

Arguing Safety – A Systematic Approach to

Managing Safety Cases

Timothy Patrick Kelly

Submitted for the degree of Doctor of Philosophy

University of York

Department of Computer Science

September 1998

 2

For my Mum and Dad

 3

Abstract

A safety case should present a clear, comprehensive and defensible argument that a

system is acceptably safe to operate within a particular context. However, many

existing safety cases, in their attempt to manage potentially complex arguments, are

poorly structured, presented and understood. This creates problems in developing and

maintaining safety cases, and in capturing successful safety arguments for use on future

projects.

This thesis defines and demonstrates a coherent approach to the development,

presentation, maintenance and reuse of the safety arguments within a safety case. This

approach is based upon a graphical technique – the Goal Structuring Notation (GSN) –

and has three strands. Firstly, a method for the use of GSN is defined together with an

approach to supporting incremental safety case development. Secondly, the thesis

presents a systematic process for the maintenance of a GSN-structured safety argument.

Thirdly, the concept of ‘Safety Case Patterns’ is defined as a means of supporting and

promoting the reuse of successful safety arguments between safety cases. Examples of

the approach are provided throughout.

Evaluation of the approach is described through tool implementation, case studies, pilot

projects and industrial project applications. Through these activities the approach has

been shown to be both a valid and capable tool for safety case management.

 4

Contents

LIST OF FIGURES 11

LIST OF TABLES 15

ACKNOWLEDGEMENTS 16

AUTHORS DECLARATION 17

CHAPTER ONE: INTRODUCTION ..19

1.1 INTRODUCTION ...19

1.1.1 Windscale 19

1.1.2 Flixborough 20

1.1.3 Piper Alpha 20

1.1.4 Clapham 21

1.1.5 The Way Forward 22

1.2 DEFINING THE SAFETY CASE CONCEPT ...22

1.2.1 Requirements, Argument and Evidence 24

1.2.2 Challenges of Safety Case Development 25

1.2.3 Presentation of Clear Safety Arguments 26

1.2.4 Incremental Safety Case Development 27

1.2.5 Through-life Safety Case Maintenance 28

1.2.6 Supporting Trustworthy Safety Case Reuse 28

1.3 THESIS PROPOSITION..29

1.4 THESIS STRUCTURE ..29

CHAPTER TWO: SURVEY OF SAFETY CASE MANAGEMENT AND

ARGUMENTATION..31

2.1 INTRODUCTION ...31

2.2 SAFETY CASE DEVELOPMENT REQUIREMENTS..32

2.2.1 Safety Case ‘Product’ Requirements 32

2.2.1.1 The Role and Purpose of the Safety Case 34

2.2.1.2 Expected Safety Case Contents 35

2.2.1.3 Safety Argument Requirements 36

2.2.2 Safety Case ‘Process’ Requirements 37

2.2.2.1 Requirements Regarding Initial Safety Case Development 37

2.2.2.2 Requirements Regarding Safety Case Maintenance 38

2.2.2.3 Guidance on Admissible Forms of Argument and Evidence 39

2.3 SAFETY CASE EXPERIENCE...39

2.3.1 Experiences in Safety Case Development 40

2.3.2 Experiences in Safety Case Maintenance 40

2.3.3 Experiences in Safety Case Reuse 41

 5

2.4 SAFETY CASE DEVELOPMENT METHODOLOGIES.. 41

2.4.1 ASAM, ASAM-II and SAM 41

2.4.2 SHIP Project 43

2.4.2.1 SHIP Safety Case Approach 43

2.4.2.2 SHIP Bayesian Belief Networks 46

2.4.3 Communication in Safety Cases - A Semantic Approach 47

2.4.4 Adelard Safety Case Development Method 47

2.4.5 SERENE Project 47

2.5 SAFETY ARGUMENTATION ... 48

2.5.1 Free Text (Current Practice) 48

2.5.2 Tabular Structures 49

2.5.3 Claim Structures 51

2.5.4 Traceability Matrices 52

2.5.5 Bayesian Belief Networks 53

2.5.6 Goal Structuring Notation 54

2.6 ARGUMENTATION... 58

2.6.1 Formal Logic 58

2.6.2 English Syntax and Argumentation 59

2.6.3 Devices for structuring and presenting arguments 60

2.6.4 The role of graphical presentations of arguments 63

2.7 RELATED CONCEPTS .. 63

2.7.1 Rationale Capture 64

2.7.2 Other Goal Based Approaches 65

2.8 SUMMARY ... 66

CHAPTER THREE: USING THE GOAL STRUCTURING NOTATION TO SUPPORT

SAFETY CASE DEVELOPMENT ... 67

3.1 INTRODUCTION... 67

3.1.1 Problems Experienced with ‘Traditional’ Safety Case Development 67

3.1.2 Incremental Safety Case Development 68

3.1.3 Evolving Safety Arguments 70

3.1.4 Contributions Presented within the Chapter 71

3.2 AN OVERVIEW OF THE GOAL STRUCTURING NOTATION .. 72

3.2.1 Goals 72

3.2.2 Goal Decomposition 73

3.2.3 Strategies 73

3.2.4 Solutions 74

3.2.5 Justifications 75

 6

3.2.6 Assumptions 75

3.2.7 Models 76

3.3 EXTENDING THE NOTATION TO REPRESENT ‘CONTEXT’...78

3.4 EVOLVING GOAL STRUCTURING FROM A NOTATION TO A METHOD.......................80

3.5 OVERVIEW AND ILLUSTRATION OF GOAL STRUCTURE DEVELOPMENT USING THE

METHOD ..82

3.5.1 Step 1: Identifying Goals 82

3.5.2 Step 2: Define Basis of Goals Stated 82

3.5.3 Step 3: Identify Strategy to Support Goals 83

3.5.4 Step 4: Define basis on which strategy stated 84

3.5.5 Step 5: Elaborate Strategy 84

3.5.6 Step 6: Identify basic solution 85

3.6 EXAMPLE AREAS OF GUIDANCE PROVIDED BY GSN METHOD................................86

3.6.1 Guidance Provided on Phrasing of Goal Statements 86

3.6.2 Guidance Provided on Use of Context 87

3.6.3 Guidance Provided on Semantics of Strategy 88

3.7 USE OF CONTEXT TO INTERRELATE VIEWPOINTS..91

3.8 RELATIONSHIP BETWEEN GOAL STRUCTURING METHOD AND SAFETY ARGUMENT

EVOLUTION ...93

3.9 EXPERIENCE OF USING GOAL STRUCTURING IN PRESENTATION OF PRELIMINARY

SAFETY ARGUMENTS...97

3.9.1 A Preliminary Safety Argument for a Distributed Aero-Engine Controller 98

3.10 NUCLEAR TRIP SYSTEM SAFETY CASE EXAMPLE ..107

3.11 ROLE OF CONTRIBUTION IN SUPPORTING MAINTENANCE & REUSE109

3.12 EVALUATION OF CONTRIBUTION..112

3.13 SUMMARY..112

CHAPTER FOUR: USING THE GOAL STRUCTURING NOTATION TO SUPPORT

SAFETY CASE MAINTENANCE...115

4.1 INTRODUCTION ...115

4.2 CURRENT PROBLEMS IN SAFETY CASE MAINTENANCE ...116

4.2.1 Difficulty in recognising change 116

4.2.2 Difficulty in identifying the indirect impact of change 117

4.2.3 Lack of assurance / justification of the change process 117

4.2.4 Insufficient information recorded to support the change process 118

4.2.5 Lack of a systematic process 118

4.3 APPLICATION OF GSN TO CHANGE MANAGEMENT ...118

4.3.1 Dependencies in the Safety Case 119

4.3.2 Relationship between GSN and the Safety Case 121

 7

4.3.3 Establishing a Safety Case Configuration Model 122

4.4 A SAFETY CASE CHANGE PROCESS ... 122

4.4.1 Step 1: Recognise Challenges to the Validity of the Safety Case 123

4.4.2 Step 2: Expressing Challenge in Goal Structure Terms 126

4.4.2.1 Requirements Challenges Expressed in GSN Terms 127

4.4.2.2 Evidence Challenges Expressed in GSN Terms 129

4.4.2.3 Context Challenges Expressed in GSN Terms 130

4.4.2.4 Summary of Expressing Challenges in GSN Terms 131

4.4.3 Step 3: Using the Goal Structure to Identify Impact of Challenge 132

4.4.3.1 Propagation of Challenges to Goals, Strategies and Solutions 133

4.4.3.2 Propagation of Challenges to Context, Models, Justifications and

Assumptions 134

4.4.3.3 Potential vs. Actual Change Effect – The Role of the Safety Engineer 135

4.4.3.4 Propagating and Assessing Impact One Step at a Time 137

4.4.4 Step 4: Deciding Upon Action to Recover Damaged Argument 138

4.4.4.1 Side-Effects of Recovery Action 141

4.4.5 Step 5: Recover Identified Damaged Argument 141

4.5 EXAMPLES OF THE CHANGE PROCESS ... 145

4.5.1 Example 1: Challenge to validity of Timing Analysis 145

4.5.1.1 Step 1: Recognising the Challenge to the Safety Case 145

4.5.1.2 Step 2: Expressing Change in Terms of GSN Elements 145

4.5.1.3 Step 3: Use GSN to Identify Impact 146

4.5.1.4 Step 4: Decide upon Recovery Action 147

4.5.1.5 Step 2: Expressing Recovery Action in Terms of GSN Elements 148

4.5.1.6 Step 5: Recovering the Damaged Argument 148

4.5.2 Example 2: Removal of Separate PROMS 148

4.5.2.1 Step 1: Recognising the Challenge to the Safety Case 148

4.5.2.2 Step 2: Expressing Change in Terms of GSN Elements 149

4.5.2.3 Step 3: Use GSN to Identify Impact 149

4.5.2.4 Step 4: Decide upon Recovery Action 150

4.5.2.5 Step 5: Recovering the Damaged Argument 150

4.6 JUSTIFICATION OF THE CHANGE PROCESS .. 150

4.7 SUPPORTING THE CHANGE PROCESS ... 151

4.8 SAFETY ARGUMENT DESIGN FOR CHANGE.. 152

4.8.1 Safety Margin 153

4.8.2 Diverse Argument 154

 8

4.9 LIMITATIONS OF THE APPROACH ...155

4.9.1 Reliance upon correspondence between safety argument and safety case 155

4.9.2 Influence of dependencies external to the safety argument 155

4.10 CONCLUSIONS ...157

CHAPTER FIVE: SAFETY CASE PATTERNS - USING THE GOAL STRUCTURING

NOTATION TO SUPPORT SAFETY CASE REUSE ..159

5.1 INTRODUCTION ...159

5.2 THE PROBLEMS OF INFORMAL SAFETY CASE MATERIAL REUSE..........................159

5.3 PATTERNS..162

5.4 DESIGN PATTERNS ..162

5.4.1 A Brief History of Design Patterns 163

5.5 PATTERN REPRESENTATION ...164

5.6 SAFETY CASE PATTERNS ..165

5.7 REPRESENTING SAFETY CASE PATTERNS DIAGRAMMATICALLY166

5.7.1 Extending the GSN to Support Structural Abstraction 167

5.7.1.1 Extending the GSN to Support Multiplicity 167

5.7.1.2 Extending the GSN to Support Optionality 168

5.7.2 Representation of Entity Abstraction in the GSN 169

5.7.3 Combining Entity and Structural Abstraction Extensions 171

5.8 DOCUMENTING SAFETY CASE PATTERNS...172

5.8.1 Pattern Name 175

5.8.2 Intent 175

5.8.3 Also Known As 175

5.8.4 Motivation 175

5.8.5 Structure 175

5.8.6 Participants 176

5.8.7 Collaborations 176

5.8.8 Applicability (Necessary Context) 176

5.8.9 Consequences 176

5.8.10 Implementation 177

5.8.11 Examples 177

5.8.12 Known Uses 177

5.8.13 Related Patterns 178

5.9 AN EXAMPLE FULLY-DOCUMENTED SAFETY CASE PATTERN179

5.10 FURTHER EXAMPLE SAFETY CASE PATTERNS ...183

5.11 TAXONOMY OF SAFETY CASE PATTERNS ...186

5.12 EXAMPLE SAFETY CASE PATTERN CATALOGUE..187

 9

5.13 A SAFETY CASE REUSE PROCESS... 188

5.13.1 Identifying New Safety Case Patterns 189

5.13.2 Constructing New Safety Case Patterns 191

5.13.3 Reviewing Constructed Safety Case Patterns 192

5.13.4 Identifying Applicable Safety Case Patterns 193

5.13.5 Reviewing Decision to Use a Safety Case Pattern 194

5.13.6 Instantiate Pattern 194

5.13.7 Pattern Catalogue 196

5.14 SUMMARY ... 196

CHAPTER SIX: EVALUATION .. 197

6.1 INTRODUCTION... 197

6.2 FORMS OF EVALUATION APPLIED.. 198

6.2.1 Evaluation through Tool Support 199

6.2.2 Evaluation through Peer Review 199

6.2.3 Evaluation through Case Study 200

6.2.4 Evaluation through Pilot Industrial Application 200

6.2.5 Evaluation through Real Industrial Application 200

6.3 OVERVIEW OF RESEARCH EVALUATION.. 200

6.3.1 GSN Method Evaluation 201

6.3.1.1 GSN Method Evaluation: Tool Implementation 201

6.3.1.2 GSN Method Evaluation: Peer Review 202

6.3.1.3 GSN Method Evaluation: Case Study 204

6.3.1.4 GSN Method Evaluation: Pilot Industrial Application 206

6.3.1.5 GSN Method Evaluation: Real Industrial Application 209

6.3.2 Maintenance Evaluation 210

6.3.2.1 Maintenance Evaluation: Tool Implementation 210

6.3.2.2 Maintenance Evaluation: Peer Review 214

6.3.2.3 Maintenance Evaluation: Case Study 215

6.3.3 Safety Case Patterns Evaluation 215

6.3.3.1 Safety Case Patterns: Tool Implementation 215

6.3.3.2 Safety Case Patterns: Peer Review 216

6.3.3.3 Safety Case Patterns: Case Study 218

6.3.3.4 Safety Case Patterns: Pilot Industrial Application 219

6.3.3.5 Safety Case Patterns: Real Industrial Application 220

6.4 SUMMARY OF EVALUATION TO DATE.. 221

6.5 FURTHER USER EVALUATION .. 221

 10

6.6 CONCLUSIONS ...229

CHAPTER SEVEN: CONCLUSIONS...231

7.1 CONCLUDING REMARKS ...231

7.1.1 Conclusions on the Presentation and Development Contribution 231

7.1.2 Conclusions on the Maintenance Contribution 232

7.1.3 Conclusions on the Reuse Contribution 232

7.1.4 Overall Conclusions 232

7.2 FURTHER WORK AREAS ...233

7.2.1 Application of GSN to other (non-safety) domains 233

7.2.2 Anti Safety Case Patterns 234

7.2.3 Safety Case Architectures using Safety Case Patterns? 235

7.2.4 Safety Case Patterns – Process Issues 235

7.2.5 Integrating Bayesian Belief Networks with the GSN approach 235

7.2.6 Augmentation of Change Management 236

7.2.7 Interrelation of Patterns and Change Management 236

7.2.8 Alternative syntax rules within the GSN method 236

7.3 CODA ...236

APPENDIX A: NUCLEAR TRIP SYSTEM SAFETY CASE EXAMPLE 239

APPENDIX B: SAFETY CASE PATTERNS CATALOGUE 285

REFERENCES 333

 11

List of Figures

Figure 1 – The Role of Safety Argumentation... 25

Figure 2 – SHIP View of Safety Argument Structure .. 44

Figure 3 – Sketch of SHIP Bayesian Belief Network .. 46

Figure 4 – An Example Textual Safety Argument ... 48

Figure 5 – The Problems of Textual Safety Arguments ... 49

Figure 6 – An Example Claim Structured Safety Argument .. 51

Figure 7 – An Example BBN for Predicting Reliability Using Process and Product Evidence . 53

Figure 8 – The Original GSN Elements .. 56

Figure 9 – An ‘Original’ Goal Hierarchy .. 57

Figure 10 - Example Argument expressed in Govier’s Notation.. 61

Figure 11 - The Starting Point for Toulmin’s Notation .. 62

Figure 12 - The Use of Warrants in Toulmin’s Notation.. 62

Figure 13 - Toulmin’s Pattern for the Layout of Arguments .. 62

Figure 14 - Decision Graph Example Using DRL ... 64

Figure 15 - A Historical View of Safety Case Development.. 67

Figure 16 – An Integrated View of Safety Case Development ... 69

Figure 17 – An Example Goal .. 72

Figure 18 – An Example Goal Decomposition .. 73

Figure 19 – An Example Goal Decomposition using a Strategy .. 73

Figure 20 – An Example Goal Solution .. 74

Figure 21 – An Example Justification ... 75

Figure 22 – An Example Assumption ... 75

Figure 23 – An Example Reference to Model Information .. 76

Figure 24 – An Example Goal Structure ... 77

Figure 25 - GSN Symbol for 'Context' .. 78

Figure 26 - Example uses of GSN Context.. 78

Figure 27 - Example Use of Context Statement... 79

Figure 28 - The Steps of the GSN Construction Method ... 81

Figure 29 – Press Example (Step 1: Stated Goal) .. 82

Figure 30 – Press Example (Step 2: Context Added) ... 83

Figure 31 – Press Example (Step 3: Solution Strategies Identified) ... 83

Figure 32 – Press Example (Step 4: Context of Strategies Defined)... 84

Figure 33 – Press Example (Step 5: Elaboration of Strategies) .. 85

Figure 34 – Press Example (Step 6: Supporting Evidence Identified) 86

Figure 35 - Incorrect use of Strategy to Communicate Design Strategy 88

Figure 36 - Improved Expression of Argument Strategy over Design Strategy 89

 12

Figure 37 – Comparison of Using Strategies and Goals ...90

Figure 38 – Use of Context to Refer to Design Decisions ..91

Figure 39 – Product Safety Argument..92

Figure 40 – Process Safety Argument..94

Figure 41 – Evolution of a Goal Structure ...95

Figure 42 - Subsystem Structure..99

Figure 43 - Argument for Acceptable Platform Safety ...101

Figure 44 - Argument for Sufficiently Low Risk ...103

Figure 45 - Argument for Platform Safety Properties ...104

Figure 46 - Argument for Correct Timing Behaviour ...105

Figure 47 - Argument for Functional Platform Safety Properties..106

Figure 48 - Context Change Example..110

Figure 49 – Use of Context in Safety Case Patterns ...111

Figure 50 - Dependencies between elements of the Safety Case...119

Figure 51 - Relationship between safety case elements and the GSN121

Figure 52 – A Process for Safety Case Change Management ...123

Figure 53 - Association between Change Types and Goal Structure Entities127

Figure 54 – Requirements Challenge Example #1..128

Figure 55 - Requirements Challenge Example #2 ..128

Figure 56 - Requirements Challenge Example #3 ..129

Figure 57 - Evidence Challenge Example #1 ...129

Figure 58 - Evidence Challenge Example #2 ...130

Figure 59 - Context Challenge Example #1 ...130

Figure 60 - Context Challenge Example #2 ...131

Figure 61 - Context Challenge Example #3 ...131

Figure 62 - A Real-World Challenge Impacting many Goal Structure Elements.....................132

Figure 63 - Example Effect of Spinal Node Change...133

Figure 64 - Example Effect of Context Node Change ..134

Figure 65 - Potential Impact Scenario..136

Figure 66 – Actual Impact Scenario...136

Figure 67 - Impact Assessment One Step at a Time ...137

Figure 68 – An Example Impact Path ..140

Figure 69 - The Start of the Recovery Process ...142

Figure 70 - Recovering the Safety Argument...144

Figure 71 – Challenging the Trip System Timing Analysis Results..146

Figure 72 – Challenging the Trip System Timing Analysis Claim..147

Figure 73 – Challenging the Concept of Separate PROMs ...149

Figure 74 - Justification of 'No-Impact'..151

 13

Figure 75 - Tool Support for the Change Process .. 152

Figure 76 - Use of a Safety Margin with a Goal Structure ... 153

Figure 77 - Use of a Diverse Argument with a Goal Structure... 154

Figure 78 – Safety Analysis Data Model... 156

Figure 79 - An Alexandrian Pattern for Country Streets .. 164

Figure 80 - 'Chain of Responsibility' Class Diagram ... 165

Figure 81 – GSN Multiplicity Extensions (For Structural Abstraction).................................. 167

Figure 82 – Examples of GSN Multiplicity Extensions ... 168

Figure 83 - GSN Optionality Extensions (For Structural Abstraction) 168

Figure 84 – Example of GSN Optionality Extension ... 169

Figure 85 - GSN Extensions for Entity Abstraction... 170

Figure 86 – Example of GSN Is_A Extension ... 170

Figure 87 - Examples of Entity Abstraction Placeholders in the GSN.................................... 171

Figure 88 - Example Use of GSN Extensions.. 172

Figure 89 - Hazard Avoidance Pattern .. 183

Figure 90 – GSN Fault Free Software Pattern ... 184

Figure 91 – GSN Compliance Pattern for JAR-E50(a) .. 185

Figure 92 – A Taxonomy of Safety Case Patterns ... 186

Figure 93 - A Safety Case Reuse Process.. 190

Figure 94 - Generalisation of Goal Structures ... 192

Figure 95 - Instantiation of a Goal Structure Pattern.. 195

Figure 96 – SAM Screen Shot (Showing Adoption of Context)... 202

Figure 97 – SAM Screen Shot (Showing Use of Pattern Extensions in Incremental

Development) .. 203

Figure 98 – Top Level of Integrated Modular Avionics Safety Argument.............................. 205

Figure 99 – Top Level of Decommissioning Argument ... 208

Figure 100 – Top Level of Safety Process Argument .. 211

Figure 101 – Top Level of Base Safety Report Argument ... 212

Figure 102 – Extract from Preliminary Site Safety Justification Argument 213

Figure 103 – SAM Screen Shot (Showing Support for Maintenance Process)........................ 214

Figure 104 – SAM Screen Shot (Showing Support for Safety Case Patterns)......................... 216

Figure 105 – Top Part of FMECA-to-GSN Pattern.. 217

Figure 106 – Continuation of FMECA-to-GSN Pattern... 218

Figure 107 – Thesis Benefit Argument ... 221

Figure 108 – Thesis Process Benefit Argument ... 222

Figure 109 – Development Process Success Criteria ... 223

Figure 110 – Maintenance Process Success Criteria .. 223

Figure 111 – Reuse Process Success Criteria .. 224

 14

Figure 112 – Thesis Process Benefit Argument ...225

Figure 113 – Developed Product Success Criteria..225

Figure 114 – Maintained Product Success Criteria...226

Figure 115 – Reused Product Success Criteria ...226

Figure 116 – Safety Objective (Safe) and Argument Strategy ..245

Figure 117 – Functional Requirements (S.FUNC) ...246

Figure 118 – Performance Requirements (S.PERF) ...247

Figure 119 – Operational and Maintenance Requirements (S.OPER).....................................247

Figure 120 – Through-Life Integrity Requirements (S.INT)...248

Figure 121 – Safety Criteria (S.CRIT)...249

Figure 122 – Trip System Architecture..249

Figure 123 – Dynamic Check Logic for a Reactor Trip Channel ..251

Figure 124 – Functional Arguments (G.TRIP)...253

Figure 125 – Failure on Demand Argument (G.PFD)...254

Figure 126 – Random Failures (G.PFD.RAND) ..256

Figure 127 – Incredibility of Systematic Faults (G.NO-FLT)...257

Figure 128 – Systematic Failures (G.PFD.SYST.1) ...258

Figure 129 – Systematic Failures (G.PFD.SYST.2) ...258

Figure 130 – Response Time Argument (G.TIM) ..259

Figure 131 – Static Timing Analysis Argument ...260

Figure 132 – Timing Test Argument (G.TIM.TEST) ...260

Figure 133 – Time to Repair Argument (G.FIX)..261

Figure 134 – Spurious Trip Rate Argument (G.STR)...262

Figure 135 – Testability Argument (G.TST)..263

Figure 136 – Maintenance Error Argument (G.SEC) ...264

Figure 137 – Maintenance Safeguards (G.SEC.SG)...265

Figure 138 – Update Argument (G.UPD) ..266

Figure 139 – Anticipated Changes (G.UPD.AC)..267

Figure 140 – Changes to Data and Program (G.UPD.DATA & G.UPD.PROGRAM)268

Figure 141 – Safety Case Validity Argument (G.VALID)..269

Figure 142 – Single Faults (G.FAULT1) ...270

Figure 143 – Two Faults (G.FAULT2) ..270

Figure 144 – Table of Explicit Safety Case Assumptions...280

Figure 145 – Organisation of Safety Case Patterns Catalogue..285

Figure 146 – Key to GSN Extensions ..286

 15

List of Tables

Table 1 – Subset of Safety Standards Studied ... 33

Table 2 – 00-55 Guidance on Acceptable Forms of Safety Argument...................................... 39

Table 3 – SHIP: Sources of Argument and Types of Evidence .. 45

Table 4 – SHIP: Safety Case Arguments for a Nuclear Pressure Vessel................................... 45

Table 5 - An Example Tabular Safety Argument... 50

Table 6 – An Example Traceability Matrix (Design Features vs. Requirements) 52

Table 7 - Alternative Design Pattern Documentation Formats ... 173

Table 8 – Levels of Research Evaluation Achieved... 201

 16

Acknowledgements

I would like to thank my supervisor John McDermid, whose help, guidance and

encouragement have been invaluable.

I would also like to thank my colleagues at Rolls-Royce for their financial and

intellectual support, and for providing me with the opportunity to evaluate the research

in an industrial context.

For their friendship and many constructive comments, I would like to thank my

colleagues at York, in particular: Stephen Wilson, Mark Nicholson, David Pumfrey,

Iain Bate, Divya Prasad and John Murdoch.

Though long-gone from York, I would also like to thank Andy Vickers and Ben Whittle

for their ‘fatherly advice’ during the early stages of the research.

 17

Authors Declaration

Some of the material presented within this thesis has previously been published in the

following papers:

• T. Kelly, “Literature Survey for Work on Evolvable Safety Cases,” Department of

Computer Science, University of York, York, 1st Year Qualifying Dissertation June

1995.

• S. Wilson, T. Kelly, and J. McDermid, “Safety Case Development: Current Practice,

Future Prospects,” presented at Safety and Reliability of Software Based Systems -

Twelfth Annual CSR Workshop, Bruges, Belgium, 1997.

• T. Kelly and J. McDermid, “Safety Case Construction and Reuse Using Patterns,”

presented at 16th International Conference on Computer Safety and Reliability

(SAFECOMP'97), York, 1997.

• T. Kelly, I. Bate, J. McDermid, and A. Burns, “Building a Preliminary Safety Case:

An Example from Aerospace,” presented at the Australian Workshop on Industrial

Experience with Safety Critical Systems and Software, Sydney, Australia, 1997.

• T. Kelly, J. McDermid, “Safety Case Patterns – Reusing Successful Arguments,”

presented at the IEE Colloquium on Understanding Patterns and Their Application

to System Engineering, London, 1998

All the work contained within this thesis represents the original contribution of the

author.

 18

 19

Chapter 1:

Introduction

1.1 Introduction

On the evening of July 6th 1988, 165 of the 226 people on board the Piper Alpha

Offshore Oil Platform died in an accident that should not have occurred. Poor advance

consideration of platform safety had resulted in ineffective safety measures and flawed

operating procedures. The Piper Alpha disaster is just one of a series of accidents that

has prompted a dramatic change in the approach being adopted to safety management.

Windscale, Flixborough, Piper Alpha and Clapham: each one of these incidents has

resulted in legislation requiring the introduction of a safety case regime within the

respective industry sector.

1.1.1 Windscale

In October 1957 a fire in the Number 1 pile at Windscale resulted in a significant

release of radioactivity (20 000 Ci of Iodine-131). The reactors at Windscale used

natural uranium as fuel, graphite as the moderator and were cooled by air. The

properties of graphite as a moderator were only just beginning to be understood at the

time of building the Windscale reactors. The moderator was found to store energy

(known as Wigner Energy) that could be spontaneously released in the form of heat.

This energy had to be routinely released through an annealing process. The storage and

release of this energy was not well understood. During one such annealing process, the

energy was released too quickly, starting a fire. The fuel in the core melted, fuel cans

burst and the uranium ignited, causing fission products to be released through the

cooling ducts to the atmosphere [1].

Following the Windscale accident a number of actions were taken. Firstly, the Nuclear

Installations (Licensing and Insurance) Act was introduced in 1959 to regulate

commercial nuclear reactor installations. As part of this Act, following

recommendations from the Fleck Committee set up as a result of the enquiry into

Windscale, the Nuclear Installations Inspectorate (NII) was established to regulate all

land-based reactors within the U.K. In order to obtain an operating licence, a set of

reports must be presented to the NII that justifies the safety of the design, construction

 20

and operation of the plant. The nuclear certification process is widely cited as one of

the first examples of a safety case regime, although the term safety case was not used at

this time.

1.1.2 Flixborough

In 1974 an explosion occurred at the Nypro factory at Flixborough causing 28 deaths on

site and extensive damage and injuries in the surrounding villages. The explosion

occurred in a part of the facility involved in the production of Nylon. One of the six

reactors in a process to oxidise cyclohexane developed a crack. It was removed and

quickly replaced by a temporary pipe. After two months of operation, on 1st June, a

slight rise in pressure caused the pipe to rupture, resulting in 30-50 tonnes of highly

pressurised cyclohexane being vented to the plant within 50 seconds. The cyclohexane

then ignited causing a vapour cloud explosion that destroyed the oxidation unit,

neighbouring units and a nearby office block [2].

Following the Flixborough accident, an Advisory Committee on Major Hazards was

established within the Health and Safety Executive. The committee recommended that

regulations be established to ensure identification, assessment and management of

potential hazards in chemical installations. This recommendation resulted in the

formulation of the Hazardous Installations (Notification and Survey) Regulations.

These regulations were never enacted but instead formed the basis of a European

Community Directive produced in response to the Seveso accident that occurred in July

1976. The U.K. implementation of this directive was introduced in 1984 as the Control

of Industrial Major Accident Hazards (CIMAH) Regulations [3]. A key requirement of

the CIMAH Regulations is the production of a Safety Report (Case) that demonstrates

adequate consideration of dangerous substances, potential accidents and provision of

effective safety management systems.

1.1.3 Piper Alpha

On Piper Alpha in July 1988, a combination of poor procedures and communication

meant that a pump that was out of commission for routine maintenance was

recommisioned hurriedly and switched on. The resulting gas explosion killed two men.

This explosion would have been survivable were it not for the absence of blast walls in

the platform design. The blast started an oil fire. Again, this would have been

controllable except that adjacent platforms in the oil field continued to pump oil and gas

through the pipelines connecting the rigs to the shore, thus feeding the fire. Eventually,

 21

gas lines near the oil fire ruptured creating an uncontrollable fire fed by thousands of

tonnes of pressurised gas contained within the pipelines. The crew on the platform had

been given minimal training in emergency procedures. Many of the crew assembled in

the accommodation block awaiting evacuation via the heli-pad on top of the block,

following the minimal instruction they had been given. However, following the first

gas explosion this evacuation route was unworkable. No alternative procedures were

communicated to the crew. The majority of the crew died waiting in the accomodation

block [4].

Following the Piper Alpha disaster a public enquiry chaired by Lord Cullen was

initiated. The purpose of this enquiry was both to determine the causes of the accident

and to make recommendations so that similar accidents would not occur in the future.

The findings of the enquiry are published in [4]. Heavily influenced by the experience

of the chemical industry in its use of safety cases as required by the CIMAH

Regulations, one of the main recommendations was that platform operators should be

required to submit safety cases. These purpose of these documents being to present a

clear and comprehensive argument of platform safety. As a direct result of this

recommendation, the Offshore Installations (Safety Case) Regulations were introduced

in the U.K. in 1992.

1.1.4 Clapham

In 1988 35 people were killed in a collision between two trains resulting from a

signalling failure. The signal failure was found to be caused by a wiring fault

introduced in maintenance. A wire was improperly terminated and by-passed crucial

safety interlock circuitry. The consequences of collision were particularly bad as it

involved old ‘Mark 1’ rolling stock that copes poorly with rear collisions. In such

collisions carriages of this type can easily ride over one another and slice through the

passenger space.

Although the cause of the accident at Clapham was relatively straightforward to identify

and eradicate in future installations, it was felt in the ensuing enquiry that the accident

had been symptomatic of the whole culture [5]. This thinking, together with a growing

concern for railway safety as a result of privatisation, led to the introduction of the

Railway (Safety Case) Regulations 1994 [6]. These regulations require that the railway

infrastructure controller (Railtrack) and all train and station operators must prepare

 22

safety cases that demonstrate sufficient consideration of management of all credible

hazards.

1.1.5 The Way Forward

The four accidents described here have been instrumental in prompting a

reconsideration of how safety is managed in each of the respective industries. In each

of these cases, there had not been a total ignorance of safety concerns, or even a

complete absence of safety standards. Instead, the underlying problem was that the

operator had failed to demonstrate a systematic and thorough consideration of safety.

The introduction of safety standards such as those we have described are indicative of a

step change in the approach being adopted to safety regulation. Previous approaches

have focussed primarily on prescriptive safety requirements, e.g. construction codes as

described in [7]. With such approaches, operators claim safety through satisfaction of

the regulator’s requirements. With the introduction of safety cases, the responsibility is

shifted back to the operators. It is up to the operators to demonstrate that they have an

adequate argument of safety.

Despite the wide requirements for safety cases across many industries, it has been far

from clear what constitutes a ‘good’ safety case, or how to analyse and construct a

safety case. It is this deficiency that has provided motivation for, and begins to be

addressed by, this research presented in this thesis.

1.2 Defining the Safety Case Concept

In this thesis the safety case is defined in the following terms:

A safety case should communicate a clear, comprehensive and defensible

argument that a system is acceptably safe to operate in a particular context

Section 1 has shown that the concept of the ‘safety case’ has already been adopted

across many industries. Studying the safety standards relating to these sectors, it is

possible to identify a number of definitions of the safety case – some clearer than others.

The definition given above attempts to cleanly define the core concept that is in

agreement with the majority of the definitions we have discovered.

The following are important aspects of the above definition:

• ‘argument’ – Above all, the safety case exists to communicate an argument. It is

used to demonstrate how someone can reasonably conclude that a system is

 23

acceptably safe from the evidence available. We return to this distinction between

argument and evidence in Section 2.1.

• ‘clear’ – A safety case is a device for communicating ideas and information, usually

to a third party (e.g. a regulator). In order to do this convincingly, it must be as clear

as possible. We return to this point in Section 3.1.

• ‘system’ – The system to which a safety case refers can be anything from a network

of pipes or a software configuration to a set of operating procedures. The concept is

not limited to consideration of conventional engineering ‘design’.

• ‘acceptably’ – Absolute safety is an unobtainable goal. Safety cases are there to

convince someone that the system is safe enough (when compared against some

definition or notion of tolerable risk).

• ‘context’ – Context-free safety is impossible to argue. Almost any system can be

unsafe if used in an inappropriate or unexpected manner. (Consider arguing the

safety of a conventional house-brick.) It is part of the job of the safety case to

define the context within which safety is to be argued.

To elaborate the concept further, it is worth examining some alternative definitions

briefly. The following definition is taken from the U.K. Ministry of Defence Ship

Safety Management System Handbook JSP 430 [8].

“A safety case is a comprehensive and structured set of safety

documentation which is aimed to ensure that the safety of a specific vessel

or equipment can be demonstrated by reference to:

• safety arrangements and organisation

• safety analyses

• compliance with the standards and best practice

• acceptance tests

• audits

• inspections

• feedback

• provision made for safe use including emergency arrangements”

 24

This definition highlights two important aspects of the safety case. Firstly, it is a

document. Some standards distinguish between the safety case as a logical concept (i.e.

where the question, ‘Does this system have a safety case?’ is equivalent to asking ‘Is

this system acceptably safe?’) and the safety case as a physical artefact (sometimes

called the Safety Case Report). As is commonly done, this definition uses the term

safety case synonymously with the documentation that presents the safety case.

Secondly, it makes clear that the nature of the safety case is to refer to, and pull

together, potentially many other pieces of information (such as safety analyses). The

thesis discusses some of the challenges this presents in Section 3.1.

A more mechanistic definition of the software safety case is that used by the U.K.

Ministry of Defence Standard (DS) 00-55 [9]. Although referring to software systems,

it is not difficult to see how such a definition translates to other systems.

“The software safety case shall present a well-organised and reasoned

justification based on objective evidence, that the software does or will

satisfy the safety aspects of the Statement of Technical Requirements and the

Software Requirements Specification.”

This definition makes clear the role of the safety case in expressing satisfaction of

specific Safety Requirements or Objectives. It is rare that acceptable safety is a

completely undefined concept. Within industry sectors, and for particular classes of

system, definitions of acceptable safety have evolved. These may be expressed in terms

of prescriptive requirements, development codes or assessment principles. For

example, DS 00-55 expresses many individual requirements concerning the

development and assessment of safety critical software systems. Prescriptive

requirements are a third party expression of a high-level safety argument – where

meeting requirements implies some degree of safety. The safety case must clearly

identify and address applicable requirements.

1.2.1 Requirements, Argument and Evidence

Underlying the descriptions of the safety case given in the previous section is a view of

the safety case consisting of three principal elements: Requirements, Argument and

Evidence. The relationship between these three elements is depicted in Figure 1.

 25

Safety Requirements & Objectives

Safety Evidence

Safety Argument

Figure 1 – The Role of Safety Argumentation

The safety argument is that which communicates the relationship between the evidence

and objectives. This division is worth highlighting at this point as it helps to define

clearly the subject and motivation of the thesis.

Based on the author’s personal experience, gained from reviewing a number of safety

cases, and validated through discussion with many safety practitioners (some directly

responsible for reviewing and accepting safety cases), a commonly observed failing of

safety cases is that the role of the safety argument is neglected. In such safety cases,

many pages of supporting evidence are often presented (e.g. hundreds of pages of fault

trees or Failure Modes and Effects Analysis tables), but little is done to explain how this

evidence relates to the safety objectives. The reader is often left to guess at an

unwritten and implicit argument.

Both argument and evidence are crucial elements of the safety case that must go hand-

in-hand. Argument without supporting evidence is unfounded, and therefore

unconvincing. Evidence without argument is unexplained – it can be unclear that (or

how) safety objectives have been satisfied.

This thesis focuses upon the role of the safety argument.

1.2.2 Challenges of Safety Case Development

The motivation for the research presented in this thesis has been the problems and

challenges currently experienced by those developing safety cases in industry. An early

part of the research involved gaining a clear appreciation of these problems. This was

 26

achieved through many discussions with engineers, by reviewing existing safety cases,

and by gaining a thorough understanding of regulatory requirements.

The following problem areas are those which are believed to be some of the most

significant limitations of current safety cases and that have specifically been

addressed in this thesis:

• Presentation of Clear Safety Arguments

• Incremental Safety Case Development

• Through-life Safety Case Maintenance

• Supporting Trustworthy Safety Case Reuse

The sections that follow provide a brief description of each of these areas.

1.2.3 Presentation of Clear Safety Arguments

The requirement that the safety case should present a clear safety argument is stated in

many of the safety standards. Both DS 00-55 [9] and 00-56 [10] emphasise that the

justification the safety case presents should be:

‘… well-organised and reasoned’

However, there are a number of factors that can make, and have made, it difficult to

achieve this goal:

• Size and complexity – The totality of evidence and argument required to meet

many of today’s certification standards can be huge. The engineer constructing the

safety case can often be left with the unenviable task of attempting to present a

safety argument that overarches thousands to tens of thousands of pages of

evidence.

• Co-ordinating and presenting results from many different sources – As

described in Section 1.2, it is within the nature of the safety case to rely upon

multiple sources of evidence and contextual material. Presenting these relationships

whilst preserving the flow and readability of the text within the safety case

document is extremely difficult. Multiple cross-references in text can be awkward.

Also, the safety case is often the product of many individuals’ efforts. To present a

coherent and consistent document that integrates the multiple contributions to the

safety case whilst preserving the structure and clarity of the safety argument can be

extremely difficult.

 27

• Use of Free-format Text – As will be discussed further in Chapter Two, the

medium most commonly used at present for communicating the safety argument

within the safety case is free-format text. Although it is possible to communicate

safety arguments clearly with text, unless heavily marshalled its ‘flexibility’ can

allow unclear, ambiguous and misleading argument to be expressed. As mentioned

previously, it can be extremely difficult to clearly present complex interrelationships

and cross-references with text. This point has long been appreciated in most

engineering disciplines, where engineering drawings and design notations are

typically used to describe artefacts of any significant structural complexity.

This thesis proposes an approach to structuring and presenting clearly the safety

arguments of the safety case.

1.2.4 Incremental Safety Case Development

Historically, the production of safety cases has often been viewed as an activity to be

completed towards the end of the safety lifecycle [11]. However, it is increasingly

being recognised that in order to gain most value out of developing the safety case, and

to present the most convincing argument, safety cases should be developed

incrementally in step with system development. Safety standard DS 00-56 [10] states

the following with respect to this issue:

“The Safety Case should be initiated at the earliest possible stage in the

Safety Programme so that hazards are identified and dealt with while the

opportunities for their exclusion exist”

Similarly, the guidance provided in JSP 430 [8] states that:

“The Safety Case is to be prepared in outline at presentation of the Staff

Requirement and is to be updated at each major procurement milestone up

to and including hand-over from the procurement to the maintenance

authority … Ideally there should be a seamless development of the Safety

Case from one phase to the next”

This thesis demonstrates how the proposed approach to presenting safety

arguments respects and facilitates the incremental development of safety cases.

 28

1.2.5 Through-life Safety Case Maintenance

Although safety cases are typically presented initially by an operator in order to gain

permission to commence operation of a system, once accepted there is usually a

responsibility to maintain the safety case as a ‘living document’ throughout the

operational life of the system. For example, DS 00-56 [10] states that:

“… any amendments to the deployment of the system should be examined

against the assumptions and objectives contained in the safety case.”

Similarly, JSP 430 [8] puts forward the following requirement:

“The Safety Case will be updated … to reflect changes in the design and/or

operational usage which impact on safety, or to address newly identified

hazards. The Safety Case will be a management tool for controlling safety

through life including design and operational role changes”

However, the difficulty faced in safety case maintenance is highlighted most clearly in

the following quote taken from the U.K. HSE Railways (Safety Case) Regulations 1994

[6]:

“Regulation 6(1) requires a safety case to be revised whenever appropriate,

that is whenever any of its contents would otherwise become inaccurate or

incomplete.”

The challenge lies in the phrase ‘whenever appropriate’. The task of assessing the

impact of any particular change on the safety argument to determine whether revision of

the safety case is necessary is far from straightforward. The problems of argument

scale, complexity and most importantly clarity cited in Section 2.3 hamper the

development of a systematic, efficient and effective approach to safety case

maintenance.

This thesis demonstrates how the proposed approach to presenting safety

arguments can be used to support the safety case maintenance activity.

1.2.6 Supporting Trustworthy Safety Case Reuse

Whilst the details of the arguments of the safety case (being based on specific evidence)

are likely to change from instance to instance, there is often commonality in the form of

the arguments used between safety cases. In the author’s experience, this commonality

is often exploited by safety case practitioners in the form of informal safety argument

reuse – mimicking or copying verbatim an argument observed elsewhere (or perhaps

 29

used historically). Whilst there is significant benefit to be achieved through reuse – an

observable characteristic of a mature safety case development process – there are also

dangers. These may include an inappropriate reuse of arguments (possibly arising out

of a failure to understand the rationale or assumptions underlying an approach), and a

lack of traceability where arguments have been reused.

It is therefore desirable to have an approach that supports the documentation and reuse

of common safety argument approaches whilst minimising the risk of creating fallacious

arguments of safety.

This thesis proposes such an approach.

1.3 Thesis Proposition

This thesis provides a method and graphical notation for the presentation

of safety arguments. The thesis demonstrates how this approach can be

used to address the highlighted challenges of safety case development by

supporting the development, maintenance and reuse of safety arguments.

1.4 Thesis Structure

The thesis is divided into the following chapters:

Chapter Two presents a survey of the published literature on safety case development

and approaches to developing and presenting safety arguments. Through review of the

requirements regarding safety cases and safety arguments that exist with current safety

standards, and a study of published safety case development experience, the research

objectives are shown to be well founded. Early work on the Goal Structuring Notation

is identified at this point as the basis from which the research has been developed.

Chapter Three describes the contribution made by the author in defining a method for,

and extending, the Goal Structuring Notation. In particular, the chapter highlights how

the method has further defined the syntax and semantics of the notation. An illustration

of goal structure development using the method is presented. Using the extension of

context to goal structuring, we demonstrate how it becomes possible to represent the

interrelationships that exist between an evolving safety argument and alternative

development viewpoints. In particular, an illustration is given of the coupling that can

exist between the dual elements of the traditional ‘product’ safety viewpoint and

‘process’ justification.

 30

Chapter Four describes how the Goal Structuring Notation can be used in support of

the Safety Case Maintenance Activity. We propose a classification of changes affecting

the safety case and show how these changes can be mapped to the elements of a goal-

structured safety argument. Having represented the challenge in terms of the goal

structure, the chapter presents a process that uses the goal structure as the basis for

assessing the impact of change on the safety argument. This process is illustrated on the

example given in Appendix A.

Chapter Five presents a novel approach to the representation and reuse of common

safety case argument structures based upon the concept of ‘Patterns’. The chapter

proposes extensions to the Goal Structuring Notation that enable the structural and

entity abstraction necessary to represent generic argument structures. In addition we

define and explain a format for the documentation of the goal-structured abstractions. A

process for the elicitation and application of ‘Safety Case Patterns’ is presented. A

number of example patterns are provided (both in this chapter and in Appendix B).

From these examples, we explain how it has been possible to evolve a taxonomy of

Safety Case Patterns.

Chapter Six describes how the proposals put forward in Chapters Three, Four and Five

have been validated and evaluated. The evaluation of the work has been based upon

case study (such as that presented in Appendix A), application on real industrial

projects, and through exposure to a wide audience of experienced safety case

practitioners.

Chapter Seven presents the conclusions that can be drawn from the thesis. It describes

the extent to which the work presented in previous chapters supports the thesis

proposition, and highlights areas of ongoing and possible future work.

The thesis also includes a number of appendices that, although provided in support of

the main chapters, can be read independently:

Appendix A provides an illustration of how the Goal Structuring Notation, as described

in Chapter 3, can be used in the presentation of a safety case document. The features of

this example are discussed in Chapter Three. The example is also used in illustration of

the approach to Safety Case Maintenance proposed in Chapter Four.

Appendix B presents examples of Safety Case Patterns (proposed in Chapter Five)

documented to date. This appendix is presented in the form of a Pattern Catalogue,

structured according the taxonomy of patterns proposed in Chapter Five.

 31

Chapter 2:

Survey of Safety Case Management &

Argumentation

2.1 Introduction

Although the principles of developing and presenting safety cases are now widely

adopted and practised across many industries, there is still relatively little published

literature on the subject. This was particularly true at the time of starting the research.

This chapter provides the context for the contribution made by this thesis. The chapter

is divided into the following sections:

• Safety Case Development Requirements - Representative requirements for the

development and management of safety cases arising from current safety standards

• Safety Case Development Experience Reports - Published experiences of current

safety development practice (relevant to the thesis objectives)

• Safety Case Development Methodologies - Existing published approaches to

safety case development

• Safety Argumentation – Existing approaches to presenting safety arguments

• Argumentation - Existing approaches to argumentation

• Related Concepts – Concepts that are closely related to argumentation and the Goal

Structuring Notation

As described in Chapter One, the objectives of the thesis concern the development,

maintenance and reuse of safety arguments. There are no directly comparable results in

the areas of safety argument maintenance and reuse. The author conducted a broad

survey of change management and reuse approaches from other domains (particularly

software) in the initial stages of the research [12]. The reader is referred to this work for

a survey of these areas. Particularly relevant results from other domains that have

influenced the approach defined in this thesis are introduced within later chapters as

required.

 32

2.2 Safety Case Development Requirements

Over the course of the research the author has studied the requirements for the

production and management of safety cases that exist within a large number of current

safety standards. The majority of safety regulations and standards are defined for

specific industry sectors and countries (e.g. for Offshore Installations in the United

Kingdom [13]). In addition, there are a few industry ‘generic’ and international safety

standards (e.g. those concerning the use of software in programmable electronic

systems). Table 1 shows a representative subset of the standards studied and indicates

their scope of application.

In addition, the author has had sight of a number of company-specific safety assessment

procedures that address the production of a safety case.

The safety standards express requirements regarding safety cases in the following two

ways:

• Safety Case Product Requirements – concerning the role, content and structure of

the safety case

• Safety Case Process Requirements – concerning the safety case development and

maintenance lifecycle

The following sub-sections provide illustrative examples of these two forms of

requirement.

2.2.1 Safety Case ‘Product’ Requirements

An explicit requirement for the production of safety cases is present in a number of

safety standards. For example, the U.K. Defence Sea Systems Standard JSP 430 [8]

states the following:

“Safety Cases are required for all new ships and equipment as a means of

formally documenting the adequate control of Risk and demonstrating that

levels of risk achieved are As Low As Reasonably Practicable (ALARP).”

 33

Name of Standard / Regulations Generic /

Sector

Specific

Scope:

Draft IEC Standard (IEC) 61508 – Functional Safety:

Safety-related systems [14]

Generic International

Defence Standard 00-55 – Requirements for Safety-

Related Software in Defence Equipment [9]

Generic:

Defence

U.K.

Defence Standard 00-56 – Safety Management

Requirements for Defence Systems [10]

Generic:

Defence

U.K.

HSE Offshore Installations (Safety Case) Regulations

1992 [13]

Specific:

Offshore

U.K

ARP 4754: Certification Considerations for Highly-

Integrated or Complex Aircraft Systems [15]

Specific:

Aerospace

International

Joint Aviation Authority (JAA) Joint Airworthiness

Requirements JAR-25: Large Aeroplanes [16]

Specific:

Aerospace

Europe

HSE Safety Assessment Principles for Nuclear Plants

[17]

Specific:

Nuclear

U.K.

Railtrack Electrical Engineering and Control Systems

Engineering Safety Management System [18]

Specific:

Railways

U.K.

HSE Railways (Safety Case) Regulations [6] Specific:

Railways

U.K

Draft CENELEC Standard prEN 50126 – Railway

applications: The specification and demonstration of

dependability, reliability, availability, maintainability

and safety (RAMS) [19]

Specific:

Railways

Europe

U.K. Ministry of Defence Joint Service Publication

(JSP) 430 – Ship Safety Management Handbook [8]

Specific:

Defence –

Sea Systems

U.K.

Table 1 – Subset of Safety Standards Studied

 34

For U.K. Railways, the Health and Safety Executive (HSE) Railway (Safety Case)

Regulations 1994 [6] require that:

“A person in control of any railway infrastructure shall not use or permit it

to be used for the operation of trains unless

(a) he has prepared a safety case …

(b) the Executive has accepted that safety case …”

For U.K. Defence Software Systems, DS 00-55 [9] requires that:

“The Software Design Authority shall provide a Software Safety Case …”

As described in Chapter One, these requirements represent a marked shift in the

approach being adopted to the certification of safety-critical systems. Where previously

prescriptive standards were used as the main certification device, the responsibility is

now being placed with the developers to argue a safety case.

2.2.1.1 The Role and Purpose of the Safety Case

The role and purpose of the safety case is defined within a number of the standards. For

example, JSP 430 [8] states the following:

"A safety case is a comprehensive and structured set of safety

documentation which is aimed to ensure that the safety of a specific vessel

or equipment can be demonstrated by reference to: safety arrangements and

organisation; safety analyses; compliance with the standards and best

practice; acceptance tests; audits; inspections; feedback; and provision

made for safe use including emergency arrangements”

This definition highlights the role of the safety case as an integrator of many forms of

evidence. As discussed in Chapter One, this is actually one of the underlying causes of

the difficulties faced in presenting and structuring safety cases. DS 00-55 [9] provides

an alternative definition of the (software) safety case:

"The software safety case shall present a well-organised and reasoned

justification based on objective evidence, that the software does or will

satisfy the safety aspects of the Statement of Technical Requirements and the

Software Requirements specification."

 35

This definition clearly highlights that the role of the safety case is provide a reasoned

argument. It also supports the view that the safety case comprises three essential

elements (requirements, argument and evidence), as presented in Chapter One.

2.2.1.2 Expected Safety Case Contents

Many of the standards (and supporting guidance) have begun to define the

expected contents of a safety case. The following is an example of the top level

headings taken from the safety case contents list given in the Railtrack Safety

Management Manual [18] as guidance on compliance with the HSE Railways

Regulations [6]:

• Executive Summary

• Introduction

• System Overview

• Safety Requirements

• Safety Management Overview

• Safety Audits and Assessments

• Safety Analysis

• Safety Engineering Overview

• Compliance with Safety Requirements

• Other Outstanding Safety Issues

• Conclusions

Similarly, DS 00-55 [9] outlines the requirements for the contents of the software

safety case under the following headings:

• System and Design Safety Aspects

• Software Safety Requirements

• Software Description

• Safety Arguments

• Safety Related System Development Process

 36

• Current Status

• Change History

• Compliance with Safety Requirements

• In-Service Feedback

• Software Identification

The safety argument communicated by a safety case is the logical thread that runs

through the information presented in the separate sections. Some of the safety

standards, such as 00-55 [9], recognise the importance of presenting safety arguments

explicitly. The following section illustrates the requirements that exist within the

standards for the production and presentation of safety arguments:

2.2.1.3 Safety Argument Requirements

In addition to the general requirement present in many of the standards that the safety

argument presented by the safety case should be “well-reasoned” [10] and

“comprehensive” [8], DS 00-55 places some specific requirements on the safety

arguments presented. As shown by the headings given in the previous section, 00-55

also assigns an explicit section of the safety case to the presentation of safety

arguments. The following requirements are given regarding safety arguments:

“The Software Safety Case shall justify the achieved integrity level of the

Safety Related System (SRS) by means of a safety analysis of the SRS

Development Process supported by two or more diverse safety arguments.

The safety arguments shall include both:

a) Analytical arguments …

b) Arguments from testing …”

Part two of the standard also provides some guidance on how these arguments may be

developed and presented. The techniques that are presented are discussed in later

sections (2.5.2 and 2.5.3).

It is worth noting that although the standards make demands for clear and compelling

arguments, most offer little advice on how this is to be achieved.

 37

2.2.2 Safety Case ‘Process’ Requirements

The requirements given in the safety standards regarding the processes of safety case

management are covered under the following two sub-sections:

• Requirements regarding the initial development process

• Requirements regarding the maintenance process

The author has identified no specific requirements regarding the reuse of safety case

material. However, some standards offer advice on the types of argument and evidence

to be used within the safety case. This can be viewed as a form of safety case

knowledge reuse, albeit only a weak form. An illustrative example of this kind of

guidance is presented in a third sub-section:

• Guidance on admissible forms of safety argument and evidence

2.2.2.1 Requirements Regarding Initial Safety Case Development

Chapter One stated that whereas the historical view of safety case development was that

it was an activity to be carried out towards the end of the safety lifecycle, current

thinking endorses the evolutionary development of safety cases. This view is now

represented within a number of the safety standards. For example, 00-56 [10] states the

following:

“The Safety Case should be initiated at the earliest possible stage in the

Safety Programme so that hazards are identified and dealt with while the

opportunities for their exclusion exist”

Similarly, JSP 430 [8] presents the following requirement:

“The Safety Case is to be prepared in outline at presentation of the Staff

Requirement and is to be updated at each major procurement milestone up

to and including hand-over from the procurement to the maintenance

authority … Ideally there should be a seamless development of the Safety

Case from one phase to the next”

A common approach adopted within the standards to managing the gradual

development of the safety case is to require the submission of a number of safety cases

at various stages of project development. For example, DS 00-55 [9] talks of formally

issuing at least three versions of the (Software) Safety Case:

 38

• Preliminary Safety Case – produced after definition and review of the system

requirements specification.

• Interim Safety Case – produced after initial system design and preliminary

validation activities.

• Operational Safety Case – produced just prior to in-service use, including

complete evidence of having satisfied the systems requirements

Similar requirements for phased safety case production exist within 00-56 [10] and

within the civil nuclear domain [20] [21] (where the talk is of Preliminary Safety

Reports, Pre-Construction Safety Reports and Pre-Operation Safety Reports).

2.2.2.2 Requirements Regarding Safety Case Maintenance

The importance of effective safety case maintenance, as described in Chapter One, is

also highlighted in many of the standards. For example, the HSE Railway Regulations

[6] states the following:

“Regulation 6(1) requires a safety case to be revised whenever appropriate,

that is whenever any of its contents would otherwise become inaccurate or

incomplete.”

Similarly, 00-56 [10] demands that:

“… any amendments to the deployment of the system should be examined

against the assumptions and objectives contained in the safety case.”

