

Four
FILE STRUCTURES

Introduction

This chapter is mainly concerned with the way in which file structures are used in document
retrieval. Most surveys of file structures address themselves to applications in data
management which is reflected in the terminology used to describe the basic concepts. I
shall (on the whole) follow Hsiao and Harary1 whose terminology is perhaps slightly non-
standard but emphasises the logical nature of file structures. A further advantage is that it
enables me to bridge the gap between data management and document retrieval easily. A
few other good references on file structures are Roberts2, Bertziss3, Dodd4, and Climenson5.

Logical or physical organisation and data independence

There is one important distinction that must be made at the outset when discussing file
structures. And that is the difference between the logical and physical organisation of the
data. On the whole a file structure will specify the logical structure of the data, that is the
relationships that will exist between data items independently of the way in which these
relationships may actually be realised within any computer. It is this logical aspect that we
will concentrate on. The physical organisation is much more concerned with optimising the
use of the storage medium when a particular logical structure is stored on, or in it.
Typically for every unit of physical store there will be a number of units of the logical
structure (probably records) to be stored in it. For example, if we were to store a tree
structure on a magnetic disk, the physical organisation would be concerned with the best
way of packing the nodes of the tree on the disk given the access characteristics of the disk.

The work on data bases has been very much concerned with a concept called data
independence. The aim of this work is to enable programs to be written independently of the
logical structure of the data they would interact with. The independence takes the
following form, should the file structure overnight be changed from an inverted to a serial file
the program should remain unaffected. This independence is achieved by interposing a data
model between the user and the data base. The user sees the data model rather than the
data base, and all his programs communicate with the model. The user therefore has no
interest in the structure of the file.

There is a school of thought that says that says that applications in library automation
and information retrieval should follow this path as well6,7. And so it should.
Unfortunately, there is still much debate about what a good data model should look like.
Furthermore, operational implementations of some of the more advanced theoretical systems
do not exist yet. So any suggestion that an IR system might be implemented through a data
base package should still seem premature. Also, the scale of the problems in IR is such that
efficient implementation of the application still demands close scrutiny of the file structure
to be used.

Nevertheless, it is worth taking seriously the trend away from user knowledge of file
structures, a trend that has been stimulated considerably by attempts to construct a theory
of data8,9. There are a number of proposals for dealing with data at an abstract level. The
best known of these by now is the one put forward by Codd8, which has become known as
the relational model. In it data are described by n-tuples of attribute values. More
formally if the data is described by relations, a relation on a set of domains D1, . . . , Dn can
be represented by a set of ordered n-tuples each of the form (d1, . . . , dn) where di ∈ Di. As

50 File structures

it is rather difficult to cope with general relations, various levels (three in fact) of
normalisation have been introduced restricting the kind of relations allowed.

A second approach is the hierarchical approach. It is used in many existing data base
systems. This approach works as one might expect: data is represented in the form of
hierarchies. Although it is more restrictive than the relational approach it often seems to be
the natural way to proceed. It can be argued that in many applications a hierarchic
structure is a good approximation to the natural structure in the data, and that the resulting
loss in precision of representation is worth the gain in efficiency and simplicity of
representation.

The third approach is the network approach associated with the proposals by the Data
Base Task Group of CODASYL. Here data items are linked into a network in which any
given link between two items exists because it satisfies some condition on the attributes of
those items, for example, they share an attribute. It is more general than the hierarchic
approach in the sense that a node can have any number of immediate superiors. It is also
equivalent to the relational approach in descriptive power.

The whole field of data base structures is still very much in a state of flux. The
advantages and disadvantages of each approach are discussed very thoroughly in Date10 ,
who also gives excellent annotated citations to the current literature. There is also a recent
Computing Surveyll which reviews the current state of the art. There have been some very
early proponents of the relational approach in IR, as early as 1967 Maron12 and Levien13

discussed the design and implementation of an IR system via relations, be it binary ones.
Also Prywes and Smith in their review chapter in the Annual Review of Information Science and
Technology more recently recommended the DBTG proposals as ways of implementing IR
systems7.

Lurking in the background of any discussion of file structures nowadays is always the
question whether data base technology will overtake all. Thus it may be that any
application in the field of library automation and information retrieval will be implemented
through the use of some appropriate data base package. This is certainly a possibility but
not likely to happen in the near future. There are several reasons. One is that data base
systems are general purpose systems whereas automated library and retrieval systems are
special purpose. Normally one pays a price for generality and in this case it is still too great.
Secondly, there now is a considerable investment in providing special purpose systems (for
example, MARC)14 and this is not written off very easily. Nevertheless a trend towards
increasing use of data-base technology exists and is well illustrated by the increased
prominence given to it in the Annual Review of Information Science and Technology.

A language for describing file structures

Like all subjects in computer science the terminology of file structures has evolved higgledy-
piggledy without much concern for consistency, ambiguity, or whether it was possible to
make the kind of distinctions that were important. It was only much later that the need for
a well-defined, unambiguous language to describe file structures became apparent. In
particular, there arose a need to communicate ideas about file structures without getting
bogged down by hardware considerations.

This section will present a formal description of file structures. The framework
described is important for the understanding of any file structure. The terminology is based
on that introduced by Hsiao and Harary (but also see Hsiao15 and Manola and Hsiao16).
Their terminology has been modified and extended by Severance17 , a summary of this can be
found in van Rijsbergen18 . Jonkers19 has formalised a different framework which provides
an interesting contrast to the one described here.

Basic terminology

Given a set of 'attributes' A and a set of 'values' V, then a record R is a subset of the cartesian
product A x V in which each attribute has one and only one value. Thus R is a set of

Introduction 51

ordered pairs of the form (an attribute, its value). For example, the record for a document
which has been processed by an automatic content analysis algorithm would be

R = {(K1, x1), (K2, x2), . . . (Km, xm)}

The Ki 's are keywords functioning as attributes and the value xi can be thought of as a
numerical weight. Frequently documents are simply characterised by the absence or
presence of keywords, in which case we write

R = {Kt1
, Kt2

, . . . , Kti
}

where Kti
 is present if xti

 = 1 and is absent otherwise.

