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Abstract—Modern consumer wireless devices are increasingly
powerful, making them attractive to use as wireless sensor
nodes. At the same time, many use protocol suites such as
Bluetooth which require devices to reveal data that may make for
unique device identifiers. This paper explores this quantitatively
through scans covering several thousand devices in different
urban locations. In measuring the anonymity afforded by the
elements of a Bluetooth device profile, we find that (i) attributes
such as the device class are poor for linking sightings of the same
device; (ii) the device name can provide a surprising amount of
anonymity but when it does not it can be a very effective key to
link devices with individuals; and (iii) frequently users exhibit
privacy-adverse behavior, such as placing telephone numbers in
device names or using nicknames that are statistically rare.

I. INTRODUCTION

Many wireless devices broadcast information about them-
selves and their owners. As these devices become pervasive it
becomes increasingly effective to make use of this informa-
tion for surveys, pricing, scheduling, security, or marketing.
Many devices such as mobile phones, computers, headsets
and headphones, cars, cameras, printers, keyboards, and mice
use the Bluetooth set of protocols for short-range wireless
communication. These protocols are used for transfer of files
and address books, transmission of audio, and so on. A
Bluetooth device will reveal information about itself as part of
its normal operation, including its link-layer identity, the type
of device it is, the services it offers, and a name that may be
visible to and adjustable by the user.

Previous work has examined how the data transmitted by
devices may be used to construct location services [1], inform
opportunistic routing [2], infer social networks over large
areas [3], and engineer transient networks [4]. Some projects
have attempted large scale surveys of Bluetooth devices [5]
with interesting implications for the use of Bluetooth as a
wide area tracking tool.

Our focus here is different and is motivated by our work
on transport monitoring. We use what we call sensor nodes
to generate data describing physical phenomena and gateway
nodes to relay these data to the middleware and ultimately
to applications [6, §1]. Suppose that the sensor nodes use
Bluetooth to communicate with the gateway nodes. The sensor
nodes are not anonymous as far as the gateway nodes are

concerned—the data sent between the two includes unique
identifiers such as the link-layer address that can be used
to link sightings of the same sensor node device. However,
because all communication between the middleware and the
sensor nodes is via the gateway nodes, applications can only
know about the sensor nodes what the gateway nodes forward.
The gateway nodes’ choice in this determines the large-scale
privacy properties of the system. Here we explore this by
scanning Bluetooth devices to determine what can be inferred
about the sensor nodes based on information that these nodes
provide and gateway nodes could make available.

This paper is organised as follows. Section II defines what
we mean by anonymity and discusses how it can be measured.
Section III describes Bluetooth scanning and the data that
devices make available. Section IV defines a notation for
talking about the anonymity properties of device attributes
while section V presents our scanning methodology and basic
properties of our two data sets. Section VI describes results
that have to do with anonymity and discusses what can be
learned from them and section VII concludes and proposes
future work.

II. MEASURING ANONYMITY

Suppose that each of a set of actions A is performed by
some individual in the set I . The goal of an observer is to
find for each action in A the corresponding individual in I .
The degree to which privacy is preserved—what we will call
the degree of anonymity—relates to the difficulty of this task.

A great deal of work has been done developing quantitative
measures of this difficulty, particularly by the designers of
systems providing anonymous communication. (In that case,
the activities are the sending or receiving of messages and
the individuals are senders or receivers.) The most simple
expression of anonymity is the anonymity set, “the set of all
possible subjects who might cause an action” [7]. For a given
action in A, the anonymity set is the set of individuals in I
that may have performed that action and the corresponding
measure is the size of this set. Different actions may have
different corresponding anonymity sets.

While the anonymity set captures the uncertainty inherent in
observing actions in A, it says nothing about other knowledge



available to the observer. In particular, the observer may be
able to assign different probabilities of having performed a par-
ticular action to different individuals. This idea is formalised
in information-theoretic measures of anonymity, such as those
of Dı́az et al. [8] and Serjantov and Danezis [9]. In general
we make no assumptions about the information available to
the recipient of the data sent by the gateway nodes. For this
reason we use the size of the anonymity set as our metric.