JSP 430 [8] expresses the role of the safety case during maintenance even more

strongly, as shown in the following statement:

“The Safety Case will be updated … to reflect changes in the design and/or

operational usage which impact on safety, or to address newly identified

hazards. The Safety Case will be a management tool for controlling safety

through life including design and operational role changes”

Unfortunately (for practitioners), although the importance of, and requirements for,

safety case maintenance are expressed within the safety standards, once again little

guidance is offered on how this maintenance should be carried out. The quote from the

HSE Railway Regulations given above expresses one of the most problematic aspects of

safety case maintenance – namely the need for maintenance ‘whenever appropriate’.

 39

There are many difficulties in determining the impact of a change and therefore when

revision of the safety case is appropriate.

2.2.2.3 Guidance on Admissible Forms of Argument and Evidence

Although no standards explicitly refer to the reuse of safety arguments between safety

case development, some are implicitly encouraging the adoption of standard forms of

safety argument and supporting evidence through guidance material. As stated earlier,

this can be viewed as a weak form of safety argument reuse. One such example is the

guidance given for software safety cases in Part 2 of 00-55 [9], an extract of which is

shown in the following table:

Argument Scaling with size and safety

integrity level (SIL)

Assumption and

limitations

Max

SIL

Formal

Arguments

About linear with code size.

Limited complexity of

application. Some resource

related properties or concurrent

aspects difficult to address.

Policy for formal proof vs.

rigorous argument needs careful

justification.

Evidence very strong for

properties amenable to this

approach. Very dependent

on system design. Validity

of rigorous arguments for

assurance (as opposed to

development) hard to

quantify.

4

Exhaustive

testing

Non dependent on SIL but very

sensitive to complexity or

software.

Unlikely to be practicable

except for special cases,

which may be readily

tractable by proof anyway.

4

Table 2 – 00-55 Guidance on Acceptable Forms of Safety Argument

2.3 Safety Case Experience

A number of papers have been published that present experiences of applying the safety

case concept to specific domains and projects. The following three sub-sections provide

an overview of how this experience relates to the three main themes of the thesis,

namely, safety case development, maintenance and reuse.

 40

2.3.1 Experiences in Safety Case Development

Cullen in [11] cites the problems experienced when the production of a safety case for

the BNFL Sellafield Alpha Reduction Plant was initially left as a post-design activity.

He describes how after two failed attempts to produce an acceptable (certifiable) design,

an evolutionary and design-integrated approach to safety case development was

successfully adopted. (The problems cited in this paper are discussed more fully in

section 1.1. of Chapter Three).

Barker et al. in [22] describe the experience of developing a safety case for the

electronic throttle system on the Jaguar XK8 sports car. The paper concludes from the

experience that “it would be advantageous to design a skeleton safety argument as an

early deliverable, during planning stages … which could then be used to manage the

evidence gathered during development of the full argument, and to assist in its

presentation”. This view is very much in line with the objective of incremental safety

argument production as propounded in this thesis.

2.3.2 Experiences in Safety Case Maintenance

There are a number of reports that highlight some of the safety concerns associated with

maintenance. Pymm, in [23], describes the difficulty of making safety related

modifications to the computer systems of an Advanced Gas Reactor nuclear power plant

without degradation of, or challenge to, the initial safety case. In order to manage the

maintenance process he strongly advocates full documentation of the original

development process and also of the change process.

The problem of operational experience challenging the safety case is illustrated by

Hogberg in [24]. This paper describes the activities triggered by the need to re-assess

the existing safety case for five Swedish BWR (Boiling Water Reactor) power plants

after an incident challenged the original basis of that case.

Clarke, in [25] describes some of the problems encountered with performing the Long

Term Safety Review (LTSR) of the U.K.’s Magnox reactors. Specifically this report

highlights how, through lack of any maintenance of the original safety case, the safety

case has become inconsistent with current plant status and operation. He also highlights

the problems of adding to and re-evaluating a safety case that has become ‘out of date’

with respect to current safety standards. A more systematic approach to updating the

safety case, in line with the objectives of this thesis, is recommended.

 41

2.3.3 Experiences in Safety Case Reuse

Although not explicitly addressing safety case reuse, concerns have been identified in

the aerospace and railways sectors regarding the reliance on existing safety arguments

for derivative systems – so called ‘Grandfather Rights’. Ford in [26] highlights the

danger in implicitly relying upon historical safety arguments that would no longer meet

current certification requirements for U.K. Railways. Learmount in [27] highlights the

similar concern being expressed in relation to airliner type certification within the civil

aerospace domain. However, Learmount also describes how these ‘grandfather rights’

are being replaced with a certification process based on a more systematic evaluation of

the differences between derivative and the original certified airframes, engines and

systems. These two papers highlight the dangers of safety case reuse (i.e. its ability to

produce successively weaker safety arguments). They illustrate that for such reuse to be

safe requires a systematic process, explicit documentation and evaluation of the

continuing applicability of the reused approach. This observation supports the

objectives of this thesis.

2.4 Safety Case Development Methodologies

This section provides an overview of past and current research concerning safety case

development. In particular, the work of the following projects is presented:

• ASAM (A Safety Argument Manager), ASAM-II and SAM

• SHIP (Safety of Hazardous Industrial Processes)

• Communication in Safety Cases

• Adelard Safety Case Development Method

• SERENE (SafEty and Risk Evaluation using bayesian NEts)

2.4.1 ASAM, ASAM-II and SAM

ASAM (A Safety Argument Manager) [28] was the first project led by the University of

York to investigate and develop an approach to structuring the logic of safety cases.

The project based its approach upon the principals of structuring arguments in the

Toulmin form (i.e. in terms of claims, warrants, backing, rebuttal etc.), as described

later in Section 2.6.3. A prototype Safety Argument Manager tool was developed that

allowed these ‘micro-arguments’ to be assembled to form an overall safety argument.

There were a number of conclusions from this project. Firstly, the Toulmin form was

 42

felt to be too restrictive and unable readily to represent the forms of argument

commonly found within real safety cases. Secondly, it was felt that a safety case tool

should provide support not only for the high level argument of the safety case, but also

for the supporting evidence (particularly safety analysis techniques.) To address these

problems, the ASAM-II project was started.

ASAM-II [29-31] was a collaborative DTI-EPSRC funded project led by the University

of York in partnership with British Aerospace, Lloyds Register of Shipping and Rolls-

Royce plc. The objective of the project was to provide a structured method and

comprehensive tool support for the production of safety cases. The project focused on

the following two concepts:

• Development of a goal based notation for structuring the high level argument of the

safety case.

• Management of the interrelationships that exist between the most common safety

analysis techniques [31] (e.g. between Fault Tree Analysis and Failure Modes and

Effects Analysis).

This project initiated development of the Goal Structuring Notation (GSN), described

later in Section 2.5.6. The research described in this thesis began in 1994 whilst the

ASAM-II project was still running (the project ended in 1996). Although the basic

notation of GSN had been established, there was no method for the construction of goal

structures, the semantics of elements of the notation were poorly understood and

defined, and deficiencies were identified in GSN’s expressive power. This was the

starting point of the research identified in this thesis.

At the end of the ASAM-II project a prototype tool – SAM 3.25 – had been developed

and had already begun to incorporate some of the early results of the work presented in

this thesis (e.g. extension of the notation to include context). It was felt that with

minimal further development the SAM tool could be made into a commercial tool for

the management of safety cases. To fund and guide this further development, the tool

was passed across to York Software Engineering Ltd. who in 1997 set up the ‘SAM

Club’ – a consortium of over 20 European companies involved in the development of

safety-critical systems. The subscribing companies span a wide range of industries

(including defence, aerospace and the railways) and include GEC-Alsthom (now

Alstom), GEC-Marconi, Rolls-Royce, Defence Evaluation and Research Agency

 43

(DERA), Smiths Industries, Lucas Aerospace and Siemens. The ‘SAM Club’ has

funded the development of a new version of the SAM tool – SAM 4.

The research presented in this thesis has influenced the support for GSN provided by

SAM 4. As described in Chapter Six (Evaluation), SAM 4 has provided a platform on

which tool support for the approach presented (e.g. for argument maintenance and

reuse) has been developed. The ‘SAM Club’ has also provided a forum through which

the approach defined in this thesis has been presented and evaluated. At the time of

writing the club is still active, and intends to release SAM 4 as a commercial tool during

1999.

2.4.2 SHIP Project

The SHIP project was funded under the EU Environment Programme (Major Industrial

Hazards). The objective of the project was to define an approach to assuring safety

despite the presence of design faults. There were two main strands to the project:

• Definition of the SHIP Safety Case Approach

• Use of Bayesian Belief Networks to determine quantitative software claims

The following two sub-sections describe the results of these studies:

2.4.2.1 SHIP Safety Case Approach

The SHIP model of the safety case [32] is shown in Figure 2. It defines the safety case

in terms of three elements:

• Claims about properties of the system.

• Evidence used as the basis of the safety argument.

• Argument that links the evidence to the claims via a series of inference rules.

The following three types of argument are also defined:

• Deterministic – relying upon axioms, logic and proof

• Probabilistic – relying upon probabilities and statistical analysis

• Qualitative – relying upon adherence to standards, design codes etc.

 44

Evidence

Evidence

Evidence

Inference
Rule

Claim

Argument

Figure 2 – SHIP View of Safety Argument Structure

It is explained in [32] how the model shown in Figure 2 together with the defined types

of argument can be used as the basis of structuring a safety case. The nature of the

claim to be supported and the type of argument adopted determine the forms of

evidence and inference rule to be used.

More general guidance was also given on the forms of evidence suitable for supporting

certain types of argument, as shown in Table 3.

Implementation Options / Evidence Type of Argument

Development

Process

System Design Field Experience

Fault elimination

and quantification

Maximising the

probability of a

“perfect” state

Procedures,

Standards,

Documentation

Configuration

Control,

Testing,

Reviews,

Design Tools,

Formal Methods

Design simplification

Formal proof of

system properties

Use of Standard

Components

Prior operating

history as evidence of

correctness

Fault reporting,

Design Correction

Error Activation

Minimising

OK → erroneous

Testing according to

expected usage

 Avoid changes in the

usage; Avoid known

problem areas

 45

Failure containment

Strengthening

erroneous → OK

erroneous → safe

 Fault tolerant designs

Fail safe designs

Fault injection tests

Failure estimation

Estimating

OK → dangerous

Reliability testing Operational failure

reports; Reliability

growth models

Table 3 – SHIP: Sources of Argument and Types of Evidence

Although the overall approach to structuring the safety case was described in graphical

terms, i.e. as shown in Figure 2, a graphical approach was not adopted for the

presentation of safety arguments. Instead a tabular approach was adopted that was to

later form the basis of the 00-55 tabular argument approach (described in section 2.5.2).

Although the approach was initially developed for software safety arguments, it was

found to be equally applicable to other types of system. An example tabular safety

argument from the SHIP project is presented in Table 4.

Transition Cause Safeguards

“Sound” → faulty Cracks grow due to normal

ageing or abnormal

transient

Cracking minimisd by

production processes,

sound design, QA,

avoidance of past problems

Faulty → erroneous Cracks grow large enough

to leak

Minimised by periodic

inspection of vessel

Erroneous →safe Reactor trips before the

vessel fails

On-line water leak

detection initiates trip

Erroneous → dangerous Catastrophic failure of

vessel

Judged incredible

Table 4 – SHIP: Safety Case Arguments for a Nuclear Pressure Vessel

In Table 4 the argument is structured under the following headings:

• Transition – the fault transition that is to be avoided

 46

• Causes – the factors that may cause the fault transition

• Safeguards – the safeguards in place to prevent the transition or to mitigate the

effects of the transition

The advantages and disadvantages of tabular presentations of safety arguments are

discussed in Section 2.5.2.

In [32] it was recognised that, given a clear hierarchical breakdown of the argument

structure, “deviations in implementation can be analysed to see how this affects a sub-

claim, and how changes in sub-claim ‘ripple through’ the safety argument”. However,

no guidance was given on how this might be done and the idea was not explored further.

2.4.2.2 SHIP Bayesian Belief Networks

Bayesian Belief Networks (BBNs), described in more detail in section 2.5.5, were

identified on the SHIP project as a possible means of coupling qualitative evidence

regarding the software development process with quantitative failure rate evidence [33,

34]. Figure 3 provides a sketch of the SHIP BBN.

Process-related
arguments

Number of faults
at delivery

Probability of
failure on
demand

Failures
observed in
acceptance

testing

Sizes of faults at
delivery

Figure 3 – Sketch of SHIP Bayesian Belief Network

The implicit argument communicated by the above BBN is that the process-related

arguments support a claim of low number and size of faults at delivery. The low

number and size of faults at delivery support the claim of a low probability of failure on

demand. Finally, statistical testing is used to corroborate this belief. The use of BBNs

to communicate arguments in this way is discussed in Section 2.5.5.

 47

2.4.3 Communication in Safety Cases - A Semantic Approach

‘Communication in Safety Cases - A Semantic Approach’ [35] was a DTI-EPSRC

funded project pursued at the University of Edinburgh. This project looked at

formalising ‘meta-level’ safety requirements in order to guide and constrain the

development of a design. In this way, Edinburgh hoped to integrate the construction of

the safety case with the design activity. The emphasis of the work, recorded in [35] was

on formalising functional requirements for elements of a system, using these

requirements to construct networks of linked elements. Cause and effect matrices can

be constructed from this network of dependencies and then used as the basis of the

system’s safety case. Unlike the approach presented in this thesis, this approach

presupposes that the system in question is amenable to formal specification and that

arguments of cause and effect are sufficient for the safety case.

2.4.4 Adelard Safety Case Development Method

The recently published Adelard Safety Case Development Manual [36] represents one

of the first attempts to present a ‘total’ safety case development methodology. With

respect to the presentation of safety arguments, it is heavily based upon the qualitative

aspects of the SHIP approach. In particular, it adopts the same view of safety argument

structure, shown in Figure 2. It also presents the tabular approach to structuring and

presenting safety arguments, as described in Section 2.5.2.

The manual offers much useful advice on the processes of constructing and maintaining

the safety case, including guidance similar to that given in 00-55 on acceptable forms of

argument and evidence (discussed in Section 2.2.2.3). However, it offers no explicit

guidance on either the incremental development of safety arguments (beyond the

principle of phased safety cases discussed in Section 2.2.2.1), or impact assessment

applied to safety arguments, or reuse of successful safety arguments.

2.4.5 SERENE Project

The SERENE (SafEty and Risk Evaluation using bayesian NEts) is a current ESPRIT

Framework IV project. The objective of the project is to develop a method for

constructing software safety arguments using Bayesian Belief Networks. At the time of

writing, no results have been published from this project.

Section 2.5.5 provides an overview of Bayesian Belief Networks and a discussion of

their capability to present safety arguments.

 48

2.5 Safety Argumentation

This section provides an overview of existing approaches to safety arguments. The

following approaches are described:

• Free Text

• Tabular Structures

• Claim Structures

• Bayesian Belief Networks

• Goal Structuring Notation (GSN)

The Goal Structuring Notation forms the basis of the approach presented within this

thesis. This section provides a description of the status of the GSN at the time of

starting the research. In particular, the reasons for its selection and the deficiencies that

were identified are discussed.

2.5.1 Free Text (Current Practice)

Safety arguments are most typically communicated in existing safety cases through free

text. Figure 4 shows a fragment of a safety argument communicated using free text.

The Defence in Depth principle (P65) has been addressed in this

system through the provision of the following:

• Multiple physical barriers between hazard source and the

environment (see Section X)

• A protection system to prevent breach of these barriers and

to mitigate the effects of a barrier being breached (see

Section Y)

Figure 4 – An Example Textual Safety Argument

In Figure 4, the text describes clearly how a safety requirement (P65) has been

interpreted and achieved in the system. It also clearly provides references to where the

evidence supporting the lower level statements can be found.

Well-structured approaches to expressing safety arguments in text can be effective (as

shown in Figure 4). However, there are problems experienced when text is the only

medium available for expressing complex arguments. The text shown in Figure 5, taken

 49

from a real industrial safety case (with identification of the target application hidden),

illustrates some of these problems.

For hazards associated with warnings, the assumptions of [7]

Section 3.4 associated with the requirement to present a warning

when no equipment failure has occurred are carried forward. In

particular, with respect to hazard 17 in section 5.7 [4] that

for test operation, operating limits will need to be introduced

to protect against the hazard, whilst further data is gathered

to determine the extent of the problem.

Figure 5 – The Problems of Textual Safety Arguments

The underlying problem of the text shown in Figure 5 is that it is unclear and poorly

structured English. Not all engineers responsible for producing safety cases write clear

and well-structured English. Consequently, the meaning of the text, and therefore the

structure of the safety argument, can be ambiguous and unclear.

Cross-references, of the type shown in Figure 5, are often necessary given the role of

the safety case as an integrator of evidence. However, multiple cross-references in text

can be awkward and can disrupt the flow of the main argument.

In the context of developing, agreeing, maintaining and potentially reusing the safety

arguments within the safety case, the biggest problem with the use of free text is in

ensuring that all parties involved share the same understanding of the argument.

Without a clear shared understanding of the argument, safety case management is often

an inefficient and ill-defined activity.

2.5.2 Tabular Structures

Tabular structures for the presentation of safety arguments were first suggested on the

SHIP project (Section 2.4.2.1) but have since also been included in Annex E of DS 00-

55 [9].

As shown in Table 5 (derived from [9]), tables are used to present arguments in three

parts:

• Claim – the overall objective of the argument

• Argument – a brief description of the type of argument being put forward in

support of the Claim

 50

• Evidence / Assumptions – The evidence or assumptions that support the argument

Claim Argument Evidence / Assumptions

There is no fault in the

software implementation

Software reliability exceeds

system requirement

Formal proof of specified

safety properties

Formal proof that code

implements its specification

Reliability can be assessed

under simulated operational

conditions

The design is simple enough

to be amenable to proof

Proof tool is correct (or

unlikely to make a

compensating error)

Compiler generates correct

code (sub-argument might

use formal proof, past

experience, or compiler

certification

High quality V&V process

Test results

Statistical test results

Table 5 - An Example Tabular Safety Argument

The tabular structures offer a simple means of structuring an argument. They can offer

an improvement over the use of free text in that they clearly delineate the constituent

parts of the argument. However, within a single table it is only possible to represent

two steps in the decomposition of the argument (i.e. claim à argument and argument

à evidence). For complex arguments, which may contain many levels of claim and

sub-claim, either an attempt must be made to force the text within the ‘argument’

column to communicate the argument structure, or multiple tables must be used to

express lower levels of argument decomposition. (In the latter case the ‘evidence’

column is made to refer to a supporting tabular argument.) The consequence is that

either the clarity or the flow of the argument can be lost.

Significantly, little guidance has been presented on how to express the information

contained within each column.

 51

2.5.3 Claim Structures

Claim Structures are presented in Annex H of 00-55 Part Two. They are used to present

process safety arguments for the development process adopted on the SHOLIS (Ship

Helicopter Operating Limit Instrumentation System) project. Figure 6 shows an

example claim structure taken from Annex H.

(sil_claim)

SHOLIS safety-critical
software achieves SIL4

AND

(timing)

safe timing behaviour
exhibited

(func)

safe functional
behaviour exhibited

(mem)

always enough memory
available

OR

(func.safe_construction)

correctness by construction
ensures safe functional

(func.safe_testing)

testing demonstrates safe
functional behaviour

AND
AND

construction by correctness
ensures safe functional
behaviour

(fun.safe_construction.produc

softwareconstruction processes
are adequate

(func.safe_construction.proces

testing results demonstrate safe
functional behaviour

(func.safe_testing.product)

testing process is adequate

(func. safe_testing.process)

Figure 6 – An Example Claim Structured Safety Argument

Claim structures are built up from a number of claims (represented by the rectangular

boxes) joined together by AND and OR gates. (OR gates are used to denote the

independence of arguments.) Claims are broken down hierarchically until base claims

(denoted by the attached circle) or undeveloped claims are reached. Base claims are

supported by evidence. However, the role of supporting evidence is not represented

diagrammatically.

Claim structures represent cut-down version of goal structures (in fact there is evidence

that the Goal Structuring Notation influenced this approach [9, 37]). They have no

means of expressing argument strategy, other than the simple AND and OR

 52

combinations of claims. They do not graphically communicate rationale, context or the

role of evidence.

No guidance is given in Annex H on the application of this notation.

2.5.4 Traceability Matrices

Traceability matrices are a means of representing how one statement (claim,

requirement, objective etc.) relates to a series of other requirements. Traceability

matrices are popular within the requirements engineering and security domains. Table 6

shows an example traceability matrix (taken from [36]).

Requirement

Design Feature TRIP PFD STR TIM FIX TST F1 F2 UPD SEC

Redundant channels and

thermocouples
 n n n n n n

Fail-safe design features n n n n n

Separate Monitor

Computer
 n n n

Design Simplicity n n n

Formally Proved Software n n n

Table 6 – An Example Traceability Matrix (Design Features vs. Requirements)

Table 6 shows how high level requirements (given across the top of the matrix) can be

related to the (lower level) provision of design features (listed down the left hand side of

the matrix). A block indicates that a design feature is related to a particular

requirement.

Whilst traceability matrices clearly indicate a relationship between statements, they are

capable of only representing one layer of decomposition at a time. Consequently, many

matrices may be necessary to represent a deep decomposition of statements. They

cannot represent how lower level statements may conflict. They also offer no means of

explaining or justifying the relationship that exists between the higher and lower level

statements. However, a positive attribute is that they are an extremely compact and

easily understood representation of traceability relationships.

 53

2.5.5 Bayesian Belief Networks

Bayesian Belief Networks (also known as Causal Probabilistic Networks, Probabilistic

Cause-Effect Models and Probabilistic Influence Diagrams, Causal Nets and Graphical

Probability Networks) are graphical networks that communicate the probabilistic causal

relationship that exists between variables. Figure 7 shows an example BBN. Nodes of

the graph represent variables. Arcs between nodes indicate a causal dependency

between variables.

Reliability

No. of Latent
Faults

Operational
Usage

Code
Complexity

Coders
Performance

Problem
Complexity

Use of IEC
61508

Experience of
Staff

Figure 7 – An Example BBN for Predicting Reliability Using Process and Product

Evidence

Conditional Bayesian probabilities are used to articulate beliefs about the dependencies

between different variables. For example, in Figure 7 a relationship is declared between

a coder’s performance and his or her experience, the complexity of the problem being

addressed, and whether the software standard IEC 61508 [14] has been used.

Conditional probabilities are used to indicate the extent to which coder performance

depends on each of these factors.

 54

BBNs can be used to derive quantitative claims relating to the safety of a system (e.g. an

overall reliability claim). The benefit of using BBNs is that they can predict the value

of variables based upon uncertain or partial data. The drawback is in the derivation of

the conditional probabilities used to express the level of causality between variables. In

many cases determining these probabilities can be a heavily subjective exercise. If,

however, the variables are observable properties the conditional probabilities can be

improved over time, as more data becomes available.

Bayesian Belief Networks provide a means of communicating the relationship between

the claims of a safety argument [33]. However, BBNs (as a visual representation)

communicate safety arguments only implicitly (as do for example Fault Trees). For

example, the BBN shown in Figure 7 does not explicitly present claims (the nodes are

labelled as Noun-Phrases) and much of the ‘belief’ is captured in the conditional

probabilities associated with the arcs and nodes (not represented on the diagram itself).

An advantage BBNs have over pure argument representation devices (such as GSN

described in the following section) is that they provide a means of deriving a safety

argument – establishing a causal relationship between qualitative and quantitative

safety. Equally important, they provide evidence (as do fault trees, for example) that

can be used in supporting a quantitative claim within a safety argument.

The use of BBNs does not necessarily conflict with the approach suggested in this

thesis. In the ‘Further Work’ section of Chapter Seven we discuss a possible approach

to integrating the two methods.

2.5.6 Goal Structuring Notation

As described in section 2.4.1, the Goal Structuring Notation (GSN) for the presentation

of safety arguments was developed initially on the ASAM-II project. This section

provides an overview of the notation as it was defined, used and understood before the

research presented in this thesis was started, derived from [30].

Goal structuring is a graphical approach to presenting the structure of a safety argument.

Goal structures, or goal hierarchies as they were originally termed, consist of the

following elements:

• Goals

A goal is a requirement, target or constraint to be met by the system. The term goal

 55

hierarchy refers to the collection of goals produced by the hierarchical

decomposition of goals into sub-goals.

• Models

A goal is couched in terms of some model of the system, or its environment. A goal

may be expressed over a number of models. This model may take a number of

forms – e.g. a plant schematic, a process description or an architectural model.

• Strategies

A goal (or set of goals can be solved by a strategy, which breaks down a goal into a

number of sub-goals. A strategy can be regarded as a rule to be invoked in the

solution of goals.

• Justifications

Strategies often need some justification for their use. A justification calls upon a

reason or evidence that supports a strategy.

• Meta-strategies

Meta-strategies record situations where there are alternative strategies for the

solution of a set of goals.

• Criteria

Criteria are used to decide whether a goal has been satisfactorily solved. They

provide measures and procedures for assessing goal satisfaction.

• Constraints

A constraint is used to restrict the way in which goals can be solved, e.g. a common

safety requirement is ‘no single point of failure shall lead to a hazard’.

• Solutions

Goals may be solved directly by solutions, rather than by decomposition into sub-

goals. Solutions will be individual pieces of analysis, evidence, results of audit

reports, or references to design material.

The graphical symbols for these elements are shown in Figure 8.

 56

GOAL MODEL STRATEGY

JUSTIFICATION

J

META-STRATEGY

CRITERIA

CONSTRAINT

SOLUTION

Figure 8 – The Original GSN Elements

An example goal hierarchy (reproduced from [30]) is shown in Figure 9. (This in fact

represents one of the clearer examples in existence prior to the research presented in this

thesis.) The hierarchy sketches the safety argument for part of an Advanced Gas

Reactor nuclear trip system, and in particular addresses the avoidance of Gag Valve

Failures.

GSN was identified by the author as one of the most promising approaches to presenting

safety arguments, for the following reasons:

• It offered explicit representation of the logical flow of the safety argument (through

the directed SolvedBy relationships that are drawn between goals, strategies etc.)

• It offered explicit representation of the role of evidence (through the Solution

symbol)

• It offered explicit representation of the rationale underlying an argument (through

Justification symbol)

• No other comparable approaches to representing safety arguments existed at the

time of starting the research presented in this thesis (neither Claim Structures nor

Tabular Structures had been published at this date).

At the same time, however, we identified a number of deficiencies in the use of the

notation, including the following:

• No guidance was available on how goal structures were to be constructed (i.e. a

method). Consequently, safety engineers found the approach difficult to apply.

Also this meant that there was a large variance in how the notation was used. (It is

 57

possible to observe changes of style even within Figure 9 – whereas G1 and G2

describe Verb-Phrase objectives, G3.1 and G3.2 form propositions.)

• The semantics of some elements of the notation were poorly defined. For example,

it was unclear whether strategies were meant to present the design approach (as

shown in Figure 9) or the argument approach.

• The roles of context and assumption in a safety argument were not represented

within the notation.

G1

Make nuclear plant
safe

G2

Make nuclear plant
highly available

G3

Provide adequate protection
against consequences of

Gag Failure

G4

Maintain High Availability
in face of Gag Failure

(M1)
System Model

S1

Use Trip System
to protect against
Gag Failure

(M2)
Trip System Model

J1

Similar Trip Systems
satisfactory in other
reactors

J

G3.3

Probability of Trip System
failing to trip on demand <

10e-5

J2
Justification
Argument

J

G3.1

Spurious trip rate of Trip
System < 0.25 per year

G3.2

Availability of Trip
System >= 98.95%

Figure 9 – An ‘Original’ Goal Hierarchy

 58

The starting point of the research presented in this thesis was to address the problems

that had been identified with the GSN. Having ‘fixed’ the basic notation, the research

was then able to explore the previously unaddressed issues of safety argument

maintenance and reuse.

2.6 Argumentation

This thesis is concerned with the development, presentation, maintenance and reuse of

clear arguments. This section provides an overview of argumentation approaches that

exist outside of the safety domain. In particular, the following topics are addressed:

• Formal Logic

• English syntax and argumentation

• Devices for structuring and presenting arguments

• The role of graphical presentations of arguments

Argument is a widely used device. The disciplines of philosophy and English syntax

provide insight into the structure and presentation of reasonable arguments. The

following sections describe some of the alternative approaches developed within these

domains.

2.6.1 Formal Logic

Formal Logic [38] describes acceptable forms of reasoning and offers definitions of the

basic concepts of argumentation that underlie any argument representation. This section

presents the fundamental definitions of formal logic:

In order to express an argument that reasons from premises to a conclusion, the concept

of proposition is required. A proposition is defined in formal logic to be a statement

which (a) must be either true or false, and (b) cannot be both true and false. For

example, “The sky is blue” is a valid proposition.

An argument is a collection of propositions – one of which is the conclusion, the others

being the premises for that conclusion. For example, the following is an argument:

• If it is a Bank Holiday, then it is raining

• It is a Bank Holiday

• It is raining

 59

(Premises are listed above the line, the conclusion is given below the line.)

An argument is said to be valid if it is not possible for all of its premises to be true and

its conclusions false. For example, the following argument is invalid as it is possible for

the premise to be true whilst the conclusion is false:

• It is raining

• Today is Tuesday

The validity of an argument does not address whether the premises of the argument are

true. To do this, requires the definition of a sound argument. An argument is said to be

sound if it is valid and its premises are true.

A consistent argument is one where it is possible for all the propositions forming that

argument to be true together.

Propositional logic extends these basic ideas with the concept of connectives. A

connective is a term capable of joining two or more propositions to form a more

complex proposition. The standard logical connectives of propositional logic are

negation, conjunction, disjunction, implication and equivalence.

Predicate logic extends propositional logic to include the concepts of terms and

predicates. Example singular terms are ‘York’, ‘Train’, ‘Tim’. Predicates express

properties over terms. For example, in the proposition ‘Tim is happy’ the predicate ‘is

happy’ is applied to the term ‘Tim’. Predicate Logic also includes the concept of

quantification. The most commonly used quantifiers are ‘All’ (Universal

quantification) and ‘There Exists At Least One’ (Existential).

The fundamental concepts of logic described in this section have been used within the

research presented in this thesis (particularly in defining the GSN Method) to improve

the expression of arguments using goal structures.

2.6.2 English Syntax and Argumentation

The study of English syntax and Argumentation [39, 40] relates the concepts of English

Grammar to Formal Logic. It offers insight wherever text is used in presentation of an

argument.

Propositional sentences can be divided into Subjects and Predicates. (‘Subjects’ are

equivalent to ‘terms’ as defined in Formal Logic.) The subject of a propositional

sentence is usually the first Noun-phrase within that sentence. Verbs are predicators

 60

within the proposition – i.e. they form the predicate. Predicates are formed from Verb-

Phrases. Consider the following sentence:

“Tim bought a computer”

The subject of the proposition is ‘Tim’, the predicate is ‘bought a computer’ and the

predicator is the verb ‘bought’.

Based upon these concepts of syntax, it becomes possible to define acceptable of

propositional sentential forms, the simplest being:

Noun-Phrase Verb-Phrase

The concepts of English Syntax and Argumentation been used within the research

presented in this thesis (particularly in defining the GSN Method) to improve the

articulation of arguments using goal structures.

2.6.3 Devices for structuring and presenting arguments

From the field of philosophy, Govier in [41] introduces a graphical notation for

constructing arguments, based on the following elements:

Single Support Pattern

1

2

One premise supports the

conclusion

Linked Support Pattern

1

3

2+

Several premises

interdependently support

the conclusion

Convergent Support

Pattern

1

4

32

Several premises

independently support the

conclusion

Using this notation, she describes how it is possible to construct diagrams for complex

arguments. Figure 10 shows an example argument composed from the above basic

forms.

 61

1

3

2+

+ 4 + 5

6

Figure 10 - Example Argument expressed in Govier’s Notation

In Figure 10 claims 1 and 2 together support claim 3 and that claims 3, 4 and 5 together

support conclusion 6. Govier goes on to describe how this notation can be used to

express statements of categorical and propositional logic.

Govier’s notation is unarguably valid as it can mechanically be collapsed to

propositional logic placed in disjunctive normal form, i.e. in the form:

(A1∧ A2∧..)∨(B1∧ B2∧..)∨(C1∧ C2∧..)∨...

This does not imply, however, that the notation is necessarily practical or useful for the

capture of the argument in the safety justification process. It is entirely general and

provides no explicit notion, for example, of types of premise, distinguishing, say,

between a premise derived from analysis and one derived from a system modelling

activity. Therefore, it provides no mental cues in associating the supporting activities of

an argument. Extra structure such as this makes the process of constructing a safety

justification more predictable and manageable, e.g. so that the forms of premise

required to justify a particular conclusion are known.

Toulmin’s notation, described in [42], introduces the concept of typed premises and

describes a pattern for the structure of a typical argument. Toulmin makes his first

distinction of type between the “claim or conclusion whose merits we are seeking to

establish” and “the facts we appeal to as a foundation for the claim”. The former is

referred to as the claim (C). The latter is referred to as the data (D). Given these two

elements he is able to make arguments of the form, “IF D THEN C” shown in Figure

11.

 62

D So, C

Figure 11 - The Starting Point for Toulmin’s Notation

At this point the notation offers no more than Govier’s notation. The notation is

extended, however, by including the concept of warrant (W). The warrant for an

argument is the premise that relates data D to claim C. Figure 12 shows how warrant is

recorded in Toulmin’s notation.

D So, C

W

Since

Figure 12 - The Use of Warrants in Toulmin’s Notation

From this position, the notation is extended further to include the notion of qualifier (Q)

and rebuttable (R). The qualifier describes the degree of confidence that can be placed

on the claim. The rebuttal is a premise that describes when the claim would not be

sound. In this sense, Toulmin’s notation is predisposed towards arguments of a

categorical nature, e.g. “All apples are green, X is an apple, therefore X is green unless

X is a Red Delicious”. Figure 13 shows how the concept of qualification and rebuttal

fits into Toulmin’s notation.

D Q

W

Since
C

So

R

Unless

Figure 13 - Toulmin’s Pattern for the Layout of Arguments

It is not difficult to see that the notation Toulmin provides is simply a structuring of

formal logic. However, in providing a pattern, Toulmin has simplified the process of

constructing and managing arguments. For example, it would be easy to identify a

warrant-less argument expressed in Toulmin’s notation.

 63

Both Govier’s and Toulmin’s notation can be used to express any argument. Having

been designed to be completely general, they do not explicitly capture concepts that

relate to the safety domain (such as system models). The goal structuring notation

introduced in section 2.5.6 extends this idea of a typed argument framework to present a

notation that applies particularly well to the safety justification domain.

2.6.4 The role of graphical presentations of arguments

Graphical presentation of safety arguments is at the heart of the approach presented in

this thesis. However, as shown by Govier’s notation introduced in the previous section,

it is not a new idea to present logical arguments diagrammatically.

Again from the field of Philosophy, Grennan [43] defines a graphical technique similar

to Govier’s for mapping the structure of an argument. This notation is introduced in

order to support an argument evaluation procedure. It is suggested in [43] that to

evaluate an argument effectively requires a clear and demonstrable understanding of the

elements and structure of that argument - achieved through graphical presentation.

From the field of Organsational Science, Sparrow [44] reports on a number of studies

that demonstrate the important of graphical representations in managing complexity.

Particularly, Fiol and Huff in [45] conclude that graphical representations ‘provide a

way to structure and simplify thoughts and beliefs, to make sense of them, and to

communicate information about them’. Sparrow himself suggests that, ‘Graphic

representations can both simplify ideas and facilitate the transmission of complex ideas

from individual to individual and unit to unit’.

These observations support the adoption of a graphical notation for the presentation of

safety arguments within the safety case – where both ease of evaluation and

comprehension are key problems, as described in Chapter One.

2.7 Related Concepts

This section describes concepts that relate to argumentation, and to goal structuring:

• Design Rationale Capture

• Other Goal-Based Approaches

 64

2.7.1 Rationale Capture

The field of Design Rationale Capture has developed methods to capture and represent

of the rationale underlying decision-making processes.

Design rationale is defined by Gruber in [46] as “an explanation that answers a question

about why an artefact is designed as it is”. The field of design rationale management

brings together work from various disciplines including AI, software engineering,

mechanical engineering, civil engineering, computer-supported work and human-

computer interaction.

Representation of design rationale can range from unstructured approaches - such as the

use of electronic notebooks [47] that capture natural language through semi-formal

approaches – to the use of requirements templates, and finally to entirely formal

documentation of the rationale entities, their interdependencies, etc. Figure 14 is

provided as an example of a decision rationale representation, taken from [48]. This

figure illustrates how goals, alternatives and claims fit together to form a ‘decision

graph’ representation of the decision concerning the implementation language to use for

a new application, Zeus.

Which
language
for Zeus?

Minimise
development

cost

Can
Implement

Zeus

Supports
E-mail

Provides
Object
System

Interface in
X Windows

Why do
we need to

use X?

X Windows
is written in

C

C++
Available

C

There is CLX
and CLUE,
the LISP

version of X

There are
packages built on

top of CLS that
provide graphics,
e.g. Composer II

Common
LISP

There are
packages built on

top of CLS that
provide graphics,
e.g. Composer II

CLOS
provides

object
system

There is
Flavors

is-a-subgoal-of

is-a-subgoal-of

is-a-subgoal-ofis-a-subgoal-of

queries

achieves

supports

is-the-best-
alternative-for

achieves achieves

supports

supports supports

supports

denies

denies

supports

Figure 14 - Decision Graph Example Using DRL

 65

Other design rationale representations include decision trees [49], gIBIS [50], and

Critter [51]. For an exhaustive survey of work in the area we refer the reader to [46].

Design rationale representations communicate the rationale underlying arguments rather

than the argument itself. Consequently, they are inappropriate for presenting safety

arguments. However, representation of rationale remains an important supporting

concept for safety argumentation (to justify the argument approach presented).

2.7.2 Other Goal Based Approaches

The concept of goal decomposition has been applied in areas other than argumentation,

particularly in requirements engineering. A review of goal-driven approaches to

requirements engineering is presented in [52].

One such approach is the work of Loucopoulos et al. [53]. Loucopoulos focuses upon

using goals and goal hierarchies within information systems engineering to decompose

overall organisational objectives into the specific functions of the system that must be

implemented. The goal structures that are used consist of goals and the connectives

AND and OR to relate goals to sub-goals. Loucopoulos’ goals are stated as future

aspirations of the organisation and system. As such, they have more in common with

rationale capture than argumentation. In addition, these goal structures do not express

the concepts of strategy, solution, assumption and justification offered by the Goal

Structuring Notation (section 2.5.6) – concepts that have been found applicable in the

expression of safety arguments.

Work on the use of goal structures in requirements engineering was also carried out at

York under the DTI-SERC funded PROTEUS project [54]. A more formal

interpretation of goal structures was adopted on this project. Goals were recorded as

formal assertions that could logically be checked with respect to the given sub-goals.

There was no notion of solutions – instead, there existed axiomatic goals. Based on this

formal model, it was possible to support a calculable analysis of the effects of changing

elements of the goal structure (e.g. changing an axiomatic goal).

Because the PROTEUS work relied so heavily upon the formal basis of stating goals

and establishing formal relationships between goal and sub-goals, the change

management technique developed offers little useful advice on managing the

uncertainty of change applied to informal goal structured arguments as addressed by

this thesis.

 66

2.8 Summary

This chapter has presented a survey of published literature relating to safety case

management.

The requirements identified from the safety standards, and the published experiences of

current safety case development practice, show that the research objective of supporting

the development, maintenance and reuse of safety arguments is well founded.

In the remaining sections of the survey, the work of this thesis is set clearly in the

context of existing approaches to safety case development and argumentation. In

particular, the early work on Goal Structuring Notation (GSN) is introduced as the basis

of the approach that is defined in Chapters Three, Four and Five.

No directly comparable approaches, particularly in the areas of safety case maintenance

and reuse, have been identified by this survey.

 67

Chapter 3:

Using the Goal Structuring Notation to Support

Safety Case Development

3.1 Introduction

It is increasingly recognised by both safety case practitioners and many safety standards

that safety case development, contrary to what may historically have been practised,

cannot be left as an activity to be performed towards the end of the safety lifecycle. This

view of safety case production being left until all analysis and development is

completed is depicted in Figure 15.

Production of
the Safety Case

Initial Hazard List In-service experience

Construction and
Development Codes

Preliminary
Safety

Assessment

Hazard
Identification

& Risk
Estimation

Confirmatory
Analysis

Test and
Inspection

Requirements Completed System

Implementation

Design and
Decomposition

Integration and
Test

Safety LifecycleDesign Lifecycle

Figure 15 - A Historical View of Safety Case Development

A traditional view of the design and development lifecycle is shown on the left-hand

side of Figure 15. Running concurrently with this, shown on the right-hand side of the

diagram, is the historical view of the safety lifecycle, showing safety case development

as a discrete activity to be performed following the completion of the safety assessment

activities.

3.1.1 Problems Experienced with ‘Traditional’ Safety Case Development

The problems that have been experienced with this style of safety case development

include [11]:

• Large amounts of re-design resulting from a belated realisation that a satisfactory

safety argument cannot be constructed. In extreme cases, this has resulted in

‘finished’ products having to be completely discarded and redeveloped.

 68

• Less robust safety arguments being presented in the final safety case. Safety case

developers are forced to argue over a design as it is given to them – rather than

being able to influence the design in such a way as to improve safety and improve

the nature of the safety argument. This can result in, for example, probabilistic

arguments being relied upon more heavily than deterministic arguments based upon

explicit design features (the latter being often more convincing).

• Lost safety rationale. The rationale concerning the safety aspects of the design is

best recorded at ‘design-time’. Where capture of the safety argument is left until

after design and implementation – it is possible to lose some of the safety aspects of

the design decision making process which, if available, could strengthen the final

safety case.

Unfortunately, though not surprisingly, few practitioners are prepared to publicise

failures of this style of safety case development. However, Cullen in [11] presents some

of the experiences of BNFL in producing a safety case for the Sellafield Alpha

Reduction Plant. For this plant he relates that a ‘traditional’ approach was first adopted

– where “plant design has proceeded more or less independently of the production of the

safety case”. Design progressed to the firm proposal stage before being passed to the

Safety Department. Significant safety hazards were identified with this proposal –

making it impossible to produce a convincing safety case. A re-design was therefore

required – resulting in great expense. The re-design was again developed into a firm

proposal before the safety case was considered. However, this time, other significant

problems were found with the new proposal, requiring more (expensive) re-design. It

was only on the third re-design, where consideration of the safety case was integrated

into the design requirements that an acceptable, arguably safe, design resulted [11].

3.1.2 Incremental Safety Case Development

Safety standards, such as the U.K. Defence Standards 00-56 [10] and Ship Safety

Management Handbook JSP430 [8] now require that safety case development be treated

as an evolutionary activity that is integrated with the rest of the design and safety

lifecycle. Defence Standard 00-56 states that:

“The Safety Case should be initiated at the earliest possible stage in the

Safety Programme so that hazards are identified and dealt with while the

opportunities for their exclusion exist”

 69

Similarly, JSP 430 states that:

“The Safety Case is to be prepared in outline at presentation of the Staff

Requirement and is to be updated at each major procurement milestone up

to and including hand-over from the procurement to the maintenance

authority … Ideally there should be a seamless development of the Safety

Case from one phase to the next”

The interpretation of this ‘seamless development’ that is being adopted by the majority

of the safety standards is the production and presentation of the safety case at a number

of stages during the development of a project. For example, Defence Standard 00-55

[9] talks of formally issuing three versions of the (Software) Safety Case:

• Preliminary Safety Case – after definition and review of the system requirements

specification

• Interim Safety Case – after initial system design and preliminary validation

activities

• Operational Safety Case – just prior to in-service use, including complete evidence

of satisfaction of systems requirements

The integration between the production of these safety cases and the traditional

development lifecycle is depicted in Figure 16.

Requirements Completed System

Implementation

Design and
Decomposition

Integration and
Test

Safety Case LifecycleDesign Lifecycle

Interim Safety Case

Preliminary
Safety Case Operational

Safety Case

Figure 16 – An Integrated View of Safety Case Development

There is often some variation on the above requirements between regulatory domains.

For example, for civil nuclear power generation in the UK safety cases are additionally

required at certain milestones in the project. In the commissioning of Sizewell ‘B’

safety cases were presented prior to first fuel load, prior to first generation of power and

 70

prior to being allowed to export power to the national grid [55]. However, regardless of

the specifics of numbers of safety cases and timings of submissions, the principle of

phased safety case production is increasingly being accepted as a core concept across all

domains.

3.1.3 Evolving Safety Arguments

At the heart of the concept of phased safety case production is the presentation of an

evolving safety argument. At the Preliminary Safety Case stage the aim is to present an

outline safety argument showing the principal objectives, approach to arguing safety

and the forms of evidence anticipated. At the Interim stage the argument should be

evolved to reflect the increased knowledge concerning the detailed design and

specification of the system. At the Operational stage the argument can again be evolved

further to reflect evidence concerning the system as implemented and tested.

The traditional approach to communicating safety arguments, as discussed in Chapter

Two, is to present them (sometimes only implicitly) through the text of the safety case

document itself. However, discussion between the author and a number of safety

managers and safety case practitioners has highlighted a number of problems with this

approach:

• A Document Centred Process

The safety argument is not seen to have an existence separate from the text of the

safety case document. Consequently, it is easy for the safety case development

process to become too focused on the production of the phased safety case

documents – sometimes almost missing the point of developing a clear and

comprehensive evolving safety argument. A system cannot be said to be safe

simply because a safety case document exists. Rather it depends on whether the

document contains a convincing safety argument. It is therefore desirable to have a

more explicit means of presenting, reviewing and discussing an evolving safety

argument.

• Difficulty of Document ‘Evolution’

The safety case documents presented at various stages of the project development

necessarily form ‘complete’ and rounded documents (as would be expected for

presentation to some third party). However, the safety arguments contained within

all but the final (in 00-55 terms – ‘Operational’) safety cases will be incomplete (as

described above). This dichotomy of incomplete arguments within a complete

 71

document means that evolving the safety case from one phase to the next is not an

obvious process of ‘starting from where one left off’. Instead, it first requires an

‘un-picking’ and abstraction of the core safety argument from one document before

it can be used as the basis for the next. Again, this problem makes it desirable that

there is a more explicit means of representing the safety argument that is separate

from the mechanics of producing safety case documentation. This would result in a

more immediate appreciation that it is the safety argument that evolves between the

phases of the safety case rather than the documents that are being produced.

This chapter describes how the Goal Structuring Notation, introduced in the survey

presented in Chapter Two, provides such a means of explicitly developing and

presenting an evolving safety argument as part of phased safety case construction.

3.1.4 Contributions Presented within the Chapter

This chapter presents the contributions made by the author to increase the utility of the

notation in presenting evolving safety arguments. Specifically, contributions have been

made in the following three areas:

• Definition of a method for the use of Goal Structuring Notation – the provision of a

six-step process for evolving a goal structure from high-level objectives towards

concrete forms of evidence.

• Through the method definition, clarification of the syntax and semantics of the

Goal Structuring Notation.

• Extension of the notation to allow representation of safety case context.

An illustration of goal structure development using the method steps is presented.

Using the extension of context to goal structuring, the chapter describes how it becomes

possible to represent the interrelationships that exist between an evolving safety

argument and alternative development viewpoints. In particular, we illustrate the

coupling that can exist between the dual elements of the traditional ‘product’ safety

viewpoint and ‘process’ justification.

Using the contributions of both method and context, we present an example used on a

real industrial project to illustrate the application of goal structuring in presenting

preliminary safety arguments.

 72

The contributions made in this chapter underpin and are utilised by the later Chapters

Four (concerning Safety Case Maintenance) and Five (concerning Safety Case Reuse).

The significance of these relationships is described at the end of this chapter.

3.2 An Overview of the Goal Structuring Notation

The Goal Structuring Notation (GSN) is a graphical notation that can be used to record

and present safety arguments – the principal components of any safety case. The

notation consists of the following core elements and construction principles:

• Goals

• Goal Decomposition

• Strategies

• Solutions

• Justifications

• Assumptions

• Models

The following subsections describe these elements.

3.2.1 Goals

Code module Y
developed to

Integrity Level 4
procedures

Figure 17 – An Example Goal

A goal is a requirements statement – expressed as a claim concerning some aspect of the

system design, implementation, operation or maintenance. Figure 8 shows an example

goal represented in the notation.

 73

3.2.2 Goal Decomposition

Code module Y
developed to

Integrity Level 4
procedures

Code module Y
specified using

formal specification
technique (Z)

Timing properties of
code module Y

verified using timing
analysis

Functional
properties of code
module Y verified

against formal spec.

Figure 18 – An Example Goal Decomposition

The satisfaction of a goal is often dependent on the satisfaction of derived sub-goals. In

the notation this is represented as a hierarchical decomposition.

Figure 18 shows an example of goal decomposition represented in the notation. The

directed arrow represents a SolvedBy relationship between goals. Satisfaction of the

parent goal is implied by the satisfaction of the child goals.

3.2.3 Strategies

Code module Y
developed to

Integrity Level 4
procedures

Code module Y
specified using

formal specification
technique (Z)

Timing properties of
code module Y

verified using timing
analysis

Functional
properties of code
module Y verified

against formal spec.

Argument by
claiming have

followed specific
I.L. 4 guidelines

Figure 19 – An Example Goal Decomposition using a Strategy

Strategies can be used to add further detail to a goal decomposition. Inserted between

parent and child goals, a strategy explains how a parent goal is addressed by the child

goals presented. In this way, a strategy describes the approach adopted in solution of a

goal.

Figure 19 shows an example strategy used in a goal decomposition. In this example, the

strategy makes clear that satisfaction of the Integrity Level requirement is being argued

 74

by claiming the appropriate use of specific techniques during the module development

and testing.

Where a number of (potentially conflicting) parent goals exist, a strategy can be used to

explain the trade-off represented by the child goals.

3.2.4 Solutions

Code module Y
specified using

formal specification
technique (Z)

Formal
specification

for code
module Y

Figure 20 – An Example Goal Solution

Where the satisfaction of a goal does not depend on satisfaction of further sub-goals and

can be argued by appeal to some immediate source of information, it is said to have a

direct solution.

Figure 20 shows the representation of a direct solution in the notation. In this example,

the claim that formal specification has been used for specifying code module Y can be

shown to be met by referring the reader to it’s formal specification.

A solution provides the backing for stating that a requirement has been met.

Beyond these core elements the notation contains additional elements specifically

concerned with representing the rationale associated with the argument decomposition,

namely Justification and Assumption. These elements are described in the following

two sections.

 75

3.2.5 Justifications

Module Z has
failure rate of

less than 1x10 -6

per annum

Argument by
appeal to

module Z test
results

Exhaustive
testing was

conducted. Tests
exercised 100% of

module
functionality J

Figure 21 – An Example Justification

Justifications can be used wherever it is felt to be valuable to provide the rationale

behind the adoption of some strategy or the presentation of some goal.

Figure 21 shows the representation of a justification used to provide the rationale for a

strategy. In this case, the justification argues the adequacy of the approach taken to

satisfying the top reliability goal.

3.2.6 Assumptions

Module Z has
failure rate of

less than 1x10 -6

per annum

'Failure' is assumed
to be deviation from
intended operation
given by functional

specification
A

Figure 22 – An Example Assumption

Assumptions are often necessary in the decomposition and translation of requirements.

Assumptions made when stating a goal or adopting a strategy are explicitly represented

by attaching an assumption node.

Figure 22 shows an example assumption connected to a goal statement. In this case, the

assumption is making clear the definition of failure rate used in making the claim.

 76

3.2.7 Models

Argument by
claiming no
hazardous

failure modes in
each major sub-

systems of X

System X has no
hazardous failure

modes

Model of System
X identifying major

sub-systems
(FC 4/34/21)

Figure 23 – An Example Reference to Model Information

Models can be used to refer to forms of design information, system documentation etc.

Figure 23 shows an example reference to model information by a strategy. In this

example, the argument is being decomposed by looking at the major subsystems of

system X. The reference to the model information makes clear the view of the system

being adopted for the purposes of the argument decomposition.

When a number of instances of the basic elements of the notation are put together in a

configuration, they are said to form a goal structure. Figure 24 shows an example goal

structure.

In this structure, as in most, there exist ‘top level’ goals – statements that the goal

structure is designed to support. In this case, “C/S (Control System) Logic is fault free”,

is the (singular) top level goal. Beneath the top level goal or goals, the structure is

broken down into sub-goals, either directly or, as in this case, indirectly through a

strategy. The two argument strategies put forward as a means of addressing the top level

goal in figure X are “Argument by satisfaction of all C/S (Control System) safety

requirements”, and, ”Argument by omission of all identified software hazards”. These

strategies are then substantiated by five sub-goals. At some stage in a goal structure, a

goal statement is put forward that need not be broken down and can be clearly

supported by reference to some evidence. In this case, the goal “Unintended Closing of

press after PoNR (Point of No Return) can only occur as a result of component failure”,

is supported by direct reference to the solutions, “Fault tree cutsets …” and “Hazard

Directed Testing Results”.

 77

A goal structure does not necessarily replace the traditional form of the safety case, but

can instead be thought of as a ‘road-map’ over the existing information – removing the

burden of communicating potentially complex dependencies from the written text.

G19

C/S logic is fault free

S03

Argument by
omission of all
identified software
hazards

C13

Identified
software hazards

AddContext

G21

'Abort' Transition of
PLC state machine

includes
BUTTON_IN going

FALSE

Sn04

C/S State Machine

G18

'Failure1' transition
of PLC state machine

includes
BUTTON_IN

remaining TRUE

S04

Argument by
satisfaction of all
C/S safety
requirements

G17

Press controls being
'jammed on' will

cause press to halt

G20

Release of controls
prior to press passing
physical PoNR will

cause press operation
to abort

G38

C/S fails-safe (halts)
on, and annunciates

(by sounding
klaxon), all single
component failures

G41

C/S state machine is
an accurate

representation of
implementation

behaviour

G42

Unintended opening
of press (after PoNR)
can only occur as a
result of component

failure

G43

Unintended closing
of press can only

occur as a result of
component failure

Sn06

Fault tree cutsets for
event 'Hand in press
due to command error'

Sn08

Black Box Test
Results

Sn15

Hazard Directed
Testing Results

Figure 24 – An Example Goal Structure

 78

3.3 Extending the Notation to Represent ‘Context’

Beyond the elements described in the previous section, in order to be able to represent

the context in which a safety argument is stated and, thus, how the argument relates to,

and depends upon, information from other viewpoints, the author added an explicit

representation of context to the notation. The symbol for context is shown in Figure 25.

Context

Figure 25 - GSN Symbol for 'Context'

Context objects can be associated with Goals, Strategies and Solutions (i.e. any element

forming part of the central ‘spine’ of the safety argument). The relationship defined

between Context and these elements is InContextOf – i.e. a goal, strategy or solution is

stated in the context of a context object. In the notation a line with an open arrowhead

denotes this relationship. This is to distinguish it from the SolvedBy relations (lines with

a solid arrowhead) that, for example, exists between a parent goal and child goals.

Example uses of context are shown in the following figure.

System is compliant with all
applicable safety standards

G1 C1

Identified Applicable
Safety Standards

S1

Argument over all
identified hazards

C2

Hazards identified by
Functional Hazard

Analysis

Sn1

Fault Tree for
Hazard H1

C3

Basic Component
Failure Modes identified

in FMEA

Figure 26 - Example uses of GSN Context

In the first example, the claim that all applicable hazards have been

complied with is set in the context of whatever is determined as an

applicable standard. C1, a context reference, refers to the set of standards

identified as applicable (e.g. pointing to the document or file location /

 79

section where applicability is discussed and defined). The second example

shows an argument approach (S1) often used with safety case construction –

namely an argument that ranges over / address all hazards identified with

the system in question. As with the previous example, S1 is only truly

defined when the basis over which it is stated is made clear. C2 refers to

where the identified hazards are discussed and defined within the

supporting safety case documentation. The final example shown in Figure

26 shows context being used to communicate the basis on which a piece of

evidence (solution) is being put forward. In this case C3 makes clear that

the fault tree evidence referred to by Sn1 depends upon the failure rates

provided by the more primitive FMEA (Failure Modes and Effects Analysis)

evidence.

We have defined context to be used in one of the following two possible forms:

• As a reference to contextual information

• As a statement of contextual information

All three of the examples shown in Figure 26 use the context element in the first form.

Figure 27 instead illustrates the use of context in the second form – as an ‘immediate’

contextual statement used to clarify the basis of the goal to which it is associated.

The software elements of
the system are fault free

G2 C4

A fault is a deviation
from operation defined

by the specification

Figure 27 - Example Use of Context Statement

In this case, C4 is phrased as a statement that helps define and understand

the basis of G2. Without C4, it is possible that a reader of G2 may adopt an

alternative meaning. This example shows clearly how C4 can be used to set

clearly the scope and limits of a claim made by a goal.

