €T, fuy s fi) =
HHMffnflln /Bujt 1t e 7-7f17’ .. 7fi—17fi OF’;‘Iiufi-i-lw .. 7fk)
i=135=0
inl H Mg;a—bll—ri a27527‘]t.t€7-7fi7"'7fi—l—kz—l)xfroXev,TX(LHR),‘rriXevi
ki1+ko=k+1, 1<i<ky, . .
IllUiI22:I, QIUiOiQZéZ Il?lil-ri(ahﬂla Jt (te 7-7 fl7 oo 7f’i—17fi+k27 oo 7fk)7
B1+B82=0

in unoriented Kuranishi spaces. Here from (47), the first line of (52)
involves a fibre product with (R™, s}"), but the third line involves fibre
products with (R, ﬂ’k’”;) and (R™, ﬂ’k’;) To match these up, we construct
an explicit isomorphism (R™, £7") = (R™, k) Xpo g 2, (R™, K7Y).
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Note that unlike (44), as k > 0, there are no special contributions to
(52) from the boundary 07 . As for (42), we shall also write

_I]?filn(/gat]t:tETufla"'ufk) =

(53) A fmain
LIIQ{O,...Jg}7 a:I—)RMk+1 (OZ, ﬁv Ji:te Tv f17 s 7fk)

This is a disjoint union of Kuranishi spaces of different dimensions.

Remark 4.11. In §8 and §10 the following question will be impor-
tant. Suppose 7 has boundary 97, and for each ¢ = 1,...,%k we have
smooth f; : Ay, — T x (LII R) such that for some b; = 0,...,a;, the
boundary map g; = fioFy"' : Ag,—1 — T x (LIIR) maps to 9T x (LILR),
and that f; maps Ag, \ Fy¥'(Ag,—1) to 7° x (LI R), where 7° is the
interior of 7. Then, what is the relation between Mffnfiln(a, B,Js it €
T, f1,- -5 fx) and MPET (o, B, Jy :t € 0T g1, -, gr)?

The answer is complicated, as if we locally embed 7 < R™ such that
OT —R™ ! then the definition (47) of _znjiln(a, By Je i te€T, f1,.ooy fk)
involves (R™, k"), but for ./\_/l}gnjiln(a, By Ji :t€dT, q1,...,gk) it involves
(]Rm_l,/iz"”_l). To give a satisfactory relation we need to impose an
extra transversality condition for fq,..., fi over OT:

Condition 4.12. Assume that mr o f; : Ay, — T s transverse to
OT along Fézi(Aai_l) for each i = 1,...,k. That is, for each p €
Fézi(Aai—l) we require d(mr o fi)(TpAq,;) + Trrofi(p) oT) = Trrofim)T -

Supposing that 7 is embedded in R™ such that 07 is embedded in
R™~! ¢ R™ locally, and using Condition 4.12, we have isomorphisms

OT i o (R™, KL Py oy @) (o fupoerofi) (B XX Day ) =
((Rmﬂ, ﬁzl_l) Xy 5o X7, (R 1)k (7091 ) XX (Ta70gk) (Aal_l N 'XAak—l))
(54) X [{0} Xirme (R £k) X e, oo i [0500)%)],

(R, KE DX ey o (R, (170 f1 e x(m0f - (m70g3)  (770f 42 - x(mof)
(Aal X X Dy XDgy; o1 X Agy g Xooe ank) o

(R™, k1) X ey seeesn (R =1)% (morog1 e x(morogn) (Dar—1 X+ X Ag, 1))

(55) ) [(R, 55) Xy oseomr 110, 00)7 71 5 {0} [0, 00)E 7],

for j = 1,...,k, where i denotes inclusion maps. To prove (54) and
(55), we use the isomorphism (R™,xJ") = (R™ k7" 1) x (R,x}) and
the isomorphism A,; = Ay, 1 %[0, 00) near F;jj (Ag;—1). Condition 4.12
ensures that the factor [0,00) in Ay, = Ay, 1 % [0,00) locally submerses
to the factor R in R™ = R™~! x R.
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Equations (47), (54), (55) and properties of fibre products yield iso-
morphisms

OT XiTmg M (o, By Ty it €T, frye .., fr)
(56) =~ M (o, B, Ty 1t € 0T, g1, - -, Gk)
x [{0} Xi o (RyAR) X s i i 10,00)%)],
MEER (B, Ty it € T iy oy Fi—1:.Gjs Fists -+ - f)
(57) =~ M (o, B, Jy 1t € 0T, g1, -- -, Gk)

X [(R, 1) X g, e s [0,00)7 71 x {0} x [0,00)% 7],

for all j = 1,...,k. These are the relations we seek between ./\_/(znfiln(a,

B, Jy:t €T, f1,..., fr) and mal“( By J t€0T, g1, -, 0k)-

Note that the third lines of (56) and (57) are each a point {0}
with an unusual Kuranishi structure, of virtual dimension 0. Since
the Kuranishi maps of these Kuranishi structures are already trans-
verse, when we choose perturbation data as in §2.7, they do not need
to be perturbed. Hence, from (57), a choice of perturbation data for
_znjiln(a,ﬂ, Jy ot € OT,q1,-..,9k) determines perturbation data for
_}gnjiln(ﬂ, Je:te T, fi,--., fji=1,95 fi+1,- -, fr), which have the same
virtual chains. This will enable us to relate Ay i algebras of singular
chains on 7 x (LIIR) to A,k algebras of singular chains on 07 x (LIIR)
in §8-810.

4.6. Modified moduli spaces .Ajl?filn(a, B,J). We will see in §5 that
defining and computing with orientations on M} (a, 3, J) is rather
complicated. This is mostly to do with the réle of the operators 8)‘@, o)
We will now define modified, noncompact spaces /\]?filn(a, B,J) whose
dimensions and orientations behave in a simpler, more natural way.
To compute the sign in some orientation problem for the Mznflln( ),
it is usually simpler to first work out the answer for the ?flln( ).
Also, the M?flln( -+ ) provide geometric explanations for the notions of

grading and shifted cohomological degree introduced in §4.4.

Definition 4.13. In Definition 4.4, suppose that the families A, ,,.)
for all (p—,p+) in R have been chosen such that 7,_,. ) > 0, and
A(p_,p,) 18 generic. This genericity implies that dim Ker 8)\@ o) and
dim Coker (%( P4 =
Np_p,) and dim Coker 8)\( - = 0, since Np—py) = ind (%\(p o) 2 0.

Consider the linear map eV( 1,0) Kerﬁ)\(piy o /\(P—7P+)( 1,0)

are both as small as possible, so dim Ker 8)\(

mapping ev(_ : & = &(—1,0). We have dimKer@A(p77p+) <n =
dim )\(pﬂp”( 1,0), since 0 < 7,_p,) < 1 by (32). Thus, genericness
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implies that ev(_;q) is injective, so ev(_y g (Ker 5>\(p7,p+)) is a vector
subspace of \,_ ;. )(—1,0) of dimension 7, ..

As A, p) (T,4) = Ap_py) (2, —y) we have A, y(=1,0) = Ap_ )
(—=1,0). Hence ev(_j (Ker 8,\@7,”)) and ev(_y ) (Ker 8>\(p+,p7)) are
subspaces of A\,_ ,, ) (—1, 0) = R", of dimensions Np_py) A0 Np, p ) =
n —Np_py)- BY genericness they intersect transversely, so that

(58) Ap_p)(—1,0) = ev(_q g)(Ker 5,\@77“)) B ev(_q) (Ker gk(“,p,))'

b’ and so we can ask
whether or not (58) holds in oriented vector spaces.

In the situation of Definition 4.2, define
(59) R (. B, T) = Mg (e, B, ) x [Tics Ker -

We write elements of Mgljlln(oz,ﬁ, J) as ([E,Z,u,l,ﬁ],gi NS I), for
(2, Z,u,l,u] € M (a,8,J) and & € Ker(‘%\a(i).
ing orientations we need to regard (59) as an ordered product, since
I C{0,...,k} we regard the product [[;; as occurring in the natural

order < on I. We interpret ?flln(

In §5 we will choose orientations for the Ker 5&1_,

When for comput-

a, B,J) as a Kuranishi space, since
the Ker 5>\a(z.) are manifolds of dimension 7,(;) and ./\_/lg‘jiln(oz, B,J) is a
Kuranishi space from §4.1. Equation (33) implies the simpler equation

(60) vdim M2, 8, J) = pr(B) + k — 2 +n.

This is independent of «, and agrees with Fukaya et al. [8, Prop. 7.1.1]
in the embedded case. 3
Define R = |1 . ER(~{(p_,p+)} XAp_p)(—1,0)). Then R is an n-

manifold, as each A¢,_,, )(—1,0) = R". Thus LII R is an n-manifold. Tt
is nicer to work with than LI R, the disjoint union of an n-manifold and
a O-manifold. Define modified evaluation maps év; : MPP¥" (a, B, J) —

~ k+1
L1 R by
u(C )eL i¢1,
(i _10)(&)) € 1€,
for i =0,...,k, and év : ~;;lj_ﬂln(a,/s,J)—>LHRby

~ S e . ﬂ(Co)EL, 0@15[,
(62) ev(iZw b &riel) = {(an(O),eV(_Lo)(fo)) €R, 0el.

61) evi([Z,Zul,al,&:iel) = {

As for ev;, ev, these extend to strongly smooth maps ev;,ev : /\]?filn(a,

B,J) — L1 R at the Kuranishi space level. They are not strong sub-
mersions, since the maps ev(_; ) : Ker 8,\(p7’p+) = Ap_py)(—1,0) are
not submersions, but this will not matter in the fibre products in (63)

and elsewhere, because of the transverseness of the subspaces in (58).
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We can now generalize (27) to an isomorphism of unoriented Kuran-
ishi spaces:

\ qmain \ qmain
0 k+1 (a7/87J) = H Mk2+1(a27/827‘])xé§}7[,]_[}~%7é§}i
ki+ko=k+1, 1<i<kr, U;I2=I, main
arU;ae=a, B1+B2=0 Mkl—i-l(ala B, J)

Note that if i € I; and 0 ¢ I, or if i ¢ I} and 0 € I3, then the fibre
products in (27) and (63) are empty, since one side maps to L, and the
other to R or R. Thus, to deduce (63) from (27), for fixed i, ..., By we
may divide into the two cases (a) i ¢ I; and 0 ¢ Iy, and (b) i € I; and
0¢€ .

In case (a), the right hand sides of (27) and (63) are both fibre prod-
ucts over L, and to see they are isomorphic we have to give an isomor-

phism between the extra factors [| jer Ker (%a o) from znjiln(a, B,J) on
the leffvt, apd Hjeh Ker 8,\(”(3.) X Hjefz Ker 8>\a2(j) from M7 (e, B, J)
and M (az, B2, J) on the right. In this case, (28) defines an isomor-
phism between I and I; II Is which identifies o and «; 11 aig, which in-
duces an is?morphism b~etwgen [1;c; Ker 5,\a(j) and []..;, Ker 5,\a1(j) X
[Ljer, Kerdy, ;) from Mia (an, By, J).

In case (b), equation (27) is a fibre product over R, and equation (63)
a fibre product over R. By (24)-(25) and (61)-(62), both can only be
nonempty if ay(i) = o 0 az(0), so we suppose this. Set ay(i) = (p—, p+)
in R, so that as(0) = (p4,p—), and let p = ¢(p—) = ¢(p4+). Then the
term in (27) is a fibre product over the point {(p_,p+)}, that is, it is
just a product. The term in (63) is a fibre product over the Lagrangian
subspace A,_ p.y(—1,0) in T,M, and ev; maps the factor Ker 5)\(1

(63)

jeh

. 1(4)
from Mg‘lﬂrj(al, B1,J) to /\(?—7P+)(_1’0) by ev(_1 ), and ev maps the
factor Ker 8,\(12(0) from M2 (a2, B2, J) to Ap_ p,)(—1,0) by ev(_1 ).

Since (58) is a direct sum, and ev(_; o) are embeddings, the fibre
product of these two factors over A¢,_, +)(—1,0) is just a point. The
remaining extra factors Hi;«éjeh Ker 5>\a1(j) X HO;ﬁjeIg Ker 5)\(120.) from

Ngﬁ‘i(al,ﬁl,,]), Ng;ﬁri(ag,ﬁg,,f) are identified with [];.; Ker 5,\a(j)
from /\]?filn(a,ﬁ, J) using (28) as in case (a). This proves (63). Note
that (63) is a fibre product over the n-manifold L IT R. This makes it
easier to work with than (27), which is a fibre product over the disjoint
union of an n-manifold L, and a 0-manifold R.

As for (26) and (42), we shall write

(64) Mt (8, 7) = [ [rcqo.. py, MEE (@, B, ).
a:l—-R

Since by (60) the virtual dimension of M i (o, 8, J) is independent of
I, o, this is a Kuranishi space, possibly noncompact because of the vec-
tor space [[;c; Ker Oysy» Of virtual dimension (60), another illustration
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of how the .Ajlg‘jiln(a, 3,J) are better behaved that the M (o, 8, J).
We define strong smooth maps ev;, ev : MPa2(5,J) — L1I R to be

main

ev;,ev on each MM (a, B, J).

4.7. The moduli spaces ~§€njiln(a,6, J’Jil’ .oy fx). We define modi-

ﬁed VeI'SiOIlS j\;lglfiln(auﬁa J7 fl7 LR 7fk)7 giﬁri(ahﬂlu J7 f17 cery fi—l;
fitkys - -, fr) of the moduli spaces of §4.4, in a similar way to §4.6.

Definition 4.14. In the situation of Definition 4.7, define

M?i;n(a7ﬁ7jyf17"'7fk)v 0€I7
M;cnjlln(a7ﬂ7‘]7f17"‘7fk)XKer8Aa(o)7 06[7

(66) 'Af;lglla"ii‘ri(alvﬁb']vfl)"' 7fi—1;fi+k27"' 7fk) =

(65) MZ‘??‘(a7ﬂ7J7fh...7fk)={

M (0, Br, T, fr ooy fims fias - Ji), 0,i ¢ I,
/\_/lg‘laf‘l(ahﬂhL f17. . .7fi71;fi+k27 .. 7fk) X I(EBI‘g)\Ql([))7 0e 117 7 ¢ .[17
/\_/lgllaf‘l(ahﬂhL f17. . .7fi71;fi+k27 .. 7fk) X I(el‘g)\al(i)7 0 ¢ I,1€ .[17
/\_/lgllafll(ahﬂhi Fiyeoos fimt; fithgy .- .7fk)><Ker5Aa1(0) ><Ker5AQ1(i)7 0,i€1.

Then equations (37) and (40) imply the simpler formulae

(67)  vdim MEE™(a, B, J, fi, oo fi) = ne(B) = 2+n — S0, deg f;,
vdim g;ﬂri(alaﬂh‘]uflw”7fi—1;fi+k27---7fk) =

pr(Br) —1+n— Y deg f; — Y4, deg f.

Suppose now that f; : A,; — LIIR maps to L ifi ¢ I, and to a(i) € R
if ¢ €~I. As above, if this does not hold then Mznfiln(a, Byd, fiy. oy fr) =
0= znfiln(a,ﬁ, J, f1,..., fr). Then (65) is equivalent to

(68) 'Af;lgl—ia-‘iln(a7ﬁ7']vf17"'vfk) :-Af;lgljiln(avﬁvj)

. b (A i¢I
[1F_, &9, (LIIR)*, le{fi fis Zé]}izl AaixKerg)\go iel [’

Xev(_1,0), el a(i)?

The difference between (65) and (68) is that in (68) we have extra
factors J[g;er Kerdy,, in M (e, B,J) (we exclude 0 because of
the f;actor Ker 5>\a(0) in (65)) and []o_;e; Ker 5>\m(l.) in HO;«éjeI A, X
Kerd,,, ;- However, we are taking a fibre product over (LIIR)* rather
than (L II R)*. The effect of this is that for each 0 # i € I, in (68) we
take the fibre product Ker E?Aa(i) Xev (100 Ma(i) (—1,0),6v(_1.0) Ker 0,
which is just a point by (58) and injectivity of the ev(_; o). Thus (65)
and (68) differ only by the product with |1\ {0}| points, so they are
equivalent.

coa(i)?
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Similarly, using (39) we find (66) is equivalent to the fibre product

(69) ~gllzi|i-ri(a17/817‘]7 f17’ .. 7fi—1;fi+k27’ .. 7fk) = NI/?lji—ri(ahBlaJ)

X -
€V] X--Xevi_1 X €Viy] ><“~><é71k17(LHR)k1717Hj:1 K

j<ior jzitks

1 {Aaw ) i¢ I}
j:17...7k‘: Aa’j x Ker a)‘aoa(j)’ ] 6 I
ji<i or j>i+ky

{ fis Jgl
fixev(_1,0), JEI

Combining (63), (68), (69) we find that by analogy with (41) we have
(70) a'/\f;l?filn(avﬁv‘Lflv"')fk)g

k a;
HHMllrfnflln(a7/87J7fl7”’ 7fi—17fi OF’;‘Iiufi-i-lw” 7fk)

i=135=0

I H g;airi(a27/827‘]7fi7"'7fi+k2—1)><é§’,7LHR7é}}i
k1+ko=k+1, 1<i<ky, \ A i
111Ui122:I, aluia2=1017 gﬁﬁ(ahﬂla J7 f17 ey fi—l; fi-l—kza ey fk)a
B1+B82=0

in unoriented Kuranishi spaces.
As for (26), (42) and (64) we shall also write

llrgnfiln(/ﬁa J7 fl7 .. 7fk) = H[g{o,,,,,kL ;fnfiln(awﬁu J7 fl7 .. 7fk)
al—-R
This is a Kuranishi space, of dimension (67), which may be noncom-
pact because of the factor Kerdy , in (65). We define ev : M'3(3,

J, fi,...  fu) = LII R to be ev on each MEER (o, B, f1, - fi)-

We can now explain the notion of shifted cohomological degree in
Definition 4.7, and the grading it induces on C$'(L II R;Q). Suppose
f: A, — LIIR is smooth. By (36), if f maps to L then deg f = n—a—1,
which is the (virtual) codimension of f(A,) in L minus one. But if f

maps to (p—,py+) in R then deg f = n¢,_,.) —a— 1. Here is a good

way to understand this. Morally, we want to lift f to a map f to the
n-manifold L IT R. Since f maps to {(p_,p+)} C R, the lift f should
map to {(p—,p+)} X Ap_p.)(=1,0) C R. But the domain of f should
not be A,. Motivated by (68), we see that f : A, — {(p—,p+)} C R
should lift to

f= fxevi_io :AaxKeréA(”ypi) — {(p—, p) I X Ap_p)(—1,0) C R.

This is not a chain in C¥(L II R;Q), as A, x Ker 5%@77“) is not
a simplex. But it does justify the change in degree in (36). We have
dim(Aa x Ker 8)‘(1471’—)) = a+z7(p+7p7) = a:i—n—n(pﬂmkby (32). Thus,
the (virtual) codimension of f(A, x Ker (%\(p%pi)) in R minus one is

n—(a+n-=np_p,)) —1=1np_p,)—a—1=degf. Hence, when
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we lift to modified moduli spaces in this way, the shifted cohomological
degree deg f is the genuine shifted cohomological degree of the ‘chain’
fin LIT R.

We could also easily define modified versions of the moduli spaces of
§4.5 for families of complex structures, but we will not, as we only need
the modified spaces for motivation anyway.

5. Orientations

We now define orientations on the Kuranishi spaces defined in §4,
and prove formulae for their boundaries in oriented Kuranishi spaces,
so computing the appropriate signs in (27), (41), (63), and (70).

5.1. Orientations on Ajlznjiln(a,ﬂ, J). Fukaya et al. [8, Def. 8.1.2] de-
fine relative spin structures on L. We adapt their definition to the
immersed case.

Definition 5.1. Let ¢ : L — M be an immersed submanifold with
transverse self-intersections in M. Fix triangulations of L and M com-
patible under ¢. This can be done by triangulating the self-intersection
of «(L) in M, then extending this to a triangulation of +(L) which pulls
back to one of L, and then extending the triangulation of ¢(L) to one
of M. A relative spin structure for ¢« : L — M consists of an orientation
on L; a class st € H?(M;Zs) such that *(st) = wo(L) € H?(L;Zs),
the second Stiefel-Whitney class of L; an oriented vector bundle V
on the 3-skeleton M3 of M with wy(V) = st; and a spin structure
on (TL& " (V))|Ly-

Here Ly is the 2-skeleton of L, and as wa(V]Ly) = *(st)|ry, =
wz(L)|r, wehave ’LUQ((TLEDL*(V))|L[2]) =0, s0 (TL&* (V)| admits
a spin structure. If L is spin then wy(L) = 0, so we can take st = 0 and
V = 0 and the spin structure on T'L| Ly to be the restriction of that
on T'L. Hence, an orientation and spin structure on L induce a relative
spin structure for ¢ : L — M.

main

We first construct orientations on the modified spaces M e (o, B, J)
of §4.6.

Theorem 5.2. Let (M,w) be a compact symplectic manifold with
compatible almost complex structure J, and ¢ : L — M a compact La-
grangian immersion with only transverse double self-intersections. Then
choices of a relative spin structure for v : L — M, and of Ag_ p,y for
(p—,p+) € R _as in §4.3, determine orientations on the modified Kuran-
ishi spaces M}aniln(a,ﬂ, J) of 84.6 for all k,«, 5.

Proof. Let [X,Z,u,l,u] € _g‘jiln(oz,ﬁ, J), so that Z = (z9,...,2k)
with zg, ...,z distinct smooth points of 0%. For each ¢ € I we choose
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a small open neighbourhood U; of z; in X, such that U; N U; = 0 if
i#jel, and z; ¢ Ujifi # j ¢ I, and U; \ {2} is biholomorphic to
(—00,0) x [—1,1], where z; corresponds to —oo. We identify U; with
{—o0} U (—00,0) x [-1,1], and define
Ui ={-o0} U (—00,—7) x [-1,1] C U,
for » > 0. For ¢ € I we also define
Y[:{(:E,y)eRz s either <0, 224+y*<1 or 0<z<r, ly|<1}Cy,

where Y is as in (29), and we set y; = (—1,0) € Y. For j ¢ I
we define y; = z; € X\ U Ui Glue ¥\ U, Uj and ;e Yy
by identifying {—r} x [-1,1] C U; with {r} x [-1,1] C Y to make
(X", yo, - .., Yk ), which is diffeomorphic to (3, zg, ..., 2x). Consider the
linearized Cauchy—Riemann operator

D0 : Wl’q(E \{zi:i€I},05\ {2 i€ I};u"(TM),u*(de(TL))
— LIS\ {2z i € I1u*(TM) @ A" (2\ {z :i € I})),
for ¢ > 2, and define the virtual vector space
Ind D,,0 = Ker D,,0 © Coker D,,0.

Here for a Fredholm operator P, we will write ind P = dimKer P —
dim Coker P in Z, and Ind P = Ker P & Coker P as a virtual vector
space.

By a suitable partition of unity, we define differential operators

Dy, : WS 0% By, Fyp,) — LYY B, @ A8,
for ¢ > 2 and large r, whose restrictions to X \ [J;¢; U~ and Y

coincide with D, 0 and 0y respectively, and we define the virtual
vector space

a(i)?

Ind D, », = Ker D, , © Coker D, »,, .

Here E, — X" is a complex vector bundle agreeing with u*(7T'M)
on X\ U;e; Uf, and is trivial with fibre T),, M on Y;" for i € I, where
a(i) = (p—,p+) € R with «(p—) = v(py) = pi. Also F, ), is a real
vector subbundle of E,|ssr which agrees with do(T'L) on 0%\ ;¢ Uy,
and with A,y on 9Y]" for i € I, except near {—r} x [~1,1] where we
interpolate between these two values. The notation A, in D, ,, and
Fy », denotes that these depend on the choice of Ay for all i € I,
where a(i) = (p—,p+) € R and \(,_ ) is as in §4.3. Then, by a gluing
theorem for large r, we have an isomorphism of virtual vector spaces

(71) Ind D,,0 ® P, Ker (‘%\a(i) = Ind Dy,

since Coker 5,\0(1.) =0 as in §4.6. Really this holds in the limit r — oco.
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The virtual tangent bundle of ./\_/lgljiln(oz,ﬁ, J) is

U (Ind D0 & Tis, g M) — MRS (0, B, ),
(2.2l ale Mo (a,8,J)
where _znjiln is the moduli space of isomorphism classes of genus 0
prestable bordered Riemann surfaces with &£+ 1 distinct smooth bound-
ary marked points ordered counter-clockwise. Combining this with (59)
and using (71) shows that in the limit » — oo, the virtual tangent bundle
of M}aniln(a,ﬂ, J) is

(72) U (Ind Dy, ® Tjg g MEE) — MEE 0, B, 7).
(&ii€L,[8,Zu,L,a]) EMPD (o, B,)

Since _?filn is oriented [8, §2.2.2], [17, §4.5], the factor T[E’g]./\_/lgljiln
in (72) is oriented. As in the embedded case [8, §8.1], a relative spin
structure for ¢ : L — M canonically determines a homotopy type of
trivializations of F), ., which gives an orientation of Ind D, »,. This
is obtained by gluing in A,(;) at z; for ¢ € I, and so also depends on
the choice of A(,_ ) for (p—,p4) in R. Combining these two gives an
orientation for the virtual tangent bundle (72), and hence an orientation
on the Kuranishi space }gnjiln(a, B,J). q.e.d.

With these orientations, we compute the signs in (63).

_Theorem 5.3. In the situation of §4.6, with the orientations for
main

i (a, 8,J) in Theorem 5.2 and the conventions of §2.4, the orien-
tations of DAL (0., and MESS 01, 1. 1) o, g ML 02
By, J) in (63) differ by a factor (—1)F1=dk2=D+0+k1) g5 that in ori-
ented Kuranishi spaces we have

OMP (o g )= T (AR M (as, B, )

(73) k1 +ka=k+1, 1<i<k, (main
IUIa=I, Xé\\//,LHﬁLé?fi k1+1(a17/81’J)
ajUjaz=a, B1+682=0

Proof. Suppose [X, Z,u,l,a] in O _?filn(a,ﬁ,J) is identified in (27)
with a pOiIlt in .A_/lg;:l_ri (CYQ,/BQ,_J) .XeV,LHR,evi _;gnlﬂri(a17517‘]) repre-
sented by [%1, 21, u1,l1, u1] € MP (a1, B1,J) and [Xg, 22, ug, l2, u2] €
_gﬂ‘i(ag,ﬁg, J). Then 2 = (2, ... ,zil) and 7 = (22, ... ,zli), and as
the point lies in the fibre product we have u(z}) = ua(23) in «(L), and
either i ¢ I} and 0 ¢ Iy, or i € I; and 0 € I and aq (i) = o0 oaz(0) in R,
noting the differing definitions of ev;, ev in (24), (25). From these we
make (Zr,yo,...,yk),(Z’i,yé,...,yil),(zg,yg,...,yiz), and smoothed
operators Dy, Duj x., s Dus \a, upOR them, as in the proof of Theo-

rem 5.2. The following lemma is then proved as in [8, Lem. 8.3.5]:
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Lemma 5.4. We have an isomorphism of oriented virtual vector
spaces

(74) Ind Du,)\a = Ind Du27)\a2 Xo‘v,T(LHR),e‘vi Ind DUL)\al,
where, for & € leq(ETl’,OEQ;Eul,Fuh)\al),
1 .
NeT, L, I,
e—vl(fl) — gl(yzl) Ul(zil) Z ¢ 1
gl(yz) € )‘al(i)(_luo)a 1€ Ila
and, for & € Whi( 5,82";Eu2,Fu27Aa2), we define

e_V(§2) = 62(?/(2]) € Tu2(Z§)L7 0 ¢ 127
£(48) € Aoas(0)(—1,0), 0 € Io.

