
Reconciling while Tolerating Disagreement in
Collaborative Data Sharing∗

Nicholas E. Taylor Zachary G. Ives
Computer and Information Science Department

University of Pennsylvania
{netaylor,zives}@cis.upenn.edu

ABSTRACT
In many data sharing settings, such as within the biological
and biomedical communities, global data consistency is not
always attainable: different sites’ data may be dirty, uncer-
tain, or even controversial. Collaborators are willing to share
their data, and in many cases they also want to selectively
import data from others — but must occasionally diverge
when they disagree about uncertain or controversial facts or
values. For this reason, traditional data sharing and data
integration approaches are not applicable, since they require
a globally consistent data instance. Additionally, many of
these approaches do not allow participants to make updates;
if they do, concurrency control algorithms or inconsistency
repair techniques must be used to ensure a consistent view
of the data for all users.

In this paper, we develop and present a fully decentralized
model of collaborative data sharing, in which participants
publish their data on an ad hoc basis and simultaneously
reconcile updates with those published by others. Individ-
ual updates are associated with provenance information, and
each participant accepts only updates with a sufficient au-
thority ranking, meaning that each participant may have
a different (though conceptually overlapping) data instance.
We define a consistency semantics for database instances un-
der this model of disagreement, present algorithms that per-
form reconciliation for distributed clusters of participants,
and demonstrate their ability to handle typical update and
conflict loads in settings involving the sharing of curated
data.

1. INTRODUCTION
When multiple autonomous, collaborating parties agree

to share data, they often encounter situations where that
data is mutually inconsistent : each party has a data in-
stance that is internally consistent, but the different parties

∗This research has been funded by NSF CAREER award
#IIS-0477972 and grant #IIS-0513778, and a seed grant
from Penn ISTAR.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

may each have “facts” that conflict with the others. Such
inconsistency arises from many reasons: sites may have dif-
ferent levels of data freshness, some sites’ data may be dirty,
or, frequently, the sites may have different viewpoints about
what data is factual.

For instance, in bioinformatics, the same results from mi-
croarray experiments may be analyzed by different tools, or
curated by different people, yielding different values. This
is inevitable because most data curation is somewhat un-
certain in nature, and thus correctness becomes a matter
of interpretation. Therefore, bioinformatics data warehouse
curators often reach different conclusions, and even occa-
sionally revise these conclusions. Biologists have a sense
of the authority of the different databases: for instance,
SWISS-PROT [2] is generally more reliable than NCBI Gen-
Bank [24] because it is human-curated (see, e.g., [22] for a
query language that incorporates such policies). To help
control the quality of the data they use (and also to ensure
their queries are not seen by competitors), most biologists
create, query, and curate their own local database instances,
which they populate with downloaded data. A biologist will
typically not publish the contents of this database until he
or she submits a paper for publication.

These situations result in a mismatch with existing meth-
ods of sharing data. If sharing is based on a common DBMS
(whether distributed or client-server), the DBMS concur-
rency control and integrity checking routines will mandate
that a single version be put into the database. Even in situa-
tions where local caching and optimistic concurrency control
are used, ultimately one version of the state will exist. If,
instead, the collaborating parties share information through
a data integration [11, 20] or peer data management [13,
15] system, the results will be either inconsistent, or filtered
through a “repair” scheme [1, 19]. Other strategies have
similar drawbacks; e.g., file synchronization [26, 7] typically
results in conflicts that must be manually resolved in order
to restore consistency.

The solution to the needs of collaborating scientists is not
to provide one globally consistent data instance, but rather
to give each participant a custom, internally consistent in-
stance with the data that this particular source accepts as
authoritative. This instance should contain data “overlap-
ping” with that at other sites, as well as certain data items
that diverge from (many of) the others. In keeping with the
needs of scientists as described above, data instances should
be loosely coupled: each participant queries and manipu-
lates a local database instance and may occasionally publish
its database, including a log of recent changes; it may selec-

I1(ProteinFn)

I3(ProteinFn)

I2(ProteinFn)

Participant p1

Participant p2

Participant p3

p1: Updates from p2get priority 1

p2: Updates from p3get priority 1

p1: Updates from p3get priority 1 3

1

2

ProteinFn

ProteinFn

ProteinFn

p2: Updates from p1get priority 2

p3: Updates from p2get priority 1

Figure 1: Collaborative data sharing system with
three bioinformatics data warehouse participants
sharing data on protein functions.

tively import others’ modifications according to some pol-
icy. Today such capabilities can only be provided through
custom import tools, which are expensive to develop and
generally do not provide well-defined conflict resolution se-
mantics.

The challenge in supporting this data sharing model lies in
the fact that every database instance is subject to updates,
in the form of transactions. Not all of these transactions may
originate from sources trusted by all parties; hence, each site
must decide whether to accept an update (in effect, synchro-
nizing a portion of this site’s data instance with the origin
of the update), to reject it as being untrusted (causing a di-
vergence), or in some cases to defer processing an update (if
there are multiple conflicting updates with no clear prefer-
ence). An update-centric model is important, as opposed to
simply querying the resulting data values, because it allows
sites to reject removals or replacements. However, it adds
significant complexity, because one update may depend on a
chain of other updates, some of which are trusted and others
of which are not. A clean semantics for update propagation
must consider these interactions, as well as different levels
of trust.

At the University of Pennsylvania, we are developing a
generic platform to support this type of data sharing; we
refer to this platform as a collaborative data sharing system
or CDSS. Our overall CDSS architecture was first presented
in an overview paper [14], which sketched out our vision of
confederations of autonomous data sharers who publish and
import updates. The process of selectively importing up-
dates (in particular, those that do not conflict with existing
data) is termed reconciliation. The Orchestra system rep-
resents our efforts to realize such a CDSS, and although our
system is broadly applicable, we are particularly focusing on
the needs of bioinformatics and biomedical researchers.

An Orchestra system (Figure 1) consists of a number
of collaborating participants (p1, . . . , p3 in the figure), each
of whom controls and edits its own data instance (denoted
I1, . . . , I3), and each of whom has a policy about what exter-
nal data it is willing to trust and accept (labels on the arcs).
As data is modified at different sites (denoted ∆1, . . . , ∆3),
Orchestra publishes and propagates the updates to all
sites that are willing to accept them. Our end goal is to facil-
itate update propagation in situations with both disparate
schemas (i.e., each participant may have a different schema,
with some attributes that may not have corresponding as-

pects in the other schemas) as well as disparate instances
(i.e., each participant may have tuples with values that may
not exist in other participants’ instances).

This paper represents our first step towards addressing
these goals: it defines a model and methodology for recon-
ciling instances of a single database schema, in the pres-
ence of transactions, disagreement, and trust relationships.
The complementary problem of translating updates across
schemas in order to incrementally maintain data instances
is ongoing work.

We make the following contributions:

• A formalization for reconciliation that emphasizes lo-
cal autonomy, making forward progress, and providing
intuitive behavior. We support coexistence of multiple
instances, with consistency defined by trust policies.

• A model for reconciliation where individual transac-
tions are assigned trust levels, and the goal is to prop-
agate the highest-trusted, longest chains of transac-
tions.

• New algorithms to reconcile database instances while
maintaining consistency .

• A performance analysis of these algorithms on bioin-
formatics-based workloads.