The addition of the context to goal structuring has significantly increased the expressive

power of the notation. This is discussed further later in the chapter in sections 3.7, 3.8

and 3.9. The definition of the concept of context within the notation and how and when

it should be used is one of the areas that has been defined clearly through the Goal

Structuring Method we have defined – discussed in the following section.

 80

3.4 Evolving Goal Structuring from a Notation to a Method

Although the Goal Structuring Notation and underlying principles have existed and

have been evolving for some time (as discussed in Chapter Two) an underlying method

for the construction and definition of goals structures has been missing. This has made

it difficult for people either to teach or adopt the notation. Additionally, when people

have attempted to use the notation, both the approach used and the resulting goal

structures have often been inconsistent and difficult to follow.

Jayaratna, in [56], defines the concepts: framework and methodology (method) in the

following way:

“A methodology can be defined as an explicit way of structuring one’s

thinking and actions. Methodologies contain models and reflect particular

perspectives on ‘reality’ based on their embedded philosophical paradigms.

A methodology must show ‘what’ steps to take, ‘how’ those steps are to be

performed and most importantly the reasons ‘why’ the methodology user

must follow those steps and in the suggested order.

A conceptual framework on the other hand is a meta-level model through

which a range of concepts, models, techniques, methodologies can either be

clarified, compared, categorised, evaluated and/or integrated. A

methodology differs from a conceptual framework in that a methodology

always implies a time-dependent order or thinking and/or action stages.”

Prior to the research presented in this thesis, the Goal Structuring Notation existed as a

conceptual framework for the expression of safety case arguments. The contribution the

author has made is to mature the framework into a well-defined methodology, meeting

the characteristics defined by Jayaratna – particularly by providing steps that can be

followed and the rationale and motivation offered by positive and negative applications

of the notation.

In an attempt to demystify the ‘black art’ of goal structuring, the author has developed a

structured six-step method that leads an engineer through the process of basic goal

structure construction. Tutorial material the author has written that defines this method

is given in [57].

The method guidance makes a clear contribution on two fronts:

 81

• Semantics – providing a precise definition of the meaning of the goal structuring

elements and their relationship to one another

• Syntax – providing definitive guidance on the phrasing of the goal structuring

elements and the validation of relationships between elements.

The six steps of the method are shown diagrammatically in Figure 28.

Identify
goals to be
supported

Define
basis on which
goals stated

Identify
strategy to

support
goals

Define basis
on which
strategy
stated

Identify
Basic

Solution
STOP

Step 1

Step 2

Step 3

Step 4

Step 6

Step 5 - Elaborate
strategy

Figure 28 - The Steps of the GSN Construction Method

The six steps involved in the development of a goal structure are:

Step 1 - Identify goals to be supported

Step 2 - Define basis on which goals stated

Step 3 - Identify strategy to support goals

Step 4 - Define basis on which strategy stated

Step 5 - Elaborate strategy (& therefore proceed to identify new goals – back to Step 1)

OR

Step 6 - Identify basic solution

It is not the role of this chapter to describe in detail the six steps of the goal structuring

method. For a full definition of the method, see [57]. The following section provides

an overview and illustration of goal structure development following the steps of the

 82

method. Later sections highlight specific areas where the method provide guidance for

goal structure development.

3.5 Overview and Illustration of Goal Structure Development

using the Method

In this section an overview and illustration is provided of the development of a goal

structure over the six steps of the method. The goal structure being developed is an

argument for the safe operation of a sheet metal press. The press is used to form car

body parts. Press operation is controlled by an operator via a simple control system

based on a Programmable Logic Controller (PLC).

3.5.1 Step 1: Identifying Goals

The first step in the development is to state correctly the objective of the safety

argument. Figure 29 shows the goal that has been stated for the press. This goal

statement uses the Noun-Phrase Verb-Phrase form recommended in [57] – the Noun-

Phrase being ‘Press’ and the Verb-Phrase forming the rest of the statement.

Press is acceptably safe to
operate within CCC
Whatford Plant

G1

Figure 29 – Press Example (Step 1: Stated Goal)

3.5.2 Step 2: Define Basis of Goals Stated

Having identified a goal in Step 1, Step 2 of the process requires the context of that goal

statement to be examined and explicitly clarified if necessary. Figure 30 shows the

addition of three context references to clarify the goal statement.

In Figure 30 the terms Press, Operate and CCC Whatford Plant have been drawn out

explicitly as requiring contextual definition. Explicitly drawing out these elements as

context allows reference to where these concepts are fully defined. For example, C1

could refer to design documentation, C2 could refer to operating procedures and C3

could refer to installation diagrams. The concept ‘acceptably safe’ remains to be

defined through the supporting argument.

 83

Press is acceptably safe to
operate within CCC
Whatford Plant

G1

C1

Press Design

C2

Press Operation

C3

CCC Whatford Plant

Figure 30 – Press Example (Step 2: Context Added)

3.5.3 Step 3: Identify Strategy to Support Goals

For each identified goal, Step 3 of the method requires that an argument strategy for

supporting these goals be identified. Figure 31 shows the two peer strategies that have

been identified as approaches to arguing the acceptable safety of the press.

C3

CCC Whatford Plant

C2

Press Operation

C1

Press Design

Press is acceptably safe to
operate within CCC
Whatford Plant

G1

S1

Argument by addressing all
identified operating
hazards

S2

Argument of compliance
with all applicable safety
standards & regulations

Figure 31 – Press Example (Step 3: Solution Strategies Identified)

The first strategy (S1) shown in Figure 31 is to present an argument based on having

addressed all of the operating hazards that have been identified with the press – i.e. for

each safety problem that has been identified a solution has been found. The second

strategy (S2) is to present an argument of safety based on compliance with all the safety

standards that are considered applicable for a piece of machinery of this type and

application.

 84

3.5.4 Step 4: Define basis on which strategy stated

As with the stated goals (Step 2) Step 4 requires that the argument strategies that have

been identified be examined to assess whether supporting context references or

justifications are required. Figure 32 shows the contextual information that has been

identified as necessary to clearly define, and enable elaboration of, the strategies S1 and

S2.

S2

Argument of compliance
with all applicable safety
standards & regulations

Press is acceptably safe to
operate within CCC
Whatford Plant

G1

C1

Press Design

C2

Press Operation

C3

CCC Whatford Plant

S1

Argument by addressing all
identified operating
hazards

C4

All identified
operating hazards

C5

All applicable safety safety
standards & regulations

Figure 32 – Press Example (Step 4: Context of Strategies Defined)

In this particular example, C4 could be made to refer to the Hazard Log for the press

and C5 could refer to the project documentation (or contract) that identified the

applicable safety standards and regulations. No justification of the strategies has been

provided. If it were believed that the reader might question the suitability or adequacy

of these approaches – appropriate justifications would be added as part of Step 4.

Equally, if in adopting the argument approaches outlined, any significant assumptions

were made then these would also be added.

3.5.5 Step 5: Elaborate Strategy

Where strategies are clearly defined (i.e. where they describe a methodical approach

over the information available) their elaboration can be straightforward. For example,

Figure 33 shows the elaboration of the strategies defined in Figure 32.

In Figure 33, having clearly identified the context in which the argument S1 was stated,

elaborating this strategy involved putting forward an appropriate goal statement for each

of the operating hazards referenced by C4. Similarly, having defined the context for S2

(i.e. the list of standards to be complied with), the elaboration of this strategy simply

involved putting forward a claim of compliance for each identified standard. The

 85

process of goal structure development is continued for each of the new goals (G2-G7)

identified. The goal structure continues to be developed in this way until the stage

where, in identifying a strategy to support a goal, it is recognised that no further

decomposition into sub-statements is necessary and the goal can instead be directly

supported by appeal to some evidence – i.e. we can proceed to Step 6.

C5

All applicable safety
safety standards &

regulations

C4

All identified
operating hazards

S1

Argument by addressing all
identified operating
hazards

S2

Argument of compliance
with all applicable safety
standards & regulations

Hazard of 'Operator Hands
Trapped by Press Plunger'
sufficiently mitigated

G2

Hazard of 'Operator Hands
Caught in Press Drive
Machinery' sufficiently mitigated

G3

Hazard of 'Operator Upper
Body trapped by Press
Plunger' sufficiently mitigated

G4

Press compliant with U.K.
HSE Provision and Use of
Work Equipment Regulations

G5

PES element of press design
compliant with IEC1508

G7

Press compliant with U.K.
enactment of EU Machinery
Directive

G6

Figure 33 – Press Example (Step 5: Elaboration of Strategies)

3.5.6 Step 6: Identify basic solution

To fully ‘bottom-out’ (i.e. decompose to solution references) the illustrated goal

structure would obviously require a number of iterations of the process – decomposing

all goal claims to a level where direct reference to evidence was felt possible. However,

as an illustration of where Step 6 rather than Step 5 would be applicable, Figure 34

shows the fragment of goal structure developed to support the goal G3 identified at the

bottom of Figure 33. In this example, at the level of stating that “Motor / Clutch / Drive

Belts surrounded with safety cage” the writer has decided that no further decomposition

is necessary and that this claim can be shown to be true through reference to the “Press

Design (Safety Cage)”. Peer goals do not always require the same level of

decomposition - further argument is required to support the more complex sibling goal

G9.

 86

Hazard of 'Operator Hands Caught
in Press Drive Machinery'
sufficiently mitigated

G3

Motor / Clutch / Drive Belts
surrounded with safety cage

G8

Press operation will (safely)
halt if safety cage tampered
with

G9

Sn10

Press Design
(Safety Cage)

More explanation
required here

Figure 34 – Press Example (Step 6: Supporting Evidence Identified)

3.6 Example Areas of Guidance Provided by GSN Method

The following sub-sections highlight some of the specific ways in which the syntax and

semantics of GSN have been further defined through the method guidance the author

has developed [57].

3.6.1 Guidance Provided on Phrasing of Goal Statements

In Step 1 of the method (“Identifying Goals to be Supported”) specific guidance is given

on the correct phrasing of goal statements made within a goal structure. The method

defines that goals should always be stated as propositions – statements that can be said

to be true or false. More specifically, it recommends that goal statements should be of

the following form:

<Noun-Phrase><Verb-Phrase>

The Noun-Phrase part of this statement identifies the subject of the goal – i.e. that

which we are making a statement about. The Verb-Phrase part of the statement is used

to define the predicate - the predicate serves to make an assertion or denial about the

subject. The method goes on to present example Noun-Phrase Verb-Phrase constructs

that may be found within a safety argument.

The rationale behind providing this level of guidance is that many people previously

attempting to use GSN quite often ended up stating ‘Goals’ that could neither be

interpreted as objectives or logical statements within an overall argument. For example,

 87

as highlighted by one of the ‘negative’ examples given in the method description,

people have often wrongly put forward goal statements such as:

‘Perform Fault Tree Analysis’

This, and similarly formed Verb-Phrase statements, do not form logical predicates that

can be said to be true or false. It is therefore ambiguous as to what this statement means

when placed in the context of an overall safety argument. Is it saying that Fault Tree

Analysis has been performed? If so, what were the conclusions? Were they acceptable

or what was required? Such Verb-Phrase statements describe processes. Statements

concerning the safety process often will be required within the safety case. However,

where this is the case they should clearly be statements about the process – e.g. “Fault

Tree Analysis was performed” or “Fault Tree Analysis determines the hazard

probability to be X”.

It has been equally confusing when people have previously stated goals such as the

following:

‘Hazard Log’

This is a pure Noun-Phrase statement. Although acceptable as a solution reference, as a

goal statement forming part of an overall argument the reader is left wondering what is

being said about, for example in this case, the hazard log.

It is because of these ‘bad experiences’ of goal structuring that this particular guidance

was provided as part of the method description. This guidance provides a framework

for correctly stating, and evaluating the acceptability of, goal statements (in syntactic

terms) when using GSN. To reinforce the definitions given, the method description

provides a number of positive and negative examples of goal statements.

3.6.2 Guidance Provided on Use of Context

Step 2 of the method is particularly concerned with explaining the semantics of the

context element we have proposed as an addition to the notation. It explains clearly the

need for providing context to an argument, how to identify context needing to be

defined and how to phrase context statements and references.

Through defining this step in the process, the author’s particular intention was to force

goal structure developers to define more rigorously the basis for the argument as it

develops. (The importance of this in relating the safety argument of the safety case to

other viewpoints is discussed in more detail later in this chapter in section 3.7). The

 88

virtue of providing context is that it can help the engineer to understand the dependence

of a safety argument on other forms of information arising from other viewpoints. It

can also in some cases provide a transparent and systematic basis for the decomposition

of the safety argument (i.e. where an argument is structured around a defined context).

3.6.3 Guidance Provided on Semantics of Strategy

Step 3 of the method is concerned with explaining clearly the purpose and use of the

‘strategy’ element within a goal structure. Previously, in goal structures that have been

developed, there had been some confusion on the role of strategy. Some authors had

used strategy to communicate selection of (albeit safety-concerned) design strategies,

e.g. “Use of mechanical interlocks” as a strategy for dealing with a hazard as shown in

Figure 35.

Probability of Hazard H1 occuring
is acceptably low

G3

Sn1

Use mechanical interlocks

Mechanical interlocks fitted
are acceptably reliable

G4

Figure 35 - Incorrect use of Strategy to Communicate Design Strategy

Although it is fairly easy to see what is implied by the structure shown in Figure 35, the

purpose of strategy within the notation is to communicate the argument approach being

adopted to support claims of the safety argument, rather than to communicate design

strategy. Of course, these two views can coincide and it is possible for the argument

approach to depend heavily upon the design approach that has been adopted. It is just

so for the example shown in Figure 35. However, to make it more explicit that the use

of interlocks forms the basis of the argument strategy, the strategy could be re-

expressed in the form shown in Figure 36. An added advantage of this approach is that,

 89

if it was felt useful or necessary, the design basis of the argument strategy could then be

made clear by using context to refer to the design decision or supporting design

documentation (as discussed later in this chapter in section 3.7).

There has historically also been confusion as to when to use a strategy to explain the

relationship between a parent goal and sub-goals and when to simply insert an

additional goal. The method guidance produced ([57]) addresses this at some length.

Probability of Hazard H1
occuring is acceptably low

G3

S2

Argument by appealing to
effectiveness of mechnical
interlocks in design

Mechanical interlocks fitted
are acceptably reliable

G4

Figure 36 - Improved Expression of Argument Strategy over Design Strategy

The method guidance provided in [57] explains the strong analogy between use of a

strategy between parent and sub goals and the explanation that might be included

between two lines of simplification in a complex mathematical calculation. For

example, in the following two lines of calculation, in going from the first line to the

second line the strategy of ‘dividing both sides by y’ has been clearly defined – enabling

the reader to understand and verify the simplification that has been performed.

3xy3 + 2x2y2 + 5xy = 17y (Divide both sides by y)

3xy2 + 2x2y + 5x = 17

In line with this view, the method makes it clear that strategies should not contain

complete statements that are themselves intended to form claims within the final safety

argument. The strategy S1 within the goal structure fragment shown on the left-hand

 90

side of Figure 37 contains the statement ‘All hazards have been removed’. This is not

expressing an argument strategy but is instead making a safety claim. If this claim is

intended to form part of the central logic of the safety argument then it would be more

appropriate to state it as a goal, as shown in the central fragment of goal structure in

Figure 37. Alternatively, if instead the purpose of making the statement was to clarify

that the argument was being structured around addressing all of the identified system

hazards in turn then it would be more appropriate to explicitly clearly state this as the

argument approach. This is shown in the goal structure fragment shown on the right

hand side of Figure 37.

System is acceptably
safe

G1

S1

All hazards have been
removed

Hazard H1 has been
removed

G3

System is acceptably
safe

G1

All hazards have been
removed

G2

Hazard H1 has been
removed

G3

System is acceptably
safe

G1

S1

Argument over all
hazards

Hazard H1 has been
removed

G3

Figure 37 – Comparison of Using Strategies and Goals

In order to guide the developer towards the correct usage of strategy, the method

recommends that strategies should be expressed in one of the following forms:

“Argument by <approach>”

“Approach over <approach>”

“Argument using <approach>”

“Argument of <approach>”

This format is intended to constrain strategy statements to descriptive Noun-Phrase

statements – the focus of these being the argument itself. This ensures that strategy

statements remain at the meta-argument level – thus reducing the likelihood of

incorrectly using strategies for statements that should be within the argument.

 91

3.7 Use of Context to Interrelate Viewpoints

Having extended GSN to include an explicit representation of context, it now becomes

much easier to represent how a safety argument relates to, and depends upon, other

viewpoints1. For example, it is possible to express the influence of design decisions on

the structure of the safety argument. Figure 38 shows a strategy (S1) expressed in the

context of a particular design decision (referred to by C1). There may have been many

criteria involved in the design decision to use triple modular redundancy on the system

in question (performance, availability, cost etc.) – safety being only one of them. It is

not the purpose of the safety argument to address all these separate concerns. Instead, it

is desirable to be able to recognise that design decisions have been made that then form

the context of the safety argument being presented. Using context as is shown in Figure

38 it is possible to separate the viewpoint of design decision making from the viewpoint

of presenting the safety argument. Without overcomplicating or ‘disrupting’ the flow of

the safety argument C1 could, for example, refer to other descriptions or representations

of the design decision – such as a decision tree [49] or multi-criteria decision analysis

[59].

System will tolerate
any single point failure

G1

C1

Design Decision to use
Triple Modular

Redundancy (Ref X)

S1

Argument over the trip
modular redundancy
employed in the system

Single faults are detected
within bounded time

G2

Single faults are tolerated
through available
redundancy

G3

Figure 38 – Use of Context to Refer to Design Decisions

1 NB – The term ‘viewpoint’ is being used here in the intuitive sense, rather than implying any of the

methodology associated with the term in the Requirements Engineering field, e.g. as discussed in [58].

 92

Another illustration of interrelated viewpoints is the relationship that exists between the

safety process and product arguments of the safety case. It is a common feature of

safety cases (e.g. as required by Defence Standard 00-55 [9]) that their safety arguments

are structured on the following two fronts:

• An argument of safety based on the attributes and evidence surrounding the finished

product - the ‘product’ safety argument.

• An argument of safety based on the suitability, adequacy and quality of the

development and assessment processes involved in the production of the product –

e.g. arguments of compliance against System or Software Integrity Level

requirements - the ‘process’ safety argument.

Although both parts of a common safety case argument, these represent two distinct

viewpoints that are interrelated. Using the extension of context it is possible to show

the connection that exists between the elements of these two arguments. Figure 39

shows a traditional ‘product’ based argument that has a strategy (ProductS1) of arguing

safety through addressing the hazards identified from having performed a Functional

Hazard Analysis (FHA) (ProductC1).

System is acceptably SAFE

ProductG1

ProductS1

Argument of having
mitigated / eliminated all
identified hazards

ProductC1

Functional Hazard
Analysis Results

(ProcessSn2)

Figure 39 – Product Safety Argument

At this point, the product argument does not discuss the derivation of these hazards or

argue the completeness of this list. This is addressed as part of the overall ‘process’

argument, part of which is shown in Figure 40.

 93

In Figure 40 the argument is not that the product is safe, but is instead that the process

by which the product was developed and assessed was ‘safe’ (in this case, effective in

identifying hazards). The strand of this argument shown addresses the safety claims

regarding the Hazard Identification and Assessment performed for the product

(ProcessG2). In support of ProcessG2, claims are made regarding the activities, set

clearly in the context of the information they have relied upon.

The results derived by the Preliminary Hazard Identification (PHI) activity (ProcessSn1)

are presented both as evidence to support the PHI claim (ProcessG3) and as the context

for the claim regarding the Functional Hazard Assessment (FHA) activity (ProcessG4).

The results of the FHA, put forward as evidence supporting ProcessG4, form the

context (ProductC1) of the product argument strategy (ProductS1).

As illustrated, using the representation of context within the GSN it is possible to show

how evidence used as part of the product argument was derived and also how it formed

part of the process argument. Such ‘separation of concerns’ means that arguments can

clearly focus upon one issue while being explicitly related to arguments addresses other

issues.

3.8 Relationship between Goal Structuring Method and Safety

Argument Evolution

Where development of a safety argument using goal structuring is run in parallel with

safety case development it is not expected that the method steps identified can be

performed repeatedly until all identified goals are decomposed to direct references to

supporting evidence. Instead, the goal structure will usually progress in a number of

stages. Figure 41 illustrates the evolution of a typical goal-structured safety argument.

Down the left-hand side of Figure 41 there is an indication of the levels of claim that

might stated at the different levels within a typical goal-structured safety argument.

Towards the top of the goal structure general safety objectives are stated whereas

towards the bottom the claims become increasingly focussed towards the forms of

supporting evidence that are available. Down the right-hand side, there is an indication

of the progression of the safety and design activity necessary to enable the evolution of

the goal structure. (‘NSPF’ = No Single Point of Failure)

 94

System has been developed
in a SAFE manner

ProcessG1

Thorough Hazard
Identification and Assessment
has been performed

ProcessG2

Preliminary Hazard Identification
(PHI) was performed (based on
checklist and previous experience)

ProcessG3
ProcessC1

Hazard Checklists

ProcessC2

Previous Experience
(Hazard Lists etc.)

PHI results were refined and
augmented through performing a
complete Functional Hazard Analysis
over all system functions

ProcessG4

ProcessSn1

Preliminary Hazard
Identification

Results

ProcessC3

Description of all
system functions

ProcessSn1

Preliminary Hazard
Identification Results

(ProcessSn1)

ProcessSn2

Functional Hazard
Analysis Results

Figure 40 – Process Safety Argument

 95

Safe
Safety
Planning

Prelim. Design
& Safety Analysis

Further
Design &
Safety
Analysis

General safety objectives
(e.g. standards, design concept
safety)

Specific safety objectives
(e.g. design hazards, enacted
requirements)

Verification targets
(e.g. failure rate, NSPF,
design properties)

Evidence Evidence Evidence

Safety Evidence
(e.g. Test Results,
Fault Trees, Design
Information)

Figure 41 – Evolution of a Goal Structure

As a result of the ‘Safety Planning’ activity, but prior to having made any substantial

design commitment, it would typically be possible to state the overall safety objectives

of the system safety case. Having performed some preliminary design, carrying out

safety activities such as hazard analysis begins to be possible. Having performed hazard

analysis, it would then be possible to evolve the general safety objectives stated initially

into goals regarding the avoidance of specific identified design hazards. In this way, the

goal structure can gradually evolve. It may also be necessary to revisit the goal

structure already stated and rework if the argument approach has altered, or new

(structuring) evidence has become available.

At each point in time, the safety argument is expressed in terms of what is known about

the system being developed. At the early stages of project development the safety

argument is limited to presenting high level objectives. As design and safety knowledge

increases during the project these objectives can be increasingly expressed in more

tangible and specific terms.

 96

Evolution of the safety argument following the steps of the method we have defined,

means that for a particular state of project development there will be a point at which it

is not possible to progress to the next step in the method. For example, it may be

possible to state an objective in Step 1 and to identify the context required to fully

define that objective (Step 2) – but not actually to have that information at that point in

the project. In the press example shown in Figure 30, the need for a definition of the

press design operation and plant installation may have been recognised. However, at an

early stage in the project this information may not be fully defined. In such a case, it

would be necessary for the information to be provided before one could be expected to

continue further with the safety argument. As discussed in the previous section, this use

of context shows how the safety argument (at a particular point) depends upon

information from other viewpoints – in this case the design viewpoint.

Similarly, it may be that Step1 and Step 2 can be completed (i.e. identified and context-

defined goals exist) but that a strategy for the argument cannot be identified. As

discussed in the method ([57]) argument strategies can emerge from any number of

sources (design attributes, safety evidence, ALARP – As Low As Reasonably

Practicable - analyses etc.). It is often the case that significant effort will be required

before an acceptable argument approach can be proposed. Consider again the press

example shown in Figure 31. A preliminary safety planning activity may have to be

carried out before the two strategies shown in Figure 31 can be defined.

The contribution identified in this chapter provides two particular areas of support in the

evolution of safety arguments:

• The addition of context makes it possible to see how the definition of the safety

argument relates to, and ‘waits for’, information collated from activities outside of

argument construction.

• The method defined (especially through Steps 2, 3 and 4) makes it clear at each

stage what is required in order to progress the argument further. Following

‘interruptions’ to the evolution of the argument, the method also makes explicit the

next step in development to be performed (i.e. if the development was halted after

Step 2, development begins again at Step 3).

 97

3.9 Experience of Using Goal Structuring in Presentation of

Preliminary Safety Arguments

Goal Structuring has been applied in presenting Preliminary Safety Arguments on a

number of projects, including:

• Preliminary Safety Argument for a Site Safety Justification – The GSN Method

was used by Rolls-Royce Marine Power in the early stages of developing a Site

Safety Justification for a Naval Facility. In this project a daunting number of safety

requirements existed and GSN was used as part of a group exercise to help the

engineers begin to appreciate the scope of the problem, and to identify possible

argument strategies. The top layers of the safety argument were constructed as a

result of iterating through steps 1-5, but few solutions (Step 6) were provided. This

application of the GSN Method helped the project to begin to structure their

approach to constructing the site safety arguments.

• Preliminary Safety Argument for a Distributed Aero-Engine Controller - The

use of GSN in supporting an evolving safety argument was piloted for Rolls-Royce

Aerospace in developing a preliminary safety argument for a novel distributed

engine controller. The preliminary safety argument is presented later on in this

chapter in section 3.9. As with the site safety arguments, the goal structures present

the results of iterating through the GSN method steps 1-5, but given the preliminary

nature of the design, few solutions (the result of Step 6) are provided. The main

conclusions from this work were that the resulting goal structure aided the process

of agreeing the safety case, helped gain confidence in the ability to present a

complete safety case and provided tangible safety objectives for the project.

• Generic Preliminary Safety Argument for Integrated Modular Avionics (IMA)

Systems – Based on work published by Fletcher [60], the author has used goal

structuring to set out clearly the principal safety (and certification) objectives facing

Integrated Modular Avionics (IMA) systems. The structure developed was used to

communicate the safety framework in which IMA solutions are suggested.

In all these cases the arguments were truly preliminary – safety objectives remained

unsatisfied, supporting evidence was not yet available. The purpose of constructing the

arguments was, in all cases, to scope clearly the concerns of the final safety case – the

key hazards to be addressed, standards to be complied with etc. – and to begin to outline

 98

the argument and evidence that would be used to address these concerns. As stated

earlier in the chapter, one of the significant benefits of the notation is that it provides

engineers with a medium for describing and discussing an evolving safety argument

quite separately from the onerous responsibility of producing certification

documentation. Chapter Six presents some additional conclusions arising out of this

evaluation of the GSN Method.

As an example of how goal structuring can be used in the early stages of an evolving

safety case, the following section describes the preliminary safety argument developed

jointly by the author with Iain Bate for a distributed aero-engine controller architecture.

It should be noted that this work has been used as a basis for a real industrial project (as

part of Rolls-Royce’s contribution to the U.K. Ministry of Defence funded HIgh

Performance Engine Control System project – HIPECS). The purpose of constructing

the preliminary safety argument was to increase confidence in the ability to certify this

type of system before committing to full-blown development of the architecture (i.e. to

reduce the project risk associated with certification).

3.9.1 A Preliminary Safety Argument for a Distributed Aero-Engine
Controller

Traditionally engine controllers have been based on a centralised uni-processor

approach, with direct-wired electrical cabling to all engine sensors and actuators. There

are potential cost and weight savings that can be achieved through adopting a

distributed approach – by using ‘smart’ sensors and actuators and a common databus

rather than many individual cables. In addition, distributed processing units can provide

additional flexibility and scalability in implementing the core controller functions.

However, the distributed approach is new and therefore attracts particular scrutiny in

certification (as is commonly the case for novel concepts in the aerospace sector). For

this reason, it has been especially important to construct a clearly defined argument, at

the earliest possible opportunity, for the safety of this platform.

In this example, we purposefully provide a simplified overview of the distributed

approach, as our principal aim is to discuss the safety case. There are many complex

issues, such as vote synchronisation and processor state recovery, that are outside the

scope of this paper.

 99

Title:
/tmp/xfig-fig017158
Creator:
fig2dev
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Figure 42 - Subsystem Structure

In describing the architecture, the following two terms are used:

• Component – a device that performs some function

• Subsystem – a configuration of replicated components performing identical

functions (so that faults may be tolerated)

The proposed architecture consists of a number of subsystems that together would

execute the software found on a conventional electronic engine controller. Figure 42

shows the top-level design of a single subsystem.

Each subsystem consists of the following elements:

1. Voter - An exact consensus voter that compares the output values of three or more

replicated components and can identify failures if value differences are present. In

the event of an identified failure a reset signal is sent to the corresponding

component. The component will restart, but will be taken out of service if several

resets are required in quick succession. When a component is recognised as being

out of service the voter will no longer use its output.

2. Processor - The architecture places minimal restrictions on the specific

microprocessors to be used (in order to support ‘technology transparency’ [61]).

Provided the processors have comparable throughput they may be used within a

single subsystem (as the voting logic and scheduling approach facilitates lock

stepping). Processor tasks are scheduled using the fixed priority approach [62].

3. Timing Watchdog - A countdown timer that will detect processor timing overruns.

 100

4. Local Memory - Dedicated memory for each processor to provide a greater degree

of isolation between replicated components.

5. Local Clock – Dedicated real-time clock for each processor that can be read and

updated.

A Controller Area Network (CAN) [63] databus is used for carrying messages between

subsystems and the smart engine sensors and actuators. Messages are scheduled using

fixed priority scheduling. In addition, at least one processor unit has a TDMA (Time

Division Multiple Access) link to allow communication with the airframe. A global

time base is maintained for all subsystems through synchronisation of local clocks

across the databus [64].

For an aeroplane engine, the top-level hazards (such as ‘deployment of thrust-reversers

in flight’) are well understood within the industry. At the level of the architecture, we

are concerned with those classes of failure mode that can give rise to hazards. To

illustrate the principles of preliminary safety cases, we focus on these specific

architectural level failure modes. (We believe it is possible to produce generic, reusable

safety cases for such architectures, but discussion of such issues is outside the scope of

this chapter.) The classes of failure mode are:

• Random Failures – Even with the redundancy provided by replicated components,

there remains a risk that random failures, originating from ageing or breakdown,

may cause a system hazard.

• Systematic Failures – Replication of identically implemented functionality will not

protect against the following two forms of design error:

• Timing Failures – Failure to meet hard real-time requirements and/or preserve

functional ordering could result in a system hazard.

• Functional Failures – Both transient and permanent errors in the control output

of the subsystems, dependent on the situation, can result in system hazards. A

transient failure, such as inadvertent thrust reverser actuation on an engine in

flight, can have catastrophic consequences – as shown in the Lauda Air 767

disaster. The same error can have different consequences dependent on whether

it is a transient or permanent error. For example, a transient error in fuel

demand output is unlikely to cause a system hazard, namely engine overheat,

 101

due to the thermal mass of the engine. However, if the same error were

permanent – the hazard could occur.

Random and timing failures are essentially ‘architectural’ issues. Functional errors,

however, are predominantly defined by the application. Working at the architecture

level, we were therefore only able to consider the overall function of fault-tolerance

implemented within the elements of the architecture.

The top level of the safety argument (supporting the claim of acceptable safety) is

represented in Figure 43. Relating the production of this structure to the steps of the

method: Step 1 identified G1, Step 2 identified the stakeholder Sh1, Step 3 identified

the approach to supporting G1 that was then stated through G2 and G8 (back to Step 1).

Architecture provides
acceptably safe platform for
engine control

G1

Risk of intolerable platform
failure is sufficiently low
(Quantitative)

G2

All platform safety properties
hold in implementation
(Qualitative)

G8

Customer ultimately
decides on

'acceptability'

Sh1

Figure 43 - Argument for Acceptable Platform Safety

The goal structure first indicates that it is the Customer who ‘owns’ the top level

(‘acceptably safe’) goal. It is the Customer who will ultimately decide on whether the

goal has been achieved. The argument is then broken down into two parts: a qualitative

and quantitative part. The quantitative part argues that the risk of failure is acceptably

low, represented in Figure 44. The qualitative part addresses whether the

implementation of the architecture successfully meets the necessary safety properties,

expressed in Figure 45.

The quantitative argument is shown in Figure 44. The overall failure rate requirement

for aircraft loss due to single engine failures is approximately 1x10-5 per flight hour, of

which a budget of 1x10-6 failures per flight hour is allocated to the engine control

system. To ensure the introduction of systematic errors is appropriately minimised the

 102

system will be developed to Development Assurance Level A (defined by the civil

aerospace development guidelines DO-178B [65]).

The qualitative argument that the safety properties of the system hold is more complex.

There are two aspects to the argument, shown in Figure 45, to address the functional

and non-functional safety properties of the system. The non-functional safety properties

of the system concern the timing and resource behaviour. (Resource exhaustion has

been identified as a potential cause of both timing and application function failures.)

Experience shows that correct resource requirements are difficult to predict, and this

frequently leads to rework being carried out to increase resource capability or to

optimise the use of resources. Our technique for addressing this problem is to make the

architecture scalable, allowing extra subsystems to be added with the minimum of

effort.

The argument of timing behaviour correctness (shown in Figure 46) consists of two

parts: whether the timing requirements are correct and whether the requirements are

satisfied. The timing requirements come from two sources, most are historical values

related to the control loops of the engine which are known to provide stable and

effective performance. The relevancy of the control timing requirements to this

particular project is first checked using extensive simulation of an engine model, and

later through extensive engine trials throughout the operating envelope. In addition,

there are design-derived requirements obtained via the hazard analysis process. An

example of this type of requirement is shown in Figure 47 through goals G24 and G25,

where a time bound for fault recovery is defined to reduce the period for which the

architecture is at risk to additional errors. To verify that the timing requirements are

met requires a deterministic scheduling policy, to allow appropriate analysis to be

performed. Our solution is to use non pre-emptive fixed priority scheduling, which has

a firm mathematical basis and determinable control flow.

 103

Risk of intolerable platform
failure is sufficiently low
(Quantitative)

G2

Random failure rate contributions
to intolerable platform failure are
sufficiently low

G3

Systematic error contribution to
intolerable platform failure is
sufficiently low

G4

C2

'Intolerable platform failure' =
omission, commission, value or
timing failure of control output

C3

Random failure contributions
(and budgets) determined

through Fault Tree Analysis of
top event 'catastrophic failure'

G5

Component reliability targets
shown to be met by Component
FMEA tables

C1

'Sufficient' = platform meets
target failure rate of 1 x10-6 per

flight hour

Tools, techniques and methods
were used appropriate to the
severity of identified failures

G6 C4

Worst case severity associated
with consequences of platform
failure assessed as Catastrophic

G7

System developed to Development
Assurance Level A process
guidelines

Development Assurance Level A
appropriate for systems whose

consequences of failure would be
Catastrophic

J1

J

Figure 44 - Argument for Sufficiently Low Risk

 104

All platform safety
properties hold in
implementation

G8

All non-functional platform
safety properties hold in
implementation

G9

All functional platform safety
properties hold in
implementation

G10

Exhibited timing behaviour
is correct

G11

Resource usage always
sufficient for needs of
application

G12

G13

Scalable architecture
defined to support growing
resource requirements

Eventual resource requirements are
impossible to determine at this stage -
therefore, architecture made scalable

J2

J

G14

Worst case resource usage is
within defined limits

C5

'Resource usage' =
Processor, Memory and

Databus usage

C6

Resource usage limits
addressed in DO-178B

Figure 45 - Argument for Platform Safety Properties

 105

Timing requirements
are correct

G15

Timing requirements
are met

G16

S1

Argue that correct engine
behaviour shows timing
requirements are correct

C8

Timing requirements
(obtained through hazard
analysis and modelling)

G17

Timing requirements are derived from
a common set of requirements that
have been used in safe operation on
similar engines for > 10e+7 hrs

G19

Correct engine behaviour
shown in engine simulation

G18

Correct engine behaviour
shown during engine trials

C7

'Correct' = Engine operates
within defined performance

and environmental conditions

S2

Argument that scheduling policy is
deterministic and all timing
properties are guaranteed

G20

Scheduling policy is
deterministic

G21

Timing requirements
guaranteed through static
timing analysis

Timing requirements can be
guaranteed if the scheduling

policy is deterministic

J3

J

Exhibited timing
behaviour is correct

G11

Figure 46 - Argument for Correct Timing Behaviour

 106

Platform behaviour
deterministic in the presence of
credible faults

G22

G26

Value discrepancies between
processors detected through trusted
voting mechanism

G27

Timing errors detected through
timing watchdog

G28

Platform will attempt to recover from
detected processor faults through
shut-down and restart

All functional platform safety
properties hold in
implementation

G10

S3

Argument by consideration of
platform fault behaviour

Fault behaviour is only
property of interest in absence

of application details

J4

J

G29

Where processor restart cannot
remove detected faults, faulty
resource will be removed from
available configuration

Faults are detected (within
bounded time)

G24

Faults are recovered (within
bounded time) or safely
tolerated

G25

C9

'Deterministic' means
predictable and timely

identification of, and recovery
from, faults

C11

Acceptable time bounds for
fault recovery (from safety

analysis)

C10

Credible Faults
(Identified as part of

Software HAZOP Study)

A1

At most, two processor and/or one
databus shutdown faults should occur

per flight
A

C12

Replicated processors and
databus provided for

redundancy

Figure 47 - Argument for Functional Platform Safety Properties

 107

The final part of our argument is shown in Figure 47, and predominantly concerns the

fault-tolerance behaviour of the platform. The aim is to have a platform that operates

deterministically even in the presence of faults. The faults are to be identified and

recovered, where possible, within a bounded period of time (in order that overall timing

requirements can be guaranteed). Value and timing errors are identified in separate

ways, but handled in the same manner. Value errors are identified using the trusted

voting mechanism. A triplex processor architecture has been initially proposed as this

will allow the voter to additionally identify the source of detected errors. For

commercial reasons, related to the weight of cabling, only two databuses will be

provided. However, the CAN databus is considered to be highly fault tolerant in its

own right with the ability to withstand a wide variety of single and multiple errors.

Timing errors are identified using the timing watchdog. Recovery from detected

processor faults is attempted by restarting the offending processor. Where recovery

from failures is not possible, the offending component is taken out of service.

Within this section we have briefly presented a preliminary safety argument which has

derived a number of architecture dependent criteria that must be achieved if the system

is to be safe. The undeveloped goals in our safety arguments represent the criteria for

judging the appropriateness of any architecture under consideration. The criteria could

be met by a number of different architectural combinations. For example, the

component reliability requirement may be achieved using either one ultra-reliable

component, or a network of replicated components. The manner in which the

requirements are satisfied will be part of the developing system design and will be

presented in the final (operational) safety case. Production of the preliminary safety

case has increased confidence that the final certification case can be made. It can also

be used to influence the design such that the safety objectives identified can be more

easily satisfied.

3.10 Nuclear Trip System Safety Case Example

Appendix A illustrates the use of the Goal Structuring Notation in the construction and

presentation of a safety case for a Nuclear Trip System. The technical basis of the

safety case and textual description has been taken directly from an example produced by

Adelard [36]. Goal structures have been integrated with this information to

communicate the implicit structure explicitly and to improve the traceability of the

safety argument.

 108

In the Adelard example, three key devices were used to communicate the flow of the

safety argument:

• Traceability Matrices (mapping requirements to design features)

• Tabular Arguments

• Cross-references within safety case text

The appendix has instead used goal structures (constructed according to the goal

structuring method defined in [57]) as the principal device for presenting the safety

arguments.

Traceability matrices were used in [36] to indicate the mapping that existed between the

overall requirements of the safety case (Appendix A section 5) and the features of the

proposed design solution (Appendix A section 6). For example, the traceability matrix

communicates that the design feature ‘Design Simplicity’ is related to the overall

response time requirement. The difficulty with this approach is that the matrix does not

(and cannot) communicate how the design feature supports or relates to the requirement.

The goal structures presented in Appendix A sections 7-11, however, perform the same

role of relating the design features (referenced using GSN context elements) to the

overall goals of the safety case but additionally (through use of an interim goal) explain

the relationship that exists between them.

Tabular arguments were used in [36] for certain aspects of the safety argument (those

addressing probability of failure on demand, timing and system updates). The

difficulties with the tabular approach to presenting safety arguments have already been

discussed in Chapter Two, section 2.5.2. The difficulty in their use here is that there is

no discipline in the expression of the arguments described under the ‘Argument’

heading. Consequently, arguments are in some cases described only very generally (e.g.

‘Hardware reliability tests’). The goal structures presented in Appendix A sections 7-11

handle the hierarchic decomposition of some of the more complex arguments more

easily. At the same time they introduce the missing discipline by forcing statements

(goals) to be properly formed as propositions, and by insisting that the role of evidence

(solutions) is stated explicitly.

The safety argument structure is also implicitly communicated in the Adelard safety

case through the use of cross-references embedded within the text. For example, the

following sentence taken from [36] contains the cross-reference that relates the

 109

maintenance requirement (R.SEC) to the design feature that introduces a separate

monitor computer.

“The monitor computer can be used for pre-start checks on the consistency

of the software configurations (R.SEC) …”

The difficulties faced with this approach are two-fold:

• Firstly, the relationship between the text and the requirement is cryptic in some

places and suffers the same problems of comprehension as experienced with the

traceability matrix.

• Secondly, the constant use of cross-references disrupts the flow of the document and

makes it more difficult to read.

The goal structures presented in Appendix A sections 7-11, however, communicate the

argument relationships explicitly and reduce the need to attempt to express traceability

relationships within the text itself.

The final comparison between the two approaches highlights the fact that whereas the

Adelard safety case used three different forms of safety argument presentation, the

reworked example presented in Appendix A uses just one – goal structures. The use of

just one medium for expressing the safety argument improves the structure, flow and

comprehension of the safety case document.

3.11 Role of Contribution in supporting Maintenance & Reuse

The contribution made in this chapter underpins, and is used by, the later Chapters Four

(concerning Safety Case Maintenance) and Five (concerning Safety Case Reuse).

Recognition of the context of the safety argument is crucial to enabling effective

maintenance of that argument. If the context of an argument is not captured explicitly

then the impact on the argument may go unrecognised if the context changes. However,

where context is explicitly represented, as for example in the goal structure fragment

shown in Figure 48, it becomes possible to identify how the safety argument is

vulnerable to changes made to the context in which it is stated.

 110

Aircraft safe to operate within
defined operating limits

Aircraft Operating
Limits

Figure 48 - Context Change Example

Figure 48 shows the recorded dependency between the claim regarding

aircraft safe operation and the context of the set of defined aircraft

operating limits. If these limits were changed at any time, the context

reference would be challenged (as depicted by the strike through). The

relationship between this context and associated goals would also be

challenged (as shown). From this it would it is possible to recognise that

the safety claim might be affected.

As discussed in section 3.7, context can be used within the notation to show how the

safety argument depends upon information arising from different viewpoints. Every

time this is done within a goal structure, additional information is being added that

communicates how changes arising from these viewpoints can propagate through and

impact the safety argument. For example, consider the goal structure previously shown

in Figure 38 where the dependence of the safety argument on a design decision is

represented. If the referenced decision is changed at a later stage this recorded link will

help to identify the impact on the argument strategy adopted.

Context also plays an important role in defining the applicability of the Safety Case

Patterns presented in Chapter Five. Using the representation of context it is possible to

show what information must be defined in order to construct a certain safety argument

structure. For example, in the following figure (Figure 49), (uninstantiated) context is

used to denote that in order to construct an argument structured around management of

hazards, a list of hazards must be provided. (For a full description of this pattern and

the notation used see Chapter Five.)

The role of the GSN method in supporting the work presented in Chapters Four and

Five is less immediate than that fulfilled by the introduction of context, but is

nevertheless crucial. In order to provide maximum support to the safety case

maintenance process (particularly impact analysis based on the goal structure) it is

important that the goal structure is well formed and well stated. Obeying the rules

defined by the method for the phrasing of goal statements as Noun-Phrase Verb-Phrase

 111

propositions makes it significantly easier to assess whether goal statements are impacted

by a change, than if, for example, they were incorrectly formed as Verb Phrase

statements. Consider assessing whether the goal statement, “System A is independent

of System B” is affected by a change, compared with assessing whether the (incorrect)

goal statement, “Perform Fault Tree Analysis”, is affected.

G1: {System X}
is safe

S1: Argument by
claiming addressed

all identified
plausible hazards

C1: Identified Hazards for
{System X}

in the

context of

n = # hazards

Provides {Hazard X}

G2: {Hazard X} has
been addressed

n

Figure 49 – Use of Context in Safety Case Patterns

The role of the method in providing a regular, predictable and mutually understood

definition of the Goal Structuring Notation underpins the concept of safety argument

reuse as espoused in Chapter Five. In order to identify reusable safety argument

structures it is important that similar arguments will be represented similarly in the

notation (i.e. the notation is not interpreted in wildly varying ways). In order that the

application of recorded GSN patterns may be viable it is also important that the ‘style’

of goal structuring applied within the pattern does not differ substantially from that of

the target context. The Goal Structuring Method discussed in this chapter and defined

in [57] plays an important role in ensuring the uniformity of style of goal structures

developed.

 112

3.12 Evaluation of Contribution

The evaluation of the contribution presented in this chapter is discussed fully in Chapter

Six – Evaluation. However, it is worth briefly highlighting at this point some of the

ways in which the ideas presented in this chapter have been evaluated over the course of

the research.

The extension of context to the Goal Structuring Notation has been readily and widely

adopted by all that use the notation. In addition to researchers at York, this includes

safety engineers from companies including the Rolls-Royce and British Aerospace

groups of companies, and the U.K. Defence and Evaluation Research Agency (DERA).

In particular, work performed by Rolls-Royce Marine Power (formerly Rolls-Royce and

Associates) under contract for GEC-Alsthom particularly utilised the ideas of ‘Process’

and ‘Product’ goal structures (as described in section 3.7 of this chapter) that are

interrelated through use of context references. A cross-linked goal structured safety

case and safety plan were produced that formed the basis of the project documentation

for a track-side railway system. (The guidance the author gave to this project on

applying goal structuring aided the development of the method guidance necessary to

support wider adoption of the technique.)

The Goal Structuring Method as defined in [57] has been issued as a ‘GSN Handbook’

to over twenty companies involved with the development and assessment of safety-

critical systems. Although criticism of the method was solicited, only favourable

comments have so far been received in return. In addition, presentation material written

by the author to accompany the guide presented in [57] has been used in the direct

education of over fifty safety engineers from three companies (British Rail Business

Systems, Matra BAe UK and Rolls-Royce Marine Power). The effectiveness of the

method has been shown on a number of occasions by the production of well-stated and

formed goal structures using the method independently of any ‘hands-on’ involvement

by the author or other researchers at York.

3.13 Summary

This chapter has presented the contributions the author has made to the representation of

safety case arguments using the Goal Structuring Method. To increase the expressive

power of the notation, the author has introduced the concept of argument ‘context’. To

bring GSN to maturity, from simply being a notation to becoming a structured method,

 113

the author has defined a six-step process for the construction of goal structures

(presented in [57]). Building on both these contributions, the chapter has discussed how

goal structuring can be used, and has been used, to support an evolving safety argument.

In particular, the positive benefit of using GSN in presenting Preliminary Safety

Arguments has been described (including ‘real-life’ examples).

The results presented in this chapter were developed to ensure a sound basis from which

the more advanced concepts of applying GSN in safety case maintenance and in safety

case reuse could be constructed. These areas are discussed in the following two

chapters.

 114

 115

Chapter 4:

Using the Goal Structuring Notation to Support

Safety Case Maintenance

4.1 Introduction

In the first instance the safety case argument will typically be constructed and presented

(e.g. to a regulatory authority) prior to the system operating for the first time. The

argument is often therefore based on estimated and predicted operational behaviour

rather than observed evidence. For this reason alone, even in the absence of changes to

the system or the regulatory environment, it is almost inevitable that the safety case will

require updating throughout the operational lifetime of the system. Operational

experience must be reconciled with the predictions made in the initial safety argument.

The system operators, as the ‘owners’ of the safety case, are typically responsible not

only for its initial production but also for its maintenance throughout the lifetime of the

system. There is growing recognition in the standards that appropriate mechanisms must

be in place for the ongoing maintenance of the safety case. For example, the U.K.

Railways (Safety Case) Regulations 1994 states in Regulation 6(1) that:

“A Person who has prepared a safety case persuant to these Regulations

shall revise its contents whenever it is appropriate…”

Similarly, for developers of defence related systems in the U.K., the Ministry of

Defence Safety Standard 00-55 [9] states in section 4.7.1. that:

“After the preparation of the operational Safety Case, any amendments to

the deployment of the system should be examined against the assumptions

and objectives contained in the Safety Case.”

Although standards, such as those mentioned, demand appropriate and adequate

revision of safety cases, they offer little advice on how such operations can be carried

out. The safety case is a complex web of inter-dependent parts: safety requirements,

argument, evidence, design and process information. As such, a single change to a

safety case may necessitate many other consequential changes - creating a ‘ripple

effect’. The difficulty faced with current safety cases lies in discerning those

consequential changes through the morass of poorly structured documentation. The

 116

level of assurance as to how well a safety case has been updated in the light of a change

depends largely on the degree to which the document has been understood. There is

little guarantee that all changes have been dealt with equally and systematically.

Subjectivity plays a greater role in safety case maintenance than is desirable.

This chapter begins by clarifying the key problems currently experienced with safety

case maintenance. Discussing how these problems have been addressed, the chapter

then presents the model and process we have developed for safety case change

management based on the Goal Structuring Notation.

4.2 Current Problems in Safety Case Maintenance

Working from the published literature on this topic (surveyed in Chapter Two),

discussions with Rolls-Royce safety engineers, and the author’s personal experience of

safety case management, we have identified the key problems currently being faced in

safety case maintenance as the following:

• Difficulty in recognising change

• Difficulty in identifying the indirect impact of change

• Lack of assurance / justification of the change process

• Insufficient information recorded to support the change process

• Lack of a systematic process

Together these problems result in an informal and often subjective change management

process. Given that the safety case should be maintained as a living argument that

always correctly portrays the safety of a system, this informality is a serious concern.

These problems are described in the following sections:

4.2.1 Difficulty in recognising change

The first problem in safety case maintenance is that the safety engineer sometimes fails

to recognise that a ‘real-world’ change should be considered with respect to the safety

case. Some changes, such as a minor operational role change, may seem innocuous at

first when given superficial consideration, but may actually have a significant impact

with respect to the context and argument of the safety case. The engineer must ask the

following questions:

• Does this change directly affect the objectives of the safety argument?

 117

• Does this change directly affect the evidence used to support this safety

argument?

• Does this change directly affect the context (assumptions etc.) in which the

safety argument was made?

These questions can be stated effortlessly. Answering them, however, can require much

effort. The nature of current text-based safety cases is that it is often difficult to identify

the top-level objectives, evidence and context of the safety argument. Given this

starting point, it is even more difficult to identify which of these are potentially

impacted by a change.

4.2.2 Difficulty in identifying the indirect impact of change

Identifying the initial impact of a change is only the starting point of the change

management process. Safety arguments are a web of dependencies: safety claims are

put forward to satisfy safety requirements. Evidence is put forward to satisfy safety

claims. Safety claims have a defined and/or an assumed context. When just one of

these items changes, it is necessary to identify the ‘knock-on’ effects on dependent

items. Does changed evidence still support the safety claim? Does a changed safety

claim still support the safety requirement?

In order to identify these indirect effects of a change the engineer must be able to see

clearly the structure of the argument and where the dependencies lie. However, these

dependencies are often inadequately presented, or are obscured in, current text-based

safety arguments.

4.2.3 Lack of assurance / justification of the change process

Faced with a potential challenge to the safety case, those responsible for the

maintenance of the safety case must decide on an appropriate response. This response

will lie somewhere between the two extremes of doing nothing to the safety case and

doing ‘everything’ (i.e. complete safety case revision). These decisions about the level

and nature of response made to a particular challenge must be expressed explicitly and

justified in order to have confidence in the ongoing validity of the safety case. As a

consequence of the difficulties in assessing the impact of change, as described in the

previous section, difficulties are also experienced in providing a compelling justification

of when change to elements of the safety case is or isn’t necessary.

 118

4.2.4 Insufficient information recorded to support the change process

The previous problems have addressed the quality of the information recorded in the

safety case. However, there is also a problem concerning the quantity of information

recorded. A well-stated safety case clearly documents the context in which the safety

argument is made – recording where information has been drawn into the argument

from other sources (e.g. other safety cases); where assumptions have been made; the

relationship between the argument and design detail. If this information simply isn’t

recorded in the safety case then recognition of the impact of any changes requires a

significant amount of detective work! In many existing safety cases, context is often

assumed knowledge, and assumptions are often implicit.

4.2.5 Lack of a systematic process

Perhaps an aggregation of the preceding problems, the most significant concern with

current maintenance strategies is that they are not systematic. Assurance in

maintenance stems from confidence in a rigorous process where all changes are

investigated methodically. However, owing predominantly to the preceding problems,

there is often insufficient, inadequate or inappropriate information to perform the

maintenance task. Consequently, the effort required for systemisation increases

dramatically and the practical demands of the situation require that ‘best-guess’ and ad-

hoc approaches be adopted instead. This introduces a degree of subjectivity into the

process that means even a basic level of repeatable and systematic analysis cannot be

guaranteed.

4.3 Application of GSN to Change Management

A fundamental concern underlying the problems of safety case maintenance identified

in the previous section is the poor perception of the individual elements of

conventionally structured safety cases and of the interdependencies that exist between

them. The Goal Structuring Notation provides a clear conceptual model of the safety

case – representing its elements and interdependencies explicitly. Using the framework

GSN provides as a basis for establishing a configuration model for safety cases, we will

now show that is possible to formulate a systematic approach to reasoning about and

handling change.

 119

4.3.1 Dependencies in the Safety Case

Elaborating on the model introduced in Chapter One, we argue that the safety case can

be considered as consisting of the following four elements:

• Requirements – the safety objectives that must be addressed to assure safety

• Evidence – information from study, analysis and test of the system in question

• Argument – showing how the evidence indicates compliance with the requirements

• Context – identifying the basis of the argument presented

These elements are obviously inter-dependent. As a refinement of the Supporting

Evidence / High Level Argument view of the safety case presented in Chapter One, we

have developed the conceptual model shown in Figure 50 to illustrate the macro-

dependencies that exist between these four elements.

Requirements

Argument

Evidence

Context

Meets

Supports

Valid in

Valid in

Valid in

Figure 50 - Dependencies between elements of the Safety Case

This is a simplification of the dependencies that exist between these elements.

Dependencies could also exist, for example, between pieces of evidence – e.g. between

component failure modes and rates in a Failure Modes and Effects Analysis and basic

events in Fault Tree Analysis. Figure 50, however, communicates those dependencies

that exist through the intentional relationships of the safety argument.

Even simply recognising the aggregated safety case dependencies shown in Figure 50

helps to highlight where consistency must be maintained when handling change. For

example, consider the following change scenario:

 120

Change Scenario: Based on a changing operational environment, the

context of the safety argument is altered (e.g. the system now interacts with

different systems, has different users or has different operating limits). A

change is made to the safety case Context.

Given such a change, the dependencies communicated in Figure 50 prompt

consideration of the following questions concerning the other safety case elements:

For the argument:

• Is the argument still valid in this changed context? If not, what changes

are necessary?

• (If the argument is changed as a consequence.) Does the evidence still

support the modified argument? If not, what changes are necessary?

• (If the argument is changed as a consequence.) Does the changed

argument still meet the requirements? If not, are the affected

requirements negotiable?

For the requirements:

• Are the requirements still correctly stated (e.g. are new requirements

now applicable) within this changed context? If not, what changes are

necessary?

• (If the requirements are changed as a consequence.) Does the argument

support the modified requirements? If not, what changes are necessary?

For the evidence:

• Is the evidence still valid in this changed context? If not, what changes

are necessary?

• (If evidence is changed as a consequence.) Does the evidence still support

the argument? If not, what changes are necessary?

This chapter defines an approach that helps engineers to ask questions, such as

those given above, in a specific and structured manner through utilising the

documented dependencies presented in a goal structured safety argument.

 121

4.3.2 Relationship between GSN and the Safety Case

The Goal Structuring Notation has been specifically defined to model the entities and

relationships shown in Figure 50. Requirements are represented in the notation as top

level Goals. Evidence is represented in the notation as Solutions. Contextual

information is represented in the notation as Context, Assumption, Justification and

Models. Argument is communicated through the structuring of Goals supported by sub-

goals (as discussed in Chapter Three). Figure 51 illustrates how a goal structure can be

divided into the four essential elements – requirements, context, evidence and argument.

Control System
is Safe

All identified
hazards eliminated

/ sufficiently
mitigated

Software
developed to I.L.

appropriate to
hazards involved

I.L. Process Guidelines
defined by Ref X.