(75)

(76)

Since L is oriented and \(,_ ;. ) is compatible with orientations, u1,(53)
is even. Thus we obtain the following corollary, proved as in Fukaya et
al. [8, Prop. 8.3.3]. For reasons to be explained in Remark 5.14(b), we
have reversed the order of their fibre product, as for (27) in §4.3, so the
sign in (73) is not the same as that in [8, Prop. 8.3.3]; the difference can
be computed using the second line of (5).

Corollary 5.5. We have isomorphisms of oriented virtual vector
spaces

Ind Dy, @ Tis ...,z 0 _El-ﬁiln =
(77) (_1)n+z+2k2 (Ind Du27)\a2 D T[Eg,zg,...,zz2]'/\_/l}€rﬁil-ri)

B A main
X &, T(LIIR),6v; (Ind Dy, 5, & T[Ehzg,...,zm Fpl):

By (72), in the limit  — oo the three terms in (77) are the virtual tan-
gent bundles of OIMPT (o, B, J), MY (a1, b1, J), M2 (g, Ba, J).
By comparing (61)-(62) and (75)—(76) we see that in the limit » — oo,
the fibre product -+ X o 7 1) o, 7 IR (77) becomes that induced
on virtual tangent bundles by the fibre product - x4 ;15 v -7 in
(63) and (73). Taking the limit » — oo, equation (77) now implies the
oriented virtual tangent bundle version of (73), so Theorem 5.3 follows
from this and (63). q.e.d.

5.2. Orientations on ~znfiln(a,ﬂ,J, fis--o, fr). Next we orient the
spaces of §4.7.

Definition 5.6. In the situation of §4.3, choose orientations o(,_ . )

on the vector spaces Ker 5,\(7)7'7) ) for all (p_,p4+) in R. In equation
(58), Ap_ p,)(—1,0) is an oriented Lagrangian subspace of T),M, and the

maps ev(_,g) are injective, so our orientations o on Ker 8)‘(1);,%)

PF.P+)
induce orientations on ev(_j g (Ker 8,\@;,%)). Thus, all three vector
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spaces in (58) are oriented. Define ¢(,_, ) = 1if (58) is true in oriented
vector spaces, and €(,_,, ) = —1 otherwise, for all (p—,p+) € R.

The subspaces on the r.h.s. of (58) have dimensions Nip_ py)s ™ —
Np_ps)s SO swapping them changes signs by (—1)"(”*’P+)("_"(pf”’+)).
Thus

(78) € Mo— ) (V= p1)

p—.pi)€(prp-) = (1)
If n is odd then one of n
&

p_ps) ™ — Np_p,) 18 even, so (78) gives
p_pi)€psp) = 1. In this case, we can choose the orientations on
the Ker 5,\@77“) so that €(,_ .y =1 for all (p—,p+) in R, which simpli-
fies some formulae below. But if n is even and some 7(,_ ) is odd then
(78) gives €(p_ps)€(pyp) = —1, so we cannot choose the orientations
on the Ker 5&“'“) to make all €,_ ) = 1.

We work in the situation of Definition 4.14 with orientations on

Ngljiln(a,ﬁ, J) from Theorem 5.2, and o(,_, ) on Ker 8>\(p ) De-

fine an orientation on }gnjlln( o, B,J, f1,..., fr) by the fibre product of
oriented Kuranishi spaces:

M BT s Ji) = (1) B des i

MR (o, B, T) %, f gl
(79) H =1 evl LHR { fZXOV(,Lo), il
A ¢l
Z,I;Il {Aai X Ker 5,\0()&(1.), 1e1 } ’

which is (68) with a choice of sign taken from Fukaya et al. [8, Def. 8.4.1].
Roughly speaking, the sign (—1)("+1) Siz1(k=0(deg fi+1) i chosen so that
in the Ay algebra we will construct later, my(f1,..., fx) is a virtual
chain for the oriented Kuranishi space ?filn(oz, ByJ, f1,.-., fr). But

we actually define my(fy,..., frx) using the ./\_/lgljiln(oz,ﬁ, I fiyeoy fr),

and the calculations in this section are just motivation for the compli-

cated choice of orientation on M?flln( By f1y .oy fr) in §5.4.
Similarly, define an orientation on zna_“;fi(al, Bis s f1,- o, fim1; fivks,

- fr) by
(80) M}Crﬁil-ri(alvﬁb']v fl)' .. 7fi—1;fi+k27' .. 7fk) = (_1)n2;;i(dogfl+1)

(1) (D) SIS (hhat 1) (deg fib1) () (0+1) Sy (b—1) (dog fi+1)

main

k1+1(0417517<])>< k1 o~ N D JEl

Hi;éj:l ev],(LHR) ! 7Hj:17"'7k: {f-><ev —1,0)» ]EI}
g A J (—1,0)
j<ior j>i+ko

H {Aa]‘7 B J ¢ I}
G=1,...k: Aq; % Ker a/\ooa(j)’ jel
j<ior jzitks



434 M. AKAHO & D. JOYCE
which is (69) with a sign inserted, chosen to achieve a simple form for
the signs in (81) and (82) below.

We can now add orientations to equation (70).

Theorem 5.7. In the situation of Definition 4.14, with the orienta-
tions of Definition 5.6, in oriented Kuranishi spaces we have

(81) aM?flln(a7/87J7flu"'7fk)g

k a; .

H H (_1)j+1+22;%d0gfz

= llrgnflln(auﬁathlw”7f’i—17fiOF’;‘I7fi+17”’7fk)

H H (_1)n+(1+2;';} deg fi) (14301252 deg 1)
k1+ka=k+1, 1<i<ky, \/ i
Illuilizl, aluiolzgza, gﬁﬂ(a% B2y, fise oo, fi+k2—1) XéT/,LHR,éT/Z—
B1+B2=08 ~ nain

k1+1(a17ﬁ17‘]7f17"' 7fi—1;fi+k27"'7fk)'

Also, if f: Ay — LII R is smooth then in oriented Kuranishi spaces
we have

Aq, f(Aa) C L
(82) {Aa X Ker(@)\(p%pi), f(Aa) = {(p_,p+)} - R}

X{ 1, f(Aa)CL}LHRéTI- gllaiil-ri(alvﬁlv']vflv"7fi—1;fi+k27"'7fk)
Ixev(_1,0), f(Aa)CR S e

i—1
(1+deg ) (1+ X deg f;) —
:(_1) =t k1+1(a17517‘]7f17"'7fi—17f7fi+k27'"7fk)'

Here (81) is proved by a sign calculation using equations (70) and
(79)—(80), Proposition 2.10, Theorem 5.3, and the formula 0A,, =
Z;”zo(—l)j F}"(Ag;—1) in oriented manifolds with corners, in the nota-
tion of §2.6, and (82) follows in a similar way from equations (79)—(80)
and Proposition 2.10.

5.3. Orientations on ./\_/lfgnjiln(a,ﬂ, J).

Definition 5.8. Choose a relative spin structure for ¢ : L — M, so
that Theorem 5.2 gives orientations on the Mznflln(a, B,J). Inserting

signs in (59), define the orientation on M (a, 8, J) to be such that

\ fmain ) (i) | k=7 e Moy
(83) Mk—i—l (OQﬁ’ J) = 1:[0?5]:61 €a(y) (_1)207&36[” (])[ J+Zleu>]n (l)]
kit (o, B, J) X Hz‘el Ker 8>\a(i)

holds as a product of oriented Kuranishi spaces. This orientation on
i (a, 8,J) depends on the choices of a relative spin structure for

v: L — M, and the A¢,_, ) in §4.2, and the orientations o(,_ ., for
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the Ker 5)\@7’”) in §5.2. The complicated choice of sign in (83) will

be explained in Remark 5.14(c). One thing it does is achieve a fairly
simple form for the sign in (84) below.

We compute the orientations in Theorem 4.3.

Theorem 5.9. Using the orientations of Definition 5.8, the isomor-
phism (27) in oriented Kuranishi spaces becomes:

(84)  OMP (e, B, T) = T G Mt (a2, Ba, J) Xev iR ev,
k14ko=k+1, 1<i<ks, i
LUi=1, 0yUsan =0 M2 (aa, Br, J)
B1+B2=p

(85) where G = ( )"+ (H'dez 0<j<i "a(a)) (1+k2+zlez:i<l<i+k2 na(l))
if i¢ 1 and 0 ¢ Iy, and
(86) (1= (_1)"+ (i+2j61:0<]’<i na(j)) (77&1(i)+1+k2+2161;¢<l<i+k2 ”a(l))

if i € I, 0 € Iz, and a2(0) = o o a1(i). Note that in the cases
not covered by (85) and (86) we have ./\/l}gnaﬂ(al,ﬂl,(]) Xev,, LI R,ev

gﬁ‘i(ag,ﬁg, J) =0, so we do not need to define (;.

Proof. Substitute (83) into (73) three times for k, a, 8 and k1, aq, 51
and ko, ao, Bo. This yields

S 5 +i+ik
OMEEY (0 8,.7) x TT Ker By, = [ [intamn, i, (1)
el LU =1,

arU;az=a, f1+p2=0

Il €@ 11 €y 11 eaz(j)(—l)ZO#jef"a(j)[k_jJFZleI:Dj"a(l)}
0#£j5€l 0#jeh 0#£j€l2

(—1)20#611 Ny (1) B2 1 1y 0> 5 Moy () (—1)20#1'612 Moy (5) B2 T2 e 121> Mo (1)
(87) (M fjﬁﬂ(az,ﬂza J) x [Ler, Ker 5%42(3')) X&v, LR &v,
(M }Tl'“fﬂ(ah Br, J) %[ Ler, Ker 5Aa1(j))'

The left hand side is E?Mznjiln(a,ﬂ, J). Fix i,...,0B in (87), and first
consider the case ¢ ¢ I and 0 ¢ I. Then we have
(Mgﬁlﬁ(abﬁz’ J) x Hje[ Keré/\az(j))
Xaviufer, (Miti(on, B1,J) x Tljey, Kerdy, ;)
= (-1" Ziery T2 MAM (g, B2, J ) X ev, LIIR,ev;

M (s B1, ) % (Tjer, Kerdy,, )) * (Ijer, Kerox,, )
_ (_ )k1 Zl612 naz(l)(_l)(ZjEII:j>i Ual(j))(ZleI2 M (1)

(88)

main

MEA (a2, B2, J) Xev,LiiR,evi MEAS (a1, Br, J) x (ITe; Ker 5Aa(j))-
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Here in the first step we pull Hjeh Ker 8,\a1(j) and Hjelz Ker 8,\a2(j),
which are not involved in the fibre product, out to the right. Since
I1 jer, Ker 8,\a1 G 18 already on the right, it causes no sign changes. Mov-
ing Hjelz Ker 5,\a2(j) past LIIR and then past M}gﬂ(ag, B2, J) changes
orientations by (_1)dim(]_[jij2 Ker 8Aa2(j))(dim LI R+dim Mo (al,ﬁl,J))‘ Us-
ing (60) to compute dim (a1, 81, J) and omitting even terms 2,
2n and pr(B1) in dim LIIR+dim kmlﬁ‘i(al, B1,J) gives the sig_n on the
third line 0f_(88). The fifth and sixth lines_reorder (IT jer, Ker 8)\a1(j)) X
(Hjelz Ker 8>\a2(j)) to obtain (Hje] I_{er 8>\a(j)). By (28), :EhlS means
swapping over factors Hj6]1:j>i Ker 8,\a1(j) and [[;cp, Ker 8,\a2(l), and
so contributes the sign (—1)(21'61111'”'"al(j))(ZlEIZ "a2) in the fifth line.
Combining signs in (87) and (88) we obtain (85), proving the theorem
in the case i ¢ I1 and 0 ¢ I5. The second case is similar. q.e.d.

Remark 5.10. If we reverse the order of the fibre product in (84)
using Proposition 2.10(a) and (33), noting that the fibre product is over
L with dim L = n in the case i ¢ I1, 0 ¢ I, and over R with dimR =0
in the case i € I, 0 € I5, we obtain

OME (. 8,) = [ QMRS (ar, Br,J) Xev, LilR.ev

(8 ) k1+ko=k+1, 1<i<ky, 1U;I2=1, A fmain (Oé B J)
a1Ujae=a, B1+p2=0 ko+1\C2, P2,

in oriented Kuranishi spaces, where
C2 — (_1)”+i+2jelzo<j<i77a(j) .
(_1) (k2+zjelzi<j<i+k2 "a(j)) (k1+i+21611i+k2<l<k no‘(l)) , 0 ¢ 1,
_ (k2+zjez:i<j<i+k2 ”a(j)) (k1+i+na(0)+Zl€1:i+k2<l<k "a(l))
(=1) , 0el,
ifi ¢ I, and 0 ¢ Iy, and
(o= (_1)n+i+2jelzo<j<ﬂ7a(j) .
(—1)(’7a1(i)+k2+zj61;i<a‘<i+kz ”a(]‘)) (77&2((”+k1+i+2l€”+’“2<l<k %(z))y 0¢1,
(_1)(77(11(i)+k2+2j61:i§j<i+k2 ”a(j)) (77&2(0)+k1+i+zlel:i+k2<l<k ’704(0)7 0el,

ifi € I1,0 € Iz, and a2(0) = 0 o a1(i). In the embedded case, when
I = (), the sign ¢ reduces to (—1)"T k2149 which agrees with that
calculated by Fukaya et al. in [8, Prop. 8.3.3 & Rem. 8.3.4] when i = 1.

5.4. Orientations on _}aniln(a,ﬂ, I 1y fr)-

Definition 5.11. We work in the situation of Definitions 4.7 and
4.14 with the orientations on the M (c, B, J, f1,..., fx) from Defi-

nition 5.6, and o(,_ ) on Ker 5)\@7’“) from §5.2. Define _gljiln(a,ﬁ,
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J, fi,..., fr) to have the unique orientation such that

~ . A fmain I
(90) AP (@05, oo fi) =] T o e S A
et (@8, f1,. . fi) x Ker Oy ), 0€1,

holds, in oriented Kuranishi spaces. This is just (65), with no ex-

tra sign added. Similarly, adding signs to (66), let _}gnlﬁri(al,ﬂl,(],

Ly« fic1; fidksy- -+, fr) have the unique orientation for which in ori-
+k2
ented Kuranishi spaces we have
(91) Ilz’llzl-ri(abBlv‘])flv"'7fi—1;fi+k27"'7fk):
-/\_/tglla?ll(alehthlw"7fi*1;fi+k27"'7fk)7 07i¢117
Mg‘l"{f‘l(ahﬁl, J, fl, .. -7f7:71;fi+k27 .. ,fk) X Ker&,\al(o), 0el, i Q_f I,
aq (i 1+Ei';1d f+2k:1 deg f;
(:,ln)a:]nl()( 7=1 SR TI T Syt OO ])6a1(i) ~ 0¢1,i€l,
Mk1+1(a17517‘]7f17"'7f’i*1;fi+k27"'7fk) XKeraAal(i)y
o (1422 deg £+, 1 4, deg f;
(:rln);:l(l)( AR A egf])eal(i) ~ _ 0,i€1;.
Mk1+1(a17517‘]7f17"'7f’i*1;fi+k27'"7fk)><KeraAa1(0)XKera)\oq(i)’
Reordering the factors using (5), (40) and (78) gives
(92) g;al-ri(ahﬂlat];flu"'7fi—l;fi+k27"'7fk):
Mglla;:ll(a17ﬂl7j7f17‘“7fi*1;fi+k27”'7fk)7 B 07i¢ll7
Mrk?lainl(alvﬁlyj7 f17' . '7fi*1;fi+k27' . 7fk) X Kera)\al(o)7 0e Il7 i ¢ Il7

€ooa (i) Keré_kal(i) XMrk?lainl(ahBlyJ7 f17' . '7fi*1;fi+k27' . '7fk)7 0 g Ily (XS Il7

€ooay (i) Ker O, oy x M (e, B1, I, fro ooy fimts fidkas oo o fi) .
1G) Z 0,i€1;.
x Ker 0y

1(0)?

Combining equations (79), (83) and (90) and calculating using Propo-
sition 2.10, the definition of ¢ and (78) to determine the signs, we
prove that:

P—,p+)

Theorem 5.12. An alternative way to define the orientations in Def-
inition 5.11, in terms of the orientation on M (a, 8,J) given in
Definition 5.8, is that

(93) _Il?filn(auﬂathlu"wfk):
(3 j\_/lgl—ﬁlln(a7 B, J) Xevy X xevy,(LILR)k, f1 XX fi (Aa1 X X Aak)
in oriented Kuranishi spaces, which is (34) with signs inserted, where

<3 — (_1)20#61("—%@)) [Z§:1(d0g fj+1)—2jefzo<j<i ”a(]‘)]

(01 (—1) D[S (=i es it )= T sies (r—aco

1, 0¢1,
) (—1)"e© [Zf:l(degfﬁ-l)—zo?gie] nau)], 0el.
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We can now prove an analogue of Theorem 5.7. Note that the signs
in equations (95)—(96) are exactly the same as those in (81)—(82).

Theorem 5.13. In the situation of Definition 4.14, with the orien-
tations of Definition 5.6, in oriented Kuranishi spaces we have

<95> M (, B, fr, -, fi)
HH 1)JH+EIC] deg f
ELS0 R, B, 0, fry o fiots fi 0 B fivtse s f)
i H (- 1)"+(1+Zz Ldeg fi) (1430182 deg 1)
Iflljﬁzzlfralulfofj& MEAY (a2, Bay T, fis -+ s Fitha—1) Xev, LIIR,ev;

B1+B82=0
o Eﬂq(alvﬁh‘Lflw“7fi—1;fi+k27"'7fk)-

Also, if f: Ay — LII R is smooth then in oriented Kuranishi spaces
we have

(96) Ay X g r1Rev: MEAS (01, By I fuy oo ficts Fithas - - oo £

(1+deg f)(lJriiI1 deg fj) i
:(_1) =t Mk1+1(a17517']7f17'"7fi—17f7fi+k27"'7fk)-

Proof. To prove (95), we substitute (90) and (92) into (81). We must
consider separately the cases 0 ¢ I and 0 € [ in (90). As 0 € [ if and
only if 0 € I; by (27) and (28), these determine whether or not 0 € I,
but for each i,..., (2 in (95) we must still consider separately the cases
i ¢ I and i € I in (92), so there are four cases to consider. We explain
the most complicated case 0 € I and 0,7 € I;. Then substituting (90)
and (92) into (81) yields in oriented Kuranishi spaces

O(MEEN B, T, frs- s fi) x Ker Dy, ) =
(6( _;fn—iiln(av ﬁv J7 f17 cee 7fk)) X Keré}\a(o)

on the left hand side, using Proposition 2.10(a) and 8(Ker 5,\a(0)) =0,
and

A4S degfi
1 I=1

;cn-iin( ﬂa‘] flv'- '7fi717fi OFquaf’i—Hv'- 'afk)XKergka(U)
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for the first term on the right hand side, for each j, and
(_1)n+(1+2;: deg fl) (1+Z;if271 deg fz)

(M5 (a2, B, I, fis s firka—1) X Ker O o)) X v Luift.ev,
(€oas (i) Ker O, | ) X MEX (a1, 81, f1y- - s fit; fivkare -5 fi) X Ker o))

— (—1yr+ (14sizt des ) (1450202 deg 1) fgmain (o, 3,7 7,

ka+1 "7fi+7€2—1)><

(Egoal(i) Ker (‘9)\&2(0) XAaz(o)(*LO) Ker (9)\a1(i)) X
}cnla:‘,l-ri(ala ﬂlv ']7 f17 ) fifl; fi+k27 ) fk) X Kera)\al(o)

_ (_1)n+(1+2;;i deg fz) (1+Z;if271 deg fl)

( _}Cn;:‘;l_ri(a27627 J7 fiu .. wfi—i—kg—l)xev,LHR,evi
MR (a1, By, fry ooy fim 15 fibhas - -5 f)) X Kera\al(o)

for the final term on the right hand side, for fixed i,..., 82 with ¢ € I.
Here we use the fact that Ker 5>\a2(0) X Ay (0) (—1,0) Ker 5,\(”(2.) is a point
with sign €4, (0), and as az(0) = o o a1 (i) this cancels with €04, (), 50
that the fifth line is just a point with sign 1. In the last two lines, the
fibre product over LII R is actually a fibre product over the point a4 (7)
in R, so it is a product, as in the fifth to seventh lines.

The last three equations are the oriented products of the correspond-
ing terms in (95) with Ker 5,\a1(0). This proves (95) in the case 0 € [
and 0,7 € I;. The other cases follow by similar but simpler arguments.
To prove (96) we substitute (90) and (92) into (82), and use the same
method. q.e.d.

Remark 5.14. (a) Theorem 5.13 is the main result of this section.
It is important that the signs in (95) and (96) depend only on n, i, j, ko
and the shifted cohomological degrees deg f;,deg f. In particular, they
do not involve the €,(;), Nq(;) Or a;. Because of this, in the rest of the
paper we will be able to write all our signs in terms of deg f;,deg f,
without any correction factors involving €, (;y, Tla(j), @j- This was one
aim of the careful definition of orientations above.

Theorem 5.13 is an analogue in the immersed case of Fukaya et al. [8,
Prop. 8.5.1]; roughly speaking, if we substitute (96) into (95), then we
get [8, Prop. 8.5.1], with the same signs, noting that our definition of
deg f; differs by 1 from that of [8]. Since our signs are compatible with
those of Fukaya et al. [8], we can follow their proof to construct an A,
algebra, and there will be no new orientation issues, provided we grade
our complexes using shifted cohomological degrees in (36).

(b) In equations (27),(41),(63),(70),(73),(81),(84),(87) and (95) above,
we chose to order the fibre products as M1 (g, ...)X . ] (O J)
rather than the other way round; this order was reversed in (89). Fukaya

et al. adopt the opposite order to us, in [8, Prop. 8.3.3] for instance.
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We can now explain why we chose this order for our fibre products.
Using (5),(37) and (40) we may rewrite (95) and (96) with the other
fibre product order, which yields:

(97) a_znfiln(avﬁv‘Lflv"')fk):

k a; )
HH (—1) 1+ deg f
i=17=0 _Il?-ﬁiln(avﬁﬂ]) fl)' .- 7fi—17fi OF’]qivfi-i-l)' .- 7fk)

itho—1

11 H (_1)n+1+i+ik2+2§;} deg fi+30, ;2 deg fi 4, deg f1
ki1+ko=k+1, 1<i<k1, jmain L
11U Ix=I, alUiQQ:}L Mkl-i-l(alv ﬁl) J7 f17 s 7f2—1a fl+k27 s 7fk)
B1+B2=08 T mai
Xev;,LIIR,ev Mglalri (a27 527 J7 fi7 cee 7fi+k2—1) .
2+

1, ()77:¢.[17
i+ko—1
(—1)7]041(0)21:1-2 deg f Oe]ly 7:¢Il7

)
i1 k ithky—1
Ny (i) |1+ 2 deg fr+ deg f| ) )
1 1( )[ Lgl [ l:§k2 l}(_l)nooal(z) [na1(1)+ lgi dcgfz} 0¢1,ich ,
b ) b
[1 i—ld k a } itko—1
Ny () Jrlgl egfﬁrl:g]% eg fi (_1)(770¢1(0)+"7(70041(i))|:7la1(i)+ l; degfz]

(-1
(98) MR (a1, Bry T, frs ey it fithas - s fi) Xevs LR f Da
k
(deg f+1) 3 degfi o
:(_1) l=i+ko kl_i_l(alaﬁly‘])fl?“'7fi—17f7fi+k27"'7fk)'

1, 0,i¢ 14,
(—1)’7al(0)(dcgf+1)7 Oeh, i¢l,

i—1 k
Moy Gy [1+ 2 deg fit > deg fi]
1 =1 I=itho

) 077:6]17

(_1)nooal(i)(ng f+1+na1(i))7 0¢l, icl,

i—1 k
Naq (i) |2 deg fi+ 3 degf
1 )[ =1 P Fhy l} (_1)("&1(U)+77(roo<1(i))(degf+1+77a1(i))7 0,iely,

Observe that equations (97)—(98) have complicated extra sign terms
Ivolving 7, (0)» May (i) Mooay (i) SO they are not simply written in terms
of n,i,j, ko and deg f;, deg f, as (95)—(96) were. Thus we prefer the fibre
product order in (95)—(96). One might guess that by changing the signs
in (90) and (91), altering the orientations of _gljiln(a,ﬁ, I fiyeooy fr),
_}gﬁri(al,ﬂl,(], fi,oo o fic1i fitkys- - -+ i), one could eliminate the trou-
blesome terms in (97) and (98), to get signs depending only on n, 1, j,
k1, ky,deg f;,deg f. However, calculations by the authors indicate that
this is impossible, at least with the orientation conventions of §2.4.

(c) We defined the orientation on My 1(a, 8,J) in §5.3 by (83), which
includes a complicated choice of sign. We chose this particular sign by
requiring that if a; = n fori ¢ I and a; = 0 for i € I, so that deg f; = —1
for i ¢ I and deg f; = nq(;) —1 for i € I, then the sign (3 in (93) and (94)
should be 1. The sign in (83) was then determined as in the proof of
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Theorem 5.13. The motivation for this choice is that we have found nat-
ural orientations for the moduli spaces M (a, B8, J, f1, ..., fr), with
good properties under boundaries as in Theorem 5.13. Now we have

M (e, 8, ) = ,
maln( ,8 ) H Z¢[
k+1 IR evi (LITR)E, Ldif;},zg a(i)}, i€l |’

This is like the fibre product (34) defining Mgljlln(oz,ﬁ, I fiyeooy fr),
but replacing f; : Ag;, = LI R by id, : L - LII R for ¢ ¢ I and
idga@)y : {a(i)} =L R for i € I. Thus we can think of M (, 3, J)
as a generalization of ./\/lkmjlln(a, ByJ, f1,..., fr) in which a; = n = dim L
for i ¢ I and a; = 0 = dim{a(¢)} for i € I, and so we should arrange to
get (3 =1 1in (94) in this case.

The orientations on M?flln( By, f1,-- ., fr) depend on the choice
of paths Ay,_,,) in 8§4.3 and orientations og,_,, ) on Ker&\(p o) in
§5.2, for (p_,p4) € R. Suppose )\(p p+)> O(p_ p,) are alternative choices.
Changing A\(,_ ) to )‘(pﬂm) alters the index 7, .y in (31) to f,_,.),
and this changes the shifted cohomological degree deg f in (36).