This paper is structured as follows. We discuss related
work in distributed data sharing in Section 2. We describe
our CDSS model in Section 3. In Section 4, we define a se-
mantics for reconciliation. Section 5 presents algorithms for
implementing reconciliation. We validate our initial proto-
type implementation in Section 6, and finally we conclude
and discuss future work in Section 7.

2. RELATED WORK
The problem of sharing structured data among multiple

sites has a long history, and it has been revisited in many
different settings. However, as described in the previous
section, there has generally been an assumption that the end
goal is to create a single consistent data instance (perhaps
with multiple views) across all sources. We briefly outline
previous work.

File synchronizers [26, 10, 16] take two files, and they at-
tempt to reconcile the changes into a maximally consistent
instance. When a conflict exists, both versions are typically
preserved and the user must resolve the conflict before con-
tinuing to work. The Bayou [9] disconnected file system pro-
vides mechanisms for supplying application-specific conflict
detectors and conflict resolvers. The Coda [30] and Ivy [23]
file systems provide a mechanism for detecting conflicts, and
disable updates to them until a repair is made.

Distributed databases provide a single administrative do-
main, database schema, and instance to all users. Each
participant may independently make edits to the database
instance. Through either lock-based or optimistic concur-
rency control schemes [17, 8, 5], the system interleaves up-
dates while maintaining consistency. Version vectors [25],
vector clocks [18] and other mechanisms are often used to
determine causality. An alternative approach is that of Lo-
tus Notes [21], which, upon a conflicting update, splits the
data into two versions that are no longer synchronized.

Data integration (including federated databases and peer
data management) is a middleware layer above autonomously

maintained data sources. Here, each participant updates its
own data sources in a self-contained fashion. When a par-
ticipant wishes to access data from “the outside world,” it
poses a query over the virtual mediated schema that the
data integration system builds over all data sources. In
traditional data integration, there is one mediated schema;
peer data management systems [13, 15, 4] allow for multi-
ple mediated schemas, interrelated by a network of schema
mappings. Data consistency is generally managed in terms
of certain answers: inconsistent data values are removed
through a “repair” procedure [1]. No facilities exist here for
importing data into a given data source.

The collaborative data sharing system was first introduced
in [14], which proposed (but did not implement) an archi-
tecture for supporting the exchange of atomic updates in
a distributed setting. Our work in this paper builds upon
these ideas, but focuses on the complexities introduced by
transactions and different trust levels.

3. COLLABORATIVE DATA SHARING
As shown in Figure 1, a collaborative data sharing system

consists of a confederation of loosely coupled participants
(or peers), each of which is autonomous, but each of which
wishes to share its data and updates with the other partici-
pants. In general, update translation mappings (not shown)
relate instances of one published schema to instances of “se-
mantically neighboring” published schemas, and provide a
means of translating updates from one schema to another;
however, in this paper, we do not consider update mappings,
and instead focus on reconciliation in a single-schema set-
ting. Therefore, in the figure, all participants share the same
schema, though they may of course trust different data. Par-
ticipants (p1, p2, p3 in the figure) make updates to their local
database instances, and they publish (a subset of) these up-
dates (∆1, ∆2, ∆3) as well as a published database instance
(shown in the figure as I1, I2, I3) with a matching schema.
Finally, a series of acceptance rules (labels along the arcs
between participants) define, for each participant, a trust
priority level for updates from other participants.

The central problem in a CDSS is the propagation of up-
dates among sites. We term this problem reconciliation:
given the acceptance rules and updates published by par-
ticipants, the reconciliation operation determines which up-
dates should be applied to (“accepted by”) the reconciling
participant p. All updates that satisfy the acceptance rules
and do not mutually conflict (or conflict with existing state)
should be accepted; for conflicting updates, priorities are
used to determine which (if any) updates are to be applied.

Conflicts. In our initial implementation, we adopt a fairly
simple conflict model. A conflicting update is any update
that: (1) when applied to the current database instance,
results in an instance that is inconsistent with its integrity
constraints; or (2) is mutually incompatible with some other
published update that also satisfies an acceptance rule. In-
stances of the latter case are updates that change a sin-
gle antecedent data value into two different values, updates
that simultaneously remove and replace a data value, and
updates that result in a data instance that violates a con-
straint (though the last can also be caused by a single update
to a database instance).

We assume that reconciliation is an operation that is done
frequently but not in real-time, by each specific participant:

the participant will accept and apply a subset of all “re-
cently published” updates to its data instance. Note that
reconciliation is a matter of importing data, and therefore it
can be done more or less frequently than publishing, though
we assume that the two are performed together.

3.1 Preliminaries
Before providing an example of reconciliation in a CDSS,

we begin with a description of our high-level goals and basic
mechanisms.

• Maximal progress and monotonicity. Each reconcili-
ation should make maximal use of all published up-
dates available at the time. Once an update has been
accepted by a participant, a future reconciliation may
result in changing the results of the update, but the
update itself will not be rolled back from the data in-
stance.

• Least interaction. Update sequences made at partici-
pant p should not interact with update sequences made
at site q in unexpected ways: in particular, if q makes a
modification that conflicts with p, but revises its mod-
ification so it no longer conflicts, before p imports its
changes, then p should consider q’s update sequence
to be compatible.

• Trust policies. In many bioinformatics and other set-
tings, some sources are known to be more credible
than others. (As mentioned previously, SWISS-PROT
is human-curated, making it more authoritative than
GenBank, which is not.) We allow for each site to
provide a partial ranking of authority for such cases
— allowing the system to automatically resolve cer-
tain conflicts.

We now describe how each of these principles guides the
functionality of the CDSS, before we present an example.

Maximal progress and monotonicity. We define rec-
onciliation in a participant-centric way, and assume a global
ordering on when participants reconcile (and optionally pub-
lish). We term each such step an epoch. At each reconcil-
iation, a single peer imports updates from outside. While
it may also publish its own updates, no other participant
will receive these until it reconciles. Thus, information flow
is inherently (1) relative, as the updates participant p sees
from participant q are those published since p last recon-
ciled; and (2) asymmetric, as q will not immediately receive
p’s updates. Moreover, a reconciling participant has no way
of knowing whether the updates it “sees” now will be re-
vised in the future, or whether some other participant will
publish a conflicting update in the future. We believe that a
causality model in which every participant makes maximal
progress based on what it has seen, and never “changes its
mind,” has many desirable properties.

A second mechanism for ensuring progress is the notion
of update deferral. If several updates conflict and the par-
ticipant has no way of ranking them, it will mark them as
being deferred until a user resolves the conflict. Any fu-
ture updates that might conflict with an unresolved conflict
are themselves deferred — ensuring that the user does not
inadvertently render them inapplicable.

Least interaction. The mode of information exchange

(and hence the cause of dependencies occurring among up-
dates) will solely be via acceptance of updates from other
participants. Since two participants may reconcile at differ-
ent frequencies, we believe that any intermediate states of
tuples should not interact, i.e., if different participants make
successive modifications to a tuple while not in contact with
one another, any intermediate states should be disregarded,
and only the final updates should be considered.

Trust policies. Acceptance rules assign a numeric priority
level to a set of updates, based on predicates over the con-
tent as well as the origin of these updates. We assume that
higher priority levels result in larger numbers, and that in
situations where conflicts arise, a participant will accept an
update with a higher update priority over a conflicting one
with a lower priority. When multiple updates have equiva-
lent (and highest) priority, our semantics is to adopt a “cer-
tain answers,” open-world model in which none of the con-
flicting updates will be applied until a user intervenes. Such
updates are termed deferred, and any future updates that
conflict with a deferred update are themselves deferred.