Hazards Identified
from FHA (Ref Y)

Tolerability targets
(Ref Z)

Fault Tree
Analysis

Formal
Verification

Process
Evidence
of I.L. 4

Probability of H2
occurring

< 1 x 10-6 per
annum

H1 has been
eliminated

Probability of H3
occurring

< 1 x 10-3 per
annum

Primary Protection
System developed

to I.L. 4

Secondary
Protection System
developed to I.L. 2

Process
Evidence of

I.L. 2

J

1x10-6 p.a.
limit for

Catastrophic
Hazards

Requirements

Evidence

C
o

n
te

xt

C
o

n
text

Argument

Figure 51 - Relationship between safety case elements and the GSN

Through the explicit links of a goal structure, such as those shown in Figure 50,

traceability is provided between the elements of the safety case argument. The

following relationships are communicated:

• How requirements are supported by argument claims

• How argument claims are supported by other (sub) argument claims

• The context in which argument claims are stated

• How argument claims are supported by evidence

Such relationships are also present in conventional text-only safety cases. However, it

is rare that they are communicated as clearly and explicitly as in a goal structure.

 122

4.3.3 Establishing a Safety Case Configuration Model

In conventional configuration management, the ‘configuration’ refers to

“The totality and the inter-relationships of the hardware, software,

firmware, services and supplies that make up the system at a given reference

point in time” [66]

This definition can be adapted to the safety case domain. In this context, we define the

configuration as:

“The totality and the inter-relationships of the requirements, argument,

evidence and context that make up the safety argument at a given reference

point in time”

A conventional configuration model consists of two parts:

• Configuration Items (CIs): Entities within a configuration that satisfy an end use

function that can be uniquely identified at a given reference point. [66]

• Configuration Relationships (CRs): The relationships between Configuration

Items that have been established at a given stage in the development lifecycle [67]

Using the framework of the Goal Structuring Notation it is possible to relate these

concepts to the safety case domain.

• Configuration: A goal structured safety argument

• Configuration Items (CIs): Individual entities within the goal structure

representation of a safety argument – i.e. goals, strategies, solutions, contexts,

models, assumptions, justification etc.

• Configuration Relationships (CRs): The relationships established between the

elements of a goal structure – i.e. instances of the SolvedBy and InContextOf

relations. For example, these include the relationship declared between a parent

goal and a child goal, and between a goal and an associated assumption.

Using the Goal Structuring Notation as a configuration model (and therefore an

individual goal structure as a configuration), the chapter now goes on to propose a

process for managing change applied to the safety case in the following section.

4.4 A Safety Case Change Process

The safety case change activity can be thought of as consisting of two phases:

 123

• The Damage Phase – Where a change is assessed for its impact on the safety

argument of the safety case

• The Recovery Phase – Once the damage has been identified, the process of

identifying a recovery action and following though the consequences of that action

in recovering the safety argument.

There is an iterative (and potentially concurrent) relationship between these two phases.

The action identified to recover the damaged part of the safety case may also result in

damage to other parts of the safety case. For any one change, several iterations of the

damage and recovery activities may be necessary to arrive again at a consistent and

correct safety case. This highlights the importance of having an efficient and systematic

process for carrying out these activities.

Using the safety case configuration model proposed in the previous section it is possible

to provide a systematic structure to the activities carried out in these two phases. This

structure is shown in Figure 52.

Damage Phase

Use GSN
to Identify

Impact

Step 3

Decide upon
Recovery

Action

Step 4

Recover
Identified
Damaged
Argument

Step 5

Express
Challenge in
GSN Terms

Step 2

Recognise
Challenge to
Safety Case

Step 1

Safety Case
Challenge

GSN
Challenge

GSN
Impact

Recovery
Action

Recovery Phase

Figure 52 – A Process for Safety Case Change Management

The following sections expand on how using GSN as a configuration model can support

the six steps identified in Figure 52.

4.4.1 Step 1: Recognise Challenges to the Validity of the Safety Case

As identified in Chapter Two, an important aspect of the through life maintenance of the

safety case is awareness of challenges that could potentially render the safety case

argument invalid – i.e. being aware of the vulnerability of the safety case argument to

external change. This point is also highlighted in [36].

 124

Using the model of the safety case we proposed in Figure 50 – the role of the safety

argument within the safety case is to establish the relationship between the available

evidence, safety objectives and contextual information (such as design information).

These three elements can be viewed as the ‘givens’ of the safety argument. Challenges

to the validity of a safety argument will arise through challenging one of these givens,

i.e. something in the ‘real-world’ context (outside of the safety case) will challenge the

basis of the safety case presented. The safety case exists in a real-world context that

defines:

• Customer / Regulatory Situation – that sets the ultimate safety objectives that

must be demonstrated within the safety case, tolerability and acceptability criteria.

• Evidence Situation – which defines everything that is known about the system in

question, i.e. the results of observation, analysis and test of this and similar systems.

• Additional Contextual Information – that bounds, scopes and structures the

argument provided in the safety case, e.g. interfaces to other systems, intermediate

pieces of safety evidence (such as hazard logs).

Ultimately the safety case must be correct, consistent and complete with respect to these

three areas. For example, where the requirements listed within the safety case do not

correctly express the applicable safety requirements of the regulatory context the safety

case is invalid. Equally, where the design information used within the safety case is

inconsistent with the design of the system in operation the safety case is invalid.

Similarly, a safety case that selectively omits damaging evidence known about the

system is invalid.

The safety case will have been produced initially to present a valid safety argument with

respect to the regulations, evidence and contextual information appropriate at the time.

The difficulty in safety case maintenance is that any or all of these three elements may

change over time. For example:

• An additional regulatory requirement may be added following an operational

incident. An example of this from the civil aerospace domain would be the addition

of a regulation regarding inadvertent thrust reverser deployment (in JAR-E [68])

following the Lauda Air thrust reverser deployment in flight accident. In some

sectors, constant update of regulatory requirements is expected. Queener, in [69],

 125

describes the process whereby civil nuclear reactor installations in the U.S. must

respond to changes in the NUclear REGulationS (NUREGS).

• The design of a system may be changed for perfective, corrective or adaptive

maintenance reasons or through technology obsolescence. Hogberg, in [24],

describes responding to unanticipated problems with the design of a class of nuclear

reactors. Another example is that a class of component used within the original

design may no longer be available and a replacement component type may have to

be used.

• Definitions of ‘cost-effectiveness’, ‘tolerability’, ‘negligible risk’ etc. that have been

used as the basis of the safety argument (e.g. in arguing ALARP – As Low As

Reasonably Practicable) may alter over time with changing perceptions and

available technology. Assumptions regarding the operational lifetime of a system

also form an important part of the safety case context. Such assumptions may be

challenged by a desire to extend plant life beyond the originally intended period.

Clarke, in [25], describes such a case for the life-extension of the U.K. civil Magnox

nuclear reactors.

• Operational experience may challenge the evidence used as the basis of the original

safety argument. For example, the safety case may estimate that a certain failure

mode of a component will occur at a certain rate. This rate may be brought into

question by operational data.

The starting point of a systematic process for ensuring the ongoing validity of the safety

case is the identification and recognition of such changes on a routine basis.

Operational data should be collected through in-service monitoring. This is recognised

in a number of the existing safety standards. For example, the HSE Civil Nuclear

Standards [17] contain the principle:

Maintenance, inspection and testing (Principle 329):

The requirements for in-service testing, inspection or other maintenance

procedures and frequencies for which specific claims have been made in the

safety case should be identified and included in a maintenance schedule.

To record system anomalies and updates, failure and correction maintenance action

reporting systems should be established. In Defence Standard 00-55 [9] the following

requirement is stated:

 126

8 Data Management

8.1 The Contractor shall establish a Data Reporting Analysis and

Corrective Action System (DRACAS) which shall be a documented closed

loop system for reporting, collecting, recording, analysing, investigating

and taking timely corrective action on all incidents that may have an impact

on safety.

Having used such reporting systems to recognise and record information that may

impact the safety case, the next step in the process is to express those challenges in the

terms of the recorded safety argument.

4.4.2 Step 2: Expressing Challenge in Goal Structure Terms

Step 2 is concerned with expressing an identified potential challenge in terms of a

challenge to elements within the goal structure representation of the safety case

argument.

There is a correspondence between the types of change introduced and the elements of a

typical goal structure (constructed according to the method given in Chapter Three).

These associations are shown in the following table (Figure 53). A ‘GSN Challenge’

will be expressed always in terms of a challenge to elements of the notation representing

the requirements, evidence or context.

‘Real-World’ Change

Type

Corresponding

Goal Structure Elements

Goal Structure Symbols

Requirements 1. ‘Top’ Goals

2. Context Elements

Evidence 1. Solutions

2. Context Elements

 127

Context 1. Context

2. Model

3. Assumption

4. Justification

A

J

Figure 53 - Association between Change Types and Goal Structure Entities

The following sections illustrate the mappings shown in the above table by providing

sketch examples of requirements, evidence and context challenges expressed in GSN

terms. It is important to realise that within this step, and therefore also in the examples

presented, the concern is to express the initial challenge to a goal structured safety

argument (i.e. the start point of impact assessment), rather than the total impact (which

will be explored in Step 3).

The convention we have introduced to denote that a GSN element or relationship is

challenged is to place a cross (×) over that item.

4.4.2.1 Requirements Challenges Expressed in GSN Terms

The following figure (Figure 54) depicts the potential challenge created when one of the

overall objectives of the safety argument is challenged. In this case, an argument was

put forward to support a DS 00-55 compliance objective. If this objective is revised

(e.g. as a result of a new issue of 00-55, or to demand instead compliance to another

standard such as DO178B [65]) then the corresponding goal must be marked as

challenged. (The figure also depicts, through the crossed SolvedBy relationships, that the

support of this claim through the existing arguments is immediately challenged.)

 128

Software Developed to
Defence Standard 00-55

Software developed to
Integrity Level 4

Software Safety Case
Produced

Appropriate Safety
Management in place during
development

Figure 54 – Requirements Challenge Example #1

The following figure (Figure 55) illustrates a requirement change that translates into a

challenge to a context reference made within a goal structure. The HSE Safety

Assessment Principles are given as context to a strategy that bases its arguments upon

them. If these principles change (e.g. are revised or added to) the basis of the existing

argument is challenged.

Argument over all
applicable Safety
Assessment Principles

HSE Safety Assessment
Principles for Civil

Nuclear Plants

{Principle 1 Claim} {Principle 2 Claim} {Principle n Claim}

Figure 55 - Requirements Challenge Example #2

The following figure depicts a requirements change that translates into a challenge to a

justification given within a goal structure. In this case, a company standard is used to

justify the use of a particular failure probability figure. If this company standard is

updated this justification is potentially challenged and it becomes necessary to check

that the goal is still supported by the revised standard.

 129

Hazard X occurs at
acceptably low rates

Probability of Hazard X
occurring < 1 x 10-6 per
operational hour

Definition of
Hazard X

J

Company Standard defines 1x
10-6 as acceptable for Major

Hazards

Figure 56 - Requirements Challenge Example #3

4.4.2.2 Evidence Challenges Expressed in GSN Terms

Figure 57 depicts a real-world evidence change that translates directly into a challenge

to a solution given within a goal structure. In this case, a fault tree is used to satisfy the

probability claim for Hazard X. If the fault tree is called into question (e.g. through

operational experience contradicting the basic fault event probabilities used, or the

implicit claims of independence) the role of this piece of evidence as a solution in the

safety argument is challenged.

Probability of Hazard X
occuring is 1 x 10-5 per
operational hour

Fault Tree for
Hazard X

Figure 57 - Evidence Challenge Example #1

The following figure illustrates an evidence challenge that maps to a context reference

used within a goal structure. Evidence can be used within safety arguments not only to

support safety claims (i.e. use as a GSN solution) but also to help structure the

argument being presented (i.e. use as a GSN context reference). It is for this reason that

evidence should not be viewed as only corresponding to GSN solutions.

 130

In this case, the results of a Functional Hazard Analysis exercise are used to provide the

basis for a strategy that argues over each of the hazards identified. If the hazard

analysis results were revised – potentially resulting in a different list of identified

hazards – the argument might be rendered incomplete or incorrect.

Argument over all
identified hazards

Functional Hazard
Analysis Results

{Hazard H1
Claim}

{Hazard H2
Claim}

{Hazard Hn
Claim}

Figure 58 - Evidence Challenge Example #2

4.4.2.3 Context Challenges Expressed in GSN Terms

Figure 59 shows a real-world context change that translates directly into a challenge to a

context reference made within a goal structure. In this case, the claim of operational

safety is defined only within certain operating limits. If these operating limits were

exceeded for any reason, the basis of the claim is challenged.

Aircraft safe to operate within
defined operating limits

Aircraft Operating
Limits

Figure 59 - Context Challenge Example #1

Figure 60 illustrates a design change that maps directly to a challenge of a model

reference made within a goal structure. In this case, the argument strategy uses the

design decomposition as the basis for structuring the argument. If the design

decomposition was altered (e.g. by adding another subsystem to X) then the validity of

the argument structure would be questioned.

 131

Argument over each of the
major subsystems of X

Design of X (showing major
subsystems)

{Subsystem 1 Claim} {Subsystem 2 Claim} {Subsystem 3 Claim}

Figure 60 - Context Challenge Example #2

Figure 61 illustrates an operating context change that translates directly into a challenge

to an assumption stated within a goal structure. In this case, a safety claim is

specifically stated on the assumption that recommissioning is not required. If this

assumption was found to be wrong the claim might no longer hold – e.g. significant

personnel radiation exposure may be necessary to undo some of the decommissioning

procedures.

No radiological hazards posed
by decommissioned reactor
coolant system A

There will never be a
requirement to recommission

system

Figure 61 - Context Challenge Example #3

4.4.2.4 Summary of Expressing Challenges in GSN Terms

To translate a real-world challenge into a goal structure challenge it is necessary to

search the appropriate goal structure elements (indicated in Figure 53) for elements that

correspond to the real-world entity or concept being challenged. For example, where a

real-world piece of evidence is challenged, the goal structure should be examined for

solutions and contexts that correspond to the piece of evidence under question. It is

important to recognise that one real-world challenge may well translate into many goal

structure challenges. Consider, for example, the case of a hazard log update. The

hazard log may be used both as a means of structuring the safety argument (as a context

reference) as well as a source of evidence to support a goal (as a solution). This

situation is illustrated in Figure 62.

 132

No intolerable hazards
present in system

Hazard Log

Argument over all
identified hazards

Hazard Log

Figure 62 - A Real-World Challenge Impacting many Goal Structure Elements

Having managed to express a challenge in goal structure terms, the next step is to

determine the impact of that change on the rest of the safety argument.

4.4.3 Step 3: Using the Goal Structure to Identify Impact of Challenge

The most immediate impact of changing an item within a goal structure configuration is

that it calls into question that item’s relationship to all other directly related items within

the safety argument configuration. This can be seen in the Figure 54 to Figure 61

presented in the previous section. These diagrams illustrate that a goal structure

element cannot be challenged without also challenging the directly associated

relationships. For example, if a solution item is challenged (as shown in Figure 57) it

challenges its role as a solution to all goals relying upon it through the SolvedBy

relationship (shown by the lines headed with solid arrows). Equally, if a context item is

challenged (as shown in Figure 59) it challenges the relationship with all goals

previously expressed in the context of that item using the InContextOf relationship

(shown by the lines headed with hollow arrows).

It is the challenge to the structure of the safety argument that must be explored

(propagated) to determine the ultimate impact of any challenge on the claims of the

safety argument. Based upon the semantics of the notation defined in [57] and

 133

described in Chapter Three, the rules for the propagation of change within a goal

structure are provided within the following sections.

4.4.3.1 Propagation of Challenges to Goals, Strategies and Solutions

Changing a goal, strategy or solution (G) within a goal structure challenges the

following relationships within the goal structure:

• The role of G as a solution of parent goals or strategies (i.e. items higher up the goal

structure). This is not a concern for the top goals of a goal structure.

• The role of G as a parent (objective) of supporting elements (i.e. to items lower

down the goal structure). This is obviously not a concern for the solution elements

of a goal structure.

• The relationship between G and its stated context (i.e. to items left and right of the

core argument)

This effect is illustrated in Figure 63. Consider the case where, as a result of a revision

of the company standard, the ‘Probability of Hazard’ goal could no longer be justified in

its current stated form. Challenging this goal also challenges its relationship to both the

parent ‘Acceptably low rates’ goal and to the supporting evidence provided (fault tree

and in-service data). If the probability claim were weakened, this may mean that the

parent goal was no longer satisfied. If the probability claim were strengthened, this may

mean that it is no longer supported by the solutions presented.

Probability of Hazard
X occurring
< 1 x 10-6

Hazard X occurs at
acceptably low rates

Fault Tree for
Hazard X

In Service
Data

J

Company Standard defines
1x 10-6 as acceptable for

Major Hazards

CHANGED

Figure 63 - Example Effect of Spinal Node Change

 134

4.4.3.2 Propagation of Challenges to Context, Models, Justifications and

Assumptions

The effect of changing a context element is made more complicated that that of

changing a goal, strategy or solution owing to the inheritance of context elements

implied by the semantics of the notation (as presented in [57] and discussed in Chapter

Three). Changing a context element challenges not only the most immediately

associated goal or strategy but also all of the child goals and strategies underneath that

item within the goal structure. This effect is illustrated in Figure 64. Changing the

Hazard Log (e.g. adding a new hazard) context most directly impacts the strategy of

‘Arguing over all identified hazards’. However, all the goals and solutions underneath

are also expressed in the context of the hazard log (due to inheritance) – and may

therefore also be affected by the change. For example, in the supporting argument for

the Hazard H1 goal – the hazard log context may be as the source of a hazard

probability. In this case, changing the H1 hazard log entry may affect the supporting

argument for the claim of having addressed H1.

System is acceptably
safe

Argument over all
identified hazards

Hazard Log
(All identified

Hazard H1 has been
addressed

Hazard H2 has been
addressed

Hazard H3 has been
addressed

Inherited
Change
Effect

Figure 64 - Example Effect of Context Node Change

Changing a context element (C) challenges the following elements within the goal

structure:

 135

• All goals, strategies and solutions (G) that introduce C as context (through the

InContextOf relationship).

• All goals, strategies and solutions which inherit C as context (i.e. all children of G).

When a goal, strategy or solution is challenged by a context change, the rules of change

propagation for these elements (defined in the previous section) apply.

As can be seen from the examples shown in Figure 63 and Figure 64, the initial impact

of context change is potentially much wider than that of changing an element such as a

goal. Changes to goals, strategies and solutions have, at least initially, a point effect –

affecting only most immediate neighbours. Changes to context elements, however, due

to rules of inheritance within the semantics of the notation, have an area effect –

affecting whole sub-trees of the goal structure.

4.4.3.3 Potential vs. Actual Change Effect – The Role of the Safety Engineer

It should be noted that the rules we have described for the propagation of change over a

goal structure define the potential change effect rather than necessarily the actual

change effect. The approach taken is pessimistic. Based only on the semantics of the

notation, i.e. without entering into any form of semantic analysis of the goal statements,

it is possible only to flag all possible changes. The role of the safety engineer

responsible for maintaining the safety argument is then to examine each of these

potential areas of impact to decide which require further investigation and which can be

ignored (i.e. where the change can be considered benign).

Consider, for example, the situation shown in Figure 65. Operational experience may

necessitate an increase in the failure rates quoted in the Component Failure Modes and

Effects Analysis (FMEA). According to the impact rules given, a challenge to the

FMEA would potentially impact its role as a solution to both the No Single Point of

Failure claim and the Hazard Probability Claim (as indicated by the crossed

relationships). The engineer must assess both of these potential challenges and decide

whether they apply in this particular change scenario. To do this, the nature of the

change must be considered with respect to the potential challenges flagged. In this case,

for example, the FMEA failure rate change may well affect the Hazard Probability

claim. However, since no additional failure modes have been introduced or any failure

mode effects changed, the No Single Point of Failure claim is extremely unlikely to be

affected (and this challenge can be considered benign with respect to this goal).

 136

No single point of failure
can lead to a hazard

Probability of hazard
occuring is tolerably low

Fault tree for hazard shows
probability is 1.4 x 10-6 per
hour

Component Failure
Modes and Effects

Analysis

Fault Tree for
Hazard

Figure 65 - Potential Impact Scenario

The actual initial impact of the FMEA change would therefore be refined as illustrated

in the following figure (Figure 66).

(NB – The potential problem of additional dependencies that may exist between the

evidence solutions shown in Figure 66, but are not communicated through the argument

structure, is discussed later in Section 4.9.2.)

No single point of failure
can lead to a hazard

Probability of hazard
occuring is tolerably low

Fault tree for hazard shows
probability is 1.4 x 10-6 per
hour

Component Failure
Modes and Effects

Analysis

Fault Tree for
Hazard

Figure 66 – Actual Impact Scenario

 137

4.4.3.4 Propagating and Assessing Impact One Step at a Time

In determining the extent of the impact caused by a single change, the effect should be

propagated through the structure step by step until some conclusion can be drawn as to

the overall impact, i.e. by executing the following sequence of steps:

i. Identify the potential impacted elements and relations according to the rules

proposed in Sections 4.4.3.1 and 4.4.3.2.

ii. From the potential impact identify the actual impacted elements and relations

(as described in Section 4.4.3.3) – at the same time determining which of the

challenges can be considered benign.

iii. Repeat process by now executing step i for all identified (actual) impacted items

Step iii is a recursive call to Step i. Due to the potential divergent nature of the relations

within a goal structure – one element being related to many other elements – the impact

assessment will potentially involve propagation of the challenge down many paths, each

of which must be individually considered.

It is important that step ii is performed before step iii to guide the scope of the impact

assessment before continuing. (Otherwise, according to the pessimistic and mechanistic

propagation rules given in Sections 4.4.3.1and 4.4.3.2, a single change to any element of

a goal structure will always impact the whole structure.)

These steps are shown diagrammatically in Figure 67.

Step 3: Use
GSN to
Identify
Impact

STOP

3ii: Identify
actual
impact

3iii: Execute
step 3i for all

impacted
items

3i: Identify
potential
impact

?

?

?

Figure 67 - Impact Assessment One Step at a Time

 138

As can be seen from Figure 67 there is always the question of when to stop the impact

assessment process – i.e. how far to investigate the damage created by a particular

challenge. A particular thread of the impact assessment process can stop for any one of

the following three reasons:

• (After stage 3i) A change has no further potential impact. An obvious example of

this would be when the process has ‘run out of goal structure’ - i.e. the impact has

reached the top goal or a bottom solution.

• (After stage 3ii) A change has no further actual impact. In this case, potential

changes are highlighted but, when assessed by the safety engineer, it is possible to

say that none of these impacts actually affect the structure. For example, if a fault

tree was used as evidence to support a number of claims within the safety argument,

a change to the fault tree would potentially challenge each of those claims.

However, upon proper assessment the revised fault tree may still support the claims.

It should be noted that this is the most positive of outcomes of the impact

assessment process.

• (After stage 3iii) Actual impact has been identified, however it has been decided not

to allow the change effect to extend further. For example, this would be the case if a

challenge were identified to a goal representing a regulatory requirement. The

challenge to the goal could be identified. However, as a regulatory requirement the

goal would probably be viewed as non-negotiable and therefore the impact process

would stop at this point and the process of recovery would begin.

When further assessment of all impact paths has been terminated for one of the above

reasons it possible to describe the total impact created by the initial single challenge.

Importantly - unlike the initial challenge that was expressed in terms of affected

solutions, context and top requirements - the impact can now be expressed in terms of

the goals of the safety argument that can no longer be supported. These are the ultimate

consequences of the initial challenge (in terms of the safety argument). This

information serves as an important input to the next step – responding to the damaged

argument.

4.4.4 Step 4: Deciding Upon Action to Recover Damaged Argument

Recovery is the process of returning the safety argument to a correct, consistent and

complete state. The impact of a change (identified in Step 3) may mean that claims

 139

made within the safety argument (e.g. concerning the meeting of regulatory or customer

requirements) are no longer supported. In such cases, the safety argument must be

‘repaired’ in order to bring the safety argument back to the original state of supporting

the claims.

It is necessary to decide upon an appropriate action to recover the safety argument. This

decision is set in the context of, and should be focused by, the impact that has been

identified. For example, if after Step 3 it is found that the claim that ‘No single point of

failure can lead to hazard’ can no longer be supported, then appropriate action should be

taken towards re-supporting this objective – e.g. by making a design change that

introduces redundancy.

It is important to recognise that safety (expressed in terms of the damaged argument) is

only one factor involved in the decision on the recovery action. An action could be

recommended that enabled the safety argument to be quickly restored, but damaged the

operational performance or maintenance of the systems. Many factors will typically be

involved in deciding on the recovery action – e.g. cost, expected lifetime of system,

availability, performance. This process merely serves to express the safety viewpoint as

clearly and effectively as possible.

In deciding how to recover the argument the following questions should be considered:

• Can the requirements of the safety argument be altered (e.g. weakened) such

that the safety argument still holds? Depending on who is the stakeholder of the

requirement this may or may not be possible – i.e. it may not be within the authority

of the design authority to alter the safety requirements. In some cases, however, this

option would suggest a process of negotiation with the customer regarding the

particular requirements prescribed.

• Can the context of the safety argument be altered (perhaps restricted) such

that the safety argument still holds? The safety argument may still be valid under

certain circumstances (highlighted by the impact identified in Step 3). It may

simply be possible to restrict the applicability of the safety argument to a narrower

context than that previously stated. As with the process of altering the safety

requirements, this option may involve negotiation with the customer. For example,

operating limits or restrictions may be placed on the operation of the system. The

customer must decide whether these are acceptable. Design changes that effectively

shift the system context fall into this category.

 140

• Can additional evidence be found / created such that the safety argument still

holds? In the case of weakened supporting evidence, it may be possible to gather

additional (or diverse) evidence that can be used to ‘shore up’ the argument. For

example, a certain form of analysis may (in the light of new evidence) be found to

be too pessimistic to support a claim. In this case, a more detailed but less

pessimistic analysis can perhaps be performed that enables the claim to stand.

The particular action to recover from a challenge can only be decided on a case-by-case

basis. However the impact history recorded from Step 3 will offer useful information in

terms of:

• How the safety argument has been affected – i.e. the path of impact

• Ultimately, the claims that are no longer supported

The damaged claims provide a focus and objective for the change decision. The impact

path may also provide guidance on how recovery can be facilitated. Consider the

impact path shown in Figure 68.

System is acceptably safe

Probability of failure on
demand is less than 1e-3 per
annum

Estimated probability of system
failure (From Fault Tree
Analysis) is1.3e-4 per annum

Component reliability
agrees with fault tree
estimates

Component Failure
Modes and Effects

Analysis

Initially Challenged

Im
pa

ct
 P

at
h

End Consequence

Figure 68 – An Example Impact Path

 141

In Figure 68 a general safety claim can no longer be supported because a supporting

system reliability claim has failed. This claim has failed because a supporting fault tree

claim has failed. This claim has failed because a component reliability claim has failed.

This claim has failed because a supporting Failure Modes and Effects (FMEA) solution

has been challenged (e.g. by operational experience).

The overall consequence of this change is that the general safety claim fails. However,

the impact path communicates to the safety engineer that more reliable components are

required in order that the FMEA evidence can once again support the component

reliability claim. The fault tree can then be updated to continue to support the system

reliability claim, and the latter can then continue to support the general safety claim.

4.4.4.1 Side-Effects of Recovery Action

The motivation for identifying and taking recovery action is the need to repair that part

of the safety argument identified as damaged (as a result of Step 3). However it is

almost inevitable that the effects of that recovery action cannot be localised to the

damaged area – i.e. that the recovery action itself necessitates further change to the

safety argument. For example, a design change proposed in response to a challenge to

one part of the safety argument may well challenge evidence used in another part. The

impact of the recovery action must be assessed and managed in the same manner as the

initial challenge. This is why, in addition to the argument recovery defined in the next

step (Step 5), the process dictates that an impact assessment of the recovery action (for

the remaining part of the goal structure) must be carried out. This is shown by the

recursive call to Step 2. Where there is high confidence (or little choice) in the selection

of an optimal recovery strategy, these two paths of the process – recovery and further

impact assessment - could be carried out concurrently. However, it is more realistic to

imagine that Step 5 would not be initiated until the recovery action with least side-

effects (consequences) has been identified – i.e. after possible impact has been explored.

4.4.5 Step 5: Recover Identified Damaged Argument

Damaged claims were identified at the end of step 3. In the damage process the effects

of change are identified through the extent to which they impact, bottom-up, the claims

made in the safety argument. The recovery process however works in the opposite

direction – top-down – starting from the most fundamental claim challenged (i.e. the

 142

claim that is highest in the goal structure) and recovering the argument step-by-step

downwards until the claims can be related back to the available evidence.

The decision made in Step 4 in order to recover from the impact of the change, whether

it be a design, evidence or requirements change, has now become an important part of

the context for the challenged goal. As part of recording the change history for the goal

structure a context reference to the change description and decision should be added at

the start-point of the recovery process. Figure 69 illustrates the addition of a change

annotation. The subsequent action taken underneath the challenged ‘Acceptably Safe’

goal will, as a result of the annotation, be clearly set in the context of the change action

taken. Such annotation aids future comprehension of the structure and provides the

reader with some rationale as to why the eventual goal structure is as it is.

System is acceptably
safe

Argument over all
identified hazards

Hazard Log
(All identified hazards)

Change Action #1

Operational evidence of
new hazard - H4 -

incorporated

Most
'senior'
claim

challenged

Recovery Start Point

Change Annotation

Figure 69 - The Start of the Recovery Process

Having identified and marked the start point, the recovery process involves following

through the steps of goal structure construction as proposed in Chapter Three and [57]:

(To avoid confusion with the numbering of the Change Process steps we have added the

prefix ‘R’ – to denote Recovery - to the Construction Method steps.)

• Step R1: Identify goals

• Step R2: Define basis of those goals

• Step R3: Identify strategy to support goals

• Step R4: Defined basis of selected strategy

• Step R5: Elaborate strategy (and therefore back to Step R1) or

• Step R6: Identify Basic Solution

 143

However, unlike the initial construction of the goal structure, these activities are now

couched in terms of the structure that already exists. Starting from a challenged goal

(Step R1) and in the context of the Change Action taken, the question raised by Step R2

is now “Is the basis of this goal changed as a result of the change action?” More

specifically it is necessary to consider:

• Are there existing context references / statements (including models, assumptions

and justifications) that are still valid in the light of the change action? or

• Are there existing context references / statements (including models, assumptions

and justifications) that must be modified in the light of the change action? or

• Are new context references / statements necessary to define clearly the new basis of

the goal in the light of the change action?

Existing context references that continue to be valid should have their challenged status

removed (i.e. the crosses indicating a challenged relationship should be removed).

Having modified the basis of the goal, the question in Step R3 is “Has the strategy for

supporting the goal changed as a result of the change action?” Again, this question can

be broken down into the following:

• Is the existing argument approach to supporting this goal still valid? or

• Does the existing argument approach to supporting this goal require some

modification in the light of the change action? or

• Is a new approach to supporting this goal necessary?

In the cases where a new approach is necessary, the process of re-constructing the

argument diverges from the existing structure and construction carries on as for a new

structure.

Where an existing approach can still be used the challenged solution relationships can

be re-established. The question then posed by Step R4 is “Has the basis of the strategy

changed as a result of the change action?” The issues covered by Step R2 should again

be considered at this point. As explained previously, when describing the damage

process, context change is inherited. Therefore, if at any point in the recovery process it

becomes necessary to change pre-existing context, use of that context must be carefully

examined for all structure elements that inherit it.

 144

Step R5 involves examining how the strategy has been developed. Particularly, if the

strategy has remained the same, but the basis has changed, it is necessary to check that

the basis is reflected by the elaboration of the strategy. It is necessary to consider the

following questions:

• Do the goals provided continue to fulfil the intent of the strategy and provide an

adequate solution in the light of the change action? or

• Is modification of one or more of the goals necessary to ensure that the intent of the

strategy is fulfilled and an adequate solution provided in the light of the change

action? or

• Are new goals required in the light of the change action in order that the intent of

the strategy is maintained and an adequate solution provided?

Step R6 applies if, rather than elaborating the strategy, a goal is directly supported by

evidence. If this is the case, it is necessary to consider whether the existing evidence

continues to support the claim, whether this evidence must be modified or whether

completely new evidence is required.

Figure 70 shows the progression of the recovery process started in Figure 69.

System is acceptably
safe

Argument over all
identified hazards

Hazard Log
(All identified hazards)

Hazard H1 has been
addressed

Hazard H2 has been
addressed

Hazard H3 has been
addressed

Change Action #1

Operational evidence of
new hazard - H4 -

incorporated

Step R3: Existing Strategy OK

Step R4: Basis updated - new
hazard included

Hazard H4 has been
addressed

Step R1: Challenged Goal

Step R2: No basis - OK

Step R5: New goal added as
elaboration of strategy

Step R1: Challenged / New Goals

Figure 70 - Recovering the Safety Argument

Step R1 identifies the challenged ‘Acceptable Safety’ goal. Step R2 examines the basis

of that goal. In this case, apart from the Change Action annotation there is no existing

context to check and no additional context is required. Step R3 examines the strategy

proposed. In this case the ‘over all hazards’ strategy remains valid – it continues to be a

perfectly acceptable argument approach. However, when examining the basis of this

 145

strategy in Step R4 it becomes clear that the Hazard Log context reference must be

updated to incorporate the new hazard identified, H4. Step R5 identifies that in order to

maintain the intent of the strategy a new goal (addressing the new hazard H4) must be

added. The recovery process then continues for each of the goals for hazards H1 to H3

and the process of constructing a new supporting argument for the H4 goal begins (i.e.

back to Step R1 of the construction method).

When following through the steps of the recovery process, it is expected that at some

point the existing argument will be deficient – e.g. a strategy will be no longer suitable,

a piece of evidence will be no longer valid, or a context reference must be changed.

This is confirmation of the impact identified by the damage process.

4.5 Examples of the Change Process

This section illustrates the application of the impact assessment process that has been

proposed in this chapter to the example safety case (for a nuclear trip system) provided

in Appendix A and two postulated challenges. Appendix A provides background on the

trip system and its associated safety arguments.

The following two changes are considered:

• Challenge to the Validity of the Timing Analysis Evidence

• Removal of Separate PROMS for Software and Trip Limits

The following subsections ‘walkthrough’ the change process for each of these changes.

4.5.1 Example 1: Challenge to validity of Timing Analysis

4.5.1.1 Step 1: Recognising the Challenge to the Safety Case

After initial acceptance of the safety argument, it is later recognised that there was a

flaw in the static timing analysis tool used to determine the worst case response time.

4.5.1.2 Step 2: Expressing Change in Terms of GSN Elements

After examining the peripheral (context, solution and top requirement) elements of the

safety argument, it is identified that this challenge directly concerns Sn3 – Timing

Analysis Results as shown in Figure 131 of Appendix A and reproduced here in the

following figure.

 146

Worst case cycle time
determined to be 2.7

G.TIM.STATIC

Instruction times are
correct

A
ADC conversions and
output time are correct

A

Static analysis used to
determined worst case path
through code

G.TIM.STATIC.1

Input / Output latency has
been determined

G.TIM.STATIC.2

Timing Analysis
Results

Sn3

Figure 71 – Challenging the Trip System Timing Analysis Results

4.5.1.3 Step 3: Use GSN to Identify Impact

Step 3i When Sn3 is challenged, as shown in Figure 71, the goal structure

communicates that claim G.TIM.STATIC.1 is potentially challenged

Step 3ii Question: Is G.TIM.STATIC.1 actually challenged? Answer: Yes

Step 3iii Consider the effects of challenging G.TIM.STATIC.1 …

Step 3i When G.TIM.STATIC.1 is challenged, the goal structure communicates

that G.TIM.STATIC (a specific timing claim) is also potentially

challenged.

Step 3ii Question: Is G.TIM.STATIC actually challenged? Answer: Yes

Step 3iii Consider the effects of challenging G.TIM.STATIC …

 147

Maximum response
time is < 5 seconds

G.TIM

Design simplicity means that worst
case response time is bounded and can
be readily determined via timing tests
or code analysis

G.TIM.DS

S6.2
Fail Safe Design

Features

S6.4
Design Simplicity

Worst case response time
determined to be 2.7

G.TIM.STATIC

Worst measured time is
2.4 seconds

G.TIM.TEST
Excessive or infinite loops will
be detected by the reversible
computing implementation

G.TIM.FS

Figure 72 – Challenging the Trip System Timing Analysis Claim

Step 3i When G.TIM.STATIC is challenged, as shown in Figure 72, the goal

structure communicates that G.TIM (the overall response time

requirement) is now also potentially challenged.

Step 3ii Question: Is G.TIM actually challenged? Answer: Possibly

At this point, one observes that a diverse argument has been applied in the quantitative

claims put forward in support of G.TIM. Both analysis and test have been used. Even

though G.TIM.STATIC is questioned, there is still the test claim G.TIM.TEST claim

to support G.TIM. One observes also that a safety margin exists between the G.TIM

and G.TIM.TEST claims, which increases confidence of G.TIM.TEST being able to

support G.TIM.

4.5.1.4 Step 4: Decide upon Recovery Action

Given the diversity of the argument, it is possible to decide simply to accept the damage

created by challenging the timing analysis results. However, the remaining argument

would be weaker and more questionable. Another possibility would be to batch the

change, and recover from the timing analysis challenge at a later point in time.

If responding to the change immediately, the safety engineer must identify an approach

that will recover the damaged leg of the argument (i.e. the damaged G.TIM.STATIC,

G.TIM.STATIC.1 and Sn3 elements). The decision could be to throw it away and

replace with a completely different supporting argument – i.e. prune back the argument

to G.TIM and start again. Alternatively, the engineer could decide to replace ‘like for

 148

like’ and reinstate the argument in a form similar to that used already. Given that the

challenge was due only to a flaw in the tool, reinstating the argument in the same form,

after reworking the analysis on the corrected version of the tool, is probably the most

effective option.

The safety engineer must now consider whether this action has any undesirable side-

effects on the rest of the argument, in addition to recovering the damage already

identified.

4.5.1.5 Step 2: Expressing Recovery Action in Terms of GSN Elements

An examination of the peripheral elements of the safety argument shows that the

recovery action of reworking the analysis does not necessarily damage any other

element of the argument. However, the search does highlight the assumption A10

(shown in Figure 71) that the instructions timings used in the analysis are correct. This

assumption must be preserved as the analysis is reworked.

4.5.1.6 Step 5: Recovering the Damaged Argument

After reworking the timing analysis, the safety engineer is in a position to recover the

damaged argument. Working top-down from G.TIM, he or she needs to question

whether the damaged G.TIM.STATIC goal must be restated. For example, if the new

results were to show a new worst case response time of 2.9 seconds, G.TIM.STATIC

would need to be restated accordingly. When G.TIM.STATIC has been recovered, the

engineer must next examine G.TIM.STATIC.1 and consider whether this also needs to

be restated. It does not, and so G.TIM.STATIC.1 can also be recovered. Sn3 must

now be examined to see whether it needs to be redefined. In fact, Sn3 must be altered

to refer to the new timing analysis results.

4.5.2 Example 2: Removal of Separate PROMS

4.5.2.1 Step 1: Recognising the Challenge to the Safety Case

A number of years into the operational use of the trip system, it is suggested as part of a

larger system overhaul that the trip system logic and limits should be no longer kept on

separate PROMs but instead be integrated into one unit. This has been recognised as a

potential challenge to the safety argument.

 149

4.5.2.2 Step 2: Expressing Change in Terms of GSN Elements

After examining the peripheral (context, solution and top requirement) elements of the

safety argument, it is identified that this challenge directly affects the context element

S3.8 – Program and Trip Parameters in PROM, as shown in Figure 124, Figure 125,

Figure 134, Figure 136 and Figure 138 of Appendix A and shown here in the following

figure.

Design Simplicity assists in
the test and verification of
trip function

G.TRIP.DS

Software has been formally
proven to perform trip
function as specified

G.TRIP.FP

S3.4

Design Simplicity

S3.5

Formally proved
software

Program and trip parameters are
maintained in separate PROMs minimises
risk of introducing failures into trip
function

G.TRIP.PROM

Program and Trip
Parameters in PROM

S3.8

Mature hardware and software tools
have been used to minimise the risk of
systematic faults within trip function

G.TRIP.MAT
S3.10

Mature Hardware and
Software Tools

Trip system will correctly
activate if the temperature is
too high in any gas duct

G.TRIP

Figure 73 – Challenging the Concept of Separate PROMs

4.5.2.3 Step 3: Use GSN to Identify Impact

Step 3i By challenging S3.8, as shown in Figure 124, Figure 125, Figure 134,

Figure 136 and Figure 138 of Appendix A, the goal structure

communicates that the following claims: G.TRIP.PROM,

G.PFD.PROM, G.SEC.PROM, G.UPD.PROM and G.STR.PROM

are potentially challenged

 150

Step 3ii Question: Are G.TRIP.PROM, G.PFD.PROM, G.SEC.PROM,

G.UPD.PROM and G.STR.PROM actually challenged? Answer: Yes

At this point, the impact assessment is halted. Challenging the maintenance of the trip

system logic and limits on separate PROMs has been shown to damage a large number

of areas of the safety argument.

4.5.2.4 Step 4: Decide upon Recovery Action

The recovery action from this position is to preserve the trip logic and limits on separate

PROMs, i.e. keep things as they are.

4.5.2.5 Step 5: Recovering the Damaged Argument

No recovery is necessary. The importance of this example is to illustrate how the

process can be used to examine the effects of possible changes, prior to committing to

the change. In this case the change was quickly found to have a significant implication

on the structure and basis of the safety argument and therefore was decided against.

4.6 Justification of the Change Process

One of the principal benefits of using the goal structure representation of a safety

argument as the basis for maintaining the intent of the safety case is that, through use of

the process that has been proposed in this chapter, it is systematic. A key element of

this is the pessimism of the impact assessment in Steps 2 and 3. All potentially

impacted items are first highlighted. Amongst all of the potentially impacted items

there may be some items that a safety engineer will easily be able to confirm are not

affected and some that require further impact investigation. Such decisions of ‘no-

impact’ can have a significant influence on whether the full consequences of a change

are recognised. In order to maintain confidence in the change process, and rather than

leaving such decisions undocumented and unsubstantiated, it can be useful to annotate

the argument with justifications of where ‘no-impact’ decisions have been made.

Figure 74 illustrates such an annotation using the scenario described in 4.4.3.3. In this

case the FMEA change is considered to impact the fault tree claim but not the ‘no single

point of failure’ claim. The change note (added as context) makes it clear that no

impact of the change on the ‘no single point of failure claim’ was assessed and provides

the reasons for that decision.

 151

No single point of failure
can lead to a hazard

Probability of hazard
occuring is tolerably low

Fault tree for hazard shows
probability is 1.4 x 10-6 per
hour

Component Failure
Modes and Effects

Analysis

Fault Tree for
Hazard

Change Note #1

Claim unaffected by FMEA
change as no new failure

modes introduced

Figure 74 - Justification of 'No-Impact'

Together with the annotations of the changes that were made to the structure, these

annotations of ‘no-change’ aid future comprehension of the argument and help explain

how it has (and has not) be changed through time.

4.7 Supporting the Change Process

We have implemented all the concepts and notation required to support the change

process described in this chapter in the SAM 4 (Safety Argument Manager) tool. A

screen shot of the SAM tool support for change management is shown in Figure 75.

Using the tool it is possible to damage elements of a goal structure. The tool (using the

rules defined in Step 3) identifies the immediate effects of damaging items. For

example, when a goal is challenged all affected relations are also challenged. Following

the rules defined in Step 3, the tool pessimistically identifies all potentially affected

items. The safety engineer can then define what he or she believes the actual impact to

be by removing any of the challenges proposed. Having defined the actual impact, the

tool can be asked to propagate any individual change. Following a recovery action, the

tool can be used to step-wise repair the relationships and entities in the goal structure

and check that a change has been fully closed-out.

 152

Figure 75 - Tool Support for the Change Process

4.8 Safety Argument Design for Change

Having considered a number of change scenarios over various goal structures, we have

been able to identify and assess a number of strategies that can help safety arguments to

improve their ability to withstand the effects of change. In particular, we have

recognised the usefulness of the following two approaches:

• Safety Margins

• Diverse Evidence / Argument

Both of these approaches have been fully documented as Safety Case Patterns (see

Chapter Five for a description of the Safety Case Pattern Methodology). While the

complete patterns can be found in Appendix B, we have provided an overview of both

approaches here.

 153

4.8.1 Safety Margin

Figure 76 shows an example use of a safety margin within a goal structure.

Probability of Hazard
H1 < 1x10-6 per annum

G1

Fault Tree for H1 shows
probability of occurrence <
1x10-7 per annum

G2

Fault Tree for
Hazard H1

Figure 76 - Use of a Safety Margin with a Goal Structure

A safety margin is created wherever a sub-goal or solution not only satisfies a parent

goal, but also exceeds the requirement, thus providing a safety margin. By doing this,

confidence is increased in the satisfaction of the parent and there is a ‘margin for error’

if the claims put forward in support of the parent goal are weakened at any future

occasion (e.g. when the claim is challenged by operational data).

In Figure 76 the goal G2 exceeds the requirement set out by G1. The margin acts as a

‘crumple zone’. Change can propagate through a goal structure up to G2. The margin

between G1 and G2 absorbs the change and prevents further propagation, thus

protecting the argument above G1.

 154

4.8.2 Diverse Argument

Figure 77 shows an example use of a diverse argument within a goal structure.

Hazard H1 cannot occur

G1

S1

Argument based upon
diverse forms of evidence

G2

Formal Analysis shows
condition relating to H1
cannot occur

G3

Extensive Rig testing has
shown no occurrences of H1

Figure 77 - Use of a Diverse Argument with a Goal Structure

A diverse argument exists wherever a number of individually sufficient claims or

evidence are put forward to support a particular parent goal. By doing this, confidence

is increased in the satisfaction of the parent. For increased ‘robustness’ the individual

arguments should ideally be based upon independent forms of evidence. For example,

this could mean:

• Diverse forms of safety analysis and testing information

• Appealing to independent safety mechanisms in the design

• Estimated vs. Historical / Operational data

The greater the diversity achieved between the forms of argument put forward the

greater the confidence there will be in the satisfaction of the parent goal. The degree of

independence between the argument will reduce the vulnerability of the argument to

common mode failures (e.g. if a certain form of evidence is challenged or the

effectiveness of a safety mechanism is questioned).

 155

4.9 Limitations of the Approach

The following are the principal limitations of the approach described in this chapter:

• Reliance upon correspondence between safety argument and safety case

• Influence of dependencies external to the safety argument

A brief explanation of each of these limitations is provided here.

4.9.1 Reliance upon correspondence between safety argument and safety
case

The change impact assessment approach described in this chapter is couched in terms of

a safety argument recorded as a goal structure. The ability of the approach to express

accurately and fully the impact of changes on the safety case depends on the degree to

which the goal structured safety argument corresponds to the documented safety case.

The usefulness of the approach in helping to maintain the safety case document depends

on how well the relationship between the goal structure and document is understood.

Employing document references with the goal structure (e.g. labelling a goal with the

document section where that requirement is expressed) can explicitly draw out such

links and improve this situation.

4.9.2 Influence of dependencies external to the safety argument

The dependencies recorded within a goal structure are those represented in Figure 50 -

principally how requirements are supported by argument and how argument is

supported by evidence. The impact assessment approach given in this chapter uses

these dependencies to determine the impact of change on the safety argument.

However, there are other dependencies that can exist between the safety case elements

of requirements, evidence and context, for example:

• Evidence to Evidence links – one piece of evidence may depend upon another

piece of evidence, e.g. a hazard log may depend upon the results of a HAZOPS

activity, or a fault tree may use failure modes provided by a component FMEA.

These relationships are not currently communicated through a goal structured safety

argument. For example, in Figure 65, the goal structure is ‘oblivious’ to the

relationship that exists between the Component FMEA and Fault Tree solutions

provided.

 156

• Requirement to Evidence links – the safety requirements of a regulatory domain

may determine the admissible forms of safety evidence within the safety case. For

example, a safety standard may dictate that Static Code Analysis must be used for

‘high integrity’ code items.

• Context (Model) to Evidence links – Safety evidence is typically constructed over

some representation of the system in question. For example, a conventional process

industry HAZOPS is constructed with reference to a Piping and Instrumentation

(P&I) diagram. This implies a relationship between these two items that need not

necessarily be recorded within the safety argument.

The impact of changes through these dependencies must be resolved before attempting

to use a goal structure to assess the impact on the safety argument, e.g. it is necessary to

realise that changing the FMEA also affects the FTA before assessing the impact of that

change within the safety argument. Goal structures record a subset of the dependencies

that exist between the safety case elements. In order to get a complete model of

dependencies between the elements, additional models are required to record the

remaining dependencies. For example, evidence to evidence dependencies could be

recorded through a data model such as that presented by Wilson, Kelly and McDermid

in [29], shown in Figure 78.

Condition
Cause Consequence

Likelihood Severity

Hazard

Accident Fault

Failure

Model Component

Consequence AnalysesCausal Analyses

System Modelling

RiskRisk Analyses

Hazard Identification Techniques

Figure 78 – Safety Analysis Data Model

 157

4.10 Conclusions

This chapter presents a novel and systematic approach to the management of safety case

change. Starting from a goal structured representation of the safety argument, we have

shown how it is possible to use the recorded dependencies of the goal structure to

follow through the impact of a change and (having decided upon a corrective action or

actions) recover from change. Observed successful strategies that can be employed in

the production of safety arguments to mitigate the effects of change have been

presented. Although there are recognised limitations to the approach presented, the

principal benefit is that it provides a structured and systematic approach to reasoning

about the effects of change where previously very limited support was available.

 158

 159

Chapter 5:

Safety Case Patterns: Using the Goal Structuring

Notation to Support Safety Case Reuse

5.1 Introduction

Observation of a number and variety of existing safety cases, and discussion with safety

engineers, suggest that whereas the detail of the safety arguments within the safety case

is likely to change from instance to instance (being based on specific evidence), there is

often commonality between the structures of argument used in safety cases. This is

observed to be particularly true for safety cases within the same domain (e.g. aero-

engine control or nuclear power plant design). This can be attributed to the stability of

the certification requirements, forms of evidence used and maturity of knowledge in

these domains. However, commonality of approach has also been observed in safety

cases across different domains. For example, arguments structured around the ALARP

principle can be identified in safety cases from many different industrial sectors (e.g.

work machinery, nuclear installations and offshore oil and gas platforms).

Discussion with safety engineers also suggests that knowledge of how to develop and

structure safety arguments is one of the most valuable aspects of safety case

management. This knowledge can often be the product of many years’ experience and

can be said to encapsulate an element of safety case development expertise. Artefacts

that were able to capture and communicate this knowledge could therefore be said to

provide significant insight and to have inherent value.

This chapter defines the concept of Safety Case Patterns – an approach to supporting

the systematic reuse of successful safety arguments between safety cases.

5.2 The Problems of Informal Safety Case Material Reuse

Informal reuse of safety case material is already commonplace, and it is not uncommon

for a safety engineer, having recognised a similarity, to plunder a previously developed

safety case to aid in the development of a safety case in a new project. In some cases,

the engineer may believe certain elements of the two projects to be sufficiently similar

 160

to actually “cut-and-paste” parts of the original documentation and subject them only to

minor review and modification.

The central role of people in the reuse of safety argument approaches is often crucial.

As described in Chapter One, many existing safety cases fail to present clearly the

structure, intent and rationale of the safety argument. Such safety cases cannot easily be

read and understood in a way that permits re-application of the approach. They require

interpretation. To understand the intent of a safety case can take many readings. To

understand the rationale behind aspects of a safety case can require a form of ‘reverse

engineering’. Safety cases with these properties are not readily amenable to reuse.

Therefore, the safety engineers who worked on a safety case form an important ‘missing

link’ in any attempt to gain value from it in future safety case developments. However,

problems are present where people are the principal medium for cross-project reuse of

safety argument approaches. Based upon observation of existing practice, the author

has identified the following specific problems:

• Arguments being reused inappropriately

If the original context of a safety argument is not fully recognised it may be applied

inappropriately in another context. An argument of safety from one context that is

not applicable in the reused context can create a false or misleading picture of a

system’s safety. Such reuse can carry “hidden assumptions” from the original

context that are inconsistent with the application context. This danger is obviously

greatest with the extreme of “cut-and-paste” reuse.

• Reuse occurring in an ad-hoc fashion

Reuse is dependent entirely on an engineer’s ability, firstly, to recognise the potential

to reuse an argument approach and, secondly, to recall the appropriate information.

Consequently, reuse often occurs in a fairly random, opportunistic, fashion and is not

carried out systematically. Opportunities to reuse an approach may be wasted.

• Loss of knowledge

A total reliance on people to achieve cross-project reuse is an admission that project

documentation is insufficient to support systematic reuse. A danger is that particular

people, the company ‘experts’, become a bottleneck on any project. Without

documentation of their experience or expertise, they become a critical resource in an

organisation. They effectively act as an ‘index’ into the organisation’s existing

documentation. If such people leave an organisation, disproportionately large

 161

amounts of the organisation’s ‘corporate memory’ are lost and, as a result, less reuse

is possible.

• Lack of Consistency / Process Maturity

Without explicitly recognising and documenting the repeatable elements of safety

case development there can be no assurance that these elements are being used

consistently. If an approach is not consistently applied, it is difficult to argue that it is

mature. It is also difficult to argue how this approach has been, and will be,

improved and evolved over time.

• Lack of traceability

Informal reuse can be invisible in the final safety case produced. Often, no record is

kept of reuse from existing documentation. This lack of traceability can lead to

problems in maintaining the safety case. For example, if it were found that a

particular reused safety argument was unsound (e.g. in the light of contradictory

operational evidence), it would be necessary to locate all instances of that approach

in order to update them appropriately. With no record of where it was reused this

becomes an extremely difficult task. Reuse has the potential to propagate one error

many times. To deal with such situations requires adequate visibility and traceability

of the reuse process.

These problems can be said to stem from two underlying issues:

• No means of articulating and documenting reusable safety argument approaches.

• (As result of having no identifiable reuse assets …) No systematic process for the

reuse of safety argument approaches.

This chapter defines an approach to support expression and documentation of reusable

safety argument structures. Once these structures are “down on paper” they can begin

to be evaluated and exploited, and to form part of a systematic process.

In searching for an approach to expressing reusable arguments, the concept of

identifying and documenting ‘patterns’ was identified as an appropriate and sufficiently

expressive basis. The following section provides an overview of the general concepts

of ‘patterns’.

 162

5.3 Patterns

The concept of a ‘pattern’ has application in many different contexts. The dictionary

definition of ‘pattern’ communicates just some of the many ways in which patterns are

used or understood in everyday life:

pattern n. 1. an arrangement of repeated or corresponding parts, decorative motifs, etc.:

although the notes seemed random, a careful listener could detect a pattern. 2. a

decorative design: a paisley pattern. 3. a style: various patterns of cutlery. 4. a plan or

diagram used as a guide in making something: a paper pattern for a dress. 5. a standard

way of moving, acting etc.: traffic patterns. 6. a model worthy of imitation: a pattern of

kindness. 7. a representative sample. 8. a wooden or metal shape or model used in a

foundry to make a mould. 9.a. the arrangement of marks made in a target by bullets. 10.

a diagram displaying such an arrangement. [70]

Although widely applied, published literature on patterns is largely restricted to novel

applications of the concept. The books of the architect Christopher Alexander [71-73]

are a notable and oft-cited example of such work.

In the book, “The Timeless Way of Building” [70], Alexander argues that “Beyond its

elements each building is defined by certain patterns of relationships amongst its

elements”. Alexander shows how patterns can be used to abstract away from the details

of particular buildings and capture something essential to the design (the principles

underlying the building; the reasons why elements of the building are successful or

unsuccessful) that can then be used elsewhere.

The concept of patterns as defined by Alexander was adopted by the software

community in the late 1980’s and early 90’s in the form of ‘Design Patterns’. It was

this work that particularly inspired me to apply the pattern concept to the safety case

domain. The following section briefly describes the ‘Design Patterns’ concept.

5.4 Design Patterns

Inspired by Alexander’s work, the concept of patterns and pattern languages has

received increasing interest from software designers [74-76]. Designers have turned to

patterns as a means of capturing the repeatable and successful elements of a software

design. Many have been disappointed with the unfulfilled promise of traditional

component-based (compositional) reuse and believe that successful reuse lies in the

ability to describe higher level software structures [77]: e.g. how components are

combined to achieve certain functions, principles of writing interfacing components,

 163

etc. The attraction of patterns is that they offer this means of abstracting fundamental

design strategies from the details of particular designs.