AS Ap_ pi)s X(pf,m) are paths in oriented Lagrangian spaces, n(,_ . )
TN(p_p,) differ by an even number, so we may write 7,_ . ) = Np_ p,) +
2dg,_ p,yfordg,_ .y € Z. So degrees in (36) change by deg f +— deg f +
2d(,_ p,yif f 2 Ag — {(p—,p+)}. Since the changes in ng,_ ., ),deg f are
even, all the signs above, such as those in (95) and (96), are unchanged.
Here is how changing to alternative choices 5\( ) affects the
orientations on _znfiln(a,ﬂ, Iy fiseoos fr)-

p—.p+) O(p—.p+

Proposition 5.15. In the situation above, suppose we replace the
paths Ag,_ .y in §4.3 and orientations o(,_ ;. y on Ker 8,\@7'“) in §5.2
by alternative choices 5\(p7’p+),(~)(p77p+), for all (p—,py) in R, so that
N(p_py) 15 replaced by 1,_ .y, but we make no other changes. Then for
all (p—,p+) € R there exist {,_ .y = £1 depending only on \¢,_ .,

O(p_ ps)s )\(p P O(p_py)» Such that for all k,a, B, f1,..., fx the orien-
tation on ?flln( By, f1,- -+, fr) changes by a factor
504(0)7 0el,
(99) gooai '
Oyd @1, o¢rL

Proof. When we change only the o(,_ ), so that X(pﬂ%) = Ap_ps)s

using (79), (90) and the fact that the orientation of M} (a,3,J)
is independent of the o(,_, ), we see that changing from o(,_, ) to
O(p_py) for all (p—,py) € R changes the orientation of ./\_/lffnfiln(a,ﬁ, J,

fi,--+5 fi) by a factor (99), with the §,_,, ) determined by o(,_,.) =
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§(p—p)O(p_,py)- For the general case, we must also consider how the
virtual tangent bundle of ./\/lk+1( ,B3,J) in §5.1 changes when we replace
Ap—p+) DY Ap_ps)-

The virtual tangent bundle changes by direct sum with @,; Vo)
) = Inﬁdg(pﬂm) for (p—,p+) € R are oriented virtual
vector spaces, and J,_,.) is an elliptic operator on the disc D =
{(z,y) € R? : 22 + ¢y?> < 1} with boundary conditions Ap_p) (T, Y)
on the semicircle z < 0 and 5\(p77p+)(—117,y) on the semicircle z > 0.

where V(

There is an isomorphism &, , \V(,_ ,,) = Ker (9;( » eKer Ny
where Ker 8)\( oy Ker 8)\@ R have orientations o(p p1) O(p_ py) and
§(p_py) = £1, and the proposmon holds with these {,,_ ) q.e.d.

5.5. Adding families of almost complex structures. We can gen-
eralize the material above to the moduli spaces with smooth families
of almost complex structures in §4.5. First we explain how to orient
the moduli spaces _}gnjiln(a, B,Jy : t € T) of Definition 4.8, generalizing
Definition 5.8.

Definition 5.16. We work in the situation of §4.5, with M, L, and
Jy it € T, with the additional assumptions of §5.1-85.3, that is, that
we have chosen a relative spin structure for + : L — M, and orienta-
tions for Ker 5&”,1)7) for all (p4,p—) € R. We also suppose that T is
oriented. At a point (t, (%, Z,u,l,u]) of Mznflln(a,ﬁ, Jy 1t € T), we have
an isomorphism of virtual vector spaces

T3 zu,a) Mty (. B, Jy st € T)

(100)
=TT & T[Z Z u,l,u]Mk—i—lln( a, B, Jt)
In Definition 5.8 we constructed an orientation on M?filn(a, B, Jt), and
hence on Tix; 7y, MpST (o, B, J¢). As T is oriented, T;7 is oriented.
Define M’ (i, B,J; : t € T) to have the orientation such that (100)
holds in oriented virtual vector spaces.
A special case of this which is useful for computing signs in formulae

is to take J; = J for some almost complex structure J and all t € T.
Then

(101) M (o, B, Jp st € T) = T x M (e, B, J)
holds in oriented Kuranishi spaces.
Here is the analogue of Theorem 5.9. We can prove it by the same

method; alternatively, we can take J; = J for t € T, so that (101) holds,
and then deduce the signs in (102) from Proposition 2.10 and (84).
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Theorem 5.17. Using the orientations of Definition 5.16, the iso-
morphism (44) in oriented Kuranishi spaces becomes:

(102) OMPEM (o, B, Ty it € T) 2 MR, B, Jy 1 t € OT)

H Ca _]Ig];l—ri(a%ﬂ% Jy:te T)Xﬂ'Txev,Tx(LHR),waew
kitko=k+1, 1<i<ks, — mai )
111Ui122:I7 aluz‘alfzztl)é, ?ﬁﬁ(ahglv Jp:te 7-)7
B1+pB2=p

where C4 — (_1)d1m T+n+ (i+ZjEI:O<j<i na(j)) (1+k2+zl61:i§l<i+k2 na(l))
if i¢ 1 and 0 ¢ Iy, and
G = (_1)dim T+n+ (i+zjez:0<j<i77a(j)) (%q(i)+1+k2+2161:i<l<i+k2 ”a(l))

if 1€, 0€ I and az(0) = oo aq(i).

Next we add simplicial chains, and orient the moduli spaces _}Cnfiln(a,

B,Ji :t €T, f1,..., fr) of Definition 4.10.

Definition 5.18. In the situation of Definition 5.16, fori = 1,...,k,
let a; > 0 and f; : A,y — T x (LII R) be a smooth map, as in
Definition 4.10. Since we have not defined modified moduli spaces
Nznjiln(a,ﬂ, Jy:teT,fi,...,fr), we cannot define an orientation on

kmjiln(oz,ﬁ, Jy:t €T, f1,..., fr) following (90). Instead, we will take
the analogue of Theorem 5.12 to be our definition. Inserting signs in
(47) motivated by (93)-(94), define MP* (o, 3, J; - t € T, f1,..., fx)
to have the orientation given in oriented Kuranishi spaces by

./\_/lfgnfiln(oz,ﬁ, JeteT, f1, o, frx) =
(103) G5 ((R™, k) Xy ey M0, 8,0y 1 € T))
X (101 xev1) 3o x (105, xevy ), (T (LR, fr s fr, (Day X - X Agy),
where (R, £]') and R™ have their natural orientations, the orientation
of MM (c, B, Jy : t € T) is as in Definition 5.16, and

2 (n—na(i))[i(degfj-irl)—_ > _na(j)]
C5 :(_1)075161 7=1 FEI:0<i<i

k
(dim T4n+1)[ 3 (k—i)(deg fit D)= 3 (k—i)ma(s)|
i=1 0#iel

(104) 1)

1, 0¢1I,
’ (_1)7704(0) [Z?:l(deg fi+1)_zo¢ie] 77&(1)] , 0 c [7
where the degrees deg f; are as in (49). Similarly, we orient _gffi (a1,
Bi,Je it € T, fi,..., fi—1; fithss-- -, fre) Dy inserting signs in (51). We
will not write this sign down explicitly, but we choose it to satisfy (106)
below.
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Calculation using equations (102)—(104) and Proposition 2.10 then
yields an analogue of Theorem 5.13:

Theorem 5.19. In the situation of Definition 4.10, with the orien-
tations of Definition 5.18 and degrees in (49), for k > 0 in oriented
Kuranishi spaces we have

(105) a./\_/lznjiln(ayﬂﬂjt :756717]017"'7]0/6)g

k a; )
HH (_1)j+1+2};11degfl
== '/\_/lgljiln(a757 Jt S 7-7 f17 cee 7fi—l7fi o qui7fi+17 cee 7fk)

11 H (_1)dimT+n+(1+zf;} deg fi) (14+30;112 7 deg 1)
k1+ko=k+1,1<i<k, jrymai )
IllLJiIQg:I, (XIUiO?;z:(lX, 2’;2:1_1}(007 527 Jt . tETu fi7 ey fi-l—kz—l)
B1+B2=p

Xprxev,Tx(LIR),7Txev;

_Eﬁri(ahﬂla Jt it e 7-7 fl7 o 7fi—1; fi+k27 o 7fk)
When k = 0 this holds with an extra term MPa(a, 8, J; : t € T) on
the right hand side, as in (102). Also, if f: Ay — T x (LI R) is
smooth, in oriented Kuranishi spaces we have

main

Aa X £ 75 (LIR) g xev: Minii (@1, 81, tE€T fioe o ficts fivhar- - -5 fk)
(106) — (—1)(des fH) (10 deg f;)

j\_/lgiii-ri(alaﬁhjt 1t e Tufla"' 7fi—l7f7fi+k27"' 7fk)

6. Perturbation data and virtual chains

We shall now choose perturbation data sg j 1, ... 5, for families of mod-
uli spaces ./\_/lznfiln(ﬂ, J, f1,..., fr) in (42), as in §2.7, which are compati-
ble at the boundaries with choices made for the boundary strata appear-
ing in (41). Technically _}gnjiln(ﬂ, J, fi,..., fr) may not be a Kuranishi

main

space, as the components ./\_/lkJrl (o, By, f1, ..., fr) in (42) may have dif-

ferent virtual dimensions. Perturbation data for ./\_/lg‘jiln(ﬁ, I fiseoos fr)
means perturbation data for ./\_/lgljiln(oz,ﬁ, J, fi,..., fx) for all I, in

(42), in the obvious way.

Our goal is to define Ay o algebras and gapped filtered A, algebras,
which are filtered using G C [0,00) X Z. It is convenient to introduce G
at this point. Choose G C [0,00) x Z to satisfy the conditions:

(i) G is closed under addition with G N ({0} x Z) = {(0,0)}, and

G N ([0,C] x Z) is finite for any C' > 0; and
(i) If B € Hao(M,u(L); Z), MP**(B, J) # 0 then ([w]- 8, 3u1(8)) € G-
Here (i) is as in §3.5 and §3.7. If we define G; to be the smallest subset
of [0, 00) x Z containing ([w]- B, u1(8)) for all B € Ha(M,t(L); Z) with
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Mman(g J) #£ () and closed under addition, then G; N ({0} x Z) =
{(0,0)} is immediate as [w] - B = 0, MP2(3,J) # @) imply B = 0, and
Gy N ([0,C] x Z) finite for any C' > 0 follows from compactness for the
family of stable J-holomorphic curves with area < C.

Thus there exists at least one subset G satisfying (i),(ii). However,
we do not want to fix G = G, since in §8-§10 we will vary the complex
structure J, and we will want G to be independent of J. So for the
moment we take G satisfying (i),(ii) to be given. If 8 € Ho(M,(L);Z)
and MPain(8,J) # () for any k > 0 then ([w] - 8, 3ur(8)) € G. Write
18 = ||(lw] - B, 31L(B))||, using the notation of (23). Then HBH > 0,
and if 8 = B + B2 for B, B2 € Ha(M,u(L);Z) with MPaH (B, J),
Minain (3, J) = @) then [|8]] = ||B1] + ||B2]l. With this notation we

ko+1
prove:

Theorem 6.1. For a given N € N, there are Xy C --- C X'n and
{88,0.41,...1c } which satisfy the following conditions:

(N1) Xg,..., XN are countable sets of smooth simplicial chains f :
A, — LII R such that
(a) if f: Ay — LIIR lies in X; and a > 0 then foFl Ay —
LIIR liesin X; for all j =0,...,a, using the notation of §2.6;
and

(b) part (a) implies that QX; is closed under O, and a subcom-
plex of the singular chains C(L 11 R; Q). We require that the
natural projection H,(QX;,0) — HP(L1I R; Q) should be an
isomorphism.

(N2) Forallk >0, fi € Xyy,..., fx € Xy and B € Hy(M,(L); Z) with
1+ +Zk + Hﬁ” +k—1 <N and Mgljlln(ﬁﬂjvflw")fk) 7£ wv
$8.J.f1,...f 45 perturbation data for ( _?filn(ﬁ, J, f1,... ,fk),ev) mn
the sense of §2.7, and the simplices of VC( _znfiln(ﬂ,J, fiseoosfr),s
ev,53 5 p.. ) liein Xi i v8+k—1- At the boundary M
(ByJ, f1y-- s fr), given by the union of (41) over all I,a, this
$8.J,f1,...fr, must be compatible with:

(i) the choices of 88,0, e i1, fi0F fig e
(a7/87J7f17”’ 7fi—17fi OF’;‘Iiufi-i-lw” 7fk) in (41)7
(i) the choices of 88, firrfit kg1 for the term _}gﬁ(ag,ﬂg, J, fi,
.- 7fi+k2—1) C g;afﬂ (527 I fiyeo 7fi+k2—1) in (41)a and
(iii) for each g : Ay — LII R in VC( _gﬁq(ﬂg,(}, fireoos fitko),
ev’sﬁzJ,fm---,fszq)’ the choices of 581, f 1 fim 1,95 Fid kg reorfe for
_ﬁf{l(al,ﬂl,(}, iy fias fitkas - -5 Ji) in (41) combined with
VC( 1]2’;3_%(527 J7 fi7 ey fi+k2—1)7 eV7552,J,fi,...,fi+k2,1) .

A {main

e for the term MM
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This boundary compatibility implies that, for fi : Ay, — LII R
in Xi,..oo fiw: Ay, = LILR in X;, as above, we have

(107) OVC(MEENB, J, f1, -5 fr), €V, 88,01 f) =
k a;

. i—1 . _
(_1)]+1+Zl:1 degflVC(M}cnjlln(ﬁ7 J7 f17 ey fi—la fl © F’]('hv fi+17
T fk)’ ev’Bﬁvaflv---vfifl7fi0F;'li7fi+17---vfk)
i1 .
+ Y (F)Rm Ry O (M (B, s fis

k1+ko=k+1, A i
11<i<i17 VC(ME;%H (/827J7fi7' .. 7fi-i—kg—l)7eV75ﬁ2,J,fi,...,fi+k2,1)7fi+k27
B1+B2=p

co Ty OV B0 T frseensfim 1,V O (MBS (B3], fiseoos g k1) )
OV,88y T fiseeosFighg —1 ) F itk s Tk

Here if VC( _ﬁﬁri(ﬂg,J,fi,. .. .,fi+k2_1),ev7552"]7fi’.“7fi+k271) =
ZQGA Oa Ja fOT’ za € Q and da N Xii+~"+ii+k271+||62||+k2—17 the
final term VC( }?ﬂri( G VO( ), en),ev,5  ye.,..) in (107)
1s short for

(108) Z Oq VC(A_/lglla_;-Ii(/BhJa f17- .. 7fi—1aga7fi+k27 v 7fk)7

acA
ev, Bﬁlvjyflv---yfifl7ga7fi+k27---7fk)'

Proof. Our proof is based on Fukaya et al. [8, §7.2.5]. It involves a
quadruple induction, an outer induction over ¢ = 0,..., N in which we
choose Xy,..., Xy, and an inner triple induction over (j,k,l) during
the construction of X gy;.

For the first step g = 0 of the outer induction, let (||3], k) = (1,0).
Since MPn(3,.J) has no boundary, (i)-(iii) are trivial. Choose arbi-
trary (but ‘small’, in a sense discussed below) perturbation data sg s
for (MPan(8,J),ev) for all B € Ha(M,u(L);Z) with [|8]] = 1 and
Mman(g J) = (). There are only finitely many such 3, and we can
choose such sg j asin §2.7. The virtual cycles VC(./\_/lrlnain(B,J),ev,sg,J)
for all such 8 involve only finitely many simplices f : A, — LIl R. We
must choose X to contain all these simplices, and to satisfy (a),(b) in
(N1) above. This is possible by Proposition 2.13.

For the inductive step, suppose that we have chosen Xo C --- C X,
and {sg j 1. .7}, which satisfy (N1) and (N2) with N = g. We shall
construct X441 and further choices of sg jy,, . 5 satisfying (N1) and
(N2) with N = g+ 1. These choices are not independent of each other,
but have to be made in a certain order. Consider triples of integers
(j,k,0) such that j >0, k> 1, (j,k) # (0,1), j+k<g+2and > 0.

Define a total order < on such triples (4, k,1) by (j1, k1, 11) < (Jo, k2, [2)
if either

(*1) j1 + k1 < jo + ko; or
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(%2) J1+ k1 = j2 + ko and j; < jg; or
(x¥3) J1+ k1 =j2 + k2 and j; = j2 and 1 < la.

In a triple induction on (j, k,1), at step (j, k,1) we consider all possible
choices of f € Ho(M,:(L);Z) with ||8|| = j and 41,...,i; > 0 with
W+ --+ig+7j+k—1=g+1and f; € Xil,fg S Xiz,...,fk S
X, with f; + Ay, = LI R, where a; + --- 4+ a; = [, and such that

malm(B.J, f1,..., fx) # 0. There are only finitely many possibilities
for such 3,11, ..., 1, and countably many possibilities for f1,..., fx. We
will choose perturbation data sg s, .., on such choices in the order <
on triples (7, k,1).

The important thing about this way of organizing our choices is that
for given B,i1,...,1k, f1,..., fr at step (4, k,1), the compatibilities (i)—
(ili) on s8,s.f,,....f, in (IN2) depend only on 5B/ f e fl, which were either
chosen with X for ¢’ < g, or were chosen during this step g + 1, but
for some (j', k',1") with (5',k',1") < (4, k,1). So the boundary conditions
on $g j f,.....f, always depend on choices we have already made, not on
choices we have yet to make.

To see this, note that at step (g, j, k, ), part (i) involves choices made
at step (g,7,k,1 — 1), part (ii) choices at step (¢, j',k’,l') for ¢’ < g,
j' < j, ¥ < k and I’ arbitrary, but with either j/ < j (if 51 # 0) or
k' < k (if 1 = 0), and part (iii) choices at step (¢, 5", k', l') for ¢’ < g,
J' < j, ¥ <k+1, and ' arbitrary, but with either 5/ < j (if B3 # 0)
or k' < k (if f2 = 0); this allows (j/,k") = (j — 1,k + 1). Here we use
the fact that Mﬁgnfiln(O,J, fis--os fx) = 0 unless £ > 2. In each case
(', K1) < (4,k,1) by (%1)—(x3) above.

So, at step (4, k,1) we must choose perturbation data sg ;s . ¢, for
( _kmjiln(ﬁ, I fisoos fr), ev) for the finitely many possibilities for such
B,i1,...,1 and countably many possibilities for fi,..., fr above, satis-
fying compatibilities (i)—(iii) above with previous choices, which should
be ‘small” in the sense below. Essentially, (i)-(iii) prescribe sg st . 7,
over 8./\_/lznfiln(ﬁ v Jy f1,--., fr), and we have to extend these values over
the interior of MP™(3,J, f1,..., fx)-

Because of the definition of boundaries of Kuranishi spaces in §2.2,
regarded as subspaces of ./\_/lznfiln(ﬂ, J, fi,..., fr), the disjoint compo-
nents of (39) do actually intersect in _I,?filn(ﬁ, J, fi,--, fx), in the codi-

mension 2 corners of M?filn(ﬁ, J, f1,..., fr) which lift to 92 _?filn(ﬁ,
J, f1,..., fr). But by induction (i)-(iii) prescribe consistent values for

$8.J,f1,...fr, on these codimension 2 corners, since the boundary values

S8, f1 oo it JiOFS T figteonfio? SB20d Fireos fihg—10 SBLI S0 it foFiphg o fie AP
pearing in (i)—(iii) themselves satisfy (i)—(iii).

Therefore, the discussion of §2.7 shows that we can choose pertur-
bation data sg s, . satisfying boundary compatibilities (i)—(iii), but
with one caveat. In Definition 2.15 and Remark 2.16(a) we said that
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a set of perturbation data sx for a Kuranishi space involves a finite
cover of X by Kuranishi neighbourhoods (V?, E*,T'%, 5%, 1)) and smooth,
transverse multisections s' on (V... 1%) such that each s is suffi-
ciently close to s' in C°. Here the definition of ‘sufficiently close’ is
rather vague; it has to do with ensuring that the perturbed Kuranishi
spaces remain compact.

Now it is conceivable that conditions (i)—(iii) on sg s, .. r might be
incompatible with this requirement that the multisections s’ be ‘suffi-
ciently close’ to s’ in C°. That is, in effect (i)-(iii) prescribe s' over OV,
and if these prescribed values are not ‘sufficiently close’ to s[4y in C?,
then we cannot choose s° on V? ‘sufficiently close’ to s* in C° with these
values on s’. In this case, we could not choose $8.J.f1,...f, Satisfying all
the necessary conditions.

A version of this problem is described in [8, §7.2.3]. The solution
adopted by Fukaya et al. [8, §7.2.3-87.2.5], which we follow, is that at
every step we choose the perturbations sg 77, . fk to be ‘small’, by which
we mean that the s’ should be close enough to s’ in C° that not only does
the construction of VC’( znjlln(ﬂ, Iy fiyeooy fr), eV756,J,f1,...,fk) work, as
in Definition 2.15, but also, for all the conditions (i)—(iii) involving
53,7 f17 . at later inductive steps in the proof, the prescribed values
for s° on AV* should be sufficiently close to s'| that the later con-
structions of VC(---) also work. We will discuss this in Remark 6.2.

Thus following this method, at each step (j,k,l) in our triple in-
duction, we can choose perturbation data sg ;. ¢, satisfying (i)—(iii)
for all the finitely many choices of § and countably many choices of
f1,--+, fx required. This completes the inner induction on (j, k,1). To
finish the outer inductive step on g, it remains to choose X441. The
conditions on X 41 are that it should contain Xy, and that it should
contain the simplices of VC( _ffnfiln(ﬁ, g, f1,... ,fk),ev,sg,Lfl““,fk) for
all the finitely many 8 and countably many fi,..., fr we have just con-
sidered over all (7, k,[), which is a countable set of simplices, and that
it should satisfy (a),(b). This is possible by Proposition 2.13. So we can
choose X'y, 1 satisfying all the conditions. This completes the inductive
step for g =0,..., N.

We have now constructed Xog C --- C X'n and {sg s . r } satisfy-
ing (N1) and (N2). It remains only to prove (107). Essentially, this is
equation (95), summed over all «, perturbed using the sg st ., and
regarded as an equation in virtual cycles in C¥!(L1I R; Q) rather than in
oriented Kuranishi spaces. However, since we have not chosen pertur-
bation data for M?*ﬁﬁ(al,ﬂl, g, f1, oo fic1 fitkys - -+ i), we have to
treat the final term of (95) differently. We perturb Mgﬂ‘i(ag,ﬁg,,],
fir-s fitko—1) in the fifth line of (95), summed over all as, using
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89,7, firsfit kg1 SO that it becomes a virtual cycle

VC( _g;iri(ﬂ% J, fi7 . 7fi+k2—1)7 ev7552n]7fi7---7fi+k2—1)
= EaeA Oa Ya-

Then in the fibre product in the fifth and sixth lines of (95), we

substitute each g, which is part of the perturbed ./\_/(gﬁri (v, B2, J, fis

) fi-i—kz—l) into Mgllairi(alv B,y f1,y-- o, fim1; fi+k27 ce 7fk) This gives
(_1) glla_fi(alvﬂlv']vflw . 7fi—17.ga7fi+k27' . 7fk) by (96)7 and we per-
turb this using SB81,J,f1e fim1:Gas it kg S0 and take its virtual cycle. Con-
sidering (i)—(iii) above, we see that modifying (95) in this way to give an
equation in virtual cycles is valid, because it corresponds exactly to the
conditions (i)-(iii) on sg s, .. f., which equate to boundary conditions
on VO( I]?_ﬁlln(ﬁv J, flv s 7fk)7 evvﬁﬁ,J,fl,...,fk)-

Thus (107) follows from (95) summed over all o and (96), except
for the signs in (107), which we have not yet computed. The sign on
the second line of (107) is the sign on the second line of (95). The
sign on the second line of (107) is the combination of the sign on the
fourth line on (95), and the sign in (96) when we substitute g, into
_EﬂIi(al,ﬁl, J, f1, oo, fic1; fitkys - -+ fk). To calculate this, we need
to know deg g, for the g, in (109). We have g, : Ay, — LII R, where
b= Vdim./\_/(gﬁri(ﬁg,J, fir--o, fitky—1), which is given by (37). Then
deg g, is given in terms of b by (36). Both equations are divided into
cases 0 ¢ I and 0 € I, and involve Naz(0) if 0 € 3. But combining
them, these contributions cancel out, so in every case we have

(110) degga =1 — pr(B2) + 31177 deg fi.
Therefore the overall sign in the fourth line of (107) should be

(109)

(— 1yt (i des ) (143502 ™ des 1),
(111) o ,
(—1) (2-pr(B2)+ 312 deg f7) (143012} deg ) 7
where the first line comes from the fourth line of (95), and the second
line from (96), with g, in place of f and (110) in place of deg f. Noting
that 2 — puz.(Bs) is even, (111) simplifies to (—1)"+1+2izideefi, This
completes the proof. q.e.d.

Remark 6.2. In Theorem 6.1, we had to fix a finite N > 0, and then
choose Xo, ..., X~ and {sg s ¢, ¢ }. The conditionsonsg s . 5 with
fi € Xy fe € Xy and g + - +ip + Bl +k -1 < gforg< N
really do depend not just on the X'y,...,X,, but also on the choice
of N, because we had to choose sg 5, . f to be ‘small’, that is, the
multisections s’ must be sufficiently close to s* in C°, and this notion
of ‘sufficiently close’ depends not just on ./\_/(ffnfiln(ﬁ, J, fi,-.., fr), but
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on all the other fibre products involving sg s t, .. r, in their boundary
conditions in the later inductive steps g+ 1,9+ 2,..., N.

Because of this, we cannot prove the theorem for N = oo, that is, we
cannot get an infinite sequence Xy C X1 C --- and an infinite set of
choices of perturbation data {sg s ¢, . ¢, } satisfying (N1), (N2). Taking
the limit N — oo does not work, since the X, for g < N and sg 57, 1,
in the theorem depend on N. This is discussed by Fukaya et al. [8,
§7.2.3-87.2.5], see [8, (7.2.56.1-5) & Rem. 7.2.57], and we follow them.

The issue is that it may not be possible to impose both infinitely many
smallness conditions, and a transversality condition, on a single choice
of perturbation. As a simple analogy, consider finding € € R satisfying
le| < 1/n for n = 1,2,... (infinitely many smallness conditions) and
€ # 0 (a transversality condition). This is clearly not possible. Since
the proof of Theorem 6.1 does involve making infinitely many linked
choices of transverse perturbations with smallness conditions, we have
to be careful that these choices are possible. In the method of [8], by
imposing a fixed upper limit N for i+ - -+ix+||5]|+k—1, each choice of
perturbation data sg j r, ..y, is involved in only finitely many inductive
steps, and so must satisfy only finitely many smallness conditions.

7. Ay, algebras from immersed Lagrangian submanifolds

Definition 7.1. Let G be as in §6, and ||.|| : G — N be as in (23).
For a given N € N, let X9 C --- C Xy and {sg s . s} be as in
Theorem 6.1. Suppose k > 0, (\,p) € G, and 4y,...,ip = 0,..., N
with i1 + -+ 4+ g + ||\, p)|| + £ — 1 < N. Define a Q-multilinear map

)\7 .
Mptoo t QG X - X QX — QX iy () | +k—1 DY

m?:geo(fl) = (_1)718.](-17

(112) mz:geo(fly---yfk): Z VC(_?jiln(57Jvf17"'7fk)v
Ho(M,(L);Z):
[we}ﬁzz()V /J,(L()ﬁ)):2y,, ev’ 567J’f17“.7fk)7

Mrlsliiln(ﬁvjyflv"'vfk);ém (k,A, ILL) # (1,07 O).

Combining (36), (37) and pr(8) = 2u shows that the shifted cohomo-
logical degree in (112) is
deg VC( _glfiln(ﬁv J7 flv s 7fk)7 ev)'gﬁ,J,fl,...,fk)

(113) .
=1—-2p+> 7 degf;.

Thus mz”geo P Q&G X xQXy, = QX i 1 (0| +k—1 has degree 1—
2.

Then (107) immediately implies the following:
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Proposition 7.2. For ke N, (\,p) € G and f1 € X;,..., fr € X4,
with i1 + - +ix + ||\, )| + & —1 < N, we have

d A ) A )
Z ( )Zl 1 Cgflm :gelo(fl""’fi—l’mks gso(fi7“‘7fi+k2—1)7
k1+ko=k+1, 1<i<k, k20,

(114)
1), (A2,i2)EG, (togin)+ (Ao i) =(Ap0) fishs oo fi) = 0.

Equation (114) is just (17) for the mz’geo. Thus, the data QX C

- C QXN and mk 'aeo A€ & finite approximation to a gapped filtered
A algebras, as for Ay i algebras in §3.7. But it is not an Ay g algebra,
as the conditions for when mj geo( fi,--., fx) is defined are different. We
can apply purely algebraic methods from Fukaya et al. [8, §5.4.4, §7.2.7]
to define Ay algebras. We use the method of sums over planar trees
from §3.3, based on the construction of n in Definition 3.8.