III. BLUETOOTH SCANNING

A device equipped with a Bluetooth radio may initiate a
scan for other nearby Bluetooth devices. Each device can
configure itself to be either visible or invisible (what Blue-
tooth calls being “discoverable” and “undiscoverable”) to such
scans. (While there are techniques to scan for undiscoverable
devices, for example that of Cross et al. [10], here we consider
only devices that are discoverable.) The device doing the
scanning will collect information from discoverable devices
in its vicinity; the amount of information reported by a device
in response is not normally adjustable by the user. Each time
a device is seen by a scan it is called a sighting.

The device characteristics that can be identified include:
1) The name of the device. Sometimes this can be set by

the user.
2) The medium access control (MAC) address of the

device. This uniquely identifies the Bluetooth hardware
and is almost always permanently assigned by the man-
ufacturer and cannot be changed by the user. Since the
MAC address identifies the Bluetooth hardware only, it
may correspond to a Bluetooth interface “dongle” and
not to the actual computing device that is hosting it. As
address ranges are assigned to specific manufacturers, it
is possible to identify a possible set of device models
from a hardware address.

3) The device major class identifies the type of device.
The valid devices classes are miscellaneous, computer,
phone, network, audio/video, input device, imaging sys-
tem, wearable (watch), toy (action figure) and unknown.

4) The device minor class further breaks down the class
of device. These are defined in the context of a major
device class and they are numerous, so we do not repro-
duce the values here. The minor class may indicate the
specific type of device (a mobile telephone as opposed
to a cordless telephone, say) or its current utilisation.

5) Each device offers a number of services to the outside
world, such as presenting its serial ports, offering to
route network packets, and so on. Each service is
essentially a handle for a specific API.

We call each of these types of information about a device
an attribute and summarise them in Table I. Note that the
attribute class has a value that is a concatenation of 8 bits
representing the device’s major class and 8 bits representing
the device’s minor class.

Normally, an individual’s degree of openness can be inferred
from the level of security imposed on his or her device. How-
ever, the Bluetooth protocol separates privacy configuration

TABLE I
THE DEVICE ATTRIBUTES THAT WE EXAMINE.

Number Name Description
1 class The class of the device
2 address Device MAC address
3 name Device name
4 services The list of services offered by the device

of device visibility (discoverable versus undiscoverable) from
the authorisation and access control needed to use the services
offered by the device (whether the device requires a security
PIN). This muddies the idea of informed consent to having
one’s information processed by others. It is not unreasonable
to suppose that a user is not consenting to reveal informa-
tion from an undiscoverable device, given the resources that
must be expended to find the device. But if the device is
discoverable, whether or not it requires a PIN to use its
services, it will make the attributes described above available
as part of its normal operation. Recipients do not need to
use any clandestine behaviour or exploit device shortcomings.
Also, the availability does not imply misconfiguration of the
device akin to an open wireless access point. But because the
information is part of the initial device identification process
and is available before any authentication or access control
takes place, what can we conclude about consent if the user has
assigned a PIN? There is no other means to link devices and
it is common for users to leave their devices discoverable for
practical reasons, so exposure of information is highly likely
in spite of the requirement of a PIN. Perhaps this is a lesson in
that the design of future devices should require no permanent
identifiers and use discovery and device linkage methods that
are privacy aware.

IV. NOTATION: COMBINATIONS OF ATTRIBUTES

What follows defines a notation that we will use for subse-
quent discussion and to label graphs.

Let D be the set of all devices. Suppose that d ∈ D is a
particular device and that its first sighting is at time τ(d). We
define Dt to be the set of devices whose first sighting is at or
before t, i.e., Dt = {d|τ(d) ≤ t}. This means that |Dt| is the
number of unique devices seen up to and including time t.

Let A be the set of all device attributes and let x be a
particular selection of attributes. Clearly x ⊆ 2A. We write
x as a number using the bits from column 1 of Table I that
correspond to the attributes of interest; {class,name} is
thus combination 10102 or 10. Let x(d) be the values of
attributes x possessed by device d.

Suppose that we select a set of attributes x and assign the
identifier x(d) to each device d. We refer to this as considering
the attributes in x. Define fD(x, v) to be the size of the
anonymity set when attributes x are considered and they have
values v, given that devices in D have been seen. It is easy
to be convinced that

1 ≤ fD(x, v) ≤ |D|

for all D, x, and v. At one extreme are quantities like
fD({address, v}), which we expect to be 1 for all D and v



because each device’s MAC address is unique. On the other
hand, if every device in D has the same value for all the
attributes in x then fD(x, v) = |D| because each device will
contribute 1 element to the anonymity set. For convenience, let
fD(x) = maxv fD(x, v). fD(x) is the maximum anonymity
set size that a device could expect given that attributes x are
considered, assuming that it had the most commonplace values
for those attributes (a particular device might not, of course—
its values might make it unique).