In order to support acceptance predicates over update ori-
gins, we assume that every update is annotated with the
identity of its origin. While this model is not as expres-
sive as some notions of lineage [3, 6, 32], it is adequate for
our acceptance rules. This model resembles the Information
Source Tracking method of [29] and the multi-viewpoint for-
malism of [14].

3.2 CDSS Example
We refer to the example CDSS in Figure 1, where par-

ticipant p1 has a policy to accept update sequences from
either p2 or p3, assigning them equal priority. In contrast,
p2 prefers updates from p1 versus p3, and p3 only accepts up-
dates from p2. An exception to this rule, which we describe
later, is that p2 may make revisions to updates that orig-
inated from p1 — in this case, p3 must transitively accept
this portion of p1’s data.

Notation. In this paper we assume that all updates are
described in terms of changes to values, and they are anno-
tated with the identifier of a single originating participant.
We consider the following operations: insert tuple (denoted
+R(ā; i) for an insertion of the tuple ā by participant i into
some relation R with a schema compliant with ā); delete tu-
ple (−R(ā; i)); modify tuple (R(ā→ ā′; i), where ā′ is a new
set of attribute values conforming to schema of R). We also
assume that updates may be grouped into transactions, de-
noted Xi:j , where i represents the identity of the originator
of the transaction, and j represents its unique local trans-
action identifier. We assume that transaction identifiers are
assigned in increasing order.

Figure 2 illustrates reconciliation over four epochs within
this CDSS, for a single relation F (organism,protein,function),
where (organism,protein) is a key. At time 0, each partici-
pant pi’s instance of this relation, denoted Ii(F)|0, is empty.
In epoch 1, participant p3 applies two transactions (one of
which revises the other), and then it publishes and recon-
ciles its data. Since no other updates have been published,
pe ends Epoch 1 with state I3(F)|1, obtained by applying
its own update sequence.

In the next epoch, participant p2 introduces two new tu-

ples and then reconciles. Its resulting state, I2(F)|2, is the
result of applying its own updates. Although p3 published
two updates that p2 trusts, these updates conflict with p2’s
own updates — hence, it rejects them. In Epoch 3, p3 rec-
onciles a second time. Now it applies the mouse update
from p2; it rejects the rat tuple that is incompatible with
its own local state. Finally, in the last epoch, p1 recon-
ciles. It trusts p3 and p2 equally. Hence, it accepts the non-
conflicting mouse updates, but it must defer the remaining
rat update transactions because they all conflict.

Given our intuitions from the basic principles and the pre-
ceding example, we now proceed to define a formal semantics
for reconciliation.

4. RECONCILIATION
We begin by specifying the collaborative data sharing sys-

tem formally. In the larger scope of Orchestra, we intend
to support reconciliation across multiple schemas. However,
for purposes of this paper, we will define the CDSS for a
setting in which all participants share a single schema.

Definition 1 (collaborative data sharing system).
A collaborative data sharing system (CDSS) includes the
following components:

• Σ, a schema representing the relations in the system.

• P , a set of participants, {p1, . . . , pn}.

• A, a mapping from each pi ∈ P to a set of acceptance
rules, each of which is a pair (θ, v) where θ is a predi-
cate on updates in ∆ over some relation R and v is an
integer priority that pi assigns to tuples satisfying θ.

• ∆, a sequence of transactions of updates of the form
+R(x̄; i), −R(x̄; i), R(x̄→ x̄′; i), over each relation R
and published by each participant pi.

• I(Σ) = {I1(Σ), . . . , Ii(Σ), . . . , In(Σ)}, the public data-
base instances controlled by each pi.

• e, an integer clock or reconciliation epoch counter. It
is incremented each time a different participant pub-
lishes data. We assume that the first publication or
reconciliation step defines the beginning of epoch 1. We
denote the subset of ∆ published in epoch e as ∆|e.

Suppose we are given a CDSS as in Definition 1. Let
us denote an update made to relation R as δR. We define
the priority relative to participant pi of a transaction X,
prii(X), as follows:

• 0, if any δ ∈ X is untrusted, i.e., there is no (θ, v) ∈
A(pi) such that θ(δ) is satisfied and v > 0.

• max({v | (θ, v) ∈ A(pi) ∧ θ(δ) ∧ δ ∈ X}), otherwise.

We say that two updates δR, δ′
R conflict iff

• δR, δ′
R are both insertion operations with the same val-

ues for their key attributes, but different values for at
least one other attribute, or

• one of δR, δ′
R is a deletion and the other is a replace-

ment or insertion operation, and they have the same
values for their key attributes, or

Epoch Participant p3 Participant p2 Participant p1

0 I3(F)|0 = {} I2(F)|0 = {} I1(F)|0 = {}
X3:0 : {+F (rat, prot1, cell-metab; 3)}
X3:1 : {F (rat, prot1, cell-metab →

rat, prot1, immune; 3)}
1 <publish and reconcile>

I3(F)|1: {(rat, prot1, immune)}
X2:0{+F (mouse, prot2, immune; 2)}
X2:1{+F (rat, prot1, cell-resp; 2)}

2 <publish and reconcile>
I2(F)|2: {(mouse, prot2, immune),

(rat, prot1, cell-resp)}
3 <reconcile>

I3(F)|3: {(mouse, prot2, immune),
(rat, prot1, immune)}

4 <reconcile>
I1(F)|4: {F (mouse, prot2, immune)}
DEFER: {X3:0, X3:1, X2:1}

Figure 2: Reconciliation of F (organism, protein, function), with key (organism, protein), among the participants
of Figure 1, over four epochs. Each participant pi may apply transactions (Xi:j), which it publishes and
reconciles according to the policies in Figure 1. The resulting instance for each epoch e is denoted with
Ii(F)|e. When transactions conflict, the participant always picks its own version first, or else the highest-
priority one and its antecedents (if this is unique). It defers any transactions that have no unique “winner.”

• δR, δ′
R are both replacement operations with the same

source tuple value, where the replacement tuples have
different values.

An update δR may also be incompatible with an instance
I if applying δR to I would violate an integrity constraint.
We generalize this to say that two transactions X, X ′ con-
flict iff an update δ ∈ X conflicts with an update δ′ ∈ X ′,
and that a transaction X is incompatible with an instance I
iff an update δ ∈ X is incompatible with I. Finally, we as-
sume a function apply(δR(x̄; i), R) that applies the updates
in δR(x̄; i) to relation R, and returns the resulting relation.
Within this setting, we define two versions of the reconcilia-
tion problem: first, the problem in an append-only setting,
and then the problem in its full generality.

4.1 Append-Only Reconciliation
In the append-only case, every transaction in a given

epoch can be considered independently. An insertion may
be applied so long as it does not conflict with a previously
applied insertion, nor does it conflict with a transaction of
equal or higher priority.

For any epoch e, let ∆acc(i)|e be the set of transactions
from ∆|e acceptable to pi. We define ∆acc(i)|0 to be the
empty set, and for all other epochs let

∆acc(i)|e = {X ∈ ∆|e : (6 ∃X ′ ∈ ∆|e : X, X ′ conflict and
prii(X

′) ≥ prii(X)) and (6 ∃X ′′ ∈ ∆e′ : e′ < e and
X, X ′′ conflict)}

From this, it is straightforward to define the reconciliation
problem for a given participant in the append-only model.