Definition 7.3. For a given N € N, we take N’ = N(N + 2). Let
XoC---CXpyrand {sg s, . f} beasin Theorem 6.1 with N’ in place
of N. Since the homologies of (QX y,d), (QX n+,0) are isomorphic, we
can find some linear subspace A C QX s such that QX = QX Ny B
A®0A and 9: A — 0A is an isomorphism. Let IT: QX s — QX y for
the projection, and define linear H : QX v — QX v by

H(x):{o, for x € QXN & A,

115
(115) 0~ 'z, for x € 0A.

Then id —I1 = 0H + HO, as in §3.4 with my; = 0.

Suppose k > 0 and (A, u) € G with ||[(A\, p)|| +k—1 < N. Let T be a
rooted planar tree with k leaves, and (X, p) be a family of (A, uy) € G
for each internal vertex v of T, such that ) (Ay, ) = (A1), and
(A, 1) = (0,0) implies that v has at least 2 incoming edges. We shall

define a graded multilinear operator m D (QX ) xE oy QX of
degree —2u + 1. Let f1,..., fr € Xn. As&gn obJects and operators to
the vertices and edges of T":

e assign fy,..., fr to the leaf vertices 1,..., k respectively.

e for each internal vertex v with 1 outgoing edge and n incoming
edges, assign mé\fg’é‘g (Here by assumption (A, v,) = (0,0) implies
n > 2, so we never assign the special case m’ geo n (112).)

e assign id to each leaf edge.

e assign II to the root edge.

e assign (— )"+1H to each internal edge.

Then define mk ( fis---, fx) to be the composition of all these ob-

jects and morphisms, as in §3.3. Define a Q-multilinear map mz’” :

(QX )" — QX graded of degree 1 — 2i by m%0 = m? goo = (—-1)"0
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and mz’“ = 27,00 mg}”) for (k, A\, ) # (1,0,0), where the sum is
over all T, (A, u) as above.

We can now associate an Ay algebra to L. It depends on the
choices of almost complex structure J, perturbation data sg s, . f,
and N, N, X n, XN/, A above.

Theorem 7.4. (a) In Definition 7.3, the mz’“ satisfy equation (17)
for all k = 0 and (\,p) € G with ||(\,p)| +k—1 < N. Thus
(QXN,G,m) is an Ay algebra in the sense of Definition 3.21, where
m= (mz’” tk>0, (A p) €g, |(A\p)|+k—1<N), and QX is graded
by shifted cohomological degree in (36).

(b) If fieXi,...,[reXi, with i1+ +ir+||(A\ p)||[+k—1<N then

(116) e (frs o f) = mph (i fr)-

Proof. The proof of (a) follows the first parts of those of Theorems 3.9
and 3.17, as in [8, §7.2.7]. For (b), suppose f1 € X;,,..., fr € X;, with
i+ i+ )| +E—1 < N and T, (X, ,u) are as in Definition 7.3,

where T" has at least one internal edge. Then mk ( fis--+, fr) includes
an express1on —H o mf{ Yok (fat1y -+ fatn), With —H from an internal
edge and mn ,€€0 (fa+1, ey fa+n) lies in QXia+1+"'+ia+n+||(>\u,#u)||+7L—1’

and so in QX N, as n < k and ||(Ay, )|l < ||(A, ,u)H But H = 0 on
QXNu S0 _Homi\bug’gg(fa-i-la" fa-i-n)_o and mk (fl77fk):O
Therefore mk (fl, ..., fx) = 0 if T has an internal edge, so for

(k,A\,u) # (1,0,0) the only nonzero contribution to mg’“(fl,...,fk)
comes from the unique planar tree T with one internal vertex and k
leaves, which gives Homk geo(fl, ooy fr). But my geo(fl, . fr) € QX N,
so IT acts as the identity on it, proving (116). When (k, A, u) = (1,0, 0),
equation (116) holds by deﬁnition. q.e.d.

8. Choosing perturbation data for
Il?-ﬁlln(ﬁv‘]t 'te [07 1]7f17"' 7fk)

The Ay algebras of §7 depended on a choice of almost complex
structure J. In §9 we will show that for two choices Jy, Jy for J, the re-
sulting Ay algebras are homotopy equivalent. We do this by choosing
a smooth l-parameter family J; : ¢t € [0,1] of almost complex struc-
tures interpolating between Jy and Ji, and using the moduli spaces

gljlfl(ﬁ, Jy it € [07 1]7f17"' 7fk)

In this section we generalize Theorem 6.1 to choose perturbation data
for the ./\_/lgljiln(ﬁ, Jy :t € [0,1], f1,..., fr). Choose G C [0,00) X Z to
satisfy the conditions:



IMMERSED LAGRANGIAN FLOER THEORY 453

(i) G is closed under addition with G N ({0} x Z) = {(0,0)}, and
G N ([0,C] x Z) is finite for any C > 0; and
(ii) if B € Ho(M,u(L);Z), and MP*™(B,J; : t € [0,1]) # 0 then
([w]- B, 3uL(B)) € 6.
As for G; in §6, there exists a unique smallest subset G j,.4¢(0,1] satisfying
(i),(ii), but we do not necessarily take G = Gj,..c0,1]- Write [|B]| =
H([w] - B, %,uL(ﬁ))H, using (23) for this G. With this notation we prove:

Theorem 8.1. Let (M,w) be a compact 2n-dimensional symplectic
manifold and v : L — M be a compact Lagrangian immersion with
only transverse double self-intersections. Suppose J for t € [0,1] is a
smooth family of almost complex structures on M compatible with w.
Define compact Kuranishi spaces ./\_/lznfiln(a,ﬁ, Jy ot € [0,1], fi,o ooy fr)
as in §4.5 with T = [0,1], and orient them as in §5.5. Then for a given
N € N, there are X5 c --- ¢ &RY and {88, 7.:4€0,1], f1,... fu } Which
satisfy the following conditions:

(N1) Xg“], .. ,XB(\),’” are countable sets of smooth simplicial chains f :
A, = [0,1] x (LT R) such that

(a) there is a decomposition X" = X911 X"V 11 X} for i =
0,...,N, where f € X} implies f(A,) C {0} x (LIl R), and
f € X} implies f(A,) C {1} x (LITR), and f € X"V implies
f(AY) C(0,1) x (LI R), where AS is the interior of Ag, and
Toa10f : Aa — [0,1] is a submersion near (w10 f) "1 ({0,1}).
(This is equivalent to Condition 4.12.) We shall sometimes re-
gard X"V as singular chains on [0,1] x (L II R) relative to
{0,1}x (LIIR), that is, we project to C$'([0,1]x (LILR), {0, 1} x
(LT R):Q).

() if f: Ay — [0,1] x (LI R) lies in X" and a > 0 then
foFf: Ag_1 — [0,1]x (LIIR) lies in X" for all b=0,...,a,
using the notation of §2.6. If g: Ay—1 — [0,1] x (LII R) lies
in XJ or X then g = fo Ff* for some f: Aq — [0,1] x (LIIR)
in XY and b € {0,...,a}. If f: A, — [0,1] x (LTI R) in
XY then foF2 lies in X or X} for at most one b =0,...,a.

(c) (a),(b) imply that QX?,QX} and QX" are subcomplezes of
the (relative) singular chains C5 ({0} x (LIIR); Q), C$'({1} x
(LIIR); Q) and C$'([0,1]x (LIIR), {0,1} x (L I R); Q) respec-
tively. We require that the corresponding three natural projec-
tions should be isomorphisms:

H(QX?,0°) - H(LIR; Q), H.(QX},0")-—»H (LIR;Q),

117
o H.(Qx ™Y, 9") iHii([o, 1] x (LIIR),{0,1} x (LI R);Q),

identifying {0} x (LII R) and {1} x (LII R) with LIl R.
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(N2) Forall k>0, fi e X0V, .., fr € X0 and B € Hy(M,(L);Z)
with iy + - +ip + [|B] + k=1 < N and MPP(B,J; : t €
0,1], f1,-- -, fx) # 0, 88 7,4€/01],f1,... 15 perturbation data for
(_znfiln(ﬂ,Jt cte[0,1], f15e - fr), 01 ><ev), and the simplices of
VO( _kmfiln(ﬁaJt 1 te€l0,1], fl, --,fk) [0,1] X€V, 88, J,:1€[0,1], /1. ,fk)
lie in X“Jr i B +h-1° At the boundary O gljlln(ﬁ, Jy
[0,1], f1,---, fx), given by the union of (52) over all I,«, this

S8, 7,:4€[0,1],f1,....f,, MUSt be compatible with:
maln(

(i) the choices of $g gci01] frvvonfior fioF ™ firrnfi JO7 e C
57Jt te[o 1] f17 "7fl lafZOF f2+17 7fk) in (52)

(ii) the choices of 585, J4:t€[0,1], fiyeoos Fit kg1 for the term 2"‘?&(@2,

Bo, Jy it €[0,1], fi, ..., fitho—1) in (52); and o

(iii) for each g : Aq — [0,1] x (LITR) appearing in VC (MPA (B,
Jt RS [07 1]7 fi7 s 7fi-|-k2—1)7 700,1] X eVa552,Jt:tG[O,l}_,fi,....,fi+k2,1)7
the choices of $g, 14€[0,1], 1,0 fi 1,9, iy hyoofi JOT malt(ay, B,
Jpooot E_[O,.l],fl, oo fi1s fitky - -5 fi) in (52) combined
with VC( g;a_‘il_ri(ﬁg, Je ot e [0,1], fi,. .., fH—kz—l)v 0,1 X eV,
562,Jt3t6[071}7fi7---7fi+k2—1)'
This boundary compatibility implies that, for f1: Aq — [0,1] x

(LITR) in XY ... fx: Ay, — LIIR in Xy;’” as above, when

11

k > 0 we have

8VC( MR (B, Je s t€[0, 1], f1oe o fi), (0.1 X €V85 1te (0,4, 1, i) =

+1+Z deg f;
ZZ 0F

VC( _I]?-ﬁiln(ﬁaJt : te[ov 1]7f17' .. 7fi—17fioF_;'li7

i=1 j=0
fi+1v s fi) o) ><e"vSﬁ,Jt:te[o,u,fl,...,fifl,fl-oF;”,fm,...,fk)
i—1
n+ 3’ deg fi
+ Z (_1) =t VC( glla"il‘ri(ﬁlth te [071]7f17"'7fi—17
k1+ko=k i
11<—|z—<z1 +17 VC(ME?-‘;-?(B% Jyite [07 1]7 fi7 s 7fi+k2—1)7 70,1] Xev,
+
Prtia=p 860 Jit€[0,1], firvo fipng1)» Jithas -+ f1)s W0 1] X €V,
(118) 861 Tt €0, frrs i1,V OO (B2, JtE D01 forsfie iy 1), )

W[Oyl]XeVﬁﬂz,Jt:tE[O,l] fire- f7,+k271) fl+k27 ok

using notation VC'( _}?ﬁﬂ( L VO( ), ) eV, 5 ye(.,..) asin
(108).

When k = 0 equation (118) holds with the addition of an extra
term supported on {0,1} x (LTI R) corresponding to MP (3, J; :
t € {0,1}), as in Theorem 5.19. Thus, if we project to relative
chains C51([0,1]x (LIIR), {0,1} x (L L1 R); Q), then (118) holds for
all k > 0.
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(N3) As well as the boundary compatibilities (N2)(i)—(iii), we can im-
pose compatibilities at the boundary {0,1} x (L II R) of [0,1] x
(L I R), as follows. Suppose g1 € XY ,....gr € XY, where

gj + Ag;m1 — {0} x (LI R). We shall“also abuse noltkatz'on by
regarding g; as mapping Aq;—1 — LIL R. Then (N1)(b) implies
that there exist fi € XE(I)’”, oL frE Xﬁ:” and by, ..., by such that
bj =0,...,a; and g; = ijF:jj for j=1,...,k. Then using the
notation of Remark 4.11 and inserting signs in (56)—(57), there
are natural isomorphisms of oriented Kuranishi spaces:

{0} %4 j0,1),m 0 MR (B, i+ t € [0,1], f1, .- fr)
(119) = (<1 T b MR8, Jo, g1, r)
X [{O} X iR o ((]R, /f}z) X ey oo R [0,00)k)],
MR (B, et € 10,10, f1, - fi—1:Gjs Fivts - fr)
(120) = +£MPENB, Jo, 01,5 98)
x [(R, k) % [0, 00)7 7! x {0} x [0, 00)F 7],

forall 5 =1,... k, where i : {0} — [0,1] is the inclusion. The
analogues for g1 € Xj,,...,gx € X and i: {1} —[0,1] are

XXy, RE G

{1} X 0,170 MPEB, Tyt € [0,1], fiu- .o, fr)
(121) = (~D)Z YPGB, g, )
X [{0} ko (R, £E) X, oo, ki [0,00))],
MEENB, Tyt € [0,1], f1, s fi1, G it -0 o)
(122) =~ 4+ MPAN(B, T, g1 GE)

x [(R, k) x [0, 00)771 x {0} x [0, 00)F7].

XXy, RF g

Suppose /'Nfg C--C /'NV‘])V and {5067J07f17~~~7fk} are possible choices

in Theorem 6.1 with Jy in place of J, and that /'NV(l) Cc---C ;V}V
and {sj ; 4  } are possible choices in Theorem 6.1 with Jy
in place of J. Then we can choose X[OO’” Cc -+ C XB(\),’” and
{88,70:6€(0,1],f1,....p } above such that

(a) X9 =AX? and X} =X} fori=1,...,N.

(b) For all g1 € X7 ,...,gr € X} , and choices of fi,...,fr,b1,...,
br,j above, the perturbation data 53,04t €[0,1], f1yees fi— 1595 Fit1oeeer [
fO’I" ( ll;nflln(/@ﬂ]t 1 te [07 1]7f17’ .. 7fj—17gj7fj+17’ .. 7fk)77r[071} X
ev) over {0} x (LIL R) is identified with the perturbation data
53 Jo.grege 10T (M (8, Jo, g1, - -, gk),ev) over LILR under
the isomorphism (120) and the identification {0} x (L 11 R)
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LIIR, noting that [{0} X;r.x, (R, K}) X X ey e RE i 10 00)")]
s a single point whose Kuranishi structure has transverse Ku-
ranishi map, so it needs no perturbation, and 55 Jougtge -
duces perturbation data Sg j,.4€(0,1],f1,...f;—1.9; fi+1,nfre WItH the

same virtual chain, up to sign. B B
(c) The analogue of (b) holds for g1 € X} ,...,gx € X} and J;.

Proof. Most of the proof is a straightforward generalization of that
of Theorem 6.1, so we will just comment on the differences. As in
(N3), we suppose some choices Xy C --- C XY, {5%,J07f17~~~,fk} and

XL CoC XY, {s5.7,. 1.5} are given for the outcomes of Theorem
6.1 with Jy,Ji in place of J. Then (N3)(a) determines X7g,..., X%
and Xy, ..., X}, and in the inductive proof we are only free to choose
XG0, XY Also, (N3)(b),(c) determine sg ,.4c(0,1],f1,....f if 80V f;
hes in X Z‘?j or X ;j, so in the inductive proof we are only free to choose
S8, ,4€[0,1],f1,... fr When fj € XE‘;_’” forall j=1,...,k.

As in Theorem 6.1, we perform a quadruple induction in which we
choose X" C --- C X\ and s juci01],p1,...p for all k >0, fi €
XV e e XY and B € Ho(M,o(L); Z) with iy + - +ip + || 8] +
k—1 < N and ./\_/l?filn(ﬁ, Jy:te€0,1], f1,..., fx) # 0. At the point when
we choose 53 ,.4¢(0,1],/1,....fr» W€ have already chosen perturbation data
for every components in 8./\_/l}€nfiln(5, Jy:t€10,1], f1,..., fx), which are
consistent on corners of codimension 2 and higher, and we must extend
these choices over the interior of ./\_/lznfiln(ﬂ, Jy:te|0,1], fi,..., fr). In
this proof, for the components of 9 _}Cnfiln(ﬂ, Jy ot € 10,1, f1,. 0y fr)
lying over ¢ = 0 or ¢ = 1 in [0, 1] the choice of perturbation data is
given by some {s3 ; %} or{sp; 1} butin Theorem 6.1, all
the boundary choices were made at previous steps in the quadruple
induction.

Since each f; maps A; - — (0,1) x (LIIR), it is immediate that the in-
terior of each simplex in VC'( _?filn(ﬁ, Je:tel0,1], fi,..., fr), ™
eV,557Jt;te[0,1]7f17___,fk) maps to (0,1) x (LII R), and so satisfies the con-
ditions in (N1)(a) to lie in X{*". Thus, in the final step in the outer
induction when we have to choose X (OH), there will be a countable
set W of smooth simplices f : A, — [O 1] x (L II R) with f(A?) C
(0,1) x (L II R) that are the new simplices introduced in virtual cycles
for M?filn(ﬁ, Jy it €[0,1], f1,..., fr) in this step, and we must choose
X(g(:_ll) with W C X(O ) and AP C X;Oil) to satisfy (N1)(a)—(c). This is
possible by a relatlve version of Proposition 2.13, given the properties
of Xg,..., X% and X§,..., X} in Theorem 6.1, and the fact that any
face of f : Ay — [0,1] x (L I R) either lies in X'y ; or X'}, or its
interior maps to (0,1) x (LII R).
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In equation (118), the sign on the fourth line is (—1)"+ZE% deg fi,
rather than (—1)"+1+Zi;11 deg fi in the fourth line of (107), because of
the factor (—1)3™7 = —1 in the fourth line of (105), which does not
occur in the corresponding equation (95) used to deduce (107). The
extra term in (118) when k& = 0 supported on {0,1} x (L II R) comes
from the extra 0T term in Theorem 5.19 when k = 0.

It remains only to justify the isomorphisms (119)—(122). These are
given in unoriented Kuranishi spaces in (56)—(57), and we do not specify
signs in (120) and (122), so we only have to compute the signs in (119)
and (121). This is done by going through the proof of (56) inserting
orientations. The signs (—1)k+z§:1bﬂ' and (—1)2?211’1' come from the
isomorphisms of oriented manifolds

k
{03 X4 0,005 (oo 1) xx (o o i) (Bax X =+ X Agy)

(123) k
(_1)k+2j:1 bjAal—l X oo X Dgy1,

12

k
{1 X4 0,005 (o o ) 5 (o o i) (Bax X =+ X Agy)

(124) K
(_1)23':1 bjAal—l X -0 X Aak—l,

12

for (119) and (121) respectively. Here the factors (—1)Z§:1 bi arise since
F;j 7t Ag;—1 = 0A,, multiplies orientations by (=1)%, and the extra
(—1)* in (123) is the coefficient —1 of {0} in [0, 1] = —{0}II1{1}, raised
to the power k. q.e.d.

In fact it is not difficult to extend Theorem 8.1 from a family J; :
t € [0,1] to a general family J; : ¢t € T for T a compact manifold
with corners, and we will use this extension in §10 when 7 is a closed
semicircle or triangle in R%. But the statement of this generalization
is even more complex, with special treatment for the codimension k
corners of 7 for k =0,1,...,dim 7, and the analogue of (N3) referring
recursively to the outcome of Theorem 8.1 with 07 in place of T, rather
than just to the outcome of Theorem 6.1. For simplicity, it seemed
better just to state the result for 7 = [0, 1].

9. Ano morphisms from Jy to J; Ay algebras

We work in the situation of §8, with J; for ¢ € [0, 1] a smooth family of
almost complex structures on M compatible with w. We begin by con-
structing an Ao algebra of relative chains C$'([0,1] x (LTI R),{0,1} x
(LI R); Q) depending on the whole family J; : ¢ € [0,1]. Here are the
analogues of Definitions 7.1 and 7.3, Proposition 7.2 and Theorem 7.4.

Definition 9.1. Let G be as in §8, and ||.|| : ¢ — N be as in (23).
For a given N € N, let X" = XM XY I X} for i = 0,...,N,
and {53 j,.tc(0,1],f1,...f } D€ as in Theorem 8.1. Write I : QX —
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Q™Y for the projection, with kernel QX9 @ QX}. Suppose k > 0,
(A p) € G, and iq,...,0 = 0,...,N with iy + -+ +ix + [[(\, p)|| +

k —1 < N. Generalizing (112), define a Q-multilinear map mg)[gle)g"” :

(0,1) (0,1) (0,1)
@Xil X X QXZk — QXi1+"'+ik+||(>\,,u,)||+k—1 of degree 1-— 2:“ by

m 00 (f) = MOV (1) 1o f] = (=1)"HaV fy,
m P (fro e fr) = OOV [VO(MEER(B,J, [0, 1), fro- . fr),

BEHy (M, (L);Z):
(125) B e (02 ©V, 55 11e01], i) ]
MR (B, € [0,1], 1, i) 70 (k,\, 1) # (1,0,0).

Now applying I1 : QXLO’” — QX;O’D is equivalent to projecting
to relative singular chains to C$'([0,1] x (L II R),{0,1} x (LII R);Q),
so we can regard QX 20,1) as a space of relative chains. As in Theorem
8.1(IN2), equation (118) holds in relative chains for all £ > 0. Note the
two sign differences compared to §6—§7: the signs in the fourth lines of
(107) and (118) differ by —1, and the signs on the first lines of (112) and
(125) differ by —1. Both of these are really (—1)3™7 where 7 = [0, 1].
In proving (126) below, these two sign differences cancel out, so that
the signs in (114) and (126) are the same. Thus as for Proposition 7.2
we deduce:

Proposition 9.2. For k € N, (\,u) € G and f; € Xg(l)'l),...,fk €
X with iy + -+ g+ [[(A, )| + k=1 < N, we have

i—1g 0,1)A1, 0,1))\2,

(126) Z (—1)21:1 egfzm;ﬂhg)cé B (flw"vfi—lvm;g%lg)oj 2 (f
k1+ko=k+1, 1<i<ky, k2>0, B
(ilvu?)v(/\z,uz)eg v fitha—1)s fika - -- 7fk) =0.
(A1) + (2 p2)=(A,p)

Definition 9.3. For a given N € N, we take N’ = N(N + 2). Let
XOU =XV A} for i =0,...,N" and {sg j,4c(0.1], ...} D€ as
in Theorem 8.1 with N’ in place of N. Since by (117) the homologies of
(Qx Y, 00), (QX%’,I), 9V are isomorphic, we can find some linear
subspace A®V C QXY such that

° QXES,’,” = QXES,’” @ ACY @ 9O AOD: and

o 90D AOD 5 OB AOD ig an isomorphism.
Later we will take AV compatible with choices of A in Definition 7.3
for Jy, J;. Define a linear map H©Y : QXES,’,D — QXES,’,D by

HOD () — 0, for z € QXN ® A,
(x) - (3(0,1))—1% for x € O A0

Write 1T : QX%’,D — QX" for the projection. Then id —TT=9V H®Y
+ HODHOD,

(127)
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Suppose k > 0 and (A, u) € G with ||(A\, p)|| +k—1 < N. Let T be a
rooted planar tree with k leaves, and (X, p) be a family of (A, uy) € G
for each internal vertex v of T, such that ) (Ay,pw) = (A, 1), and
(A, tty) = (0,0) implies that v has at least 2 incoming edges. We shall
define a graded multilinear operator mg)’%)(A’“ ) QX 53‘1))Xk — Qa\Y
of degree 1 — 2u. Let fy,..., fr € X%),’l). Assign objects and operators
to the vertices and edges of T

e assign fi,..., fr to the leaf vertices 1,...,k respectively.

e for each internal vertex v with 1 outgoing edge and n incoming

edges, assign mﬁﬁ’é@é“’” v,

e assign id to each leaf edge.

e assign II to the root edge.

e assign (—1)"H©®Y to each internal edge.
Then define m{@P™ ) (f1,..., fi) to be the composition of all these.
Define a Q-multilinear map m}f’l))"” : (QXES,’D)Xk — QX" graded of

0.10,0 _ 0100 _ 15(0,1 ©DAp _
degree 1 — 2 by mj =My, = (=1)"T1O®Y and my =

S Mer M for (kA ) # (1,0,0).

Theorem 9.4. (a) In Definition 9.3, the m}f’l)k’” satisfy equation
(17) for all k =2 0 and (\,u) € G with ||\, p)|| +k—1 < N. Thus
QXYY G,mOY) s an Ay algebra in the sense of Definition 3.21,
where m®Y = (m;fo'l))"” t k>0, (\p) €g, ||(\p)|+k—1<N), and
QXES,’D is graded by shifted cohomological degree in (49).

() If e X, o, fr e XY with iy +- - +ig+ |\ p)l|[+k—1 < N
then

’ b ’ A7
(128) mggo I)Au(fla cee 7fk) = mg),gle)o M(fla s 7fk)

Now let (QX%, G, m°) and (QX}y, G, m") be Ay algebras constructed
in Theorem 7.4 with J = Jy and J = J;. We shall construct strict,
surjective Ay o morphisms p° : (QXYY,G, mOY) = (QXY, G, m°) and
p (QXES,’D,g,m(O'”) — (QXy,G,m"), and show they are homotopy
equivalences.

Definition 9.5. Let Jy, J1 be complex structures on M compatible
with w, and J; : t € [0,1] a smooth family of complex structures on
M compatible with w interpolating between them. Fix once and for all
N eN, N'=N(N+2)and G C [0,00) X Z satisfying conditions (i),(ii)
of §8. This implies that G satisfies conditions (i),(ii) of §6 for J = Jy
and J = Jj.

With these N, N’, G, suppose X§ C --- C X%, {5%,J07f17~~~,fk} are pos-
sible choices in Theorem 6.1 with Jy, N’ in place of J, N, and X§ C --- C
X, {5167J17f17---7fk} possible choices in Theorem 6.1 with J;, N’. Let



460 M. AKAHO & D. JOYCE

(QX%Y,G,m°) and (QX}, G, m") be possible Ay algebras constructed
in Theorem 7.4 from this data for each of Jy, J;. As in Definition 7.3,
this involves additional choices of subspace A and corresponding oper-
ator H, which we write as A%, H° and A', H' respectively.

Let X" = YOI XV} for i = 0,..., N’ and {S3,5,.4¢(0.1, f1,...fu }
be possible choices in Theorem 8.1 with N’ in place of N, and compat-
ible in (NV3) with the above choices of X C --- C XY, {83 ; » }
and X C -+ C Xy, {5%7(]1’]01’“.’]%}, dropping the distinction between
i"i), /'NV; and XY, X;. Suppose (QX%’I), G, m®Y) is a possible Ay ¢ algebra
constructed in Theorem 9.4 from this data. This involves an additional
choice of A®Y | yielding H®Y. We will shortly require A", H®Y to
be compatible with A°, H° and A', H'.

Write 9°,0",01%1, 91 for the boundary operators on QX?, QX;,
QXY QXY respectively, where we regard 0V : QX "V — QX "V
as acting on QX" as a subspace of the relative chains C51([0,1] x (L1I
R),{0,1} x (LII R); Q). But we will also regard QXY as a subspace
of QXY so that 91! maps QX" — Q.

Define linear maps P° : QX;O’D — QXY and P': QXEO’U — Q& for
1=0,...,N by P° = —II° 0 9V and P' = II' 0 9>V, where II°,II' :
Qx go,u — QXY, QX are the projections coming from the decomposition
AN = X9V ITX}. Observe that although 01 reduces dimension
of singular chains by one, QXY,QX} are graded by deg f in (36), but
QX is graded by deg f in (49) with dim 7 = 1. Therefore P°, P* are
actually graded of degree zero.