For any set of attributes x and their values v, we expect that

fDt1
(x, v) ≤ fDt2

(x, v)

for any t1 ≤ t2. In other words, as you accumulate sightings of
more devices, the size of the anonymity sets of the attributes
contained in those sightings can only go up. For example,
when you have seen just one device, it is unique. When you
see a second, if it is different from the first then it too is unique
and the anonymity set has not increased in size. If however it
is the same, then the anonymity set size is now 2.

V. SCANNING METHODOLOGY AND DATA SET PROPERTIES

We made use of the btsscan utility created by Tim Hur-
man [11] at Pentest Ltd. to make a continuous scan for
Bluetooth devices. In our case, the data about a particular
device are fixed at those found in the device’s first sighting.

We have used two sets of scanning results, collected by
us in two different cities. The first was collected over about
three months within the computer science department of the
University of Waterloo by placing a Bluetooth dongle on
the back of an office door. The door faced one of the main
thoroughfares between two large buildings on the university
campus; large windows on the opposite side of the office had
a view over a large car park. No effective range measurements
were taken. The experiment spans just over 88 days from early
January 2007 and consists of 429,925 sightings of 486 devices.
Some initial conclusions were presented in poster format [12],
including an anecdotal case where the weekly schedule of a
phone owner was inferred from device observations.

The second dataset was collected from an apartment close
to the ground, overlooking a large car park and a major
thoroughfare in a large city in Canada. The survey was run
for a period of just under 4 months; the dongle was placed on
an exterior window and scanning for new devices was con-
tinuous. No effective range measurements were taken during
the experimental period, but anecdotal evidence suggests the
range was over 40 meters. The data cover just over 101 days
from late November 2008 and consists of 136,819 sightings
of 2,051 devices.

A. Rate of device discovery

Fig. 1 shows plots of |Dt| versus t for data sets 1 and 2.
(Remember that this is a count of new devices seen, not device
sightings; it is possible that many devices are scanned but
that none of them are new.) We can see that new devices
continue to be found throughout the scans. The University of
Waterloo held its winter “reading week” from February 17th
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Fig. 1. |Dt| versus t

to February 23rd; we suspect that this led to a change in the
set of people walking past the scanner and a corresponding
rarity of observation of new devices. For the second data set,
a dramatic rise in the number of new devices seen occurred
on November 11th, Remembrance Day. We are unsure of the
reason for this as there is no parade or memorial service close
to the survey site.

B. Device popularity

Table II shows, for each data set, the top five device classes.
For each of these the table shows the name of the class as
assigned by the scanning software, the major and minor classes
(note that different major classes may have the same name),
the number of devices seen that belong to this class, and the
percentage of devices that this makes up.

VI. RESULTS AND DISCUSSION

A. Potential anonymity

We now answer the question of how anonymous it is
possible to be, given that a given combination of attributes
about a device is considered. Fig. 2 shows the maximum
anonymity set size for the indicated attribute combinations
versus the number of devices seen. The attribute combinations
that include the device address (namely 4, 5, 6, 7, 12, 13, 14,
and 15) have, as expected, an anonymity set of size 1 no matter
how many devices are seen and so are not shown.

The anonymity available is non-trivial. Even considering the
device name, potentially anonymity set sizes of several dozen
are possible. Interestingly, there are times when the anonymity
available does not increase even though new devices are
found; these correspond to the horizontal parts of the plots.
At such times, the new devices that appear do not fit into
one of the existing anonymity sets—they are unique. One can
think of them as adding new “islands” of crowds of devices.
Subsequent devices may form a part of these crowds, initially
small as they may be.