Records are collected into logical units called files. They enable one to refer to a set of
records by name, the file name. The records within a file are often organised according to
relationships between the records. This logical organisation has become known as a file
structure (or data structure).

It is difficult in describing file structures to keep the logical features separate from the
physical ones. The latter are characteristics forced upon us by the recording media (e.g.
tape, disk). Some features can be defined abstractly (with little gain) but are more easily
understood when illustrated concretely. One such feature is a field. In any implementation
of a record, the attribute values are usually positional, that is the identity of an attribute is
given by the position of its attribute value within the record. Therefore the data within a
record is registered sequentially and has a definite beginning and end. The record is said to
be divided into fields and the nth field carries the nth attribute value. Pictorially we have an
example of a record with associated fields in Figure 4.1.

R =
K

1
K 2

K
3

K 4

P1 P2

P
3

P
4

Figure 4.1. An example of a record with associated fields

The fields are not necessarily constant in length. To find the value of the attribute K4, we
first find the address of the record R (which is actually the address of the start of the
record) and read the data in the 4th field.

In the same picture I have also shown some fields labelled Pi. They are addresses of
other records, and are commonly called pointers. Now we have extended the definition of
a record to a set of attribute-value pairs and pointers. Each pointer is usually associated
with a particular attribute-value pair. For example, (see Figure 4.2) pointers could be used
to link all records for which the value x1 (of attribute K1) is a, similarly for x2 equal to b, etc.

52 File structures

a

c

b

c

a

c

b aR R R R R1 2 3 4 5

∧
∧ ∧

Figure 4.2. A demonstration of the use of pointers to link records

To indicate that a record is the last record pointed to in a list of records we use the null
pointer ∧. The pointer associated with attribute K in record R will be called a K-pointer. An
attribute (keyword) that is used in this way to organise a file is called a key.

The unify the discussion of file structures we need some further concepts. Following
Hsiao and Harary again, we define a list L of records with respect to a keyword K, or more
briefly a K-list as a set of records containing K such that:

(1) the K-pointers are distinct;

(2) each non-null K-pointer in L gives the address of a record within L;

(3) there is a unique record in L not pointed to by any record containing K;
it is called the beginning of the list; and

(4) there is a unique record in L containing the null K-pointer; it is the end
of the list.

(Hsiao and Harary state condition (2) slightly differently so that no two K-lists have a
record in common; this only appears to complicate things.)

From our previous example:

K1-list : R1, R2, R5

K2-list : R2, R4

K4-list : R1, R2, R3

Finally, we need the definition of a directory of a file. Let F be a file whose records
contain just m different keywords K1, K2, . . . , Km. Let ni be the number of records
containing the keyword Ki, and hi be the number of Ki-lists in F. Furthermore, we denote by
aij the beginning address of the jth Ki-list. Then the directory is the set of sequences

(Ki, ni, h i, ai1, ai2, . . . aih i
) i = 1, 2, . . . m

We are now in a position to give a unified treatment of sequential files, inverted files,
index-sequential files and multi-list files.

Sequential files

A sequential file is the most primitive of all file structures. It has no directory and no
linking pointers. The records are generally organised in lexicographic order on the value of
some key. In other words, a particular attribute is chosen whose value will determine the
order of the records. Sometimes when the attribute value is constant for a large number of
records a second key is chosen to give an order when the first key fails to discriminate.

The implementation of this file structure requires the use of a sorting routine.

Introduction 53

Its main advantages are:

(1) it is easy to implement;

(2) it provides fast access to the next record using lexicographic order.

Its disadvantages:

(1) it is difficult to update - inserting a new record may require moving a large
proportion of the file;

(2) random access is extremely slow.

Sometimes a file is considered to be sequentially organised despite the fact that it is not
ordered according to any key. Perhaps the date of acquisition is considered to be the key
value, the newest entries are added to the end of the file and therefore pose no difficulty to
updating.

Inverted files

The importance of this file structure will become more apparent when Boolean Searches are
discussed in the next chapter. For the moment we limit ourselves to describing its structure.

An inverted file is a file structure in which every list contains only one record. Remember
that a list is defined with respect to a keyword K, so every K-list contains only one record.
This implies that the directory will be such that ni = hi for all i, that is, the number of records
containing Ki will equal the number of Ki-lists. So the directory will have an address for
each record containing Ki . For document retrieval this means that given a keyword we can
immediately locate the addresses of all the documents containing that keyword. For the
previous example let us assume that a non-black entry in the field corresponding to an
attribute indicates the presence of a keyword and a black entry its absence. Then the
directory will point to the file in the way shown in Figure 4.3. The definition of an inverted
files does not require that the addresses in the directory are in any order. However, to
facilitate operations such as conjunction ('and') and disjunction ('or') on any two inverted
lists, the addresses are normally kept in record number order. This means that 'and' and 'or'
operations can be performed with one pass through both lists. The penalty we pay is of
course that the inverted file becomes slower to update.

54 File structures

a

a

a

a a a

aaa

a

a

a

a

a

a

a

a

a

K

K

K

K

1

2

3

4

11

11

12

12

13

13

21

21

22

22
41

41

42

42

3, 3,

3,3,

2, 2,

c

b

c

c

b

, , ,

, ,

, a 43
=

==

43

Figure 4.3. An inverted file

Directory

File

Index-sequential files

An index-sequential file is an inverted file in which for every keyword Ki , we have ni = hi =
1 and a11 <a21 . . . <am1. This situation can only arise if each record has just one unique
keyword, or one unique attribute-value. In practice therefore, this set of records may be
order sequentially by a key. Each key value appears in the directory with the associated
address of its record. An obvious interpretation of a key of this kind would be the record
number. In our example none of the attributes would do the job except the record number.
Diagrammatically the index-sequential file would therefore appear as shown in Figure 4.4. I
have deliberately written Ri instead of Ki to emphasise the nature of the key.