Considering the components of 91 : QX" — QX" in the split-
ting QX" = QX! © QXY @ QX}, we see that 911 = 9° + 9OV +
O' — P°+ P'. Since (9'>)2 = 0, taking components of (9!>')2 mapping
from QX" to QX?, QX! shows that

(129) P°od® +9°0P°=0 and P'od®Y +9'oP' =0.
Thus P° P' are morphisms of complexes (QX;O’D,(‘)(O’”), (QX7?,0%),

(2

(QX;,0"), and induce maps P?, P} on cohomology. But by assump-
tion (117) are isomorphisms. Under these, Py corresponds (though not

with gradings) to the natural map

Since this is an isomorphism, P and similarly P;} are isomorphisms.
Theorem 8.1(N1)(b) implies that if g € X'? then there exists f € X{""
with TI°(f) = =+g, and also II'(f) = 0. Similarly, if ¢ € X} there
exists f € X;O’l) with IT'(f) = 4g, and also II°(f) = 0. Therefore
II° @ II* : QX;O’D — QX7 ® QX! is surjective. Combining this with
(129), one can show that in Definition 9.3, one can choose A" so that
IM°(A©®Y) = A and IT'(A®Y) = A'. Combining this with (115), (127)
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and (129), we see that
(130) P°oHY + H°oP°=0 and P'oH"" + H'oP'=0.

Now define p(io’o : QX%’” — QXY by p({o,o = P° and for all £ > 0
and (A, ) € G with |[(A\, p)|| +k—1 < N and (k, A\, u) # (1,0,0), define
pg"“ : (QX%’D)Xk — QX% by pi)"“ = 0. Write p° = (pi)"” k>0,
(A p) € G, |(A ] +k—1< N). Similarly, define p* = (pjM* : k >
0, M) € G, [l +k—1< N)by p” = P and pM* = 0
for (A, ) # (1,0,0)

Theorem 9.6. In Definition 9.5, p° : (QX%’I),Q,m(O’”) — (QXY,
G,m°) and p*: (QX%’I),Q,m(O’”) — (QX,G,m") are strict, surjective

AN morphisms, and weak homotopy equivalences.

Proof. Combining (112), (125) and (129), and noting the difference
in signs (—1)", (—1)"*! in the first lines of (112) and (125) gives

00,0 0 __ po (0,1) 0,0 10,0 1_ pl (0,1) 0,0
(131) my g0 P’=Plomy, " and m Pl=Plomy .

1,geo o

We will prove the analogue of (131) for m2M* miM (kX p)#(1,0,0),

k,geo’ mk,geo’
using equations (119) and (121). To do this we relate P°, P' to the fibre
products {0} x;o15,.. -+, {1} X4 [0,1),... -+ used in (119) and (121).

Suppose f : A, — [0,1] x (LI R) lies in XY for @ > 0. Then
9Ol f = 5% (=1)°f o F*. By Theorem 8.1(N1)(b), fo Ft € XY
for at most one b = 0,...,a. Suppose f o F' € X%. Then P°(f) =
—°(9U f) = (=1)1*°f o F2. But as in the proof of Theorem 8.1, we
have {0} X; 0.1 mof Ao = (—1)A,4_1, and the restriction of f to this
Ag-1is foFy. Thus it is natural to identify P°(f) with ({0} X; (0,1],7,0f
Ag, foma, ), as signed singular simplices. This is also valid if foF} ¢ X
for any b =0, ..., a, since then P°(f) =0 and {0} X;[0.1],x,0f Do = 0.

Therefore P° : QX 53’1) — QXY is essentially equivalent, with signs,
to the fibre product {0} x; g1},...-- -, that is, P° takes f : A, — [0,1] x
(LOR) to foma, : {0} X;j01],m0f Aa = [0,1] x (LI R). In the same
way, P* : QX 58,’1) — QX' is essentially equivalent, with signs, to the
fibre product {1} x; o1y, -

Now suppose as in (IN3) that g1 € XYy,...,g9r € Xy and f; €
XGY, e € XY with f; 0 A, = [0,1] x (LITR), g5 : Ag—1 —
{0} x (LI R) and g; = fjoFIfjj for b; = 0,...,a; and j = 1,...,k.

Then P°(f;) = (—1)1*%g;, as above. Let k > 0 and (\, ) € G with
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||()‘7IU)H +k—1<N and (kiv)‘)/J) 7é (17070) Then

DA,
(132) Poom M (fi, .y fr)
= > PolOV[VC(MPENB, T te[0,1], fir. ., fr),
MR (B, It €01, fioes fr,) 20 OV, 55,11 0,1, ur o fi)]
k . J— .
= (_1)k+2j:1 b Z VC( gljlfl(ﬁ, J07917'-- 7gk)7ev7
BEH2(M,(L);Z):[w]-B=A, 50 )
1L (B)=2p, MEPER(8,J0,91,....9) 70 By Josg1e-:9k

k .
= ()R b (g ge) = mE (PU(f), - PO(f))

using (125), (112) in the first and third steps, and P°(f;)=(—1)*tig;
in the fourth.

In the second, most difficult step of (132) we use the essential equiv-
alence of P° with the fibre product {0} x; [ 1,... - -, equations (119) and
(120), and the identification of 83, 7,.t€[0,1], f1,....f; 1.9, fj 10 fi? S8 Jo.g1o Ok
under (120) in Theorem 8.1(N3). The idea here is that because of this
compatibility of perturbation data, the two operations of taking fibre
product {0} X; 1), --- (basically P°), and taking virtual chains us-
ing perturbation data, commute when applied to M?filn(ﬁ,Jt it €
[0,1], f1,..., fr). That is, we can take virtual chains first and then
apply P°, giving the r.h.s. of the first line of (132). Or we can ap-
ply {0} Xi,[O,l},... e ﬁI‘St, glVlng (_1)k+2§:1 bj'/\_/lgljiln(57 J07gl7 s 7gk)
by (119), and then take virtual chains, giving the second line of (132).
Since the two operations commute, the two expressions are equal.

Now let T" be a rooted planar tree with k leaves, and (A, p) be as in

Definition 9.3. Then Definitions 7.3 and 9.3 define mz(;’“) (QAY) <" —
QXX),’D and mg)’%)(A’“) : (QX%’U)XIC — QX%’”, where mz(;’“) assigns

m%&e’ﬁ” to an internal vertex and (—1)"*!H° to an internal edge, and

D, . 1) Ao i )
m}f})( 2 assigns mﬁ?,gléo #v to an internal vertex and (—1)"H®" to an

internal edge.

Equation (132) gives P°o mﬁﬂ’glgé”’““ = m%),‘géff” o(P°x .-+ x P, and
(130) implies that P°o(—1)"H®Y = (~1)"*1H°0 P°. Combining these
we see that P°o m}f”})()"“) = mZ(}’“) o (P x -+ x P°. Summing this
over T, (A, ) and using (131) now shows that P° o m®@DVAH = moM# o
(P°x -+ x P°%forall k>0and (\pu) €Gwith ||[(\,p)]| +k—1< N.
This and the definition of p° imply that p° is a strict Ay, morphism,
as we have to prove.

From Definition 9.3, P° : QXY — QXY is surjective, and P? :
H* (QX;S,’l),a(O'”) — H*(QX%;,0°) is an isomorphism. As p({o’o = P°,
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m"? = (=1)78° and m{"V?0 = (—1)"+190O it follows that p° is sur-
jective, and a weak homotopy equivalence, as we have to prove. The
proof for p' is the same, apart from sign differences P'(f;) = (—1)%g;
and between (119) and (121). q.e.d.

By the Ay version of Corollary 3.18, we deduce:

Corollary 9.7. We can construct explicit An o morphisms i®: (QXY%,
g’mO) N (QX%’l),gym(o’l)) and i (QXI ,g,ml) N (QXES,’D,Q,W(O’U)
which are homotopy inverses for p°,p* respectively, using sums over
planar trees. Hence o = p' 0oi® : (QXY%,G,m°) — (QXy,G,m') is
an An,o morphism and a homotopy equivalence, with homotopy inverse
fl() — po o il.

This is important, as it shows that the Ay algebras we associated
to L in §7 are independent of the almost complex structure J and other
choices, up to homotopy equivalence. We can now compare our proof
of this with analogous results in Fukaya et al. [8, §4.6.1 & §7.2.9]. In
effect, in [8, Th. 4.6.1] Fukaya et al. construct a version § of our homo-
topy equivalence §*' directly, without introducing an intermediate Ay o
algebra (QX{", G, m®Y) as we do.

Since our i° involves a sum over planar trees, one would expect their
f also to involve sums over planar trees, and it does, though this is not
made very explicit. In [8, Def. 4.6.8], Fukaya et al. define complicated
moduli spaces }gnjlln(M '.L' . {J,}, : B;top(p)) which are in effect dis-
joint unions over planar trees 1" with k leaves of multiple fibre products
over T of Kuranishi spaces, where to each internal vertex of T" we as-
sociate MMan(3,. J; : t € [0,1]) in our notation, and to each internal
edge of T we associate {(s,t) € [0,1]? : s < t}. Here the fibre prod-
uct {(s,t) € [0,1]* : s <t} Xq, 01] " is an analogue of our H, an
explicit partial inverse for 0.

All these sums and products over trees happen at the level of Kuran-
ishi spaces, not complexes QX;. To extend them to complexes, Fukaya
et al. [8, Prop. 4.6.14, §7.2.9] choose perturbation data s%P(P) for the
moduli spaces gljiln(M/, L' {J,}, : B;top(p)), and further chain com-
plexes QX" satisfying many compatibility conditions. This adds an
extra layer of complexity to the proof. We believe our method in §8-§9
is preferable to that of [8], as it is shorter and more transparent.

goee

10. Homotopies between Ay, morphisms

In §7 we constructed Ay o algebras (QX n, G, m) from L using a choice
of almost complex structure J, and in §9, given two such Ay alge-
bras (QX%,G,m°), (QXY,G,m") from Jy, J1, we constructed a homo-
topy equivalence f' : (QX%, G, m°) — (QX}, G, m"'). We will now show
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that such ' are unique up to homotopy, and also that they form com-
mutative triangles up to homotopy.

10.1. Uniqueness of {! in Corollary 9.7 up to homotopy. Let
Jo, J1 be complex structures on M compatible with w. Fix N > 0, N’ =
N(N + 2) and G, which must satisfy some conditions below, once and
for all. Suppose (QX%,G, m°), (QX},G, m") are possible outcomes for
the Ay, algebra of Theorem 7.4 with J = Jy and J = J; respectively,
and N, N, G as above.

Suppose J; : t € [0,1] and J; : ¢ € [0, 1] are smooth 1-parameter fami-
lies of almost complex structures on M compatible with w interpolating
between Jy and Jp, so that Jo = Jo and J; = J;. Let (QX%’I),Q,m(O'”),
(Qi’%’l), G, m®Y) be possible outcomes for the Ay o algebra of Theorem
9.4 using J; : t € [0,1] and J; : ¢ € [0,1], and p°, p*, i, §°, p°, p*, 1O,
corresponding outcomes for the Ay g morphisms p°, p*,i° j°* of Theorem
9.6 and Corollary 9.7.

Then ' = p'oi® and ' = p'oi® are Ay o morphisms (QX%, G, m®) —
(QX%,G,m'). We shall construct a homotopy $ : f* = . This
implies that the Ay ¢ morphism f' : (QX%,G, m°) — (QX,G, m") in
Corollary 9.7 is independent of choices up to homotopy, and thus that
the Ay algebra (QX n,G,m) in Theorem 7.4 is independent of J and
other choices up to canonical homotopy equivalence, rather than just up
to homotopy equivalence.

To construct £ we need to choose a 2-parameter family of almost
complex structures J; : s € S interpolating between J; : ¢t € [0,1] and
Ji:te [0,1]. The most obvious way to do this is, as in Fukaya et al.
[8, §4.6.2], is to take S = [0, 1]?, with boundary conditions Jo,p) = Jts
Jag = Ji, Js0) = Jo and J(g 1) = J1 for s,t € [0,1]. But for us there
is a better choice: we take S to be the semicircle

S={(z,y) eR*:0< 2 +y* <1, y >0},

and Jig ) : (7,y) € S a smooth family of almost complex structures on
M compatible with w, with the boundary conditions

J—10) = Jo, J0) =J1, Jat-1,00 = Jts J(—cosntsinat) = Ji, t€[0,1].

Here we regard S as a 2-manifold with corners. It has two corners
(F1,0) to which we assign Jy, J1, and two edges, a straight edge E to
which we assign J; : ¢ € [0,1], and a semicircle £ to which we assign
J; -t € [0,1). This is illustrated in Figure 10.1(a). The semicircle is
preferable because our method will associate an Ay algebra to each
face, edge and vertex of S. Using the square [0,1]? we would have to
deal with 1 +4 +4 = 9 Ay algebras, but the semicircle gives only
1+2+2=5 Anp algebras, leading to a simpler proof.
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Ji:te[0,1] . (QXY", G, m) .

,3(0«1)7\

(QX%,G,m?)

p<o,1>¢

0] 1
S Gite01 o (QX%G.m)<(@x§Y,G.me) - (Y, G, m')

J(z’y) : (x,y) <)

Figure 10.1. (a) Js:s€ S (b) Ano algebras and morphisms

We need the family Js : s € S to be compatible with G in the sense
that if 8 € Hy(M,u(L);Z) and MP2(B,Js : s € S) # 0 then ([w] -
B, %,uL(ﬁ)) € G, generalizing condition (ii) of §6 and §8. One way to
ensure this is always possible is to choose G as follows: let J; : t € T be
a smooth family of complex structures on M compatible with w, where
T is a compact, connected, simply-connected manifold with boundary.
We think of J; : t € T as a large family, with dim 7 > 0, the set of all
almost complex structures we are interested in. Define G C [0,00) X Z
to be the unique smallest subset satisfying the conditions:

(i) G is closed under addition with G N ({0} x Z) = {(0,0)}, and

GN([0,C] x Z) is finite for any C > 0; and
(ii) if B € Hao(M,u(L);Z), MP*™(B,J; : t € T) # 0 then ([w] -
8, 1un(8)) € G.
Then G satisfies conditions (i),(ii) in §6 and §8 and upon Js : s € S
above provided all the (families of) complex structures J, J; : t € [0, 1],
Js 1 s € S that we choose lie in 7. This problem of dependence of G on
J will disappear in §11, since although we need to specify a particular
G to define an Ay g algebra, we do not need to specify G to define a
gapped filtered Ao, algebra, there just has to exist some suitable G.

Our next result generalizes the material of §8—§9 to our 2-parameter
family Js : s € S. To write the details out in full would take pages, but
the proof involves few new ideas, so we will just briefly indicate how to
modify sections 8 and 9.

Theorem 10.1. In the situation above, generalizing Theorem 9.4 we
can define an Ay algebra (QX3;, G, m%), and generalizing Theorem 9.6
we can define strict, surjective An o morphisms p©®Y : (QX3, G, m%) —
(QXYY,G,mOD) and POV 1 (QXS,G,m%) — (QAYY, G, D) which
are weak homotopy equivalences, such that Figure 10.1(b) is a commu-
tative diagram of Ano morphisms, that is,

(133) p’o p(o’l) =p’o0 ﬁ(o’l) and p'o p(0,1) —plo ﬁ(O,l)'

Proof. Here is how to modify Theorem 8.1 to the new Js : s € S.
The conclusion is that for a given N € N, there are X§ C --- C
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Q:C}gv and {sg j,.ses.f1,....f, } Satisfying analogues of (N1)~(N3). In (N1),
X, ..., X% are countable sets of smooth simplicial chains f : A, —
S x (LII R) with decompositions

X=Xt XY XY mas fori=0,...,N,

where if f € i’f and a > 0 then f o Fy! € 5(2-5 forb=0,...,a, and

e X7 consists of f: Ay — {(—1,0)} x (L II R), and are identified
with choices of X; in Theorem 6.1 with J = J; under LII R =
{(-1,0)} x (LTI R).

e X} consists of f : A, — {(1,0)} x (L II R), and are identified
with choices of X; in Theorem 6.1 with J = J; under L II R =
{(1,0)} x (LTI R).

o XY consists of f: A, — E x (L1I R), and are identified with
choices of X" in Theorem 8.1 with for J, : ¢ € [0,1] under
[0,1] x (LIIR) =2 E x (LIl R) given by t — (2t — 1,0). Also
f maps Ay — E° x (LI R) and 7g o f is a submersion near
(mpo f)7 ({(£1,0)}), as in (N1)(a).

o X"V conmsists of f: A, — E x (LTI R), and are identified with
choices of X®Y in Theorem 8.1 with for J; : ¢ € [0,1] under
[0,1] x (LITR) = E x (LI R) given by t — (— cosnt,sint).
Also f maps AS — E° x (LIIR) and ;o f is a submersion near
(mpo ) ({(=1,0)}).

e X7 consists of f: A, — S x (LII R) such that f maps A —
S° x (LTI R) and mg o f is transverse to 0S. That is, for each
p € 0A, with g o f(p) € 05, we require that d(mg o f)(T,A,) +
Trgof(p)(0S) = TrgorpyS. Furthermore, if @ > 0 then for each
b=0,...,a we have fo F € Xgo'l),j(fgo’l) or X7, that is, we do
not allow fo F2 € XY or X}. Also, foFf € X"V for at most one
b=0,...,a,and foF{ ¢ QACEO’” for at most one b=0,...,a.

Here the submersion and transversality conditions are equivalent to
Condition 4.12, so that we can apply Remark 4.11.

We regard QX5 as a space of relative chains in C$'(Sx(LIIR), 0Sx(LII
R); Q). As for (117) we require the following maps to be isomorphisms:

H.(QX?,8°)-—+HS(LUR;Q), H.(QX},0")-H(LIIR; Q),
H.(QXD,90V) =y HY (Ex (LUR), {(+1,0)} x (LIIR); Q),
H.(QXD,90V) =y HY (Ex (LIIR), {(+1,0)} x (LIIR); Q),
H.(QX3,0°%) = HY(S x (LTI R),05 x (LI R); Q).

In (N2),(N3), for k>0, f1 € X5,..., fr € X5 and § € Ho(M,(L);Z)

117"

with i1+ +ip+|| 8| +k—1<N and MPH(B, Js: s €S, f1,..., fr) #0,

(134)
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$8,J,:s€S, f1,....f 1S perturbation data for M?filn(ﬁ, Js:s€S f1,. -y fr),
which should satisfy compatibilities both over the boundary of M (8,
Js:s €8, fi,..., fr), and with previous choices made in Theorem 6.1
for Jo, J; and Theorem 8.1 for J; : t € [0,1] and J; : t € [0,1].

We modify Definition 9.1 to define Q-multilinear maps mZA’“ QX isl X

,geo

e X Qxfk — QX?I"‘""’F%-FH()\,M)||+k—1 of degree 1-— 2,& by

mS0,0 (fl) = I1° [(—1)n+26f1] — (_1)n+2asf1’

1,geo

WM (1 f) = S T VO(MESR (B, Js : s€S, 1, fi),

BEHy (M,u(L);Z):
M-BQ:A, ur(8)=2u, eV’557Js:8€S,f17---,fk)]7

M0 (B,J:5€8, i1, f10) 0 (k, M\ 1) # (1,0,0).

The analogue of Proposition 9.2 holds. In our modification of Definition
9.3 we assign (—1)"*1H* to each internal edge, and then the analogue
of Theorem 9.4 holds, giving the Ay algebra (QX3%, G, m%).

The strict Ay o-morphisms p©V : (QX%, G, m%) — (QAYY, G, m)
and p©Y : (QX},G,m%) — (Qi’%’l),g,ﬁl(o’l)) are defined as in Defini-
tion 9.5, but using the projections P®V : QX% — QX' and pon .
QX — QX defined by POV =TIV 0 &% and POV = —T1OY 0 9%,
where ° is the boundary operator on QX¥ and IT®V I are the
projections to QX Eo'l),Q)A( ;0’1). The difference in signs here is because
in oriented manifolds we have 9S = E 11 —E, where the orientations on
E, E are determined by their identifications with [0, 1].

Then the analogue of Theorem 9.6 holds, so that p©, p©V are strict,
surjective Ay o morphisms. Using (134) and the natural isomorphism

H¥(Sx(LILR),08x (L1 R);Q)
Sy HY (Ex (LT R), {(+1,0)} x (L 11 R); Q),

we find that p®" is a weak homotopy equivalence, and similarly so
is pOb,
Equation (133) now follows immediately from the identities

(135)  P°oPO) — POoPOD  and  Plo POD — plo PO,

To prove these, suppose that f : A, — S x (LII R) lies in X3, with
P° o POY(f) # 0. Then there exist b = 0,...,a with fo F? € X"
and c=0,...,a—1 with fo Fo Fo~1 € X9, where b, c are unique by
the conditions on X'}, above and the conditions on X 53’1) in Theorem
8.1(N1)(b). Therefore POV(f) = (=1)°f o F2, and P° o POV(f) =
(_1)1+b+cf o Fél ° Fca_17 as PO = 10D 6 95 and P° = —II° o 9lo-1],

If c < bdefined =cand ¢ =b—1, and if ¢ > b define ¥’ = c+ 1 and
d =b. Then foFgoF* ! = foF3oF% ! so (foF3)oF% ! € XY. The
conditions on X3, above give fo Fj ¢ X3, and also fo Fj} ¢ X%, X}.
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Thus f o Fg lies in XY or XYY, But fo Fr € &YV, b # ¥ and
uniqueness of b in the conditions on X'}, above imply that foFj§ ¢ X 53’1).
Hence f o Fj} € 21’53’1). The argument above now gives POV (f) =
(—1)1+b,foFﬁ, as POV — _[JO.1 0d°, and po op(‘“)(f) — (_1)b’+c’fo
Fé?OFg_l _ (_1)1+b+0foFézoFCa—1 = PP PO (f), as P = _TI°09lo,
Therefore if P20 POV (f) # 0 then P°o POV (f) = P°o POV (f). By the
same reasoning, if P° o POV (f) # 0 then P°o POV (f) = P° o POV (f).
This proves the first equation of (135). The second is similar.  q.e.d.

Here is the main result of this section.

) Theorem 10.2. In the situation c}bove, there is a homotopy $ : > =
for between the Ano morphisms §', ' : (QX%, G, m’) = (QX 'y, G, m").

Proof. As p®Y p®Y are weak homotopy equivalences by Theorem
10.2, they are homotopy equivalences by Theorem 3.22(c), so they have
homotopy inverses i®V i®Y. Write § ~ g when two AN, morphisms
are homotopic. Then we have

f01 — ]31 o iO — p1 oid ©.1) oiO ~ pl ° p(o,n o i(o’l) o iO —
QX
ﬁl oﬁ(o’l) oi(o,l) oio Nﬁl Oﬁ(o,l) oi(o,l) oio Nﬁl Oide((o,n oio :ﬁl oio :fo1'
N

Here in the third step p©®Y 0i®Y ~ idQX(O,l) as p® i@ are homotopy
N

inverses, the sixth step is similar, and in the fourth step we use (133).
For the fifth step, i® 0i® ~ i®Y 0{° since these are homotopy inverses
for p° o p® p° 0 p®Y which are equal by (133). Thus ) exists, as
homotopy is an equivalence relation. q.e.d.

Ifi°, {0 are constructed by sums over planar trees as in the Ay o version
of Corollary 3.18, then we can construct $) explicitly as a (complicated)
sum over trees using the techniques of Markl [18]. Fukaya et al. [8,
§4.6.2 & §7.2.10] prove results analogous to Theorem 10.2 by a rather
more elaborate method. Their proof involves a family of almost complex
structures J, ; for (p,s) € [0,1]2, four Ay, x algebras of chains on L, and
one Ay g algebra of chains on (—¢,1+€) x L.

To construct one of the Ay morphisms between these, they de-
fine [8, eq. (4.6.27)] complicated moduli spaces M (M', L', {J, s} s :
B;top(p), twp(s)), which are in effect disjoint unions over planar trees T
with k leaves of multiple fibre products over T' of Kuranishi spaces, with
M (B,, J,s : p,s € [0,1]) at each internal vertex, and {(p1,p2) €
[0,1)2 : p1 < p2} at each internal edge. This sum over trees roughly
speaking constructs an explicit homotopy inverse for the strict surjec-
tive Ay x morphism p° o p©@Y = p® o p®Y in our notation, using the
method of §3.3.
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10.2. Compositions of {°! in Corollary 9.7 up to homotopy. Let
Je, J J¢ be complex structures on M compatible with w. Fix N > 0,
N’ = N(N + 2) and G, which must satisfy some conditions below,
once and for all. Suppose (QX%,G,m*), (QX%,G,m"), (QX%,G, m)
are possible outcomes for the Ay algebra of Theorem 7.4 with J =
Je, Jb. J¢ respectively, and N, N’,G as above.

Suppose J, Jb¢, J# for t € [0,1] are smooth 1-parameter families of
almost complex structures on M compatible with w with J&® = Jg¢ =
Jo, Jib = Jbe = Jb) Jgbe = Jp¢ = J¢. Let (QX%, G, m) be the Ay
algebra of Theorem 9.4 using J& : ¢ € [0,1]. Write p>®, peb? i®ab §9 re-
spectively for the Ay o morphisms p°, p*,i% ' of Theorem 9.6 and Corol-
lary 9.7 for J@ : ¢ € [0, 1], so that p*>* : (QX%, G, m*) — (QX%, G, m*),
and so on. Use the analogous notation for JP¢, Jo¢ : t € [0,1]. Then j*
and o §** are both Ay ¢ morphisms (QX%,G,m*) — (QX%,G, me).
We shall construct a homotopy $ : §*© = §** o §**, using a very similar
method to §10.1.

To construct $ we choose a 2-parameter family of almost complex
structures J; : t € T interpolating between J2°, JP¢, Jo¢ for t € [0,1].
Let T be the triangle

T={(z,y) eR*:x<1, y=0, z>y},

and Jg ) ¢ (z,y) € T a smooth family of almost complex structures on
M compatible with w, with the boundary conditions

Jooy =J% Jao=J" Jay =7
Jaoy =J0 Jan =% Juy =Jf, te[0,1].
This is illustrated in Figure 10.2(a). We need the family J; : ¢t € T
to be compatible with G in the sense that if 8 € Hy(M,t(L);Z) and

Mpain(g J, ¢t € T) # 0 then ([w]- B, $ur(8)) € G. We can ensure this
as in §10.1.

(Q¥%, G, m°)
A ac,e
: -
be . Yac Sac pbe = be
t o (QXNvgym ) bc(Q ?Vygvmb )
t e [0,1] acra ~ P
g R S
a b Ya Sa pebe Yab IS afab pete? b ~b
J ngit€[071] J (QXNygvm)%(QXNygvm —>(QXN7g7m)

Figure 10.2. (a) J;:t €T (b) Ay algebras and morphisms

Then we prove analogues of Theorems 10.1 and 10.2 by the same
methods:
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Theorem 10.3. In the situation above, we can define an An o algebra
(Qx m”) cmd strict, surjective AN o morphisms p‘“’ : (QX]TV,g,mT) —
( g mab) . (QXT ) (QXbC g mbc) c. (QxT ) -
(QX%, G, m) whzch are weak homotopy equwalences such that Fzgure
10. 2(b) is a commutative diagram.

Theorem 10.4. In the situation above, there exists a homotopy $ :
fr© = §* o f** between the Ay morphisms §*, o §** : (QX%, G, m*) —

(QXy,G,me).

Fukaya et al. [8, §4.6.3] prove related results by a different method. In
our notation, they suppose that the families Jtab, thc, J{¢ satisty Ji¢ =
Jsb for t < % and Jg¢ = Jbe | for t > %, and show that one can make
choices in the constructions of §**, f*¢, f* so that §** = §** o §**. Then for
more general choices of J2, JP¢, J#¢ and §**, f*°, f*°, Theorem 10.4 follows
from Theorem 10.2.

11. Gapped filtered A, algebras from immersed Lagrangians
We can now, at last, associate a gapped filtered A, algebra to L.