TABLE II
THE FIVE MOST SEEN CLASSES OF DEVICES

Name Major class Minor class Number % devices
Phone/Mobile 2 4 317 65.23
Phone/Smart phone 2 12 98 20.16
Computer/Laptop 33 12 16 3.29
Computer/Laptop 1 12 15 3.09
Computer/Palm sized PC-PDA 1 20 8 1.65

(a) Data set 1

Name Major class Minor class Number % devices
Phone/Mobile 2 4 953 46.47
Audio-Video/Hands free 4 8 390 19.02
Phone/Smart phone 2 12 371 18.09
Phone/Mobile 34 4 122 5.95
Uncategorised 0 1 56 2.73

(b) Data set 2
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B. The anonymity one can expect

Fig. 2 tells us that the anonymity afforded a given device
depends on the attributes of that device. For example, suppose
that a manufacturer sets each of its new devices’ names to
“New.” One of these devices having the name “New” will be
indistinguishable from the others that have not had their names
changed. On the other hand, a device having a very unusual
name stands a greater chance of being easily distinguished.

Fig. 3 shows a histogram of f(x, v) for x = {service}
as v varies over all values in each data set. (Obviously similar
histograms could be plotted for other attribute combinations.)
The degree of anonymity that a device can expect is quite
varied. Within data set 1, while there is an anonymity set of
size 229 and any device in this set will be indistinguishable
from any other, there are 6 that are each of size 1. These 6

devices are afforded no anonymity at all: the list of services
that each offer is a unique identifier.

This leads to the question, what combinations of attributes
identify devices? For example, as we have discussed, a de-
vice’s MAC address is unique, so we would expect any
combination containing the address to have n anonymity sets
of size 1 where n is the number of devices. Table III shows,
for each attribute combination, the number of sets of size 1
and this as a percentage of all devices, indicating the fraction
of devices that are identifiable. Combination 4 is the device
address and can be used to identify 100% of the devices; other
combinations that include the address have the same property
and are not shown.

The device name can be used to identify about 41% and
22% of the devices in the two data sets, respectively. We
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TABLE III
NUMBER OF ANONYMITY SETS OF SIZE 1 FOR EACH ATTRIBUTE COMBINATION

Number of sets of size 1 % devices that are unique
Combination Data set 1 Data set 2 Data set 1 Data set 2

1 6 9 1.23 0.44
2 201 454 41.36 22.14
3 218 483 44.86 23.55
4 486 2051 100.00 100.00
8 5 6 1.03 0.29
9 10 22 2.06 1.07
10 207 471 42.59 22.96
11 220 491 45.27 23.94

suspect that these numbers are as small as they are because
a minority of users personalise their devices’ names. Further-
more, referring to table II we see that devices in the “audio-
video/hands free” class are far more prevalent in data set 2
than they are in set 1. It is not unreasonable to suppose
that changing the name of such a device may be trickier
than changing that of a phone—in fact, a user interface for
doing this might not be provided—and there are 256 “audio-
video/hands free” devices in data set 2 having an empty name.
Furthermore, the user population for data set 1 is biased
towards undergraduate students who may have the urge to link
gadgets with themselves which leads to more unique device
names.

The attributes that reveal little are the list of services
offered and the device class; even considered together, as in
combination 9, few devices can be uniquely identified.

Based on these results, a gateway node transmitting a
device’s class and/or the list of services that it offers com-
promises anonymity little. The device’s name is less good and
our data bear out the intuitive notion that the device’s address
contains no privacy whatsoever.

C. Linking with individuals

So far we have made no assumptions about additional
information that recipients of the data from gateway nodes
might have. Now we shift focus somewhat and examine the
efficacy of combining these data with others to link sensor
nodes with individuals.

Our population of individuals is the online directory of
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members of the University of Waterloo.1 Device users who
are a part of the university will have their personal details in
the online directory. We searched the directory using keyword
queries formed from string tokens in devices’ name attributes,
excising device names that were blank, obviously product
models, or brand names; the total number of queries was
therefore less than 486. The results returned were manually

1This means that data set 1 was used but the techniques described here are
general; data set 2 could be linked with the telephone directory, for example.



reviewed for prima facie appropriateness. A histogram show-
ing how many devices could be linked to a given number of
individuals is shown in Fig. 4. (As the directory has a limit
of 25 results per query, queries that matched more than 25 hits
are lumped in with those that returned 25.)

