
 

 

 

 

Arguing Safety – A Systematic Approach to 

Managing Safety Cases 

 

 

 

Timothy Patrick Kelly 

 

 

 

Submitted for the degree of Doctor of Philosophy 

 

 

 

University of York 

Department of Computer Science 

 

 

 

September 1998 



 2

 

 

 

 

 

 

 

For my Mum and Dad 



 3

Abstract 

A safety case should present a clear, comprehensive and defensible argument that a 

system is acceptably safe to operate within a particular context.  However, many 

existing safety cases, in their attempt to manage potentially complex arguments, are 

poorly structured, presented and understood.  This creates problems in developing and 

maintaining safety cases, and in capturing successful safety arguments for use on future 

projects. 

This thesis defines and demonstrates a coherent approach to the development, 

presentation, maintenance and reuse of the safety arguments within a safety case.   This 

approach is based upon a graphical technique – the Goal Structuring Notation (GSN) – 

and has three strands.  Firstly, a method for the use of GSN is defined together with an 

approach to supporting incremental safety case development.  Secondly, the thesis 

presents a systematic process for the maintenance of a GSN-structured safety argument.  

Thirdly, the concept of ‘Safety Case Patterns’ is defined as a means of supporting and 

promoting the reuse of successful safety arguments between safety cases.  Examples of 

the approach are provided throughout. 

Evaluation of the approach is described through tool implementation, case studies, pilot 

projects and industrial project applications.  Through these activities the approach has 

been shown to be both a valid and capable tool for safety case management. 
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Chapter 1:  

Introduction 

1.1 Introduction 

On the evening of July 6th 1988, 165 of the 226 people on board the Piper Alpha 

Offshore Oil Platform died in an accident that should not have occurred. Poor advance 

consideration of platform safety had resulted in ineffective safety measures and flawed 

operating procedures.  The Piper Alpha disaster is just one of a series of accidents that 

has prompted a dramatic change in the approach being adopted to safety management. 

Windscale, Flixborough, Piper Alpha and Clapham: each one of these incidents has 

resulted in legislation requiring the introduction of a safety case regime within the 

respective industry sector. 

1.1.1 Windscale 

In October 1957 a fire in the Number 1 pile at Windscale resulted in a significant 

release of radioactivity (20 000 Ci of Iodine-131).  The reactors at Windscale used 

natural uranium as fuel, graphite as the moderator and were cooled by air.  The 

properties of graphite as a moderator were only just beginning to be understood at the 

time of building the Windscale reactors.  The moderator was found to store energy 

(known as Wigner Energy) that could be spontaneously released in the form of heat.  

This energy had to be routinely released through an annealing process.  The storage and 

release of this energy was not well understood.  During one such annealing process, the 

energy was released too quickly, starting a fire.  The fuel in the core melted, fuel cans 

burst and the uranium ignited, causing fission products to be released through the 

cooling ducts to the atmosphere [1]. 

Following the Windscale accident a number of actions were taken.  Firstly, the Nuclear 

Installations (Licensing and Insurance) Act was introduced in 1959 to regulate 

commercial nuclear reactor installations.  As part of this Act, following 

recommendations from the Fleck Committee set up as a result of the enquiry into 

Windscale, the Nuclear Installations Inspectorate (NII) was established to regulate all 

land-based reactors within the U.K.  In order to obtain an operating licence, a set of 

reports must be presented to the NII that justifies the safety of the design, construction 
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and operation of the plant.  The nuclear certification process is widely cited as one of 

the first examples of a safety case regime, although the term safety case was not used at 

this time. 

1.1.2 Flixborough 

In 1974 an explosion occurred at the Nypro factory at Flixborough causing 28 deaths on 

site and extensive damage and injuries in the surrounding villages.  The explosion 

occurred in a part of the facility involved in the production of Nylon.  One of the six 

reactors in a process to oxidise cyclohexane developed a crack.  It was removed and 

quickly replaced by a temporary pipe.  After two months of operation, on 1st June, a 

slight rise in pressure caused the pipe to rupture, resulting in 30-50 tonnes of highly 

pressurised cyclohexane being vented to the plant within 50 seconds.  The cyclohexane 

then ignited causing a vapour cloud explosion that destroyed the oxidation unit, 

neighbouring units and a nearby office block [2]. 

Following the Flixborough accident, an Advisory Committee on Major Hazards was 

established within the Health and Safety Executive.  The committee recommended that 

regulations be established to ensure identification, assessment and management of 

potential hazards in chemical installations.  This recommendation resulted in the 

formulation of the Hazardous Installations (Notification and Survey) Regulations.  

These regulations were never enacted but instead formed the basis of a European 

Community Directive produced in response to the Seveso accident that occurred in July 

1976.  The U.K. implementation of this directive was introduced in 1984 as the Control 

of Industrial Major Accident Hazards (CIMAH) Regulations [3].  A key requirement of 

the CIMAH Regulations is the production of a Safety Report (Case) that demonstrates 

adequate consideration of dangerous substances, potential accidents and provision of 

effective safety management systems. 

1.1.3 Piper Alpha 

On Piper Alpha in July 1988, a combination of poor procedures and communication 

meant that a pump that was out of commission for routine maintenance was 

recommisioned hurriedly and switched on. The resulting gas explosion killed two men.  

This explosion would have been survivable were it not for the absence of blast walls in 

the platform design.  The blast started an oil fire.  Again, this would have been 

controllable except that adjacent platforms in the oil field continued to pump oil and gas 

through the pipelines connecting the rigs to the shore, thus feeding the fire.  Eventually, 
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gas lines near the oil fire ruptured creating an uncontrollable fire fed by thousands of 

tonnes of pressurised gas contained within the pipelines.  The crew on the platform had 

been given minimal training in emergency procedures.  Many of the crew assembled in 

the accommodation block awaiting evacuation via the heli-pad on top of the block, 

following the minimal instruction they had been given.  However, following the first 

gas explosion this evacuation route was unworkable.  No alternative procedures were 

communicated to the crew.  The majority of the crew died waiting in the accomodation 

block [4]. 

Following the Piper Alpha disaster a public enquiry chaired by Lord Cullen was 

initiated.  The purpose of this enquiry was both to determine the causes of the accident 

and to make recommendations so that similar accidents would not occur in the future.  

The findings of the enquiry are published in [4].  Heavily influenced by the experience 

of the chemical industry in its use of safety cases as required by the CIMAH 

Regulations, one of the main recommendations was that platform operators should be 

required to submit safety cases.  These purpose of these documents being to present a 

clear and comprehensive argument of platform safety.  As a direct result of this 

recommendation, the Offshore Installations (Safety Case) Regulations were introduced 

in the U.K. in 1992. 

1.1.4 Clapham 

In 1988 35 people were killed in a collision between two trains resulting from a 

signalling failure.  The signal failure was found to be caused by a wiring fault 

introduced in maintenance.  A wire was improperly terminated and by-passed crucial 

safety interlock circuitry.  The consequences of collision were particularly bad as it 

involved old ‘Mark 1’ rolling stock that copes poorly with rear collisions.  In such 

collisions carriages of this type can easily ride over one another and slice through the 

passenger space. 

Although the cause of the accident at Clapham was relatively straightforward to identify 

and eradicate in future installations, it was felt in the ensuing enquiry that the accident 

had been symptomatic of the whole culture [5].  This thinking, together with a growing 

concern for railway safety as a result of privatisation, led to the introduction of the 

Railway (Safety Case) Regulations 1994 [6].  These regulations require that the railway 

infrastructure controller (Railtrack) and all train and station operators must prepare 
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safety cases that demonstrate sufficient consideration of management of all credible 

hazards. 

1.1.5 The Way Forward 

The four accidents described here have been instrumental in prompting a 

reconsideration of how safety is managed in each of the respective industries.  In each 

of these cases, there had not been a total ignorance of safety concerns, or even a 

complete absence of safety standards.  Instead, the underlying problem was that the 

operator had failed to demonstrate a systematic and thorough consideration of safety.  

The introduction of safety standards such as those we have described are indicative of a 

step change in the approach being adopted to safety regulation.  Previous approaches 

have focussed primarily on prescriptive safety requirements, e.g. construction codes as 

described in [7].  With such approaches, operators claim safety through satisfaction of 

the regulator’s requirements.  With the introduction of safety cases, the responsibility is 

shifted back to the operators.  It is up to the operators to demonstrate that they have an 

adequate argument of safety. 

Despite the wide requirements for safety cases across many industries, it has been far 

from clear what constitutes a ‘good’ safety case, or how to analyse and construct a 

safety case.  It is this deficiency that has provided motivation for, and begins to be 

addressed by, this research presented in this thesis. 

1.2 Defining the Safety Case Concept 

In this thesis the safety case is defined in the following terms: 

A safety case should communicate a clear, comprehensive and defensible 

argument that a system is acceptably safe to operate in a particular context 

Section 1 has shown that the concept of the ‘safety case’ has already been adopted 

across many industries.  Studying the safety standards relating to these sectors, it is 

possible to identify a number of definitions of the safety case – some clearer than others.  

The definition given above attempts to cleanly define the core concept that is in 

agreement with the majority of the definitions we have discovered. 

The following are important aspects of the above definition: 

• ‘argument’ – Above all, the safety case exists to communicate an argument.  It is 

used to demonstrate how someone can reasonably conclude that a system is 
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acceptably safe from the evidence available.  We return to this distinction between 

argument and evidence in Section 2.1. 

• ‘clear’ – A safety case is a device for communicating ideas and information, usually 

to a third party (e.g. a regulator).  In order to do this convincingly, it must be as clear 

as possible.  We return to this point in Section 3.1. 

• ‘system’ – The system to which a safety case refers can be anything from a network 

of pipes or a software configuration to a set of operating procedures.  The concept is 

not limited to consideration of conventional engineering ‘design’. 

• ‘acceptably’ – Absolute safety is an unobtainable goal.  Safety cases are there to 

convince someone that the system is safe enough (when compared against some 

definition or notion of tolerable risk). 

• ‘context’ – Context-free safety is impossible to argue.  Almost any system can be 

unsafe if used in an inappropriate or unexpected manner. (Consider arguing the 

safety of a conventional house-brick.)  It is part of the job of the safety case to 

define the context within which safety is to be argued. 

To elaborate the concept further, it is worth examining some alternative definitions 

briefly.  The following definition is taken from the U.K. Ministry of Defence Ship 

Safety Management System Handbook JSP 430 [8]. 

“A safety case is a comprehensive and structured set of safety 

documentation which is aimed to ensure that the safety of a specific vessel 

or equipment can be demonstrated by reference to: 

• safety arrangements and organisation 

• safety analyses 

• compliance with the standards and best practice 

• acceptance tests 

• audits 

• inspections 

• feedback 

• provision made for safe use including emergency arrangements” 
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This definition highlights two important aspects of the safety case.  Firstly, it is a 

document.  Some standards distinguish between the safety case as a logical concept (i.e. 

where the question, ‘Does this system have a safety case?’ is equivalent to asking ‘Is 

this system acceptably safe?’) and the safety case as a physical artefact (sometimes 

called the Safety Case Report).  As is commonly done, this definition uses the term 

safety case synonymously with the documentation that presents the safety case.  

Secondly, it makes clear that the nature of the safety case is to refer to, and pull 

together, potentially many other pieces of information (such as safety analyses).  The 

thesis discusses some of the challenges this presents in Section 3.1. 

A more mechanistic definition of the software safety case is that used by the U.K. 

Ministry of Defence Standard (DS) 00-55 [9].  Although referring to software systems, 

it is not difficult to see how such a definition translates to other systems. 

“The software safety case shall present a well-organised and reasoned 

justification based on objective evidence, that the software does or will 

satisfy the safety aspects of the Statement of Technical Requirements and the 

Software Requirements Specification.” 

This definition makes clear the role of the safety case in expressing satisfaction of 

specific Safety Requirements or Objectives.  It is rare that acceptable safety is a 

completely undefined concept.  Within industry sectors, and for particular classes of 

system, definitions of acceptable safety have evolved.  These may be expressed in terms 

of prescriptive requirements, development codes or assessment principles.  For 

example, DS 00-55 expresses many individual requirements concerning the 

development and assessment of safety critical software systems.  Prescriptive 

requirements are a third party expression of a high-level safety argument – where 

meeting requirements implies some degree of safety.  The safety case must clearly 

identify and address applicable requirements. 

1.2.1 Requirements, Argument and Evidence 

Underlying the descriptions of the safety case given in the previous section is a view of 

the safety case consisting of three principal elements: Requirements, Argument and 

Evidence.  The relationship between these three elements is depicted in Figure 1. 
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Safety Requirements & Objectives

Safety Evidence

Safety Argument

 

Figure 1 – The Role of Safety Argumentation 

The safety argument is that which communicates the relationship between the evidence 

and objectives. This division is worth highlighting at this point as it helps to define 

clearly the subject and motivation of the thesis. 

Based on the author’s personal experience, gained from reviewing a number of safety 

cases, and validated through discussion with many safety practitioners (some directly 

responsible for reviewing and accepting safety cases), a commonly observed failing of 

safety cases is that the role of the safety argument is neglected.  In such safety cases, 

many pages of supporting evidence are often presented (e.g. hundreds of pages of fault 

trees or Failure Modes and Effects Analysis tables), but little is done to explain how this 

evidence relates to the safety objectives.  The reader is often left to guess at an 

unwritten and implicit argument. 

Both argument and evidence are crucial elements of the safety case that must go hand-

in-hand.  Argument without supporting evidence is unfounded, and therefore 

unconvincing. Evidence without argument is unexplained – it can be unclear that (or 

how) safety objectives have been satisfied. 

This thesis focuses upon the role of the safety argument. 