5.4.1 A Brief History of Design Patterns

The idea of software Design Patterns was first suggested by Ward Cunningham and

Kent Beck in 1987 when they proposed a number of software Design Patterns to

describe elegant Smalltalk user interfaces [78]. Around the same time, James Coplien

started to document language specific (C++) patterns. These were labelled idioms at the

time, although now are commonly accepted as a form of pattern. The idioms were used

for some time within AT&T as a basis for teaching some of the core principles of C++

before eventually being published as “Idioms and Patterns as Architectural Literature”

in 1997 [79]. Independently, in 1992, work on patterns in object-objected oriented

analysis and design was published by Coad in “Object-Oriented Patterns” [76].

Although discussing the emergence of patterns at a higher level of abstraction than

Coplien’s language idioms this work shared a common heritage in Alexander’s work

and visited many of same issues. In addition to these activities, Erich Gamma, as part

of his doctoral work on object-oriented software development [80] began in 1991 to

document recurring design structures. Gamma’s work continued as part of the “Gang of

Four” (Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides) and resulted in

1993 in the production of the first book on the subject – “Design Patterns – Elements of

Reusable Object-Oriented Software”. Since that time, the field of Design Patterns has

become well established and is supported by an increasing number of conferences such

as Pattern Languages of Program Design (PLoP), European Conference on Object-

Oriented Programming (ECOOP) and the ACM SIGPLAN Conference On Object-

Oriented Programming Systems, Languages and Applications (OOPSLA).

The ancestry of Design Patterns has been well documented in [81]. We refer the reader

to this source for a more detailed history.

Whether patterns are used to represent architectural idioms in building design or to

capture elements of a successful software design, some means of representing the

pattern is required. To provide the context for the representation of Safety Case

Patterns defined in this thesis, the following section describes how existing pattern

forms have been represented.

 164

5.5 Pattern Representation

Alexander describes a pattern as a “solution to a problem in a context” [71]. In essential

terms, representation of a pattern will include the following elements:

• Problem

• Context

• Solution

In both Alexander’s architectural patterns and in Design Patterns, these elements are

realised through structured prose and diagrams. An example of a recorded Alexandrian

pattern (taken from [72]) is shown in Figure 79.

Diagram (Sketch) Prose

In the zone where city and country meet, place
country roads at least one mile apart, so that

they enclose squares of countryside and
farmland at least one square mile in area. Build
homesteads along these roads, one lot deep, on

lots of at least half an acre, with the square mile
of open countryside or farmland behind the

houses

Figure 79 - An Alexandrian Pattern for Country Streets

Whereas Alexander used small sketches, in Design Patterns a variety of notations have

been used to describe the structure of solutions. In the patterns described by Gamma et

al in [82], three different diagrammatic notations are used:

1. Class Diagram – depicting classes, their structure, and the static relationships

between them

2. Object Diagram - depicting a particular object structure at run-time

3. Interaction diagram - showing the flow of requests between objects

Each pattern includes, as a minimum, a class diagram. The class and object diagrams

are based on OMT (Object Modelling Technique) [83]. The interaction diagrams are

 165

taken from Objectory [84] and the Booch Method [85]. Figure 80 illustrates the use of

the class diagram notation to represent the ‘Chain of Responsibility Pattern’ (taken from

[82]).

ConcreteHandler2

Handler
Client

HandleRequest()

ConcreteHandler1

HandleRequest() HandleRequest()

successor

Figure 80 - 'Chain of Responsibility' Class Diagram

The pattern shown in Figure 80 describes a general scheme for implementing a client-

handler approach whereby a number of handlers are set up for each client. Each handler

will respond to a certain set of requests from a client (and will therefore be instantiated

with one of a number of concrete handler sub-types). The handlers are ‘chained’

together by a ‘successor’ relationship such that when a request is made, each handler

can in turn decide, depending on the request type, whether it will handle the request or

instead pass it along the chain of responsibility to the next handler

Coad uses a different notation in his description of patterns in object-oriented analysis

and design [76] as do some of the pattern descriptions given in Coplien and Schmidt’s

book [86]. However, all the notations similarly represent objects, object classes,

abstraction (specialisation) relationships and structural (e.g. one-to-one / one-to-many)

relationships.

5.6 Safety Case Patterns

Based on the principles of Design Patterns, particularly the concept of structured

documentation together with diagrams, the author has developed the concept of Safety

Case Patterns as a means of documenting and reusing successful safety argument

structures. As with Design Patterns, Safety Case Patterns are intended to describe

partial solutions, i.e. for safety cases – tackling just one aspect of the overall structure

 166

of the safety argument contained within a safety case. Safety Case Patterns are not

intended to provide a reusable model of a safety argument for a complete safety case.

As described in the previous section, Design Patterns use diagrams to describe the

overall structure of the solution succinctly, and structured supporting text to document

important details of how that pattern may be instantiated, together with underlying

rationale. In adapting the principle of Design Patterns to the safety argument domain it

was necessary to consider the following issues:

• How to represent (in diagrammatic form) the structure of a generalised safety

argument

• The format and role of the text that should support such a diagrammatic description

The following two sections describe how these two issues have been addressed.

5.7 Representing Safety Case Patterns Diagrammatically

The Goal Structuring Notation (GSN), as described in Chapter Three and [57], has been

developed for the description of safety arguments: relating the breakdown of safety

requirements to argument based upon available evidence. GSN can be used to articulate

a specific safety argument. However, to be able to generalise the specific details of a

safety argument and represent patterns of argument rather than simply instances the

GSN must also support abstraction. In the class diagrams used within Design Patterns,

the following two forms of abstraction are possible:

• Entity Abstraction – to allow the distinction between object classes and instances,

and to represent the generalisation / specialisation relationships that exist between

object classes.

• Structural Abstraction – to allow the generalisation of a relationship that exists

between two object instances into a relationship between object classes (e.g.

representing one-to-one and one-to-many relationships).

Relating these same concepts to goal-structured safety arguments, structural abstraction

would allow generalisation of the structure of an argument. For example, it would be

possible to describe that in general at least two out of five possible forms of argument

must be put forward in support of a particular safety claim. Entity abstraction would

allow generalisation (or postponement of detail) of an element in the argument

structure. For example, for a particular failure rate goal, it would be possible to describe

 167

that in general that the solution will be “Quantitative Evidence” without specifying

whether this is specifically “Fault Tree Analysis” or “Markov Modelling”.

In order that both structural and entity abstraction can be represented in the GSN it was

necessary to extend the notation. We have defined the extensions presented in the

following two sections for this purpose.

5.7.1 Extending the GSN to Support Structural Abstraction

This section describes the extensions to GSN we have defined in order to support the

following two aspects of structural abstraction:

• Multiplicity – generalised n-ary relationships between GSN elements

• Optionality – optional and alternative relationships between GSN elements

5.7.1.1 Extending the GSN to Support Multiplicity

The extensions to GSN we have defined in Figure 81 have been adapted from the OMT

object diagram notation [83]. They enable multiplicity (an aspect of structural

abstraction) to be represented using the GSN.

Multiplicity Extensions

These symbols are defined for use as annotations on existing GSN relation types (e.g.

SolvedBy). Multiplicity symbols can be used to describe how many instances of one

entity relate to another entity.

n

A solid ball is the symbol for many (meaning zero or more).

The label next to the ball indicates the cardinality of the

relationship.

A hollow ball indicates “optional” (meaning zero or one).

A line without multiplicity symbols indicates a one to one

relationship (as in conventional GSN).

Figure 81 – GSN Multiplicity Extensions (For Structural Abstraction)

Figure 82 illustrates example uses of the GSN multiplicity extensions.

 168

S1

Argument over major
subsystems

Subsystem X is safe

G1(n)

Fault Tree Analysis
determines failure rate to be
1e-6 per annum

G2

n

A1
Basic eventsof Fault
Tree are independent

A

Software developed to
appropriate standard

G3 C1
Software Development

Standard

Figure 82 – Examples of GSN Multiplicity Extensions

In Figure 82 S1 must be supported by n goals of the form G1(n). G2 may have an

associated assumption A1. G3 is expressed in the context C1 (conventional GSN).

5.7.1.2 Extending the GSN to Support Optionality

The extension to GSN we have defined in Figure 83 has been adapted from notations

used for entity relationship modelling [87]. It enables structural options (an aspect of

structural abstraction) to be represented using the GSN.

Optionality Extension

This symbol is defined for use over the existing GSN relation types. Choice can be

used to denote possible alternatives in satisfying a relationship. It can represent 1-of-n

and m-of-n selection.

Source

Sink
Sink Sink

1 source has three possible sinks

Multiplicity relations can be combined with

optionality relations. Placing multiplicity symbols

prior to the ‘choice’ vertex (squashed diamond)

describes a multiplicity over all the optional

relations. Placing a multiplicity symbol on

individual optional relations (i.e. just prior to the

sink) describes a multiplicity over that relation only.

Figure 83 - GSN Optionality Extensions (For Structural Abstraction)

Figure 84 illustrates an example use of the GSN optionality extension.

 169

Hazard H1 has been
addressed

G1

Hazard H1 has been
eliminated from design

G2

1 of 2

Probability of Hazard H1
occuring is acceptably low

G3

Figure 84 – Example of GSN Optionality Extension

In Figure 84, G1 is supported by either stating G2 or G3.

5.7.2 Representation of Entity Abstraction in the GSN

The extensions to GSN we have defined in Figure 85 have been adapted from the OMT

object diagram notation [83] and the convention for presenting Fault Trees [88]. They

enable abstract entities to be represented using the GSN.

Entity Abstraction Extensions

Supertype GSN Element

Subtype GSN Element

Is_A Relation

The Is_A relation provides a basis for the

expression of supertype and subtype relations

between GSN entities (e.g. ‘Failure rate is less

than 1x10-6 per annum’ Is_A Failure Rate Claim)

and can therefore be used to establish type

hierarchies.

The relation can be used directly in a goal

structure pattern to denote subtype relations or

used apart from a pattern to establish type

hierarchies for a group of patterns (e.g. on a per-

project basis).

 170

Uninstantiated Entity

This placeholder denotes that the attached entity

remains to be instantiated, i.e. at some later stage

the ‘abstract’ entity needs to be replaced

(instantiated) with a more concrete instance.

Instantiation may be provided either through

offering a concrete instance or subtypes denoted

by the Is_A relation.

Undeveloped Entity

This placeholder denotes that the attached entity

requires further development, i.e. at some later

stage the entity needs to be (hierarchically)

decomposed and further supported by sub-entities.

Unlike uninstantiated elements, undeveloped

elements are not replaced, they are further

elaborated in the goal structure, i.e. as with

undeveloped events in conventional Fault Tree

Notation.

Figure 85 - GSN Extensions for Entity Abstraction

Figure 86 illustrates an example use of the Is_A extension.

Quantitative
Results

Fault Tree
Analysis
Results

Markov
Modelling
Results

Test
Results

Figure 86 – Example of GSN Is_A Extension

 171

Figure 86 shows the use of the Is_A relation to establish a simple type hierarchy

representing that Fault Tree Analysis Results, Markov Modelling Results and Test

Results are subtypes of Quantitative Results

Figure 87 illustrates example uses of the GSN entity abstraction placeholder extensions.

Argument over test
results

S1

{Set of Applicable
Regulations}

C1 G1

{Hazard X} has been
eliminated from the design

Figure 87 - Examples of Entity Abstraction Placeholders in the GSN

In Figure 87, C1 remains to be instantiated to refer to an actual set of applicable

regulations. S1 remains to be developed, i.e. supported by some sub-goals. G1 remains

to be instantiated (to refer to a specific hazard) and supported by some sub-goals /

solutions.

5.7.3 Combining Entity and Structural Abstraction Extensions

Together, the entity and structural abstraction extensions can be used to form goal

structure patterns. Figure 88 shows a simple goal structure pattern that illustrates how

these extensions, when used with the existing elements of the goal structuring notation,

can be used describe a generalised safety argument.

The GSN pattern shown in Figure 88 illustrates how a system may be claimed to be safe

(G1) through the strategy (S1) of arguing the safety of all the safety-related functions

(C1) of that system. It also shows clearly that at the same time as arguing the safety of

individual functions (G2) it is also necessary to argue either that there are no

interactions between functions (G4) or that any interactions between functions are

benign (G3).

 172

G1: {System X} is Safe

G2: {Function Y} is
safe

S1: Argument by
claiming safety of all

safety-related functions
implemented by system

C1: Safety Related
Functions of {System X}

(n = # functions)

n

G3: Interactions
between system

functions are non-
hazardous

G4: All system
functions are
independent

(no interactions)

Provides {Function Y}

Indicates that
element remains
to be developed

(supported)

Indicates that
element remains

to be instantiated

Indicates a 1-to-
many relationship

Indicates that
element remains to
be instantiated and
then developed

Figure 88 - Example Use of GSN Extensions

A Safety Case Pattern is not simply a GSN Pattern as shown in Figure 88. Additionally,

there should always be a supporting pattern description. To define patterns without

clearly stating the underlying motivation and intent, and without making clear where

and (perhaps more importantly from a safety perspective) where not patterns should be

applied could result in ignorant and inappropriate use of argument patterns within new

projects. The following section describes the documentation format we have defined

for Safety Case Patterns.

5.8 Documenting Safety Case Patterns

In the Design Patterns community, based on Alexander’s principles of documenting

problem, solution and context, a number of alternative documentation structures have

been proposed and used for the description of Design Patterns. Table 7 shows some of

the documentation formats defined by different authors for the description of software

Design Patterns.

 173

Wolf and Lui [89] Riehle and

Züllighoven [90]

Adams [91]

• Problem

• Solution

• Purpose

• Problem

• Context

• Solution

• Compare

• Aliases

• History

• Preconditions

• Problems

• Constraints

• Solution

Table 7 - Alternative Design Pattern Documentation Formats

Rubel [92] Lajoie and Keller [93] Gamma et al.

(‘Gang of Four’) [94]

• Problem

• Context

• Forces

• Solution

• Resulting Context

• Design Rationale

• Related Patterns

• Rationale / Intent

• Category

• Motivating Example

• Applicability

• Description

• Diagram

• Discussion

• Implementation

• Contract Examples

• See Also

• Intent

• Also Known As

• Motivation

• Applicability

• Structure

• Participants

• Collaborations

• Consequences

• Implementation

• Sample Code

• Known Uses

• Related Patterns

 Table 7 - Alternative Design Pattern Documentation Formats

 174

For the description of safety argument patterns, rather than necessarily defining a new

template, we first assessed the templates for Design Patterns to determine whether they

might easily be adapted to the safety argument domain. In examining the various

pattern templates, the following criteria were used to assess suitability for the

description of safety arguments:

• Freedom of pattern format from software (particularly object-oriented) specific

concepts and terms

• Explicit representation of applicability – already identified earlier in this chapter in

section 2 as being an crucial element of any form of safety case reuse

• A sufficiently defined and evocative series of headings that, whilst still allowing

some flexibility of interpretation, would ensure that key elements of required

contextual information (such as rationale) would be captured in a completed pattern

description.

The ‘Gang of Four’ documentation format met these selection criteria and through some

preliminary evaluation was found to be readily adaptable to the description of safety

argument patterns. Based on this format, we defined the following headings for the

documentation of Safety Case Patterns:

• Pattern Name

• Intent

• Also Known As

• Motivation

• Applicability (Necessary Context)

• Structure

• Participants

• Collaborations

• Consequences

• Implementation

• Example Applications

• Known Uses

• Related Patterns

The following sections describe the purpose and expected context of each of these

elements of a documented Safety Case Pattern. We originally proposed the

documentation format for Safety Case Patterns in [95]. This continues to be refined in

the light of experience of identifying and documenting new Safety Case Patterns (such

as those presented in Appendix B).

 175

5.8.1 Pattern Name

The pattern name should communicate the key principle or central argument being

presented by the safety argument pattern. This will be the label by which people will

identify this pattern. Over time this name will hopefully become part of the vocabulary

through which safety engineers can quickly communicate the concepts and principles of

their safety arguments. It is therefore important to choose the pattern name carefully.

5.8.2 Intent

This statement should answer the question: what is this pattern trying to achieve? For

example, if the argument is intended to address a particular certification requirement

then this should be recorded in this section. It is important that, through reading this

section there is a clear understanding between writer and reader of the pattern as to what

is being attempted.

5.8.3 Also Known As

If the pattern could equally well be described or recognised under other names, then

these should be recorded here.

5.8.4 Motivation

This section should briefly describe why the pattern was constructed. Was it because it

was an argument that was particularly well received by the regulator and therefore

something that should be replicated where possible? Was it because there was a desire

to standardise the structure of an argument that had been previously presented in

slightly differing forms?

The motivation can be expressed in terms of previous experiences, problems etc. This

section should help engineers to interpret and apply correctly the more abstract

description of the pattern that follows.

5.8.5 Structure

It is in this section that the Goal Structuring Notation (using the extensions proposed in

Section 5.7) is used to present the structure of the argument pattern. Using the notation,

it is possible to show the requirements / claims to be addressed, the context in which

they are stated and the way in which they can be decomposed into (supported by) lower

level statements. Using the GSN pattern extensions that we have proposed, it can be

indicated clearly where the argument is complete, where information must be provided

 176

(e.g. where instantiation must occur) and where the argument requires further

development. The elements of the goal structure pattern should be labelled clearly (e.g.

‘Goal G1’) such that they can be referred to by the following sections of the pattern

description.

5.8.6 Participants

This section should augment the Structural description by providing a description of

each of the elements of the goal structure pattern (i.e. the goals, the contexts, the

strategies, the solutions etc.). It is possible in this section to provide fuller description

of, for example, a safety requirement than is possible within the confines of a graphical

rendering. The element descriptions should make clear their function within the overall

argument pattern. They should also state whether the element requires development or

instantiation when the pattern is applied.

5.8.7 Collaborations

This section should describe how the different elements of the pattern (sources of

contextual information, argument strategies, goals) work together to achieve the desired

effect of the pattern – to present an effective argument. Also, when there are links

between different elements that are not communicated by the argument structure they

should be explicitly recorded here in order that they can be recognised by the safety

engineer when applying the pattern.

5.8.8 Applicability (Necessary Context)

This section should record under what circumstance this argument can and should be

applied. Of particular concern for safety arguments, this section should make clear the

assumptions and principles underlying the argument pattern such that it is never

inappropriately applied in a mismatched context. Relating specifically to the context

elements of the goal structure pattern, this section should describe what contextual

information is required (elements instantiated) in order to be able to apply the pattern.

In addition to these elements, it can also be useful to provide guidance on how to

recognise situations in which the pattern can be applied.

5.8.9 Consequences

Again, with direct reference to the elements of the structural description, this section

should make clear what work remains after having applied or carried out an argument

pattern. In particular, this should highlight where there are goals that remain to be

 177

supported, or assumptions to be discharged, etc. The purpose of this section is to ensure

that an engineer applying the pattern is under no illusion as to what the pattern does and

does not do.

5.8.10 Implementation

This section should perform the following roles:

• Communicate how the application of this pattern should be carried out. This may

even extend to describing in what order elements ought to be developed.

• Communicate hints or techniques that would ease successful application of the

pattern.

• Make clear the ways in which is possible to get it wrong when applying the pattern

(possible pitfalls).

• Record common misinterpretations of the terms or concepts used in the pattern.

5.8.11 Examples

This section should provide examples that illustrate the instantiation of the pattern. If

only one example is provided then it should illustrate a typical instantiation of the

pattern. If multiple examples can be provided then illustration of atypical applications

of the pattern should also be provided.

Analogy is a key problem solving device employed by engineers [96, 97]. The provision

of examples can therefore be extremely valuable in helping an engineer to understand

how to apply the pattern in their own context.

The more abstract a pattern is, the more important it is to provide concrete examples

within this section.

5.8.12 Known Uses

This section should refer to known uses of the form of argument presented in the

pattern. As with the Examples section, giving an engineer the ability to observe how a

pattern can be applied as part of a larger safety argument within a safety case can

significantly improve understanding of how the pattern might be applied in a new

context.

 178

5.8.13 Related Patterns

This section should refer to Safety Case Patterns that are related to this pattern, e.g.

patterns that share the same Intent but are admissible under different applicability

conditions (e.g. for different regulatory domains or classes of systems).

The documentation format defined by these headings, together with the diagrammatic

pattern description using GSN and the extensions we have proposed, provide a means of

describing Safety Case Patterns. The following section provides an example of a fully

documented Safety Case Pattern. (Many other documented Safety Case Patterns can be

found in Appendix B).

 179

5.9 An Example Fully-Documented Safety Case Pattern

Functional Decomposition Pattern

Author Tim Kelly

Created 22/02/99 01:56 Last Modified 22/02/99 02:36

Intent The intent of this pattern is to argue the safety of a system by

appeal to the safety of the functions implemented by that system.

Also Known As Functional Safety ‘Divide and Conquer’ Pattern

Motivation The motivation for this pattern is the need to decompose a high

level goal (that is difficult to substantiate ‘as-is’) into sub-goals

that are hopefully easier to address.

Structure

{System X} is safe

G1

S1

Argument by claiming safety
of safety-related functions
implemented by system

Safety related functions of
{System X}

C1

G2

{Function Y} is safe

G3

There are no hazardous
interactions between functions

Provides {function Y}
n = # of functionsn

Participants G1

S1

Defines the overall objective of the pattern

Presents the strategy (functional decomposition)

adopted to support G1

 180

C1

G2(n of)

G3

A list of functions performed by System X that could

impact system safety required to expand S1

Expresses safety claim for each identified safety-

related function (over items in C1)

Goal required to validate the approach adopted

Collaborations • C1 introduces the safety related functions of System X that

then form the basis for constructing the n G2 goals.

• Goal G3 is necessary to support the implication that solving

the goals G2 is sufficient to support G1.

Applicability This is a very general pattern and, as such, has a wide

applicability.

In order to apply the pattern it is necessary to instantiate C1

(Safety Related Functions of System X). C1 should identify the

list of all functions of the system that have been identified as

having a possible impact on system safety. Functional Hazard

Analysis is a possible approach to identifying safety-related

functions from the list of all system functions.

Consequences After instantiating this pattern, a number (n+1, where n=# of

functions) of unresolved goals will remain:

• G2 (n of)

For each function it is necessary to support this claim that the

function is implemented safely, and appropriate measures

have been taken to mitigate or eliminate risks associated with

the function.

• G3

To support the functional decomposition of the overall goal of

safety into sub-goals of safety over each function it is

necessary to support this claim of independence - i.e. there are

no hazards generated by the interaction between functions.

 181

Implementation In implementing this pattern it is first necessary to instantiate C1

(identify the list of system functions)

Possible Pitfalls

• Attempting to decompose G1 in sub-goals over functions (G2)

without adequately supporting the claim of independence

between functions (G3)

• Inappropriately instantiating C1 with simply safety functions

rather than safety-related functions. The distinction being that

safety functions are those functions that are obviously

concerned with achieving safety (e.g. protection mechanisms)

and safety-related functions are any functions in the system

that have been identified, e.g. through Functional Hazard

Analysis, as potentially posing a safety hazard. Safety

functions are a sub-set of safety-related functions.

 182

Engine Controller
operates safely

G1

S1

Argument by claiming safety
of all safety-related functions
of system

C1

Critical Engine Controller
Functions (Functional

Requirements Document

G2

Fuel Management Function
operates safely

G3

Airframe Communications
Function operates safely

G4

Thrust Reverser Function
operates safely

G5

There are no hazardous
interactions between
functions

This goal structure shows the instantiation of the pattern for an aero-engine controller.

The top goal (G1) has been instantiated to refer to the system in question. S1 – the

argument strategy – remains unchanged. C1 is instantiated to refer to a Functional

Requirements Document (FRD) that clearly identifies the main functions of the

engine-controller. These functions have then been used as the basis for putting forward

the claims G2, G3 and G4 – each expressing a goal of safety for a separate functional

area. (There are more functional areas than those included in this example). Beneath

this argument, it is then necessary (although not shown here) to support each of these

functional safety claims together with the independence claim – G5.

Known Uses Engine Controller for the PT390 Engine (Ref SJ/3.2/97)

Related Patterns • Hazard Directed Argument Pattern – a pattern that can be

applied at a similar level in an overall safety argument, but

which breaks down an overall system safety goal by

introducing (and claiming safety against) the list of system

hazards.

Example

 183

5.10 Further Example Safety Case Patterns

Patterns can emerge at many different levels in the safety argument and at varying

degrees of specificity. At the highest level it is possible to identify a number of basic

argument structures that are used to decompose ill-defined system safety requirements.

For example, against the ultimate top level requirement …

“{System X} is acceptably safe”

… two of a number of possible argument approaches could be applied:

• Hazard Directed Argument

• Functional Decomposition Argument

The Functional Decomposition Argument Pattern has already been described in the

previous section. Figure 89 shows the GSN pattern (without supporting documentation)

representing a hazard directed argument. In this pattern, the implicit definition of ‘safe’

is ‘hazard avoidance’. The requirement G1 is addressed by arguing that all identified

hazards have been addressed (S1). This strategy can only be executed in the context of

some knowledge of plausible hazards, e.g. identified by Hazard Analysis. Given this

information (C1), identifying n hazards, n sub-goals of the form G2 can be constructed.

The argument then progresses from these ‘hazard avoidance’ goals.

G1: {System X}
is safe

S1: Argument by
claiming addressed

all identified
plausible hazards

C1: Identified Hazards for
{System X}

in the

context of

n = # hazards

Provides {Hazard X}

G2: {Hazard X} has
been addressed

n

Figure 89 - Hazard Avoidance Pattern

 184

At lower levels in the safety case argument, patterns also emerge. For example, when

arguing the safety of software it is often common to claim a level of software integrity

from an appeal to having used best practice tools, techniques and methods during

development and testing. Other common argument structures emerge from the use of

particular techniques. For example, to support the claim that a particular software

condition cannot arise, a pattern could be identified showing the typical use of either

formal verification, Software Fault Tree Analysis (SFTA), or black box testing. Each

form of evidence would also have associated arguments in order to validate its use

within the argument, e.g.:

• Formal verification – argument that the formal specification is an accurate

representation of the final target code

• SFTA – argument that sequential composition has been appropriately represented

within the fault tree

• Testing – argument that sufficient coverage has been achieved

Figure 90 shows an example GSN pattern that could be found in the lower levels of a

safety case argument.

G2: <property x>
enforced by

software

G1: Software
element of system

is 'fault-free'

C1: Fault = deviation from
intended behaviour that could

lead to a
system level hazard

C2: Free = Software itself
does not initiate any events

that could lead to a
system level hazard

S1: Argument by
satisfaction of all
software safety

properties/
requirements

S2: Argument by
showing software

cannot cause
any of the identified
hazardous software

conditions

C4: Identified Hazardous
Software Conditions
(m = # of conditions)

C3: Identified Software
Requirements / Properties

(n = # of requirements /
properties)

n

G3: <condition y>
can only occur by

physical component
failure

m

Figure 90 – GSN Fault Free Software Pattern

In this pattern, the claim that the software element in a system is ‘fault free’ (G1) is

supported by two main strands of argument (S1 and S2). S1 is arguing safety over

 185

positive properties of the software. Over a list (C3) of identified hazardous software

conditions (e.g. “Controller demands speed greater than maximum safe speed”) the m

sub-goals of the form G3 are expressed, to argue that these hazards can only occur

through physical component failures. S2 is arguing safety through avoidance of

negative properties of the software. Over a list (C4) of identified software requirements

(e.g. “Operation will not start if operator detected near machinery”) the n sub-goals of

the form G2 are expressed to argue that these properties are enforced in the software. In

order that this pattern will be appropriately applied, the context of the pattern is made

clear through the elements C1 and C2 - both defining key terms in the top-level claim.

The patterns that have been described so far in this chapter are deliberately general –

they can be readily understood and have wide applicability across technologies and

regulatory contexts. However, in well-understood and stable domains it is also possible

to identify more specific argument patterns. For example, in the civil aerospace sector

common arguments are often developed against particular individual regulations (in

Europe from the Joint Aviation Requirements) - e.g. capturing what is an acceptable

approach (‘means of compliance’) to arguing that “Thrust Reverser will not deploy

during flight”. Figure 91 shows the GSN pattern that can be used as the basis for

structuring a compliance argument with civil aerospace requirement JAR-E50(a).

Control System compliant with
JAR-E50(a) CONTROLS

JAR-E50(a)

E50(a)(1)

All aircraft installation
requirements formally
identified

E50(a)(2)

ECS designed to support selection of
progressive amounts of thrust over
whole range of defined operating
conditions

Thrust levels

C2

E50(a)(4)

Safe engine control under
all likely pilot commands

E50(a)(5)

Safe engine control under all
identified failure conditions

E50(a)(6)

Safe engine control in
presence of operation of
permitted variables

Permitted operation of
variables

C9

Identified failure
conditions

C8

Likely pilot
commands

C7

E50(a)(3)

Selected values of relevant control params.
to be maintained and engine kept with
limits over changing atmospheric
conditions in defined operating range

Selected values of
relevant control

parameters

C5

Defined engine
operating limits

C6

"Safe engine control"
= ...

C1

Defined operation
conditions

C3

Atmospheric
Operating Conditions

C4

Figure 91 – GSN Compliance Pattern for JAR-E50(a)

 186

The benefit achieved from this pattern is that, whilst decomposing the overall

requirements into sub-clauses, it clearly highlights the contextual information (C1-C9)

that is required in order to truly define (and therefore argue against) the safety

requirement.

5.11 Taxonomy of Safety Case Patterns

The author has identified and extracted a number of Safety Case Patterns from real-

world safety cases and safety standards. Many of these patterns (e.g. the ALARP

pattern) have been documented and presented in the pattern catalogue presented as

Appendix B of this thesis.

From the patterns that have already been identified it has been possible to recognise and

define a taxonomy of Safety Case Patterns. The categorisation is shown in Figure 92.

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

Figure 92 – A Taxonomy of Safety Case Patterns

Safety Case Patterns can either be specific to a particular domain or class of system (e.g.

nuclear power generation, railways, aerospace) or applicable across a number of

domains (i.e. domain independent).

Safety Case Patterns can describe the decomposition of some objective, e.g. over

functions or according to some safety principle. Such patterns are labelled as ‘Top

Down’ Safety Case Patterns. The ‘Functional Decomposition’ pattern presented in

Section 5.9 is an example of such a pattern. Alternatively, safety case patterns can

describe how an argument may be constructed from a piece of evidence (in GSN terms

 187

– a Solution). These patterns are labelled as ‘Bottom Up’ Safety Case Patterns. The

‘Fault Tree Evidence’ pattern presented in Appendix B is an example of such a pattern.

Finally, Safety Case Patterns can be used to describe some general principle of safety

argument construction that is neither specifically ‘top down’ or ‘bottom up’. Such

patterns are labelled as ‘General Construction’ Safety Case Patterns. The ‘Diverse

Argument’ pattern presented in Appendix B is an example of such a pattern.

5.12 Example Safety Case Pattern Catalogue

To present further example Safety Case Patterns, and to illustrate the concept of

collating and structuring a collection of patterns to form an engineering resource, an

example Safety Case Pattern Catalogue is presented in Appendix B.

The example catalogue is structured according to the taxonomy of patterns defined in

the previous section, and contains the following patterns:

Top-Down Patterns

• ALARP (As Low As Reasonably Practicable) Argument

This pattern provides a framework for arguing that identified risks in a system have

been sufficiently addressed in accordance with the ALARP principle.

• Hazard Directed Integrity Level Argument

This pattern demonstrates an approach to arguing that a (sub)system has been

developed to an integrity level appropriate to the hazards to which the system

contributes.

• Control System Architecture Breakdown

The intent of this pattern is to illustrate a means of structuring an argument to

support a system safety goal (requirement, avoidance of hazard etc.) by

decomposition over a generic control system model.

General Construction Patterns

• Diverse Argument

The intent of this pattern is to illustrate the use of diverse arguments to instil a high

degree of confidence in the satisfaction of a goal and to present arguments that are

resilient to change and criticism.

• Safety Margin

The intent of this pattern is to illustrate the use of safety margins to instil a high

 188

degree of confidence in the satisfaction of a goal and to present arguments that are

resilient to change and criticism.

Bottom-Up Patterns

• Fault Tree Evidence

The intent of this pattern is to show the nature of the claims that can be made from a

fault tree representation of the causes of a condition.

This collection of patterns represents a cross-section of the patterns that have so far been

identified within existing safety cases and safety justifications. It is not yet claimed to

be a pattern language for safety case development (i.e. it does not provide a complete

set of patterns).

The safety case concept is broad, spans many domains, and can encompass many

concepts and technologies. For this reason, the goal of producing a Safety Case Pattern

Language that can be said to be ‘complete’ may well be difficult to realise. However, it

is much more conceivable that pattern languages can be constructed within a bounded

domain. For example, the Safety Assessment Principle Patterns identified in Appendix

B could be considered to be part of an overall language that would include patterns for

each of the other 78 principles that are given in [98]. The same is true for any domain

bounded by a set of requirements – e.g. the Joint Awareness Requirements for Engines.

For some of the same reasons, it is highly conceivable that a pattern language for safety

cases could be constructed within a particular company – bounded by the regulations

that apply, the accepted practice of the company, and the forms of evidence and skills

available within that context.

5.13 A Safety Case Reuse Process

The aim in proposing Safety Case Patterns is to make the process of safety case reuse

more systematic. Figure 93 illustrates the ideal process by which Safety Case Patterns

could be used to support the safety case reuse activity.

In Figure 93 the main activities of safety case pattern reuse are identified as:

• Identifying potential Safety Case Patterns from within existing safety cases

• Defining new Safety Case Patterns

• Reviewing Constructed Patterns

 189

• Identifying the appropriate Safety Case Patterns to apply in a new safety case

development

• Reviewing the decision to use a Safety Case Pattern within a new safety case

development

• Applying Safety Case Patterns within a new safety case

5.13.1 Identifying New Safety Case Patterns

In the process of identifying new Safety Case Patterns from within existing safety cases

the intention is to extract a general form of argument from an existing safety case and to

generalise it in order that it can be applied in other safety cases. There are two types of

candidate argument structures:

• Arguments that are already informally repeated between safety cases that we wish to

capture and document in order that they can be reused more explicitly and

systematically in the safety case development process

• Novel ‘successful’ argument structures that we wish to capture in order that they

can be used by others. These could be arguments in an area where previously the

approach to constructing a safety argument was unclear. They could also be

arguments that were particularly well received by a certification or regulatory

authority.

In order to identify such argument structures it is first necessary to recognise and

understand clearly the structure of the argument contained within the safety case.

Where safety cases already contain an explicit representation of safety argument, e.g.

through use of goal structures, this can be a straightforward exercise. However, where

the arguments remain implicitly distributed within the body text of the safety case, it

may be necessary to attempt to extract the argument and find some means of sketching

out the structure explicitly (e.g. by constructing a new goal structure).

 190

Identify
Applicable
Patterns

Review
Decision

to use selected
Patterns

Safety
Case(s)

Instantiate
Pattern

Safety Case
Patterns
Catalogue

Identify
Patterns

Define
Patterns

Review
Patterns

Figure 93 - A Safety Case Reuse Process

 191

5.13.2 Constructing New Safety Case Patterns

This activity describes the process of documenting the reusable argument structures

identified within an existing safety case as a Safety Case Pattern – using the notation

and template defined in this chapter. The purpose of recording a pattern using the

notation and template is to ensure that the principle is described such that others can

understand it (sufficiently) from the documentation alone.

The structural description should represent a generalisation of a specific argument in

order that it can be instantiated according to the details of another specific application

context.

Figure 94 illustrates the generalisation of a simple GSN structure from something that is

specific to an application context, to something that can be applied in other application

contexts.

Specific

Argument

Structure
Press is sufficiently safe to
operate

G5

S3

Argumemt of sufficient mitigation
/ elimination of all identified
hazards of press to operator

C3

Press Operating
Hazard List

Hazard of hands trapped in motor
/ clutch / drive mechanism has
been eliminated

G6

Hazard of plunger operation
whilst operator in danger zone
has been sufficiently mitigated

G7

Hazard of dangerous press
abort has been sufficiently
mitigated

G8

 192

General

Argument

Structure

C1

{An Overall System Safety
Claim}

S1

Argument of sufficient mitigation
/ elimination of all identified
hazards

{Description of
System Hazards}

C1

G2

Hazard of {H} has been elimated

G3

Hazard of {H} has been
sufficiently mitigated

n
Provides n Hazards {H}

Figure 94 - Generalisation of Goal Structures

The goal structure shown in the top of Figure 94 describes the argument for a particular

system that, of the hazards identified, one has been eliminated (G6) and two have been

mitigated (G7 & G8). Therefore the strategy of all hazards being eliminated / mitigated

has been fulfilled. The goal structure pattern in the bottom of Figure 94 shows the

generalisation of this structure: For a hazard log containing n hazards, the strategy will

have n subgoals (1 for each hazard). These sub-goals will either argue that the hazard

has been eliminated or mitigated. Both arguments must be developed further.

5.13.3 Reviewing Constructed Safety Case Patterns

Having defined a safety case pattern, it is important that it is then reviewed to assess

whether the documented form of the pattern has been correctly captured. The questions

that should be asked when reviewing the pattern include the following:

• Does the name of the pattern easily convey the intent and form of the pattern?

• Has the Intent of the pattern been adequately explained?

• Is the GSN argument structure correct? Is it over-defined (too restrictive)? Is it

under-defined?

• Have all the elements and collaborations of the argument been correctly explained?

• Has the applicability of the pattern been sufficiently defined?

 193

• Is there sufficient implementation guidance to enable someone to instantiate the

pattern?

The purpose of asking such questions is to ensure that the pattern is sufficiently well-

defined that the likelihood of it being applied inappropriately at a later stage (by

someone other than the author) is reduced to the minimum practicable. Questions of

completeness and sufficiency of documentation are subjective. The review should

therefore be performed ideally by a group formed of people who are similarly expert in

the domain from which the pattern has been identified and others who are not, but have

a knowledge about safety cases in general. At least initially, the review of the pattern

should be conducted without the involvement of the original author (in order that the

sufficiency of the documentation can be truly assessed). Following this initial review,

the author can then be involved in the discussion in order to clarify any areas of

ambiguity and to work with the reviewers to suggest ways in which the pattern may be

improved.

Following review (and modification if necessary) of the pattern it can then be added to

the pattern catalogue. The pattern catalogue is discussed in more detail in section 5.13.7.

5.13.4 Identifying Applicable Safety Case Patterns

The processes of identifying, defining and reviewing new patterns work from existing

safety case material towards the goal of extracting reusable argument structures for

future safety cases. Within the framework of the safety case development process,

therefore, one of the natural opportunities for these activities is in the ‘wash-up’

(sometimes called the ‘post-mortem’) phase of the project. The purpose of the wash-up

is to identify areas where the safety case produced is deemed to be successful, and to

capture lessons learnt from the development.

However, the ‘Identifying Applicable Safety Case Patterns’ activity (and the following

activities shown on the left-hand side of Figure 93) together correspond to the

production phase of safety case development, and in particular to the preliminary safety

case construction phase (described in Chapter Three, section 3.9). The purpose of this

first activity is to identify patterns from those previously defined and stored in the

pattern catalogue to aid in the construction of a new safety argument. The pattern

catalogue should be examined with a particular problem in mind – e.g. a safety goal that

needs to be decomposed, or a particular requirement that has to be addressed. The

objective is to nominate a pattern that:

 194

• Shares the same intent as the problem that you are trying to solve

• Is suitable for application in this particular safety case development (i.e. satisfies all

documented applicability conditions).

It may be the case that more than one pattern in the catalogue matches these criteria. In

such cases, all possible patterns should be nominated for review at this stage.

5.13.5 Reviewing Decision to Use a Safety Case Pattern

The purpose of this activity is to review the decision to use the candidate patterns

identified in the previous phase. As with the review conducted in the pattern production

phase this activity should ideally be conducted by experts within the application domain

who are capable of independently assessing whether use of the nominated patterns is

appropriate in this case.

The motivation behind placing the review ahead of actual application of the pattern is to

(hopefully) reduce the possibility that wasted and inappropriate effort may be spent in

applying a pattern that is later rejected. Where there is a choice of possible approaches

(i.e. a number of possible patterns that may be applied), a secondary purpose of the

review is to decide upon the most suitable one to use.

The review activity independently revisits the questions of matching intent and

applicability that where considered when searching the pattern catalogue. In deciding

whether a pattern is applicable in a particular situation, an additional output of this

activity may also be preliminary advice on how the pattern is to be applied.

5.13.6 Instantiate Pattern

The purpose of this activity is to apply the general solution described by the pattern to

the details of the specific safety argument being constructed. The element of the pattern

description most concerned with this activity is Implementation. This section describes

how the pattern should be implemented: the contextual information that should be

provided, how goals should be instantiated etc. It is important to take note of any

Potential Pitfalls also identified by this section.

When instantiating the GSN pattern, multiplicity relations should be expanded, and

choices evaluated. Where structural abstractions have been used, concrete instances

must be provided. The GSN pattern is therefore “flattened” to the elements of existing

notation. Ideally, a record of the application of the underlying pattern should be

 195

maintained to provide traceability of the structure back to the pattern. Maintaining such

records will ease the process of later change management.

Figure 95 illustrates the instantiation of a GSN pattern. In addition, instantiations of the

‘Diverse Argument’, ‘Safety Margin’ and ‘Fault Tree Evidence’ patterns (presented in

Appendix B) are highlighted within Appendix A – Nuclear Trip System Safety Case.

GSN

Pattern

(‘Diverse

Argument’)

G1

{GOAL}

Gn

{STATEMENT
SUFFICIENT TO
SUPPORT G1}

S1

Argument based upon
diverse forms of evidence

>1

Definition of Diversity

C1

G2

Arguments are diverse and
not subject to common
mode failures

Instantiated

Structure Hazard H1 cannot occur

G1

S1

Argument based upon
diverse forms of evidence

G2

Formal Analysis shows
condition relating to H1
cannot occur

G3

Extensive Rig testing has
shown no occurrences of H1

NB – The optional definition of ‘Diversity’ (C1) and common mode
failure claim have been omitted.

Figure 95 - Instantiation of a Goal Structure Pattern

In some cases, it may be pragmatic to leave goal structures partially in pattern form.

For example, in Figure 95 the pattern at the top of the diagram succinctly communicates

 196

the intention of the goal structure without providing large amounts of detail (e.g. as

there would be if there were fifty identified hazards). Leaving the pattern uninstantiated

may therefore provide a more appropriate level of description for some presentations of

the safety case (i.e. by presenting the argument approach adopted rather than the results

of applying that approach).

Whether fully instantiating or partially instantiating a pattern, it is important for

traceability purposes to document where the pattern has been applied in the overall

argument. In this way, if there is ever a need to identify all the places that a particular

pattern has been used (e.g. if a flaw was discovered in the pattern) then the appropriate

records exist. Of equal importance, such information allows patterns to be re-applied if

changes are ever forced upon the overall safety argument – making sure that the intent

and structure of the pattern can be preserved.

5.13.7 Pattern Catalogue

The Safety Case Pattern Catalogue, as described in section 5.12, is at the heart of the

concept of Safety Case Patterns, and is the pivot around which the safety case reuse

process is carried out. Within an organisation, it is the repository where all patterns are

stored. It is the intention that it be available as a resource to all safety case developers.

Patterns can be added into the catalogue following definition and review. It should be

possible to retrieve pattern descriptions by name, content and inter-pattern associations

(recorded in the Related Patterns field of the pattern description.

5.14 Summary

This chapter has defined the concept of Safety Case Patterns – a means of describing

generalised, reusable, safety argument structures. In order to support the presentation of

generalised arguments, we have proposed extensions to the GSN. In addition, a format

for the documentation of GSN patterns is defined. Resulting from evaluation of the

approach, a number of example patterns are presented. Based upon categorisation of

the patterns the author has identified to date, a taxonomy of Safety Case Patterns is

defined. Finally, we present a process to support the systematic reuse of safety case

arguments based upon the concept of developing a Safety Case Patterns Catalogue.

Evaluation of the approach defined in this chapter is discussed fully in Chapter Six –

Evaluation

 197

Chapter 6:

Evaluation

6.1 Introduction

In Chapter One the thesis proposition was stated as the following:

This thesis provides a method and graphical notation for the presentation

of safety arguments. The thesis demonstrates how this approach can be

used to address the highlighted challenges of safety case development by

supporting the development, maintenance and reuse of safety arguments.

The challenges referred to by the proposition (and also presented in Chapter One) were

the following:

• Presentation of Clear Safety Arguments

• Incremental Safety Case Development

• Through-life Safety Case Maintenance

• Supporting Trustworthy Safety Case Reuse

The evaluation of this proposition can be considered on two levels, namely:

• Demonstrating the feasibility of the approach defined in this thesis (to support safety

case development, maintenance and reuse) and its acceptance by engineers in

industry

• Demonstrating that the approach provides some positive benefit in addressing the

problems highlighted by the proposition.

Within the time-scale of the doctoral programme the evaluation activity has focussed

upon the former of these two levels. Success at this level is an obvious precursor to

success at the latter level. The extensive application of the approach within the problem

domain also aids in the definition of the success criteria against which benefit can be

assessed (as discussed later on in the chapter in section 6.5)

Over the course of the research we have been fortunate enough to be given many

opportunities to expose and trial the approach developed in this thesis to industrial

 198

safety engineers and projects. In particular, three main routes of evaluation have been

available:

• Through Rolls-Royce plc (co-sponsors of the research)

• Through presenting the approach on the High Integrity Systems Engineering Group

Safety Courses – at the time of writing this has run a total of 25 times for 435 people

representing 57 organisations.

• Through the Safety Argument Manager (SAM) Tool and the consortium of 20

European companies involved in the SAM Club – a user group set up to fund and

guide further development of the SAM tool.

The main sections of this chapter (sections 6.2 and 6.3) report the evaluation that has

been carried out using these three routes to demonstrate the feasibility of the approach

and to gain its acceptance by industry. Although within this chapter we have not sought

to quantitatively argue to benefits of adopting the approach, it should be recognised that

its acceptance by industry is at least an indication of perceived benefits. Benefits

perceived through carrying out the evaluation activity are qualitatively reported within

the chapter.

Building upon the success of this level of evaluation, section 6.5 describes how further

(quantitative) evaluation of the benefits of adopting the approach could be carried out.

6.2 Forms of Evaluation Applied

The following forms of evaluation have been applied throughout the course of the

research to evaluate the approach presented in this thesis:

• Tool Implementation

• Peer Review

• Case Study

• Pilot Industrial Application

• Evaluation through Real Industrial Application

The above list is stated in order of, what we believe to be, strength of evaluation – tool

implementation being the weakest form of evaluation, and evaluation through

application on a real industrial project being the strongest. Before presenting the

 199

details of specific activities, the following sub-sections provide a brief description of the

nature and level of evaluation offered by the forms of evaluation listed above.

6.2.1 Evaluation through Tool Support

As described in Chapter Two, the Safety Argument Manager tool has been developed

over a number of years – first under the EPSRC Safe-IT sponsored ASAM-II project

(resulting in SAM 3.25), and then through the SAM Club organised by York Software

Engineering (currently developing SAM 4). Over 20 companies and other organisations

now use the SAM 4 tool.

It has been possible to implement support for the approach presented in Chapters Three

(Development), Four (Maintenance) and Five (Reuse) to varying levels in the SAM 4

tool. Having implemented support for the approach within a tool demonstrates a level

of sufficient definition, self-consistency and determinism of the approach and

notation (i.e. the approach is not inherently invalid). Obviously, in addition it has

provided tool support for the further forms of evaluation.

6.2.2 Evaluation through Peer Review

We have used the term peer review to refer to exposure, discussion and application of

the approach presented in this thesis with safety engineers (e.g. from Rolls-Royce)

experienced in safety case development through one of the following media:

• One-on-one interviews between myself and engineers

• Seminars with initial presentation of material by myself

• Workshop sessions chaired by myself and involving a group of engineers

Of these three activities, workshops have enabled the greatest level of feedback. As is

described later on in the chapter, all three of these activities have been performed during

the course of the research.

Peer review provides some evaluation of the approach with respect to the experience of

safety case development practitioners. Addressing questions such as, ‘Does it offer a

credible and workable solution?’, and, ‘Does it address problems that you have

experienced?’

Workshop sessions have particularly helped to gain confidence in the capability of the

approach (e.g. in expressing safety arguments) to handle industrial examples.

 200

6.2.3 Evaluation through Case Study

Evaluation through case study has involved personal application of the approach using

examples derived from a real-world context. This form of evaluation has increased

confidence in the utility and coherence of the approach. The extent of evaluation is

greater than that of workshop sessions (where potential deficiencies in the approach can

be hidden). Depending upon the realism of the case study example, this form of

evaluation again offers some assurance of the capability of the approach when applied

to real projects.

6.2.4 Evaluation through Pilot Industrial Application

Evaluation through a pilot project has involved application of the approach by

individuals other than myself, but with support provided. The subject of the evaluation

is an example taken from a real-world context. As with case study, not only does this

increase confidence in the utility of the approach, but confidence is also gained that the

level of definition of the approach is sufficient that someone else can use it. It also

allows some evaluation of the viability of the approach (was it excessively time-

consuming? - did it become difficult to manage?). It is also another means of evaluating

the capability of the approach to handle real-world problems.

6.2.5 Evaluation through Real Industrial Application

Elements of the approach have attained a level of maturity that have allowed them to be

applied to real industrial projects. This has been one of the most powerful modes of

evaluation. Successful application has demonstrated that it is a valid approach and

collated experiences have allowed qualitative observation of the usefulness of the

approach.

6.3 Overview of Research Evaluation

The contribution of this thesis comprises the following three strands:

• GSN Method and Support for Incremental Development (Chapter Three)

• GSN Support for Safety Case Maintenance (Chapter Four)

• GSN Support for Safety Case Reuse: Safety Case Patterns (Chapter Five)

These three strands have not all been exposed to the same modes of evaluation or to the

same level of assessment. The following table summarises the evaluation that has been

performed in each area:

 201

Tool

Implementation
Peer Review Case Study

Pilot Industrial

Application

Real Industrial

Application

GSN Method and

Support for Inc.

Development

ü ü ü ü ü

GSN Support for

Safety Case

Maintenance

ü ü ü

Safety Case

Patterns
ü ü ü ü

Level of Evaluation

Table 8 – Levels of Research Evaluation Achieved

For each of the research areas, and for each form of evaluation marked with a ‘ü’ in

Table 8, the following sections provide a specific description of the evaluation that has

been performed.

6.3.1 GSN Method Evaluation

The contribution made by the author in defining a method for, and extending, GSN was

a product of the early activities of the research. Use of the method and notation is a

precursor to the application of the more advanced concepts of maintenance support and

Safety Case Patterns. Consequently, as shown in Table 8, this strand of the research has

been subject to the most evaluation.

6.3.1.1 GSN Method Evaluation: Tool Implementation

The extension of ‘context’ to the notation was quickly adopted within the SAM 4 tool,

and has been used within almost all the goal structures produced using the tool observed

by the author. This has been taken as an indication of the concept’s usefulness!

The screen shot shown in Figure 96 shows the use of the new context symbol within the

SAM 4 tool.

 202

Figure 96 – SAM Screen Shot (Showing Adoption of Context)

The support added to SAM for the GSN extensions necessary to represent GSN patterns

has also been found useful in representing an incomplete and evolving goal structure (as

described in Chapter Three). For example, it has been useful to explicitly mark a leaf

goal in a preliminary safety argument (such as the engine controller argument presented

in Chapter Three) as being ‘undeveloped’. This is shown in the SAM screen shot

(Figure 97).

6.3.1.2 GSN Method Evaluation: Peer Review

The GSN Method, as defined in [57], has been used within a number of workshop

sessions conducted by the author and involving over forty safety engineers from a

number of different companies, including:

• BR Business Systems – concerned with developing and presenting safety

arguments for railway maintenance information systems.

• Matra BAe Dynamics – concerned with developing and presenting safety

arguments for sea and land based missile systems.

• Rolls-Royce Marine Power – concerned with developing and presenting safety

arguments for nuclear propulsion systems.

 203

Figure 97 – SAM Screen Shot (Showing Use of Pattern Extensions in Incremental

Development)

After having presented the principles and steps of the method the workshops have

culminated in sessions that apply the GSN method in developing a safety argument

relating to their domain. In these sessions the method has been found to work well in

structuring the group discussion – for example, in making sure that context is fully

defined (Step 2) before attempting to identify a support strategy (Step 3). Also, the

phrasing rules given in the method have helped in such sessions to force clarity and

definition of the safety arguments being developed (avoiding the mistakes described in

[57]). A recognised benefit of using the GSN in these workshops has been that it has

enabled debate and agreement on the safety argument in a way that is not possible when

there is no clear and explicit means of presenting that argument.

The GSN method guidance defined in [57] has been distributed (under the title ‘GSN

Handbook’) to all twenty companies in the SAM Club. Although criticism was

explicitly solicited, no significant problems have been identified. One area of debate has

been the recommendation made in the method regarding the tense used in phrasing

goals statements (goals to achieve vs. goals achieved). However, there have been

arguments on both sides of this issue and consequently the recommendation has been

 204

left as it is (with the global caveat given in the method that other approaches are

possible).

Through peer review of the GSN terminology and concepts it has been noted that the

term ‘Goal’ can often mislead engineers as to the intent of this element of the notation –

i.e. to state logical propositions. The description of a goal alternatively as a ‘claim that

we wish to put forward’ (i.e. as done in Claim Structures [9]) has often been more

readily understood by engineers. If it weren’t the case that the terminology of the ‘Goal

Structuring Notation’ and ‘Goals’ was already well established within the companies

that use GSN it would be desirable to rename ‘Goals’ as ‘Claims’ within the notation. It

should be recognised, however, that this choice of terminology has no impact on the

semantics of the notation.

The use of goal structuring to support incremental safety case development has formed

part of the material presented by the author on the High Integrity Systems Engineering

Group Safety Courses. In particular, the application of GSN in sketching out

preliminary safety arguments is presented through the distributed engine controller

example given in Chapter Three. Use of GSN in building preliminary safety arguments

was also the subject of a reviewed paper and presentation [99]. Comments subsequently

received from experienced practitioners have indicated that GSN is achieving something

(the ability to present preliminary and incomplete argument architectures) that is

otherwise difficult to achieve as succinctly in free text.

6.3.1.3 GSN Method Evaluation: Case Study

It is difficult to demonstrate evaluation of the GSN Method (that defines a dynamic

process) by any means other than presenting the resultant (static) goal structure. The

Nuclear Trip System Case Study, although based upon an existing safety case, presents

a number of safety arguments that have been constructed according the rules of the GSN

method (particularly regarding syntax).

It is one of the underlying premises of this thesis that GSN can be used in

communicating the safety argument within the structure of a text-based safety case

document. Appendix A was constructed to demonstrate that this is possible and also to

illustrate how it can be done. A comparison of the goal structured approach used in

 205

Appendix A and alternative approaches to expressing the same safety case is presented

in Chapter Three, section 8.

One observation, having constructed many goal structures using the rules defined in the

GSN method, is that it has always been possible to phrase goal statements according to

the Noun-Phrase Verb-Phrase rule. However, there are other (sometimes more natural)

sentential structures that can be used whilst still forming propositional statements. The

possible extension of the method syntax rules to include these other structures is one

area of further work, see Chapter Seven, Section 2.

As a case study using GSN to sketch an evolving safety argument, based on work

published by Fletcher [60], the author has used goal structuring to set out clearly the

principal safety (and certification) objectives facing Integrated Modular Avionics (IMA)

systems. The top level of this goal structure is shown in Figure 98.

IMA system is SAFE

G1

Adequate partioning and
isolation provided between
modules

G2

Scheduling policy is at least
as safe as Cyclic Executive

G3

IMA Safely supports
modules of differing
integrity

G4

Reconfiguration of modules
is safe

G5

Module replacement is
performed correctly

G6

Common Cause Failures
between modules are
sufficiently unlikely

G7

Each module
independently is safe

G8

Modules combine safely

G9

Figure 98 – Top Level of Integrated Modular Avionics Safety Argument

Conclusions arising out of this and similar studies have been that presenting preliminary

arguments in this way enables engineers to reach agreement on the scope and structure

of a safety argument. In particular reducing the time and effort required in reaching that

agreement. In addition, the final agreed goal structure highlights the safety objectives to

 206

be achieved in later stages of project development. For example, with the above Figure

98, everyone involved in developing such systems can appreciate the safety framework

in which IMA solutions are suggested.

During the course of the research, the author has studied a number of conventionally

(textually) presented preliminary safety arguments, specifically:

• Safety Principles Papers (within the Naval Nuclear Propulsion Domain) –

documents typically produced towards the beginning of a project that argue how the

system and project will comply with the U.K. Ministry of Defence Safety Principles

and Criteria for the Nuclear Naval Programme [98].

• Joint Airworthiness Requirements – Engines (JAR-E) Compliance Statements

(within the Civil Aerospace Domain) – again, documents typically produced

towards the beginning of a project that argue how an engine will comply with the

JAR-E.

The textual approach implicit in both these sets of documents can be contrasted with the

GSN approach suggested in Chapter Three. The following difficulties have been

identified with the former approach:

• It can present vacuous statements of compliance that simply re-express all

requirements of the form ‘X shall’ into ‘X will’.