Definition 11.1. Suppose (M,w) is a compact symplectic manifold,
and ¢ : L — M a compact immersed Lagrangian in M with only trans-
verse double self-intersections. Let J be an almost complex structure on
M compatible with w. Choose a relative spin structure for ¢ : L — M
and orientations o(,_ ) of the Ker 5)‘(1’744) as in §5. Let G C [0,00) XZ
satisfy conditions (i),(ii) of §6.

For each N =0,1,2,..., let (QX¥y,G,my) be an Ay algebra con-
structed in Theorem 7.4 for these J,G; we write my rather than m
to make clear the dependence on N. We assume no relation between
the choices made in constructing (QX n,G, my) and (QX n/, G, my-) for
N # N’, so the sets of simplices, perturbation data, and so on, can all
be different.

As in §7, any Any10 algebra (A4,G, m) can be truncated to an Ay
algebra (A, G, m) by taking m to be the subset of m}* with ||(\, p)|| +
k—1< N. Write (QX¥ 41,6, mn41)n for the Ay algebra truncation
of (QX¥N41,G,my41). Then (QXy,G,my) and (QXN41,G, my41)N
are both possible outcomes for Ay algebras constructed in Theorem
7.4 using J,G. Applying the results of §8-89 with J, = J for ¢t € [0, 1],
Corollary 9.7 constructs an Ay, morphism ' that we will write as
iV (QXN,G, my) — (QX¥N11,G, my41)n, which is a homotopy equiv-
alence. Putting J; = J for s € S in §10, Theorem 10.2 implies that ¥
is independent of choices up to homotopy.

Set X = Xy. By induction on N = 0,1,2,... we shall construct m"
such that (QX,G,m") is an Ay algebra, and an Ay o morphism g
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(QX,G,m") = (QXy,G, my) which is a weak homotopy equivalence,
satisfying the conditions:
(i) m® =mg and g° = idgx;
(ii) m¥+! extends m¥ for all N > 0, that is, the Ay o algebra trunca-
tion (QX,G, mN*t)y of (QX,G, mV 1) is (QX,G, m"); and
(iii) the truncation (gN*')y : (QX,G,m Nty — (QXN11,G,mN11)N
of g1 to an AN morphism satisfies @Vt y =V o gV for all
N >0, using (QX,G, mV 1)y = (QX, G, m") from (ii).

For the first step, m®, g° are given in (i). For the inductive step, sup-
pose we have constructed m”, gV satisfying (i)-(iii) for N = 0,1,..., P.
Then f* o g” : (QX,G,m") — (QXpy1,G,mpyq)p is an Apo mor-
phism which is a weak homotopy equivalence, since f*, g”" are. Theorem
3.23(a) with N = P, N = P + 1 now shows that there exists an Apyi0
algebra (QX, G, m*1) extending (QX,G, m”) and an Ap 1o morphism
gf 1t (QX, G, mP ) = (QXpy1,G, mpyq) extending §7 o gP which is
a Weak homotopy equivalence. This proves the inductive step.
For all k > 0 and (A, uu) € G, define m : (QX)* " QX by mpH =
mMAH where N = max(||(A, p)|| + &k — 1 0) and mY"M# is the (k, A, p)
term in m". Then (ii) implies that m)‘“ = mkN ’\’“ for any N’ > N.
Since (QX,G,m) is an Ay algebra for all N > 0, equation (17) holds
for the miv’)"“, so by independence of N, the mg’“ satisfy (17) for all
k>0, (A\un) €Gand pure ay,...,a; € QX.
Define Q-multilinear maps mg ¢ (QXRAY )" — QXYRAL | for k =
0,1,... by mg =30\ e cgTe mg’“ Write m = (mg)g>o. Then Defi-
mtlon 3 13 implies that (QX®AY ,,m) is a gapped filtered Ao algebra.

nov?

Definition 11.1 is similar to Fukaya et al. [8, §7.2.8]. Here is one of
our main results, analogous to [8, Th.s 3.5.11, 4.1.1 & 4.1.2].

Theorem 11.2. (a) In Definition 11.1, (QX®AS, ,m) depends up
to canonical homotopy equivalence only on (M,w), v : L — M and its
relative spin structure, and the indices ng,_ ;. 1 §4.3, and is indepen-
dent of J,G, changes of paths \g,_ . ) in §4.3 which fix ng_ .., the
orientations o(,_ .y on Ker 5)\( op) in §5.2, and all other choices.

That is, if (QX &A%, m), (QX@AHOV, m) are outcomes in Defi-
nition 11.1 depending on J,G,A\(_ p.),0p_ p.),--- and j,QN,S\(pﬂp”,
O(p_p.)»- - » we can construct a gapped filtered A, morphism j : (QX ®
AV m)— (QX @AY, i) which is a homotopy equivalence. If i, are

possibilities forj there is a homotopy $ :j=j’.

(b) If (Q/Y@Anovv ) (Q/Y@Anovv ) (Q‘)E‘@Anovalﬁ) are possible out-

comes in Definition 11.1 and j : (QX@AHOV, m) — (QX®AY,, m),
(QX@AHOV7 N) (QX@AHOV7 T )7 : (QX@AHOV7 ) (QX@AHOV7
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m) are corresponding gapped filtered Ao, morphisms in part (a), then
there is a homotopy $) : )" = oj.

Proof. First we explain how to construct j in (a) when G, )\(p
O(p_p +) are fixed, but other choices J, ... vary. Suppose (QX®A?
(QX ®@ A% . ,m) are constructed using g,)\pﬂp”,o(pﬂm) and other
choices J,... and J,.... Let (QXx,G,my),fV,(QX,G, m"), gV and
(QXn,G, ), iV, (QX,G,m"),g", be the corresponding choices in Def-
inition 11.1. Let 9%, %Y be homotopy inverses for fN gV,

Let J; : ¢t € [0,1] be a smooth family of almost complex structures
on M compatible with w, with Jy = J and J; = J. Suppose that
G satisfies conditions (i),(ii) of §8 for J; : ¢ € [0, 1]; this implies that
G also satisfies conditions (i),(ii) of §6 for J,.J. If G does not satisfy
(i),(ii), we can use the third part of the proof to change to a new G
which does. Then Corollary 9.7 constructs an Ay o morphism ' that
we will write as b : (QX y, G, mN) — (QX y, G, my), which is a homo-
topy equivalence. Also, as (QXN+1, G,my41)n is also a possible Ay
algebra from Theorem 7.4 with .J, Corollary 9.7 constructs an A N,0 INOT-
phism iV : (QX N, G, my) = (QX N41,G, Mn41) N, which is a homotopy
equivalence. Thus we obtain the diagram of Ay ¢ morphism homotopy
equivalences:

7p+)

nov’ )7

T @V T

(Qx,g,mV) —— o~ — (QXN,G,my) —= (QXN11, G, mN+1) N
N le ~ l(hN“m
(136) Y AN "
(QX,G,m) <—= (QXN,Q my) <— (@XNH,Q MmyL1)N
\_/
(CARR I,

Write § ~ g when two Ax o morphisms are homotopic. Then we have
NohNogNNENoﬁNO}NohNOgNNENoﬁNOiNOgN

(137) EN 06N o (bN+1)N ofN OgN ~ (EN-H)N ° (hN-I-l)N o (gN-i-l)N
— (EN-l-l ° hN+1 OgN+1)N,
using oV ,fN homotopy inverses in the first step, }N o hN ~ iV by The-
orem 10.4 in the second, (hNH)N oV ~ i¥ by Theorem 10.4 in the
third, and (g™ 1)y = f¥og® and ¢V od¥ ~ (eV*1)y which follows from
@Vt Ny =V og" and oV, &V, e¥+! homotopy inverses for fV, gV, gV+1
in the fourth.
By induction on N = 0,1,2,... we now choose Ay morphisms
NooQx,gm) — (Qi’ ,G,m") which are homotopy equivalences,
satisfying the conditions:
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(i) iV is homotopic to ¢V o hV o g/V: and

(ii) the truncation Nty : (QX,G, mN )y — (QX,G, Nty of
i¥*1 to an Ao morphism satisfies ;¥ T!)y = iV for all N >
0, using (QX,G, mV )y = (QX,G,m") and (QX,G,mNt1)y =

(QX,G,m").

For the first step, we take i = ¢V oh™ ogV, so that (i) for N = 0 is trivial.

For the inductive step, suppose we have chosen iV satisfying (i),(ii) for

N = 0,1,...,P. We shall construct j”+'. Since j* is homotopic to

¢PohP og? by (i), and ¢ oh” og? is homotopic to (eF 1 ohPTlogh T p

by (137), i* is homotopic to (¢7 1 ohP 1o gP*+1)p. So Theorem 3.23(b)

with N =P, N=P+1,f=i" and g = ¢+ o h7+1 o gF't1 gives jFF!

satisfying (i),(ii). Therefore by induction jV exists for all N.

There is now a unique gapped filtered A, morphism j : (QX ®
A%, m) — (QX&AY M) whose truncation to Ay, algebras is jV for
N =0,1,2,.... It is a weak homotopy equivalence as the j’V are, and
so is a homotopy equivalence by Theorem 3.15(c). Regarding gV, gV
as fixed, ¢V above is independent of choices up to homotopy, and by
Theorem 10.2, so is hV. Thus, jV is independent of choices up to A N,0
homotopy. As this holds for all N, j is independent of choices up to
homotopy. That is, if j,j’ are possible choices for j then there is a ho-
motopy $ : j — j’. We construct $ as the union of a family of Ay
homotopies H7 : iV = iV with ($V+1)y = Hn, chosen using an ana-
logue of Theorem 3.23(b) for homotopies. This proves (a) with G and
Ap_pi) Ow_ py) for (p—,py) € R fixed. )

Secondly, we prove (b) with G, A\,_ ,,.),0(,_ ) fixed. Suppose (QX®
A% m), (QX®AL  m), (QX®AY ,m) andj,j’,i"” are as in (b), all con-
structed using the same G, A\(,_ .}, 0(_ p.)- Then with the obvious
notation we have a diagram of Ay o morphism homotopy equivalences:

(@¥,G,m") —~ (QXy, 0, my)

\LjN gN hN‘L
jl/N (QX7g71ﬁN) <E—N (QXN7g71ﬁN) h//N
\l/j,N gN blN\l/

Q.. #") == Q. G, )

Theorem 10.4 shows that "V ~ §N o hN. Since iV ~ eV o h¥ o gV,
"N~V o'V o gV and gV, eV are homotopy inverses, this implies that
"N ~ "N o jN. That is, the Ay, truncations of j” and i’ oj are Ay
homotopic for all N = 0,1,.... We can now construct § : j” = j’ oj as
in the end of the first part of the proof.

Thirdly, we explain how to change G in (a) and (b). Suppose that
GCGcC [0,00) X Z, and Q,,C’; are closed under addition, such that
gN({0}xZ) = Gn({0} xZ) = {(0,0)} and GN([0, C]x Z), GN([0, C] x Z)
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are finite for any C' > 0. We shall define a functor from the 2-category
of Ay, algebras with fixed G to the 2-category of Ay algebras with
fixed C;, which we call G-truncation.

If (\, 1) € G then as G C G, in (23) we can define ||(\, 1)|| using either
G or G. Write these as ||(\, 1)]|g, [(A, w)llg to distinguish them. Then
G C G implies that ||(\, u)|lg < (A, w)llg, as (A, p) can be split into
more pieces in G than in G. Thus for k, N given, ||(), wWlg+k-1<N
implies that ||[(A\, p)]lg +k—1< N.

Suppose (A4,G,m) is an Ay algebra, so that m = (mg“ k>0,
A\ u) €6, [(AMp)lg+k—1<N). Define an Ay, algebra (A4,G,m),
where m = (mp# : k>0, (A, p) €G, [|[(\p)llg+k—1 < N) by mp# =0
if (A\,p) € G\ G, and mp# = mM* if (\,p) € G. Since (\, 1) € G and
(A m)llg + &k —1 < N implies that [|(\, p1)[lg +k — 1 < N, this is well-
defined, and (17) holds for the m)* as it does for the m*. So (A, G, @)
is an Ay algebra.

Write (A,G,m)g = (A,G, @), that is, (A,G, m)g is the G-truncation
of (A,G,m). In a similar way, if f : (A4,G,m) — (B,G,n) is an Anp
morphism of Ay algebras with G, then the G-truncation fe = i
(A,G,m)s — (B,G,n)g is an Ay morphism of Ay algebras with
G, where W =0if \p) € G\ G, and fp* = foH if (\,pu) € G. If
9 :f = g is a homotopy of An morphisms f,g : (A,G,m) — (B,G,n),
then the G-truncation Sﬁg = .6 fg = 0 is a homotopy, where .6)‘ k=0
if (\, 1) € G\ G, and HpH = H)+ if (A, p) € G.

Now suppose that (QX®AY. m) is a gapped filtered A, algebra
constructed in Definition 11.1 using data J,G,.... We shall show how
to construct ezactly the same gapped filtered Ao algebra using G instead
of G. Use all the notation (QXN,Q,mN),fN,gN m?, ... of Definition
11.1. Then it is easy to see that we may go through Definition 11.1
replacing G by G, and all the An o algebras, morphisms and homotopies
by their G-truncations, and get a valid set of choices. That is, we replace
(QXN’gva) by (QXNagvﬁlN) = (QXN’gva)(j’ fN7gN by fN =
(Mg 8" = (8")g, and (QX,G,m") by (QX,G,m") = (QX,G,m");.

Since G-truncation commutes with truncation of A N+1,0 algebras to
Ap algebras, these satisfy (gVT1)y = ¥ o gV, and so on. Thus,
we obtain a gapped filtered A algebra QX ®AHOV, ) using G, whose
truncation to an Ay o algebra with G is (QX, G, m") = (QX,G, m ) for
all N =0,1,.... Clearly this implies that m = m, and (QX@AHOV, ~) =
(QX®AL,,, ) So we are always free to enlarge G to G, and obtain not
just two homotopic, but the same, gapped filtered A, algebras.

To extend the proofs of the first two parts to allow G to vary, sup-
pose in (a) that (QX®AY ,m), (QXSAL  ,m) are constructed using
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J, G, )\(pﬂm), O(p_py)s--- and J,G, )‘(pf,p+)7 O(p_py)s -+ with possibly
different G,G. Choose a smooth 1-parameter family of almost complex
structures Jy : ¢t € [0,1] on M compatible with w, with Jy = J and
Ji = J. Choose some G C [0,00) x Z such that G C G, and G C G, and
conditions (i),(ii) of §8 hold for G and J; : ¢ € [0,1]. This is possible,
and there is a unique smallest such G

Now regard (QX @A), m), (QX ® A .,m) as having been con-
structed using G rather than g, Q as above. Then we can use the first
part of the proof with G in place of G to construct j : (QX®AY,m) —
(QX®AY, @) and prove (a). The extension of (b) to varying g is sim-
ilar; we must choose G to contain G, G, G”, and the choices of G used to
define j,i’,i”, and to be compatible with the family of almost complex
structures Jy : t € T used in §10.2 to construct homotopies.

Finally we explain how to change the paths A\ ) and orientations

P—.p+
O(p_py) ON Ker(‘))\( ) for (p—,p+) € R. Let )\(p p4)1O(p_p,) e an
alternative set of ch01ces which yield the same indices 7, 5, ). Then

Proposition 5.15 shows how the orientation of M?flln( o, By f1yo s fr)
changes for these new choices, in terms of §,,_ ,, .y = £1for (p_,p+) € R.
Let (QX®A% ,,m) be constructed in Definition 11.1 using the Ap_ps)s
O(p_p,)» and (QX®AY, ., m) be constructed using X(pi’p”, O(p_ p,)» but
otherwise using exactly the same choices. That is, the chain complexes
QX n,QX and choices of perturbation data are unchanged, but the

other data of virtual chains, my,fV,g"¥,m",m,... change to ﬁ‘LN,fN ,

gV, mV, m,... with various sign changes dependlng on the {u,_ 4.y

But Mgljlln(oz,ﬁ, J, f1y.oy frr) = 0 unless f; : A,, — LII R maps to
a(i) € Rifi € I'and to Lifi ¢ I, and ev : MP¥(a, B, J, f1,. .., fr) =
LTI R maps to ocoa(0) if 0 € I and to L if 0 ¢ I. Because of this, if we
define linear = : QX; — QX; by

(f) _ go(p,,p+)fa [ A, — {(p—7p+)} C R,
f, f:A, — L,

then in Definition 7.1 we have m7 geo( (f1),---,E(fr)) =Eomy geo(fl’

W) W) . main
-5 fk), a8 Mpgeq, My ge, are constructed from virtual chains for M

( ,5, J, fi,..., fx), which change signs as in Proposition 5.15.

Going through the constructions of §7-§10 and Definition 11.1, we
find that everything commutes with = in this way, so that eventually
(QX®Anov’ ) and (QX(X)Anovv ~) SatiSfy Iﬁk(’;(fl) e 7H(fk)) =Eo
my(f1,..., fx), where = QX@AHOV — QX®AY, is the A -linear map
induced by = : QX — QX. Thus = induces a strict A, isomorphism = :
(QX&AY,,,m) = (QX®AY,,,m). Toinclude change of X, ), 04 p.)
in (a), we compose j constructed above for fixed O(p_ py) With this B to
get the new j. The same idea works for (b). q.e.d.
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Remark 11.3. In Theorem 11.2(a), it is nearly true that (QX&®AY .,
m) is also independent of the indices 7,_ ;. ) in §4.3 up to canonical ho-
motopy equivalence. This would be true if we relaxed the definition of
gapped filtered A, morphism in Definition 3.14 slightly. For (p_,p) €
R, let )\(pﬂp”,j\(pﬂp” be possible choices in §4.3, let 7
be the corresponding indices (31), and let O(p_p1)» O(p_ py) D€ orien-
tations on Ker 8)\( ,» Ker 8)\( o As at the end of §5.4, we have
M) = Mp-py) 2d(p »y) for d( py) € L.

We can now try to adapt the ﬁnal part of the proof of Theorem
11.2, as follows. Suppose (QX ® AY ,m) is constructed in Defini-
tion 11.1 using Ay . ) M- ps)s Op py)» and (QX & AS M) is con-

P—,p+)? ﬁ(IlL P+)

structed using A¢,_ 5. ) M(p_ p1)» O(p_py)» Put otherwise using ezactly
the same choices. When we change from A,_ )2 M- 1) 0o p) to

/\(p—7p+) Np_ps)s O(p_ py)» the orientations of ?flln( o, By f1yo s fr)
change as in Proposition 5.15, in terms of {,,_,,.y = +1for (p_,py) € R,

and deg f in (36) changes by deg f = deg f + 2d,_py if f 1 Ay —
{(p_,ps+)}. Define a AV  -linear map = : Q¥ ® AS = — QX @ A%, by

. e Me—rog o 0 F fiAL— {(p—,p1)} C R,
f, AL — L,

[1]>

where e is the formal variable in AY . from §3.4.

Note that QX @ A% = is graded differently in (QX @AY ,m) and
(QX ® A% ,m), because of the change in deg f. Since e has degree
2, the correction e dw_»4) ensures that = is graded of degree 0 as a
map (QX®A ,,m) — (QX@AHOV, m). As in the final part of the proof
of Theorem 11.2, we find that mk( (f1),.-- ,é(fk)) =Zom(f1,..., fx)
for all f1,..., fr € X.

We would like to define a strict gapped filtered Aoo isomorphism
E . (@X ®Anov7 ) (QX@AHOV, ) by =] = E and = =k = 0

r k # 1, which would prove that (QX & AY ) is independent of
)\(pﬂp )3 M(p_,p,) UP to canonical homotopy equivalence. However, this
E has B4 -»1) £ 0 for all (p_,p;) € R, which contradicts the con-
ditions on G’ in Definition 3.14(i) if d(,_,,) # 0. We could weaken
Definition 3.14(i) to make E a gapped filtered A, morphism, but this
would cause problems elsewhere, in particular, the definition of weak
homotopy equivalence would no longer make sense.

By Theorem 3.17, the gapped filtered A, algebra (QX®AY. . m)
of Definition 11.1 admits a minimal model (H @ A2, n) with H =
H*(QX, m{%). Here Theorem 6.1(N1)(b) implies that H*(Q&, mdY) =
H$(L1I R; Q) as an ungraded vector space, and the grading is given
by shifted cohomological degree in (36). As (QX®AY. ., m) is unique
up to canonical homotopy equivalence by Theorem 11.2, (H ® A%, n)
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is unique up to canonical gapped filtered A, isomorphism. Thus we
deduce:

Corollary 11.4. The gapped filtered Ao algebra (QX®AY . m) of
Definition 11.1 has a minimal model (H® A%, n), with graded Q-vector

space H= @ H? given by
dEZ

(138) H - n d— 1 @@(p \D+)€E (p—7p+)7
d=n(p_ p+) 1

where Q(p—,p4) = Ho({(p_,p+)};(@) s the Q-vector space with ba-
sis {(p—,p+)}-

This (H®AS,,n) depends up to canonical gapped filtered Ao, isomor-
phism only on (M,w), ¢ : L — M and its relative spin structure, and the
indices n,_ p.), and is otherwise independent of J, G, Ai,_ 1.)sOp_ py)
and other choices. That is, if (H ® A%,,n), (H® Agov, n) are two
possz’ble outcomes, we can construct a gapped filtered Ao isomorphism

S(HRAY ) = (HRAY 7)), and j is unique up to homotopy. Fur-
thermore i90 0 H — H is the identity on H.(L;Q), and +1 on each
(p—,p+) in R.

This is similar to Fukaya et al. [8, Th. A, §1.2].

12. Calabi—Yau manifolds and graded Lagrangian
submanifolds

We now explain how the material of §4-§11 simplifies when (M, w)
is Calabi—Yau, and the Lagrangian L is graded. Floer cohomology of
graded Lagrangian submanifolds in Calabi—Yau manifolds is important
because of its role in the Homological Mirror Symmetry Conjecture
of Kontsevich [14]. For background on Calabi-Yau manifolds, special
Lagrangian submanifolds, and Mirror Symmetry see Joyce [11], and for
graded Lagrangian submanifolds and Floer cohomology see Seidel [19]
and Fukaya [7, Def. 2.9]. The framework we give can be generalized in
various ways; see Joyce [11, §8.4] on almost Calabi—Yau manifolds, and
Seidel [19] for a more general notion of grading, expressed in terms of
covering spaces of bundles of Lagrangian Grassmannians.

Definition 12.1. A Calabi-Yau n-fold is a quadruple (M, J,w, )
where (M, J) is a compact n-dimensional complex manifold, w is the
Kahler form of a Ké&hler metric ¢ on M, and §2 is a non-vanishing
holomorphic (n,0)-form on M satisfying

(139) W /n! = (=1)"=D2 /20 A Q.

This implies that ¢ is Ricci-flat with holonomy group contained in
SU(n). Note that (M,w) is a compact symplectic manifold, and J is an
(almost) complex structure on M compatible with w.
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If (M, J) is a compact complex manifold with trivial canonical bundle
Ky, then by Yau’s proof of the Calabi Conjecture, every Kéahler class
on M contains a unique Ricci-flat Kéhler metric g, with Kéahler form
w. There exists , unique up to phase change Q — Q) such that
(M, J,w, ) is Calabi-Yau. One can construct many examples of such
(M, J) using complex algebraic geometry.

Now let ¢ : L — M be an oriented, immersed Lagrangian. Then ¢*(2)
is a complex n-form on L, and the normalization (139) implies that
|*(2)| = 1, where |.| is computed using ¢*(g). Hence ¢*(Q2) = uvolg
for some smooth u : L — U(1), where vol, is the volume form on L
defined using ¢*(g) and the orientation. We call L special Lagrangian
with phase e for § € [0,27) if u = e¥.

A grading on L is a choice of smooth function ¢ : L — R such
that u = . We call (L, ) a graded Lagrangian submanifold. If a
grading exists it is unique up to ¢ — ¢ + 27k for k € Z, provided
L is connected. Special Lagrangian submanifolds with phase e are
automatically graded, with ¢ = 6 constant. Let a € H'(U(1);Z) be the
generator with fU(l) a = 1. Then u*(a) € HY(L;Z) is called the Maslov
class, and L admits a grading if and only if u*(L) = 0 in H'(L;Z), that
is, if and only if L is Maslov zero.

Suppose that (M, J,w, Q) is Calabi—Yau and (L, ¢) is an embedded
graded Lagrangian in M. Then the Maslov index () of Definition 4.5
is zero for all 3 € Hy(M, L; Z). This is because ur(8) = 8-c1 (M, (L)),
where ¢1 (M, (L)) € H?*(M,u(L);Z) is the relative first Chern class
for w on (M, L), and the Calabi-Yau and graded conditions imply
that ¢1 (M, (L)) =0.

To extend this to immersed graded Lagrangians, we require the paths
Ap_py) in Definition 4.4 to lift to paths (A(,_ ), Y p_ p,)) in graded La-
grangian subspaces of T, M. That is, A\,_ ,.) = {A\p_ p) (T, V) }@y)coy
is a smooth family of oriented Lagrangian subspaces of T),M, where
p=tp-) =upy), and P_,. ) : Y — R is a smooth map, such that

Qp’A(L,”)(x,y) = W p ) (@) VOl)\(pi’p for all (z,y) € 9Y, and

»@y)

AT, L), y=1, ¢p-), y=1,
)\(pf’er)(x’y) - {diETZ Liv Z:_L ¢(p7’p+)(x,y) B {¢E§+;7 :Z:_l

Then the same argument ensures pz () = 0 for all § € Hy (M, t(L); Z).

Requiring the A¢,_ . to lift to paths (A(,_ ., Y. p,)) in graded
Lagrangians determines the index 7,_, ) in (31) uniquely, indepen-
dently of choices in (Ap,_ p.),Y(p_p,))- Calculation shows that we can
give a simple local formula for ng,_ ).

Proposition 12.2. Let (M, J,w,) be a Calabi—Yau n-fold, and (v :
L — M,¢) be an immersed graded Lagrangian submanifold with only
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transverse double self-intersections. Suppose p_,py € L with p_ # py

and 1(p—) = «(p+) = p. Then for any choice of path (App_ p. ), Vp_ py))
in graded Lagrangian subspaces of Tp,M as above, the index ng,_ ;. ) in
Definition 4.4 may be computed as follows. One can choose holomorphic

coordinates (z',...,2") near p in M in which

wl| :%(dzlAd§1+...+d2"Ad§”)7 Q’p:dzl/\”'/\dzn,

P
W(T, L) = {(¢ 1*xl,...,ei‘wx” szt 2" eRY,  and
140)  du(T,_ L i
do(Tp, L) = {(ei(b}fxl, €%ty it 2" e R},
where ¢4, ..., ¢% € R satisfy ¢+ -+ ¢ = d(p+) and gbi — ¢ ¢
for j =1,...,n. For x € R, write [x]| for the greatest integer m with
m < xz. Then
nor¢h — ¢l
(141) T,(pf,er) = n+ZJ:1|: T ]
¢l —¢1 ¢ —l,

Since ¢’y — ¢’ ¢ wZ, we have [F——] + [——=] = —1 for j =
1,...,n. Thus exchanging p_,p; and ¢/, ¢/, we see from (141) that
Np_ps) T Npop_) =N, as in (32). Recall that in §4.6 we assumed that
Np_py) = 0 for all (p—,p+) € R. This is not compatible with requiring
A(p_ ps) to lift to graded Lagrangians, since then ) is determined
by (141), and need not satisfy 7,_,.) = 0.