1.2.2 Challenges of Safety Case Development 

The motivation for the research presented in this thesis has been the problems and 

challenges currently experienced by those developing safety cases in industry.  An early 

part of the research involved gaining a clear appreciation of these problems.  This was 
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achieved through many discussions with engineers, by reviewing existing safety cases, 

and by gaining a thorough understanding of regulatory requirements. 

The following problem areas are those which are believed to be some of the most 

significant limitations of current safety cases and that have specifically been 

addressed in this thesis: 

• Presentation of Clear Safety Arguments 

• Incremental Safety Case Development 

• Through-life Safety Case Maintenance 

• Supporting Trustworthy Safety Case Reuse 

The sections that follow provide a brief description of each of these areas. 

1.2.3 Presentation of Clear Safety Arguments 

The requirement that the safety case should present a clear safety argument is stated in 

many of the safety standards.  Both DS 00-55 [9] and 00-56 [10] emphasise that the 

justification the safety case presents should be: 

‘… well-organised and reasoned’ 

However, there are a number of factors that can make, and have made, it difficult to 

achieve this goal: 

• Size and complexity – The totality of evidence and argument required to meet 

many of today’s certification standards can be huge.  The engineer constructing the 

safety case can often be left with the unenviable task of attempting to present a 

safety argument that overarches thousands to tens of thousands of pages of 

evidence.  

• Co-ordinating and presenting results from many different sources – As 

described in Section 1.2, it is within the nature of the safety case to rely upon 

multiple sources of evidence and contextual material.  Presenting these relationships 

whilst preserving the flow and readability of the text within the safety case 

document is extremely difficult.  Multiple cross-references in text can be awkward.  

Also, the safety case is often the product of many individuals’ efforts.  To present a 

coherent and consistent document that integrates the multiple contributions to the 

safety case whilst preserving the structure and clarity of the safety argument can be 

extremely difficult. 



 27

• Use of Free-format Text – As will be discussed further in Chapter Two, the 

medium most commonly used at present for communicating the safety argument 

within the safety case is free-format text.  Although it is possible to communicate 

safety arguments clearly with text, unless heavily marshalled its ‘flexibility’ can 

allow unclear, ambiguous and misleading argument to be expressed.  As mentioned 

previously, it can be extremely difficult to clearly present complex interrelationships 

and cross-references with text.  This point has long been appreciated in most 

engineering disciplines, where engineering drawings and design notations are 

typically used to describe artefacts of any significant structural complexity. 

This thesis proposes an approach to structuring and presenting clearly the safety 

arguments of the safety case. 

1.2.4 Incremental Safety Case Development 

Historically, the production of safety cases has often been viewed as an activity to be 

completed towards the end of the safety lifecycle [11].  However, it is increasingly 

being recognised that in order to gain most value out of developing the safety case, and 

to present the most convincing argument, safety cases should be developed 

incrementally in step with system development.  Safety standard DS 00-56 [10] states 

the following with respect to this issue: 

“The Safety Case should be initiated at the earliest possible stage in the 

Safety Programme so that hazards are identified and dealt with while the 

opportunities for their exclusion exist” 

Similarly, the guidance provided in JSP 430 [8] states that: 

“The Safety Case is to be prepared in outline at presentation of the Staff 

Requirement and is to be updated at each major procurement milestone up 

to and including hand-over from the procurement to the maintenance 

authority … Ideally there should be a seamless development of the Safety 

Case from one phase to the next” 

This thesis demonstrates how the proposed approach to presenting safety 

arguments respects and facilitates the incremental development of safety cases. 
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1.2.5 Through-life Safety Case Maintenance 

Although safety cases are typically presented initially by an operator in order to gain 

permission to commence operation of a system, once accepted there is usually a 

responsibility to maintain the safety case as a ‘living document’ throughout the 

operational life of the system.  For example, DS 00-56 [10] states that: 

“… any amendments to the deployment of the system should be examined 

against the assumptions and objectives contained in the safety case.” 

Similarly, JSP 430 [8] puts forward the following requirement: 

“The Safety Case will be updated … to reflect changes in the design and/or 

operational usage which impact on safety, or to address newly identified 

hazards. The Safety Case will be a management tool for controlling safety 

through life including design and operational role changes” 

However, the difficulty faced in safety case maintenance is highlighted most clearly in 

the following quote taken from the U.K. HSE Railways (Safety Case) Regulations 1994 

[6]: 

“Regulation 6(1) requires a safety case to be revised whenever appropriate, 

that is whenever any of its contents would otherwise become inaccurate or 

incomplete.” 

The challenge lies in the phrase ‘whenever appropriate’.  The task of assessing the 

impact of any particular change on the safety argument to determine whether revision of 

the safety case is necessary is far from straightforward.  The problems of argument 

scale, complexity and most importantly clarity cited in Section 2.3 hamper the 

development of a systematic, efficient and effective approach to safety case 

maintenance. 

This thesis demonstrates how the proposed approach to presenting safety 

arguments can be used to support the safety case maintenance activity. 

1.2.6 Supporting Trustworthy Safety Case Reuse 

Whilst the details of the arguments of the safety case (being based on specific evidence) 

are likely to change from instance to instance, there is often commonality in the form of 

the arguments used between safety cases.  In the author’s experience, this commonality 

is often exploited by safety case practitioners in the form of informal safety argument 

reuse – mimicking or copying verbatim an argument observed elsewhere (or perhaps 
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used historically).  Whilst there is significant benefit to be achieved through reuse – an 

observable characteristic of a mature safety case development process – there are also 

dangers.  These may include an inappropriate reuse of arguments (possibly arising out 

of a failure to understand the rationale or assumptions underlying an approach), and a 

lack of traceability where arguments have been reused.  

It is therefore desirable to have an approach that supports the documentation and reuse 

of common safety argument approaches whilst minimising the risk of creating fallacious 

arguments of safety. 

This thesis proposes such an approach. 

1.3 Thesis Proposition 

This thesis provides a method and graphical notation for the presentation 

of safety arguments.  The thesis demonstrates how this approach can be 

used to address the highlighted challenges of safety case development by 

supporting the development, maintenance and reuse of safety arguments. 

1.4 Thesis Structure 

The thesis is divided into the following chapters: 

Chapter Two presents a survey of the published literature on safety case development 

and approaches to developing and presenting safety arguments.  Through review of the 

requirements regarding safety cases and safety arguments that exist with current safety 

standards, and a study of published safety case development experience, the research 

objectives are shown to be well founded.  Early work on the Goal Structuring Notation 

is identified at this point as the basis from which the research has been developed. 

Chapter Three describes the contribution made by the author in defining a method for, 

and extending, the Goal Structuring Notation.  In particular, the chapter highlights how 

the method has further defined the syntax and semantics of the notation.  An illustration 

of goal structure development using the method is presented.  Using the extension of 

context to goal structuring, we demonstrate how it becomes possible to represent the 

interrelationships that exist between an evolving safety argument and alternative 

development viewpoints.  In particular, an illustration is given of the coupling that can 

exist between the dual elements of the traditional ‘product’ safety viewpoint and 

‘process’ justification. 
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Chapter Four describes how the Goal Structuring Notation can be used in support of 

the Safety Case Maintenance Activity.  We propose a classification of changes affecting 

the safety case and show how these changes can be mapped to the elements of a goal-

structured safety argument.  Having represented the challenge in terms of the goal 

structure, the chapter presents a process that uses the goal structure as the basis for 

assessing the impact of change on the safety argument.  This process is illustrated on the 

example given in Appendix A. 

Chapter Five presents a novel approach to the representation and reuse of common 

safety case argument structures based upon the concept of ‘Patterns’.  The chapter 

proposes extensions to the Goal Structuring Notation that enable the structural and 

entity abstraction necessary to represent generic argument structures.  In addition we 

define and explain a format for the documentation of the goal-structured abstractions.  A 

process for the elicitation and application of ‘Safety Case Patterns’ is presented.  A 

number of example patterns are provided (both in this chapter and in Appendix B).  

From these examples, we explain how it has been possible to evolve a taxonomy of 

Safety Case Patterns. 

Chapter Six describes how the proposals put forward in Chapters Three, Four and Five 

have been validated and evaluated.  The evaluation of the work has been based upon 

case study (such as that presented in Appendix A), application on real industrial 

projects, and through exposure to a wide audience of experienced safety case 

practitioners. 

Chapter Seven presents the conclusions that can be drawn from the thesis.  It describes 

the extent to which the work presented in previous chapters supports the thesis 

proposition, and highlights areas of ongoing and possible future work. 

The thesis also includes a number of appendices that, although provided in support of 

the main chapters, can be read independently: 

Appendix A provides an illustration of how the Goal Structuring Notation, as described 

in Chapter 3, can be used in the presentation of a safety case document.  The features of 

this example are discussed in Chapter Three.  The example is also used in illustration of 

the approach to Safety Case Maintenance proposed in Chapter Four. 

Appendix B presents examples of Safety Case Patterns (proposed in Chapter Five) 

documented to date.  This appendix is presented in the form of a Pattern Catalogue, 

structured according the taxonomy of patterns proposed in Chapter Five.  
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Chapter 2:  

Survey of Safety Case Management & 

Argumentation 

2.1 Introduction 

Although the principles of developing and presenting safety cases are now widely 

adopted and practised across many industries, there is still relatively little published 

literature on the subject.  This was particularly true at the time of starting the research. 

This chapter provides the context for the contribution made by this thesis.  The chapter 

is divided into the following sections: 

• Safety Case Development Requirements - Representative requirements for the 

development and management of safety cases arising from current safety standards 

• Safety Case Development Experience Reports - Published experiences of current 

safety development practice (relevant to the thesis objectives) 

• Safety Case Development Methodologies - Existing published approaches to 

safety case development 

• Safety Argumentation – Existing approaches to presenting safety arguments 

• Argumentation - Existing approaches to argumentation 

• Related Concepts – Concepts that are closely related to argumentation and the Goal 

Structuring Notation 

As described in Chapter One, the objectives of the thesis concern the development, 

maintenance and reuse of safety arguments.  There are no directly comparable results in 

the areas of safety argument maintenance and reuse.  The author conducted a broad 

survey of change management and reuse approaches from other domains (particularly 

software) in the initial stages of the research [12].  The reader is referred to this work for 

a survey of these areas.  Particularly relevant results from other domains that have 

influenced the approach defined in this thesis are introduced within later chapters as 

required. 
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2.2 Safety Case Development Requirements 

Over the course of the research the author has studied the requirements for the 

production and management of safety cases that exist within a large number of current 

safety standards.  The majority of safety regulations and standards are defined for 

specific industry sectors and countries (e.g. for Offshore Installations in the United 

Kingdom [13]).  In addition, there are a few industry ‘generic’ and international safety 

standards (e.g. those concerning the use of software in programmable electronic 

systems).  Table 1 shows a representative subset of the standards studied and indicates 

their scope of application. 

In addition, the author has had sight of a number of company-specific safety assessment 

procedures that address the production of a safety case. 

The safety standards express requirements regarding safety cases in the following two 

ways: 

• Safety Case Product Requirements – concerning the role, content and structure of 

the safety case 

• Safety Case Process Requirements – concerning the safety case development and 

maintenance lifecycle 

The following sub-sections provide illustrative examples of these two forms of 

requirement. 

2.2.1 Safety Case ‘Product’ Requirements 

An explicit requirement for the production of safety cases is present in a number of 

safety standards.  For example, the U.K. Defence Sea Systems Standard JSP 430 [8] 

states the following: 

“Safety Cases are required for all new ships and equipment as a means of 

formally documenting the adequate control of Risk and demonstrating that 

levels of risk achieved are As Low As Reasonably Practicable (ALARP).” 
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Name of Standard / Regulations Generic / 

Sector 

Specific 

Scope: 

Draft IEC Standard (IEC) 61508 – Functional Safety: 

Safety-related systems [14] 

Generic International 

Defence Standard 00-55 – Requirements for Safety-

Related Software in Defence Equipment [9] 

Generic: 

Defence 

U.K. 

Defence Standard 00-56 – Safety Management 

Requirements for Defence Systems [10] 

Generic: 

Defence 

U.K. 

HSE Offshore Installations (Safety Case) Regulations 

1992 [13] 

Specific: 

Offshore 

U.K 

ARP 4754: Certification Considerations for Highly-

Integrated or Complex Aircraft Systems [15] 

Specific: 

Aerospace 

International 

Joint Aviation Authority (JAA) Joint Airworthiness 

Requirements JAR-25: Large Aeroplanes [16] 

Specific: 

Aerospace 

Europe 

HSE Safety Assessment Principles for Nuclear Plants 

[17] 

Specific: 

Nuclear 

U.K. 

Railtrack Electrical Engineering and Control Systems 

Engineering Safety Management System [18] 

Specific: 

Railways 

U.K. 

HSE Railways (Safety Case) Regulations [6] Specific: 

Railways 

U.K 

Draft CENELEC Standard prEN 50126 – Railway 

applications: The specification and demonstration of 

dependability, reliability, availability, maintainability 

and safety (RAMS) [19] 

Specific: 

Railways 

Europe 

U.K. Ministry of Defence Joint Service Publication 

(JSP) 430 – Ship Safety Management Handbook [8] 

Specific: 

Defence – 

Sea Systems 

U.K. 

Table 1 – Subset of Safety Standards Studied 



 34

 

For U.K. Railways, the Health and Safety Executive (HSE) Railway (Safety Case) 

Regulations 1994 [6] require that: 

“A person in control of any railway infrastructure shall not use or permit it 

to be used for the operation of trains unless 

(a) he has prepared a safety case … 

(b) the Executive has accepted that safety case …” 

For U.K. Defence Software Systems, DS 00-55 [9] requires that: 

“The Software Design Authority shall provide a Software Safety Case …” 

As described in Chapter One, these requirements represent a marked shift in the 

approach being adopted to the certification of safety-critical systems.  Where previously 

prescriptive standards were used as the main certification device, the responsibility is 

now being placed with the developers to argue a safety case. 