• In later stages of the project it can be unclear what specific objectives have been put

forward in the preliminary argument.

Although it is possible in GSN terms to present vacuous compliance claims, they are

more obviously shown up as such in a goal structure (as an observable lack of ‘distance’

between requirement and claim). Following the GSN method (particularly regarding

syntax) can avoid the vague statements of some compliance claims. The explicit top-

down structure of a goal-structured preliminary safety argument, exposing undeveloped

leaf goals, also makes more obvious the claims that are still to be developed in the later

project stages.

6.3.1.4 GSN Method Evaluation: Pilot Industrial Application

The GSN Method has been applied in an industrial pilot project to rework an existing

submarine power plant decommissioning safety case and express it using GSN (using

the SAM tool). The resulting (exhaustive) goal structured argument spanned 39 A4

 207

pages and contained over 154 individual goals (structured on 9 levels). The top level of

this goal structure is shown in Figure 99 (with some details masked). An internal report

[100] was written to document the project. As well as validating the method, the project

enabled a comparison between the presentation of the safety argument in its existing

(textual) form and its goal structured counterpart. Universally, company (and Ministry

of Defence) individuals who reviewed both versions (the original safety case and the

corresponding goal structure) declared the goal structure as providing a clearer

representation of the safety argument.

Clear and valid goal structures resulted from the Rolls-Royce employees’ use of the

GSN method. Over the course of the project three individuals (two engineers from

Rolls-Royce and myself) all produced separate goal structured versions of the existing

safety case. The three resulting goal structures exhibited the same goal decomposition

structures (i.e. they were of similar depth and ‘fan-out’) and used similarly phrased goal

statements. Experience suggests that without the definition and use of the GSN method,

this would have not been the case.

Company reviewers observed the benefits of the goal-structured version of the safety

argument as twofold. Firstly, although the safety requirements and safety claims of the

existing safety case were stated clearly – the relationship between them (i.e. the

structure of the safety argument) was unclear. Once the relationship had been

rediscovered, however, the goal structure communicated the relationship between

requirements, claims, and evidence explicitly. Secondly, in the existing safety case

there appeared to be elements of the document that had no role within the safety case.

The goal structure, however, through explicit context and solution references provided a

means of navigating through all of the blocks of information presented within the

document and communicating their role within the structure of the argument.

The use of GSN in supporting an evolving safety argument, as suggested in Chapter

Three, was piloted in developing a preliminary safety argument for a novel distributed

engine controller. This example is described in some detail in Chapter Three. Rolls-

Royce’s main conclusions were that the goal structure produced aided the process of

agreeing the safety case, helped gain confidence in the ability to present a complete

safety case and provided tangible safety objectives for the project. As a result of this

project, Rolls-Royce has proposed that suppliers to the project be asked to present goal

structured preliminary safety arguments in this form in the future.

 208

Top

G0000

Decommissioning of
XXXXX prior to XXXX

and XXXX is safe

Strat0000

Argument by
compliance with
overall SAPs
Goals

Cntx0000

NNTSP/BR3/100/94 Issue 1 Feb
1994 - MoD Safety Principles and
Safety Criteria for the Naval

Cntx0001
Scope (S1.2)

G0001

Final Plant Condition
Compliant with General

Nuclear Safety Goal

G0002

Final Plant Condition
Compliant with Radiation

Protection Goal

G0003

Final Plant Condition
Compliant with Technical

Safety Goal

Cntx0003

Applicability and
Duration (S1.3)Cntx0004

Specific
Exclusions (S1.4)

G0108

Plant modification and final condition
complies with all applicable

principles from SAPs Document

G0109

Berthing modification and maintenance
is a Nuclear Safety Category XX
system with Safety Justification

Assessment Risk - XXXX

G0110

Final Plant Condition
ensures that the
potential for all
identified plant

G0013

Reactor plant monitoring provided to
ensure reactor safety requirements are

being met (final plant condition
maintained) and provide early

G0119

Final Plant Condition can
withstand all internal and

external environmental hazards
considered to have the potential

Cntx0008

Final Plant Condition
(S4)

G0125

Final Plant Condition will not
compromise nuclear safety

during the final defuel

Figure 99 – Top Level of Decommissioning Argument

 209

6.3.1.5 GSN Method Evaluation: Real Industrial Application

One of the earliest applications of the GSN method was on a live project involving the

production of a safety plan and safety case for a piece of railway track-side equipment

(for GEC Alsthom). In particular, this project provided validation of the concept of

interrelating process and product goal structures, as suggested in Chapter Three. Goal

structures were used to communicate the safety argument of the safety plan (process) in

addition to the structure of the safety case (product). The outputs of the safety plan

(solutions of the process goal structure) were linked to the context and evidence

elements of the product safety argument. The top level of the safety plan goal structure

is shown in Figure 104. The safety plan document out of which Figure 100 was taken

was 165 pages long and contained 338 goals, 176 justifications, 294 context references

and 164 solutions. The goal structures were presented in 167 figures and had up to 5

layers of decomposition.

This usage of goal structuring was well received on the project. The project was multi-

national and the project participants declared that the goal structures were particularly

useful in improving understanding of the safety plan and safety case across

organisational and national boundaries.

The GSN method is currently being used to provide ‘executive summary’ goal

structures for inclusion at the beginning of a number of base safety reports for a Rolls-

Royce test facility. GSN is being adopted as it is felt that the safety argument contained

within these documents can be hard to assimilate and appreciate without spending

significant time reading through the document. A number of goal structures have

already been developed and have been thought (by the engineers and managers

involved) to address this problem successfully. Figure 101 shows an extract from one

of these goal structures (with system specific details hidden). This goal structure was

constructed in a group session involving six engineers following the steps of the GSN

method.

The GSN Method has been used in the early stages of developing a Site Safety

Justification for a Naval Facility. In this project there was a requirement to produce 8

safety cases supported by over 80 safety reports in the space of 18 months. GSN was

used as part of a group exercise to help the engineers to begin to appreciate the scope of

 210

the problem, and to identify possible argument strategies. Figure 102 shows an extract

from the total goal structure constructed to represent the preliminary safety argument.

The total structure consisted of over 300 goals structured using 6 levels of

decomposition. The structure was created by a team of 4 engineers working for 1 week.

Although the goal structures produced were not evolved through the later stages of the

project, managers on the project believed that these preliminary arguments provided a

“jump start” for the safety justification effort.

Brand new safety case developments (offering true validation of the GSN approach to

incremental argument development) are few and far between. However, the GSN

approach is currently being proposed for developing the nuclear propulsion safety

arguments for the new U.K. class of submarines. If adopted, this would allow GSN to

be used ‘from cradle to grave’ and it would be possible to gain valuable experience of

the issues involved in developing a goal structured safety argument over a number of

years.

6.3.2 Maintenance Evaluation

Of the three strands of research, the use of GSN in supporting safety case maintenance

has been the most problematic to evaluate. This is due to the fact that it requires a goal-

structured safety case as a pre-requisite. It then requires a number of ‘real-world’

challenges that would normally be experienced and distributed over the total operational

life of the safety case. Consequently, as can be observed from Table 8, the strongest

form of evaluation of this aspect of the research has only been through case study. It is

hoped that during the operational life of some of the safety cases now being written by

Rolls-Royce using GSN there will be further opportunity for evaluation of the

maintenance support method.

6.3.2.1 Maintenance Evaluation: Tool Implementation

We have implemented support for the change process defined in Chapter Four within

the SAM 4 tool, as shown in Figure 103. Using the tool it is possible to follow through

the steps of damaging and repairing a goal structure. The tool supports the propagation

of a change according to the rules defined in Chapter Four.

As highlighted in Chapter Four, the assessment of the impact of a change cannot be

performed mechanically (by a tool) as it is an interactive process between the tool and

engineer. The tool pessimistically prompts the engineer to consider all potential effects

of the change. The engineer guides the tool to propagate particular impact paths.

 211

Compliant safety management
process implemented to ensure
XXX-XX vX is safe

G0

S1

Argument over XXX-XX vX safety
related tasks for project phases 1 to
6 as defined in prEN50126

Cntx.S1:1

CENELEC Stds.:
prEN50126, 50129

Cntx.S1:2

Company (XXX)
Procedures &

Standards

prEN50126, 50128, 50129

Just.S1:1

J

There are only 6 project
phases for XXX-XX vX

Just.S1:2

J

Phase 1 (Concept) safety
tasks completed
satisfactorily

G1

Phase 2 (System Definition and
Application Conditions) safety
tasks completed satisfactorily

G2

Phase 3 (Risk Analysis)
safety tasks completed
satisfactorily

G3

Phase 4 (System
Requirements) safety tasks
completed satisfactorily

G4

Phase 5 (Apportionment of
System Requirements) safety
tasks completed satisfactorily

G5

Phase 6 (Design and
Implementation) safety tasks
completed satisfactorily

G6

Safety audits completed
satisfactorily
(decomposition TBD)

G7

Independent Safety
Assessment completed
satisfactorily

G8

Figure 100 – Top Level of Safety Process Argument

 212

G0

XXX operation is safe

G1

YYY function supports
safe operation of XXXX

G2

YYY Operation is safe

G3

Systems supporting
operation of YYY are safe

M0
YYY Description
(Part 2)

AddModel

G4

All identified YYY
hazards are sufficiently

mitigated

G5

YYY satisfies all
functional and integrity

requirements

G6

YYY satisfies all
applicable Safety

Assessment Principles
Cntx0

Identified YYY
Hazards (Part 4)

Cntx1

Functional and Integrity
Requirements for YYY (Parts
2.4 & 2.5)

Cntx2

Safety Principles
Applicable to YYY (Part 4)

G9

All identified YYY hazards
to rest of plant are

sufficiently mitigated

G10

All identified internal YYY
hazards are sufficiently

mitigated

G11

YYY provides adequate support
for ZZZ ZZZ, ZZZ and ZZZ

G12

YYY has sufficient
structural integrity

Cntx3

Performance
Requirements (Part 2.5)

Cntx4

Structural Integrity
Requirements (Part 5.4.4)

Figure 101 – Top Level of Base Safety Report Argument

 213

G0004

Base condition and
operations comply with

MoD SPSCs

Strat0001

Argument by
dividing SPSCs
into principles
and criteria

G0006

Base condition and
operations comply with

principles

G0007

Base condition and
operations comply with

criteria

J0000
Approach mandated
by BR3018

J

JustifiedBy

G0008

Principles addressed at level
of 'whole-site' condition and

operation

G0009

All nuclear facilities and
associated operations comply

with principles

Cntx0005

TBD - Definintion of
'Whole-site' /

Cntx0006

TBD - List of all
facilities

Figure 102 – Extract from Preliminary Site Safety Justification Argument

 214

Figure 103 – SAM Screen Shot (Showing Support for Maintenance Process)

The implementation of the change process defined in Chapter Four within the tool

demonstrates that the process is workable and deterministic. (If it were not deterministic

there would have been difficulty implementing the process steps and rules within the

logic of the tool).

Implementing the change support within the tool enabled examples of the change

process to be generated from goal structures already entered into the tool (e.g. the

Appendix A Trip System Safety Arguments).

6.3.2.2 Maintenance Evaluation: Peer Review

The taxonomy of real-world challenges to the safety case (i.e. the division into

Requirements, Evidence and Context change) and the principles of using goal

structuring to support change impact analysis have been presented widely through the

HISE Group Safety Courses. This exposure, and absence of any dissenting feedback,

has helped gain confidence in the approach. However, it is recognised that this form of

exposure does not constitute a thorough evaluation of the change process.

 215

6.3.2.3 Maintenance Evaluation: Case Study

The main evaluation of the change process has been through case studies of postulated

changes to existing goal structures. The challenges to the Appendix A Nuclear Trip

System Safety Case presented in Chapter Four are examples of this. The main

observation arising out of such studies has been that, although the process is workable

and systematic as a pencil-and-paper technique, it can become extremely difficult to

track and manage a change as it propagates (potentially through many paths). As a

result, tool support – such as that described previously – appears necessary for anything

other than simple goal structures and trivial changes.

The value of the change process is not fully demonstrated through the change examples

presented in Chapter Four (necessarily simple for ease of presentation). It is important

to recognise the following two issues: Firstly, the value of the technique increases with

the complexity of the underlying argument (and the consequent difficulties of

traceability). Secondly, in reality the construction of the safety argument will often be

separated from any maintenance action by a significant time period (e.g. a number of

years). To simulate the difficulty of change correctly (and hence the value of this

approach) it is almost necessary to develop a safety argument, forget it, and then attempt

maintenance. The results presented in Chapter Four should be taken as indicative rather

than definitive evaluation of the technique. However, the ‘obviousness’ of the change

examples can perhaps be taken as a positive indication of the ease of carrying out the

process some time in the future.

6.3.3 Safety Case Patterns Evaluation

6.3.3.1 Safety Case Patterns: Tool Implementation

Support has been implemented in SAM for the GSN extensions necessary to express

goal structure patterns. Using the tool it is now possible to define n-ary relations,

choices, uninstantiated and undeveloped GSN elements. GSN patterns defined within

the tool can be copied and pasted into new argument documents and instantiated.

Documentation of Safety Case Patterns is carried out using Microsoft Word, but with

the ‘Structure’ element linked from a SAM document.

 216

Figure 104 – SAM Screen Shot (Showing Support for Safety Case Patterns)

The support implemented within SAM has been used in documenting the majority of

the example patterns presented within this thesis, and in performing the evaluation

described in the following sections.

6.3.3.2 Safety Case Patterns: Peer Review

The principles and instances of Safety Case Patterns have been presented in the

workshop fora mentioned in Section 6.3.1.2. Within the workshops these have typically

followed on from generic material on the goal structuring method. Consequently, the

pattern instances have been extremely useful in communicating example applications of

the technique. By utilising these examples, engineers began to find the GSN approach

more accessible.

Within one of the workshop sessions, engineers were sufficiently comfortable with the

patterns concept to the extent that they began to recognise and capture Safety Case

Patterns within the safety argument that the group was constructing. For them, patterns

were seen as a means of crystallising and promulgating the positive aspects of their

safety argument.

 217

Safety Case Patterns have also been the subject of a reviewed paper and presentation

[95]. One concern that has been raised regarding the Safety Case Patterns concept has

been the potential danger of (possibly inexperienced) engineers blindly applying the

structure captured in a pattern without thought, but yet creating credible arguments.

Although this is a valid concern, the pattern format was carefully defined in order to

capture and present the concepts of applicability and implementation (particularly

highlighting potential pitfalls in application). Also, all of the patterns developed to-date

are observably incomplete – they help in the construction of an argument, but only so

far. By presenting solutions that are incomplete, thereby forcing intelligent completion

of the approach, there is some guarantee that the engineer will not be able to present a

credible solution based upon use of a pattern alone.

The author was commissioned by Rolls-Royce (Aerospace) to demonstrate how their

traditional safety justification format (using Failure Modes and Effects Analysis –

FMECA – tables) could be translated into goal-structured form. The resultant goal

structure patterns are shown in Figure 105 and Figure 106.

G1

<ATA_Part> has no Hazardous or
Major failure effects which do not
have a satisfactory probability ranking

Acceptable Risk
Levels

C1Acceptable Risk
Provides:
Definition of
'satisfactory'

M1

<ATA_Part>
Description

Provides:
Description of

Severity Categories

C2Severity
e.g.
Hazardous
(Haz)

Probability Categories

C3Probability
e.g.
Probable (P)
Remote (R)

All Hazardous and Major Item
failure effects are Extremely
Remote or Remote

G2

All Minor Item failure effects
are less than Probable

G3

Argument over each item
within <ATA_Part>

S1

G4

Failure modes of <Item> lie
within acceptable prob/sev
limits

G6

No reasonable failure of
<Item> is envisaged

Figure 105 – Top Part of FMECA-to-GSN Pattern

 218

G4

Failure modes of <Item> lie
within acceptable prob/sev limits

M2

Functions of <Item>

S2

Argument over failure modes identified
through consideration of general failure
mechanisms for individual elements in
the assembly of item

Failure modes identified
in <Item> FMECA

C5C4

General Failure
Mechanisms

General

Deformation
and Breakage;
Burning and

M3

Assembly of <Item>

<Item>
e.g.
Reference to
one of

Functions of
As provided in
'Function'
section of Item

G7

Relief Claim / Argument for
<FailureMode>

Provides:
<FailureMode>.prob

<Item> FMECA row
for <FailureMode>

C6

G8

Indication of this failure mode
provided by
<FailureMode>.ind

G9

MSG Level for
<FailureMode> set at
<FailureMode>.msg

G5

Prob. of <FailureMode> leading to
<FailureMode>.effect is
<FailureMode>.prob, Sev. is
<FailureMode>.sev

Provides:
<FailureMode>

m

Figure 106 – Continuation of FMECA-to-GSN Pattern

Having explained the GSN and patterning notation, upon presenting the patterns the

three Rolls-Royce engineers involved quickly understood how goal structuring could be

applied in their context. They felt that it offered a more explicit presentation of the

safety claims and claim structure that was implicitly presented in their FMECA tables.

Their response provides positive evidence of the ability of the patterns to clearly

communicate generic safety argument structuring issues and of the GSN to improve the

clarity of presented safety arguments over tabular formats.

6.3.3.3 Safety Case Patterns: Case Study

As described in Chapter Five, a number of Safety Case Patterns have been identified

and extracted from real-world safety cases and safety standards (e.g. the ALARP

pattern). Many of these patterns have been documented and presented in the pattern

catalogue presented as Appendix B of this thesis.

 219

The emphasis so far in the patterns work has been on capturing and documenting best

practice safety arguments observed within existing safety cases. Consequently, there

has been less evaluation of the application of documented patterns in new safety cases.

However, the ALARP pattern presented in Appendix B was used as the basis of an

argument constructed for a case study conducted for the U.K. Ministry of Defence

(evaluating possible application of the ALARP principle to software systems) [101].

Also, the instances of the Diverse Evidence, Fault Tree and Safety Margin patterns

presented in Appendix B (developed from personal experience) can be identified within

the Trip System safety argument presented in Appendix A.

Experience from the ALARP and Trip System Examples has strongly suggested that

documented patterns should be used as advisory material in the structuring of new

arguments. The structures documented within the Safety Case Patterns should not be

viewed as definitive solutions, instead they should be used to inspire and guide new

structures. In this sense, Safety Case Patterns probably follow the intent of Alexandrian

patterns [72] more closely than software Design Patterns [82]. The patterns have also

been found to serve well as a reference point (e.g. in the case of ALARP arguments) for

checking the quality and completeness of new structures. Put another way, they have

been found to form a useful basis for guiding review of safety cases.

6.3.3.4 Safety Case Patterns: Pilot Industrial Application

The author is currently involved in a study for Rolls-Royce Marine Power to develop a

set of Safety Case Patterns capturing successful arguments of compliance against the 78

safety principles listed in the U.K. Ministry of Defence Safety Principles and Criteria

for the Nuclear Naval Programme [98]. This work has involved studying a number of

existing compliance arguments for different classes and levels of equipment – e.g. for

an overall site down to individual components – and attempting to extract and document

the essential principles and structure of the arguments as Safety Case Patterns. A

number of these Safety Principles Safety Case Patterns have been developed, including

the following:

• Overall Safety Principles Compliance Pattern

• Safety Principle 6 (Defence in Depth) Compliance Pattern

• Safety Principle 7 (Accident Prevention) Compliance Pattern

• Safety Principle 8 (Accident Mitigation) Compliance Pattern

 220

• Safety Principle 22 (Plant Process Control Systems) Compliance Pattern

• Safety Principle 24 (Reliability Targets) Compliance Pattern

(Unfortunately, owing to the security classification of this material, only the Safety

Principle 6 pattern has been presented in Appendix B) Although a thorough peer review

of these patterns has not yet been carried out, they have been used in workshop sessions

(with groups of engineers within Rolls-Royce Marine Power) to aid in the construction

of new safety arguments. For example, the Defence in Depth pattern has been presented

and used to guide the structure developed, after identification that it applied to the

system in question.

Feedback from those engineers who have been exposed to the patterns has suggested

that there are three principal benefits of the patterns:

• As exemplar goal structures, they serve as a teaching aid to those unfamiliar with

the GSN.

• They help to prevent the engineers from omitting (or glossing over) aspects of the

compliance arguments.

• They speed up the process of developing new safety arguments by reducing time

spent in identifying an approach to structuring the argument.

There have also been some difficulties identified with the patterns developed. The

safety principles expressed in [98] are generically applicable across a wide range of

systems, and at a number of levels in the system decomposition. As such it has been

found that the unique interpretations of the principle offered by the patterns developed

can be difficult to apply in some circumstances (e.g. if attempting to apply at component

level a pattern that has been developed at ‘whole system’ level). Consequently, it has

been recognised that a number of patterns may need to be developed for each principle

– representing the different styles of interpretation possible. However, this can be seen

to be of value as it is making explicit the fact that there are multiple valid interpretations

of the principle.

6.3.3.5 Safety Case Patterns: Real Industrial Application

To some extent, the pilot project described in the previous section is also a true

industrial application. However, Safety Case Patterns have yet to be integrated as part

of the safety argument development on a live project.

 221

Others have already adopted the concept of Safety Case Patterns, as published in [95],

for use in their research work. An MSc thesis entitled ‘Patterns for Safety Critical

Systems’, written by Born [102], has integrated the Safety Case Patterns concept with

conventional Design Patterns.

6.4 Summary of Evaluation To Date

As is hopefully communicated by Section 6.3, the author has been fortunate in being

able to evaluate the approach defined within Chapters Three, Four and Five of this

thesis through exposure to industrial practitioners and application on industrial

examples and projects. Of the three strands of research the GSN Method and approach

to supporting incremental development has been most thoroughly evaluated. Owing to

the nature of the approach, and time limitations, use of GSN Support in safety case

maintenance has received least evaluation of the three areas. Safety Case Patterns have

had substantial evaluation – the presentation of further patterns appears only limited by

the time required to document them fully! (new candidate patterns are identified

regularly). One area lacking is experience of the re-application of patterns. However,

as described in Section 3, the patterns have already served one purpose by providing a

means of simply presenting safety argument construction knowledge.

6.5 Further User Evaluation

As described in the introduction to this chapter, in addition to demonstrating the

feasibility of the approach defined in this thesis (as reported in sections 6.1 and 6.2), it

is desirable that user evaluation be carried out to demonstrate the positive benefits

achieved through adopting the approach. In order to do this it is necessary to derive a

number of success criteria (or ‘critical success factors’) for the approach.

Use of thesis approach
provides benefit in safety
case development

BenefitClaim

Use of thesis approach improves
the quality of the safety cases
produced

ProductClaim

Adoption of the thesis
approach improves the safety
case development process

ProcessClaim

Figure 107 – Thesis Benefit Argument

 222

Figure 107 shows the overall claim that adopting the approach presented in this thesis

provides benefit in safety case. This claim can be broken down into two sub-claims.

The first sub-claim is that the approach improves the processes of safety case

development. The second sub-claim is that the approach improves the quality of the

safety case product. We will address the process argument first.

Adoption of the thesis
approach improves the safety
case development process

ProcessClaim

OverElements

Argument over the three
elements of the approach

ThesisApproachElements

Elements are: Support for Initial
Development, Support for

Maintenance, and Support for
Reuse

Adoption of the thesis
approach improves the
initial development process

InitDevelopmentProcess

Adoption of the thesis
approach improves the
maintenance process

MaintenanceProcess

Adoption of the thesis
approach improves the reuse
process

ReuseProcess

Figure 108 – Thesis Process Benefit Argument

Figure 108 decomposes the process benefit claim over the three elements of the thesis

approach – i.e. we are arguing an overall benefit in the process through benefits in the

specific processes of development, maintenance and reuse. These general claims can

now be decomposed to specific success criteria. Figure 109 shows the derivation of

success criteria for improvement in the development process. The following three

specific claims are put forward for the thesis approach (regarding the development

process):

• Quicker Development

• Reduction in Rework

• Reduction in Iterations to Agreement (e.g. between developer and independent

safety assessor, or developer and regulator)

 223

Adoption of the thesis
approach improves the initial
development process

InitDevelopmentProcess

QuickerDevelopment

Adoption of thesis approach
results in the quicker definition
of safety arguments

ReduceRework

Adoption of thesis approach reduces
effort wasted in design rework due to
late discovery of certification
concerns

ReduceIterations

Adoption of thesis approach reduces
effort wasted in excessive iterations of
reaching agreement on argument
approach

Figure 109 – Development Process Success Criteria

Similarly, the maintenance claim can be decomposed to the criteria shown in Figure

110.

Adoption of the thesis approach
improves the maintenance
process

MaintenanceProcess

Adoption of the thesis approach
reduces the time required for
safety case maintenance activities

QuickerMaintenance SystematicMaintenance

Adoption of the thesis approach
improves the effectiveness of
safety case impact assessment

ReduceRediscovery

Adoption of the thesis approach
reduces the time required to
'rediscover' safety arguments in
historical safety cases

ReduceImpactIdentification

Adoption of the thesis approach
reduces the time required to identify
the impact of changes to the safety
case

Figure 110 – Maintenance Process Success Criteria

Figure 110 shows that the following three specific claims are put forward for the thesis

approach regarding the maintenance process:

• Reduction in the time required to rediscover the arguments in existing safety

cases

 224

• Reduction in the time required to identify the impact of changes to the safety

case

• Improvements in the effectiveness of the impact assessment process

Figure 111 shows the derivation of the reuse related process criteria.

Adoption of the thesis approach
improves the reuse process

ReuseProcess

QuickerDevelopment

Adoption of thesis approach
results in the quicker definition
of safety arguments

Adoption of the thesis approach
reduces the potential for the (process)
problems of informal safety case
reuse

ReducesReuseProcessProblems
InformalReuseProblems

The Problems of Informal
Safety Case Reuse

(Chapter 5, Section 5.2)

ReduceAdhoc

Adoption of the thesis approach
reduces the ad-hoc nature of
safety case reuse

ReduceLossOfKnowledge

Adoption of the thesis approach
reduces the risk of losing vital
safety case development expertise

Figure 111 – Reuse Process Success Criteria

Figure 110 shows that the following three specific claims are put forward for the thesis

approach regarding the reuse process:

• Quicker Development (as also stated in Figure 109)

• Reduction in ad-hoc reuse of safety case artefacts

• Reduction in risk of losing safety case development expertise

The claim that the thesis approach benefits the safety case product can similarly be

decomposed. Figure 112 shows the first part of this decomposition (again over the three

strands of the thesis approach).

 225

Use of thesis approach improves
the quality of the safety cases
produced

ProductClaim

Adoption of the thesis
approach improves the quality
of the future safety cases

ReusedProduct

Adoption of the thesis
approach improves the quality
of the maintained safety case

MaintainedProduct

Adoption of the thesis
approach improves the quality
of the initial safety case

InitialProduct

ThesisApproachElements

Elements are: Support for Initial
Development, Support for

Maintenance, and Support for
Reuse

OverElements

Argument over the three
elements of the approach

Figure 112 – Thesis Process Benefit Argument

These general claims can now be decomposed to specific success criteria regarding the

product of the safety case. Figure 109 shows the derivation of success criteria for

improvement in the developed product.

Adoption of the thesis approach
improves the quality of the initial
safety case

InitialProduct

ClearerArguments

Adoption of the thesis approach
results in more clearly
communicated safety arguments

Figure 113 – Developed Product Success Criteria

The following claim is put forward:

• More clearly communicated safety arguments

Figure 114 shows the derivation of the maintenance related product criteria.

 226

Adoption of the thesis approach
improves the quality of the
maintained safety case

MaintainedProduct

AccurateUpdate

Adoption of the thesis approach
results in the safety case being more
accurately and completely updated in
the light of a change

Figure 114 – Maintained Product Success Criteria

The following claim is put regarding the quality of safety cases maintained using the

thesis approach:

• More accurately and completely updated safety cases

Figure 115 shows the derivation of the reuse related product criteria.

Adoption of the thesis approach
improves the quality of the
future safety cases

ReusedProduct

InformalReuseProblems

The Problems of Informal
Safety Case Reuse

(Chapter 5, Section 5.2)

Adoption of the thesis approach
reduces the potential for the (prduct)
problems of informal safety case
reuse

ReducesReuseProductProblems

ReducesInappReuse

Adoption of the thesis
approach reduces
inappropriate safety case reuse

ReducesInconsistency

Adoption of the thesis approach
reduces inconsistency of
arguments between safety cases

ImprovesTraceability

Adoption of the thesis approach
improves the traceability of
reused safety case arguments

Figure 115 – Reused Product Success Criteria

Figure 115 shows that the following three specific claims are put forward for the thesis

approach regarding ‘reused’ safety cases:

 227

• Reduction in inappropriate safety case reuse

• Reduction in inconsistency of arguments between safety cases

• Improvement in the traceability of reused safety case arguments

The undeveloped leaf goals (claims) of the goal structure presented in Figure 107

through to Figure 115 represent the success criteria against which the thesis approach

can be assessed. Whereas the evaluation presented in sections 6.1 and 6.2 sought to

demonstrate the feasibility and acceptability of the approach, further evaluation can now

be focussed towards collating evidence to substantiate the specific success criteria. For

example, the following two forms of evidence could be used to support the benefit

argument:

• Structured questionnaires for engineers experienced in safety case development who

have used the approach

• Project metrics

Questionnaires could be structured around the leaf goals given in the goal structure

shown in Figure 107 through to Figure 115. For each leaf goal a response could be

solicited from the practitioner. For example, for the ‘QuickerDevelopment’ claim in

Figure 109, the following question could be posed:

 QuickerDevelopment

Consider the following statement:

“Adoption of the GSN Approach results in the quicker definition of safety arguments”

Do you:

 Strongly Disagree Strongly Agree

 1 2 3 4 5 6 7 8 9 10

Where appropriate a follow-on question could be posed regarding the estimated extent

of the improvement, e.g.:

 228

Continued QuickerDevelopment

What percentage reduction in time-scales do you estimate can be achieved through

adoption of the GSN approach?

 Low High

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

The value of the (subjective) answers gained from asking such questions depends

heavily on the experience of those being questioned. Therefore, it would also therefore

be important to collate information regarding the experience of the questionnaire

subjects, e.g. through a question of the following form:

 SCDExperience

How many years experience of safety case development have you had?

 0-2 2-5 6-10 10-15 16+

For more objective evidence to support the claimed benefits of approach it would be

necessary to collect project metrics. For each of the identified success criteria we would

need to identify an appropriate metric. In some cases, the appropriate metric would be

easy to determine. For example, for the ‘QuickerDevelopment’ claim the appropriate

metrics would be the elapsed time and resource used on the safety argument definition

task. For others the choice of metric would be harder to determine. For example, it

would be hard to define an appropriate metric to support the ‘ClearerArguments’ claim

owing to the subjectivity involved in judging the clarity of an argument. In this case an

indirect, and therefore imperfect, measure would have to be used, e.g. the Length of

Presentation (Number of Pages).

The fundamental problem underlying the use of metrics to substantiate the success

criteria lies in the relativistic nature of the claims. We are claiming some improvement

(e.g. quicker development) over current practice. Therefore, we require not only

metrics on the application of the approach, but also on the non-application of the

 229

approach. In an ideal world these metrics would be gained from running a project twice

- once with the approach and once without the approach. However, it is extremely

difficult to get companies such as Rolls-Royce to conduct such a study (due to the effort

involved). Therefore in reality we will be forced to make comparisons of new projects

that use the approach with similar (in terms of size, complexity, staff involved etc.) past

projects run without using the approach.

6.6 Conclusions

This chapter has reported the successful evaluation activities so far carried out

demonstrate the feasibility and acceptability of the approach defined in Chapters Three,

Four and Five of this thesis. In addition we have indicated how further evaluation of the

benefit of the approach could be conducted. Although it is has not been possible to

conduct this form of evaluation within the time-scale of the doctoral programme, we

believe that the approach has already been shown to be both a valid and capable tool for

safety case management.

 230

 231

Chapter 7:

Conclusions

7.1 Concluding Remarks

This thesis has defined and demonstrated a coherent approach to the development,

presentation, maintenance and reuse of the safety arguments within a safety case. This

approach is based upon a graphical technique – the Goal Structuring Notation (GSN).

Specifically, the contribution of the research presented in this thesis lies in three areas:

• Definition and evaluation of a method for the use of the GSN, and description

of an approach to supporting incremental safety case development.

• Definition and evaluation of a systematic process for the maintenance of a

GSN-structured safety argument.

• Definition and evaluation of Safety Case Patterns – a means of supporting and

promoting the reuse of successful safety arguments between safety cases.

The following sections draw some conclusions from each of these elements of the

research.

7.1.1 Conclusions on the Presentation and Development Contribution

In Chapter Two other existing approaches to presenting safety arguments are surveyed.

It is important to note that the work presented in this thesis pre-dates many of the

alternative approaches described. In some cases the principles underlying the approach

are believed to have influenced these approaches (this is known to be true, for example,

for the ‘Claim Structures’ presented in DS 00-55 [9, 37]).

Although these alternative approaches share the fundamental intent of communicating

clear safety arguments with the approach defined in this thesis in Chapter Three and

[57], their expressive power is not as great, and neither have they been subject to the

same extensive evaluation. In some cases (e.g. Tabular Presentation), the author’s

observation of examples of their application suggests that they can still suffer some of

the same problems of ambiguity and comprehension as experienced with free-form text.

As shown by some of the early experiences of presenting safety arguments using the

Toulmin notation [42] there is an important trade-off to be recognised between

 232

expressive power and ease of adoption. A technique may have great expressive power,

but if it proves too complex to be easily understood and adopted by engineers for use on

real projects it is of little value. Conversely, a technique may be extremely easy to

adopt, but may offer little added value in its presentation of safety arguments. The

method defined in [57] has attempted to strike the correct balance between these two

considerations. In particular, the research has aimed to minimise unnecessary

complexity – resulting in some simplification of the original GSN concepts.

The capability of the technique to handle realistic industrial examples has been

demonstrated through the evaluation activities described in Chapter Six. Here the

observations from its exposure to a significant and representative population of

engineers show that value is added when the technique is adopted. The successful

adoption of the GSN method on industrial projects has also enabled me to gain

confidence that the techniques can be understood and utilised by others than myself.

7.1.2 Conclusions on the Maintenance Contribution

The key contribution made by the maintenance approach presented in Chapter Four is

the definition and evaluation of a systematic process for the maintenance of safety

arguments where no such systematic process previously existed. None of the alternative

approaches described in Chapter Two has been developed to the point at which any

explicit support for the maintenance of safety arguments has been defined.

7.1.3 Conclusions on the Reuse Contribution

The concept of Safety Case Patterns described in Chapter Five, to support the managed

reuse of safety arguments, is particularly novel. No comparable approaches appear to

exist. Evaluation of Safety Case Patterns in an industrial context has shown them to

achieve their intended purpose, and to be readily accepted and applied by practitioners.

7.1.4 Overall Conclusions

The presentation and management of safety arguments will always be an aspect of

safety case development where total objectivity is unattainable and subjectivity must

therefore be expected and managed. (This is due to the nature of claim and inference

and human creativity in using such devices). This thesis has aimed to define an

approach in which subjectivity has been reduced to a realistically low level, whilst

providing sufficient expressive power to support the activities of safety case

development, maintenance and reuse. Evaluation of the approach has also exhibited

 233

that subjectivity is correctly restricted to, and highlighted in, the details of the

arguments presented, rather than appearing in the mechanisms through which they are

presented.

It is recognised that the management of safety arguments is only one aspect of the

overall management of the safety case. (Other important aspects include the selection

and management of supporting evidence techniques, hazard log management and

configuration management of the complex document structures produced). However, as

described in Chapter One, the presentation of a clear, comprehensive and compelling

safety argument remains the prime objective of any safety case. It is for this reason that

this thesis can be claimed to have addressed issues that are at the heart of the safety case

management process.

7.2 Further Work Areas

During the course of the research a number of areas worthy of further investigation have

been identified, these include:

• Application of GSN approach and method to other (non-safety) domains

• Development of Anti Safety Case Patterns

• Expression of Safety Case Architectures using Safety Case Patterns

• Systems engineering process issues surrounding Safety Case Patterns

• Integrating Bayesian Belief Networks with the GSN approach

• Augmentation of the change process to include version management and integration

with conventional documentation configuration management

• Tighter interrelation of pattern instantiation and change process

• Additional (alternative) syntax rules within the GSN method

A brief introduction to the further work possible in these areas is presented in the

following sections.

7.2.1 Application of GSN to other (non-safety) domains

It has been suggested many times that the Goal Structuring Notation and Method could

equally usefully be applied in articulating and managing arguments within other

 234

domains. In particular the following possible applications have been suggested to the

author:

• Expressing and Maintaining Design Intent – it has been suggested that goal

structures be developed to represent how design objectives have been decomposed

and eventually satisfied by introducing particular design features or by taking

particular design decisions. Having developed this structure, the principles of

change management could be used to ensure that design intent is maintained

throughout the operational life of the design.

• Use in expressing corporate research / capability acquisition strategy – it has

been suggested that overall corporate objectives be expressed as goals. Goal

structuring could then be used to show how these objectives have been decomposed

and addressed through particular programmes and projects

• Use in a management consultancy process - ‘Issue’ diagrams are often

constructed as part of a conventional management consultancy process. These

diagrams are used in part to express arguments in support of decisions. It has been

observed that in the absence of syntax rules and a systematic basis for the expression

of such arguments, and without any pressure to provide evidence for statements, the

arguments presented are often ill-expressed and unfounded. For this application it

has been suggested that statements of decision and intended effect be expressed as

top goals with the supporting goal structure being used to express the reasons why

this decision can be expected to have this effect (and the evidence to support these

claims).

The work presented in this thesis has focussed on the use and evaluation of GSN in

supporting safety case arguments. However, investigating its wider application in the

above areas remains an interesting area for further work.

7.2.2 Anti Safety Case Patterns

The concept of Safety Case Patterns presented in Chapter Five was developed in order

to capture and promote examples of ‘best practice’ safety arguments. However, it

would also be interesting to develop the concept of ‘anti-patterns’ that communicate

weak or flawed safety arguments – such that they may be recognised and avoided in

future developments. Such patterns could be used as a basis for challenging existing

safety cases – i.e. by identifying recognised anti-patterns within the argument presented.

 235

Such anti-patterns would be useful tools for safety case reviewers, and would offer more

stringent guidance than checklists or rules on the wording of goals and other elements of

GSN arguments.

7.2.3 Safety Case Architectures using Safety Case Patterns?

Building on the concept of Safety Case Patterns, it would be interesting to investigate

how patterns can be composed together to form architectural solutions to constructing

overall safety case arguments. This work may involve developing the concept of meta-

patterns – i.e. patterns that describe the application of patterns.

7.2.4 Safety Case Patterns – Process Issues

With the further industrial application of the Safety Case Patterns concept, issues arise

concerning how patterns can best be integrated into a total engineering process. In

particular, when and how should patterns be introduced into new development activities

such that they can provide maximum benefit without stifling the creation of (equally or

more useful) alternative approaches?

It would also be worthwhile to examine the relationships that exist, or could be

developed, between Safety Case Patterns and other existing (or future) forms of

engineering patterns (e.g. software Design Patterns). Relating patterns in this way

would begin to communicate the interrelationships that exist between different

development viewpoints (e.g. recognition that adoption of a particular design strategy

implies an associated safety argument approach).

7.2.5 Integrating Bayesian Belief Networks with the GSN approach

Bayesian Belief Networks (BBNs) were described briefly in chapter 2. Whereas GSN

provides a means of presenting (essentially unweighted) inferences between the claims

of a safety argument, BBNs provide a means of deriving, modelling and quantifying the

belief in the inferences between claims. Some initial thought has been given to how

these two techniques relate. This has led to the belief that a BBN used to derive a

quantitative claim (from qualitative or quantitative evidence) has a corresponding GSN

pattern. This pattern would present the ‘output’ claim supported by the ‘input’ claims

of the BBN, justified by the causal links and the conditional probabilities given in the

BBN. Further work could be done to explore this belief.

 236

7.2.6 Augmentation of Change Management

The change management process defined in Chapter Four presents the rudimentary

steps of change management as an illustration of how the GSN can be used to support

systematic impact assessment. It would be possible to extend the fine-grain

configuration management approach so that it became a fine-grained version

management approach that enabled the development and maintenance of audit trails

over the goal structure, for example. Some tentative work by the author in this area has

revealed the potential complexity of the mechanisms required, but it nonetheless

remains an area worth further investigation.

7.2.7 Interrelation of Patterns and Change Management

The instantiation of Safety Case Patterns within a new safety case development has a

correspondence with the change management principles proposed. In the same way that

a challenged goal structure must go through the process of repair and recovery, an

instantiated pattern must be reconciled with its target context. The process of

reconciliation is analogous to challenging all the peripheral elements of the pattern.

Further work could be done to explore and define the relationship that exists between

the activities of reuse and change – possibly leading to a simpler and more powerful

process.

7.2.8 Alternative syntax rules within the GSN method

As already discussed in the previous chapter, evaluation of the GSN method has

identified that, although the syntax rules as defined achieve the desired intention of

restricting the phrasing of goal structures such that well-formed and logical arguments

result, they may be overly restrictive – denying other valid sentential structures. Further

study of English syntax and its use in argumentation could be undertaken to define

additional syntax rules. (However, there is a real risk that adding complexity to the

method could make it harder for practitioners to adopt.)

7.3 Coda

The ultimate ‘proof’ of the approach defined within this thesis would be that safer

systems have resulted. Although evaluation has already been extensive, there is no

direct evidence of this as yet, simply because to collate and correlate such evidence

requires more prolonged industrial exposure, and in particular more elapsed time, than

is possible within the confines of a Doctoral programme. Nevertheless, conclusions

 237

from the research to date, and the level of interest shown by both industry and

certification bodies, suggest that it is not unrealistic to expect this level of contribution

in the long run.

 238

 239

Appendix A:

Nuclear Trip System Safety Case Example

This appendix illustrates the use of the Goal Structuring Notation in the construction

and presentation of a safety case. The technical basis of the safety case and textual

description has been taken directly from an example produced by Adelard - presented in

[36]. Goal structures have been integrated with this information to communicate the

implicit structure explicitly and to improve the traceability of the safety argument. The

safety case concerns a reactor trip system. As far as possible, the intention has been to

present requirements and safety arguments that are similar to those for real reactors.

Italics have been used to highlight text that has come directly from the Adelard

example. This shows clearly that we have used the Adelard text primarily to provide

the system description and description of supporting evidence. The presentation of the

safety requirements and safety arguments (goal structures and supporting text), although

based upon the argument communicated in the Adelard example, has been generated

anew.

In the Adelard example, three key devices were used to communicate the flow of the

safety argument:

• Traceability Matrices (mapping requirements to design features)

• Tabular Arguments

• Cross-references within safety case text

In this example, we have instead used goal structures as the principal device for

presenting the safety arguments. Discussion of the perceived benefits of adopting this

approach with this example is presented in Chapter Three, Section 3.10.

The goal structures presented in this appendix have been constructed according to the

goal structuring method defined in [57].

We have also used this safety case as the basis of two change examples given in Chapter

Four, Section 5, and to illustrate instances of some of the safety case patterns presented

in Appendix B. Footnotes are used to highlight instances of patterns that can be

observed in the safety argument.

 240

Contents

1 INTRODUCTION 243

1.1 BACKGROUND ...243

1.2 OBJECTIVE & SCOPE ..243

1.3 DOCUMENT STRUCTURE ...244

2 TRIP SYSTEM ENVIRONMENT 244

2.1 THE PLANT..244

2.2 SENSORS AND ACTUATORS..245

2.3 FAILURE MODES ...245

3 SAFETY ARGUMENT APPROACH 245

4 TRIP SYSTEM HAZARDS 246

5 TRIP SYSTEM REQUIREMENTS 246

5.1 FUNCTIONAL REQUIREMENTS ..246

5.2 PERFORMANCE REQUIREMENTS...247

5.3 OPERATIONAL AND MAINTENANCE REQUIREMENTS...247

5.4 THROUGH-LIFE INTEGRITY REQUIREMENTS ...248

5.5 SAFETY CRITERIA ...249

6 TRIP SYSTEM DESIGN 249

6.1 REDUNDANT CHANNELS AND THERMOCOUPLES...250

6.2 FAIL-SAFE DESIGN FEATURES ...250

6.3 SEPARATE MONITOR COMPUTER ...251

6.4 SIMPLICITY ...251

6.5 FORMALLY PROVED SOFTWARE...252

6.6 1OO2 (1 OUT OF 2) HIGH TRIP LOGIC...252

6.7 2OO2 (2 OUT OF 2) LOW TRIP LOGIC..252

6.8 PROGRAM AND TRIP PARAMETERS IN PROM..252

6.9 MODULAR HARDWARE REPLACEMENT..252

6.10 USE OF MATURE HARDWARE AND SOFTWARE TOOLS...252

6.11 ACCESS CONSTRAINTS ..252

7 FUNCTIONAL ARGUMENTS 253

8 PERFORMANCE ARGUMENTS 254

8.1 FAILURE ON DEMAND ARGUMENT (G.PFD)...254

8.2 RESPONSE TIME ARGUMENT (G.TIM) ...259

8.3 STATIC TIMING ANALYSIS ARGUMENT (G.TIM.STAT) ..260

8.4 TIMING TEST & REVERSIBLE COMPUTING ARGUMENT (G.TIM.TEST &

G.TIM.FS)...260

9 OPERATIONAL ARGUMENTS 261

 241

9.1 TIME TO REPAIR ARGUMENT (G.FIX)... 261

9.2 SPURIOUS TRIP RATE ARGUMENT (G.STR)... 262

9.3 TESTABILITY ARGUMENT (G.TST).. 263

10 THROUGH-LIFE INTEGRITY ARGUMENTS 263

10.1 MAINTENANCE ERROR ARGUMENT (G.SEC) .. 263

10.2 UPDATE ARGUMENT (G.UPD).. 265

10.3 SAFETY CASE VALIDITY ARGUMENT (G.VALID) ... 268

11 SAFETY CRITERIA 269

11.1 SINGLE FAULTS (G.FAULT1)... 269

11.2 TWO FAULTS (G.FAULT2)... 270

12 EVIDENCE FROM THE DEVELOPMENT PROCESS 270

13 LONG-TERM SUPPORT ACTIVITIES 271

14 SUPPORTING ANALYSES 272

14.1 PROBABILISTIC FAULT TREE ANALYSIS .. 273

14.2 ANTICIPATED CHANGE ANALYSIS.. 276

14.3 ANALYSIS OF MAINTENANCE AND OPERATIONS.. 277

15 SAFETY LONG-TERM SUPPORT REQUIREMENTS 278

15.1 SUPPORT INFRASTRUCTURE... 278

15.2 MAINTENANCE SUPPORT RISKS... 279

15.3 REGULAR ANALYSES.. 279

16 ELABORATION TO SUBSYSTEM REQUIREMENTS 280

16.1 SOFTWARE FUNCTIONAL REQUIREMENTS... 281

17 CONCLUSIONS 283

 242

Table of Figures

Figure 113 – Safety Objective (Safe) and Argument Strategy ..245

Figure 114 – Functional Requirements (S.FUNC) ...246

Figure 115 – Performance Requirements (S.PERF) ...247

Figure 116 – Operational and Maintenance Requirements (S.OPER).....................................247

Figure 117 – Through-Life Integrity Requirements (S.INT)...248

Figure 118 – Safety Criteria (S.CRIT)...249

Figure 119 – Trip System Architecture..249

Figure 120 – Dynamic Check Logic for a Reactor Trip Channel ..251

Figure 121 – Functional Arguments (G.TRIP)...253

Figure 122 – Failure on Demand Argument (G.PFD)...254

Figure 123 – Random Failures (G.PFD.RAND) ..256

Figure 124 – Incredibility of Systematic Faults (G.NO-FLT)...257

Figure 125 – Systematic Failures (G.PFD.SYST.1) ...258

Figure 126 – Systematic Failures (G.PFD.SYST.2) ...258

Figure 127 – Response Time Argument (G.TIM) ..259

Figure 128 – Static Timing Analysis Argument ...260

Figure 129 – Timing Test Argument (G.TIM.TEST) ...260

Figure 130 – Time to Repair Argument (G.FIX)..261

Figure 131 – Spurious Trip Rate Argument (G.STR)...262

Figure 132 – Testability Argument (G.TST)..263

Figure 133 – Maintenance Error Argument (G.SEC) ...264

Figure 134 – Maintenance Safeguards (G.SEC.SG)...265

Figure 135 – Update Argument (G.UPD) ..266

Figure 136 – Anticipated Changes (G.UPD.AC)..267

Figure 137 – Changes to Data and Program (G.UPD.DATA & G.UPD.PROGRAM)268

Figure 138 – Safety Case Validity Argument (G.VALID)..269

Figure 139 – Single Faults (G.FAULT1) ...270

Figure 140 – Two Faults (G.FAULT2) ..270

Figure 141 – Table of Explicit Safety Case Assumptions...280

 243

A.1 Introduction

A.1.1 Background

(The following section is taken from ‘Nuclear Reactor Engineering’ [103].)

Nuclear power generators are designed to produce heat to satisfy the demand for steam

by a turbine generator, up to a specified limit. The reactor control system, with its

automatic and manual controls, serves to maintain safe operating conditions as the

demand is varied. Because excess cooling capability is provided in the design of the

reactor system, overpower can be tolerated without causing damage to the fuel rods. If

the thermal power should exceed the limiting value or if other abnormal conditions

which might endanger the system should arise, the reactor protection system would

cause reactor trip (or "scram").

The purpose of the protection system is to shut the reactor down and maintain it in a

safe condition in the event of a system transient or malfunction that might cause damage

to the core, most likely from overheating. If sensors indicate a transient that cannot be

corrected immediately by the control system, the reactor is shut down automatically by

the protection system.

An essential requirement of the reactor protection system is that it must not fail when

needed; on the other hand, unnecessary trips must be avoided for availability / economic

reasons.

A reactor trip (or primary protection) system forms just one part of the (‘defence-in-

depth’) accident prevention measures taken in a typical reactor. Other measures include

emergency cooling, the containment offered by the reactor pressure vessel and reactor

housing, and fans and sprays to prevent over-pressurisation of the reactor coolant

circuits.

A.1.2 Objective & Scope

The objective of this document is to present the argument that the trip system design as

proposed is acceptably safe to operate as part of the overall safety measures in the

nuclear reactor.

This safety case addresses primarily the design of the trip system. Safety arguments

addressing the safety of the procedures surrounding the operation and maintenance of

the system are assumed to be outside the responsibility and scope of this document.

However, this document does appeal to the existence of such arguments. The safety

 244

case also assumes a design for the broader reactor system and the results of hazard

analysis at this level to set the probabilistic failure targets used. The derivation and

justification of such information is outside the scope of this example.

As discussed in Section 16, the safety objectives laid out in this document can be further

apportioned to the subsystems of the system architecture presented. However, this is

beyond the scope of this document.

A.1.3 Document Structure

Section 2 of the document provides contextual information concerning the environment

in which the trip system is placed.

Section 3 sets out the approach that has been adopted in the presentation of the high

level safety argument for this system.

Section 4 defines the principal hazards of the trip system.

Section 5 presents the requirements that have been defined for safe operation.

Section 6 provides an overview of the trip system design – highlighting the key design

features.

Appealing to the safety aspects of the design presented, Sections 7 through 11 present

the safety arguments in support of the requirements defined in Section 5.

Process evidence required in support of the safety arguments is discussed in Section 12.

Summaries of the supporting evidence and analysis developed to support the safety

claims are presented in Sections 13, 14 and 15.

The apportionment of the safety objectives set out in this document is discussed in

Section 16.

Finally, overall conclusions on the safety of this system design are presented in Section

17.

A.2 Trip System Environment

A.2.1 The Plant

The plant is a gas-cooled nuclear reactor containing 400 fuel pins. Each pin is in a

separate gas duct and is cooled by carbon dioxide gas, and if the gas flow is restricted

in any duct the fuel pin could overheat and rupture. A reactor trip system is required to

trip the reactor if an excessive temperature is observed in any duct.

 245

A.2.2 Sensors and Actuators

The temperature in each duct is measured by two thermocouples. The reactor trip is

implemented by dropping safety rods into the reactor.

A.2.3 Failure Modes

The rod drop system is designed to be fail-safe – i.e. in case of power loss the control

rods will drop into the reactor core.

Thermocouples can fail to an open circuit state, to a short circuit state or gradually

degrade.

A.3 Safety Argument Approach

The argument of acceptable safety presented in this document has been structured

around the safety requirements defined for the trip system.

As shown in the following figure, these requirements have been split into the following

five categories:

• Functional Requirements

• Performance Requirements

• Operational and Maintenance Requirements

• Through-life Integrity Requirements

• Safety Criteria

Safe (Top)

S.FUNC

Argument over functional
requirements

S.PERF

Argument over
Performance Requirements

S.OPER

Argument over operational
and maintenance
requirements S.INT

Argument over
through-life integrity
requirements

S.CRIT

Argument over safety
criteria

Trip system is acceptably
safe to operate

Safe

Trip System
Environment

S2

S5

Trip System
Requirements

S1.2a

Scope

S1.2b

Acceptability defined by
whole reactor system

context

Figure 116 – Safety Objective (Safe) and Argument Strategy

 246

The claim of acceptable safety is set clearly in the context of the scope as defined in

Section A.1.2 and clearly linked to the definition of the trip system environment given

in Section A.2. Also as discussed in Section A.1.2, ‘acceptability’ is set by the overall

reactor safety argument (not presented here).

The Trip System Requirements are presented in detail in Section 5. These requirements

are then used as the basis of the arguments presented in sections 7-11.

Both in Section 5 and the supporting Sections 7 to 11, goal structures have been used to

summarise the structure of the argument being presented.

A.4 Trip System Hazards

Analysis of the trip function has determined that there are the following two principal

system-level hazards of concern:

• Failure to trip on demand

• Tardy trip response to demand

Performance requirements in respect of these two hazards are defined in Section 5.2.

A.5 Trip System Requirements

The following sub-sections define the requirements of a notional reactor trip system

which has two thermocouple probes in each of the 400 individual reactor coolant ducts

to detect overheating.

A.5.1 Functional Requirements
S.FUNC (Functional Requirements)

S.FUNC

Argument over functional
requirements

Trip system will correctly
activate if the temperature is
too high in any gas duct

G.TRIP

Figure 117 – Functional Requirements (S.FUNC)

The argument of having satisfied all functional requirements depends on having

satisfied the one primary functional requirement of this system, that is the requirement

 247

for the system to trip the reactor when detected temperatures becoming too high. An

argument in support of this requirement is provided in Section 7.

A.5.2 Performance Requirements
S.PERF (Performance Requirements)

S.PERF

Argument over
Performance Requirements

Probability of failure on
demand < 0.001 per annum

G.PFD

Maximum response time is
< 5 seconds

G.TIM

Figure 118 – Performance Requirements (S.PERF)

The two performance requirements of the system concern the hazards identified in

Section 4. Namely, the hazards of failing to perform the trip function when required

and a tardy response to trip demand. For complete failure, a probabilistic requirement

of 1x10-3 per annum has been set. For tardy response, a response limit of 5 seconds has

been defined. It is necessary to demonstrate that these objectives can be supported.

Arguments in support of these requirements are provided in Section 8.

A.5.3 Operational and Maintenance Requirements
S.OPER (Operational Requirements)

S.OPER

Argument over operational
and maintenance
requirements

Spurious Trip Rate < 0.1 per
annum

G.STR

MTTR (including
identification) =< 10 hours

G.FIX

Trip System must be
testable whilst on-line

G.TST

Figure 119 – Operational and Maintenance Requirements (S.OPER)

The three operational requirements introduced here concern the following issues:

• Spurious Trips (trips when not required) –an availability concern.

 248

• Time Required for Fault Identification and Recovery (Mean Time To Repair

MTTR)

• Testability of System whilst continuing reactor operation.

Arguments in support of these requirements are provided in Section 9.

A.5.4 Through-life Integrity Requirements
S.INT (Through Life Requirements)

S.INT

Argument over
through-life integrity
requirements

Trip system can be modified to meet
anticipated changes with minimal risk
of maintenance induced faults

G.UPD

Trip system can withstand
maintenance errors and
malicious attacks

G.SECS14.2

Anticipated Changes
Validity of the Safety Case will
be maintained throughout the
operational life of the system

G.VALID

Figure 120 – Through-Life Integrity Requirements (S.INT)

The requirements introduced here concern the maintenance of the integrity of the trip

system and (supporting safety case) throughout the operational lifetime of the system.

The requirements address three separate concerns:

• ‘Design-for’ maintenance aspects of the trip design – to minimise the difficulties in

future maintenance.

• Design (and procedural) safeguards against possible errors in future maintenance.

• Vulnerability of the safety case evidence and argument to future system changes and

the adequacy of safety case review procedures

Arguments in support of these requirements are provided in Section 10.