Introduction 55

Directory
File

a

c

b

c

a

c

b

a

5 51R 1, 1,, a

4 41R 1, 1,, a

3 31R 1, 1,, a

2 21R 1, 1,, a

1 11R 1, 1,, a

Figure 4.4. An index-sequential file

In the literature an index-sequential file is usually thought of as a sequential file with a
hierarchy of indices. This does not contradict the previous definition, it merely describes
the way in which the directory is implemented. It is not surprising therefore that the indexes
('index' = 'directory' here) are often oriented to the characteristics of the storage medium.
For example (see Figure 4.5) there might be three levels of indexing: track, cylinder and
master. Each entry in the track index will contain enough information to locate the start of
the track, and the key of the last record in the track which is also normally the highest value
on that track. There is a track index for each cylinder. Each entry in the cylinder index
gives the last record on each cylinder and the address of the track index for that cylinder. If
the cylinder index itself is stored on tracks, then the master index will give the highest key
referenced for each track of the cylinder index and the starting address of that track.

56 File structures

Cylinder and track
containing index

Highest key referenced
for corresponding index

1/010 0150

2/020 0250

3/015 0350

Highest key referenced
for corresponding index

Track address of
record index

0050 015

0150 030

Highest key in track Start of track

0080 090

00100 091

0060

0065

0070

0080

0085

0090

0095

0100

091

090

Track Key Data

Master index
[Core store]

Cylinder index
[Cylinder 1,
 track 010]

Track index
[Cylinder 1,
 track 030]

Data area

Figure 4.5. An example of an implementation of an index-sequential file (Adapted
from D. R. Judd, The Use of Files, Macdonald and Elsevier, London and New York
1973, page 46)

Introduction 57

No mention has been made of the possibility of overflow during an updating process.
Normally provision is made in the directory to administer an overflow area. This of course
increases the number of book-keeping entries in each entry of the index.

Multi-lists

A multi-list is really only a slightly modified inverted file. There is one list per keyword, i.e.
hi = 1. The records containing a particular keyword Ki are chained together to form the Ki-
list and the start of the Ki-list is given in the directory, as illustrated in Figure 4.6. Since
there is no K3-list, the field reserved for its pointer could well have been omitted. So could
any blank pointer field, so long as no ambiguity arises as to which pointer belongs to which
keyword. One way of ensuring this, particularly if the data values (attribute-values) are
fixed format, is to have the pointer not pointing to the beginning of the record but pointing to
the location of the next pointer in the chain.

The multi-list is designed to overcome the difficulties of updating an inverted file. The
addresses in the directory of an inverted file are normally kept in record-number order. But,
when the time comes to add a new record to the file, this sequence must be maintained, and
inserting the new address can be expensive. No such problem arises with the multi-list, we
update the appropriate K-lists by simply chaining in the new record. The penalty we pay
for this is of course the increase in search time. This is in fact typical of many of the file
structures. Inherent in their design is a trade-off between search time and update time.

Cellular multi-lists

A further modification of the multi-list is inspired by the fact that many storage media are
divided into pages, which can be retrieved one at a time. A K-list may cross several page
boundaries which means that several pages may have to be accessed to retrieve one record.
A modified multi-list structure which avoids this is called a cellular multi-list . The K-lists
are limited so that they will not cross the page (cell) boundaries.

At this point the full power of the notation introduced before comes into play. The
directory for a cellular multi-list will be the set of sequences

(Ki, ni, h i, ai1, . . . aih i
) i = 1, 2, . . . , m

where the hi have been picked to ensure that a Ki-list does not cross a page boundary. In
an implementation, just as in the implementation of an index-sequential file, further
information will be stored with each address to enable the right page to be located for each
key value.

Ring structures

A ring is simply a linear list that closes upon itself. In terms of the definition of a K-list,
the beginning and end of the list are the same record. This data-structure is particularly
useful to show classification of data.

Let us suppose that a set of documents

{Dl, D2, D3, D4, D5, D6, D7, D8}

has been classified into four groups, that is

{(Dl, D2), (D3, D4), (D5, D6), (D7, D8)}

Furthermore these have themselves been classified into two groups,

{((Dl, D2), (D3, D4)), ((D5, D6), (D7, D8))}

The dendrogram for this structure would be that given in Figure 4.7. To represent this in
storage by means of ring structures is now a simple matter (see Figure 4.8).

58 File structures

Directory File

11
c

b

a

c

b

Figure 4.6. A multi-list

Λ

Λ

21a

4R 3, 1,, 41a

3R

2R 2, 1,, 21a

4111a a=

2R 2, 1,, a
a

c

a

Λ

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

Figure 4.7. A dendrogram

Introduction 59

C

C C

C C C C1 2 3 4

5 6

7

1D 2D 3D 4D
5D 6D 7D

8D

Figure 4.8. An implementation of a dendrogram via ring structures

The Di indicates a description (representation) of a document. Notice how the rings at a
lower level are contained in those at a higher level. The field marked Ci normally contains
some identifying information with respect to the ring it subsumes. For example, C1 in some
way identifies the class of documents {D1, D2}.

Were we to group documents according to the keywords they shared, then for each
keyword we would have a group of documents, namely, those which had that keyword in
common. Ci would then be the field containing the keyword uniting that particular group.
The rings would of course overlap (Figure 4.9), as in this example:

D1 = {K1, K2}

D2 = {K2, K3}

D3 = {K1, K4}

The usefulness of this kind of structure will become more apparent when we discuss
searching of classifications. If each ring has associated with it a record which contains
identifying information for its members, then, a search strategy searching a structure such as
this will first look at Ci (or Ki in the second example) to determine whether to proceed or
abandon the search.

Threaded lists

60 File structures

In this section an elementary knowledge of list processing will be assumed. Readers who
are unfamiliar with this topic should consult the little book by Foster20 .