Definition 2 (append-only reconciliation).
Let Ii(R)|e be the instance of relation R at participant pi in
epoch e. The append-only reconciliation problem for partic-
ipant pi is to compute Ii(R)|e for every R ∈ Σ, given some
initial Ii(R)|e0 and ∆ from e0 to e. For each relation R, let
Res = Ii(R|e0). A tuple t must appear in instance Ii(R)|e
iff it appears in the instance Res resulting from recursively
applying, for each τ from e0 to e − 1 (in increasing order),

Res = apply(δR, Res) for every δR in ∆acc(i)|(τ+1).

Append-only reconciliation is very simple to compute algo-
rithmically: during epoch τ , for each pi, we simply con-
sider each published transaction X in isolation and deter-
mine whether it is in ∆acc(i)|τ , meaning that it uniquely
has the highest priority of any transaction with which it
conflicts. If so, we apply the transaction.

4.2 Replacement and Deletion
If we allow for replacement and removal, the semantics of

reconciliation must change significantly: now an update may
be dependent on other, antecedent updates (where the result
of the antecedent update is used by the dependent update).
These antecedent updates may have originated from partic-
ipants other than the participant who published the most
recent update, and the original source of that update might
not itself be trusted by the peer who is reconciling. We
therefore adopt the semantics that a participant who trusts
an update u must transitively trust any antecedent updates
made by other participants, at (at least) the priority level of
u, provided the transaction has not been explicitly rejected
by the reconciling participant. A transaction that depends
upon or conflicts with any deferred update, or whose an-
tecedents do so, is deferred, until the potential conflict is
resolved by explicit user interaction.

In a reconciliation model with deletions, one transaction
may introduce a conflict, but a succeeding transaction may
remove that conflict. For instance, to continue the example
of Figure 2, suppose that in epoch 2, participant p3 first
introduced a sequence of transactions:

X3:2 : {+F (mouse, prot2, cell-resp)}
X3:3 : {F ((mouse, prot2, cell-resp)→

(mouse, prot3, cell-resp)}
where initially the wrong protein was given the function cell-
resp. In this case, while transaction X3:2 clearly conflicts
with X2:0, intuitively p3 should accept X2:0, since this does
not conflict with its state after applying the full transaction
sequence above. In general, given a transaction sequence,
one can take the constituent update sequence and “flatten”

it into a set of direct updates by removing intermediate
steps, as described in [12, 14]. The sequence [X3:2, X3:3]
above can be minimized to {+F (mouse, prot2, cell-resp)}.

Let applied(pi, e) be the set of updates that have been
applied by participant pi from epoch 1 through epoch e.
Also, for a transaction X published in epoch e, we define the
antecedent set, ante(X), to contain any transaction X ′ ∈
∆τ , 1 ≤ τ ≤ e, where X ′ either inserts a new tuple, or
makes a modification to a tuple, which X directly deletes or
modifies.

Definition 3 (transaction extension). We define
pi’s transaction extension of transaction X, reconciled in
epoch e, to be the transitive closure of X’s antecedents, so
long as those transactions have not yet been accepted by pi

in epoch e:
tei|e(X) = {X ∪ ante(X)}
tei|e(X) = tei|e(X) ∪ {X ′|∃X ′′ ∈ tei(X) : X ′ ∈ ante(X ′′)

∧X ′ 6∈ applied(pi, e)}
Henceforth we will assume that the transaction extension is
sorted by the order of each transaction in ∆.

We say X subsumes some other X ′ if its transaction ex-
tension is a superset of X ′’s transaction extension. Given a
list of transactions L, sorted by the order of their applica-
tion, we can define their update footprint to be:

uf(L) = [δ ∈ X for each X ∈ L]

Now, assume we are given a function flatten(s), which, given
an input sequence s of updates, produces a set of mutually
independent updates with all dependency chains removed,
as in [14]. For a transaction X, a subset of its antecedents
L, and a reconciling participant pi, we define an update ex-
tension Ui(X, L) to include the following components:

• an operation, the set of updates in flatten(L).

• a root, which is the original transaction X.

• a source, which is the contents of L.

• a priority level equal to prii(X).

The update extension represents the set of changes made by
transaction list L as “seen” by peer pi, with all intermediate
steps removed. Our goal is to consider conflicts between up-
date extensions, and to choose to apply the highest-priority
update extensions.

To do this, we must consider when transactions’ exten-
sions conflict; here we should only consider interactions be-
tween updates that are not shared between the transactions.

Definition 4 (direct conflict). Two transactions X,
X ′ directly conflict iff ∃ δ ∈ U(tei|e(X)−S), δ′ ∈ U(tei|e(X

′)−
S) s.t. δ and δ′ conflict, where S = {X ′′ : X ′′ ∈ tei|e(X) ∧
X ′′ ∈ tei|e(X

′)}.

We can now define the general reconciliation problem for
updates that include deletions and replacements. A solution
to the general reconciliation problem must also maintain
information about whether prior reconciliation operations
marked certain transactions as rejected or deferred: as dis-
cussed previously, we similarly reject or defer (resp.) any
future transactions that depend upon these.

Definition 5 (general reconciliation). We define
the general reconciliation problem for participant pi as fol-
lows. During epoch e, given an initial Ii(R)|e0 , a set of
previously deferred transactions deferred(pi, e0), and previ-
ously rejected transactions rejected(pi, e0), and all ∆i from
e0 to e, compute:

• A new instance Ii(R)|e for every R ∈ Σ, defined as
follows. Let App be the set defined as follows. For
each epoch τ from e0 to e, for each X in ∆|τ , App
must contain those transactions in tei|e(X) that:

1. have a priority prii > 0,

2. can be completely applied to Ii(R|e0) without vio-
lating its integrity constraints,

3. do not directly conflict with some other X ′ of
equal or higher priority, which is not subsumed
by X,

4. do not have a transaction in tei|e(X) that is in
rejected(pi, e0), and

5. do not delete, modify, or insert a tuple whose key
matches any update in deferred(pi, e0).

For each R, Ii(R)|e must contain tuple t iff t appears
in Res as defined next. Initialize Res = Ii(R)|e0 and
create an empty set Used for transactions that have
been applied. For each transaction X in App that
is not antecedent to any other transaction X ′ (i.e.,
it is not in tei|e(X

′) for any X ′), apply all updates
Res = apply(δR, Res) for all δr in flatten(uf(tei|e(X)−
Used)). Add all transactions in tei|e(X) to Used.

• A new deferred set deferred′(pi, e), which adds to
deferred(pi, e) every X that directly conflicts with some
update in deferred(pi, e0) or any other, non-subsumed,
X ′ of equal priority.

• A new rejected set rejected′(pi, e), which adds to
rejected(pi, e0) every X that directly conflicts with some
other X ′ of equal or higher priority, or whose exten-
sion tei|e contains a transaction in rejected(pi, e).