In facﬁ we only used~77(p77p L) 2 0 to define the modified moduli
spaces M}aniln(a,ﬁ, J), znjiln(a,ﬂ, J, fi,..., fr), which were only for
motivation, and in the orientation calculations of §5. But as we ex-
plained in §5.4, changing the 7,_, ) does not affect any of the signs
in §5, as the nq,_, ) change by even numbers, and Proposition 5.15
explains how changing A,_ 5.y M- o affects the orientations

( P+
(

p—p+

alLLs - p+)> O(p—p+)
on I,?flln(a,ﬁ,J, fis--+, fr). Using this, we can define the orienta-
tions on ./\_/lznfiln(a,ﬁ,J, fiy.-., fr) using choices X(pi,p” inducing in-
dices 7(,_ p,) = 0, and then replace 7,_ , ) by n¢p_ p,) In (141) defined
using graded paths (A,_,.),¥p_p,)), and the results of §5 such as
Theorem 5.13 will still be valid.

To summarize our discussion so far: when (M, J,w, 2) is Calabi—Yau
and (¢: L — M, ¢) is an immersed graded Lagrangian with only trans-
verse double self-intersections, by using graded paths ()\(pﬂp 2 Yo p +))
in §4.3 the indices 7(,_, ) are uniquely determined by (141), for all
B € Hy (M, t(L); Z) the Maslov index pr(f) is zero, and the orientation
results of §5 still hold.

We can now go through the whole of §6-§11 working over the Calabi—
Yau Novikov ring A%, of §3.4, rather than over A? . The point is that
terms TAe” in A are to keep track of holomorphic discs with area A
and Maslov index 2u. But for graded Lagrangians all Maslov indices
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are zero, so we can work just with terms 7% in A%,. Thus we prove
analogues of Theorem 11.2 and Corollary 11.4:

Theorem 12.3. Let (M, J,w, Q) be a Calabi—Yau n-fold and (v : L —
M, 9) a compact, immersed, graded Lagrangian with only transverse
double self-intersections. Choose a relative spin structure forv: L — M.
Then:

(a) By an analogue of Definition 11.1, we can construct a gapped fil-
tered Ay algebra (QX®AY,,m), which depends up to canonical
homotopy equivalence only on (M,w), v: L — M, and its relative
spin structure.

That is, if (QX ® A2, m) and (@X ® A%, m) are outcomes
depending on J, G, Ap_ .y, and J,G, )\(p PIDIEREE we can con-

struct a gapped filtered Ao, morphismj : (QX & ACY, m)— (Q5( ®
A%, m) which is a homotopy equivalence. If j,i’ are possibilities
forj there is a homotopy % : i=j.

(b) If (Q/Y@Acw m), (@X@)Acw m), (@X@)Acw m) and j : (@X®
A%Y) ) (Q‘X®ACY7 )7 (QX®ACY7 N) (Q‘X@ACY7 )7

: (QX@ACW m) — (QX@ACY, m) are as in (a), there is a

homotopyﬁ i" =i oj.

(c) The gapped filtered A algebra (QX@ACW m) in (a) has a minimal
model (H ® Ay,n), with H = @ e, H? given by (138).

13. Bounding cochains and Lagrangian Floer cohomology

Finally we apply our results to define bounding cochains and La-
grangian Floer cohomology for immersed Lagrangians. We do this for
one and two Lagrangians over A% . Ao, in §13.1-§13.2, and for graded
Lagrangians in Calabi-Yau manifolds over A%, Acy in §13.3. Sections
13.4-13.5 suggest some questions and conjectures for future research,
concerning the invariance of Floer cohomology under local Hamilton-
ian equivalence of immersed Lagrangians, and on whether there exists
a theory of Legendrian Floer cohomology for embedded Legendrians in
contact manifolds which are U(1)-bundles over symplectic manifolds,
that is invariant under embedded Legendrian isotopy.

13.1. Bounding cochains, and the Floer cohomology of one La-
grangian. As in §3.6, given a gapped filtered A, algebra (AQA2  m),
we can define boundzng cochains b for (AQAY ,m), and form cohomol-
ogy groups H*(A®QAY ., m}) and H* (A®Anov,m1) over AV Apoy. We
can apply these ideas either to (QX®AY ,m) in Definition 11.1, or to
its canonical model (H ® A% ,n) in Corollary 11.4. The results will be
the same in both cases, since up to equivalence, bounding cochains and

cohomology depend only on the homotopy type of the gapped filtered
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Ay algebra. We choose to work with (H ® AY ., n), as the geomet-
ric interpretation is clearer, and the notion of equivalence of bounding
cochains is better behaved.

Definition 13.1. Let (H® A%, ,n) be a gapped filtered A, algebra
in Corollary 11.4, constructed from (M,w) and ¢ : L — M. As in
Definition 3.19, a bounding cochain b for (H ® Agov, n)isb e FM(H®
A% O for some A > 0, satisfying > ko (b, ..., b) = 0. Fix some
bounding cochain b for (H ® A% . n).

We shall define Lagrangian Floer cohomology over both Novikov rings
A% . and Ayo,. For brevity we will use A%, to mean either A% or Ay,
the same for each occurrence. Define graded A} ,-multilinear maps

nt : (H @A) S H@ AL, for k=0,1,2,..., of degree +1, by
(142) nZ(ala"w Z nk—l—no-i— —tlnk (b "7b7 1,b7 'nlr’ b,gLQ’
momk20 I T2 bak,b,.’?";,b).

Then the n satisfy the A relations (8), and n} = 0 as b is a bounding
cochain, so for pure aj,az2,a3 € H ® A}, we have

(n})* =0,
ny(n}(a1),as) + (—1)%8“ 05 (a1, nf(as)) + nf o nb(ar,a2) =0,
(143) n}(nf(a1),as, a3) + (—1)%8“nf (a1, n8(a2), a3)+

(—1)deg“1+deg“2u§(a1,a2,n§(a3)) + ng(ng(al,ag),ag)—l-
(—1)%8“nf (aq,n5 (a2, as)) + 0} o nf(a1, az,as) = 0.

The first equation of (143) implies that (H ® AZ,,,n?) is a complex.
Define the Lagrangian Floer cohomology groups H F*((L, b); Agov) and
HF* ((L, b); Anov) by

(144) HF*((L,b); ALoy) = HF L (H @ ALy, 0d).

The grading is motivated by (138) and Hy(L;Q) = H" *(L;Q) as L

is oriented of dimension n, and implies HF¥((L,b); A%, ) is a modi-

fied version of ordinary cohomology H¥(L; A%, ). Define a A% -bilinear
product e : HF¥((L,b); Al )xHE'((L,b); A, ) = HEF((L, b); ALy

by

(145) (a1 +Imnd) e (az +Imn}) = (—=1)**Vn(ar, as) + Imnd.

Here since n8(a;) = n4(az) = 0, the second equation of (143) im-

plies that n%(n$(a1,a2)) = 0, so the right hand side of (145) does lie in
HF*((L,b); A, ) Using the second equation of (143) we see that re-

nov
placing a1 — aq +n1(cl) changes ng(al, as) — ng(al, ag)—nlf (ng(cl, (12)).
So the right hand side of (145) is independent of the choice of repre-
sentative aq for a; + Im nl{, and similarly for as. Thus e is well-defined.
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Using the third equation of (143) we can show that e is associative. It
is a modified version of the cup product on H*(L; A},

HOV)

One can also construct a unit for (HF*((L,b); A}, ),®), making it
into a A}, -algebra. There is a complicated procedure for doing this
in Fukaya et al. [8, §3.3], involving first finding a homotopy unit for
(QX®AY_,,m) in Definition 11.1. We will not explain it, as the im-

mersed case introduces no new issues.

Remark 13. 2 Although HF*((L,b); A}, ) is graded by k € Z, mul-

induces an isomorphism HF*((L,b); AL, ) —

nov

tiplication by e? € A*
HF*24((L,b); Af,) for d € Z. So there are really only two groups
HFO((L,b); A

tov ), HFY((L,b); ALy, ), and it would be better to regard
HF*((L, b); Anov)

nov
as graded over Zo, rather than over Z.

We could rewrite most of the paper using Zo-graded spaces rather
than Z-graded spaces, and this would achieve some simplifications. In
63 we would work with Zs-graded vector spaces A = AY@ A! rather than
A=Dyez A4, and we would replace Apoy, A% by Acy, A%, throughout.
For computing orientations and degrees, we would regard n(,_ ,.),deg f
as lying in Zy rather than Z. Then n,_ ) € Z2 becomes independent
of choice of A¢,_ .y, and the problem in Remark 11.3 disappears. We
have not done this to keep our paper consistent with Fukaya et al. [8].

In §13.3 we will see that for graded Lagrangians (L, ¢) in Calabi-
Yau manifolds, Floer cohomology H F* (( ,0,b); EY) is truly Z-graded
rather than Z,-graded.

nov

Next we explain in which sense Floer cohomology is independent of
choices.

Definition 13.3. Let (H ® A ,,n) be as in Corollary 11.4. Write
./\/lH n for the set of bounding cochains b for (H ® A%, n). Define Gy o
to be the group of gapped filtered A, isomorphisms j: (H® A%, ,n) —
(H ® AY_,,n) which are homotopic to the identity. We call Gy;, the
gauge group. For j € Gy n and b € ./\A/(Hm, definej-be (H® Agw)@) by
ib=7> 1>0ik(b,...,b). By summing (18) with j,n in place of f,m and
a1 =---=ai =bover allk‘zO,l,.. we find that

00 -

>on(icb,...jb) = Z Jz+m+1( b, an( ,b),b,...,b) =0,

k=0 Il,m=0
as b is a bounding cochain. Thus j - b is a bounding cochain, so j - b €
M3y n, and this defines an action of Gy on My . Define the moduli
space of bounding cochains to be My = My n/Gryn.

For j, b as above, define linear 18 : H ® Af,, — H ® A, by

. 0o . 10 T m 7
(146) i(a) = 300 —gitems1(bs- - byab, . D).

Now j has an inverse j ! in G5, and calculation shows that (j71) 0} =

id, so jlf is an isomorphism. By summing (18) with j,n in place of f, m
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k=1l+m+1anda; = a for j =141 and aj = b otherwise over all
I,m >0 we find that j} on = ni?0j. Thus i’ : (H® A, n}) = (H®
A;OV, n b) is an isomorphism of complexes, and induces an isomorphism

(%)« : HE*((L,b); A;‘lov) — HF*((L,j - b); A). As j is homotopic to
the identity, this (j}). is independent of the choice of j for fixed b,j -
b. Thus, Floer cohomology HF *((L, b); A;OV) depends up to canonical
isomorphism only on Gy - b € My 4, rather than on b € My ,.

Now let (H ® A% ,,n) and (H ® AgOV, n) be two possible outcomes
in Corollary 11.4. Then the corollary gives a gapped filtered A, iso-
morphism j : (H ® A0 on) — (H ®AY 7)), unique up to homotopy.
For b € My, define j - b as above. Then the same proof shows
that j - b is a bounding cochain for (X ® AJ,,n). This defines a map
j+ 1 Man — My It is a 1-1 correspondence, with inverse G71),
and it intertwines the actions of G3n, G5 on My, My 5, and thus
induces a 1-1 correspondence j, : My n — My ;.

As j is unique up to homotopy, this j, is independent of the choice
of j, for fixed n,n. Defining jz{ as in (146), the same proofs show jl{ :
(H®ALoy,n8) = (H®ALe,, 1)) is an isomorphism of complexes, and in-
duces an isomorphism (3}). : HE*((L,b); Ao, ) — HF*((L,j-b); ALoy ),
which is independent of the choice of j for fixed n,n,b,j - b. We can
also use Theorem 11.2(b) to check that, given three choices n,n,n, the
corresponding isomorphisms (jlf)* form commutative triangles.

This implies that the moduli space of bounding cochains My, is
independent of choice of n up to canonical bijection, and that under
these bijections, Lagrangian Floer cohomology HF *((L, b); A:mv)
garded as depending on Gy, - b € My, is also independent of the
choice of n up to canonical isomorphism. So by Corollary 11.4, in this
sense, the moduli space My, , and associated Floer cohomology groups
HF*((L,b); ALy) depend only on (M,w), ¢ : L — M and its relative
spin structure, and the indices ng,_ 5. ), and are independent of all other
choices.

In Remark 11.3 we showed that if (QX®AS  ,m), (QX®AS  ,m) are
constructed in Definition 11.1 using different indices n¢,_ ), Tp_ p,)>
but otherwise exactly the same choices, then we can construct =
(QX®AY ,m) — (QX®AY_,m) which is almost a strict gapped filtered
A, isomorphism. In the same way, if (H @ A% ,n),(H ® A7) are
constructed in Corollary 11.4 using different choices of n¢,_ ), Tp_ p.)>
but otherwise exactly the same choices, then we can construct =
(H® A ,n) = (H® A% &), which is almost a strict gapped filtered
A isomorphism, but does not satisfy all of Definition 3.14(i).

Then E1 - H® A?IOV - H® A9, takes bounding cochains to bound-

ing cochains, so =y MHn — M fiq 18 a bijection which induces a
bijection (21)s« : Mpyn — My I b € MHn, so that Bq(b) € M s
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then By : (H ® Aoy, nl) — (7:[ ® Aﬁov,ﬁlal(b)) is an isomorphism of
complexes, and induces an isomorphism (21), : HF *((L, b); A ) —

nov

HF*((L,El(b));A* ) Thus, in the same sense as above, My, and

nov

HF*((L,b); A}, are also independent of the choice of indices 1, ).

We state our conclusions as:

Theorem 13.4. In Definitions 13.1 and 13.3, the moduli space of
bounding cochains M3y n depends up to canonical bijection only on (M, w),
t: L — M, and its relative spin structure, and the Floer cohomology
groups HF*((L, b);A;‘lOV) also depend as a A}, -algebra up to canonical
isomorphism only on (M,w), v : L — M and its relative spin structure,
and the canonical bijection equivalence class of the point Gy n-b € Mayp.
They are independent in this sense of all other choices, including the

almost complex structure J, G, X, m, H,n, and Ag,_ .y, M(p_ o(
for (p—,p+) € R.

0+) O(p—,p+)

13.2. The Floer cohomology of two Lagrangians. Now let (M, w)
be a compact symplectic manifold and ¢g : Lo — M, t1 : L1 = M be
compact immersed Lagrangians in (M,w) with only transverse double
self-intersections, which intersect transversely in finitely many points
to(Lo)Ne1(Ly) in M, that are not self-intersection points of Ly or L;. Let
(QXo2A%,,m?), (QX1®A% ., m!) be gapped filtered A, algebras in
Definition 11.1 for ¢ : Ly — M, t1 : L1 — M, constructed using almost
complex structures Jo, Ji, and let (Ho®@ A2, n%), (H1 @AY, nl) be the
corresponding gapped filtered A, algebras in Corollary 11.4. Let by, by
be bounding cochains for (Ho ® A%, n%), (H; @ AV, ,n!) respectively.
Then following Fukaya et al. [8, §3.7], one can define Lagrangian
Floer cohomology HF*((Lo,bo), (L1,b1); Al ) for the pair of immersed
Lagrangians Ly, L. Doing this in the immersed rather than the embed-
ded case raises no new issues that we have not already dealt with above.
In fact, as we explain below, for immersed Lagrangians one can easily
recover Floer cohomology for two Lagrangians Lg, L1 from the Floer co-
homology for one Lagrangian Lg IT Ly in §13.1. Therefore on this issue
we will simply quote the conclusions of [8] with brief explanations.
Write CF (Lo, L1; A,,) for the free A% -module with basis to(Lg) N
t1(L1), where each p € 1o(Lo) Nt1(L1) is graded in a similar way to
the ng_p,) in §4.3. Then by choosing a smooth family J; : ¢ €
[0,1] of almost complex structures on M compatible with w interpo-
lating between Jy and Jp, and considering [8, §3.7.4] moduli spaces
Miy ko (Ll, LY [0y, w1], [y, wg]) of stable maps of holomorphic discs into
M with boundary in ¢g(Lg) U ¢t1(L1), which are holomorphic w.r.t. the
family J; : t € [0,1] in a certain sense, one can give C'F(Lg, L1; A}, ) the

nov
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structure of a gapped filtered Ay, bimodule over (QX A%, ,m%), (QX 1%
A?IOV ? ml ) N

Passing to canonical models, one can also give CF(Lg, L1; A}, ) the

structure of a gapped filtered A,, bimodule over (Ho® A%, n%), (H; ®
A .,n1), [8, Th. F, §1.2]. This bimodule structure is independent of
the choice of bounding cochains. But once we choose bounding cochains
bo, b1 for (Ho @ AY.,,n%), (H1 @ A% ,,n!), we can define a differential
5% on CF(Lg, L1; Ajyy), so that (CF(Lo, L1; Afy,),60%) is a com-

plex. We then define H F™* ((Lo, bo), (L1,b1); A} ) to be the cohomology

nov

of (C’F(Lo, Li; A%, 5b°’b1), graded in the same way as (144).

nov
In this way we obtain an analogue of Theorem 13.4:

Theorem 13.5. In the situation above, HF*((Lo,bo), (L1,b1); Aoy)
depends as a A}, -module up to canonical isomorphism only on (M,w),
to : Lo — M, 11 : L1 = M and their relative spin structures, and the
canonical bijection equivalence classes of the points Gy, w0 -bo € My, o

and G'thl -b € M’Hlml.

Actually, if we take J°, J! and J? for ¢t € [0, 1] to be some fixed almost
complex structure J, the definition of Floer cohomology H F*((Lo, bo),
(L1,b1); Afmv) for two Lagrangians is implicit in our definition of Floer
cohomology HF *((L,b);Al’;OV) for one immersed Lagrangian in §13.1.
Take L = Ly Il Ly with immersion ¢ = 19 l¢1 : L — M. Then bounding
cochains by, by for Lg, L1 give a bounding cochain b for L, and there is

a canonical isomorphism
HF*((L7 b)a A;klov) = HF*((L07 bO); A;klov) D HF* ((le bl); A:;ov)69
(147)  HF*((Lo,bo), (L1,b1); Afoy) ® HF*((L1,b1), (Lo, bo); A},

nov) .

Thus, Floer cohomology for two Lagrangians Lg, L1 is just a sector
of Floer cohomology for one Lagrangian Lg II Ly, and one can deduce
Theorem 13.5 from Theorem 13.4 with little effort. This works only for
immersed Lagrangians, since even if Lo, Ly are embedded, Lo II Ly is
immersed unless to(Lo) N1 (L1) = 0.

Although it is not covered in [8], it follows from the framework
of Fukaya [7] that if Lo, L1, Lo are immersed Lagrangians in (M,w)
with only transverse double self-intersections, which intersect pairwise
transversely as above, with no triple self-intersections, and by, b1, by are
bounding cochains for Lg, L1, Ly, then we can define a A} -bilinear
product

012 : HF* ((Lo, bo),(L1,b1); Aoy ) X HF* (L1, b1),(La, b2); Afoy)

’ T nov

— HF*((Lo, o), (L2,b2); Aoy )-

nov

(148)

This is basically composition of morphisms between objects (Lg, bo),
(L1,b1) and (L2, by) of the derived Fukaya category of (M, w).
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Asin (147), HF*((L;, b;), (Lj, bj); Ay ) for i, = 0,1, 2 are all sectors

nov

of the one-Lagrangian Floer cohomology H F™* ((L, b); A ) for L = Loll

nov

L111Ly, and then o5 in (148) is just the product e on HF*((L,b); A, )
in Definition 13.1 restricted to these sectors. For four such Lagrangians
Lo, ..., Ls, associativity of e for L = LgllI---1I L3 gives the associativity

property

023 © (8012 X iy pe(ry14)) = 0013 © (idprpe(ro,1,) X®123)-

When we work over Ao, rather than AY  Lagrangian Floer co-

homology has very important invariance properties under Hamiltonian
isotopy, most of which is proved by Fukaya et al. [8, Th. G, §1.2] in the
embedded case:

Theorem 13.6. Let (M,w) be a compact symplectic manifold, and
Yy 1t €[0,1] be a smooth 1-parameter family of Hamiltonian equivalent
symplectomorphisms of (M,w), with 1y =idp;. Then:
(a) Let vo: Lo — M be a compact immersed Lagrangian in (M,w) and
t1: L1 — M be the image of 1o : Lo — M under i1, that is, L1 =
Lo and 11 = 1 0uy. Let (Ho®AY ,,n0), (H1 @AY, nb) be gapped
filtered Ao algebras in Corollary 11.4 for Ly, L1. Then using 1y :
t € [0,1] we can define a gapped filtered Ao, isomorphism ¥ :
(Ho @ A%, ) — (H1 @ A%, nt), unique up to homotopy. This
induces a unique bijection W, : My wo — My, 1.

(b) In (a), if Lo, L1 intersect transversely in M, then whenever by €
My o and by € My, 1 with Wi (Gyyy o - bo) = Gy, w1 - by, there
18 a canonical isomorphism

(149) HF*((Lo,bo); Anov) = HF*((Lo, bo), (L1,b1); Anov).-

(¢) In (a), if 12 : Lo — M s another compact immersed Lagrangian
in (M,w) which intersects Lo, Ly transversely, with (Ha ®AgQV, n?)
in Corollary 11.4, and by € My, wo,b1 € My, 1 and by € My, n2

with W, (G no-bo) = Gy, a1 -b1, there is a canonical isomorphism

(150)  HF*((Lo,bo), (L2, b2); Anov) = HEF*((L1,b1), (L2, b2); Anov)-

Here part (a) is immediate from §13.1, since 97 is an isomorphism
from M,w,ty : Lg - M to M,w,t1 : L1 — M. The nontrivial state-
ments are (b),(c). They are proved using the homotopy theory of A,
bimodules over two A, algebras (two Lagrangians), as in Fukaya et
al. [8, §5], rather than the homotopy theory of one A, algebra (one
Lagrangian), as in [8, §4] and §3 above.

Remark 13.7. (i) Equations (149) and (150) do not hold in general
for Floer cohomology over AY_ . From HF*((LO, bo), (L1,b1); A2 ) we

nov:* nov

can recover the Q-vector space with basis to(Lg) Ne1(L1). Thus, if (150)
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held over AY_ it would force |L0(L0) Nty (Lg)‘ = ‘Ll(Ll) Neo(Ls) ‘, which
is false in general.

(ii) In the embedded case, it is well known that Theorem 13.6 has im-
portant consequences in symplectic geometry. Using (b) one can deduce
the Arnold Conjecture for compact monotone symplectic manifolds.

(iii) The only place where we use compactness of M is to ensure that
moduli spaces of J-holomorphic curves My.1(a, 8, J) are compact. If
M is noncompact but J has suitable convexity properties at infinity
which ensure compactness of My1(«, 3, J), then Lagrangian Floer co-
homology is well-defined and Theorem 13.6 holds. This can be done for
cotangent bundles T*L and C", for instance.

By taking M = T*L for L a compact n-manifold, and Lg to be the
zero section of T*L, part (b) implies another conjecture of Arnold on
cotangent bundles.

Taking M = C", if g : Lg — C™ is a compact immersed La-
grangian, then by choosing %71 to be a large translation in C" we can
arrange that 1o(Lg) Nt1(L1) = 0. Thus CF(Lg, L1; Anoy) = {0}, so
HF*((Lo,bo), (L1,b1); Anov) = {0}, and (b) gives HF*((Lo, bo); Anov) =
{0} for any bounding cochain by for Ly.

13.3. Floer cohomology for graded Lagrangians in Calabi—Yau
n-folds. As in §12, suppose (M, J,w, ) is a Calabi-Yau n-fold and
(t: L - M,¢) an immersed graded Lagrangian with only transverse
double self-intersections. Choose a relative spin structure for ¢ : L — M.
Theorem 12.3 constructs gapped filtered A, algebras (QX®AZ,,m)
and (H ® A%,,n). We can then go through the whole of §13.1 and §13.2
using graded Lagrangians, and working over the Calabi—Yau Novikov
rings A%, Acy rather than A% . Aoy

Use Af, to mean A, or Acy. Write triples (L, ¢,b) as a shorthand
for an immersed graded Lagrangian (v : L — M, ¢) together with a
bounding cochain b for (H ® A%, ,n) in Theorem 12.3(c). Then we may
define Lagrangian Floer cohomology groups H F*((L, ®,b); AEY) for one
graded Lagrangian as in §13.1, and HF*((LO,QSO,Z)O), (Ll,gbl,bl);AéY)
for two graded Lagrangians as in §13.2.

Theorem 13.8. The analogues of Theorems 13.4, 13.5 and 13.6 hold
for Lagrangian Floer cohomology of immersed graded Lagrangians in
Calabi-Yau n-folds, over the Novikov rings A%, Acy.

As in Remark 13.2 HF¥((L,b); A}, ) = HFFP24((L,b); AL, ) for d

nov nov

in Z, so one should regard HF* ((L, b); A;OV) as graded over Zy rather
than Z. In contrast, HF* ((L, o, b);AéY) really is graded over Z, and
this makes Floer cohomology for graded Lagrangians a more powerful

tool, as Seidel [19] points out.
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In particular, we can give useful criteria for existence and uniqueness
of bounding cochains. Since A%, is graded of degree 0, a bounding
cochain b for (H ® A%, n) lies in b € FA(H? @ A2,) for some A > 0 and
must satisfy Y.~ (b,...,b) =0 in H' ® AL,. But (138) gives

HO:H_( )69@ 7p+€Rn(p p) 1@( 7p+)7
H' = Hyo(L;Q) @By, piier Mo py=2 QP=P+)-

Thus we deduce:

(151)

Proposition 13.9. Suppose (M, J,w,Q) is a Calabi—Yau n-fold, (v :
L — M, ) is an immersed graded Lagrangian with only transverse dou-
ble self-intersections, and (H ® A%, ,n) is as in Theorem 12.3(c). Then:

() If by—2(L) =0 and ny_p,) # 2 for all (p—,py) € R, then every
be FMHO @ AY,) for A > 0 is a bounding cochain; and

(b) if bp—1(L) =0 and ng_p.) # 1 for all (p—,py+) € R, then 0 is
the only possible bounding cochain.

Since ¢ : L — M has a relative spin structure, L is oriented, so
bn_1(L) = 0 in (b) is equivalent to b'(L) = 0, which is a sufficient
condition for an immersed Lagrangian ¢ : L — M to admit a grading
¢. As in Remark 13.7(iii), we can also apply the theory to noncompact
Calabi—Yau manifolds (M, J,w, ), provided J is convex at infinity. For
example, M = C" with the Euclidean J,w, Q) will do.

In the noncompact case we may suppose (M, w) is an exact symplectic
manifold, that is, w = d§ for some 1-form & on M. If « : L — M
is an immersed Lagrangian then /*(§) is a closed 1-form on L, and
we call L exact if 1*(£) is exact. If L is exact, then there can be no
nonconstant holomorphic discs in M whose boundaries lie in ¢(L) and
lift continuously to L, as Stokes’ Theorem shows that their area would
be zero. This implies that the component of ng in H, _»(L;Q) ® A%,
is zero. If also ng,_,,) # 2 for all (p—,py) € R then ng =0, so 0 is a
bounding cochain, giving:

Proposition 13.10. Let (M, J,w,Q) be a noncompact, exact Calabi—
Yau n-fold, with J convex at infinity, (v : L — M, $) an exact immersed
gmded Lagrangian with only transverse double self-intersections, and

_ps) # 2 forall (p—,py) € R. Then 0 is a bounding cochain for
(’H ® A%, n) in Theorem 12.3(c).

Now let (v : L — M, ¢) be a compact immersed graded Lagrangian
in C". Propositions 13.9(a) and 13.10 give two sufficient conditions for
0 to be a bounding cochain for L. Then HF*((L, (b,O);ACY) is well-
defined, and Remark 13.7(iii) shows that HF*((L,®,0); Acy) = {0}.
But HF* ((L, ?,0); ACY) is the cohomology of the complex (H®Acy, nq).