K K

D D D

1 2

3 1 2

Figure 4.9. Two overlapping rings

A simple list representation of the classification

((D1, D2), (D3, D4)), ((D5, D6), (D7, D8))

is given in Figure 4.10. Each sublist in this structure has associated with it a record
containing only two pointers. (We can assume that Di is really a pointer to document Di.)
The function of the pointers should be clear from the diagram. The main thing to note,
however, is that the record associated with a list does not contain any identifying
information.

A modification of the implementation of a list structure like this which makes it resemble
a set of ring structures is to make the right hand pointer of the last element of a sublist point
back to the head of the sublist. Each sublist has become effectively a ring structure. We
now have what is commonly called a threaded list (see Figure 4.11). The representation I
have given is a slight oversimplification in that we need to flag which elements are data
elements (giving access to the documents Di) and which elements are just pointer elements.
The major advantage associated with a threaded list is that it can be traversed without the
aid of a stack. Normally when traversing a conventional list structure the return addresses
are stacked, whereas in the threaded list they have been incorporated in the data structure.

Introduction 61

2D D
3

D
4

D5 D6 D
7

D
8

D1

Figure 4.10. A list structure implementation of a hierarchic classification

One disadvantage associated with the use of list and ring structures for representing
classifications is that they can only be entered at the 'top'. An additional index giving entry
to the structure at each of the data elements increases the update speed considerably.

D1 2
D

3
D

7
D

4D D6D5 D
8

Figure 4.11. A threaded list implementation of a hierarchic classification

Another modification of the simple list representation has been studied extensively by
Stanfel21,22 and Patt23 . The individual elements (or cells) of the list structure are modified
to incorporate one extra field, so that instead of each element looking like this

62 File structures

it now looks like this P P S P P1 2 1 2

where the Pis are pointers and S is a symbol. Otherwise no essential change has been
made to the simple representation. This structure has become known as the Doubly Chained
Tree. Its properties have mainly been investigated for storing variable length keys, where
each key is made up by selecting symbols from a finite (usually small) alphabet. For
example, let {A,B,C} be the set of key symbols and let R1, R2, R3, R4, R5 be five records to be
stored. Let us assign keys made of the 3 symbols, to the record as follows:

AAA R1

AB R2

AC R3

BB R4

BC R5

An example of a doubly chained tree containing the keys and giving access to the records
is given in Figure 4.12. The topmost element contains no symbol, it merely functions as the
start of the structure. Given an arbitrary key its presence or absence is detected by
matching it against keys in the structure. Matching proceeds level by level, once a matching
symbol has been found at one level, the P1 pointer is followed to the set of alternative
symbols at the next level down. The matching will terminate either:

(1) when the key is exhausted, that is, no more key symbols are left to
match; or

(2) when no matching symbol is found at the current level.

Level 0

Level 1

Level 2

Level 3

A B

B R C R A B R C R

A R

2 3 4 5

1

Figure 4.12. An example of a doubly chained tree

For case (1) we have:

Introduction 63

(a) the key is present if the P1 pointer in the same cell as the last matching symbol
now points to a record;

(b) P1 points to a further symbol, that is, the key 'falls short' and is therefore not in
the structure.

For case (2), we also have that the key is not in the structure, but now there is a
mismatch.

Stanfel and Patt have concentrated on generating search trees with minimum expected
search time, and preserving this property despite updating. For the detailed mathematics
demonstrating that this is possible the reader is referred to their cited work.

Trees

Although computer scientists have adopted trees as file structures, their properties were
originally investigated by mathematicians. In fact, a substantial part of the Theory of Graphs
is devoted to the study of trees. Excellent books on the mathematical aspects of trees (and
graphs) have been written by Berge24 , Harary et al.,25 and Ore26 . Harary's book also
contains a useful glossary of concepts in graph theory. In addition Bertziss3 and Knuth27

discuss topics in graph theory with applications in information processing.

There are numerous definitions of trees. I have chosen a particularly simple one from
Berge. If we think of a graph as a set of nodes (or points or vertices) and a set of lines (or
edges) such that each line connects exactly two nodes, then a tree is defined to be a finite
connected graph with no cycles, and possessing at least two nodes. To define a cycle we
first define a chain. We represent the line uk joining two nodes x and y by uk = [x,y]. A
chain is a sequence of lines, in which each line uk has one node in common with the preceding
line uk-1, and the other vertex in common with the succeeding line uk+1. An example of a
chain is [a,x1], [x1,x2], [x2,x3], [x3,b]. A cycle is a finite chain which begins at a node and
terminates at the same node (i.e. in the example a = b).

Berge gives the following theorem showing many equivalent characterisations of trees.

Theorem. Let H be a graph with at least n nodes, where n > 1; any one of the following
equivalent properties characterises a tree.

(1) H is connected and does not possess any cycles.

(2) H contains no cycles and has n - 1 lines.

(3) H is connected and has n - l lines.

(4) H is connected but loses this property if any line is deleted.

(5) Every pair of nodes is connected by one and only one chain.

One thing to be noticed in the discussion so far is that no mention has been made of a
direction associated with a line. In most applications in computer science (and IR) one node
is singled out as special. This node is normally called the root of the tree, and every other
node in the tree can only be reached by starting at the root and proceeding along a chain of
lines until the node sought is reached. Implicitly therefore, a direction is associated with
each line. In fact, when one comes to represent a tree inside a computer by a list structure,
often the addresses are stored in a way which allows movement in only one direction. It is
convenient to think of a tree as a directed graph with a reserved node as the root of the tree.
Of course, if one has a root then each path (directed chain) starting at the root will
eventually terminate at a particular node from which no further branches will emerge. These
nodes are called the terminal nodes of the tree.

By now it is perhaps apparent that when we were talking about ring structures and
threaded lists in some of our examples we were really demonstrating how to implement a
tree structure. The dendrogram in Figure 4.7 can easily be represented as a tree (Figure

64 File structures

4.13). The documents are stored at the terminal nodes and each node represents a class
(cluster) of documents. A search for a particular set of documents would be initiated at the
root and would proceed along the arrows until the required class was found.