Proposition 1. A solution to the general reconciliation
problem will always accept transactions and their antecedents
for which there exist no other directly conflicting,
non-subsumed transactions of equal or higher priority.
Proof sketch. Assume for the purpose of contradiction
that a transaction has not been accepted, despite being of
higher priority than any transaction with which it directly
conflicts, not depending an a rejected or deferred transac-
tion, and being conformant with integrity constraints. Then
the update extension of the transaction must directly con-
flict with a transaction accepted in the same reconciliation
operation at a higher priority. But the definition only re-
jects or defers transactions that conflict with transactions of
equal or higher priority. Hence the update extension must
conflict with that of a higher-priority transaction, which is
a contradiction.

A greedy algorithm that closely matches the above def-
inition, processing items in decreasing order of priority, is
provided in the next section.

Once a number of items have been deferred, the process
of conflict resolution makes use of the solution to the rec-
onciliation problem stated above. To resolve a conflict, the

Distributed
Store

Central
Store

Client-Centric
Reconciliation

Network-Centric
Reconciliation

Pros: Low communication,
high reliability

Cons: Needs reliable central
server, reconciliation work all
at one peer

Pros: Distributes reconciliation
work across many peers, high
reliability

Cons: High communication,
needs reliable central server

Pros: No central store,
distributed reconciliation work

Cons: Highest communication,
needs stable base of
connected peers

Pros: No central store,
medium communication

Cons: Needs stable base of
connected peers,
reconciliation work all at one
peer

Figure 3: Comparison of different combinations of
reconciliation algorithms and update stores.

user specifies some number of transactions to remove from
the deferred set and reject. The remaining transactions are
removed from the deferred set and treated as recently pub-
lished transactions, and the reconciliation solution is re-run
to apply those that no longer conflict.

5. RECONCILIATION ALGORITHMS
A general reconciliation algorithm, executed by partici-

pant pi, first determines which transactions have been pub-
lished since pi’s previous reconciliation (the relevant trans-
actions), and pi’s priority assignment to each of these newly
published transactions. It then computes the update exten-
sions for these transactions, and determines which updates
can be applied without violating the requirements given in
Definition 5. Finally it applies the transactions it has se-
lected, records the set of transactions that it must defer,
and rejects those that remain.

This process can either be centralized or distributed. If
the work is centralized on the reconciling participant (peer),
we call it client-centric reconciliation, since it is typically
the reconciling participant that retrieves all of the relevant
transactions and decides which to apply. An alternative
is network-centric reconciliation, in which computation is
distributed across the entire network of peers. While the
network-centric approach puts less load on the reconciling
participant by distributing almost all of the work across the
network, the client-centric approach generates less network
traffic, and it allows for a considerably simpler reconciliation
algorithm. It also may allow potentially sensitive informa-
tion, like the trust conditions, to be kept private from other
participants.

The reconciliation algorithm needs to access several differ-
ent kinds of data to perform the operations outlined above.
It must access the series of published transactions opera-
tions, and the instance of the reconciling participant. It
also needs to read and modify the sets of applied, rejected,
and deferred transactions for the reconciling peer. We de-
fine an update store module to provide a general interface to
much of the aforementioned state. We have explored using
both a central server and a distributed store in which the
peers themselves store the state.

Each combination of reconciliation algorithm and update
store implementation has its own unique benefits, as shown
in Figure 3. Our initial implementation uses client-centric
reconciliation, which is considerably simpler both to under-
stand and to implement; we couple that with either central

or distributed storage. As future work we intend to imple-
ment network-centric reconciliation.

In order to implement an algorithm for the general recon-
ciliation problem given in Definition 5, we introduce several
new concepts:

• Dirty values are key values that are modified (i.e. read
or written) by a deferred transaction. Any transaction
that reads or writes a value whose key is in the dirty
value set must be deferred, in order to ensure that a
previously-deferred transaction can always be accepted
later.

• Conflict groups are groups of conflicts with the same
type that involve the same key value; the reconciliation
algorithm groups conflicts for each reconciliation into
such groups.

• Options are groups of transactions within a conflict
group that make the same modification to the key
value. At most one option can be accepted for each
conflict group when conflicts are resolved; the transac-
tions from the other groups are rejected.

5.1 Client-Centric Reconciliation
The core of the client-centric reconciliation algorithm is

the ReconcileUpdates procedure. It determines which
updates the participant can apply or reject during a par-
ticular reconciliation, and assigns the deferred transactions
into conflict groups. When a participant reconciles, it first
queries the update store to fetch the newly relevant trans-
actions, their trust priorities, and their update extensions.
The algorithm then determines which transactions to ap-
ply, reject, or defer; for deferrals it records conflict groups.
When the user resolves one or more conflicts, this rejects
the transactions in the options he or she did not select; then
ReconcileUpdates is re-run for the earliest point of con-
flict resolution.1 ReconcileUpdates reconsiders all previ-
ously deferred transactions, and it accepts or rejects those
for which conflicts have been resolved.

The core of ReconcileUpdates is given in Figure 4, and
the various helper functions appear in Figure 5. Reconcile-
Updates begins by computing the flattened update exten-
sion of each trusted transaction. The call to CheckState at
line 7 determines which transactions much be rejected or de-
ferred because of the reconciling participant’s dirty value set
or materialized state. The call to FindConflicts at line 9
discovers conflicts between the flattened update extensions
of trusted transactions. The algorithm then calls DoGroup
at line 11 to consider each group of transactions with the
same priority, in decreasing order of priority; the decreasing
order allows the algorithm to proceed greedily and consider
each group only once. Within each group, transactions that
conflict with higher-priority accepted transactions are re-
jected, and those that conflict with higher-priority deferred
transactions are themselves deferred; if conflicts are found
between two non-rejected transactions within a group, both
are deferred. Once all priority groups have been consid-
ered, ReconcileUpdates has made decisions for all trusted
transactions. Line 13 records which transactions the client

1If information has been cached from the previous invoca-
tion of the algorithm, no calls to the update store should be
needed; otherwise, it queries the update store in exactly the
same manner as before.

ReconcileUpdates (recno)
1 txns ← The IDs of the undecided fully trusted transactions
2 prio ← Mapping from index in txns to priority
3 prios ← Set of all transaction priorities
4 Sort prios in decreasing order
5 for t ∈ txns do
6 upEx [t]← The flattened update extension of t
7 decision[t]← CheckState(recno, upEx [t])
8 endfor
9 conflicts ← FindConflicts(txns, upEx)
10 for txnPrio ∈ prios do
11 decision ← DoGroup(txnPrio, conflicts, prio, decision)
12 endfor
13 Record decision at recno
14 for t ∈ txns do
15 if decision[t] = accept then
16 upEx [t]← The flattened update extension for t
17 Apply upEx [t]
18 endif
19 endfor
20 deferred ← {txn | decision[txn] = defer}
21 UpdateSoftState(recno, deferred)

Figure 4: The main client-centric reconciliation al-
gorithm. Helper methods are in Figure 5.

has decided to accept or reject. Lines 14-19 update the state
of the local database; it is necessary to recompute the update
extension since the antecedents of the trusted transactions
may overlap. Line 21 updates the client’s dirty value set and
list of conflicts for the current reconciliation.

Suppose that during a particular reconciliation there are t
relevant transactions, each of which has at most a undecided
antecedents. Further suppose that each transaction con-
tains at most u component updates. In this case, computing
the flattened update extensions will take time O(tua), since
that much time is needed even to read through the updates
for the relevant transactions. Checking for pairwise con-
flicts between the update extensions will take time at most
O

`
t2 + tua

´
, if a hash table-based conflict detection algo-

rithm is used. This conflict detection step asymptotically
dominates all other work done afterwards by the Recon-
cileUpdates procedure, giving a combined running time
O

`
t2 + tua

´
.