2.2.1.1 The Role and Purpose of the Safety Case 

The role and purpose of the safety case is defined within a number of the standards.  For 

example, JSP 430 [8] states the following: 

"A safety case is a comprehensive and structured set of safety 

documentation which is aimed to ensure that the safety of a specific vessel 

or equipment can be demonstrated by reference to: safety arrangements and 

organisation; safety analyses; compliance with the standards and best 

practice; acceptance tests; audits; inspections; feedback; and provision 

made for safe use including emergency arrangements” 

This definition highlights the role of the safety case as an integrator of many forms of 

evidence.  As discussed in Chapter One, this is actually one of the underlying causes of 

the difficulties faced in presenting and structuring safety cases.  DS 00-55 [9] provides 

an alternative definition of the (software) safety case: 

"The software safety case shall present a well-organised and reasoned 

justification based on objective evidence, that the software does or will 

satisfy the safety aspects of the Statement of Technical Requirements and the 

Software Requirements specification." 
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This definition clearly highlights that the role of the safety case is provide a reasoned 

argument.  It also supports the view that the safety case comprises three essential 

elements (requirements, argument and evidence), as presented in Chapter One. 

2.2.1.2 Expected Safety Case Contents 

Many of the standards (and supporting guidance) have begun to define the 

expected contents of a safety case.  The following is an example of the top level 

headings taken from the safety case contents list given in the Railtrack Safety 

Management Manual [18] as guidance on compliance with the HSE Railways 

Regulations [6]: 

• Executive Summary 

• Introduction 

• System Overview 

• Safety Requirements 

• Safety Management Overview 

• Safety Audits and Assessments 

• Safety Analysis 

• Safety Engineering Overview 

• Compliance with Safety Requirements 

• Other Outstanding Safety Issues 

• Conclusions 

Similarly, DS 00-55 [9] outlines the requirements for the contents of the software 

safety case under the following headings: 

• System and Design Safety Aspects 

• Software Safety Requirements 

• Software Description 

• Safety Arguments 

• Safety Related System Development Process 
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• Current Status 

• Change History 

• Compliance with Safety Requirements 

• In-Service Feedback 

• Software Identification 

The safety argument communicated by a safety case is the logical thread that runs 

through the information presented in the separate sections.  Some of the safety 

standards, such as 00-55 [9], recognise the importance of presenting safety arguments 

explicitly.  The following section illustrates the requirements that exist within the 

standards for the production and presentation of safety arguments: 

2.2.1.3 Safety Argument Requirements 

In addition to the general requirement present in many of the standards that the safety 

argument presented by the safety case should be “well-reasoned” [10] and 

“comprehensive” [8], DS 00-55 places some specific requirements on the safety 

arguments presented.  As shown by the headings given in the previous section, 00-55 

also assigns an explicit section of the safety case to the presentation of safety 

arguments. The following requirements are given regarding safety arguments: 

“The Software Safety Case shall justify the achieved integrity level of the 

Safety Related System (SRS) by means of a safety analysis of the SRS 

Development Process supported by two or more diverse safety arguments. 

The safety arguments shall include both: 

a) Analytical arguments … 

b) Arguments from testing …” 

Part two of the standard also provides some guidance on how these arguments may be 

developed and presented.  The techniques that are presented are discussed in later 

sections (2.5.2 and 2.5.3). 

It is worth noting that although the standards make demands for clear and compelling 

arguments, most offer little advice on how this is to be achieved. 
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2.2.2 Safety Case ‘Process’ Requirements 

The requirements given in the safety standards regarding the processes of safety case 

management are covered under the following two sub-sections: 

• Requirements regarding the initial development process 

• Requirements regarding the maintenance process 

The author has identified no specific requirements regarding the reuse of safety case 

material.  However, some standards offer advice on the types of argument and evidence 

to be used within the safety case.  This can be viewed as a form of safety case 

knowledge reuse, albeit only a weak form.  An illustrative example of this kind of 

guidance is presented in a third sub-section: 

• Guidance on admissible forms of safety argument and evidence 

2.2.2.1 Requirements Regarding Initial Safety Case Development 

Chapter One stated that whereas the historical view of safety case development was that 

it was an activity to be carried out towards the end of the safety lifecycle, current 

thinking endorses the evolutionary development of safety cases.  This view is now 

represented within a number of the safety standards.  For example, 00-56 [10] states the 

following: 

“The Safety Case should be initiated at the earliest possible stage in the 

Safety Programme so that hazards are identified and dealt with while the 

opportunities for their exclusion exist” 

Similarly, JSP 430 [8] presents the following requirement: 

“The Safety Case is to be prepared in outline at presentation of the Staff 

Requirement and is to be updated at each major procurement milestone up 

to and including hand-over from the procurement to the maintenance 

authority … Ideally there should be a seamless development of the Safety 

Case from one phase to the next” 

A common approach adopted within the standards to managing the gradual 

development of the safety case is to require the submission of a number of safety cases 

at various stages of project development.   For example, DS 00-55 [9] talks of formally 

issuing at least three versions of the (Software) Safety Case: 
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• Preliminary Safety Case – produced after definition and review of the system 

requirements specification. 

• Interim Safety Case – produced after initial system design and preliminary 

validation activities. 

• Operational Safety Case – produced just prior to in-service use, including 

complete evidence of having satisfied the systems requirements 

Similar requirements for phased safety case production exist within 00-56 [10] and 

within the civil nuclear domain [20] [21] (where the talk is of Preliminary Safety 

Reports, Pre-Construction Safety Reports and Pre-Operation Safety Reports). 

2.2.2.2 Requirements Regarding Safety Case Maintenance 

The importance of effective safety case maintenance, as described in Chapter One, is 

also highlighted in many of the standards.  For example, the HSE Railway Regulations 

[6] states the following: 

“Regulation 6(1) requires a safety case to be revised whenever appropriate, 

that is whenever any of its contents would otherwise become inaccurate or 

incomplete.” 

Similarly, 00-56 [10] demands that: 

“… any amendments to the deployment of the system should be examined 

against the assumptions and objectives contained in the safety case.” 

JSP 430 [8] expresses the role of the safety case during maintenance even more 

strongly, as shown in the following statement: 

“The Safety Case will be updated … to reflect changes in the design and/or 

operational usage which impact on safety, or to address newly identified 

hazards. The Safety Case will be a management tool for controlling safety 

through life including design and operational role changes” 

Unfortunately (for practitioners), although the importance of, and requirements for, 

safety case maintenance are expressed within the safety standards, once again little 

guidance is offered on how this maintenance should be carried out.  The quote from the 

HSE Railway Regulations given above expresses one of the most problematic aspects of 

safety case maintenance – namely the need for maintenance ‘whenever appropriate’.  
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There are many difficulties in determining the impact of a change and therefore when 

revision of the safety case is appropriate. 

2.2.2.3 Guidance on Admissible Forms of Argument and Evidence 

Although no standards explicitly refer to the reuse of safety arguments between safety 

case development, some are implicitly encouraging the adoption of standard forms of 

safety argument and supporting evidence through guidance material.  As stated earlier, 

this can be viewed as a weak form of safety argument reuse.  One such example is the 

guidance given for software safety cases in Part 2 of 00-55 [9], an extract of which is 

shown in the following table: 

Argument Scaling with size and safety 

integrity level (SIL) 

Assumption and 

limitations 

Max 

SIL 

Formal 

Arguments 

About linear with code size.  

Limited complexity of 

application.  Some resource 

related properties or concurrent 

aspects difficult to address.  

Policy for formal proof vs. 

rigorous argument needs careful 

justification. 

Evidence very strong for 

properties amenable to this 

approach.  Very dependent 

on system design.  Validity 

of rigorous arguments for 

assurance (as opposed to 

development) hard to 

quantify. 

4 

Exhaustive 

testing 

Non dependent on SIL but very 

sensitive to complexity or 

software. 

Unlikely to be practicable 

except for special cases, 

which may be readily 

tractable by proof anyway. 

4 

Table 2 – 00-55 Guidance on Acceptable Forms of Safety Argument 

 

2.3 Safety Case Experience 

A number of papers have been published that present experiences of applying the safety 

case concept to specific domains and projects.  The following three sub-sections provide 

an overview of how this experience relates to the three main themes of the thesis, 

namely, safety case development, maintenance and reuse. 
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2.3.1 Experiences in Safety Case Development 

Cullen in [11] cites the problems experienced when the production of a safety case for 

the BNFL Sellafield Alpha Reduction Plant was initially left as a post-design activity.  

He describes how after two failed attempts to produce an acceptable (certifiable) design, 

an evolutionary and design-integrated approach to safety case development was 

successfully adopted. (The problems cited in this paper are discussed more fully in 

section 1.1. of Chapter Three). 

Barker et al. in [22] describe the experience of developing a safety case for the 

electronic throttle system on the Jaguar XK8 sports car.  The paper concludes from the 

experience that “it would be advantageous to design a skeleton safety argument as an 

early deliverable, during planning stages … which could then be used to manage the 

evidence gathered during development of the full argument, and to assist in its 

presentation”.  This view is very much in line with the objective of incremental safety 

argument production as propounded in this thesis. 

2.3.2 Experiences in Safety Case Maintenance 

There are a number of reports that highlight some of the safety concerns associated with 

maintenance.  Pymm, in [23], describes the difficulty of making safety related 

modifications to the computer systems of an Advanced Gas Reactor nuclear power plant 

without degradation of, or challenge to, the initial safety case.  In order to manage the 

maintenance process he strongly advocates full documentation of the original 

development process and also of the change process. 

The problem of operational experience challenging the safety case is illustrated by 

Hogberg in [24].  This paper describes the activities triggered by the need to re-assess 

the existing safety case for five Swedish BWR (Boiling Water Reactor) power plants 

after an incident challenged the original basis of that case. 

Clarke, in [25] describes some of the problems encountered with performing the Long 

Term Safety Review (LTSR) of the U.K.’s Magnox reactors. Specifically this report 

highlights how, through lack of any maintenance of the original safety case, the safety 

case has become inconsistent with current plant status and operation.  He also highlights 

the problems of adding to and re-evaluating a safety case that has become ‘out of date’ 

with respect to current safety standards.  A more systematic approach to updating the 

safety case, in line with the objectives of this thesis, is recommended. 
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2.3.3 Experiences in Safety Case Reuse 

Although not explicitly addressing safety case reuse, concerns have been identified in 

the aerospace and railways sectors regarding the reliance on existing safety arguments 

for derivative systems – so called ‘Grandfather Rights’.  Ford in [26] highlights the 

danger in implicitly relying upon historical safety arguments that would no longer meet 

current certification requirements for U.K. Railways.  Learmount in [27] highlights the 

similar concern being expressed in relation to airliner type certification within the civil 

aerospace domain.  However, Learmount also describes how these ‘grandfather rights’ 

are being replaced with a certification process based on a more systematic evaluation of 

the differences between derivative and the original certified airframes, engines and 

systems.  These two papers highlight the dangers of safety case reuse (i.e. its ability to 

produce successively weaker safety arguments).  They illustrate that for such reuse to be 

safe requires a systematic process, explicit documentation and evaluation of the 

continuing applicability of the reused approach.  This observation supports the 

objectives of this thesis. 

2.4 Safety Case Development Methodologies 

This section provides an overview of past and current research concerning safety case 

development.  In particular, the work of the following projects is presented:  

• ASAM (A Safety Argument Manager), ASAM-II and SAM 

• SHIP (Safety of Hazardous Industrial Processes) 

• Communication in Safety Cases 

• Adelard Safety Case Development Method 

• SERENE (SafEty and Risk Evaluation using bayesian NEts) 

2.4.1 ASAM, ASAM-II and SAM 

ASAM (A Safety Argument Manager) [28] was the first project led by the University of 

York to investigate and develop an approach to structuring the logic of safety cases.  

The project based its approach upon the principals of structuring arguments in the 

Toulmin form (i.e. in terms of claims, warrants, backing, rebuttal etc.), as described 

later in Section 2.6.3.  A prototype Safety Argument Manager tool was developed that 

allowed these ‘micro-arguments’ to be assembled to form an overall safety argument.  

There were a number of conclusions from this project.  Firstly, the Toulmin form was 
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felt to be too restrictive and unable readily to represent the forms of argument 

commonly found within real safety cases.  Secondly, it was felt that a safety case tool 

should provide support not only for the high level argument of the safety case, but also 

for the supporting evidence (particularly safety analysis techniques.)  To address these 

problems, the ASAM-II project was started. 

ASAM-II [29-31] was a collaborative DTI-EPSRC funded project led by the University 

of York in partnership with British Aerospace, Lloyds Register of Shipping and Rolls-

Royce plc.  The objective of the project was to provide a structured method and 

comprehensive tool support for the production of safety cases.  The project focused on 

the following two concepts: 

• Development of a goal based notation for structuring the high level argument of the 

safety case. 

• Management of the interrelationships that exist between the most common safety 

analysis techniques [31] (e.g. between Fault Tree Analysis and Failure Modes and 

Effects Analysis). 

This project initiated development of the Goal Structuring Notation (GSN), described 

later in Section 2.5.6.  The research described in this thesis began in 1994 whilst the 

ASAM-II project was still running (the project ended in 1996).  Although the basic 

notation of GSN had been established, there was no method for the construction of goal 

structures, the semantics of elements of the notation were poorly understood and 

defined, and deficiencies were identified in GSN’s expressive power.  This was the 

starting point of the research identified in this thesis. 