Another example of a tree structure is the directory associated with an index-sequential
file. It was described as a hierarchy of indexes, but could equally well have been described
as a tree structure.

The use of tree structures in computer science dates back to the early 1950s when it was
realised that the so-called binary search could readily be represented by a binary tree. A
binary tree is one in which each node (except the terminal nodes) has exactly two branches
leaving it. A binary search is an efficient method for detecting the presence or absence of a
key value among a set of keys. It presupposes that the keys have been sorted. It proceeds
by successive division of the set, at each division discarding half the current set as not
containing the sought key. When the set contains N sorted keys the search time is of order
log2N. Furthermore, after some thought one can see how this process can be simply
represented by a binary tree.

Unfortunately, in many applications one wants the ability to insert a key which has been
found to be absent. If the keys are stored sequentially then the time taken by the insertion
operation may be of order N. If one, however, stores the keys in a binary tree this lengthy
insert time may be overcome, both search and insert time will be of order log2N. The keys
are stored at the nodes, at each node a left branch will lead to 'smaller' keys, a right branch
will lead to 'greater' keys. A search terminating on a terminal node will indicate that the key
is not present and will need to be inserted.

The structure of the tree as it grows is largely dependent on the order in which new keys
are presented. Search time may become unnecessarily long because of the lop-sidedness of
the tree. Fortunately, it can be shown (Knuth28) that random insertions do not change the
expected log2N time dependence of the tree search. Nevertheless, methods are available to
prevent the possibility of degenerate trees. These are trees in which the keys are stored in
such a way that the expected search time is far from optimal. For example, if the keys were
to arrive for insertion already ordered then the tree to be built would simply be as shown in
Figure 4.14.

Introduction 65

D D D D D D D D
1 2 3 4 5 6 7 8

Terminal nodes Bottom
of tree

Top of treeRoot

Figure 4.13. A tree representation of a dendrogram

It would take us too far afield for me to explain the techniques for avoiding degenerate
trees. Essentially, the binary tree is maintained in such a way that at any node the subtree
on the left branch has approximately as many levels as the subtree on the right branch.
Hence the name balanced tree for such a tree. The search paths in a balanced tree will never
be more than 45 per cent longer than the optimum. The expected search and insert times are
still of order log N. For further details the reader is recommended to consult Knuth28 .

K

K

K 1

2

3

Figure 4.14. An example of a degenerate tree

So far we have assumed that each key was equally likely as a search argument. If one
has data giving the probability that the search argument is Ki (a key already in the tree), and
the probability that the search argument lies between Ki and Ki+1, then again techniques are
known for reordering the tree to optimise the expected search time. Essentially one makes
sure that the more frequently accessed keys have the shortest search paths from the root.

66 File structures

One well-known technique used when only the second set of probabilities is known, and the
others assigned the value zero, is the Hu-Tucker algorithm. Again the interested reader may
consult Knuth.

At this point it is probably a good idea to point out that these efficiency considerations
are largely irrelevant when it comes to representing a document classification by a tree
structure. The situation in document retrieval is different in the following aspects:

(1) we do not have a useful linear ordering on the documents;

(2) a search request normally does not seek the absence or presence of a document.

In fact, what we do have is that documents are more or less similar to each other, and a
request seeks documents which in some way best match the request. A tree structure
representing a document classification is therefore chosen so that similar documents may be
close together. Therefore to rearrange a tree structure to satisfy some 'balancedness'
criterion is out of the question. The search efficiency is achieved by bringing together
documents which are likely to be required together.

This is not to say that the above efficiency considerations are unimportant in the general
context of IR. Many operations, such as the searching of a dictionary, and using a suffix
stripping algorithm can be made very efficient by appropriately structuring the binary tree.

The discussion so far has been limited to binary trees. In many applications this two-
way split is inappropriate. The natural way to represent document classifications is by a
general tree structure, where there is no restriction on the number of branches leaving a node.
Another example is the directory of an index sequential file which is normally represented
by an m-way tree, where m is the number of branches leaving a node.

Finally, more comments are in order about the manipulation of tree structures in mass
storage devices. Up to now we have assumed that to follow a set of pointers poses no
particular problems with regard to retrieval speed. Unfortunately, present random access
devices are sufficiently slow for it to be impossible to allow an access for, say, each node in
a tree. There are ways of partitioning trees in such a way that the number of disk accesses
during a tree search can be reduced. Essentially, it involves storing a number of nodes
together in one 'page' of disk storage. During a disk access this page is brought into fast
memory, is then searched, and the next page to be accessed is determined.

Scatter storage or hash addressing

One file structure which does not relate very well to the ones mentioned before is known
as Scatter Storage. The technique by which the file structure is implemented is often called
Hash Addressing. Its underlying principle is appealingly simple. Given that we may access
the data through a number of keys Ki, then the address of the data in store is located
through a key transformation function f which when applied to Ki evaluates to give the
address of the associated data. We are assuming here that with each key is associated only
one data item. Also for convenience we will assume that each record (data and key) fits
into one location, whose address is in the image space of f. The addresses given by the
application of f to the keys Ki are called the hash addresses and f is called a hashing
function. Ideally f should be such that it spreads the hash addresses uniformly over the
available storage. Of course this would be achieved if the function were one-to-one.
Unfortunately this cannot be so because the range of possible key values is usually
considerably larger than the range of the available storage addresses. Therefore, given any
hashing function we have to contend with the fact that two distinct keys Ki and Kj are likely
to map to the same address f(Ki) (=f(Kj)). Before I explain some of the ways of dealing with
this I shall give a few examples of hashing functions.

Let us assume that the available storage is of size 2m then three simple transformations
are as follows:

Introduction 67

(1) if Ki is the key, then take the square of its binary representation and select m bits
from the middle of the result;

(2) cut the binary representation of Ki into pieces each of m bits and add these
together. Now select the m least significant bits of the sum as the hash address;

(3) divide the integer corresponding to Ki by the length of the available store 2m and
use the remainder as the hash address.