By considering the trusted transactions in decreasing or-
der by priority, ReconcileUpdates greedily ensures that
the conditions given in Definition 5 are satisfied; since lower
priority transactions can never affect whether higher prior-
ity transactions are accepted, the lower priority ones can be
considered independently in subsequent iterations.

5.2 Update Store
The update store’s fundamental role is to publish and re-

trieve updates, and to associate each published transaction
with a client reconciliation time. The latter ensures that no
transaction ends up in multiple reconciliations for the same
client, and that no new updates for a specific reconcilia-
tion appear or disappear after it is recorded. As mentioned
above, all other state, such as deferred transactions, con-
flicts, client state, trust conditions, and which transactions
each participant has accepted or rejected, can remain private
data to each participant.

Such a system, however, would require a great deal of
communication across the network, as each update needed

CheckState (recno, upEx)
1 if upEx contains a value dirty at recno then
2 return defer
3 else if upEx contains an already decided transaction then
4 return reject
5 else if upEx is incompatible with the instance at recno then
6 return reject
7 else if upEx conflicts with the delta for recno then
8 return reject
9 else
10 return accept
11 endif

FindConflicts (txns, upEx)
1 conflicts ← ∅
2 for t, t′ ∈ txns do
3 if upEx[t] conflicts with upEx [t′] then
4 if neither t nor t′ subsumes the other then
5 conflicts[t]← conflicts[t] ∪ {t′}
6 conflicts[t′]← conflicts[t′] ∪ {t}
7 endif
8 endif
9 endfor
10 return conflicts

DoGroup (txnPrio, conflicts, prio, decision)
1 prioGrp ← Values in prio that map to txnPrio
2 higher ← Values in prio that map to a priority > txnPrio
3 Remove rejected transactions from prioGrp
4 for t ∈ prioGrp do
5 for c ∈ (conflicts[t] ∩ higher) do
6 if decision[c] = accept then
7 decision[t]← reject ;; prioGrp ← prioGrp − {t}
8 else if decision[c] = defer then
9 decision[t]← defer
10 endif
11 endfor
12 endfor
13 for t, t′ ∈ prioGrp do
14 if t conflicts with t′ then
15 decision[t]← defer ;; decision[t′]← defer
16 endif
17 endfor
18 return decision

UpdateSoftState (recno, deferred)
1 Clear all soft state from reconciliation recno
2 for t ∈ deferred do
3 upEx [t]← The flattened update extension of t
4 Remove from upEx [t] clean updates inapplicable at recno
5 Mark upEx [t] dirty at recno
6 endfor
7 conflicts ← FindConflicts(deferred , upEx)
8 conflictGroups ← ∅
9 for t ∈ deferred , t′ ∈ conflicts[t] do
10 for conflict 〈type, value〉 between t and t’ do
11 Add {t, t′} to conflictGroups[〈type, value〉]
12 endfor
13 endfor
14 for 〈type, value〉 ∈ conflictGroups.keys do
15 Combine compatible txns for 〈type, value〉 into same option
16 endfor
17 Record conflictGroups as conflict set for recno

Figure 5: Helper methods for the ReconcileUpdates
method given in Figure 4.

during reconciliation would have to be requested individu-
ally. Our implementations, therefore, move the sets of ap-
plied and rejected transactions from the participant into the
update store; this allows the update store to be determined
remotely, and thereby reduces that amount of network traf-
fic. An additional result of this approach is that each client
contains only soft state; it is possible to reconstruct the
entire state of the participant, up to his or her last reconcil-
iation, from the update store.

For these reasons, we implement an update store with the
following basic operations: publish transactions from a peer,
and record those it has already accepted,2 record that a peer
has accepted and rejected certain transactions, record that a
peer has decided to reconcile and associate with that recon-
ciliation a particular set of published transactions, retrieve
the current reconciliation number of a peer, and retrieve all
of the transactions that a peer may need to see in order to
perform its more recent reconciliation, along with the priori-
ties associated with the fully trusted transactions in that set.
In order to perform these operations efficiently, the update
store must log all of the updates published and their epoch,
what transactions each peer has accepted or rejected, the
current epoch, the epoch corresponding to each peer’s pre-
vious reconciliation, and the trust conditions for each peer.

Early prototypes of our system showed it was vital to re-
duce the number of messages sent between the update store
and each participant. In the current interface, a constant
number of procedures are invoked during each reconciliation.
In the centralized server implementation, each of those sends
a small number of messages across the network; in the dis-
tributed implementation, each trusted transaction requires
a request message, though antecedent transactions will be
sent automatically. The system is still limited by network
bandwidth, since many transactions may need to be sent
to the reconciling peer, but the reduced number of ‘round-
trips’ between the update store and the client gives a great
performance improvement in many situations.

5.2.1 Relational Database Update Store
Relational database technology provides an efficient way

to implement a centralized update store. Commercial
RDBMSs offer high performance and durability, both im-
portant characteristics in a system such as ours. We high-
light some of the more interesting and innovative aspects of
our design.

In our implementation, an epoch count (implemented us-
ing an SQL sequence) is used to timestamp each batch of
transactions that it is published. Since publishing is not in-
stantaneous, each peer records when it has started publish-
ing, and also when it has finished. We decouple publishing
from reconciliation to support greater concurrency: when a
peer requests to reconcile after publishing, it determines the
latest epoch not preceded by an “unfinished” epoch, and it
uses this as its reconciliation epoch. No additional trans-
actions will be published by any participant prior to this
point. The inputs to reconciliation, then, are any trans-
actions whose epoch number lies between the participant’s
prior reconciliation epoch and this new epoch.

Implementing this approach requires care to avoid sacri-
ficing performance. The series of epoch numbers can contain
gaps if reconciliations are rolled back or aborted; therefore

2Some of the published transactions may be deferred be-
cause they modify dirty values.

Publishing
Peer

Epoch
Allocator

Epoch e
Controller

1 2
34

5

6
The messages sent are request epoch (1), begin epoch e (2), con-
firm epoch begun (3), begin publishing at epoch e (4), publish
transaction IDs for epoch e (5), and confirm epoch finished (6).
After this the publishing peer can send the transactions for epoch
e to their transaction controllers.

Figure 6: The procedure by which a peer publishes
an epoch in the DHT-based store.

each publishing peer must record when it has finished writ-
ing all transactions to the database, as mentioned above.
However, we also want to allow as many peers as possible
to publish updates simultaneously. Repeatable read isola-
tion at the DBMS level prevents race conditions: when the
reconciling peer determines the epoch to associate with its
reconciliation, it immediately stores that value in the rec-
onciliations table and commits the transaction, releasing all
locks. Thus it holds an exclusive lock on the epochs table
just long enough to determine the largest stable epoch num-
ber; thereafter reconciliation operations are decoupled from
the epochs table. By minimizing the time that lock is held,
we enable maximum concurrency in publishing updates, as
well as in the operation of reconciling. As long as no peer
is recording its decision to reconcile, there is no limit on the
number of peers that can simultaneously start reconciliation,
publish updates, or record that they have finished publish-
ing. Additionally, application of trust predicates and deter-
mination of update extensions take place inside the DBMS,
meaning that only relevant transactions and transactions
that contribute to their transaction extensions are sent over
the network.