At the end of the ASAM-II project a prototype tool – SAM 3.25 – had been developed 

and had already begun to incorporate some of the early results of the work presented in 

this thesis (e.g. extension of the notation to include context).  It was felt that with 

minimal further development the SAM tool could be made into a commercial tool for 

the management of safety cases.  To fund and guide this further development, the tool 

was passed across to York Software Engineering Ltd. who in 1997 set up the ‘SAM 

Club’ – a consortium of over 20 European companies involved in the development of 

safety-critical systems.  The subscribing companies span a wide range of industries 

(including defence, aerospace and the railways) and include GEC-Alsthom (now 

Alstom), GEC-Marconi, Rolls-Royce, Defence Evaluation and Research Agency 
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(DERA), Smiths Industries, Lucas Aerospace and Siemens.  The ‘SAM Club’ has 

funded the development of a new version of the SAM tool – SAM 4. 

The research presented in this thesis has influenced the support for GSN provided by 

SAM 4.  As described in Chapter Six (Evaluation), SAM 4 has provided a platform on 

which tool support for the approach presented (e.g. for argument maintenance and 

reuse) has been developed.  The ‘SAM Club’ has also provided a forum through which 

the approach defined in this thesis has been presented and evaluated.  At the time of 

writing the club is still active, and intends to release SAM 4 as a commercial tool during 

1999. 

2.4.2 SHIP Project 

The SHIP project was funded under the EU Environment Programme (Major Industrial 

Hazards).  The objective of the project was to define an approach to assuring safety 

despite the presence of design faults.  There were two main strands to the project: 

• Definition of the SHIP Safety Case Approach 

• Use of Bayesian Belief Networks to determine quantitative software claims 

The following two sub-sections describe the results of these studies: 

2.4.2.1 SHIP Safety Case Approach 

The SHIP model of the safety case [32] is shown in Figure 2.  It defines the safety case 

in terms of three elements: 

• Claims about properties of the system. 

• Evidence used as the basis of the safety argument. 

• Argument that links the evidence to the claims via a series of inference rules. 

The following three types of argument are also defined: 

• Deterministic – relying upon axioms, logic and proof 

• Probabilistic – relying upon probabilities and statistical analysis 

• Qualitative – relying upon adherence to standards, design codes etc. 
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Evidence

Evidence

Evidence

Inference
Rule

Claim

Argument  

Figure 2 – SHIP View of Safety Argument Structure 

It is explained in [32] how the model shown in Figure 2 together with the defined types 

of argument can be used as the basis of structuring a safety case.  The nature of the 

claim to be supported and the type of argument adopted determine the forms of 

evidence and inference rule to be used. 

More general guidance was also given on the forms of evidence suitable for supporting 

certain types of argument, as shown in Table 3. 

 

Implementation Options / Evidence Type of Argument 

Development 

Process 

System Design Field Experience 

Fault elimination 

and quantification 

Maximising the 

probability of a 

“perfect” state 

Procedures, 

Standards, 

Documentation 

Configuration 

Control, 

Testing, 

Reviews, 

Design Tools, 

Formal Methods 

Design simplification 

Formal proof of 

system properties 

Use of Standard 

Components 

Prior operating 

history as evidence of 

correctness 

Fault reporting, 

Design Correction 

Error Activation 

Minimising 

OK → erroneous 

Testing according to 

expected usage 

 Avoid changes in the 

usage; Avoid known 

problem areas 
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Failure containment 

Strengthening 

erroneous → OK 

erroneous → safe 

 Fault tolerant designs 

Fail safe designs 

Fault injection tests 

Failure estimation 

Estimating 

OK → dangerous 

Reliability testing  Operational failure 

reports; Reliability 

growth models 

Table 3 – SHIP: Sources of Argument and Types of Evidence 

Although the overall approach to structuring the safety case was described in graphical 

terms, i.e. as shown in Figure 2, a graphical approach was not adopted for the 

presentation of safety arguments.  Instead a tabular approach was adopted that was to 

later form the basis of the 00-55 tabular argument approach (described in section 2.5.2).  

Although the approach was initially developed for software safety arguments, it was 

found to be equally applicable to other types of system.  An example tabular safety 

argument from the SHIP project is presented in Table 4. 

 

Transition Cause Safeguards 

“Sound” → faulty Cracks grow due to normal 

ageing or abnormal 

transient 

Cracking minimisd by 

production processes, 

sound design, QA, 

avoidance of past problems 

Faulty → erroneous Cracks grow large enough 

to leak 

Minimised by periodic 

inspection of vessel 

Erroneous →safe Reactor trips before the 

vessel fails 

On-line water leak 

detection initiates trip 

Erroneous → dangerous Catastrophic failure of 

vessel 

Judged incredible 

Table 4 – SHIP: Safety Case Arguments for a Nuclear Pressure Vessel 

In Table 4 the argument is structured under the following headings: 

• Transition – the fault transition that is to be avoided 
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• Causes – the factors that may cause the fault transition 

• Safeguards – the safeguards in place to prevent the transition or to mitigate the 

effects of the transition 

The advantages and disadvantages of tabular presentations of safety arguments are 

discussed in Section 2.5.2. 

In [32] it was recognised that, given a clear hierarchical breakdown of the argument 

structure, “deviations in implementation can be analysed to see how this affects a sub-

claim, and how changes in sub-claim ‘ripple through’ the safety argument”.  However, 

no guidance was given on how this might be done and the idea was not explored further. 

2.4.2.2 SHIP Bayesian Belief Networks 

Bayesian Belief Networks (BBNs), described in more detail in section 2.5.5, were 

identified on the SHIP project as a possible means of coupling qualitative evidence 

regarding the software development process with quantitative failure rate evidence [33, 

34]. Figure 3 provides a sketch of the SHIP BBN. 

Process-related
arguments

Number of faults
at delivery

Probability of
failure on
demand

Failures
observed in
acceptance

testing

Sizes of faults at
delivery

 

Figure 3 – Sketch of SHIP Bayesian Belief Network 

The implicit argument communicated by the above BBN is that the process-related 

arguments support a claim of low number and size of faults at delivery.  The low 

number and size of faults at delivery support the claim of a low probability of failure on 

demand.  Finally, statistical testing is used to corroborate this belief.  The use of BBNs 

to communicate arguments in this way is discussed in Section 2.5.5. 
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2.4.3 Communication in Safety Cases - A Semantic Approach 

‘Communication in Safety Cases - A Semantic Approach’ [35] was a DTI-EPSRC 

funded project pursued at the University of Edinburgh.  This project looked at 

formalising ‘meta-level’ safety requirements in order to guide and constrain the 

development of a design.  In this way, Edinburgh hoped to integrate the construction of 

the safety case with the design activity.  The emphasis of the work, recorded in [35] was 

on formalising functional requirements for elements of a system, using these 

requirements to construct networks of linked elements.  Cause and effect matrices can 

be constructed from this network of dependencies and then used as the basis of the 

system’s safety case.   Unlike the approach presented in this thesis, this approach 

presupposes that the system in question is amenable to formal specification and that 

arguments of cause and effect are sufficient for the safety case. 

2.4.4 Adelard Safety Case Development Method 

The recently published Adelard Safety Case Development Manual [36] represents one 

of the first attempts to present a ‘total’ safety case development methodology.  With 

respect to the presentation of safety arguments, it is heavily based upon the qualitative 

aspects of the SHIP approach.  In particular, it adopts the same view of safety argument 

structure, shown in Figure 2.  It also presents the tabular approach to structuring and 

presenting safety arguments, as described in Section 2.5.2. 

The manual offers much useful advice on the processes of constructing and maintaining 

the safety case, including guidance similar to that given in 00-55 on acceptable forms of 

argument and evidence (discussed in Section 2.2.2.3).  However, it offers no explicit 

guidance on either the incremental development of safety arguments (beyond the 

principle of phased safety cases discussed in Section 2.2.2.1), or impact assessment 

applied to safety arguments, or reuse of successful safety arguments. 

2.4.5 SERENE Project 

The SERENE (SafEty and Risk Evaluation using bayesian NEts) is a current ESPRIT 

Framework IV project.  The objective of the project is to develop a method for 

constructing software safety arguments using Bayesian Belief Networks.  At the time of 

writing, no results have been published from this project. 

Section 2.5.5 provides an overview of Bayesian Belief Networks and a discussion of 

their capability to present safety arguments. 
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2.5 Safety Argumentation 

This section provides an overview of existing approaches to safety arguments.  The 

following approaches are described: 

• Free Text 

• Tabular Structures 

• Claim Structures 

• Bayesian Belief Networks 

• Goal Structuring Notation (GSN) 

The Goal Structuring Notation forms the basis of the approach presented within this 

thesis.  This section provides a description of the status of the GSN at the time of 

starting the research.  In particular, the reasons for its selection and the deficiencies that 

were identified are discussed. 

2.5.1 Free Text (Current Practice) 

Safety arguments are most typically communicated in existing safety cases through free 

text. Figure 4 shows a fragment of a safety argument communicated using free text. 

The Defence in Depth principle (P65) has been addressed in this 

system through the provision of the following: 

• Multiple physical barriers between hazard source and the 

environment (see Section X) 

• A protection system to prevent breach of these barriers and 

to mitigate the effects of a barrier being breached (see 

Section Y) 

Figure 4 – An Example Textual Safety Argument 

In Figure 4, the text describes clearly how a safety requirement (P65) has been 

interpreted and achieved in the system.  It also clearly provides references to where the 

evidence supporting the lower level statements can be found. 

Well-structured approaches to expressing safety arguments in text can be effective (as 

shown in Figure 4).  However, there are problems experienced when text is the only 

medium available for expressing complex arguments.  The text shown in Figure 5, taken 
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from a real industrial safety case (with identification of the target application hidden), 

illustrates some of these problems. 

For hazards associated with warnings, the assumptions of [7] 

Section 3.4 associated with the requirement to present a warning 

when no equipment failure has occurred are carried forward. In 

particular, with respect to hazard 17 in section 5.7 [4] that 

for test operation, operating limits will need to be introduced 

to protect against the hazard, whilst further data is gathered 

to determine the extent of the problem. 

Figure 5 – The Problems of Textual Safety Arguments 

The underlying problem of the text shown in Figure 5 is that it is unclear and poorly 

structured English.  Not all engineers responsible for producing safety cases write clear 

and well-structured English.  Consequently, the meaning of the text, and therefore the 

structure of the safety argument, can be ambiguous and unclear. 

Cross-references, of the type shown in Figure 5, are often necessary given the role of 

the safety case as an integrator of evidence.  However, multiple cross-references in text 

can be awkward and can disrupt the flow of the main argument. 

In the context of developing, agreeing, maintaining and potentially reusing the safety 

arguments within the safety case, the biggest problem with the use of free text is in 

ensuring that all parties involved share the same understanding of the argument.  

Without a clear shared understanding of the argument, safety case management is often 

an inefficient and ill-defined activity. 

2.5.2 Tabular Structures 

Tabular structures for the presentation of safety arguments were first suggested on the 

SHIP project (Section 2.4.2.1) but have since also been included in Annex E of DS 00-

55 [9]. 

As shown in Table 5 (derived from [9]), tables are used to present arguments in three 

parts: 

• Claim – the overall objective of the argument 

• Argument – a brief description of the type of argument being put forward in 

support of the Claim 
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• Evidence / Assumptions – The evidence or assumptions that support the argument 

 

Claim Argument Evidence / Assumptions 

There is no fault in the 

software implementation 

 

 

 

 

 

 

 

 

 

 

Software reliability exceeds 

system requirement 

Formal proof of specified 

safety properties 

Formal proof that code 

implements its specification 

 

 

 

 

 

 

 

Reliability can be assessed 

under simulated operational 

conditions 

The design is simple enough 

to be amenable to proof 

Proof tool is correct (or 

unlikely to make a 

compensating error) 

Compiler generates correct 

code (sub-argument might 

use formal proof, past 

experience, or compiler 

certification 

High quality V&V process 

Test results 

 

Statistical test results 

Table 5 - An Example Tabular Safety Argument 

The tabular structures offer a simple means of structuring an argument.  They can offer 

an improvement over the use of free text in that they clearly delineate the constituent 

parts of the argument.  However, within a single table it is only possible to represent 

two steps in the decomposition of the argument (i.e. claim à argument and argument 

à evidence).  For complex arguments, which may contain many levels of claim and 

sub-claim, either an attempt must be made to force the text within the ‘argument’ 

column to communicate the argument structure, or multiple tables must be used to 

express lower levels of argument decomposition.  (In the latter case the ‘evidence’ 

column is made to refer to a supporting tabular argument.)  The consequence is that 

either the clarity or the flow of the argument can be lost. 

Significantly, little guidance has been presented on how to express the information 

contained within each column. 
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2.5.3 Claim Structures 

Claim Structures are presented in Annex H of 00-55 Part Two.  They are used to present 

process safety arguments for the development process adopted on the SHOLIS (Ship 

Helicopter Operating Limit Instrumentation System) project.  Figure 6 shows an 

example claim structure taken from Annex H. 

(sil_claim)

SHOLIS safety-critical
software achieves SIL4

AND

(timing)

safe timing behaviour
exhibited

(func)

safe functional
behaviour exhibited

(mem)

always enough memory
available

OR

(func.safe_construction)

correctness by construction
ensures safe functional

(func.safe_testing)

testing demonstrates safe
functional behaviour

AND
AND

construction by correctness
ensures safe functional
behaviour

(fun.safe_construction.produc

softwareconstruction processes
are adequate

(func.safe_construction.proces

testing results demonstrate safe
functional behaviour

(func.safe_testing.product)

testing process is adequate

(func. safe_testing.process)

 

Figure 6 – An Example Claim Structured Safety Argument 

Claim structures are built up from a number of claims (represented by the rectangular 

boxes) joined together by AND and OR gates.  (OR gates are used to denote the 

independence of arguments.) Claims are broken down hierarchically until base claims 

(denoted by the attached circle) or undeveloped claims are reached.  Base claims are 

supported by evidence.  However, the role of supporting evidence is not represented 

diagrammatically. 