Using this crude technique we were able to link each of 35
devices with a single individual. This suggests that while
device names may have the potential for high anonymity, as
discussed in VI-B, those that are unique can be very effective
at identifying users. We observed the use of fully qualified
phone numbers and personal names as the name attribute—
clearly privacy-averse behaviour! We also discovered that
while people may make use of nicknames, presumably for
privacy or vanity reasons, they tend to make repeated use of
the same nickname in different contexts. For example, where
someone may have labelled a device “greatguy43”, there may
be an entry in the university directory with the nickname
“greatguy43”. In some cases, this information enabled us
to link devices to individuals where no “real” name was
included in the device’s name attribute. The irony of this
behaviour is that most of the nicknames used are “rare” and
stand out against dictionary words. Not only does this make
the nicknames easier to isolate within a dataset, it enhances
linkability with records in other datasets because the terms are
invariably rare in all of them and does not suffer from a large
statistical normalisation penalty [13], [14], [15]. Inventing
nicknames for privacy reasons is therefore counter productive.

VII. CONCLUSIONS AND FUTURE WORK

As the complexity of wireless and portable computing
devices increases, it becomes more attractive to use them as
wireless sensor nodes. As they communicate with gateways to
make sensor data available to applications, they necessarily
reveal to the gateway nodes information about themselves
that could compromise the privacy of their users. This will
be exacerbated by the volume of data exchanged and the
ability to record data obtained on a massive scale. In this
paper we have explored the anonymity properties of data
from Bluetooth scans as an aid in understanding how the
choices made by gateway nodes affect the privacy of sensor
nodes that use Bluetooth. We have examined the anonymity
that a device can expect, shown how easy it can be to link
devices with individuals, and described some behaviour we
have seen that suggests that users misunderstand the privacy
implications of configuring their devices. Attributes such as
the device class are poor for linking sightings of the same
device, the device name can provide a surprising amount of
anonymity but when it does not it can be a very effective
key to link devices with individuals, and frequently users
exhibit privacy-adverse behaviour, such as placing telephone
numbers in device names or using statistically rare nicknames.
Bluetooth’s use of pre-set, lifetime hardware addresses (MAC
addresses) is worrisome from a privacy perspective in that they

allow trivially linking multiple sightings of the same device. It
is not difficult to imagine an alternate approach where device
addresses, even if required, would be ephemeral.

In the future we would like to make use of automated
record linkage approaches and evaluate a device’s settings to
estimate the probability of its owner being identified using
other databases such as phone books. The objective would be
for every wireless device to perform these checks as part of
their interactions, whereby nearby vulnerable devices could be
pro-actively identified and their owners coerced to remedy the
situation through social peer pressure.
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[7] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and
pseudonymity—a proposal for terminology,” in Designing Privacy
Enhancing Technologies. Springer-Verlag, 2001, pp. 1–9. [Online].
Available: http://dx.doi.org/10.1007/3-540-44702-4 1

[8] C. Dı́az, S. Seys, J. Claessens, and B. Preneel, “Towards
measuring anonymity,” in Proceedings of the Workshop on Privacy
Enhancing Technologies, 2003, pp. 184–188. [Online]. Available:
http://dx.doi.org/10.1007/3-540-36467-6 5

[9] A. Serjantov and G. Danezis, “Towards an information theoretic
metric for anonymity,” in Proceedings of the Workshop on Privacy
Enhancing Technologies, 2002, pp. 259–263. [Online]. Available:
http://dx.doi.org/10.1007/3-540-36467-6 4

[10] D. Cross, J. Hoeckle, M. Lavine, J. Rubin, and K. Snow, “Detecting
non-discoverable bluetooth devices,” Critical Infrastructure Protection,
vol. 253, pp. 281–293, November 2007.

[11] T. Hurman, “Btscanner bluetooth scanner, version 2.0,” August 2004.
[12] R. H. Warren and G. M. Zaverucha, “Bluetooth wireless security,” in

Graduate Student Research Conference, University of Waterloo, Ontario,
Canada, April 2007, poster.

[13] W. E. Winkler, “Advanced methods for record linkage,” Statistical
Research Division, U.S. Bureau of the Census., Tech. Rep. rr945, 1994.
[Online]. Available: http://citeseer.ist.psu.edu/winkler94advanced.html

[14] I. P. Fellegi and A. B. Sunter, “A theory for record linkage,” Journal of
the American Statistical Association, no. 64, pp. 1183–1210, 1969.

[15] H. B. Newcombe and J. M. Kennedy, “Record linkage: making max-
imum use of the discriminating power of identifying information,”
Commun. ACM, vol. 5, no. 11, pp. 563–566, 1962.