5.2.2 DHT-Based Store
Our distributed update store is based on FreePastry, an

open-source implementation of a distributed hash table [28,
27, 31]. In this version, work (both storage and compu-
tation) is spread over the entire network of peers, using
transaction identifiers and epochs as keys. The peers store
three kinds of data, and each responds to several kinds of
messages, which are described below in detail. In this im-
plementation, we assume successful message delivery and
postpone a study of fault-tolerance to future work.

One peer, the owner of a predesignated key, keeps track
of the epoch count. When a participant wants to publish
updates, it requests the next epoch count from this epoch
allocator (see Figure 6). The epoch allocator informs the
epoch controller for this epoch (the DHT peer who “owns”
the hash value of the epoch) that this participant wants to
publish updates, and then returns the epoch count to the
requesting peer. After sending the epoch number to the
requesting participant, the epoch allocator increments its
epoch counter. We observe that, if this peer were to fail, its
data could be reconstructed by polling for the largest epoch
present in the system.

After a participant publishes its set of transactions dur-
ing an epoch, which it sends to the peer who owns the hash
of its transaction ID (the transaction controller), it trans-

Reconciling
Peer p

Transaction
ta Controller

Transaction
tc Controller

Transaction
tb Controller

Reconciling
Peer p

1

2

3

4 5

6

Transaction
ta Controller
Transaction
ta Controller

In this example p requests reconciliation information for trans-
action ta. p has already applied tb, but has not decided ta or
tc. tb and tc are antecedents of ta; tb has other antecedents, but
tc has none. The messages sent are request ta (1), send ta (2),
request tc for p (3), request tb for p (4), send tc (5), and tb not
relevant (6).

Figure 7: An example of retrieving a transaction for
reconciliation in the DHT-based store.

mits their IDs to the epoch controller. The epoch controller
concludes by marking the epoch as complete.

Now the participant needs to determine an epoch for the
second step, reconciliation. It requests the most recent epoch
from the epoch allocator, and uses that information to re-
quest the contents of all epochs since its last reconciliation
from their respective epoch controllers. It uses this infor-
mation to determine the most recent “stable” epoch, and
records this as its reconciliation epoch at its peer coordi-
nator. Then, for each epoch since the participant’s prior
reconciliation, it requests the set of transactions published
in that epoch from the epoch controller, and then requests
that set from the transaction controllers. Each transaction
controller either sends back the requested transaction, its
priority, and a set of antecedents; or a notification that the
transaction is untrusted or irrelevant. The reconciling peer
maintains a pending transactions set, to which it adds an-
tecedents and from which it removes received (or irrelevant)
transactions. This procedure is visualized in Figure 7. When
the pending transactions set becomes empty, the peer begins
running the reconciliation algorithm. That algorithm noti-
fies the appropriate transaction controllers when it accepts,
rejects, or defers transactions.

6. IMPLEMENTATION & EXPERIMENTS
We have implemented the reconciliation algorithm of Sec-

tion 5 above in Java, and also constructed a centralized up-
date store, built in Java over a major commercial RDBMS,
and a distributed store, based on FreePastry [28]. Since we
expect Orchestrasystems to consist of tens of participants,
we explore configurations of up to fifty peers.

Given that no comprehensive workload already exists for
bioinformatics data sharing, we developed a synthetic work-
load generator based on the SWISS-PROT bioinformatics
database, which contains organisms, proteins, and protein
functions. The simulator mimics the process of updating a
curated database like SWISS-PROT: each transaction con-
sists of a series of insertions or replacements over the Func-
tion relation, where update values are chosen according to a
heavy-tailed Zipfian distribution with characteristic s = 1.5,
sampled over the protein functions listed in SWISS-PROT.
When a new key is inserted, a secondary table of database
cross-references is updated to include a reference for the new
key; on average, 7.3 such tuples are inserted into the sec-
ondary table for each value inserted into the primary table.
All participants in the simulation trust each other at the
same priority for all updates, which will result in conflicts

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10
Transaction Size

St
at

e
Ra

tio

Figure 8: The effect of varying transaction size on
state ratio, while holding the number of updates be-
tween reconciliations constant.

that must be manually rather than automatically resolved.
We focus on two metrics that measure the feasibility, effi-

cacy, and scalability of our system. The first is running time
versus the amount of data and number of peers; clearly any
data sharing system needs to scale well. The second met-
ric is what we term the state ratio, the average number of
values in all participants’ states for a key (including lack of
a value). This measure ranges from one (all the peers have
exactly the same state) to the number of peers (there is no
overlap at all between the peers’ states). Since a lower ratio
indicates more shared data, we consider a smaller value for
this metric to generally indicate higher quality sharing.

Our experiments examine the effects of transaction size,
number of participants, and reconciliation frequency on these
metrics. Experiments were run at least five times, and 95%
confidence intervals are given in all figures. Unless indicated,
all experiments were performed with ten participants. All
of the running times quoted in this paper are the averaged
over all trials over all peers.

For the experiments using the central store, the RDBMS
ran on a dual Xeon 3.0GHz with 2 GB of RAM running Win-
dows Server 2003, and the client ran on a 2.8GHz Pentium 4
with 1 GB of RAM running SuSE Linux 9.2. The computers
were connected via switched 100Mb Ethernet. For experi-
ments with the distributed store, all nodes were run on the
Windows server, with a delay of at least 500 microseconds
added to every message (and reply) transmission. All ma-
chines used Sun’s JRE 1.5.0.

6.1 Transaction Size
Figure 8 examines the relationship between transaction

size and the overall amount of data shared between peers. As
one might expect, increasing transaction size increases the
state ratio: larger transactions increase the number of trans-
actions that conflict with each other, thus result in more
overall (inconsistent) state within the CDSS. Surprisingly,
while going from single-update transactions to transactions
with two updates greatly increases the state ratio, further
increases in transaction size have negligible effect, at least
for our synthetic workloads. This suggests that large trans-
actions do not cause undue fragmentation of data instances
in the system.

6.2 Reconciliation Frequency
Figure 9 measures the effect on state ratio of varying the

reconciliation interval. As reconciliation interval increases,
i.e. we reconcile less frequently, the state ratio increases

0

0.5

1

1.5

2

2.5

0 5 10 15 20
No. of Transactions (of size 1) between Reconciliations

St
at

e
Ra

tio

Figure 9: The effect on state ratio of varying recon-
ciliation interval.

0

5

10

15

20

25

RI = 4,
Central

RI = 4,
Distributed

RI = 20,
Central

RI = 20,
Distributed

RI = 50,
Central

RI = 50,
DistributedTo

tal
 R

ec
on

. T
im

e p
er

 P
ar

tic
ipa

nt
(se

c)

Store Time Local Time

Figure 10: The effect on execution time of vary-
ing reconciliation interval, while holding transaction
size at one. RI is the number of transactions pub-
lished between reconciliations.

slightly; this is because more conflicts are likely to arise
between longer transaction chains.