IMMERSED LAGRANGIAN FLOER THEORY 489

To have zero cohomology imposes constraints upon the ranks over Acy
of the graded pieces of a free Acy-complex. For instance, we have:

Corollary 13.11. Let (v : L — M,$) be a compact, immersed,
graded Lagrangian in C™, with transverse double self-intersections. Sup-
pose that 1,_ .y # 2 for all (p—,py) € R, and either b, (L) =0 or L
is exact. Then dimH? < dim H* ' + dim Ht! for all d € Z, with H®
given in (138).

Here is an example.

Example 13.12. Define a curve in C by C = {s +it : s,t € R,
t? = 52 — s*}. This is sketched in Figure 13.1. It is an immersed circle
in R?, the shape of an oo sign, with one self-intersection point at 0. For

n > 1, define
L, = {()\:El,...,/\l‘n) e, r,...,z, €R, :1:%4—---—1—:17%:1}.

It is easy to see that L, is the image of an immersed Lagrangian sphere
t: 8™ — C", which has one transverse self-intersection point at 0 € C"
with ¢(p—) = t(p4+) = 0, where py = (£1,0,...,0) € S™. Note that L,
is SO(n)-invariant, and we can choose ¢ to be equivariant with respect
to the actions of SO(n) on 8™ fixing p+, and on C". The tangent spaces
to ¢(S™) at the self-intersection point are

du(T, S™) = {(e_i”/4:171, - ,e_i”/4xn) ST, ..., Ty € R},

152 . .
(152) duo(T},, S"™) = {(e’”/4a:1,...,e’”/4xn) L x,...,Tn € RY.

Figure 13.1. The curve C in C

We shall calculate the index n using Proposition 12.2. Despite

P—.p+)
the comparison between (140) and (152), we are not free to put ¢/ = —%
and ¢/, = 7§, since (152) only determines the ¢’ up to addition of 7Z.
We have to choose a framing ¢ : 8" — R for ¢+ : S — C", and choose
the ¢, to satisfy ¢ + - + ¢ = d(ps).
Consider p : [~F, 5] — 8" defined by p(u) = (sinw,cosu,0,...,0).
Then p(£5) = p+, and vop(u) = (A(u),0,...,0), where A : [-5, 5] = C
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sweeps out the right hand lobe s > 0 of C in the anticlockwise direction.
Calculation shows that for u € (=3, %) we have
de(T)S™) = {(8 (w)z1, Nu)z2, AN(w)wy) t 21, ..., 25 € R}
1
to % and arg )\(un) increyz:ses contianUSly frogl —7 to .% over (—73, %?W
Therefore ¢ : 8™ — C™ has a framing ¢ : S™ — R with qS(p_) =T
and ¢(p4) = &F +, and in Proposition 12.2 we may take ¢/ =

From Figure 13.1 we see that arg %(u) increases continuously from —

s
= —7 for

ji=1,...,n, ¢L =2 and ¢} = Z for j = 2,...,n. Hence [(ﬁ;d] is
1for j=1and 0 for j =2,...,n, and (141) gives Np_py) =n+1, and
similarly 7,, ,_y = —1. Thus (138) gives HP=Qifd=—-2,—1,n—1,n,
and H?% = 0 otherwise.

When n > 2, Proposition 13.9 implies that 0 is the unique bounding
cochain for ¢ : 8 — C". When n = 2 Proposition 13.9(a) does not
apply, but this is an exact Lagrangian, so Propositions 13.9(b) and
13.10 show that 0 is the unique bounding cochain for ¢ : S — C2. Thus
as above HI™ ((S", ?,0); ACY) is well-defined, and zero. Corollary 13.11
holds.

If (M, J,w,Q) is a compact Calabi—Yau n-fold and p € M, then by
shrinking the example above by a homothety and locally identifying
C™ near 0 with M near p using Darboux’ Theorem, we can construct
Lagrangian immersions ¢ : S — M. The same arguments then prove:

Proposition 13.13. Let (M, J,w,Q) be a compact Calabi-Yau n-
fold for n > 1, and p € M. Then there exists an immersed, graded
Lagrangian (v : 8™ — M, ) with exactly one transverse double self-
intersection point at p = 1(p—) = t(p1), with ny_p.y =n+1. It has
unique bounding cochain 0, and HF™* ((S",QS, 0);ACY) ={0}.

Thus there are many immersed Lagrangians with unobstructed Floer
cohomology, but which are zero objects in the derived immersed Fukaya
category.

13.4. Local Hamiltonian equivalence of immersed Lagrangians.
For immersed Lagrangians, there are two different notions of Hamilton-
ian equivalence.

Definition 13.14. Let (M, w) be a symplectic manifold, and ¢ : L —
M, : L' - M be compact, immersed Lagrangians in M. Then

(i) We say that ¢ : L — M, ' : L' — M are globally Hamiltonian
equivalent if there exists a diffeomorphism h : L — L’ and a
smooth 1-parameter family ¢y : ¢ € [0, 1] of Hamiltonian equivalent
symplectomorphisms of (M,w) with 1y = idys, such that 1)1 o1 =
/! oh.
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(ii) We say that ¢« : L — M,/ : L' — M are locally Hamiltonian
equivalent if there exists a diffeomorphism h : L — L’ and a
smooth 1-parameter family ¢, : ¢ € [0, 1] of Lagrangian immersions
tt : L — M, such that 1o = ¢ and ¢; = ¢/ o h, and for each ¢ € [0, 1]
the 1-form db;f(% . L;f(w)) on L is ezact.

Here %, ¢y (w) and % -1} (w) are sections of the vector bundles
F(TM), i} (A2T*M), 1 (T*M) over L, respectively, di; : TL —
1y (T M) is the derivative of ¢y, and d¢f : ¢f (T*M) — T*L the dual
map. It follows from ¢; a Lagrangian immersion for ¢ € [0,1] that
dey (% - 1f(w)) is a closed 1-form.

By setting ¢ = ¥ o ¢, we see that global implies local Hamiltonian
equivalence. For embedded Lagrangians, if the ¢ : L — M are embed-
dings for all ¢ € [0,1] then we can find a family v, : t € [0,1] as in (i)
such that ¢, = ¥ o, so that local implies global Hamiltonian equiv-
alence. Thus, for embedded Lagrangians, global and local Hamiltonian
equivalence is the same. But for immersed Lagrangians, local Hamil-
tonian equivalence can slide sheets of L over each other, change the
number of self-intersection points, and so on, but global Hamiltonian
equivalence cannot. Hence, for immersed Lagrangians, local Hamilton-
1an equivalence is weaker than global Hamiltonian equivalence.

Theorem 13.6 shows that Floer cohomology over Ao, has strong
invariance properties under global Hamiltonian equivalence. So it makes
sense to ask:

Question 13.15. Does Floer cohomology HF*((Lo,bo); Anov) and
HF* ((Lo, bo), (L1,b1); AHOV) have any useful invariance properties under

(possibly restricted classes of) local Hamiltonian equivalences of ¢y :
L0—>MandL1:L1—>M?

For arbitrary local Hamiltonian equivalences, the answer to this must
be no. The Lagrangian h-principle, due to Gromov [10, p. 60-61] and
Lees [16], states that two Lagrangian immersions (g : L — M, ¢ :
L — M are homotopic through (possibly ezact) Lagrangian immersions
v : L — M for t € [0,1] if and only if ¢g,¢1 are homotopic in a weaker
sense, that is, (t0,dtg), (¢t1,de1) should be homotopic through pairs (¢, 7),
where ¢ : L — M is smooth and 7 : TL — T'M is a bundle map covering
¢ which embeds T'L as a bundle of Lagrangian subspaces in T'M.

Thus, the Lagrangian h-principle implies that two immersed La-
grangians are locally Hamiltonian equivalent (at least when either M =
C™, so that [10, p. 60-61] applies, or b'(L) = 0, so that [16, Th. 1] ap-
plies, and probably more generally) if and only if they are homotopic in
a weak sense which can be well understood using homotopy theory. But
Floer cohomology detects ‘quantum’ information not visible to classical
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algebraic topology — this is its whole point. So arbitrary local Hamil-
tonian equivalence is too coarse an equivalence relation to preserve Floer
cohomology.

However, it could still be true that Floer cohomology over A,y is in
some sense invariant under some special class of local Hamiltonian equiv-
alences more general than global Hamiltonian equivalences. For exam-
ple, in Theorem 13.6(c), 11ty : LoIILy — M and ¢; ey : L1 11 Ly — M
are immersed Lagrangians which are locally Hamiltonian equivalent
but generally not globally so — for instance, if |L0(L()) N L2(L2)| %
|L1 (L1) N LQ(LQ)‘ then Lo Il Ly and L; IT Ly have different numbers of
self-intersection points, and cannot be globally Hamiltonian equivalent.
But (147) and Theorem 13.6(c) imply that there is a canonical isomor-
phism

HF*((LO 11 LQ, b(] 11 bg);AnOV) = HF*((Ll 11 LQ, b1 II bg); Anov)-

Another possibility: in the Calabi-Yau, graded Lagrangian case,
Proposition 13.9 suggests that only self-intersections with ng,_ .y =1or
2 are relevant to existence of bounding cochains. So we could consider
only local Hamiltonian equivalences through immersions ¢; : L — M
which have no self-intersections with ng,_,.) = 1 or 2, and perhaps
these will preserve Floer cohomology over Acy.

We shall now describe a mechanism for how the moduli spaces of
bounding cochains M4y, can change under local Hamiltonian equiva-
lence.

Example 13.16. Let (M,w) be a compact symplectic 2n-manifold,
L a compact n-manifold, and ¢, : L — M for ¢t € [0,1] a smooth
family of Lagrangian immersions, which have only transverse double
self-intersections for all ¢ € [0,1]. This implies that the number of
self-intersections of ¢ : L — M is independent of t. Therefore we
can choose a smooth family of diffeomorphisms é; : M — M with
0o = idpy, such that ¢ = §; 0 1g. So (5{1 identifies (M,w), ¢y : L — M
with (M, d; (w)),to : L — M. That is, we can work with a fixed immer-
sion g : L — M, but a l-parameter family of symplectic forms 6; (w)
on M for t € [0, 1].

Let t > 0 be small. Then w and & (w) are C¥ close as 2-forms on
M. Dimension calculations show that we can choose an almost complex
structure Jy on M compatible with both w and ¢; (w). Write J; =
(0£)«(Jo), so that J; is compatible with w as Jy is compatible with 6] (w).
Then §; identifies M,v9 : L — M, Jo with M, : L — M, J;. Thus,
0 takes Jp-holomorphic curves in M with boundary in ¢o(L) to Ji-
holomorphic curves in M with boundary in ¢;(L). However, §; need not
preserve the areas of the curves computed using w.

Let (QXo®AY ,m?), (Ho® A, n%) be the gapped filtered A, alge-

bras in Theorem 11.2 and Corollary 11.4, associated to (M,w) and ¢ :
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L — M with almost complex structure Jy. Let (QX;®A%  m!), (H; ®
A?IOV, ) be the corresponding gapped filtered A, algebras associated

o (M,w) and ¢; : L — M with almost complex structure .J;, where
the choices made to construct X', m',H;,n! are the images under &
of the choices made to construct X°,m° Hy,n. That is, we have

Xt ={0tof:fe Xy}, and then d; induces isomorphisms

.A_/lk+1(04757 J07f17’ .. 7fk)
= -A_/lk—l—l(a7 (61‘,)*(5)7Jt76t o f17 o 75t o fk)u

and we choose all orientations and perturbation data compatible with
these.

The difference between (QXo® A%, m%), (Ho®A%,,,n%) and (QX; &
A0 omb), (Hy ® AY.,,nt) is that §; changes the areas of Jy- and .J;-
holomorphic curves, and this changes the coefficients A in the mul-
tilinear maps mg’“ nﬁ” which make up m® n% m!,n. The changes
in areas of curves can be expressed like this: there exist constants
Cp_py) € R for all (p_,py) € R, with ¢(,_ .y + cp,.p_) = 0, such

that if Mk+1( B, Jo, f1,- - ,fk) # () then
(154) (66)+(B) - [wWlnue(r) = B - Wlnio(@) + Dier Cali)s

where [w]ar,0(1) and [w]ar,, () are the classes of w in H2(M,u(L);R)
and H?(M,1;(L);R).

By (138) we have Ho = Hy = Huo(L;Q) @ D, ,,)er Qo p+).-
Using similar ideas to Remark 11.3, define a Apg,-linear map ét :
Ho @ Aoy — Hi @ Apoy to be the identity on H,(L; Q) and to satisfy
ét(p_,p_i_) =T “?—r4)(p_,py), where T is the formal variable in Aoy,
from §3.4. Then using (153)—(154) we see that m}, (ét(hl), . ,ét(hk)) =
=, omg(hl, .oy hg) for all hy, ... hg € Ho ® Apoy-

Thus, as in Remark 11.3, it is nearly true that setting =y = 2, and
_.k = 0 for k ;é 1 defines a strict gapped filtered A, isomorphism

E: (Ho®AY,,n°) = (Hi®AD,,,n'). The problem is that if ¢, .y >0
for some (p_,p4+) € R then (p ,p+) € Ho® A, but Zi(p_,py) =
T~ v—r0) (p_py) & Hi @AV, so =4 does not map Ho @ A — H; ®
A?IOV C Ht @ Anov

However, if b € Ho ® A, is a bounding cochain for (Hg ® A%, nY),
and Z;(b) lies in FA(H; ® Apoy) for some A > 0, then Z;(b) is a bounding
cochain for (’Ht ® A% ,nt). Also Z; is an isomorphism of complexes
(Ho ® Anov, nl ) (Ht @ Anov, 1y b) and so induces an isomorphism of
Floer cohomology over Ao, (though not over A ):

(24)s : HF*(1g: L = M, b; Apoy) — HF* (1 : L — M, Z,(b); Apoy)-

(153)

We have discovered a kind of wall-crossing phenomenon. When t €
[0,€) for some € > 0 we can map bounding cochains b for o : L — M



494 M. AKAHO & D. JOYCE

to bounding cochains ét(b) for 1y : L — M, and this map induces
canonical isomorphisms on Lagrangian Floer cohomology. We have
ét(b) e A (Ht ® Anov), where we take A(t) as large as possible. For
ét(b) to be a bounding cochain we need A(¢) > 0. However, it may hap-
pen that at t = € we have A(e) = 0, and for ¢ > € we have A\(¢) > 0. Then
at t = € we cross a ‘wall’ where the bounding cochain for ¢y : L — M no
longer corresponds to any bounding cochain for ¢; : L — M when t > e.

This example suggests the following conjectural picture:

Conjecture 13.17. Suppose that (M,w) is a compact symplectic
manifold, and that vy : L — M for t € [0,1] is a smooth 1-parameter
family of compact Lagrangian immersions satisfying the exactness condi-
tion of Definition 13.14(ii). Let S C [0,1] be the open subset of t € [0,1]
for which 1, : L — M has only transverse double self-intersections.
Suppose for simplicity that L is oriented and spin; this induces relative
spin structures for v : L — M for all t € [0,1], as in §5.1. Then for
all t € S, we have the moduli space of bounding cochains My, w¢ for
1y L — M, which is independent of choices up to canonical bijection by
Theorem 13.4.

We conjecture that for all s,t € S there should exist open subsets
Ost € M3y, ns and homeomorphisms @4 : Ogy — Oy s with Oy 3 = @;g,
and whenever Gy, ns -bs € Ogt, Gyt - by € Op s with @ (G, s - bs) =
Gy, nt - by, there should ewist canonical isomorphisms

HF*(1s: L — M,bg; Apoy) = HF* (14 : L — M, by; Ayoy ),
HF*((1s : L — M, bs), (L', ); Anov)
> HF*((u: L — M,by), (L',b); Anov) s

for any compact immersed Lagrangian ' : L' — M with transverse dou-
ble self-intersections intersecting vs(L), 1;(L) transversely, and bounding
cochain b'.

Furthermore, for any Gy, s - bs € My, ns the set Ty = {t € S :
Guons - bs € Oy} is an open subset of S containing s, and at the
boundary of Ts in S, a wall-crossing phenomenon like that in Example
13.16 occurs.

13.5. Immersed Lagrangians and embedded Legendrians. We
now develop the ideas of §13.4 further in the context of contact geometry
and Legendrian submanifolds. Let (M,w) be a compact symplectic 2n-
manifold, and suppose [w] € H?(M;R) lies in the image of H*(M;Z) —
H?(M;R). Then there exists a principal U(1)-bundle P — M with first
Chern class ¢;(P) = 27|w], and a connection A on P with curvature
27w. Write the U(1) action on P as (e\/?w,p) — eV . p and let
v € C®(TP) be the vector field of the U(1)-action, so that eV~1? acts
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as exp(6v) : P — P. Write m : P — M for the natural projection whose
fibres are U(1)-orbits U(1) - p for p € P. Let v be the 1-form of the
connection on P, so that v € C°(T*P) is U(1)-invariant with v-vy =1
and dy = 7*(27w).

Then P has the structure of a contact (2n+1)-manifold, with contact
1-form « and Reeb vector field v. An immersed n-manifold 7 : L — P is
called a Legendrian submanifold if t*(vy) = 0. If 7 : L — P is Legendrian
then moi: L — P is a Lagrangian immersion. Conversely, if ¢ : L — M
is a Lagrangian immersion, then (*(P) — L is a U(1)-bundle with a flat
U(1)-connection, and there exists a Legendrian immersion 7 : L — P
with ¢ = 7o 7 if and only if this flat U(1)-connection has a constant
section, that is, if it is trivial. Since flat U(1)-connections are classified
by morphisms H*(L;Z) — U(1), a sufficient condition for an immersed
Lagrangian ¢ : L — M to lift to an immersed Legendrian 7 : L — P is
that H'(L;Z) = {0}.

If 7 : L — P is an embedding we identify L with 7(L) C P and
regard L as a subset of P, with v|;, = 0. Generic Legendrians in P are
embedded. If L C P is an embedded Legendrian then 7 = 7|, : L — M
is an immersed Lagrangian, which in general is not embedded.

We call two Legendrian immersions i : L — P, 7' : L' — P immersed
Legendrian isotopic if there exists a diffeomorphism h : L — L’ and
a smooth l-parameter family 7; : ¢ € [0,1] of Legendrian immersions
iy : L — P, such that ;g = 7 and i1 = i/ o h. If 7,7 are embeddings, we
cal i: L — P, 7 : L' = P embedded Legendrian isotopic if there exist
it : t € [0,1] as above with each 7; : L — P an embedding. Clearly,
embedded Legendrian isotopic implies immersed Legendrian isotopic.

Ifi:L— P, :L — P are Legendrian immersions and h : L — L/,
it : t € [0,1] is an immersed Legendrian isotopy between them, then
moi: L — M, 7ol : L'’ — M are Lagrangian immersions, and
h:L— L' mol:te0,1] is a local Hamiltonian equivalence between
them, in the sense of Definition 13.14(ii). Conversely, if ¢ : L — M,
(/' : L' — M are locally Hamiltonian equivalent Lagrangian immersions,
then there exists a Legendrian lift 7 : L — P with « = w o7 if and only
if there exists a Legendrian lift 7/ : L' — P with // = 7o/, and then
hytt ¢t € [0,1] in Definition 13.14(ii) lift to an immersed Legendrian
isotopy h,i; : t € [0,1] between ¢ : L — P and i/ : L’ — P. So
local Hamiltonian equivalence in M corresponds exactly to immersed
Legendrian isotopy in P.

Now embedded Legendrian isotopies are a special class of immersed
Legendrian isotopies, and so project to a special class of local Hamil-
tonian equivalences. Question 13.15 asked whether Floer cohomology
is invariant under any special classes of local Hamiltonian equivalences.
So it makes sense to ask:
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Question 13.18. In the situation above, let Ly, L1 C P be compact
embedded Legendrians. Suppose that the Lagrangian immersions 7 :
Ly — M, m: Ly — M have only transverse double self-intersections.
Is Floer cohomology HF*((ﬂ' : Lo — M, bo);Anov),HF*((ﬂ' : Ly —
M,by),(m : L1 — M, bl);Anov) preserved under embedded Legendrian
isotopies of Lg, L1?

The authors expect the problem to be better behaved if we work over
a smaller Novikov ring AZ . Suppose L C P is a compact embedded
Legendrian, and 7 : L — M has only transverse double points. Define
R as in §4.1. If (p_,p4+) € R then p_,py € L with p_ # p; and
m(p—) = w(py) in M. Thus p_,p; are distinct points in the same
U(1)-orbit, and py = eV=10 . p_ for some unique 6 € (0,27). Define
AUp_ps) = 35+ Then ag_p,) € (0,1), and ag_p,) + 0, ) = 1

The areas of J-holomorphic curves in M with boundaries in m(L)
have an integrality property involving the a¢, ) for (p—,py) € R. We
can express it like this: if My 1(a, 8,J) # 0 and [w]prx(r) is the class
of win H?(M,n(L);R) then

(155) B [W]M,n(L) - Zz’e] Aa(i) € L.

To prove (155), suppose [%, Z,u, [, 4] € Myy1(a, 3,J), and for simplicity

take ¥ = D? nonsingular. Then @ : S'\ {¢; : i € I} — L is smooth,

with (limgro @(e¥=19¢;), limgyo a(e¥V=19¢;)) = a(i) in R, for all i € I.
Modify this @ to a piecewise smooth map @ : S' — P by inserting

at each (; for ¢ € I, the line segment [0,27a(,_,.)] — P mapping

01— eV=19.p_ where a(i) = (p—,p4+). Then Js1 @ (7) = 27 X it Gaga)
since v|r, =0 and v - v = 1. Now consider the U(1)-bundle u*(P) — X.
It has a connection u*(y) with curvature 27u*(w), and we have in effect
constructed a section @ of u*(P)|gs with [o @*(y) = 27 >, Ga@). But
[ 2mu*(w) = [o5@* () + 2mer (u*(P); @), where ¢ (u*(P);a) € Z =
H?(X,0%;7) is the first Chern class of the U(1)-bundle u*(P) — X
relative to the trivialization of u*(P)|ss induced by @. Putting all this
together gives (155).
By analogy with (13)—(16), define Novikov rings

Aoy = {>2paTet a; € Q, N\ € Z, pi; € Z, lim;_00 A; = 007},
AN, = {32 aT et s a; € Q N €N, iy € Z, limy_yo0 \i = 00},
ASy = {>20aT 1a; €Q, \; € Z, lim;_,o0 A; = 00},
AIETY = {22’20 a; T :a; € Q, A\ €N, limj_yoo \j = oo},

where N = {0,1,2,...}NC Z. Then in the situation of §11, having

constructed X define QX to be the Q-vector space with basis f for
f € X with f: A, = L, and T?—»+) f for f € X with f : A, —
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{( —,p+)} C R. Similarly, modifying (138), define a Q-vector space
@deZH by

7:[d = Hn d— 1 @ @ _,p4+)ER: Q : Ta(p77p+)(p—7p+)‘
d="(p_ P+)_1
We can then go through §7-§13 using AZ Aﬁov, AZ, AN, in place of
Avov, Anov, Acy, A2, and QX@AHOV, HoOAN  HRAE, QX@ACW H
ANy, H ® AZ, in place of QXRAS  H A%, H D Apoy, QXOAY,, H ®
A H ® Agy, respectively. The integrality condition (155) and the def-
initions of QX H ensure we can choose my to map (QX ®AHOV) <k
QX®AYN | and similarly for nj,. That is, only powers T! or T rp)

for | € N and (p—,py+) € R occur in QX@AHOV, and in the terms
T ’\e“mg’“ in my, the only allowed values for A € R are those which

take poss1ble total powers of T' in (QX ®A
T in QX QAN .

Thus, in §11 we construct gapped filtered Ao algebras (QX®AN,  m)
and (H ® AN over AN and in the graded case of §12 we construct

nov? ) nov?

(QX@ACW m) and (H®AY,,n) over AN,. Then as in §13.1-§13.3, we de-
fine Lagrangian Floer cohomology HF* ((L,b); AN.,), HF*((L,b); AZ

nov nov)
over Al or AZ  and similarly for two Lagrangians, and for graded
Lagrangians over AL, AZ,. Several of the definitions of gapped filtered
A algebras, morphisms, etc. requlre minor modification to allow for
inclusion of factors T"®-7r+) in QX H.

We can now make our most important point. Consider the wall-
crossing phenomenon described in Example 13.16. This occurs when,
for a family of immersed Lagrangians ¢, : L — M for ¢ € [0, 1], we have
a family of bounding cochains b; € FA®) (Ht ® Apov), where A(t) > 0 is
necessary for by to be a bounding cochain. If A\(¢) = 0 then at t = € we
cross a ‘wall’ where b; ceases to be a bounding cochain.

Now if t; = 7w o Iy for a smooth family of Legendrian embeddings
&y : L — M, then the only allowed powers of T in bounding cochains
b(t) are T' for I = 1,2,... and THer-r0® for | = 0,1,..., where
ap_poy(t) € (0,1). Thus, the leading power of 7" in b; could only
deform continuously to zero at t = € if ag,_, \(t) = 0 ast — . But
a@p_ p.)(€) = 0 implies that Zc(p-) = ic(p+), that is, i : L — P is an
immersion, but not an embedding.

This shows that the wall-crossing phenomenon in Example 13.16 can-
not happen for bounding cochains for (’H ® AN n) under embedded
Legendrian isotopy. 1If, as Conjecture 13.17 claims, this is the only
mechanism by which Floer cohomology changes under local Hamilton-
ian equivalence, then Floer cohomology over AZ  should be unchanged
under embedded Lagrangian isotopy. So we conjecture:

nov) ** to possible powers of
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Conjecture 13.19. In the situation above, suppose that iy : L — P
for t € [0,1] is a smooth 1-parameter family of Legendrian embeddings
with L compact, oriented, and spin, and that moty : L — M and
moly : L — M have only transverse double self-intersections. Then
there should exist a canonical bijection W : My o — My 1 between
the moduli spaces of bounding cochains for moig: L — M and mwoly :
L — M. Let by € MHo,nO and b1 € M?—h,nl with \Il(GHo,nO . bo) =
Gyt - b1, and suppose Lo is a compact embedded Legendrian in P,
such that w: Lo — M has only transverse double self-intersections, and
bs is a bounding cochain for w : Lo — M. Then there are canonical
isomorphisms

HF*((moiy: L — M,bo); AZ ) = HF*((moiy : L — M,by); AZ

nov nov ) ’

HF*((ﬂ'OZO2L—>M,b0),(7TZL2—>M,b2);AZ )’E

nov

HF*((moiy: L — M,by),(m: Ly — M,bo); AL,)).

nov

This conjecture suggests there should exist a theory of Legendrian
Floer cohomology for embedded Legendrians in contact manifolds P
which are U(1)-bundles over symplectic manifolds (M,w). This should
clearly be related to the theory of Legendrian contact homology, which
was described informally by Eliashberg, Givental and Hofer [4, §2.8],
and by Chekanov [3] for Legendrian knots in R?, and has been devel-
oped rigorously by Ekholm, Etnyre and Sullivan [5, 6], for embedded
Legendrians L in R?"*! and in M x R for (M,w) an exact symplectic
manifold.

In particular, for (M,w) exact one can compare our HF,(L,b; A%, )
for embedded Legendrians in M x 8!, and Ekholm et al.’s HC\(L, J)
for embedded Legendrians L in M x R, [6]. It seems that HC\(L,J)
should be a sector of HF,(L,b;A%. ), but not the whole thing, since
HC\(L;J) is the homology of a complex involving H;(L;Z) and the set
of double points of 7(L) in M, but HF,(L,b; A%, ) is the cohomology
of a complex involving all of H,(L;Q) and R, which has two points
(p—,p+), (p+,p—) for each double point p of w(L) in M. We hope our

conjecture will lead to progress in Legendrian contact homology.
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