Claim structures represent cut-down version of goal structures (in fact there is evidence 

that the Goal Structuring Notation influenced this approach [9, 37]).  They have no 

means of expressing argument strategy, other than the simple AND and OR 
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combinations of claims.  They do not graphically communicate rationale, context or the 

role of evidence. 

No guidance is given in Annex H on the application of this notation. 

2.5.4 Traceability Matrices 

Traceability matrices are a means of representing how one statement (claim, 

requirement, objective etc.) relates to a series of other requirements.  Traceability 

matrices are popular within the requirements engineering and security domains. Table 6 

shows an example traceability matrix (taken from [36]). 

Requirement  

Design Feature TRIP PFD STR TIM FIX TST F1 F2 UPD SEC 

Redundant channels and 

thermocouples 
 n n   n n n n  

Fail-safe design features  n  n n   n  n 

Separate Monitor 

Computer 
    n n    n 

Design Simplicity n   n      n 

Formally Proved Software n n n        

Table 6 – An Example Traceability Matrix (Design Features vs. Requirements) 

Table 6 shows how high level requirements (given across the top of the matrix) can be 

related to the (lower level) provision of design features (listed down the left hand side of 

the matrix).  A block indicates that a design feature is related to a particular 

requirement. 

Whilst traceability matrices clearly indicate a relationship between statements, they are 

capable of only representing one layer of decomposition at a time.  Consequently, many 

matrices may be necessary to represent a deep decomposition of statements.  They 

cannot represent how lower level statements may conflict.  They also offer no means of 

explaining or justifying the relationship that exists between the higher and lower level 

statements.  However, a positive attribute is that they are an extremely compact and 

easily understood representation of traceability relationships. 
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2.5.5 Bayesian Belief Networks 

Bayesian Belief Networks (also known as Causal Probabilistic Networks, Probabilistic 

Cause-Effect Models and Probabilistic Influence Diagrams, Causal Nets and Graphical 

Probability Networks) are graphical networks that communicate the probabilistic causal 

relationship that exists between variables. Figure 7 shows an example BBN.  Nodes of 

the graph represent variables.  Arcs between nodes indicate a causal dependency 

between variables. 

Reliability

No. of Latent
Faults

Operational
Usage

Code
Complexity

Coders
Performance

Problem
Complexity

Use of IEC
61508

Experience of
Staff

 

Figure 7 – An Example BBN for Predicting Reliability Using Process and Product 

Evidence 

Conditional Bayesian probabilities are used to articulate beliefs about the dependencies 

between different variables.  For example, in Figure 7 a relationship is declared between 

a coder’s performance and his or her experience, the complexity of the problem being 

addressed, and whether the software standard IEC 61508 [14] has been used.  

Conditional probabilities are used to indicate the extent to which coder performance 

depends on each of these factors. 
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BBNs can be used to derive quantitative claims relating to the safety of a system (e.g. an 

overall reliability claim).  The benefit of using BBNs is that they can predict the value 

of variables based upon uncertain or partial data.  The drawback is in the derivation of 

the conditional probabilities used to express the level of causality between variables.  In 

many cases determining these probabilities can be a heavily subjective exercise.  If, 

however, the variables are observable properties the conditional probabilities can be 

improved over time, as more data becomes available. 

Bayesian Belief Networks provide a means of communicating the relationship between 

the claims of a safety argument [33].  However, BBNs (as a visual representation) 

communicate safety arguments only implicitly (as do for example Fault Trees).  For 

example, the BBN shown in Figure 7 does not explicitly present claims (the nodes are 

labelled as Noun-Phrases) and much of the ‘belief’ is captured in the conditional 

probabilities associated with the arcs and nodes (not represented on the diagram itself).  

An advantage BBNs have over pure argument representation devices (such as GSN 

described in the following section) is that they provide a means of deriving a safety 

argument – establishing a causal relationship between qualitative and quantitative 

safety.  Equally important, they provide evidence (as do fault trees, for example) that 

can be used in supporting a quantitative claim within a safety argument. 

The use of BBNs does not necessarily conflict with the approach suggested in this 

thesis.  In the ‘Further Work’ section of Chapter Seven we discuss a possible approach 

to integrating the two methods. 

2.5.6 Goal Structuring Notation 

As described in section 2.4.1, the Goal Structuring Notation (GSN) for the presentation 

of safety arguments was developed initially on the ASAM-II project.  This section 

provides an overview of the notation as it was defined, used and understood before the 

research presented in this thesis was started, derived from [30]. 

Goal structuring is a graphical approach to presenting the structure of a safety argument. 

Goal structures, or goal hierarchies as they were originally termed, consist of the 

following elements: 

• Goals 

A goal is a requirement, target or constraint to be met by the system.  The term goal 
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hierarchy refers to the collection of goals produced by the hierarchical 

decomposition of goals into sub-goals. 

• Models 

A goal is couched in terms of some model of the system, or its environment.  A goal 

may be expressed over a number of models.  This model may take a number of 

forms – e.g. a plant schematic, a process description or an architectural model. 

• Strategies 

A goal (or set of goals can be solved by a strategy, which breaks down a goal into a 

number of sub-goals.  A strategy can be regarded as a rule to be invoked in the 

solution of goals. 

• Justifications 

Strategies often need some justification for their use.  A justification calls upon a 

reason or evidence that supports a strategy. 

• Meta-strategies 

Meta-strategies record situations where there are alternative strategies for the 

solution of a set of goals. 

• Criteria 

Criteria are used to decide whether a goal has been satisfactorily solved. They 

provide measures and procedures for assessing goal satisfaction. 

• Constraints 

A constraint is used to restrict the way in which goals can be solved, e.g. a common 

safety requirement is ‘no single point of failure shall lead to a hazard’. 

• Solutions 

Goals may be solved directly by solutions, rather than by decomposition into sub-

goals.  Solutions will be individual pieces of analysis, evidence, results of audit 

reports, or references to design material. 

The graphical symbols for these elements are shown in Figure 8. 
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GOAL MODEL STRATEGY

JUSTIFICATION

J

META-STRATEGY

CRITERIA

CONSTRAINT

SOLUTION

 

Figure 8 – The Original GSN Elements 

An example goal hierarchy (reproduced from [30]) is shown in Figure 9.  (This in fact 

represents one of the clearer examples in existence prior to the research presented in this 

thesis.)  The hierarchy sketches the safety argument for part of an Advanced Gas 

Reactor nuclear trip system, and in particular addresses the avoidance of Gag Valve 

Failures. 

GSN was identified by the author as one of the most promising approaches to presenting 

safety arguments, for the following reasons: 

• It offered explicit representation of the logical flow of the safety argument (through 

the directed SolvedBy relationships that are drawn between goals, strategies etc.) 

• It offered explicit representation of the role of evidence (through the Solution 

symbol) 

• It offered explicit representation of the rationale underlying an argument (through 

Justification symbol) 

• No other comparable approaches to representing safety arguments existed at the 

time of starting the research presented in this thesis (neither Claim Structures nor 

Tabular Structures had been published at this date). 

At the same time, however, we identified a number of deficiencies in the use of the 

notation, including the following: 

• No guidance was available on how goal structures were to be constructed (i.e. a 

method).  Consequently, safety engineers found the approach difficult to apply.  

Also this meant that there was a large variance in how the notation was used. (It is 
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possible to observe changes of style even within Figure 9 – whereas G1 and G2 

describe Verb-Phrase objectives, G3.1 and G3.2 form propositions.) 

• The semantics of some elements of the notation were poorly defined.  For example, 

it was unclear whether strategies were meant to present the design approach (as 

shown in Figure 9) or the argument approach. 

• The roles of context and assumption in a safety argument were not represented 

within the notation. 

G1

Make nuclear plant
safe

G2

Make nuclear plant
highly available

G3

Provide adequate protection
against consequences of

Gag Failure

G4

Maintain High Availability
in face of Gag Failure

(M1)
System Model

S1

Use Trip System
to protect against
Gag Failure

(M2)
Trip System Model

J1

Similar Trip Systems
satisfactory in other
reactors

J

G3.3

Probability of Trip System
failing to trip on demand <

10e-5

J2
Justification
Argument

J

G3.1

Spurious trip rate of Trip
System < 0.25 per year

G3.2

Availability of Trip
System >= 98.95%

 

Figure 9 – An ‘Original’ Goal Hierarchy 
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The starting point of the research presented in this thesis was to address the problems 

that had been identified with the GSN.  Having ‘fixed’ the basic notation, the research 

was then able to explore the previously unaddressed issues of safety argument 

maintenance and reuse. 

2.6 Argumentation 

This thesis is concerned with the development, presentation, maintenance and reuse of 

clear arguments.  This section provides an overview of argumentation approaches that 

exist outside of the safety domain.  In particular, the following topics are addressed: 

• Formal Logic 

• English syntax and argumentation 

• Devices for structuring and presenting arguments 

• The role of graphical presentations of arguments 

Argument is a widely used device. The disciplines of philosophy and English syntax 

provide insight into the structure and presentation of reasonable arguments.  The 

following sections describe some of the alternative approaches developed within these 

domains.  

2.6.1 Formal Logic 

Formal Logic [38] describes acceptable forms of reasoning and offers definitions of the 

basic concepts of argumentation that underlie any argument representation.  This section 

presents the fundamental definitions of formal logic: 

In order to express an argument that reasons from premises to a conclusion, the concept 

of proposition is required.  A proposition is defined in formal logic to be a statement 

which (a) must be either true or false, and (b) cannot be both true and false.  For 

example, “The sky is blue” is a valid proposition. 

An argument is a collection of propositions – one of which is the conclusion, the others 

being the premises for that conclusion.  For example, the following is an argument: 

• If it is a Bank Holiday, then it is raining 

• It is a Bank Holiday 

• It is raining 
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(Premises are listed above the line, the conclusion is given below the line.) 

An argument is said to be valid if it is not possible for all of its premises to be true and 

its conclusions false.  For example, the following argument is invalid as it is possible for 

the premise to be true whilst the conclusion is false: 

• It is raining 

• Today is Tuesday 

The validity of an argument does not address whether the premises of the argument are 

true.  To do this, requires the definition of a sound argument.  An argument is said to be 

sound if it is valid and its premises are true. 

A consistent argument is one where it is possible for all the propositions forming that 

argument to be true together. 

Propositional logic extends these basic ideas with the concept of connectives.  A 

connective is a term capable of joining two or more propositions to form a more 

complex proposition.  The standard logical connectives of propositional logic are 

negation, conjunction, disjunction, implication and equivalence. 

Predicate logic extends propositional logic to include the concepts of terms and 

predicates.  Example singular terms are ‘York’, ‘Train’, ‘Tim’.  Predicates express 

properties over terms.  For example, in the proposition ‘Tim is happy’ the predicate ‘is 

happy’ is applied to the term ‘Tim’.  Predicate Logic also includes the concept of 

quantification.  The most commonly used quantifiers are ‘All’ (Universal 

quantification) and ‘There Exists At Least One’ (Existential). 

The fundamental concepts of logic described in this section have been used within the 

research presented in this thesis (particularly in defining the GSN Method) to improve 

the expression of arguments using goal structures. 

2.6.2 English Syntax and Argumentation 

The study of English syntax and Argumentation [39, 40] relates the concepts of English 

Grammar to Formal Logic.  It offers insight wherever text is used in presentation of an 

argument. 

Propositional sentences can be divided into Subjects and Predicates.  (‘Subjects’ are 

equivalent to ‘terms’ as defined in Formal Logic.) The subject of a propositional 

sentence is usually the first Noun-phrase within that sentence.  Verbs are predicators 
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within the proposition – i.e. they form the predicate.  Predicates are formed from Verb-

Phrases.  Consider the following sentence: 

“Tim bought a computer” 

The subject of the proposition is ‘Tim’, the predicate is ‘bought a computer’ and the 

predicator is the verb ‘bought’.  

Based upon these concepts of syntax, it becomes possible to define acceptable of 

propositional sentential forms, the simplest being: 

Noun-Phrase Verb-Phrase 

The concepts of English Syntax and Argumentation been used within the research 

presented in this thesis (particularly in defining the GSN Method) to improve the 

articulation of arguments using goal structures. 

2.6.3 Devices for structuring and presenting arguments 

From the field of philosophy, Govier in [41] introduces a graphical notation for 

constructing arguments, based on the following elements: 

Single Support Pattern 

 

1

2
 

One premise supports the 

conclusion 

Linked Support Pattern 

 

1

3

2+

 

Several premises 

interdependently support 

the conclusion 

 

Convergent Support 

Pattern 

1

4

32

 

Several premises 

independently support the 

conclusion 

Using this notation, she describes how it is possible to construct diagrams for complex 

arguments. Figure 10 shows an example argument composed from the above basic 

forms. 
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1

3

2+

+ 4 + 5

6
 

Figure 10 - Example Argument expressed in Govier’s Notation 

In Figure 10 claims 1 and 2 together support claim 3 and that claims 3, 4 and 5 together 

support conclusion 6. Govier goes on to describe how this notation can be used to 

express statements of categorical and propositional logic. 

Govier’s notation is unarguably valid as it can mechanically be collapsed to 

propositional logic placed in disjunctive normal form, i.e. in the form: 

(A1∧ A2∧..)∨(B1∧ B2∧..)∨(C1∧ C2∧..)∨... 

This does not imply, however, that the notation is necessarily practical or useful for the 

capture of the argument in the safety justification process.  It is entirely general and 

provides no explicit notion, for example, of types of premise, distinguishing, say, 

between a premise derived from analysis and one derived from a system modelling 

activity. Therefore, it provides no mental cues in associating the supporting activities of 

an argument. Extra structure such as this makes the process of constructing a safety 

justification more predictable and manageable, e.g. so that the forms of premise 

required to justify a particular conclusion are known. 