Each of these methods has disadvantages. For example, the last one may given the same
address rather frequently if there are patterns in the keys. Before using a particular method,
the reader is advised to consult the now extensive literature on the subject, e.g. Morris29 , or
Lum et al.30 .

As mentioned before there is the problem of collisions, that is, when two distinct keys
hash to the same address. The first point to be made about this problem is that it destroys
some of the simplicity of hashing. Initially it may have been thought that the key need not be
stored with the data at the hash address. Unfortunately this is not so. No matter what
method we use to resolve collisions we still need to store the key with the data so that at
search time when a key is hashed we can distinguish its data from the data associated with
keys which have hashed to the same address.

There are a number of strategies for dealing with collisions. Essentially they fall into two
classes, those which use pointers to link together collided keys and those which do not. Let
us first look at the ones which do not use pointers. These have a mechanism for searching
the store, starting at the address where the collision occurred, for an empty storage location
if a record needs to be inserted, or, for a matching key value at retrieval time. The simplest
of these advances from the hash address each time moving along a fixed number of
locations, say s, until an empty location or the matching key value is found. The collision
strategy thus traces out a well defined sequence of locations. This method of dealing with
collisions is called the linear method. The tendency with this method is to store collided
records as closely to the initial hash address as possible. This leads to an undesirable effect
called primary clustering. In this context all this means is that the records tend to concentrate
in groups or bunch-up. It destroys the uniform nature of the hashing function. To be more
precise, it is desirable that hash addresses are equally likely, however, the first empty
location at the end of a collision sequence increases in likelihood in proportion to the number
of records in the collision sequence. To see this one needs only to realise that a key hashed
to any location in the sequence will have its record stored at the end of the sequence.
Therefore big groups of records tend to grow even bigger. This phenomenon is aggravated by
a small step size s when seeking an empty location. Sometimes s = 1 is used in which case
the collision strategy is known as the open addressing technique. Primary clustering is also
worse when the hash table (available storage) is relatively full.

Variations in the linear method which avoid primary clustering involve making the step
size a variable. One way is to set s equal to ai + bi2 on the ith step. Another is to invoke a
random number generator which calculates the step size afresh each time. These last two
collision handling methods are called the quadratic and random method respectively.
Although they avoid primary clustering they are nevertheless subject to secondary clustering,
which is caused by keys hashing to the same address and following the same sequence in
search of an empty location. Even this can be avoided, see for example Bell and Kaman31 .

The second class of collision handling methods involves extra storage space which is used
to chain together collided records. When a collision occurs at a hash address it may be
because it is the head of a chain of records which have all hashed to that address, or it may
be that a record is stored there which belongs to a chain starting at some other address. In
both cases a free location is needed which in the first case is simply linked in and stores the
new record, in the second case the intermediate chain element is moved to the free location
and the new record is stored at its own hash address thus starting a new chain (a one-
element chain so far). A variation on this method is to use a two-level store. At the first
level we have a hash table, at the second level we have a bump table which contains all the

68 File structures

collided records. At a hash address in the hash table we will find either, a record if no
collisions have taken place at that address, or, a pointer to a chain of records which collided
at that address. This latter chaining method has the advantage that records need never be
moved once they have been entered in the bump table. The storage overhead is larger since
records are put in the bump table before the hash table is full.

For both classes of collision strategies one needs to be careful about deletions. For the
linear, quadratic etc. collision handling strategies we must ensure that when we delete a
record at an address we do not make records which collided at that address unreachable.
Similarly with the chaining method we must ensure that a deleted record does not leave a
gap in the chain, that is, after deletion the chain must be reconnected.

The advantages of hashing are several. Firstly it is simple. Secondly its insertion and
search strategies are identical. Insertion is merely a failed search. If Ki is the hashed key,
then if a search of the collision sequence fails to turn up a match in Ki, its record is simply
inserted at the end of the sequence at the next free location. Thirdly, the search time is
independent of the number of keys to be inserted.

The application of hashing in IR has tended to be in the area of table construction and
look-up procedures. An obvious application is when constructing the set of conflation
classes during text processing. In Chapter 2, I gave an example of a document
representative as simply a list of class names, each name standing for a set of equivalent
words. During a retrieval operation, a query will first be converted into a list of class
names. To do this each significant word needs to be looked up in a dictionary which gives
the name of the class to which it belongs. Clearly there is a case for hashing. We simply
apply the hashing function to the word and find the name of the conflation class to which it
belongs at the hash address. A similar example is given in great detail by Murray32 .

Finally, let me recommend two very readable discussions on hashing, one is in Page and
Wilson33 , the other is in Knuth's third volume28 .

Clustered files

It is now common practice to refer to a file processed by a clustering algorithm as a clustered
file, and to refer to the resulting structure as a file structure. For example Salton34 (p. 288)
lists a clustered file as an alternative organisation to inverted, serial, chained files, etc.
Although it may be convenient terminologically, it does disguise the real status of cluster
methods. Cluster methods (or automatic classification methods) are more profitably
discussed at the level of abstraction at which relations are discussed in connection with
data bases, that is, in a thoroughly data independent way. In other words, selecting an
appropriate cluster method and implementing it are two separate problems. Unfortunately
not all users of clustering techniques see it this way, and so the current scene is rather
confused. One factor contributing to the confusion is that clustering techniques have been
used at a very low level of implementation of system software, for example, to reduce the
number of page exceptions in a virtual memory. Therefore, those who use clustering merely
to increase retrieval efficiency (in terms of storage and speed) will tend to see a
classification structure as a file structure, whereas those who see clustering as a means of
discovering (or summarising) some inherent structure in the data will look upon the same
structure as a description of the data. Of course, this description may be used to achieve
more efficient retrieval (and in IR more effective retrieval in terms of say precision and
recall). Furthermore, if one looks carefully at some of the implementations of cluster methods
one discovers that the classificatory system is represented inside the computer by one of the
more conventional file structures.