 249

A.5.5 Safety Criteria
S.CRIT (Safety Criteria)

S.CRIT

Argument over safety
criteria

No single fault affects
availability

G.FAULT1

No two independent faults
affect safety

G.FAULT2

Figure 121 – Safety Criteria (S.CRIT)

Whatever design solution is proposed, it is necessary that it satisfies the safety and

availability criteria introduced in Figure 121. It is desirable that the system can tolerate

single failures without reducing the availability of the reactor. It is also desirable that

the system can tolerate two independent component failures (across the total trip

system) without compromising the safety of the trip function. Arguments that

demonstrate how these criteria have been addressed in the design as proposed in the

following section (Section 6) are given in Section 11.

A.6 Trip System Design

A system architecture has been evolved to satisfy the requirements introduced in Section

5. The system architecture is shown below in Figure 122. (PAC = Protection Algorithm

Computer, DCL = Dynamic Check Logic.)

PAC

PAC

PAC

PAC

DCL

DCL

DCL

DCL

Monitor
Computer

Isolation
Amplifiers

Square
wave
signal

Fail-safe
guardline
logic
2oo4

Coded
output
signal

Thermocouples

B

A

Serial lines

Figure 122 – Trip System Architecture

 250

An explanation of how this design is intended to function is provided in the following

sections.

A.6.1 Redundant channels and thermocouples

Since there are four channels, a single channel failure will not cause a spurious trip,

similarly testing can proceed on a single channel without causing a trip. If two channels

fail to no-trip, the safety function is still maintained.

The 2oo4 (2 out of 4) channel voting reduces spurious trip rate in the presence of

random failures. With only two thermocouples however special arrangements are

needed to minimise the spurious trip rate due to thermocouple failures. If required, one

sensor of a pair can be disconnected and tested without the need for a veto (discussed

later).

The four channels and dual thermocouples also reduce the risk of a failure on demand,

and the risk of maintenance induced faults.

A.6.2 Fail-safe design features

Each Protection Algorithm Computer (PAC) produces a dynamic output signal which is

checked by the Dynamic Check Logic (DCL) check hardware. This design continuously

checks the integrity of the input/output and should be fail-safe if it encounters a

systematic or random fault. This reduces the risk of a failure on demand due to an

unrevealed fault and can aid fault detection.

The DCL checks for an expected output trip pattern based on the injection of test

signals as shown in Figure 123 below. A test signal is fed into each ADC input card

(which is assumed to service 8 analogue inputs). Half the test inputs are connected to

test source T1 and the other half to T2. The test sources T1 and T2 can produces values

which should be just above and just below the trip level. The test values are swapped

over by a test mode selector output from the DCL (the alternation occurs after a

complete scan). The test signal inputs to the PAC are carefully chosen to ensure that a

unique pattern of trip output signals is produced on alternate cycles. This checks the

operation of the input hardware and the setting of the trip level. It also detects “stuck-

at” inputs because the DCL expects different trip patterns on alternate scans and will

freeze if the wrong pattern is found.

 251

PAC

DCL

Test
Source

T2T1

Coded
output
signal

Square
wave
signal

Test mode selector

800 thermocouple
readings

Figure 123 – Dynamic Check Logic for a Reactor Trip Channel

The integrity of the underlying computer hardware and compiler is checked using the

reversible computing concept (see reference [104]). This is sensitive to both systematic

faults and random failures in the hardware or faults created by the compiler and should

result in a “freeze” which is fail-safe - it would also reveal malicious program

modifications. Time overruns caused by infinite loops are also detectable by the

reversible computing technique.

A.6.3 Separate Monitor Computer

This is an example of partitioning according to criticality. The more complex, but less

critical diagnostic functions are performed on a separate system. This simplifies the

design of the trip channel. Each channel provides:

• software configuration data (limits, version numbers etc.)

• measured values and trip results

The monitor computer can be used for pre-start checks on the consistency of the

software configurations in the four channels, and for on-line diagnosis of channel

failures and failures of thermocouples. By comparing outputs from the channels it is

possible to decide whether the fault resides in a channel or the thermocouple input

system. It can also be used to monitor long term degradation of thermocouples. If these

are severe, availability can be maintained by replacement or a “veto”.

A.6.4 Simplicity

The design has no intercommunication between channels and the A/D conversion is

performed within the PAC. There is no need for interrupt handling or buffering so the

software can be implemented as a simple cyclic program. This should be easy to test,

verify and maintain.

 252

Since the program is simple and cyclic, the worst-case response time is bounded, and

the worst case time is readily determined via timing tests or code analysis. The time

delays in the interfaces can also be measured to determine the overall response time.

A.6.5 Formally Proved Software

The simple cyclic program used within each PAC is amenable to formal proof.

A.6.6 1oo2 (1 out of 2) High Trip Logic

In order to minimise the risk of failing to trip on demand, either thermocouple reading

high will trip the reactor. To reduce the spurious trip rate, this design imposes a fail-

low direction on the thermocouples and buffer amplifiers. A veto for a high-failing

thermocouple forces the input low, but a double veto is fail-safe as it will cause a trip

(see below).

A.6.7 2oo2 (2 out of 2) Low Trip Logic

To ensure that the system is fail-safe if both sensors fail, the system will trip if a

thermocouple pair have readings well below the average sensor reading. This design

can withstand a transient loss of a single sensor (e.g. for repair) or a low-reading

sensor without using vetoes, this minimises the need for error-prone manual vetoes. The

sensor comparison can assist in detecting failed sensors.

A.6.8 Program and Trip Parameters in PROM

The program and trip parameters are stored in separate PROMs so changes cannot be

made without PROM-burning equipment and physical access to the machine.

Configuration errors can also be revealed by the on-line test inputs, the outputs to the

monitor computer and the periodic tests. This helps to ensure the intended trip function

is performed and reduces the risk of a failure on demand or a spurious trip.

A.6.9 Modular Hardware Replacement

Plug in cards reduce the repair time. Simple input-output interfaces can be easily

upgraded to accommodate new types of sensor.

A.6.10 Use of Mature Hardware and Software Tools

This reduces the risk of systematic faults within the system. This is an example of

avoidance of novelty.

A.6.11 Access Constraints

To limit the scope of maintenance error, all equipments are locked and can only be

 253

accessed using the appropriate key (different for each channel). All plugs and sockets

are uniquely identified or physically different to prevent misconnection. An indicator

light is used to show the operators when a cabinet is unlocked.

A.7 Functional Arguments

The objective of this section is to demonstrate how the functional requirements

introduced in Section A.5.1 are supported through the design features described in

Section A.6. The following goal structure (Figure 124) summarises the argument put

forward in support of the functional requirement G.TRIP. The dependency of the

safety claims on the design features is communicated through use of context references.

For example, G.TRIP.FP is put forward in the context of the design feature described in

Section A.6.5 ‘Formally Proved Software’.

G.TRIP

Design Simplicity assists in
the test and verification of
trip function

G.TRIP.DS

Software has been formally
proven to perform trip
function as specified

G.TRIP.FP

S6.4

Design Simplicity

S6.5

Formally proved
software

Program and trip parameters are
maintained in separate PROMs minimises
risk of introducing failures into trip
function

G.TRIP.PROM

S6.8

Program and Trip
Parameters in PROM

Mature hardware and software tools
have been used to minimise the risk of
systematic faults within trip function

G.TRIP.MAT
S6.10

Mature Hardware and
Software Tools

Trip system will correctly
activate if the temperature is
too high in any gas duct

G.TRIP

Figure 124 – Functional Arguments (G.TRIP)

Confidence in the correct execution of the trip function is gained from the following:

 254

• Formal Proof of the Software

• Integrity of the Trip Software and Trip Limits by being kept on separate PROMS

• Minimising Design Complexity

• Use of ‘tried and tested’ hardware and software development tools

A.8 Performance Arguments

The objective of this section is to demonstrate how the performance requirements

introduced in Section A.5.2 are supported through the design features described in

Section A.6.

A.8.1 Failure on Demand Argument (G.PFD)

The following goal structure (Figure 125) summarises the argument put forward in

support of the performance requirement G.PFD.

G.PFD

Probability of failure on
demand < 0.001 per annum

G.PFD

Either thermocouple reading high
will trip the reactor (to minimise
risk of failing to trip on demand)

G.PFD.1002

Program and trip parameters are
maintained in separate PROMs
minimises risk of introducing failures
leading to failure to trip on demand

G.PFD.PROM

Mature hardware and software tools
have been used to minimise the risk of
systematic faults leading to failure on
demand

G.PFD.MAT

S6.1

Redundant Channels
and Thermocouples

S6.2

Fail Safe Design
Features

S6.5

Formally proved
software

S6.6

1oo2 high trip logic

S6.8

Program and Trip
Parameters in PROM

S6.10

Mature Hardware and
Software Tools

Failure per demand due to
random failures is less than
0.001 per annum

G.PFD.RAND

Software has been formally
proven to perform trip
function as specified

G.TRIP.FP

Failure per demand is less
than 0.001 per annum even
if there are systematic faults

G.PFD.SYST.1

Fail-safe design will ensure that
at least 90% of failures due to
systematic faults are fail-safe

G.PFD.SYST.2

Risk of failure on demand due to an
unrevealed fault is reduced through
continuous on-line checks

G.PFD.FS

The four channels and dual
thermocouples reduce the
risk of a failure on demand

G.PFD.RED

Figure 125 – Failure on Demand Argument (G.PFD)

Qualitative arguments that provide confidence in the claim of low probability of failure

on demand are based on the following:

• Appeal to the redundancy aspects of the design – even without supporting

quantitative calculation the intuition is that this will improve system reliability.

 255

• Formal proof of the software – reducing the probability of failure due to systematic

errors in the software.

• On-line checks that make sure faults are not hidden until trip function demanded.

• Fail-safe nature of trip function

• Integrity of the Trip Software and Trip Limits by being kept on separate PROMS

• Use of ‘tried and tested’ hardware and software development tools

Quantitative arguments that support the claim of low probability of failure on demand

are based on the following:

• Exceeding the failure probability target (by 101) with respect to random faults2

• Meeting the failure probability target even when taking some account of systematic

faults

• Coverage of systematic faults by detection measures provided in design

These quantitative arguments are expanded in the following three sections.

2 The relationship between G.PFD.RAND and G.PFD is an instance of the ‘Safety Margin’ pattern

discussed in Section 8.1 of Chapter Five and presented as a documented pattern in Appendix B. Use of a

margin at this point increases confidence in stating G.PFD and reduces vulnerability to later evidence

and/or requirements change.

 256

A.8.1.1 Random Failures (G.PFD.RAND)
G.PFD.RAND

Failure per demand due to
random failures is less than
0.001 per annum

G.PFD.RAND

Hardware reliability analysis
supports fault tree estimates

G.PFD.REL

Probabilistic Fault Tree
Analysis estimates PFD to be
0.13 x 10-3 per annum

G.PFD.RAND.FTA

A1
Fault detection coverage

A

A2
Fail-safe bias of inputs

A

A3
Component failure rates

A

A4
Common mode factors

A

A5
Repair times

A

Systematic faults are
deemed to be incredible

G.NO-FLT

A12
Demand rate of 1 per

annum
A

S14.1

Probabilistic Fault
Tree Analysis

Figure 126 – Random Failures (G.PFD.RAND)

The argument of having achieved 10-4 probability of failure on demand is primarily

supported by the estimate derived from the Probabilistic Fault Tree Analysis

summarised in Section 14.13. As shown, this estimate is predicated on a number of

significant assumptions (described in more detail in Section 14.1). A peer claim to the

fault tree estimate is that hardware reliability analysis shows, for example, the failure

probabilities used within the fault tree to be reasonable.

The fault tree is limited to consideration of random failures. For the claim to be valid, it

is used in conjunction with the argument that systematic errors are deemed to be

extremely improbable (i.e. incredible). This argument is expanded in the following sub-

section.

3 This use of S14.1 to support the G.PFD.RAND.FTA claim is an instance of the ‘Fault Tree Evidence’

pattern presented in Appendix B.

 257

Incredibility of Systematic Faults (G.NO-FLT)

G.NO-FLT

Software has no
systematic faults

G.NO-FLT.SW

Hardware has no
systematic flaws

G.NO-FLT.HW

Established Design implies
there will be no systematic
hardware flaws

G.NO-FLT.HW.DES

Tests have not revealed any
systematic hardware flaws

G.NO-FLT.HW.TEST

A6

Inherent flaws will be
revealed and removed as a

result of extensive use A

Systematic faults are
deemed to be incredible

G.NO-FLT

A7

Requirements are correct

A

A8

Functional tests can reveal
all compiler induced faults

A

A9

Tests will reveal all miswiring
and mis-configuration

A

Code has been formally
proved

G.NO-FLT.SW.PRF

System has undergone
functional tests to reveal
compiler induced faults

G.NO-FLT.SW.TEST

Figure 127 – Incredibility of Systematic Faults (G.NO-FLT)

The argument of incredibility of systematic faults presented in

Figure 127 addresses faults both in hardware and software. For hardware, the claim is

supported by appeals to the use of an established design and having not detected any

flaws in testing. For software, the claim depends upon having formally proven the

software and the use of tests to reveal systematic errors introduced (after the

specification and coding stage) by the compiler. The assumptions associated with these

arguments are indicated in the figure.

A.8.1.2 Systematic Failures (G.PFD.SYST.1 and G.PFD.SYST.2)

The argument of having achieved 10-3 even when taking account of the possibility of

systematic failure is supported through appeal to reliability tests performed using

realistic test scenarios. This argument is depicted in Figure 128.

The assumption underlying this argument is that the test scenarios used were

sufficiently realistic that they exercised the majority of the trip system functionality.

Therefore, systematic faults likely to be experienced in operation would have been

revealed.

 258

G.PFD.SYST.1

Failure per demand is less
than 0.001 per annum even
if there are systematic faults

G.PFD.SYST.1

10e-4 reliability tests using
representative trips without failure
give more than 99% confidence in a
PFD of 10e-3

G.PFD.SYST.1.TESTCONF
A7

Requirements are correct

A

A16
Trip scenarios used in

testing are realistic
A

Sn2

10e-4 Reliability
Tests

Figure 128 – Systematic Failures (G.PFD.SYST.1)

G.PFD.SYST.2

Fail-safe design will ensure that
at least 90% of failures due to
systematic faults are fail-safe

G.PFD.SYST.2

Flaws in ADC, application software,
configuration, trip limits and trip logic
will be revealed by dynamic on-line
tests

G.CHECKS

Compiler, loader and processor
flaws are protected against by the
reversible computing technique

G.FS-RC

Double thermocouple
disconnection or veto will
cause a trip

G.HTL.TRIP
A13

Thermocouples fail low
in 90% of cases

A

A14

On-line tests detect 90%
of systematic failures

A

A15

Tests indicate a 99.995%
fail-safe bias

A

Figure 129 – Systematic Failures (G.PFD.SYST.2)

The argument supporting the claim of systematic fault detection and tolerance is based

upon the following three particular design features:

• The fail-safe trip behaviour in the event of low thermocouple readings.

 259

• The protection against systematic compiler, loader and processor flaws offered by

the use of the reversible computing technique. (This argument is expanded in [104].)

• The use of dynamic on-line checks to continually monitor the behaviour of the trip

system.

A.8.2 Response Time Argument (G.TIM)

The following goal structure (Figure 130) summarises the argument put forward in

support of the performance requirement G.TIM.

G.TIM

Maximum response
time is < 5 seconds

G.TIM

Design simplicity means that worst
case response time is bounded and can
be readily determined via timing tests
or code analysis

G.TIM.DS

S6.2

Fail Safe Design
Features

S6.4

Design Simplicity
Worst case response time
determined to be 2.7

G.TIM.STATIC

Worst measured time is
2.4 seconds

G.TIM.TEST
Excessive or infinite loops will
be detected by the reversible
computing implementation

G.TIM.FS

Figure 130 – Response Time Argument (G.TIM)

This argument is based upon both the worst measured and worst statically analysed

cycle times4. Coupled with these claims is an appeal to the simplicity of the trip system

design (use of a simple cyclic executive etc.) that was needed in order to make timing

analysis and testing possible. In addition, use of the reversible computer

implementation makes it possible to reveal when the trip software may have gone into

an infinite loop.

4 The use of both G.TIM.STATIC and G.TIM.TEST to support G.TIM is an instance of the ‘Diverse

Argument’ pattern discussed in Section 8.2 of Chapter Four and presented as a documented pattern in

Appendix B. Use of diverse argument at this point increases confidence in claiming G.TIM and reduces

vulnerability to later evidence and/or requirements change (as shown in Section 5.1 of Chapter Four).

The margin between the G.TIM requirement and the G.TIM.TEST and G.TIM.STATIC claims is also an

example application of the ‘Safety Margin’ pattern presented in Appendix B.

 260

The timing analysis and test arguments are expanded in the following two sections.

A.8.3 Static Timing Analysis Argument (G.TIM.STAT)
G.TIM.STATIC

Worst case response time
determined to be 2.7

G.TIM.STATIC

A10

Instruction times are
correct

A

A11

ADC conversions and
output time are correct

A

Static analysis used to
determined worst case path
through code

G.TIM.STATIC.1

Input / Output latency has
been determined

G.TIM.STATIC.2

Sn3

Satic Timing
Analysis Results

Figure 131 – Static Timing Analysis Argument

The static timing analysis argument shown in Figure 131 makes it clear that the time

given was based upon consideration of both the worst case path through the trip

function code and the time delays introduced on the inputs to, and outputs from, the

software. Both these claims rely upon assumptions regarding underlying timing data.

A.8.4 Timing Test Argument (G.TIM.TEST)
G.TIM.TEST

Worst measured time is
2.4 seconds

G.TIM.TEST

Sn1

Timing test results

Execution time is
relatively constant

J1

J

Figure 132 – Timing Test Argument (G.TIM.TEST)

 261

The argument in Figure 132 makes it clear that the worst measured response time is

based upon timing test results. Justification for this claim stems from the cyclic nature

of the trip program and therefore that the execution time is relatively constant.

A.9 Operational Arguments

The objective of this section is to demonstrate how the operational requirements

introduced in Section A.5.3 are supported through the design features described in

Section A.6.

A.9.1 Time to Repair Argument (G.FIX)

The following goal structure (Figure 133) summarises the argument put forward in

support of the time to repair requirement G.FIX.

G.FIX

MTTR (including
identification) =< 10 hours

G.FIX

2oo2 low trip logic sensor
comparison assists in
detecting failed sensors

G.FIX.2002

Modular hardware
replacement reduces the repair
time

G.FIX.MOD

S6.2

Fail Safe Design
Features

S6.3

Separate Monitor
Computer

S6.7

2oo2 low trip logic

S6.9

Modular hardware
replacement

Separate Monitor Computer enables
on-line diagnosis of channel failures and
failures in the thermocouples

G.TST.SMC

Fault detection is aided by system
failing-safe if it encounters a
systematic or random fault

G.FIX.FS

Figure 133 – Time to Repair Argument (G.FIX)

The argument in support of G.FIX is based upon the two strands of adequate fault

diagnosis and ease of fix. The following claims are put forward in support of the

revelation and diagnosis of faults:

• Fail-safe behaviour – making it obvious when a fault is present

 262

• On-line diagnosis offered by the Separate Monitor Computer –making it easy to

identify the faulty element of the system.

• Faulty sensor detection offered by the low trip logic.

The argument of ease of fix is based on the modularity of the hardware – making it

easier and quicker to replace an element of the system hardware that is found to be

faulty.

A.9.2 Spurious Trip Rate Argument (G.STR)

The following goal structure (Figure 134) summarises the argument put forward in

support of the spurious trip rate requirement G.STR.

G.STR

Spurious Trip Rate < 0.1
per annum

G.STR

2oo4 voting over redundant
channels reduces the
spurious trip rate

G.STR.RED

Software has been formally
proven to trip ONLY when
required

G.STR.FP

2oo2 low trip logic design can withstand
a transient loss of a single sensor (e.g.
for repair) or a low reading sensor
without using vetoes

G.STR.2002

Program and trip parameters are
maintained in separate PROMs
minimises risk of introducing failures
leading to spurious trips

G.STR.PROM

Mature hardware and software tools
have been used to minimise the risk of
systematic faults leading to spurious
trips

G.STR.MAT

S6.1

Redundant Channels
and Thermocouples

S6.5

Formally proved
software

S6.7

2oo2 low trip logic

S6.8

Program and Trip
Parameters in PROM

S6.10

Mature Hardware and
Software Tools

Figure 134 – Spurious Trip Rate Argument (G.STR)

Although a quantitative requirement, this objective has been addressed through direct

appeal to the following deterministic features of the design (in order of significance):

• Voting to reduce vulnerability to single point failures

• Ability of trip logic to withstand transient failures

• Proof of software to trip only when required

• Integrity of separate PROMs meaning that no new faults can be introduced

 263

• Maturity of hardware

A.9.3 Testability Argument (G.TST)

The following goal structure (Figure 135) summarises the argument put forward in

support of the testability requirement G.TST.

G.TST

Trip System must be
testable whilst on-line

G.TST C1

Periodic on-line test
interval is 3 months

Redundant channels enable
testing to proceed on a single
channel without causing a trip

G.TST.RED

Separate Monitor Computer enables
on-line diagnosis of channel failures and
failures in the thermocouples

G.TST.SMC
S6.1

Redundant Channels
and Thermocouples

S6.3

Separate Monitor
Computer

Figure 135 – Testability Argument (G.TST)

As presented in the goal structure, two facilities are in place to support testing of the trip

system:

• Ability to tolerate single channel failures – meaning that testing can proceed on a

channel without impacting the operation of the whole system.

• Provision of a Separate Monitor Computer that can diagnose discovered faults

whilst the system is in operation.

A.10 Through-life Integrity Arguments

The objective of this section is to demonstrate how the through-life integrity

requirements introduced in Section A.5.4 are supported through the design features

described in Section A.6.

A.10.1 Maintenance Error Argument (G.SEC)

The following goal structure (Figure 136) summarises the argument put forward in

support of the maintenance and security requirement G.SEC.

Following shut-down and restart of the system, checks are initiated to ensure the

consistency of the trip software. These checks protect against errors in updating (or

maliciously changing) the software across the four channels. Application of the

reversible computing technique will also highlight discrepancies in operation caused

through individual program modifications.

 264

Security against unintended or malicious modifications is provided through use of the

separate PROMs. Update of the software or trip limits becomes a definite action

requiring physical access to the machine and PROM burning equipment. This claim

goes hand-in-hand with access controls put in place to limit access to the trip system

equipment.

G.SEC

Trip system can withstand
maintenance errors and malicious
attacks

G.SEC

Reversible computing
technique will reveal malicious
program modifications

G.SEC.FS

Separate monitor computer performs
pre-start checks on the consistency of
the software in the four channels

G.SEC.SMC

Changes to trip parameters and logic
cannot be made without
PROM-burning equipment and
physical access to the machine

G.SEC.PROM

Equipment is locked and can only
be accessed using the appropriate
key (different for each channel)

G.SEC.AC

S6.2

Fail Safe Design
Features

S6.3

Separate Monitor
Computer

S6.8

Program and Trip
Parameters in PROM

S6.11

Access Constraints
Safeguards are in place for
all anticipated maintenance
and operational errors

G.SEC.SGS14.3

Anticipated
Maintenance Errors

Figure 136 – Maintenance Error Argument (G.SEC)

In addition it is claimed that safeguards are in place against all anticipated maintenance

errors. The credible maintenance errors that have been identified are listed in Section

A.14.3. The argument supporting this claim is expanded in the following section.

 265

A.10.1.1 Maintenance Safeguards (G.SEC.SG)
G.SEC.SG

Safeguards are in place for
all anticipated maintenance
and operational errors

G.SEC.SG

Safeguards are in place to
protect against errors in Proof
Testing

G.SEC.SG.1

Safeguards are in place to
protect against errors in Fault
diagnosis

G.SEC.SG.2

Safeguards are in place to
protect against errors in repair
activities

G.SEC.SG.3

Safeguards are in place to
protect against errors in
operating vetoes

G.SEC.SG.4

Safeguards are in place to
protect against errors in
refuelling

G.SEC.SG.5

S14.3

Analysis of
maintenance and

operations

Figure 137 – Maintenance Safeguards (G.SEC.SG)

The argument shown in Figure 137 shows that five credible sources of maintenance

error have been identified:

• Proof Testing

• Fault Diagnosis

• Repair Activities

• Use of Channel Vetoes

• Refuelling

The safeguards in place to support this argument are presented in Section A.14.3.

A.10.2 Update Argument (G.UPD)

The following goal structure (Figure 138) summarises the argument put forward in

support of the update requirement G.UPD.

 266

G.UPD

Trip system can be modified to meet
anticipated changes with minimal risk
of maintenance induced faults

G.UPD

Design simplicity means
that system can be altered
easily

G.UPD.DS

Simple input-output interfaces can
be easily upgraded to accommodate
new types of sensor

G.UPD.MOD

S6.1

Redundant Channels
and Thermocouples

S6.4

Design Simplicity

S6.9

Modular hardware
replacement

Separate storage of program and
trip Parameters in PROM isolates
maintenance changes

G.UPD.PROM

Sufficient protection is in place
to prevent updates of data
introducing dangerous faults

G.UPD.DATA

S6.8

Program and Trip
Parameters in PROM

Sufficient protection is in place
to prevent updates of program
introducing dangerous faults

G.UPD.PROGRAM

All anticipated changes can
be accommodated by design
and safety case

G.UPD.AC

Redundancy in channels and
thermocouples reduces susceptibility
to maintenance induced faults

G.UPD.RED
S14.2

Anticipated Changes

Figure 138 – Update Argument (G.UPD)

There are three aspects to the claims presented in Figure 138. The first aspect of the

G.UPD requirement is ease of modification. In support of this, the following claims are

put forward:

• Overall design simplicity

• Particularly, simplicity of input-output interfaces

The second aspect is minimising the risk due to updates. In support of this, appeals are

made to the following:

• Protection (tolerance) offered by the redundancy built into the system

• Isolation of changes created by having separate PROMs

• Protection in place for trip data and program updates (expanded in Section A.10.2.2)

The third aspect concerns the design for change aspects of the trip design. Because the

system is designed in anticipation of certain future updates, the likelihood of

compromising the integrity of the system in making those modifications is minimised.

This claim concerning anticipated changes is elaborated in the following section.

 267

A.10.2.1 Anticipated Changes (G.UPD.AC)
G.UPD.AC

All anticipated changes can be
accommodated by design and
safety case

G.UPD.AC

Change in number of inputs
can be accomodated by
design and safety case

G.UPD.AC.1

Change in computer hardware or
software tools can be accommodated
by the design and safety case

G.UPD.AC.2

Anticipated changes in functional
requirements can be accomodated
by the design and safety case

G.UPD.AC.3

Change in sensors can be
accomodated by the design and
safety case

G.UPD.AC.4

Anticipated regulatory changes
can be accommodated by the
design and safety case

G.UPD.AC.5

S14.2

Anticipated Change
Analysis

S14.2
Anticipated Changes

Figure 139 – Anticipated Changes (G.UPD.AC)

The argument shown in Figure 139 shows that five areas of anticipated future change

have been identified:

• Changes to Number of Inputs

• Changes to Hardware

• Changes to Functional Requirements

• Changes to Sensors

• Regulatory Changes

A discussion of how the system design is expected to cope with these future changes is

presented in Section A.14.2.

 268

A.10.2.2 Changes to Data and Program (G.UPD.DATA &
G.UPD.PROGRAM)

The following goal structure (Figure 140) summarises the argument put forward in

support of the trip data and program update requirements G.UPD.DATA and

G.UPD.PROGRAM.

G.UPD.DATA & G.UPD.PROGRAM

Sufficient protection is in place
to prevent updates of data
introducing dangerous faults

G.UPD.DATA

Adequate support infrastructure is in
place to safely accommodate
anticipated changes (e.g. safety case
review)

G.UPD.SUPP

Procedures are in place to test
updates to data and program

G.UPD.TEST

Sufficient protection is in place to
prevent updates of program
introducing dangerous faults

G.UPD.PROGRAM

S15.1

Support
Infrastructure

Flaws in ADC, application software,
configuration, trip limits and trip logic
will be revealed by dynamic on-line
tests

G.CHECKS

Figure 140 – Changes to Data and Program (G.UPD.DATA &

G.UPD.PROGRAM)

Two different forms of argument are put forward in Figure 140. Firstly, an argument is

made that appropriate procedures are in place to ensure that any future change is

handled appropriately. These are supported by a definition of the required Support

Infrastructure (presented in Section A.13). Secondly, an appeal is made to the on-line

tests and checks built into the design and operation of the trip system (offered by the

reversible computing implementation and separate monitor computer).

A.10.3 Safety Case Validity Argument (G.VALID)

The following goal structure (Figure 141) presents the argument put forward in support

of the safety case validity requirement G.VALID.

 269

G.VALID

Validity of the Safety Case will
be maintained throughout the
operational life of the system

G.VALID

S15.1

Support
Infrastructure

Adequate support infrastructure is in
place to safely accommodate
anticipated changes (e.g. safety case
review)

G.UPD.SUPP

Operational records will be kept and
analyses performed to confirm the
assumptions and estimates given within
the safety case

G.VALID.REG

S15.3

Regular Analyses

Figure 141 – Safety Case Validity Argument (G.VALID)

It is argued that an appropriate infrastructure is in place to review the impact of future

design and regulatory changes on the safety argument contained within this safety case.

In addition, the responsibility for confirmation and validation of the assumptions made

within this safety case (e.g. those made in the Probabilistic Fault Tree Analysis

described in Section A.14.1) is recognised. The regular analyses required to maintain

the validity of the safety case are defined in Section A.15.3.

A.11 Safety Criteria

The objective of this section is to demonstrate how the safety criteria defined in Section

A.5.5 are supported through the design features described in Section A.6.

A.11.1 Single faults (G.FAULT1)

The following claim is put forward in support of the requirement that no single fault

should affect availability.

 270

G.FAULT1

No single fault affects
availability

G.FAULT1

S6.1

Redundant Channels
and Thermocouples

Safety function is maintained
even if two channels fail to
no-trip

G.FAULT.RED

Figure 142 – Single Faults (G.FAULT1)

Because of the redundancy built into the system design, up to two (of the four) channels

can fail to no-trip before the safe operation of the system is compromised. The system

can therefore operate in a safe (but degraded) state, allowing repair whilst maintaining

availability.

A.11.2 Two faults (G.FAULT2)

The following claim is put forward in support of the requirement that no two

independent faults should affect safe operation.

G.FAULT2

No two independent faults
affect safety

G.FAULT2

Safety function is maintained
even if two channels fail to
no-trip

G.FAULT.RED

System will fail safe ('freeze') in
presence of systematic faults and
random failures in the hardware or
faults created by the compiler

G.FAULT2.FS
S6.2

Fail Safe Design
Features

S6.1

Redundant Channels
and Thermocouples

Figure 143 – Two Faults (G.FAULT2)

As with G.FAULT1 an appeal is made here to the redundancy within the system

design. In addition, in the case of detected systematic errors it is claimed that the system

will fail-safe.

A.12 Evidence from the Development Process

The development and verification processes can produce evidence that can be used in

the safety argument. Documentary evidence is needed to show that the planned

activities are being carried out correctly (e.g. audits). This is necessary to have

 271

confidence in the documented evidence and its relevance to the actual system.

More specifically there can be tests incorporated within the development process to

support claims about specific safety attributes, i.e.:

G.TRIP Proof of conformance to specification

 High trip tests for pairs and single inputs

 Low trip tests for pairs and single inputs

 Tests of independence between inputs from different ducts

G.PFD Statistical reliability tests (104 representative trips)

Tests of fail-safe response (e.g. simulated failures

G.TIM Static analysis to determine the worst case execution time

 Time response tests

G.FIX Test of diagnosis and repair times using simulated faults

A.13 Long-term Support Activities

There are a number of long term infrastructure requirements necessary for maintaining

and updating the system. The details will not be discussed here, but there are some

specific support activities which can affect the system integrity, namely:

Scheduled testing - proof testing to verify all inputs can produce a trip, re-

calibration, etc. Scheduled testing for channels would typically be staggered to

reduce the risk of a common mode maintenance error.

On-line fault detection - A fault can be diagnosed from a behavioural anomaly (e.g.

a partial or total trip), or by apparent discrepancies between channels.

Fault diagnosis - Using available data from the computer monitor outputs, and

direct tests on the hardware, the source of the problem is identified.

Repair - An item is re-calibrated, or an item is replaced. The channel or a channel

interface is powered down while this is done. The unit is re-tested and the channel

put on-line.

Veto - It is sometimes necessary to disable the normal functionality of the system in

order to maintain availability. The thermocouples are physically located in the

reactor and cannot be repaired immediately so a veto might also be applied to

 272

avoid a spurious trip if a thermocouple sensor was failing high. The trip for an

individual fuel element may also be temporarily vetoed for on-load refuelling.

Refuelling - The thermocouple connectors are disconnected on refuelling. This is

not a problem if the reactor is refuelled off-load, but disconnected thermocouples

could cause problems on start-up.

Updates - The software functionality may be changed. Changes are most likely to

be made to trip limits and scaling parameters, but in some cases the program may

be modified. The changes have to be verified off-line, and correctly installed (via

PROM replacement). The likely changes are anticipated to be:

• trip limit changes

• change in number of inputs

• change of computer hardware or software tools

• change in trip logic

• change of sensors

• regulatory changes (design criteria, or evidence)

A.14 Supporting Analyses

The safety arguments presented in Sections 7 through to 11 should refer to evidence

from supporting analyses. This evidence will change as the system is developed.

Initially the analyses may be based on initial assumptions (e.g. based on past

experience) and design targets. This can later be supplemented by test evidence and, in

some cases, there may be a requirement to gather supporting evidence during system

operation in the longer term (e.g. to confirm initial assumptions in the estimate of the

probability of failure per demand).

As can be seen from the goal structures presented, the majority of the goals put forward

remain unsupported. This is indicative of the following issues:

• Some of the goals must be decomposed further to sub-system claims (as discussed in

Section A.16).

• Some of the goals should be accepted as ‘statements of fact’ requiring no supporting

evidence.

• Not all of the supporting evidence is available at this stage.

 273

The following sections present the analyses which are available to support aspects of

the safety argument presented.

A.14.1 Probabilistic Fault Tree Analysis

The evidence summarised in this section supports the probability of failure on demand

claim G.PFD.RAND.FTA shown in Figure 126 and discussed in Section A.8.1.1.

The fault tree analysis is based on a system hazard identification study (not discussed

here) which uses conventional guide words to help identify potentially dangerous

failure modes of the various system components. A fault tree is then constructed to

identify combinations of events which can cause a dangerous failure. The top event in

the tree is when the system is unavailable but the failure is unrevealed.

To be more concise, the fault tree is represented textually with the top events on the left

and sub-events indented. Terms in square brackets represent intermediate or top events,

and are expanded on the subsequent indented lines. The fault tree covers the main

safety related event - a failure to trip on demand. A similar tree could be constructed for

spurious trips.

The probabilities of the base events in the fault tree are based on estimates of hardware

reliabilities, and the likelihood of human initiated events. The assumptions on which the

analysis is based are listed first, followed by the quantitative estimates for the minimal

cut-sets contributing to the top event. Note that some events may be deemed

“incredible” (i.e. probability zero) based either on deterministic arguments or because

of the depth of defences. Even if zero, all probabilities are shown for later inspection

and independent assessment.

Assumptions

• 10% of sensor failures are unrevealed

• 10% of buffer failures are unrevealed

• Common failures are 10% of individual failures

• 10% of channel failures are unrevealed by a channel trip

• 10% of channel failures are unrevealed by the monitor

• Channel failure rate (CPU + ADC + DCL) 1 per annum

• Sensor failure rate 10-3 per annum

 274

• Buffer failure rate 10-3 pa

• MTTR 10 hours

• Proof test interval 3 months

Probability Estimation

The system is unsafe if a dangerous fault exists but is unrevealed. Internal checks,

monitor checks and proof tests are the main methods for revealing failures. Systematic

faults are mainly deemed to be incredible (see the goal G.NO-FLT).

For random failures we have to include the risk of common cause failures, and the

chance they will remain undetected until the 3-monthly proof test. Taking the case of the

sensors, the basic failure rate is estimated to be 10-3 per annum. We assume that the

common mode failures are 10% of this (10-4 per annum), and 10% of these will be

undetected until the 3 monthly proof test (10-5 per annum). On average the dangerous

sensor measurement failure will be unrevealed for one and a half months (0.125 of a

year), so the probability of unrevealed unavailability is (0.125 x 10-5). The

unavailability of temperature measurements due to two unrevealed random failures in

one duct is negligible (around 10-10). Since the demand is only made on one duct, we

only need to consider the unavailability of a single duct measurement.

A similar argument can be applied to the isolation amplifiers and buffers. The dominant

factor is again common mode failure, which is assumed to affect all buffers

simultaneously, so the calculation is identical to the one used for the thermocouples.

For the hardware channel failures we assume the common mode failure rate is 10% of

the single channel failure rate (10-1 per annum). Of these 10% are unrevealed by a

channel trip (10-2 per annum), and 10% of the remainder are not detected by the

monitor (10-3 per annum). An unrevealed failure persists an average of 0.125 years, so

the overall is 12.5 x 10-5.

The probability assignments for the fault tree events are summarised below, including

those which are assumed to be incredible (probability zero).

 275

[duct-specific fault]

Demand(i) and

 2oo2 Sensor (I) failed unrevealed 0.125x 10-5

 or

 3oo4 [Buffer (A,l) and Buffer (B,l) fail 0.125x 10-5

 unrevealed]

 or

 software reads input J instead of input I 0 (proof tests, analysis)

 or

 multiplexor reads input J instead of input I 0 (proof test, DCL)

or

[multiple channel faults]

 3oo4 [hardware channels fail unrevealed] 12.5x 10-5

 or

 wrong trip settings 0 (proof test+monitor+DCL)

 or

 operating on stale copy of input data 0 (no copies, DCL)

 or

 sends old copy of output data 0 (no copies, DCL)

 or

 execution time too long 0 (analysis+test+online test)

 or

 high trip logic flawed 0 (formal proof, test, DCL)

 or

 multiplexor hardware latches past values 0 (proof test, DCL)

 or

 DCL fail-danger flaw 0 (analysis, fault injection)

PFD 12.7 x 10-5

 276

With an unrevealed unavailability of 0.13 x 10-3 and an assumed demand rate of 1 per

annum, the estimated PFD is 0.13 x 10-3 pa is which is well within the 10-3 pa target.

A.14.2 Anticipated Change Analysis

The evidence summarised in this section supports the claims made in the safety

argument regarding anticipated changes presented in Figure 139 and discussed in

Section A.10.2.1.

System Updates. The system and its safety case will need to be updated to respond to

functional changes, changes in technology, and regulatory requirements (R.UPD).

Potential changes to the system and their impact are discussed below:

Trip limit changes. The safety case has to justify that trip limits are valid, the changes

are correctly implemented, and do not affect the remaining software. The impact of the

change is minimised by holding the parameters on a separate PROM. The installed

parameter settings can be verified by proof testing, via the on-line test signals (each

side of the trip limit) and via the monitor output.

Change in number of inputs. No fundamental changes are required in the design or the

safety case. It may requires changes in the input-output hardware, software and DCL,

but no change in the proof, and only small changes in the program which can be

verified by proof testing and by testing in conjunction with the modified DCL.

Change of computer hardware or software tools. The fail-safe integrity checks provide

protection against flaws in the new hardware and software tools. The separate channel

structure and simple input-output interfaces permit selective upgrading on a per-

channel basis (phased commissioning).

Change in functional requirements. Would require repetition of the formal proof and

the formally developed software. Proof tools have to be available (or be re-

implementable on another system). Formal proof requires relatively scarce expertise

and could represent a risk in terms of greater implementation delays and higher update

costs. However licensing risks and the associated costs are likely to be reduced.

Change of sensors. Relatively simple technology. Changes can be accommodated by re-

scaling the buffer amplifiers or changing the scaling constants in the software.

Verifiable via proof testing, dynamic on-line tests and the monitor output.

Regulatory changes. If the requirements for diversity become more stringent, diversely

implemented channels can be used to protect against systematic hardware and software

 277

flaws. This is relatively simple as each channel is independent. Diverse sensors and

buffers are also feasible. Requirements for more rigorous system testing should be

feasible as each channel is a standalone unit, and tests can be performed individually

without the need to test for intersection effects.

A.14.3 Analysis of Maintenance and Operations

The evidence summarised in this section supports the claims made in the safety

argument regarding safeguards against maintenance errors – presented in Figure 137

and discussed in Section A.10.1.1.

The possible failures that could occur in maintenance activities are enumerated by

considering a number of guide words (e.g. incomplete or wrong). The design safeguards

are identified for each case. These could well be supplemented by procedures, training,

manual records and checklists, but are not discussed below.

Proof testing Incomplete - e.g. some elements not tested, transposed - e.g. tests on

wrong channel, wrong - incorrect recalibration.

Safeguards - clear identification of channel equipment, access keys (different for

each channel), limits on amount of adjustment, cross-checking subsequent

behaviour via the monitor.

Fault diagnosis Incomplete - failure to spot discrepancy between channels, transposed -

identify correct component type but not which one (e.g. channel or thermocouple),

wrong - identification completely wrong.

Safeguards - proof tests, cross-checking subsequent behaviour via the monitor,

system trip (fail-safe, but undesirable).

Repair Incomplete - repair omitted or partially performed (e.g. not fully reconnected),

transposed - swap over connections or components, wrong - e.g. wrong component,

wrong settings. Repair on the wrong channel could cause a spurious trip if one channel

is tripped already.

Safeguards - proof tests, cross-checking subsequent behaviour via the monitor,

PROM and computer self-tests, system trip (fail-safe, but undesirable).

Veto - Incomplete e.g. sensor not vetoed on all channels, transposed- veto wrong sensor

of pair, wrong - e.g. wrong channel vetoed.

Safeguards – proof tests, cross-checking behaviour via the monitor, channel trip

 278

when sensor fails low or high, avoidance of vetoes for normal operation and

designed failure modes.

Refuelling Incomplete - thermocouple left disconnected, transposed – sensor

connections transposed, wrong - bad connection (reading low, short circuit).

Safeguards - reactor start-up checks, proof tests, cross-checking behaviour via the

monitor, connection labelling.

Updates Incomplete - incomplete PROMS, transposed - PROMS in wrong order, wrong

- wrong PROM version used, update incorrect.

Safeguards - proof tests, PROM integrity checks (e.g. CRC checks across program

PROMS and parameter PROMS), version and parameter settings echoed to

monitor. Cross-checking behaviour via the monitor. Channel trip due to pattern

mismatch at DCL.

A.15 Safety long-term support requirements

A.15.1 Support Infrastructure

This section defined the support infrastructure activities, tools, skill and knowledge

required to ensure the ongoing validity of the safety case and supporting evidence. The

definition (and implementation) of this infrastructure supports the claims made in

Figure 141 and Figure 140 and discussed in Sections A.10.2.2 and A.10.3.

Activities:

• safety reviews

• problem analysis

• system/safety case redesign

Special tools/skills:

• formal proof methods

• reversible computer design

• DCL design

• test environments

• test suites

• FTA and RAMS techniques

 279

Domain knowledge:

• sensor characteristics

• CMF mechanisms

Anticipated changes:

• trip parameters

• trip logic

• fault detection

• number of inputs

• processor hardware

• interface hardware

A.15.2 Maintenance Support Risks

Most of the maintenance and upgrade safety issues have been addressed in the design,

but upgrades could be hampered if there was a lack of key skills and technologies.

Replacement of obsolescent hardware does not require any unusual skills.

Reprogramming the software is mainly restricted to a re-implementation of the

reversible computer instruction set and is a relatively straightforward task. Functional

changes will require a change to the formal proof, and may be vulnerable to

obsolescence of the support tools and formal methods skills. There will be a significant

delay if the formal proof has to be re-implemented from scratch using a different formal

notations and support tools. Obsolescence of the dynamic coded logic could be a

problem, but the basic structure should be re-implementable in a new technology, and

the fail-safety can be reviewed by independent specialists and tested directly by fault

injection.

As a fall-back, the system could be re-implemented with diverse hardware and software

in the channels.

A.15.3 Regular Analyses

This section supports the claims made regarding the through life maintenance of safety

case validity presented in Figure 141 and discussed in Section A.10.3.

The safety case is predicated on a set of design assumptions about the equipment, the

operational environment and the behaviour of connected equipment. The following

 280

table lists some of the key assumptions that have been made explicit in the safety

argument.

Identifier Summary
A1 Fault detection coverage
A2 Fail-safe bias of inputs
A3 Component failure rates
A4 Common mode factors
A5 Repair times
A6 Inherent flaws will be revealed and removed as a result of extensive use
A7 Requirements are correct
A8 Functional tests can reveal all compiler induced faults
A9 Tests will reveal all miswiring and mis-configuration
A10 Instruction times are correct
A11 ADC conversions and output time are correct
A12 Demand rate of 1 per annum
A13 Thermocouples fail low in 90% of cases
A14 On-line tests detect 90% of systematic failures
A15 Tests indicate a 99.995% fail-safe bias
A16 Trip scenarios used in testing are realistic

Figure 144 – Table of Explicit Safety Case Assumptions

Records should be maintained of equipment failures and repairs, and these should be

analysed to determine whether these assumptions are borne out in practice. The

analyses would typically include:

• equipment failure rates

• component failure rates

• proportion of common mode failures

• proportion of fail danger faults

• proportion of gradual and abrupt sensor failures

• MTTR

• maintenance error rates

• proportion of equipment faults found in on-line tests and proof tests

• spurious trip rate

• software faults and the proportion which are dangerous

The impact of these results on the safety case should be assessed. If the results

undermine the safety case, changes to the system design, operating procedures, or

monitoring systems may be necessary.

A.16 Elaboration to subsystem requirements

If the candidate system architecture, safety case and support requirements are

 281

acceptable, the design can be further elaborated into a set of design requirements for

the subsystems. In the reactor trip system there might be requirements for the following.

D.ARCH Overall system architecture apportionment of functions, overall design

safety case, design assumptions, numerical design targets, design

constraints, required safety case evidence, operation and maintenance

infrastructure, design for change, long-term support requirements.

D.ENV Requirements for environmental tests ("shake and bake") for all

hardware, maximum temperature, humidity, cooling requirements, EMI

protection.

D.POW Power supply specifications, reliability requirements.

D.DCL Specification of the DCL + fail-safety requirements.

D.INP Input specifications (number, range, isolation, etc.).

D.ADC Requirements for the ADC (number of inputs, range, speed, reliability).

D.MON Requirements for the monitor and monitor interfaces.

D.CPU Requirements for the CPU (speed, PROM capacity, RAM capacity,

input-output, etc.).

D.SW Requirements for the software.

Note that the subsystem requirements will include any evidence required for the safety

case (e.g. environmental test evidence, timing, fault tolerance tests, fault injection tests,

etc.). This evidence could be part of the subsystem deliverable.

As an example of how the subsystem requirements are elaborated, the requirements for

the software (D.SW) are given below. The requirements placed on the software are

based on an apportionment of the top-level safety functions together with additional

requirements imposed by lower level design decisions. The requirements include the

basic functional requirements for the software, specific design constraints on the

implementation method, and requirements for safety case evidence.

A.16.1 Software Functional Requirements

SW.INFO Supporting G.SEC and G.UPD. Every complete scan cycle, send the

software configuration data (number of inputs, input scale factors, trip

 282

limit values, software version number and sumchecks).

SW.TRIP Supporting G.TRIP. For all inputs:

• Scan the two temperature readings (Ra, Rb) from the ADC.

• Scale the values to Ta and Tb.

• Perform 1oo2 voted high temperature trip (HiTrip = max(Ta,Tb) >

Tlimit).

• Perform 2oo2 voted low temperature trip (LoTrip = max(Ta,Tb) <

MinOpTemp)

• (MinOpTemp is MaxDiff below the median operating temperature for

all ducts).

• Send (HiTrip or LoTrip) to the DCL.

• Send Ra, Rb, HiTrip, LoTrip values to the monitor output.

SW.IO Satisfy the specified interface requirements for the ADC, DCL, and

Monitor ports (from D.DCL, D.ADC, D.MON).

SW.CHK Supporting G.MTTR. Halt if an internal failure is detected (PROM

sumcheck, RAM checks, processor, time overrun). Provide indication of

the type of fault detected.

SW.TIM Supporting G.TIM. The software scan cycle should be less than 5

seconds - including the time required for all input and output operations.

A.16.1.1 Safety case design constraints imposed on the software

SW.REV Implement the software using the reversible computer technique.

SW.FM Formal proof that code implements specification.

A.16.1.2 Safety case evidence requirements for the software
development

SW.CHK.CASE Check the fault detection performance for simulated faults.

SW.TRIP.CASE Perform 104 demands on the system using realistic trip profiles.

SW.TIM.CASE Show the timing constraint is satisfied.

SW.V&V.CASE1 SW.FM.VER Provide proof script, independent

verification of proof.

 283

SW.REV.CASE Demonstrate the reversible computer is

implemented correctly and formal software

is correctly mapped to reversible code.

Provide tests of fail-safe performance.

SW.V&V.CASE2 SW.TEST.CASE Show all software modules are

exhaustively tested. Show all modules

operate independently for all readings.

SW. DIV.CASE Show diverse implementations are

independent (languages, tools, staff, V&V).

SW.DES.CASE Show compliance with the implementation constraints.

SW.TOOL.CASE Provide impact analysis of faults in support tools, analysis of tool

quality (e.g. likely number of faults injected).

Software documentation/QA requirements

SW.PROCESS Provide evidence for the integrity of the delivered system and the

development process: safety plan, safety audit records, quality

plan, QA records, plans, design documents, software, proof files,

V&V records.

SW.PRODUCT Provide all necessary items for use and long-term support:

design documents, software, proof scripts, test environment,

support tools.

A.17 Conclusions

This safety case has presented the argument that the trip system design as proposed is

acceptably safe to be allowed to operate as part of the nuclear reactor protection

systems. The argument has been based upon the following key elements:

• Redundancy in the design

• Incredibility of Systematic Errors

• Probabilistic Analysis of Failure on Demand

• Fault detection, tolerance and diagnosis offered by design

 284

Although incomplete (elaboration of requirements to subsystems and further evidence

being required) this document has presented the overall structure of the safety argument

and can be used as a basis of assessing adequate safety.

 285

Appendix B:

Safety Case Patterns Catalogue

This appendix presents a number of examples of Safety Case Patterns that the author

has developed (sometimes with others) and have documented using the approach

defined in Chapter Five.

As described in Chapter Six (Evaluation) these patterns have been identified from study

of existing safety cases and safety standards, and from discussion with safety case

practitioners. All of the patterns presented have been subjected to peer review.

Instances of the ‘Diverse Argument’, ‘Safety Margin’ and ‘Fault Tree Evidence’

patterns presented in this appendix are highlighted within Appendix A – Nuclear Trip

System Safety Case.

B.1 Overview of Catalogue

The catalogue presented in this appendix is organised according to the categorisation of

patterns described in Chapter Five and shown in the following figure (Figure 145).

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

Figure 145 – Organisation of Safety Case Patterns Catalogue

Safety Case Patterns can either be specific to a particular domain or class of system (e.g.

nuclear power generation, railways, aerospace) or applicable across a number of

domains (i.e. domain independent).

 286

Safety Case Patterns can describe the decomposition of some objective, e.g. over

functions or according to some safety principle. Such patterns are labelled as ‘Top

Down’ Safety Case Patterns. Alternatively, safety case patterns can describe how an

argument may be constructed from a piece of evidence (in GSN terms – a Solution).

These patterns are labelled as ‘Bottom Up’ Safety Case Patterns. Finally, Safety Case

Patterns can be used to describe some general principle of safety argument construction

that is neither specifically ‘top down’ or ‘bottom up’. Such patterns are labelled as

‘General Construction’ Safety Case Patterns.

This appendix presents examples of all three forms of Safety Case Pattern.

B.1.1 Format of Documented Patterns

The patterns in this appendix have been documented according to the format defined

and described in Chapter Five, i.e. using the following headings:

• Pattern Name

• Intent

• Also Known As

• Motivation

• Applicability (Necessary Context)

• Structure

• Participants

• Collaborations

• Consequences

• Implementation

• Example Applications

• Known Uses

• Related Patterns

The structural (graphical) description of the Safety Case Patterns uses the pattern

extensions to the Goal Structuring Notation presented in Chapter Five. The following

figure provides a key to the most commonly used GSN extensions:

Element to be instantiated

Structure to be developed

Element to be instantiated
and developed

Option to be taken

n
Multiple (n) instantiations

required

0/1 instantiations required

Figure 146 – Key to GSN Extensions

 287

B.2 Domain Independent Safety Case Patterns

The Safety Case Patterns presented within this section have been identified from, and

found applicable in, safety arguments from a wide variety of domains.

Domain Independent Safety Case Patterns

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

• ALARP (As Low As Reasonably Practicable) Argument

• Hazard Directed Integrity Level Argument

• Control System Architecture Breakdown

• Diverse Argument

• Safety Margin

• Fault Tree Evidence

(Full descriptions of these patterns are contained within each documented pattern)

 288

B.2.1 Domain Independent ‘Top Down’ Safety Case Patterns

Domain Independent:Top Down

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

• ALARP (As Low As Reasonably Practicable) Argument

• Hazard Directed Integrity Level Argument

• Control System Architecture Breakdown

(Full descriptions of these patterns are contained within each documented pattern)

 289

ALARP (As-Low-As-Reasonably-Practicable)

Pattern

Author Tim Kelly

Created 22/02/99 01:56 Last Modified 22/02/99 02:36

Intent This pattern provides a framework for arguing that identified

risks in a system have been sufficiently addressed in accordance

with the ALARP principle.

Also Known As • Risk Reduction Argument Pattern

Motivation This pattern was developed for two reasons:

• To argue compliance with the ALARP principle at the highest

level when addressing system level hazards.

• To provide a more structured approach to presenting a

‘Hazard Avoidance’ argument (See Hazard Avoidance

Pattern) by showing differing treatment of hazards according

to their associated risk.

 290

Structure

System hazards
addressed in

accordance with
ALARP Principle

No intolerable risks
present in system

All tolerable risks
have reduced as

low as reasonably
practicable

Risk associated
with all remaining

hazards is
negligible

Identified system
hazards

Definition of
'intolerable'

Definition of
'tolerable'

Definition of
'negligible'

System Hazard
Log

Risk associated
with {Hazard X} has

been addressed

n = # hazards from
'Identified System

Hazards' (previously)
meeting definition of

intolerable

n>0 n=0

n

{Hazard X} has
been eliminated

and can no longer
occur

Risk associated
with {Hazard X} has
been reduced to a

tolerable level

Risk associated
with {Hazard X} has

been reduced as
low as reasonably

practicable

m

m = # hazards from
'Identified System
Hazards' meeting

definition of
tolerable

{Hazard X} is
necessarily present
in system (because

of some positive
benefit)

Measures have
been taken to

reduce risk
associated with

{Hazard X}

Further reduction of
risk associated with
{Hazard X} requires

disproportionate
expense

Risk associated
with {Hazard X} has
been shown to be

negligible

o

o = # hazards from
'Identified System
Hazards' meeting

definition of
negligible

Provides
{Hazard X}

Definition of
'disproportionate'

G1

G2 G3

G4

G5

G6 G7 G8G9

G10 G11 G12

C1

C2
C3

C4

C5

Sn1

Participants G1 Defines the overall objective of the pattern

 G2, G3, G4 Defines targets for three classes of identified

risks: negligible, tolerable, and intolerable

 Sn1 Provided at this point to support the claim that

no intolerable risks have (ever) been identified

with the system

 291

 G6 or

G7 and G8

Claims either that hazard has been eliminated or

associated risk reduced to a tolerable level and

dealt with as a tolerable risk.

 G8 Defines ALARP target for each identified

tolerable risk

 G10, G11,

G12

Claims required to support ALARP target:

• Hazard only acceptable if positive benefit

achieved

• Risk reduction measures have been taken up

to the point where further measures would be

disproportionate to benefit gained.

 G9 Claims for each remaining hazard that associated

risk shown to be negligible

 C1 A context identifying all system hazards,

including indication of associated risks (e.g. Risk

Category from A, B, C, D).

 C2, C3, C4 A workable definition of ‘intolerable’/

’tolerable’/ ’negligible’ risks that can be used as

a basis for selection from the list of hazards(e.g.

Intolerable = Risk Category A, Tolerable = Risk

Category B or C, Negligible = D).

 C5 The ALARP principle relies on some

understanding of when it is no longer cost-

effective to spend further money on risk

reduction. This element, a definition of cost-

effectiveness, is therefore required.

Collaborations An important aspect of this pattern is that it divides and conquers

the goal of hazard mitigation / elimination according to the level

of risk associated with each hazard. There are three strands to the

safety argument: one tackling intolerable risks, one tackling

tolerable risk and one discounting negligible risks. To support

 292

the top-level goal (G1) satisfactorily it is important that these

three strands address all identified risks. The definitions of

tolerable, intolerable and negligible (C3, C2 and C4 respectively)

should therefore be so defined as to cover and classify the range

of possible levels of risks.