Toulmin’s notation, described in [42], introduces the concept of typed premises and 

describes a pattern for the structure of a typical argument. Toulmin makes his first 

distinction of type between the “claim or conclusion whose merits we are seeking to 

establish” and “the facts we appeal to as a foundation for the claim”. The former is 

referred to as the claim (C). The latter is referred to as the data (D). Given these two 

elements he is able to make arguments of the form, “IF D THEN C” shown in Figure 

11. 
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D So, C
 

Figure 11 - The Starting Point for Toulmin’s Notation 

At this point the notation offers no more than Govier’s notation. The notation is 

extended, however, by including the concept of warrant (W). The warrant for an 

argument is the premise that relates data D to claim C.  Figure 12 shows how warrant is 

recorded in Toulmin’s notation. 

D So, C

W

Since

 

Figure 12 - The Use of Warrants in Toulmin’s Notation  

From this position, the notation is extended further to include the notion of qualifier (Q) 

and rebuttable (R). The qualifier describes the degree of confidence that can be placed 

on the claim. The rebuttal is a premise that describes when the claim would not be 

sound. In this sense, Toulmin’s notation is predisposed towards arguments of a 

categorical nature, e.g. “All apples are green, X is an apple, therefore X is green unless 

X is a Red Delicious”. Figure 13 shows how the concept of qualification and rebuttal 

fits into Toulmin’s notation. 

D Q

W

Since
C

So

R

Unless

 

Figure 13 - Toulmin’s Pattern for the Layout of Arguments 

It is not difficult to see that the notation Toulmin provides is simply a structuring of 

formal logic. However, in providing a pattern, Toulmin has simplified the process of 

constructing and managing arguments.  For example, it would be easy to identify a 

warrant-less argument expressed in Toulmin’s notation. 
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Both Govier’s and Toulmin’s notation can be used to express any argument.  Having 

been designed to be completely general, they do not explicitly capture concepts that 

relate to the safety domain (such as system models).  The goal structuring notation 

introduced in section 2.5.6 extends this idea of a typed argument framework to present a 

notation that applies particularly well to the safety justification domain. 

2.6.4 The role of graphical presentations of arguments 

Graphical presentation of safety arguments is at the heart of the approach presented in 

this thesis.  However, as shown by Govier’s notation introduced in the previous section, 

it is not a new idea to present logical arguments diagrammatically. 

Again from the field of Philosophy, Grennan [43] defines a graphical technique similar 

to Govier’s for mapping the structure of an argument.  This notation is introduced in 

order to support an argument evaluation procedure.  It is suggested in [43] that to 

evaluate an argument effectively requires a clear and demonstrable understanding of the 

elements and structure of that argument - achieved through graphical presentation. 

From the field of Organsational Science, Sparrow [44] reports on a number of studies 

that demonstrate the important of graphical representations in managing complexity.  

Particularly, Fiol and Huff in [45] conclude that graphical representations ‘provide a 

way to structure and simplify thoughts and beliefs, to make sense of them, and to 

communicate information about them’.  Sparrow himself suggests that, ‘Graphic 

representations can both simplify ideas and facilitate the transmission of complex ideas 

from individual to individual and unit to unit’.  

These observations support the adoption of a graphical notation for the presentation of 

safety arguments within the safety case – where both ease of evaluation and 

comprehension are key problems, as described in Chapter One. 

2.7 Related Concepts 

This section describes concepts that relate to argumentation, and to goal structuring: 

• Design Rationale Capture 

• Other Goal-Based Approaches 
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2.7.1 Rationale Capture 

The field of Design Rationale Capture has developed methods to capture and represent 

of the rationale underlying decision-making processes. 

Design rationale is defined by Gruber in [46] as “an explanation that answers a question 

about why an artefact is designed as it is”.  The field of design rationale management 

brings together work from various disciplines including AI, software engineering, 

mechanical engineering, civil engineering, computer-supported work and human-

computer interaction. 

Representation of design rationale can range from unstructured approaches - such as the 

use of electronic notebooks [47] that capture natural language through semi-formal 

approaches – to the use of requirements templates, and finally to entirely formal 

documentation of the rationale entities, their interdependencies, etc.  Figure 14 is 

provided as an example of a decision rationale representation, taken from [48].  This 

figure illustrates how goals, alternatives and claims fit together to form a ‘decision 

graph’ representation of the decision concerning the implementation language to use for 

a new application, Zeus. 

Which
language
for Zeus?

Minimise
development

cost

Can
Implement

Zeus

Supports
E-mail

Provides
Object
System

Interface in
X Windows

Why do
we need to

use X?

X Windows
is written in

C

C++
Available

C

There is CLX
and CLUE,
the LISP

version of X

There are
packages built on

top of CLS that
provide graphics,
e.g. Composer II

Common
LISP

There are
packages built on

top of CLS that
provide graphics,
e.g. Composer II

CLOS
provides

object
system

There is
Flavors

is-a-subgoal-of

is-a-subgoal-of

is-a-subgoal-ofis-a-subgoal-of

queries

achieves

supports

is-the-best-
alternative-for

achieves achieves

supports

supports supports

supports

denies

denies

supports

 

Figure 14 - Decision Graph Example Using DRL 
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Other design rationale representations include decision trees [49], gIBIS [50], and 

Critter [51].  For an exhaustive survey of work in the area we refer the reader to [46]. 

Design rationale representations communicate the rationale underlying arguments rather 

than the argument itself.  Consequently, they are inappropriate for presenting safety 

arguments.  However, representation of rationale remains an important supporting 

concept for safety argumentation (to justify the argument approach presented). 

2.7.2 Other Goal Based Approaches 

The concept of goal decomposition has been applied in areas other than argumentation, 

particularly in requirements engineering.  A review of goal-driven approaches to 

requirements engineering is presented in [52]. 

One such approach is the work of Loucopoulos et al. [53].  Loucopoulos focuses upon 

using goals and goal hierarchies within information systems engineering to decompose 

overall organisational objectives into the specific functions of the system that must be 

implemented.  The goal structures that are used consist of goals and the connectives 

AND and OR to relate goals to sub-goals.  Loucopoulos’ goals are stated as future 

aspirations of the organisation and system.  As such, they have more in common with 

rationale capture than argumentation.  In addition, these goal structures do not express 

the concepts of strategy, solution, assumption and justification offered by the Goal 

Structuring Notation (section 2.5.6) – concepts that have been found applicable in the 

expression of safety arguments. 

Work on the use of goal structures in requirements engineering was also carried out at 

York under the DTI-SERC funded PROTEUS project [54].  A more formal 

interpretation of goal structures was adopted on this project.  Goals were recorded as 

formal assertions that could logically be checked with respect to the given sub-goals.  

There was no notion of solutions – instead, there existed axiomatic goals.  Based on this 

formal model, it was possible to support a calculable analysis of the effects of changing 

elements of the goal structure (e.g. changing an axiomatic goal). 

Because the PROTEUS work relied so heavily upon the formal basis of stating goals 

and establishing formal relationships between goal and sub-goals, the change 

management technique developed offers little useful advice on managing the 

uncertainty of change applied to informal goal structured arguments as addressed by 

this thesis. 
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2.8 Summary 

This chapter has presented a survey of published literature relating to safety case 

management. 

The requirements identified from the safety standards, and the published experiences of 

current safety case development practice, show that the research objective of supporting 

the development, maintenance and reuse of safety arguments is well founded. 

In the remaining sections of the survey, the work of this thesis is set clearly in the 

context of existing approaches to safety case development and argumentation.  In 

particular, the early work on Goal Structuring Notation (GSN) is introduced as the basis 

of the approach that is defined in Chapters Three, Four and Five. 

No directly comparable approaches, particularly in the areas of safety case maintenance 

and reuse, have been identified by this survey. 
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Chapter 3:  

Using the Goal Structuring Notation to Support 

Safety Case Development 

3.1 Introduction 

It is increasingly recognised by both safety case practitioners and many safety standards 

that safety case development, contrary to what may historically have been practised, 

cannot be left as an activity to be performed towards the end of the safety lifecycle. This 

view of safety case production being left until all analysis and development is 

completed is depicted in Figure 15. 

Production of
the Safety Case

Initial Hazard List In-service experience

Construction and
Development Codes

Preliminary
Safety

Assessment

Hazard
Identification

& Risk
Estimation

Confirmatory
Analysis

Test and
Inspection

Requirements Completed System

Implementation

Design and
Decomposition

Integration and
Test

Safety LifecycleDesign Lifecycle  

Figure 15 - A Historical View of Safety Case Development 

A traditional view of the design and development lifecycle is shown on the left-hand 

side of Figure 15.  Running concurrently with this, shown on the right-hand side of the 

diagram, is the historical view of the safety lifecycle, showing safety case development 

as a discrete activity to be performed following the completion of the safety assessment 

activities. 

3.1.1 Problems Experienced with  ‘Traditional’ Safety Case Development 

The problems that have been experienced with this style of safety case development 

include [11]: 

• Large amounts of re-design resulting from a belated realisation that a satisfactory 

safety argument cannot be constructed. In extreme cases, this has resulted in 

‘finished’ products having to be completely discarded and redeveloped. 
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• Less robust safety arguments being presented in the final safety case.  Safety case 

developers are forced to argue over a design as it is given to them – rather than 

being able to influence the design in such a way as to improve safety and improve 

the nature of the safety argument.  This can result in, for example, probabilistic 

arguments being relied upon more heavily than deterministic arguments based upon 

explicit design features (the latter being often more convincing). 

• Lost safety rationale.  The rationale concerning the safety aspects of the design is 

best recorded at ‘design-time’.  Where capture of the safety argument is left until 

after design and implementation – it is possible to lose some of the safety aspects of 

the design decision making process which, if available, could strengthen the final 

safety case. 

Unfortunately, though not surprisingly, few practitioners are prepared to publicise 

failures of this style of safety case development.  However, Cullen in [11] presents some 

of the experiences of BNFL in producing a safety case for the Sellafield Alpha 

Reduction Plant.  For this plant he relates that a ‘traditional’ approach was first adopted 

– where “plant design has proceeded more or less independently of the production of the 

safety case”.  Design progressed to the firm proposal stage before being passed to the 

Safety Department.  Significant safety hazards were identified with this proposal – 

making it impossible to produce a convincing safety case.  A re-design was therefore 

required – resulting in great expense.  The re-design was again developed into a firm 

proposal before the safety case was considered. However, this time, other significant 

problems were found with the new proposal, requiring more (expensive) re-design.  It 

was only on the third re-design, where consideration of the safety case was integrated 

into the design requirements that an acceptable, arguably safe, design resulted [11]. 

3.1.2 Incremental Safety Case Development 

Safety standards, such as the U.K. Defence Standards 00-56 [10] and Ship Safety 

Management Handbook JSP430 [8] now require that safety case development be treated 

as an evolutionary activity that is integrated with the rest of the design and safety 

lifecycle.  Defence Standard 00-56 states that: 

“The Safety Case should be initiated at the earliest possible stage in the 

Safety Programme so that hazards are identified and dealt with while the 

opportunities for their exclusion exist” 
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Similarly, JSP 430 states that: 

“The Safety Case is to be prepared in outline at presentation of the Staff 

Requirement and is to be updated at each major procurement milestone up 

to and including hand-over from the procurement to the maintenance 

authority … Ideally there should be a seamless development of the Safety 

Case from one phase to the next” 

The interpretation of this ‘seamless development’ that is being adopted by the majority 

of the safety standards is the production and presentation of the safety case at a number 

of stages during the development of a project.  For example, Defence Standard 00-55 

[9] talks of formally issuing three versions of the (Software) Safety Case: 

• Preliminary Safety Case – after definition and review of the system requirements 

specification 

• Interim Safety Case – after initial system design and preliminary validation 

activities 

• Operational Safety Case – just prior to in-service use, including complete evidence 

of satisfaction of systems requirements 

The integration between the production of these safety cases and the traditional 

development lifecycle is depicted in Figure 16. 

Requirements Completed System

Implementation

Design and
Decomposition

Integration and
Test

Safety Case LifecycleDesign Lifecycle

Interim Safety Case

Preliminary
Safety Case Operational

Safety Case

 

Figure 16 – An Integrated View of Safety Case Development 

There is often some variation on the above requirements between regulatory domains.  

For example, for civil nuclear power generation in the UK safety cases are additionally 

required at certain milestones in the project.  In the commissioning of Sizewell ‘B’ 

safety cases were presented prior to first fuel load, prior to first generation of power and 
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prior to being allowed to export power to the national grid [55].  However, regardless of 

the specifics of numbers of safety cases and timings of submissions, the principle of 

phased safety case production is increasingly being accepted as a core concept across all 

domains. 

3.1.3 Evolving Safety Arguments 

At the heart of the concept of phased safety case production is the presentation of an 

evolving safety argument.  At the Preliminary Safety Case stage the aim is to present an 

outline safety argument showing the principal objectives, approach to arguing safety 

and the forms of evidence anticipated.  At the Interim stage the argument should be 

evolved to reflect the increased knowledge concerning the detailed design and 

specification of the system.  At the Operational stage the argument can again be evolved 

further to reflect evidence concerning the system as implemented and tested. 

The traditional approach to communicating safety arguments, as discussed in Chapter 

Two, is to present them (sometimes only implicitly) through the text of the safety case 

document itself.  However, discussion between the author and a number of safety 

managers and safety case practitioners has highlighted a number of problems with this 

approach: 

• A Document Centred Process 

The safety argument is not seen to have an existence separate from the text of the 

safety case document. Consequently, it is easy for the safety case development 

process to become too focused on the production of the phased safety case 

documents – sometimes almost missing the point of developing a clear and 

comprehensive evolving safety argument.  A system cannot be said to be safe 

simply because a safety case document exists.  Rather it depends on whether the 

document contains a convincing safety argument.  It is therefore desirable to have a 

more explicit means of presenting, reviewing and discussing an evolving safety 

argument. 