Bibliographic remarks

There is now a vast literature on file structures although there are very few survey articles.
Where possible I shall point to some of the more detailed discussions which emphasise an
application in IR. Of course the chapter on file organisation in the Annual Review is a good

Introduction 69

source of references as well. Chapter 7 of Salton's latest book contains a useful introduction
to file organisation techniques34 .

A general article on data structures of a more philosophical nature well worth reading is
Mealey32 .

A description of the use of a sequential file in an on-line environment may be found in
Negus and Hall36 . The effectiveness and efficiency of an inverted file has been extensively
compared with a file structure based on clustering by Murray37 . Ein-Dor38 has done a
comprehensive comparison between an inverted file and a tree structured file. It is hard to
find a discussion of an index-sequential file which makes special reference to the needs of
document retrieval. Index-sequential organisation is now considered to be basic software
which can be used to implement a variety of other file organisations. Nevertheless it is
worth studying some of the aspects of its implementation. For this I recommend the paper
by McDonell and Montgomery39 who give a detailed description of an implementation for a
mini-computer. Multi-lists and cellular multi-lists are fairly well covered by Lefkovitz40 .
Ring structures have been very popular in CAD and have been written up by Gray4l .
Extensive use was made of a modified threaded list by van Rijsbergen42 in his cluster-based
retrieval experiments. The doubly chained tree has been adequately dealt with by Stanfel21,22

and Patt23 .

Work on tree structures in IR goes back a long way as illustrated by the early papers by
Salton43 and Sussenguth44 . Trees have always attracted much attention in computer
science, mainly for the ability to reduce expected search times in data retrieval. One of the
earliest papers on this topic is by Windley45 but the most extensive discussion is still to be
found in Knuth28 where not only methods of construction are discussed but also techniques
of reorganisation.

More recently a special kind of tree, called a trie, has attracted attention. This is a tree
structure which has records stored at its terminal nodes, and discriminators at the internal
nodes. A discriminator at a node is made up from the attributes of the records dominated
by that node. Or as Knuth puts it: 'A trie is essentially a M-ary tree whose nodes are M-
place vectors with components corresponding to digits or characters. Each node on level l
represents the set of all keys that begin with a certain sequence of l characters; the node
specifies an M-way branch depending on the (l + 1)st character.' Tries were invented by
Fredkins46 , further considered by Sussenguth44 , and more recently studied by Burkhard47 ,
Rivest48 , and Bentley49 . The use of tries in data retrieval where one is interested in either a
match or mismatch is very similar to the construction of hierarchic document classification,
where each node of the tree representing the hierarchy is also associated with a
'discriminator' used to direct the search for relevant documents (see for example Figure 5.3 in
Chapter 5).

The use of hashing in document retrieval is dealt with in Higgins and Smith50 , and
Chous51 .

It has become fashionable to refer to document collections which have been clustered as
clustered files. I have gone to some pains to avoid the use of this terminology because of the
conceptual difference that exists between a structure which is inherent in the data and can
be discovered by clustering, and an organisation of the data to facilitate its manipulation
inside a computer. Unfortunately this distinction becomes somewhat blurred when clustering
techniques are used to generate a physical organisation of data. For example, the work by
Bell et al.52 is of this nature. Furthermore, it has recently become popular to cluster records
simply to improve the efficiency of retrieval. Buckhard and Keller53 base the design of a file
structure on maximal complete subgraphs (or cliques). Hatfield and Gerald54 have
designed a paging algorithm for a virtual memory store based on clustering. Simon and
Guiho55 look at methods for preserving 'clusters' in the data when it is mapped onto a
physical storage device.

Some of the work that has been largely ignored in this chapter, but which is nevertheless
of importance when considering the implementation of a file structure, is concerned directly

70 File structures

with the physical organisation of a storage device in terms of block sizes, etc.
Unfortunately, general statements about this are rather hard to make because the
organisation tends to depend on the hardware characteristics of the device and computer.
Representative of work in this area is the paper by Lum et al.56 .

References

1. HSIAO, D. and HARARY, F., 'A formal system for information retrieval from files',
Communications of the ACM, 13, 67-7 3 (1970)

2. ROBERTS, D. C., 'File organization techniques', Advances in Computers, 12, 115-174 (1972)

3. BERTZISS, A. T., Data Structures: Theory and Practice, Academic Press, London and New
York (1971)

4. DODD, G. G., 'Elements of data management systems', Computing Surveys, 1, 117-133 (1969)

5. CLIMENSON, W. D., 'File organization and search techniques', Annual Review of
Information Science and Technology, 1, 107-135 (1966)

6. WARHEIT, 1. A., 'File organization of library records', Journal of Library Automation, 2, 20-
30 (1969)

7. PRYWES, N. S. and SMITH, D. P., 'Organization of information', Annual Review of
Information Science and Technology, 7, 103-158 (1972) Technology, 7,103 158 (1972)

8. CODD, E. E., 'A relational model of data for large shared data banks', Communications of
the A CM, 13, 377-387 (1970)

9. SENKO, M. E., 'Information systems: records, relations, sets, entities, and things',
Information Systems, 1, 3-13 (1975)

10. DATE, C. J., An Introduction to Data Base Systems, Addison-Wesley, Reading, Mass. (1975)

11. SIBLEY, E. H., 'Special Issue: Data base management systems', Computing Surveys, 8, No. I
(1976)

12. MARON, M. E., 'Relational data file I: Design philosophy', In: Information Retrieval
(Edited by Schecter 6), 211-223 (1967)

13. LEVIEN, R., 'Relational data file Il: Implementation', In: Information Retrieval (Edited by
Schecter 6), 225-241(1967)

14. HAYES, R. M. and BECKER, J., Handbook of Data Processing for Libraries, Melville
Publishing Co., Los Angeles, California (1974)

15. HSIAO, D., 'A generalized record organization', IEEE Transactions on Computers, C-20, 1490-
1495 (1971)

16. MANOLA, F. and HSIAO, D. K., 'A model for keyword based file structures and access', NRL
Memorandum Report 2544, Naval Research Laboratory, Washington D.C. (1973)