Figure 10 shows the corresponding execution times for an
average participant over several reconciliation intervals from
Figure 9. With a centralized update store, smaller reconcili-
ation intervals are significantly more expensive; in contrast,
for the distributed store, where the requests to follow an-
tecedent transaction chains dominate the running time, the
penalty for more smaller reconciliation intervals is negligible.
Overall, we conclude that with the distributed store, un-
less application-level semantics require otherwise, frequent
reconciliation is preferable, since it improves synchronicity
at little cost. For a central store the needs of the system
users will determine whether the improvement in quality is
worth the cost in performance. However, more frequent rec-
onciliations put a heavier load on overall system resources,
potentially reducing performance during a large number of
simultaneous reconciliations.

6.3 Number of Participants
Figures 11 and 12 show the effects of increasing the num-

ber of participants (peers), on state ratio and execution
time. Increasing the number of participants has several ef-
fects. First, it increases the number of transactions that
need to considered and compared with one another. Second,
for the distributed store, it increases the number of peers
that must be contacted to retrieve data, and therefore the
number of messages that must be sent across the network.
Both of these increase the time needed for reconciliation.
However, even for large numbers of peers, reconciliation is
an inexpensive operation, as we see in Figure 12. Finally,
a large number of peers increases the maximum state ratio,

0

1

2

3

4

5

6

0 10 20 30 40 50
Number of Participants

St
at

e
Ra

tio

Figure 11: The change in state ratio when the num-
ber of peers is increased.

0

1

2

3

4

5

6

10 Peers,
Central

10 Peers,
Distributed

25 Peers,
Central

25 Peers,
Distributed

50 Peers,
Central

50 Peers,
Distributed

Av
er

ag
e T

im
e p

er
 R

ec
on

cil
iat

ion
 (s

ec
)

Store Time Local Time

Figure 12: The effect on execution time when the
number of peers is increased.

since it also increases the total number of participants who
make updates; observe that the state ratio grows decidedly
sublinearly, indicating a high level of sharing among even
large numbers of peers.

7. CONCLUSIONS AND FUTURE WORK
This paper represents a new means of providing distributed

data sharing services. Rather than requiring all sites to
agree on a single data instance that is globally consistent,
instead we allow each site to have its own autonomous —
but carefully coordinated — data instance, with a series of
acceptance rules specifying its policy for importing updates
from others. Our contributions have been the following:

• A formalism for reconciliation, including a notion of
consistency, that emphasizes local autonomy, making
forward progress, and providing intuitive behavior.

• New algorithms to reconcile database instances.

• Demonstration that these algorithms perform accept-
ably for sharing data in mid-sized confederations.

The work discussed in this paper represents a first step
in the Orchestra project. In the future, we plan to ad-
dress techniques for schema translation, implement a fully
distributed network-centric reconciliation engine, and per-
form real-world evaluation of Orchestra in bioinformatics
data sharing. We are optimistic that our approach of sup-
porting overlapping, yet divergent, database instances will
facilitate improved data sharing practices.

Acknowledgments
The authors would like to express their gratitude to Alon
Halevy, Val Tannen, TJ Green, Grigoris Karvounarakis, Olivier

Biton, the members of the Penn Database group, and the
anonymous reviewers for their comments and suggestions.

8. REFERENCES
[1] M. Arenas, L. E. Bertossi, and J. Chomicki.

Consistent query answers in inconsistent databases. In
PODS, 1999.

[2] A. Bairoch and R. Apweiler. The SWISS-PROT
protein sequence database and its supplement
TrEMBL. Nucleic Acids Research, 28, 2000.

[3] P. Buneman, S. Khanna, and W. C. Tan. Why and
where: A characterization of data provenance. In
ICDT, 2001.

[4] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
R. Rosati. Logical foundations of peer-to-peer data
integration. In PODS, 2004.

[5] S. Ceri, M. A. W. Houtsma, A. M. Keller, and
P. Samarati. Independent updates and incremental
agreement in replicated databases. Distributed and
Parallel Databases, 3(3), 1995.

[6] Y. Cui. Lineage Tracing in Data Warehouses. PhD
thesis, Stanford University, 2001.

[7] Concurrent versions system. Available from
www.cvshome.org.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, and
J. Larson. Epidemic algorithms for replicated
database maintenance. In PODC ’87, 1987.

[9] W. K. Edwards, E. D. Mynatt, K. Petersen, M. J.
Spreitzer, D. B. Terry, and M. M. Theimer. Designing
and implementing asynchronous collaborative
applications with Bayou. In UIST ’97, 1997.

[10] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bi-directional
tree transformations: A linguistic approach to the
view update problem. Technical Report
MS-CIS-004-15, University of Pennsylvania, July 2004.

[11] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom.
The TSIMMIS project: Integration of heterogeneous
information sources. Journal of Intelligent
Information Systems, 8(2), March 1997.

[12] S. Ghandeharizadeh, R. Hull, and D. Jacobs.
Heraclitus: Elevating deltas to be first-class citizens in
a database programming language. TODS, 21(3),
1996.

[13] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov.
Schema mediation in peer data management systems.
In ICDE, March 2003.

[14] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir.
Orchestra: Rapid, collaborative sharing of dynamic
data. In CIDR, January 2005.

[15] A. Kementsietsidis, M. Arenas, and R. J. Miller.
Mapping data in peer-to-peer systems: Semantics and
algorithmic issues. In SIGMOD, June 2003.

[16] A.-M. Kermarrec, A. Rowstron, M. Shapiro, and
P. Druschel. The IceCube approach to the
reconciliation of diverging replicas. In PODC ’01,
August 2001.

[17] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. TODS, 6(2), 1981.

[18] L. Lamport. Concurrent reading and writing of clocks.

ACM Trans. Comput. Syst., 8(4), 1990.

[19] D. Lembo, M. Lenzerini, and R. Rosati. Source
inconsistency and incompleteness in data integration.
In KRDB ’02, April 2002.

[20] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source
descriptions. In VLDB, 1996.

[21] K. Moore. The Lotus Notes storage system. In
SIGMOD, 1995.

[22] P. Mork, R. Shaker, A. Halevy, and
P. Tarczy-Hornoch. PQL: A declarative query
language over dynamic biological schemata. In
American Medical Informatics Association (AMIA)
Symposium, 2002, November 2002.

[23] A. Muthitacharoen, R. Morris, T. M. Gil, and
B. Chen. Ivy: A read/write peer-to-peer file system.
In OSDI, 2002.

[24] National Center for Biotechnology Information.
GenBank. Available from
www.ncbi.nlm.nih.gov/GenBank/.

[25] D. S. Parker, Jr., G. J. Popek, G. Rudisin,
A. Stoughton, B. J. Walker, E. Walton, J. M. Chow,
D. A. Edwards, S. Kiser, and C. S. Kline. Detection of
mutual inconsistency in distributed systems. IEEE
Trans. Software Eng., 9(3), 1983.

[26] B. C. Pierce, T. Jim, and J. Vouillon. Unison: A
portable, cross-platform file synchronizer, 1999–2001.

[27] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proc. of ACM SIGCOMM ’01, 2001.

[28] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), Nov. 2001.

[29] F. Sadri. Aggregate operations in the information
source tracking method. Theor. Comput. Sci., 133(2),
1994.

[30] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere. Coda: A
highly available file system for a distributed
workstation environment. IEEE Trans. Comput.,
39(4), 1990.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proc. of
ACM SIGCOMM ’01, 2001.

[32] J. Widom. Trio: A system for integrated management
of data, accuracy, and lineage. In CIDR, 2005.