• Difficulty of Document ‘Evolution’ 

The safety case documents presented at various stages of the project development 

necessarily form ‘complete’ and rounded documents (as would be expected for 

presentation to some third party).  However, the safety arguments contained within 

all but the final (in 00-55 terms – ‘Operational’) safety cases will be incomplete (as 

described above).  This dichotomy of incomplete arguments within a complete 
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document means that evolving the safety case from one phase to the next is not an 

obvious process of ‘starting from where one left off’.  Instead, it first requires an 

‘un-picking’ and abstraction of the core safety argument from one document before 

it can be used as the basis for the next.  Again, this problem makes it desirable that 

there is a more explicit means of representing the safety argument that is separate 

from the mechanics of producing safety case documentation.  This would result in a 

more immediate appreciation that it is the safety argument that evolves between the 

phases of the safety case rather than the documents that are being produced. 

This chapter describes how the Goal Structuring Notation, introduced in the survey 

presented in Chapter Two, provides such a means of explicitly developing and 

presenting an evolving safety argument as part of phased safety case construction.  

3.1.4 Contributions Presented within the Chapter 

This chapter presents the contributions made by the author to increase the utility of the 

notation in presenting evolving safety arguments.  Specifically, contributions have been 

made in the following three areas: 

• Definition of a method for the use of Goal Structuring Notation – the provision of a 

six-step process for evolving a goal structure from high-level objectives towards 

concrete forms of evidence. 

• Through the method definition, clarification of the syntax and semantics of the 

Goal Structuring Notation. 

• Extension of the notation to allow representation of safety case context. 

An illustration of goal structure development using the method steps is presented.  

Using the extension of context to goal structuring, the chapter describes how it becomes 

possible to represent the interrelationships that exist between an evolving safety 

argument and alternative development viewpoints.  In particular, we illustrate the 

coupling that can exist between the dual elements of the traditional ‘product’ safety 

viewpoint and ‘process’ justification. 

Using the contributions of both method and context, we present an example used on a 

real industrial project to illustrate the application of goal structuring in presenting 

preliminary safety arguments.  
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The contributions made in this chapter underpin and are utilised by the later Chapters 

Four (concerning Safety Case Maintenance) and Five (concerning Safety Case Reuse).  

The significance of these relationships is described at the end of this chapter. 

3.2 An Overview of the Goal Structuring Notation 

The Goal Structuring Notation (GSN) is a graphical notation that can be used to record 

and present safety arguments – the principal components of any safety case.  The 

notation consists of the following core elements and construction principles: 

• Goals 

• Goal Decomposition 

• Strategies 

• Solutions 

• Justifications 

• Assumptions 

• Models 

The following subsections describe these elements. 

3.2.1 Goals 

Code module Y
developed to

Integrity Level 4
procedures

 

Figure 17 – An Example Goal 

A goal is a requirements statement – expressed as a claim concerning some aspect of the 

system design, implementation, operation or maintenance. Figure 8 shows an example 

goal represented in the notation. 



 73

3.2.2 Goal Decomposition 

Code module Y
developed to

Integrity Level 4
procedures

Code module Y
specified using

formal specification
technique (Z)

Timing properties of
code module Y

verified using timing
analysis

Functional
properties of code
module Y verified

against formal spec.
 

Figure 18 – An Example Goal Decomposition 

The satisfaction of a goal is often dependent on the satisfaction of derived sub-goals. In 

the notation this is represented as a hierarchical decomposition. 

Figure 18 shows an example of goal decomposition represented in the notation. The 

directed arrow represents a SolvedBy relationship between goals.  Satisfaction of the 

parent goal is implied by the satisfaction of the child goals. 

3.2.3 Strategies 
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Figure 19 – An Example Goal Decomposition using a Strategy 

Strategies can be used to add further detail to a goal decomposition. Inserted between 

parent and child goals, a strategy explains how a parent goal is addressed by the child 

goals presented. In this way, a strategy describes the approach adopted in solution of a 

goal. 

Figure 19 shows an example strategy used in a goal decomposition. In this example, the 

strategy makes clear that satisfaction of the Integrity Level requirement is being argued 
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by claiming the appropriate use of specific techniques during the module development 

and testing. 

Where a number of (potentially conflicting) parent goals exist, a strategy can be used to 

explain the trade-off represented by the child goals. 

3.2.4 Solutions 

Code module Y
specified using

formal specification
technique (Z)

Formal
specification

for code
module Y

 

Figure 20 – An Example Goal Solution 

Where the satisfaction of a goal does not depend on satisfaction of further sub-goals and 

can be argued by appeal to some immediate source of information, it is said to have a 

direct solution. 

Figure 20 shows the representation of a direct solution in the notation. In this example, 

the claim that formal specification has been used for specifying code module Y can be 

shown to be met by referring the reader to it’s formal specification. 

A solution provides the backing for stating that a requirement has been met. 

Beyond these core elements the notation contains additional elements specifically 

concerned with representing the rationale associated with the argument decomposition, 

namely Justification and Assumption.  These elements are described in the following 

two sections. 
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3.2.5 Justifications 

Module Z has
failure rate of

less than 1x10 -6

per annum

Argument by
appeal to

module Z test
results

Exhaustive
testing was

conducted. Tests
exercised 100% of

module
functionality J

 

Figure 21 – An Example Justification 

Justifications can be used wherever it is felt to be valuable to provide the rationale 

behind the adoption of some strategy or the presentation of some goal. 

Figure 21 shows the representation of a justification used to provide the rationale for a 

strategy. In this case, the justification argues the adequacy of the approach taken to 

satisfying the top reliability goal. 

3.2.6 Assumptions 

Module Z has
failure rate of

less than 1x10 -6

per annum

'Failure' is assumed
to be deviation from
intended operation
given by functional

specification
A

 

Figure 22 – An Example Assumption 

Assumptions are often necessary in the decomposition and translation of requirements. 

Assumptions made when stating a goal or adopting a strategy are explicitly represented 

by attaching an assumption node. 

Figure 22 shows an example assumption connected to a goal statement. In this case, the 

assumption is making clear the definition of failure rate used in making the claim. 
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3.2.7 Models 

Argument by
claiming no
hazardous

failure modes in
each major sub-

systems of X

System X has no
hazardous failure

modes

Model of System
X identifying major

sub-systems
(FC 4/34/21)

 

Figure 23 – An Example Reference to Model Information 

Models can be used to refer to forms of design information, system documentation etc. 

Figure 23 shows an example reference to model information by a strategy. In this 

example, the argument is being decomposed by looking at the major subsystems of 

system X. The reference to the model information makes clear the view of the system 

being adopted for the purposes of the argument decomposition. 

When a number of instances of the basic elements of the notation are put together in a 

configuration, they are said to form a goal structure. Figure 24 shows an example goal 

structure. 

In this structure, as in most, there exist ‘top level’ goals – statements that the goal 

structure is designed to support.  In this case, “C/S (Control System) Logic is fault free”, 

is the (singular) top level goal. Beneath the top level goal or goals, the structure is 

broken down into sub-goals, either directly or, as in this case, indirectly through a 

strategy. The two argument strategies put forward as a means of addressing the top level 

goal in figure X are “Argument by satisfaction of all C/S (Control System) safety 

requirements”, and, ”Argument by omission of all identified software hazards”. These 

strategies are then substantiated by five sub-goals. At some stage in a goal structure, a 

goal statement is put forward that need not be broken down and can be clearly 

supported by reference to some evidence. In this case, the goal “Unintended Closing of 

press after PoNR (Point of No Return) can only occur as a result of component failure”, 

is supported by direct reference to the solutions, “Fault tree cutsets …” and “Hazard 

Directed Testing Results”. 
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A goal structure does not necessarily replace the traditional form of the safety case, but 

can instead be thought of as a ‘road-map’ over the existing information – removing the 

burden of communicating potentially complex dependencies from the written text. 

 

G19

C/S logic is fault free

S03

Argument by
omission of all
identified software
hazards

C13

Identified
software hazards 

AddContext

G21

'Abort' Transition of
PLC state machine

includes
BUTTON_IN going

FALSE

Sn04

C/S State Machine

G18

'Failure1' transition
of PLC state machine

includes
BUTTON_IN

remaining TRUE

S04

Argument by
satisfaction of all
C/S safety
requirements

G17

Press controls being
'jammed on' will

cause press to halt

G20

Release of controls
prior to press passing
physical PoNR will

cause press operation
to abort

G38

C/S fails-safe (halts)
on, and annunciates

(by sounding
klaxon), all single
component failures

G41

C/S state machine is
an accurate

representation of
implementation

behaviour

G42

Unintended opening
of press (after PoNR)
can only occur as a
result of component

failure

G43

Unintended closing
of press can only

occur as a result of
component failure

Sn06

Fault tree cutsets for
event 'Hand in press
due to command error'

Sn08

Black Box Test
Results

Sn15

Hazard Directed
Testing Results

 

Figure 24 – An Example Goal Structure 
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3.3 Extending the Notation to Represent ‘Context’ 

Beyond the elements described in the previous section, in order to be able to represent 

the context in which a safety argument is stated and, thus, how the argument relates to, 

and depends upon, information from other viewpoints, the author added an explicit 

representation of context to the notation.  The symbol for context is shown in Figure 25. 

Context

 

Figure 25 - GSN Symbol for 'Context' 

Context objects can be associated with Goals, Strategies and Solutions (i.e. any element 

forming part of the central ‘spine’ of the safety argument).  The relationship defined 

between Context and these elements is InContextOf – i.e. a goal, strategy or solution is 

stated in the context of a context object.  In the notation a line with an open arrowhead 

denotes this relationship. This is to distinguish it from the SolvedBy relations (lines with 

a solid arrowhead) that, for example, exists between a parent goal and child goals.  

Example uses of context are shown in the following figure. 

System is compliant with all
applicable safety standards

G1 C1

Identified Applicable
Safety Standards

S1

Argument over all
identified hazards

C2

Hazards identified by
Functional Hazard

Analysis

Sn1

Fault Tree for
Hazard H1

C3

Basic Component
Failure Modes identified

in FMEA

 

Figure 26 - Example uses of GSN Context 

In the first example, the claim that all applicable hazards have been 

complied with is set in the context of whatever is determined as an 

applicable standard.  C1, a context reference, refers to the set of standards 

identified as applicable (e.g. pointing to the document or file location / 
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section where applicability is discussed and defined).  The second example 

shows an argument approach (S1) often used with safety case construction – 

namely an argument that ranges over / address all hazards identified with 

the system in question.  As with the previous example, S1 is only truly 

defined when the basis over which it is stated is made clear.  C2 refers to 

where the identified hazards are discussed and defined within the 

supporting safety case documentation.  The final example shown in Figure 

26 shows context being used to communicate the basis on which a piece of 

evidence (solution) is being put forward.  In this case C3 makes clear that 

the fault tree evidence referred to by Sn1 depends upon the failure rates 

provided by the more primitive FMEA (Failure Modes and Effects Analysis) 

evidence. 

We have defined context to be used in one of the following two possible forms: 

• As a reference to contextual information 

• As a statement of contextual information 

All three of the examples shown in Figure 26 use the context element in the first form.  

Figure 27 instead illustrates the use of context in the second form – as an ‘immediate’ 

contextual statement used to clarify the basis of the goal to which it is associated. 

The software elements of
the system are fault free

G2 C4

A fault is a deviation
from operation defined

by the specification
 

Figure 27 - Example Use of Context Statement 

In this case, C4 is phrased as a statement that helps define and understand 

the basis of G2.  Without C4, it is possible that a reader of G2 may adopt an 

alternative meaning.  This example shows clearly how C4 can be used to set 

clearly the scope and limits of a claim made by a goal. 

The addition of the context to goal structuring has significantly increased the expressive 

power of the notation.  This is discussed further later in the chapter in sections 3.7, 3.8 

and 3.9.  The definition of the concept of context within the notation and how and when 

it should be used is one of the areas that has been defined clearly through the Goal 

Structuring Method we have defined – discussed in the following section. 
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3.4 Evolving Goal Structuring from a Notation to a Method 

Although the Goal Structuring Notation and underlying principles have existed and 

have been evolving for some time (as discussed in Chapter Two) an underlying method 

for the construction and definition of goals structures has been missing.  This has made 

it difficult for people either to teach or adopt the notation.  Additionally, when people 

have attempted to use the notation, both the approach used and the resulting goal 

structures have often been inconsistent and difficult to follow. 

Jayaratna, in [56], defines the concepts: framework and methodology (method) in the 

following way: 

“A methodology can be defined as an explicit way of structuring one’s 

thinking and actions.  Methodologies contain models and reflect particular 

perspectives on ‘reality’ based on their embedded philosophical paradigms.  

A methodology must show ‘what’ steps to take, ‘how’ those steps are to be 

performed and most importantly the reasons ‘why’ the methodology user 

must follow those steps and in the suggested order. 

A conceptual framework on the other hand is a meta-level model through 

which a range of concepts, models, techniques, methodologies can either be 

clarified, compared, categorised, evaluated and/or integrated.  A 

methodology differs from a conceptual framework in that a methodology 

always implies a time-dependent order or thinking and/or action stages.” 

Prior to the research presented in this thesis, the Goal Structuring Notation existed as a 

conceptual framework for the expression of safety case arguments.  The contribution the 

author has made is to mature the framework into a well-defined methodology, meeting 

the characteristics defined by Jayaratna – particularly by providing steps that can be 

followed and the rationale and motivation offered by positive and negative applications 

of the notation. 

In an attempt to demystify the ‘black art’ of goal structuring, the author has developed a 

structured six-step method that leads an engineer through the process of basic goal 

structure construction.  Tutorial material the author has written that defines this method 

is given in [57]. 

The method guidance makes a clear contribution on two fronts: 
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• Semantics – providing a precise definition of the meaning of the goal structuring 

elements and their relationship to one another 

• Syntax – providing definitive guidance on the phrasing of the goal structuring 

elements and the validation of relationships between elements. 