It should also be noted that the definitions of negligibility (C4)

and disproportionate (C5) cannot be considered entirely

independently. It would not make sense, for example, to force

risk reduction to a level below that identified elsewhere as

negligible.

As the goal structure shows, if the means of addressing a

previously identified intolerable risk is to reduce it to a tolerable

level, then the remaining risk must be tackled as for all tolerable

risks. If the level of risk has been reduced to a negligible level,

then the hazard must be tackled as a negligible risk.

It is important that the source of Identified System Hazards (C1)

identifies the level of risk posed by a hazard in a way that

permits sub-division into the classes of risk defined by C2, C3

and C4.

Applicability This pattern is applicable in contexts where the ALARP principle

is accepted as the device for reasoning about the relative

importance of risks and the cost-effectiveness of risk reduction.

In order to apply this pattern it is necessary to have access to the

following contextual information:

• C1: Identified System Hazards

(See Participants section)

• C2, C3, C4: Definition of Intolerable / Tolerable /

Negligible Risk

(See Participants section)

These definitions are typically provided by the appropriate

regulatory authority, standards or through investigations by

safety engineers, including discussions with customers.

 293

• C5: Definition of Disproportionate

(See Participants section)

Consequences After applying this pattern, there will be a number of

undeveloped goals of the form:

• G7: Risk associated with {Hazard X} has been reduced to

a tolerable level

• G9: Risk associated with {Hazard X} has been shown to be

negligible

• G6: {Hazard X} has been eliminated and can no longer

occur

• G10: {Hazard X} is necessarily present in the system

• G11: Measures have been taken to reduce risk associated

with {Hazard X}

• G12: Further reduction of risk associated with {Hazard X}

requires disproportionate expense

Implementation Implementation of this pattern involves first instantiating the

contexts C1, C2, C3, C4. In the context of the list of hazards

referenced by C1, the solutions to goals G2, G3 and G4 can be

provided. If no tolerable risks were ever present in the system,

then reference to the system hazard log (Sn1) is sufficient to

support the claim G2. However, if any intolerable risks have

been identified, it is necessary to claim (G5) that these have been

resolved through complete elimination of the hazard (G6), or

reduction to a tolerable (G7, G8) or negligible (G9) level.

For each tolerable risk identified an argument must be

constructed (G6, G10, G11, G12) to demonstrate that it has been

addressed in accordance with the ALARP principles. Measures

taken in risk reduction must be stated in support of G11. Some

evidence / argument of the non cost-effectiveness of further risk

reduction measures must be supplied in support of G12, in

accordance with the definition given by C5.

 294

Evidence of risk analysis (probably based upon consideration of

probability of occurrence) is required in support of each claim of

hazards posing negligible risk (G9).

Possible Pitfalls

• Not providing complete coverage of levels of risk through

definitions C2, C3, C4

• Expressing definitions C2, C3, C4 in a way that is difficult to

apply to the information provided by C1 (and vice versa)

• Not having a commonly agreed concept of when to stop

attempting further risk reduction (C1) - this can result in a

non-uniform approach to tackling risks where significantly

different levels of effort are committed to risks at the same

level.

Examples Not available at this time

Known Uses See Industrial Press Safety Argument

Related Patterns • Hazard Mitigation Argument

 295

Hazard Directed Integrity Level Argument

Author Tim Kelly, David Pumfrey

Created 20/10/97 08:56 Last Modified 22/02/99 02:36

Intent This pattern is intended to argue that a (sub)system has been

developed to an integrity level appropriate to the hazards to which

the system contributes.

Also Known As

Motivation The motivation for this pattern was to provide an argument where

the overall objective was expressed in terms of the hazards

involved and to show how this was then translated into integrity

level requirements. The top level objective, being expressed in

terms of hazards and associated hazard classes, can be more

readily integrated with an overall system level argument.

 296

Structure

G1

{Subsystem X}, implementing
functionality that could contribute to
hazards of Hazard Class {n}, has been
developed appropriately

G2

{Subsystem X} has been
developed to Integrity Level {m}

Description of
{Subsystem X}

C2

Rules for Integrity
Level Assignment

C4

G3

{Subsystem X} is supported by
environment suitable for
Integrity Level {m}

Development rules for
Integrity Levels

C3

G4

{Subsystem Y} developed to Integrity
Level {m} or better

G5

{Subsystem Y} developed to lower
Integrity Level allowed by Rules for
Integrity Level Assignment

S1

Argument that all subsystems on
which {X} depends are also
developed to an appropriate
Integrity Level

Subsystems on which
{X} depends

C5

Provides {Subsystem Y}

n

Contribution of
{Subsystem X}

functionality to System

C1

n = # of {Subfunction Y}

Participants G1 Having identified how the functionality provided by

a subsystem (described by C2) can contribute to

system level hazards (C1) and having identified the

Hazard Class associated with those system hazards it

is possible to set out a goal of the form G1. The terms

{Subsystem X} and the Hazard Class {n} should be

instantiated with real values. It is the overall

objective of this pattern to support the claim made by

G1.

 C1 This context should be instantiated to refer to a

source of information that describes how the

functionality implemented by the subsystem can

contribute to system level hazards (e.g. System level

Safety Analysis or Subsystem level Hazard Analysis)

 297

 C2 This context should be instantiated to refer to a

description of the subsystem in question – in

particular, one that describes the functions

implemented by the subsystem.

 G2 This goal provides the principal support for the claim

G1 – i.e. that the subsystem has been developed to a

particular integrity level. The appropriate integrity

level for the Hazard Class {n} stated in G1 is defined

by the rules for integrity level assignment referred to

by C4 (e.g. a Hazard Risk Index Matrix). In order to

say that the subsystem has been developed to a

particular Integrity Level it is also necessary to refer

to the development rules that apply for each integrity

level – this is done by instantiating the context

reference C3. Appropriate argument / evidence must

be placed in support of this goal.

 C3 This context should be instantiated to refer to

development rules defined for each integrity level

(i.e. that define the technology, tools and techniques

that are appropriate)

 C4 This context should be instantiated to refer to the

rules used for integrity level assignment based on

Hazard Classification. Usually these rules would be

expressed as some form of Hazard Risk Index Matrix

that determines the appropriate integrity level given

the severity and likelihood of an accident attributable

to a system hazard.

 G3 In addition to the claim put forward by G2 it is

necessary to claim that the integrity of the subsystem

is not violated (and is preserved) by the environment

in which the subsystem operates.

 298

 S1 This strategy sets out the argument approach to be used in

support of G3. The strategy is to argue that all subsystems

on which the subsystem in question {Subsystem X}

depends (identfied to by the context reference C5) are

also developed to an appropriate integrity level. For each

subsystem identified it is necessary to put forward a goal

either of the form G4 – claiming that the subsystem is

developed to an integrity level the same or higher than

that of {X} – or G5 – that the subsystem is of lower

integrity but in accordance with the assignment rules

referred to by C4.

 C5 This context should be instantiated as a reference to the

description of all subsystems {Y} on which the

subsystem {X} depends. An analysis of dependencies

between subsystems must be performed to provide this

information. This information could be derived from a

functional dependency diagram.

 G4 This is one of the two possible claims that could be made

for a subsystem {Y} on which {X} depends. G4 claims

that {Y} is developed to the same or higher integrity level

as {X}. This claim must be substantiated by further

argument / evidence.

 G5 This is one of the two possible claims that could be made

for a subsystem {Y} on which {X} depends. G5 claims

that {Y} is developed to a lower integrity level than {X}

as allowed by the rules referred to by C4.

Collaborations • C1 identifies the causal relationship between a subsystem’s

function and system level hazards – making it possible to

identify the Hazard Class that should be associated with the

subsystem.

• C3 provides rules that enables the Integrity Level claim of G2

to be derived from the Hazard Class claim of G1.

 299

• C4 defines what it means to say that a subsystem has been

‘developed to’ a particular integrity level (as is claimed in

G2). (One would therefore imagine the information referred to

by C4 would provide the structure of the argument and

evidence used in supporting G2.)

• G2 and G3 work together. It is no use claiming the integrity of

an individual subsystem if that integrity is potentially violated

by the environment in which it is placed.

• C5 provides the basis (list of subsystems) for instantiating the

argument strategy defined by S1.

• An either/or relationship exists between the goals G4 and G5

(as denoted by the Choice symbol). However, there should be

(in total) n of the goals of type G4 or G5, where n is the

number of subsystems on which {X} depends.

Applicability The starting point of this pattern is to have clearly identified a set

of subsystems in an overall system. This pattern should be

instantiated for each subsystem identified. In order to instantiate

the pattern the following contextual information is required:

• C1 – A description of how this subsystem can contribute to

system level hazards

• C3 – Development rules / guidelines for each integrity level

that set out the development practices required.

• C4 – Rules that, given a hazard classification, can be used to

set a corresponding integrity level

• C5 – The results of some analysis that identify the

subsystems on which the subsystem in question depends.

General Issues: The pattern is applicable in an environment

where the concepts of Hazard Classification, Integrity Level and

Subsystem are defined, understood and accepted as a means of

arguing development integrity.

 300

Consequences After instantiating this pattern, a number of unresolved goals

will remain:

• G2 – The central claim that the subsystem has been

developed to a specific {m} Integrity Level must be

supported by appropriate argument / evidence that will

satisfy the customer that the guidelines referred to by C3

have been followed.

• G4 / G5 (n of) - There will be n subgoals of either the form

G4 or G5. As with G2, these integrity level claims must be

supported by process argument / evidence of having

followed the rules set out by C3.

Implementation Start by identifying C1 and C2; State goal G1; Use the

assignment rules set out by C4 to state the goals G2 and G3.

Having stated G3, perform the analysis that provides the

information referred to by C5. Using the list of subfunctions

identified by C5 develop the strategy S1 by stating (n) goals of

the form G4 or G5.

When it comes to supporting S1, the integrity levels of the

subsystems on which {X} depends, and therefore the choice

between G4 and G5, will be defined by the concurrent

instantiation of this pattern for each of these other systems (i.e.

the Hazard Class of related hazards etc.).

Examples Not available at this time

Known Uses See Aircraft Cockpit Display System Argument

Related Patterns ALARP Pattern – a pattern that addresses hazards according the

levels of risk they pose.

 301

Control System Architecture Breakdown

Argument

Author Tim Kelly, Peter Lindsay, Brenton Atchison

Created 20/10/97 08:56 Last Modified 22/02/99 02:36

Intent The intent of this pattern is to illustrate a means of structuring an

argument to support a system safety goal (requirement,

avoidance of hazard etc.) by decomposition over a generic

control system model.

Also Known As

Motivation The motivation for this pattern is the need to breakdown a high

level goal (that is difficult to substantiate ‘as-is’) into sub-goals

that are hopefully easier to address.

Structure

Argument Pattern

G1

{System Safety Goal}

S1

Argument by breakdown
over control system
architecture elements

M1

Control System
Architecture

G2

{Sensor Safety Goal}

G3

{Control Logic Safety
Goal}

G4

{Actuator Safety Goal}

System Level Safety
Analysis

C3

System Level Hazard
Analysis

C1

System Level Safety
Requirements

C2

Emerging from one of
these two contexts

Showing how sub-system
level behaviour
contributes to system
behaviour

Providing the model over
which the argument is
decomposed

 302

Structure

Generic Control System Architecture

Sensor Subsystem Control Logic
Subsystem

Actuator
Subsystem

Input
Signals

Output
Signals

Controlled
Process

Controlled
Attributes

Measured
Attributes

Control System

Participants Argument

 G1 This goal sets out the principal objective of the

argument and should express some desired safety

property of the overall system. The goal could have

emerged from any one of a number of contexts – but

most typically it will have arisen either out of the

statement of System Safety Requirements (C1) or the

System Hazard Analysis (C2). In a system safety

case, there would typically be a number of goals like

G1 – each of which could possibly be addressed

using the pattern proposed.

 C1 This context refers to the Statement of Safety

Requirements that may have been defined for the

overall system. If the goal G1 has arisen from this

context, this context reference should be made.

 C2 This context refers to the results of a System Hazard

Analysis that may have been performed for the

overall system. If the goal G1 has arisen from this

context, this context reference should be made.

 303

 S1 This strategy clearly explains that the argument is

being constructed by breaking down an overall

requirement (goal) of the system into a requirement

over individual elements of the system (using the

model of individual elements provided by M1).

 M1 This model refers to a model of the overall control

system of the form shown in the Control System

Architecture diagram. In this model the system is

expressed in terms of the basic elements: Sensors,

Control Logic, Actuators and the Controlled Process.

 C2 This context refers to the results of a System Hazard

Analysis that may have been performed for the

overall system. If the goal G1 has arisen from this

context, this context reference should be made.

 C3 This context reference recognises the role that

System Safety Analysis (such as Fault Tree Analysis)

has in identifying how the behaviour of lower-level

elements (such as sensors) of the control system

contributes to the overall safe behaviour of the

‘system’. It should be recognised that there can be

much effort involved in identifying this ‘causal link’

and, therefore, between stating a goal of the form G1

and identifying appropriate goals G2, G3 or G4.

 G2 If analysis of the system safety property required by

G1 shows that behaviour of the Sensor subsystem

could violate that property then a goal (or goals) of

the type G2 should be expressed over the subsystem

setting the requirement (e.g. reliability targets) for

safe behaviour. These goals must then be supported

by argument and/or evidence.

 G3 As for G2 (but w.r.t. Control Logic requirements that

support the overall system requirement)

 304

 G4 As for G2 (but w.r.t. Actuator requirements that

support the overall system requirement)

Collaborations • Contexts C1 and C2 provide the basis from which goals of

type G1 are stated

• Model M1 provides the terms (description of control system

elements) over which the goals G2, G3 and G4 are stated

• Context C3 provides the analysis that supports the allocation

of the overall safety requirement G1 to the control system

elements (G2, G3 and G4)

• It is possible for one goal G1 to be decomposed in any

number or configuration of the goals G2, G3 and G4 – hence

the choice and multiplicity symbols on the SolvedBy

relationship between S1 and the sub-goals.

Applicability The applicability of this pattern depends largely on whether the

model of the control system shown in Control System

Architecture is appropriate for the control system in question.

Where the control system can be decomposed into the primitive

elements – Sensor Subsystem, Control Logic Subsystem and

Actuator Subsystem – this form of argument may be used.

The starting point of the argument is the expression of a system

safety goal. This pattern assumes that this is possible – either

because there exists a System Level Statement of Safety

Requirements or System Level Hazard Analysis.

Analysis of the type suggested by C3 is also required in order to

support the decomposition. It should be recognised that where

C3 does not exist – a decomposition of this type would be

extremely difficult and (possibly) unjustified.

 305

Consequences After instantiating this pattern, a number of unresolved goals will

remain:

• G2 / G3 / G4

For each safety goal expressed over the Sensors / Control

Logic / Actuators appropriate supporting argument and / or

evidence should be provided. This argument/evidence should

be one appropriate to the nature of the goal being stated – i.e.

Quantitative evidence if a quantitative requirement is

expressed, qualitative argument if a qualitative goal is

expressed.

Implementation Start by identifying C1 or C2; State goal G1; Identify / Perform

analysis C3 (also using M1); Use C3 to derive goals G2, G3 and

/ or G4.

Possible Pitfalls

• Attempting to apply pattern to a system that is not readily

expressed in term of the Control System Architecture model.

• Attempting to apply pattern where the system level safety

analysis (C3) is not available or does not clearly identify the

causal links between system and subsystem properties

• Providing goals G2, G3 and G4 that are inappropriate as

solutions to the goal G1. For example, if G1 is a quantitative

requirement – it would be normal to expect supporting goals

to be expressed in quantifiable terms.

Examples Not available at this time

Known Uses See Industrial Press Safety Argument in:

Derivation of Safety Requirements for Simple Computer Based

Systems

Brenton Atchison, Peter Lindsay

submitted to ACSC’98

 306

Related Patterns Functional Decomposition Pattern – a pattern of similar style that

decomposes a system safety goal over system functions rather

than architectural elements

 307

B.2.2 Domain Independent ‘General Construction’ Safety Case Patterns

Domain Independent: General Construction

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

• Diverse Argument

• Safety Margin

(Full descriptions of these patterns are contained within each documented pattern)

 308

Diverse Argument

Author Tim Kelly

Created 28/04/98 09:18:18 Last Modified 22/02/99 02:36

Intent The intent of this pattern is to create arguments that instil a high

degree of confidence in the satisfaction of a goal and are resilient

to change and criticism.

Also Known As Many-pronged Argument

Motivation It has been observed that arguments not built on this principle are

vulnerable to single points of failure, i.e.:

• If a problem is found with, or a criticism is made of, the

single supporting argument or evidence for a claim then

confidence in the claim is immediately lost.

• Particularly, such structures are vulnerable to systematic

failures in the nature or basis of the argument construction –

arising perhaps from the underlying method, technology or

evidence.

Structure Diverse Argument

G1

{GOAL}

Gn

{STATEMENT
SUFFICIENT TO
SUPPORT G1}

S1

Argument based upon
diverse forms of evidence

>1

Definition of Diversity

C1

G2

Arguments are diverse and
not subject to common
mode failures

 309

G1 This goal sets out the principal objective of the

argument and must be instantiated with a specific

statement

S1 This strategy explains the diverse argument approach

and can be left as-is in the instantiated argument

Participants

C1 This (optional) context can be instantiated to define

clearly the definition of diversity that is being adopted

for the development of this argument – e.g. the degree

of independence being assumed. It is useful to include

this context where developer and audience of the

argument may have differing definitions.

 >1

Gn

The essence of this pattern is the provision of multiple

reasons (+ supporting arguments / evidence) as to why

G1 is satisfied. Each statement Gn should individually

be sufficient to support G1. The individual arguments

should ideally be based upon independent forms of

evidence. For example, this could mean:

• Diverse forms of safety analysis & testing

information

• Appealing to independent safety mechanisms in the

design

• Estimated vs. Historical / Operational data

The greater the diversity achieved between the forms of

Gn put forward the greater the confidence there will

usually be in the satisfaction of G1. The degree of

independence between the arguments will also reduce

the vulnerability of the overall argument to common

mode failures (e.g. if a certain form of evidence is

challenged or the effectiveness of a safety mechanism is

questioned).

 310

 G2 This (optional) claim may be instantiated if it is felt

necessary to justify that the arguments put forward by

the goals Gn are actually diverse, independent, free from

common mode failures etc.

Collaborations • There is an implicit requirement for diversity between the

arguments headed by goals Gn

• All the goals (Gn) put forward should be focussed towards the

same objective G1

• The diversity of the goals (Gn) should agree with the

(optional) definition provided by C1

• The claim made by goal G2 concerns the diversity between

the goals (and supporting arguments) of Gn

Applicability This pattern should be used wherever possible in the construction

of a safety argument. Diversity of evidence, however, has a cost

implication. It costs money to produce multiple forms of

argument to substantiate the same claim! The pattern should

therefore be applied judiciously wherever greater confidence in a

goal is required or it is felt that, in the future, challenges may be

made to the arguments used in support of the goal.

In some safety standards, e.g. UK Defence Standard 00-55,

argument diversity is demanded. Clause 7.3.1 states that:

“The Software Safety Case shall justify the achieved

integrity level of the SRS by means of a safety

analysis of the SRS development process supported

by two or more diverse safety arguments”

Arguments based upon both analysis (e.g. proof of correctness)

and testing are demanded. This pattern is obviously applicable in

this case.

Consequences After instantiating this pattern, a number of unresolved goals will

remain:

 311

• (>1 of) Gn

For each of these goals appropriate supporting argument and /

or evidence should be provided. This argument/evidence

should be one appropriate to the nature of the goal being

stated – i.e. quantitative evidence if a quantitative requirement

is expressed, qualitative argument if a qualitative goal is

expressed. The requirement for diversity and independence

should be respected as these goals are developed.

• G2

This claim of diversity between the arguments supporting the

goals Gn must be supported. Appeals could be made, for

example, to the independence of data, techniques or

technologies.

Implementation Start by defining the goal G1 (e.g. “Hazard H1 cannot occur”).

State strategy S1. If useful, instantiate the context C1 to provide

(or refer to) the definition of diversity being adopted in this

argument. Identify the diverse argument approaches used to

support G1. Define a goal Gn for each of the approaches

identified that makes clear the diversity (e.g. “Formal Analysis

shows condition relating to H1 cannot occur” and “Extensive Rig

testing has shown no occurrences of H1”). Provide supporting

arguments for each of the Gn claims put forward – making sure

that the independence in these claims is preserved. If felt

necessary or appropriate, instantiate the diversity claim G2 and

provide a supporting argument.

Possible Pitfalls

• Not selecting sufficiently diverse approaches (such that

confidence is not increased)

• Having a common dependency between the argument

approaches – e.g. reliance on a common design description,

piece of evidence, critical assumption.

 312

• Stating the goals independently, but at some later point

supporting them by the same argument or piece of evidence.

• Contradicting the definition of diversity provided by the

(optional) context C1 through the claims put forward as Gn.

UK Defence Standard 00-55 Clause 7.3.3 states that:

“All the safety arguments shall be analysed for

common mode failures”

Examples Example of Diverse Argument

Hazard H1 cannot occur

G1

S1

Argument based upon
diverse forms of evidence

G2

Formal Analysis shows
condition relating to H1
cannot occur

G3

Extensive Rig testing has
shown no occurrences of H1

Known Uses See Figure 130 of Appendix A (Nuclear Trip System Safety

Case)

Related Patterns Safety Margin – this pattern is also intended to increase

confidence and reduce vulnerability to change.

 313

Safety Margin

Author Tim Kelly

Created 28/04/98 09:18:18 Last Modified 22/02/99 02:36

Intent The intent of this pattern is to create arguments that instil a high

degree of confidence in the satisfaction of a goal and are resilient

to change and criticism.

Also Known As Crumple Zone

Motivation Arguments that only just manage to satisfy requirements are less

convincing and more vulnerable to the effects of change.

• If a challenge is made that questions the extent of the claims

made by an argument, and those claims only just satisfy the

target requirement, then satisfaction of that requirement is

immediately questioned.

• Especially with probabilistic arguments relying on a degree

of estimation, unless there is extreme confidence in the

claims derived, a claim that only just satisfies the target

requirement may be considered less than compelling.

Structure Safety Margin

G1

{TARGET GOAL}

G2

{ACHIEVEMENT CLAIM}

1 of 2

S1

Argument with sufficient
safety margin

Definition of
Sufficient

C1

 314

G1 This goal sets out the principal objective of the

argument and must be instantiated with a specific

statement

S1 There is a choice between providing G2 as a direct

solution to G1 or providing an explicit description of

the use of a safety margin through stating this as a

strategy S1.

Participants

C1 If S1 is explicitly stated, then it can be useful to

instantiate C1 to provide the definition of ‘sufficient’

being used to describe the safety margin. Providing

such a definition aids maintenance of the intent of the

safety margin if the argument is ever challenged or

altered in the future. It also helps clarify the concept

for the reader.

 G2 This goal should be instantiated to state what has been

achieved against the target set out in G1. As far as is

reasonably practicable the objective in constructing a

safety argument should be to state a goal G2 that not

only satisfies G1 but also exceeds the requirement,

thus providing a safety margin. By doing this,

confidence is increased in the satisfaction of G1 and

there is a ‘margin for error’ if the claims made by G2

have to be weakened at any future occasion (e.g. if the

claim is challenged by operational data).

The margin acts as a ‘crumple zone’. Change can

propagate through a goal structure up to G2. The

margin between G1 and G2 absorbs the change and

prevents further propagation, thus protecting the

argument above G1.

Collaborations • G2 should be stated to exceed the requirement set out by G1

• The claim expressed by G2 should be expressed in a form

congruent to the form of requirement set out in G1

 315

• The margin created by the gap between G1 and G2 should

agree with the definition of ‘sufficient’ given by C1 (if

provided).

Applicability This pattern should be used wherever possible in the construction

of a safety argument. Providing a safety margin, however, has a

cost implication. It costs money (up-front) to exceed safety

requirements! The pattern should therefore be applied

judiciously wherever greater confidence in a goal is required or it

is felt that, in the future, challenges may be made to the argument

used in support of the goal. In the long-term this approach saves

time and effort by providing a barrier to change – a margin that

can be called upon as justification for not having to update parts

of the safety argument above claim G1.

This approach provides a means of reducing a safety argument’s

sensitivity to variations in evidence and mitigating uncertainty in

safety claims. UK Defence Standard 00-55 states that:

“All the safety arguments shall be analysed for …

sensitivity to variations in the evidence. The main

sources of uncertainty in the safety arguments shall

be elaborated.”

This pattern is therefore obviously applicable in cases where 00-

55 is enacted.

Consequences After instantiating this pattern, an unresolved goal will remain:

• G2

Appropriate supporting argument and / or evidence should be

provided to support this goal. This argument/evidence should

be appropriate to the nature of the goal being stated – i.e.

quantitative evidence if a quantitative requirement is

expressed, qualitative argument if a qualitative goal is

expressed.

 316

Implementation Start by defining the target goal G1 (e.g. “Probability of Hazard

H1 < 1x10-6 per annum”). Decide on whether it is appropriate to

provide an explicit strategy S1 to explain the approach being

adopted or whether to simply provide a supporting claim. If S1

is used, decide on whether it is appropriate / useful to provide the

definition of a ‘sufficient’ safety margin as C1. Based on the

evidence available, state what has been achieved against this

requirement as G2 (e.g. “Fault Tree for H1 shows probability of

occurrence < 1x10-7 per annum”). The intent of the pattern is

that this claim should exceed the requirement of G1 – thus

providing a safety margin. Argument / evidence should then be

provided to support the claim made by G2.

Possible Pitfalls

• Over-engineering the system / evidence to provide an

excessive safety margin that will never be fully utilised. It

requires engineering judgement based upon experience of

‘calls to margin’ to decide upon the appropriate level of

margin to provide / allow between target and achievement.

• Offering a margin between G1 and G2 that does not agree

with the definition of a sufficient safety margin given by C1

(if provided).

 317

Examples Example Safety Margin

Probability of Hazard
H1 < 1x10-6 per annum

G1

Fault Tree for H1 shows
probability of occurrence <
1x10-7 per annum

G2

Fault Tree for
Hazard H1

Known Uses See Figure 130 of Appendix A (Nuclear Trip System Safety

Case)

Related Patterns Diverse Argument – this pattern is also intended to increase

confidence and reduce vulnerability to change.

 318

B.2.3 Domain Independent ‘Bottom Up’ Safety Case Patterns

The Safety Case Patterns presented within this section have been identified from, and

found applicable in, safety arguments from a wide variety of domains.

Domain Independent: Bottom Up

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

• Fault Tree Evidence

(Full descriptions of these patterns are contained within each documented pattern)

 319

Fault Tree Evidence

Author Tim Kelly

Created 01/05/98 15:57 Last Modified 22/02/99 02:36

Intent The intent of this pattern is to show the nature of the claims that

can be made from a fault tree representation of the causes of a

condition.

Also Known As

Motivation The motivation behind the pattern is to improve understanding of

the role of Fault Tree Analysis as a form of supporting evidence

within an overall safety argument.

Structure

Fault Tree Evidence

Fault Tree for
Condition {X}

Sn1

G1

{Causes of X are ...}
(Qualitative)

G2

{Probability of X occuring
is ...}
(Quantitative)

G3

No single point of failure
can lead to {X}

A1

Basic Failure Events used in Sn1
are independent

A

Sn1 is an accurate
representation of the causes of

X

J1

J

Participants Sn1 This solution should be instantiated to refer to a Fault

Tree representation of the causes of condition X. (X

is the condition of interest for the purposes of this

pattern).

 320

G1 Based on the causal model provided by the fault tree

(Sn1) this goal can be instantiated to summarise the

causes of condition X. This could be in the form of a

list of causes (e.g. “Causes of X are pump failure,

valve failure and processor failure”). Alternatively it

could describe the nature of the causes identified by

Sn1 (e.g. “Causes of X are all physical failures”).

This is a qualitative claim regarding the structure of

the fault tree.

G2 Where numerical probabilities have been provided

for the basic failure events within the fault tree (Sn1)

and probabilistic analysis has been possible, a

(quantitative) claim can be put forward regarding the

probability of condition X occurring. For

conventional Fault Tree Analysis, such a claim relies

heavily upon the assumption A1.

G3 Where it is borne out by the causal model provided

by the fault tree (Sn1) this goal can be instantiated to

state that no single point of failure can lead to the

condition X, i.e. the number of conditions in the set

of necessary and sufficient causes of X is >1.

A1 This assumption underpins the claims of both G2 and

G3. If this assumption does not hold, the

probabilistic analysis of the fault tree would provide

a misleading calculation of Condition X probability

(hence challenging G2). It may also mean that a

common failure mode exists between basic events,

thus challenging G3.

 321

 J1 All of the claims (G1, G2 and G3) are fallacious if

this justification does not hold. For the fault tree to

be a valid piece of supporting evidence for a safety

argument it must be true that it presents an accurate

and truthful causal model for X. For example, it

must be consistent with design descriptions,

operational evidence and other safety analyses.

Collaborations • The claim G3 can only be made if this is an observed property

of Sn1

• Claims G1 and G3 should not contradict each other

Applicability This pattern can be applied wherever:

• A fault tree for the condition exists – i.e. the skills for the

construction and validation of such a casual model are

available.

• Assumption A1 and Justification J1 can be discharged

• Fault Tree Analysis is an accepted as a form of evidence to

be used within a safety argument (i.e. it is accepted and

recognised by industry and regulatory standards)

Consequences Following use of the fault tree to support such claims it is

necessary to ensure that (through-life):

• The fault tree continues to provide an presents an accurate and

truthful causal model for condition X

• The fault tree is consistent with subsidiary forms of evidence

used in its construction (e.g. Failure Modes and Effects

Analysis tables used to provide basic failure event

information)

• Independence between the basic failure events of the fault tree

is preserved (and is not compromised through implementation

decisions or subsequent design changes).

 322

Implementation • Start by instantiating Sn1 to refer to the fault tree constructed

for condition X.

• Check that the independence assumption A1 holds.

• Support justification J1 by ensuring that the validity of the

tree is checked.

• Based upon cut set analysis of the fault tree, decide whether

it is possible / appropriate to instantiate G3.

• If it is appropriate, instantiate G1 to summarise the minimal

causes identified for the tree.

• Where probabilistic analysis of the tree is possible,

summarise the results through instantiating G2.

Possible Pitfalls

• Failing to support the independence assumption A1

• Presenting a fault tree Sn1 that does not support the

justification J1. If the validity of the fault tree is not believed,

then the claims derived from that fault tree will be

questionable.

Examples Not available at this time

Known Uses See Figure 126 of Appendix A (Nuclear Trip System Safety

Case)

Related Patterns Markov Model Evidence – this pattern illustrates the claims that

can be made from a Markov Model.

 323

B.3 Domain Specific ‘Top Down’ Safety Case Patterns (Nuclear)

A number of ‘top down’ decomposition Safety Case Patterns have been identified and

documented from safety arguments within the naval nuclear propulsion domain. The

patterns present the structure of arguments of compliance against specific safety

principles defined in the U.K. Ministry of Defence Safety Principles and Safety Criteria

for the Naval Nuclear Propulsion Programme – NNTSP/BR3/100/94 [98].

Domain Specific (Nuclear): Top Down Safety Case Patterns

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

• Safety Principle 6 (Defence in Depth) Compliance Pattern

 324

Safety Principle 6 (Defence in Depth)

Compliance Pattern

Authors Tim Kelly, Colin Welsh

Created 1/3/98 Last Modified 22/02/99 02:36

Structure

Defence in Depth Principle
Implemented in System

Principle6

Several physical barriers in place
to prevent release of fission
products to the environment

SevBarriers

{Barrier}

{Barrier} prevents release of
fission product to the
environment

Damage to the barriers is
prevented

BarrierProtection

FailurePath

Each barrier must be violated in
turn before radioactive material can
be released to the environment

BarriersArgument

Argument over all
barriers provided

n

Barriers in system to
prevent fission release

Barriers

{BarrierDiD}

Defence in Depth Concept
applied to {Barrier}

n

System

System Description

SPSCs

Safety Principles and Safety
Criteria for Naval Nuclear

Propulsion Programme

Provides:

PrimarySafety

Primary (Automatic) Safety
Systems in place to prevent
challenges of barrier integrity

Challenges of (calls on)
barriers prevented are far as
resonably practicable

OnlySecondary

NormalOp2

Normal Plant Operating
Conditions defined to be
within plant design limits

NormalOp1

Normal Plant Operating
Conditions defined to be
within barrier design limits

Instrumentation

Monitoring of plant and barrier
condition provided, including alerts
and support for diagnosis of faults

HumanBarrier

Appropriate QA and admin.
controls, safety reviews lin place
to ensure correct barrier opn.

{BarrierDesign}

Conservative Design (Eng.
Practices and Technologies)
employed in {Barrier}

n

BarrierQuality

Barrier quality checked at build,
manufacture and through life to
ensure safety margins maintained

Intent The purpose of this pattern is to argue compliance with Safety

Principle 6 (Defence in Depth) of the Nuclear Naval Programme

Safety Principles and Safety Criteria document.

Also Known As Defence in Depth Pattern

Motivation The motivation behind this pattern is to communicate the key

claims that need to be put forward to demonstrate compliance

with the Defence in Depth Principle and thus show how the

overall requirement may be decomposed into a number of more

specific requirements that can be more easily addressed.

 325

Goal:

Principle6

This goal sets out the overall objective of

the pattern – to be able claim that the

Defence in Depth principle has been

implemented.

Model:

System

This model must be instantiated to clearly

define the basis (scope) for making the

Principle6 claim.

Context:

SPSCs

If not referred to already, this context

should be used to point to the MoD SPSCs

document – importantly this context

should identify the issue being used. This

document sets out all of the Safety

Principles (1-78).

Participants

Goal:

SevBarriers

This is the key claim of the Defence in

Depth argument – that there are multiple

barriers in place (be they engineered or

procedural) to prevent release of

radioactive material.

 326

Goal:

FailurePath

This goal forms an important part of the

support argument for SevBarriers –

namely that the barriers would each have

to fail in turn for any release to the

environment to be possible. Implicit in

this goal is the idea that the barriers will

fail in a pre-defined order (i.e. primary

barrier will fail before secondary and so

on). The support argument for this goal

must address this issue. Also implied is

this goal is the concept of independence.

For the barriers to fail in turn rather than at

all once there must be no common mode

failures between barriers. For example, it

would be highly undesirable for a common

failure to knock out both primary and

secondary barriers. Such a situation would

invalidate this claim.

Strategy:

BarrierArgument

The argument approach defined by this

strategy is to argue a number of claims for

each of the barriers provided in the system

(defined by the context Barriers).

Participants

(continued)

Context:

Barriers

This context should be instantiated to refer

to design documentation / description that

clearly identifies the barriers being referred

to. For example, this context refer to a

description of 3 barriers provided – fuel

cladding, primary coolant boundary and

containment.

 327

Goal:

{Barrier}

This is the claim (put forward for each

barrier individually) that the barrier

performs the function of preventing fission

release. The supporting argument for this

claim will identify how the barrier prevents

fission release.

Goal:

{BarrierDiD}

The MoD SPSCs state that the Defence in

Depth concept should be carried down

through the system design. This claim

states that not only is the barrier part of

overall Defence in Depth at the system

level but it is also itself defined using the

Defence in Depth concepts. A similar

argument to that applied at the system

level needs to be applied again at the

barrier level for each barrier.

Participants

(continued)

Goal:

{BarrierDesign}

For each barrier, this claim is argues

appropriate conservatism in the design of

the barrier. Support arguments will appeal

to use of ‘tried and trusted’ techniques,

development codes, proven technologies.

 328

Goal:

BarrierProtection

The plant should design so as to prevent

damage to the barriers. To support this

claim may require an assessment of the

activities and equipment that could cause

damage to the barriers – e.g. activities that

could damage the integrity of plant

containment.

Goal:

NormalOp1

A key element of the support for

BarrierProtection is the claim that the

barriers are designed to cope with the

normal operating environment and limits

of the plant. A deterministic justification

should be provided that addresses both the

appropriate definition of the operating

limits and the ability of the barriers to

correct operate and function within those

limits.

Participants

(continued)

Goal:

Instrumentation

The status of the barriers should be

annunciated to the system operators at all

times. Particularly, calls on barriers should

be alerted. Instrumentation should be

sufficient to aid diagnosis of faults in

operation. The supporting argument for

this goal will identify the instrumentation

available.

 329

Goal:

OnlySecondary

The presence of multiple barriers in the

system is not an excuse for not trying to

control the emergence of fission release

hazards in the first place (i.e. the initiating

events). This claim argues that reliance on

the barriers has been reduced as low as

reasonably practicable – by improving the

design of the core plant and core safety

control functions.

Goal:

PrimarySafety

An important element of the support

argument for OnlySecondary is the ability

to claim that there are primary (safety

control) systems in place to shutdown

system operation that would in normal

operation prevent challenges to any of the

fission release barriers.

Goal:

NormalOp2

The core plant must be defined such that

fission release incidents are minimised. In

the case of an NSRP, support arguments

for this claim are contained within the DJ

(Deterministic Justification).

Participants

(continued)

Goal:

BarrierQuality

The build quality of the barriers should be

checked wherever possible. Supporting

argument / evidence for such a claim will

be based on inspection data, compliance

with design codes, in-service inspection

procedures.

 330

Participants

(continued)

Goal:

HumanBarrier

Any operators in a system can be

considered to be another form of safety

barrier. By their actions they can often

determine the severity of the consequences

of an accident. As such, appropriate

controls should be in place that ensure the

correct ‘functioning’ of all human

operators. The support argument for this

claim will be based on training procedures,

operating checks, procedural safety

systems etc.

Collaborations The System model sets the overall system context. The Barriers

context identifies barriers within this system.

The Barriers context provides the basis for the decomposition of

BarriersArgument.

NormalOp1 and NormalOp2 address similar concerns. Op1

addresses barrier design limits. Op2 addresses plant design

limits. It is possible that similar (or shared) arguments will exist

to support both of these goals – e.g. a deterministic justification

for the system that includes both the core plant and barriers.

Applicability This pattern can be applied to systems that must demonstrate

satisfaction of the MoD Safety Principles and Safety Criteria for

the Nuclear Naval Programme (Principle 6). An implicit

assumption is that the system is capable of fission product

release to the environment (i.e. there is fissile material involved).

Consequences After instantiating this pattern, a number of unresolved goals will

remain:

FailurePath

{Barrier} – n of, for n barriers

{BarrierDiD} – n of, for n barriers

 331

{BarrierDesign} – n of, for n barriers

Instrumentation

PrimarySafety

NormalOp1

NormalOp2

BarrierQuality

HumanBarrier

See Participants for a description of the forms of support

argument expected for each of these goals.

Implementation Start by defining system (System)

Identify the barriers in System – hence, define context Barriers.

Construct the {Barrier} arguments for each barrier, then

{BarrierDiD} and {BarrierDesign}

Provide argument for FailurePath

Provide argument for BarrierProtection and NormalOp1

Then address all remaining goals: Instrumentation,

PrimarySafety, NormalOp2, BarrierQuality and

HumanBarrier

Possible Pitfalls

Attempting to apply pattern to a system that is not readily

expressed in terms of a core plant + barriers model.

The assurance of safety achieved by having multiple barriers is

weak unless there is clear evidence of independence and absence

of common mode failures between barriers. These issues must

be addressed under FailurePath.

This pattern expresses a defence in depth argument at an overall

system level. When attempting to apply to a system that would

be considered one of the overall barrier mechanisms – it is still

worth starting from the Principle6 goal. Use the System model

 332

to scope the system being addressed. Arguments supporting

{Barrier}, {BarrierDiD} and {BarrierDesign} would be

unecessary for all barriers other than the one being addressed.

For FailurePath identify clearly where the barrier being

addressed sits in the overall intended path of failure. For such

situations, PrimarySafety and NormalOp2 and HumanBarrier

may well be more appropriately addressed elsewhere (at the

overall system level) and may therefore be omitted.

BarrierQuality ought to be focussed specifically on the one

barrier being addressed, as should NormalOp1.

Examples Not available at this time

Known Uses Not available at this time

Related Patterns Principle 7 (Accident Prevention) Compliance Pattern

Principle 8 (Accident Mitigation) Compliance Pattern

 333

References

[1] L. Arnold, Windscale 1957: Anatomy of a Nuclear Accident. London:

Macmillan, 1992.

[2] T. A. Kletz, Learning from Accidents in Industry. London: Butterworths, 1988.

[3] CIMAH, “The Control of Industrial Major Accident Hazards (CIMAH)

Regulations 1984,” SI 1984/1902, 1984.

[4] W. D. Cullen, “The Public Enquiry into the Piper Alpha Disaster,” Department

of Energy, London, HMSO November 1990.

[5] C. Edwards, “Railway Safety Cases,” presented at Safety and Reliability of

Software Based Systems - Twelfth Annual CSR Workshop, Bruges, Belgium,

1997.

[6] HSE, “Railway Safety Cases - Railway (Safety Case) Regulations 1994 -

Guidance on Regulations,” Health and Safety Executive, HSE Books 1994.

[7] R. Chuse, Pressure vessels: the ASME code simplified, 7th ed. New York;

London: McGraw-Hill, 1993.

[8] MoD, “JSP 430 - Ship Safety Management System Handbook,” Ministry of

Defence January 1996.

[9] MoD, “00-55 Requirements of Safety Related Software in Defence Equipment,”

Ministry of Defence, Defence Standard August 1997.

[10] MoD, “00-56 Safety Management Requirements for Defence Systems,” Ministry

of Defence, Defence Standard December 1996.

[11] R. J. Cullen, “Safety as a Design Tool,” presented at Managing Risk in a

Changing Organisation Climate - Proceedings of the Safety and Reliability

Symposium, Swindon, U.K., 1996.

[12] T. P. Kelly, “Literature Survey for Work on Evolvable Safety Cases,”

Department of Computer Science, University of York, York, 1st Year

Qualifying Dissertation June 1995.

[13] HSE, “A guide to the Offshore Installations (Safety Case) Regulations 1992,”

Health and Safety Executive, HSE Books 1992.

 334

[14] IEC, “61508 - Functional Safety of Electrical / Electronic / Programmable

Electronic Safety-Related Systems,” International Electrotechnical Commission,

Draft Standard December 1997.

[15] SAE, “ARP 4754 - Certification Considerations for Highly-Integrated or

Complex Aircraft Systems,” The Society for Automotive Engineers December

1994.

[16] JAA, “Joint Airworthiness Requirements JAR-25: Large Aeroplanes (Change

13),” Civil Aviation Authority October 1989.

[17] HSE, “Safety Assessment Principles for Nuclear Plants,” Health and Safety

Executive, HSE Books 1992.

[18] Railtrack, “Engineering Safety Management System,” Electrical Engineering

and Control Systems, Railtrack, London August 1996.

[19] CENELEC, “Railway applications The specification and demonstration of

dependability, reliability, availability, maintainability and safety (RAMS),”

European Committee for Electrotechnical Standardisation, Brussels, Draft

Standard prEN 50126, November 1995.

[20] HSE, “The Work of the HSE's Nuclear Installations Inspectorate,” Health and

Safety Executive, HSE Books 1995.

[21] S. A. Harbison, “Developments in Safety Standards and Regulations,” Nuclear

Energy, vol. 33, pp. 383-386, 1994.

[22] S. Barker, I. Kendall, and A. Darlison, “Safety Cases for Software Intensive

Systems,” presented at 16th International Conference on Computer Safety and

Reliability (SAFECOMP'97), York, 1997.

[23] P. Pymm, “Integrated Software Maintenance Environment for Safety-Related

Systems,” Measurement and Control, vol. 36, pp. 73-75, 1993.

[24] L. Hogberg, “Shutting Down 5 Reactors: Reasons Why and Lessons Learnt,”

Nuclear Europe Worldscan, vol. 14, pp. 42-43, 1994.

[25] A. W. Clarke, “Magnox Safety Review: Extending the Life of Britain's Work

Horses,” Nuclear Energy, vol. 28, pp. 215-220, 1989.

[26] R. Ford, “Traction Safety Cases - Storm Imminent,” in Modern Railways, 1996,

pp. 80-82.

 335

[27] D. Learmount, “Family Ties Undone,” in Flight International, 1996, pp. 34-35.

[28] J. A. McDermid, “Support for Safety Cases and Safety Arguments using SAM,”

Reliability Engineering and System Safety, vol. 43, pp. 111-127, 1994.

[29] S. Wilson, T. P. Kelly, and J. A. McDermid, “Safety Case Development:

Current Practice, Future Prospects,” presented at Safety and Reliability of

Software Based Systems - Twelfth Annual CSR Workshop, Bruges, Belgium,

1997.

[30] S. Wilson, J. McDermid, P. Fenelon, and P. Kirkham, “No More Spineless

Safety Cases: A Structured Method and Comprehensive Tool Support for the

Production of Safety Cases,” presented at 2nd International Conference on

Control and Instrumentation in Nuclear Installations (INEC'95), Cambridge,

UK, 1995.

[31] S. Wilson and J. A. McDermid, “Integrated Analysis of Complex Safety Critical

Systems,” The Computer Journal, vol. 38, pp. 765-776, 1995.

[32] P. Bishop and R. Bloomfield, “The SHIP Safety Case Approach: A Combination

of System and Software Methods,” presented at Safety and Reliability of

Software Based Systems - Twelfth Annual CSR Workshop, Bruges, Belgium,

1997.

[33] N. Fenton, “The Role of Measurement in Software Safety Assessment,”

presented at Safety and Reliability of Software Based Systems - Twelfth Annual

CSR Workshop, Bruges, Belgium, 1997.

[34] K. A. Delic, F. Mazzanti, and L. Strigini, “Formalising a Software Safety Case

via Belief Networks,” SHIP (Assessment of the Safety of Hazardous Industrial

Processes in the Presence of Design Faults), Project Report SHIP/T046,

September 1995.

[35] J. Hesketh and D. Robertson, “Communication in Safety Cases - A Semantic

Approach,” presented at IEE Colloquium on Knowledge Based Systems for

Safety-Critical Applications, 1994.

[36] P. Bishop, R. Bloomfield, L. Emmet, C. Jones, and P. Froome, Adelard Safety

Case Development Manual. London: Adelard, 1998.

 336

[37] J. A. McDermid, “Personal Communication with Praxis Critical Systems (Part

Developers of 00-55),” , 1997.

[38] M. Cass and R. Le Poidevin, A Logic Primer, 2nd ed. London: Vortext

Publishing, 1993.

[39] B. Aarts, English Syntax and Argumentation. London: Macmillan, 1997.

[40] R. Munson, The way of words: an informal logic. Boston MA: Houghton,

Mifflin, 1976.

[41] T. Govier, A Practical Study of Argument, 3rd ed. Belmont CA: Wadsworth,

1992.

[42] S. E. Toulmin, The Uses of Argument. Cambridge: Cambridge University Press,

1958.

[43] W. Grennan, Argument Evaluation. London: Lanham, 1984.

[44] J. Sparrow, Knowledge in Organisations: Access to Thinking At Work. London:

SAGE, 1998.

[45] C. Fiol and H. A, “Maps for Managers: Where are we? Where do we go from

here?,” Journal of Management Studies, vol. 29, pp. 267-286, 1992.

[46] J. Lee, “Design Rationale Capture and Use,” AI Magazine, vol. 14, pp. 24-26,

1993.

[47] F. Lakin, J. Wambaugh, L. Leifer, D. Cannon, and C. Sivard, “The Electronic

Design Notebook: Performing Medium and Processing Medium,” The Visual

Computer, vol. 5, pp. 214-226, 1989.

[48] J. Lee, “SIBYL: A Tool for Managing Group Decision Rationale,” presented at

Computer Supported Cooperative Work 1990 (CSCW 90), 1990.

[49] H. Raiffa, Decision Analysis: Addison Wesley, 1968.

[50] J. Conklin and M. Begeman, “gIBIS - A Hypertext Tool for Exploratory Policy

Discussion,” ACM Transactions on Office Information Systems, vol. 6, pp. 303-

331, 1988.

[51] S. Fickas and B. Helm, “Knowledge representation and reasoning in the design

of composite systems,” IEEE Transactions on Software Engineering, vol. 18,

pp. 470-82, 1992.

 337

[52] S. Green, “Goal-driven Approaches to Requirements Engineering,” Imperial

College, University of London, London, Technical Report 1994.

[53] E. Kavalki, P. Loucopoulos, and D. Filippidou, “Using Scenarios to

Systematically Support Goal-Directed Elaboration for Information System

Requirements,” Information Systems Engineering Group, Department of

Computation, UMIST, Manchester, Technical Report ISE-96-1, 1996.

[54] D. Duffy, C. MacNish, J. McDermid, and P. Morris, “A Framework for

Requirements Analysis Using Automated Reasoning,” presented at Advanced

information systems engineering: 7th International Conference (CAiSE '95),

Jyvaskyla, Finland, 1995.

[55] IEE, Proceedings of International Conference on Sizewell B: The First Cycle.

London: IEE, 1996.

[56] N. Jayaratna, Understanding and Evaluating Methodologies: NIMSAD, A

Systematic Framework. London: McGraw-Hill, 1994.

[57] T. P. Kelly, “A Six-Step Method for the Development of Goal Structures,” York

Software Engineering, Flixborough, U.K. 1997.

[58] B. Nuseibeh, “A Multi-Perspective Framework for Method Integration,” in

Department of Computing. London: Imperial College, University of London,

1994.

[59] P. Vincke, Multicriteria Decision-Aid. Chichester: Wiley, 1992.

[60] M. Fletcher, “Certification Issues for IMA Systems,” presented at IEE Seminar

on the Certification of Ground / Air Systems, London, 1998.

[61] R. A. Edwards, “ASAAC Phase 1 Harmonized Concept Summary,” presented at

ERA Technology Avionics Conference and Exhibition, London, 1994.

[62] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in

a Hard Real-Time Environment,” Journal of the ACM, vol. 20, pp. 40-61, 1973.

[63] ISO, “ISO 11898 Road Vehicles - Interchange of Digital Information -

Controller Area Network,” International Standards Organisation 1993.

[64] H. Kopetz and W. Ocheneiter, “Clock Synchronisation in Distributed Real-Time

Systems,” IEEE Transactions on Computers, vol. 36, pp. 933-940, 1987.

 338

[65] RTCA and EUROCAE, “Software Considerations in Airborne Systems and

Equipment Certification,” Radio Technical Commission for Aeronautics RTCA

DO-178B/EUROCAE ED-12B, 1993.

[66] M. Field and R. Foulkes, Project Management (PMT 605), Unit 7: Change

Control. Milton Keynes: The Open University, 1987.

[67] K. Ross, “Software Configuration Management in the Support of Formal

Development,” in Software Verification Research Centre, School of Information

Technology. Brisbane: University of Queensland, 1997.

[68] JAA, “Joint Airworthiness Requirements JAR-E: Engines (Change 8),” Civil

Aviation Authority May 1990.

[69] D. S. Queener, “Reports, Standards and Safety Guides,” Nuclear Safety, vol. 35,

pp. 339-44, 1994.

[70] Collins, Collins English Dictionary, 3rd ed. Glasgow: HarperCollins, 1991.

[71] C. Alexander, The Timeless Way of Building. New York: Oxford University

Press, 1979.

[72] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, and

A. Shlomo, A Pattern Language: Towns, Buildings, Construction. New York:

Oxford University Press, 1977.

[73] C. Alexander, M. Silverstein, A. Shlomo, S. Ishikawa, and D. Abrams, The

Oregon Experiment. New York: Oxford University Press, 1975.

[74] K. Beck, “Patterns and Software Development,” Dr. Dobbs Journal, vol. 19, pp.

18-23, 1993.

[75] G. Booch, “Patterns,” Object Magazine, vol. 3, 1993.

[76] P. Coad, “Object-Oriented Patterns,” Communications of the ACM, vol. 35, pp.

152-159, 1992.

[77] H. Mili, F. Mili, and A. Mili, “Reusing Software: Issues and Research

Directions,” IEEE Transactions on Software Engineering, vol. 21, pp. 528-562,

1995.

[78] K. Beck and W. Cunningham, “Using Pattern Languages for Object-Oriented

Programs,” presented at Conference on Object-Oriented Programming Systems,

 339

Languages, and Applications (OOPSLA'87), Workshop on the Specification and

Design for Object-Oriented Programming, Orlando, Florida, 1987.

[79] J. Coplien, “Idioms and Patterns As Architectural Literature,” IEEE Software,

vol. 14, pp. 36-42, 1997.

[80] E. Gamma, “Object-Oriented Software Development based on ET++: Design

Patterns, Class Library, Tools,” in Institut fur Informatik. Zurich: University of

Zurich, 1991.

[81] B. Appleton, “Patterns and Software: Essential Concepts and Terminology,” .

http://www.enteract.com/~bradpp/docs/patterns-intro.html, 1997.

[82] E. Gamma, R. Helm, R. Johnson, and Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

[83] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-

Oriented Modelling and Design. Englewood Cliffs: Prentice-Hall, 1991.

[84] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented

Software Engineering - A Use Case Driven Approach. Wokingham, England:

Addison-Wesley, 1992.

[85] G. Booch, Object-Oriented Analysis and Design with Applications. Redwood

City, CA: Benjamin-Cummings, 1994.

[86] J. Coplien and D. Schmidt, Pattern Languages of Program Design. Reading,

MA: Addison-Wesley, 1995.

[87] P. Chen, “The Entity Relationship Model - Towards a Unified View of Data,”

ACM Transactions on Database Systems, vol. 1, pp. 9-36, 1976.

[88] W. E. Vesely, “Fault Tree Handbook,” US Nuclear Regulatory Commission,

Washington DC, USA NUREG-0492 [0942], 1981.

[89] K. Wolf and C. Liu, “New Clients with Old Servers: A Pattern Language for

Client / Server Frameworks,” in Pattern Languages of Program Design, J.

Coplien and D. Schmidt, Eds. Reading, MA: Addison-Wesley, 1995, pp. 51-64.

[90] D. Riehle and H. Zullinghoven, “A Pattern Language for Tool Construction and

Integration Based on the Tools and Materials Metaphor,” in Pattern Languages

of Program Design, J. Coplien and D. Schmidt, Eds. Reading, MA: Addison-

Wesley, 1995, pp. 9-42.

 340

[91] S. Adams, “Functionality Ala Carte,” in Pattern Languages of Program Design,

J. Coplien and D. Schmidt, Eds. Reading, MA: Addison-Wesley, 1995, pp. 7-8.

[92] B. Rubel, “Patterns for Generating a Layered Architecture,” in Pattern

Languages of Program Design, J. Coplien and D. Schmidt, Eds. Reading, MA:

Addison-Wesley, 1995, pp. 119-128.

[93] R. Lajoie and R. Keller, “Design and Reuse in Object-Oriented Frameworks:

Patterns, Contracts and Motifs in Concert,” in Object-Oriented Technology for

Database and Software Systems, V. Alagar and R. Missaoui, Eds. Singapore:

World Scientific Publishing, 1995, pp. 295-312.

[94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns: Abstraction

and Reuse of Object-Oriented Design,” presented at ECOOP'93 - Object-

Oriented Programming, 7th European Conference, Kaiserslautern, Germany,

1993.

[95] T. Kelly and J. McDermid, “Safety Case Construction and Reuse Using

Patterns,” presented at 16th International Conference on Computer Safety and

Reliability (SAFECOMP'97), York, 1997.

[96] N. A. M. Maiden and A. G. Sutcliffe, “Analogically Based Reusability,”

Behavioural Information and Technology, vol. 11, pp. 79-98, 1992.

[97] N. A. M. Maiden and A. G. Sutcliffe, “People-Oriented Software Reuse: The

Very Thought,” presented at Advances in Software Reuse - Second International

Workshop on Software Reusability, Lucca, Italy, 1993.

[98] MoD, “Safety Principles and Safety Criteria for the Naval Nuclear Propulsion

Programme,” Ministry of Defence NNTSP/BR3/100/94 Issue 2, August 1996.

[99] T. Kelly, I. Bate, J. McDermid, and A. Burns, “Building a Preliminary Safety

Case: An Example from Aerospace,” presented at Australian Workshop on

Industrial Experience with Safety Critical Systems and Software, Sydney,

Australia, 1997.

[100] P. Brown, “Safety Argument Manager Assessment Report,” Rolls-Royce and

Associates Ltd., Company Report RRA 17983, February 1998.

[101] J. McDermid, “ALARP for Software: Requirements and Guidance,” McDermid

and Associates, Internal Report DMCS/079/97, May 1998.

 341

[102] R. Born, “Patterns for Safety Critical Systems,” in Department of Computer

Science. York: University of York, 1998.

[103] S. Glasstone and A. Sesonke, Nuclear Reactor Engineering. New York: Van

Nostrand Reinhold, 1981.

[104] P. Bishop, “Using Reversible Computing to Achieve Fail-safety,” presented at

Eighth International Symposium on Software Reliability (ISSRE'97),

Albuquerque, New Mexico, 1997.