17. SEVERANCE, D. G., 'A parametric model of alternative file structures', Information
Systems, 1, 51-55 (1975)

18. van RIJSBERGEN, C. J., 'File organization in library automation and information retrieval',
Journal of Documentation, 32, 294-317 (1976)

19. JONKERS, H. L., 'A straightforward and flexible design method for complex data base
management systems', Information Storage and Retrieval, 9, 401-415 (1973)

20. FOSTER, J. M., List Processing, Macdonald, London; and American Elsevier Inc., New York (
1967)

Introduction 71

21. STANFEL, L. E., 'Practical aspect of doubly chained trees for retrieval', Journal of the ACM,
19, 425~36 (1972)

22. STANFEL, L. E., 'Optimal trees for a class of information retrieval problems', Information
Storage and Retrieval, 9, 43-59 (1973)

23. PATT, Y. N., Minimum search tree structure for data partitioned into pages', IEEE
Transations on Computers, C-21, 961-967 (1972)

24. BERGE, C., The Theory of Graphs and its Applications, Methuen, London (1966)

25. HARARY, F., NORMAN, R. Z. and CARTWRIGHT, D., Structural Models: An Introduction
to the Theory of Directed Graphs, Wiley, New York (1966)

26. ORE, 0., Graphs and their Uses, Random House, New York (1963)

27. KNUTH, D. E., The Art of Computer Programming, Vol. 1, Fundamental Algorithms,
Addison-Wesley, Reading, Massachusetts (1968)

28. KNUTH, D. E., The Art of Computer Programming, Vol 3, Sorting and Searching, Addison-
Wesley, Reading, Massachusetts (1973)

29. MORRIS, R., 'Scatter storage techniques', Communications of the ACM, 11, 35-38 (1968)

30. LUM, V. Y., YUEN, P. S. T. and DODD, M., 'Key-to-address transform techniques: a
fundamental performance study on large existing formatted files', Communications of the
ACM, 14, 228-239 (1971)

31. BELL, J. K. and KAMAN, C. H., 'The linear quotient hash code', Communications of the
ACM, 13, 675-677 (1970)

32. MURRAY, D. M., 'A scatter storage scheme for dictionary lookups' In: Report ISR-16 to the
National Science Foundation, Section 11, Cornell University, Department of Computer
Science (1969)

33. PAGE, E. S. and WILSON, L. B., Information Representation and Manipulation in a
Computer, Cambridge University Press, Cambridge (1973)

34. SALTON, G., Dynamic Information and Library Processing, Prentice-Hall, Englewood Cliffs,
N.J. (1975)

35. MEALEY, G.H., 'Another look at data', Proceedings AFIP Fall Joint Computer Conference,
525-534 (1967)

36. NEGUS, A.E. and HALL, J.L., 'Towards an effective on-line reference retrieval system',
Library Memo CLM-LM2/71, U.K. Atomic Energy Authority, Research Group (1971)

37. MURRAY, D.M., 'Document retrieval based on clustered files', Ph.D. Thesis, Cornell
University Report ISR-20 to National Science Foundation and to the National Library of
Medicine (1972)

38. EIN-DOR, P., 'The comparative efficiency of two dictionary structures for document
retrieval', Infor Journal, 12, 87-108 (1974)

39. McDONELL, K.J. and MONTGOMERY, A.Y., 'The design of indexed sequential files', The
Australian Computer Journal, 5, 115-126 (1973)

40. LEFKOVITZ, D., File Structures for On-Line Systems, Spartan Books, New York (1969)

41. GRAY, J.C., 'Compound data structure for computer aided design: a survey', Proceedings
ACM National Meeting, 355-365 (1967)

42. van RIJSBERGEN, C.J., 'An algorithm for information structuring and retrieval', Computer
Journal, 14, 407-412 (1971)

72 File structures

43. SALTON, G., Manipulation of trees in information retrieval', Communications of the ACM,
5, 103-114 (1962)

44. SUSSENGUTH, E.H., 'Use of tree structures for processing files', Communications of the
ACM, 6, 272-279 (1963)

45. WINDLEY, P.F., 'Trees, forests and rearranging', Computer Journal, 3, 84-88 (1960)

46. FREDKIN, E., 'Trie memory', Communications of the ACM, 3, 490-499 (1960)

47. BURKHARD, W.A., 'Partial match queries and file designs', Proceedings of the
International Conference on Very Large Data Bases, 523-525 (1975)

48. RIVEST, R., Analysis of Associative Retrieval Algorithms, Ph.D. Thesis, Stanford
University, Computer Science (1974)

49. BENTLEY, J.L., 'Multidimensional binary search trees used for associative searching',
Communications of the ACM, 13, 675-677 (1975)

50. HIGGINS, L.D. and SMITH, F.J., 'Disc access algorithms', Computer Journal, 14, 249-253
(1971)

51. CHOU, C.K., 'Algorithms for hash coding and document classification', Ph.D. Thesis,
University of Illinois (1972)

52. BELL, C.J., ALDRED, B.K. and ROGERS, T.W., 'Adaptability to change in large data base
information retrieval systems', Report No. UKSC-0027, UK Scientific Centre, IBM United
Kingdom Limited, Neville Road, Peterlee, County Durham, U.K. (1972)

53. BURKHARD, W.A. and KELLER, R.M., 'Some approaches to best-match file searching',
Communications of the ACM, 16, 230-236 (1973)

54. HATFIELD, D.J. and GERALD, J., 'Program restructuring for virtual memory', IBM Systems
Journal, 10, 168-192 (1971)

55. SIMON, J.C. and GUIHO, G., 'On algorithms preserving neighbourhood to file and retrieve
information in a memory', International Journal Computer Information Sciences, 1, 3-15 (CR
23923) (1972)

56. LUM, V.Y., LING, H. and SENKO, M.E., 'Analysis of a complex data management access
method by simulation modelling', Proceedings AFIP Fall Joint Computer Conference, 211-222
(1970)