The six steps of the method are shown diagrammatically in Figure 28. 

Identify
goals to be
supported

Define
basis on which
goals stated

Identify
strategy to

support
goals

Define basis
on which
strategy
stated

Identify
Basic

Solution
STOP

Step 1

Step 2

Step 3

Step 4

Step 6

Step 5 - Elaborate
strategy

 

Figure 28 - The Steps of the GSN Construction Method 

The six steps involved in the development of a goal structure are: 

Step 1 - Identify goals to be supported 

Step 2 - Define basis on which goals stated 

Step 3 - Identify strategy to support goals 

Step 4 - Define basis on which strategy stated 

Step 5 - Elaborate strategy (& therefore proceed to identify new goals – back to Step 1) 

OR 

Step 6 - Identify basic solution 

It is not the role of this chapter to describe in detail the six steps of the goal structuring 

method.  For a full definition of the method, see [57].  The following section provides 

an overview and illustration of goal structure development following the steps of the 
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method.  Later sections highlight specific areas where the method provide guidance for 

goal structure development. 

3.5 Overview and Illustration of Goal Structure Development 

using the Method 

In this section an overview and illustration is provided of the development of a goal 

structure over the six steps of the method.  The goal structure being developed is an 

argument for the safe operation of a sheet metal press.  The press is used to form car 

body parts.  Press operation is controlled by an operator via a simple control system 

based on a Programmable Logic Controller (PLC). 

3.5.1 Step 1: Identifying Goals 

The first step in the development is to state correctly the objective of the safety 

argument.  Figure 29 shows the goal that has been stated for the press.  This goal 

statement uses the Noun-Phrase Verb-Phrase form recommended in [57] – the Noun-

Phrase being ‘Press’ and the Verb-Phrase forming the rest of the statement.   

Press is acceptably safe to
operate within CCC
Whatford Plant

G1

 

Figure 29 – Press Example (Step 1: Stated Goal) 

3.5.2 Step 2: Define Basis of Goals Stated 

Having identified a goal in Step 1, Step 2 of the process requires the context of that goal 

statement to be examined and explicitly clarified if necessary. Figure 30 shows the 

addition of three context references to clarify the goal statement. 

In Figure 30 the terms Press, Operate and CCC Whatford Plant have been drawn out 

explicitly as requiring contextual definition.  Explicitly drawing out these elements as 

context allows reference to where these concepts are fully defined.  For example, C1 

could refer to design documentation, C2 could refer to operating procedures and C3 

could refer to installation diagrams.  The concept ‘acceptably safe’ remains to be 

defined through the supporting argument. 
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Press is acceptably safe to
operate within CCC
Whatford Plant

G1

C1

Press Design

C2

Press Operation

C3

CCC Whatford Plant

 

Figure 30 – Press Example (Step 2: Context Added) 

3.5.3 Step 3: Identify Strategy to Support Goals 

For each identified goal, Step 3 of the method requires that an argument strategy for 

supporting these goals be identified.  Figure 31 shows the two peer strategies that have 

been identified as approaches to arguing the acceptable safety of the press. 

C3

CCC Whatford Plant

C2

Press Operation

C1

Press Design

Press is acceptably safe to
operate within CCC
Whatford Plant

G1

S1

Argument by addressing all
identified operating
hazards

S2

Argument of compliance
with all applicable safety
standards & regulations

 

Figure 31 – Press Example (Step 3: Solution Strategies Identified) 

The first strategy (S1) shown in Figure 31 is to present an argument based on having 

addressed all of the operating hazards that have been identified with the press – i.e. for 

each safety problem that has been identified a solution has been found.  The second 

strategy (S2) is to present an argument of safety based on compliance with all the safety 

standards that are considered applicable for a piece of machinery of this type and 

application. 
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3.5.4 Step 4: Define basis on which strategy stated 

As with the stated goals (Step 2) Step 4 requires that the argument strategies that have 

been identified be examined to assess whether supporting context references or 

justifications are required. Figure 32 shows the contextual information that has been 

identified as necessary to clearly define, and enable elaboration of, the strategies S1 and 

S2.  

S2

Argument of compliance
with all applicable safety
standards & regulations

Press is acceptably safe to
operate within CCC
Whatford Plant

G1

C1

Press Design

C2

Press Operation

C3

CCC Whatford Plant

S1

Argument by addressing all
identified operating
hazards

C4

All identified
operating hazards

C5

All applicable safety safety
standards & regulations

 

Figure 32 – Press Example (Step 4: Context of Strategies Defined) 

In this particular example, C4 could be made to refer to the Hazard Log for the press 

and C5 could refer to the project documentation (or contract) that identified the 

applicable safety standards and regulations.  No justification of the strategies has been 

provided. If it were believed that the reader might question the suitability or adequacy 

of these approaches – appropriate justifications would be added as part of Step 4. 

Equally, if in adopting the argument approaches outlined, any significant assumptions 

were made then these would also be added. 

3.5.5 Step 5: Elaborate Strategy 

Where strategies are clearly defined (i.e. where they describe a methodical approach 

over the information available) their elaboration can be straightforward.  For example, 

Figure 33 shows the elaboration of the strategies defined in Figure 32. 

In Figure 33, having clearly identified the context in which the argument S1 was stated, 

elaborating this strategy involved putting forward an appropriate goal statement for each 

of the operating hazards referenced by C4.  Similarly, having defined the context for S2 

(i.e. the list of standards to be complied with), the elaboration of this strategy simply 

involved putting forward a claim of compliance for each identified standard.  The 
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process of goal structure development is continued for each of the new goals (G2-G7) 

identified.  The goal structure continues to be developed in this way until the stage 

where, in identifying a strategy to support a goal, it is recognised that no further 

decomposition into sub-statements is necessary and the goal can instead be directly 

supported by appeal to some evidence – i.e. we can proceed to Step 6. 

C5

All applicable safety
safety standards &

regulations

C4

All identified
operating hazards

S1

Argument by addressing all
identified operating
hazards

S2

Argument of compliance
with all applicable safety
standards & regulations

Hazard of 'Operator Hands
Trapped by Press Plunger' 
sufficiently mitigated 

G2

Hazard of  'Operator Hands
Caught in Press Drive
Machinery' sufficiently mitigated

G3

Hazard of  'Operator Upper
Body trapped by Press
Plunger' sufficiently mitigated

G4

Press compliant with U.K.
HSE Provision and Use of
Work Equipment Regulations 

G5

PES element of press design
compliant with IEC1508

G7

Press compliant with U.K.
enactment of EU Machinery
Directive

G6

 

Figure 33 – Press Example (Step 5: Elaboration of Strategies) 

3.5.6 Step 6: Identify basic solution 

To fully ‘bottom-out’ (i.e. decompose to solution references) the illustrated goal 

structure would obviously require a number of iterations of the process – decomposing 

all goal claims to a level where direct reference to evidence was felt possible.  However, 

as an illustration of where Step 6 rather than Step 5 would be applicable, Figure 34 

shows the fragment of goal structure developed to support the goal G3 identified at the 

bottom of Figure 33. In this example, at the level of stating that “Motor / Clutch / Drive 

Belts surrounded with safety cage” the writer has decided that no further decomposition 

is necessary and that this claim can be shown to be true through reference to the “Press 

Design (Safety Cage)”.  Peer goals do not always require the same level of 

decomposition - further argument is required to support the more complex sibling goal 

G9. 
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Hazard of  'Operator Hands Caught
in Press Drive Machinery'
sufficiently mitigated

G3

Motor / Clutch / Drive Belts
surrounded with safety cage

G8

Press operation will (safely)
halt if safety cage tampered
with

G9

Sn10

Press Design
(Safety Cage)

More explanation
required here

 

Figure 34 – Press Example (Step 6: Supporting Evidence Identified) 

3.6 Example Areas of Guidance Provided by GSN Method 

The following sub-sections highlight some of the specific ways in which the syntax and 

semantics of GSN have been further defined through the method guidance the author 

has developed [57]. 

3.6.1 Guidance Provided on Phrasing of Goal Statements 

In Step 1 of the method (“Identifying Goals to be Supported”) specific guidance is given 

on the correct phrasing of goal statements made within a goal structure.  The method 

defines that goals should always be stated as propositions – statements that can be said 

to be true or false.  More specifically, it recommends that goal statements should be of 

the following form: 

<Noun-Phrase><Verb-Phrase> 

The Noun-Phrase part of this statement identifies the subject of the goal – i.e. that 

which we are making a statement about. The Verb-Phrase part of the statement is used 

to define the predicate - the predicate serves to make an assertion or denial about the 

subject.  The method goes on to present example Noun-Phrase Verb-Phrase constructs 

that may be found within a safety argument. 

The rationale behind providing this level of guidance is that many people previously 

attempting to use GSN quite often ended up stating ‘Goals’ that could neither be 

interpreted as objectives or logical statements within an overall argument.  For example, 
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as highlighted by one of the ‘negative’ examples given in the method description, 

people have often wrongly put forward goal statements such as: 

‘Perform Fault Tree Analysis’ 

This, and similarly formed Verb-Phrase statements, do not form logical predicates that 

can be said to be true or false.  It is therefore ambiguous as to what this statement means 

when placed in the context of an overall safety argument.  Is it saying that Fault Tree 

Analysis has been performed?  If so, what were the conclusions?  Were they acceptable 

or what was required?  Such Verb-Phrase statements describe processes.  Statements 

concerning the safety process often will be required within the safety case.  However, 

where this is the case they should clearly be statements about the process – e.g. “Fault 

Tree Analysis was performed” or “Fault Tree Analysis determines the hazard 

probability to be X”. 

It has been equally confusing when people have previously stated goals such as the 

following: 

‘Hazard Log’ 

This is a pure Noun-Phrase statement.  Although acceptable as a solution reference, as a 

goal statement forming part of an overall argument the reader is left wondering what is 

being said about, for example in this case, the hazard log. 

It is because of these ‘bad experiences’ of goal structuring that this particular guidance 

was provided as part of the method description.  This guidance provides a framework 

for correctly stating, and evaluating the acceptability of, goal statements (in syntactic 

terms) when using GSN.  To reinforce the definitions given, the method description 

provides a number of positive and negative examples of goal statements. 

3.6.2 Guidance Provided on Use of Context 

Step 2 of the method is particularly concerned with explaining the semantics of the 

context element we have proposed as an addition to the notation.  It explains clearly the 

need for providing context to an argument, how to identify context needing to be 

defined and how to phrase context statements and references. 

Through defining this step in the process, the author’s particular intention was to force 

goal structure developers to define more rigorously the basis for the argument as it 

develops.  (The importance of this in relating the safety argument of the safety case to 

other viewpoints is discussed in more detail later in this chapter in section 3.7).  The 
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virtue of providing context is that it can help the engineer to understand the dependence 

of a safety argument on other forms of information arising from other viewpoints.  It 

can also in some cases provide a transparent and systematic basis for the decomposition 

of the safety argument (i.e. where an argument is structured around a defined context). 

3.6.3 Guidance Provided on Semantics of Strategy 

Step 3 of the method is concerned with explaining clearly the purpose and use of the 

‘strategy’ element within a goal structure.  Previously, in goal structures that have been 

developed, there had been some confusion on the role of strategy.  Some authors had 

used strategy to communicate selection of (albeit safety-concerned) design strategies, 

e.g. “Use of mechanical interlocks” as a strategy for dealing with a hazard as shown in 

Figure 35. 

Probability of Hazard H1 occuring
is acceptably low

G3

Sn1

Use mechanical interlocks

Mechanical interlocks fitted
are acceptably reliable

G4

 

Figure 35 - Incorrect use of Strategy to Communicate Design Strategy 

Although it is fairly easy to see what is implied by the structure shown in Figure 35, the 

purpose of strategy within the notation is to communicate the argument approach being 

adopted to support claims of the safety argument, rather than to communicate design 

strategy.  Of course, these two views can coincide and it is possible for the argument 

approach to depend heavily upon the design approach that has been adopted.  It is just 

so for the example shown in Figure 35.  However, to make it more explicit that the use 

of interlocks forms the basis of the argument strategy, the strategy could be re-

expressed in the form shown in Figure 36.  An added advantage of this approach is that, 
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if it was felt useful or necessary, the design basis of the argument strategy could then be 

made clear by using context to refer to the design decision or supporting design 

documentation (as discussed later in this chapter in section 3.7). 

There has historically also been confusion as to when to use a strategy to explain the 

relationship between a parent goal and sub-goals and when to simply insert an 

additional goal.  The method guidance produced ([57]) addresses this at some length. 

Probability of Hazard H1
occuring is acceptably low

G3

S2

Argument by appealing to
effectiveness of mechnical
interlocks in design

Mechanical interlocks fitted
are acceptably reliable

G4

 

Figure 36 - Improved Expression of Argument Strategy over Design Strategy 

The method guidance provided in [57] explains the strong analogy between use of a 

strategy between parent and sub goals and the explanation that might be included 

between two lines of simplification in a complex mathematical calculation.  For 

example, in the following two lines of calculation, in going from the first line to the 

second line the strategy of ‘dividing both sides by y’ has been clearly defined – enabling 

the reader to understand and verify the simplification that has been performed. 

3xy3 + 2x2y2 + 5xy = 17y      (Divide both sides by y) 

3xy2 + 2x2y + 5x = 17 

In line with this view, the method makes it clear that strategies should not contain 

complete statements that are themselves intended to form claims within the final safety 

argument.  The strategy S1 within the goal structure fragment shown on the left-hand 
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side of Figure 37 contains the statement ‘All hazards have been removed’.  This is not 

expressing an argument strategy but is instead making a safety claim.  If this claim is 

intended to form part of the central logic of the safety argument then it would be more 

appropriate to state it as a goal, as shown in the central fragment of goal structure in 

Figure 37.  Alternatively, if instead the purpose of making the statement was to clarify 

that the argument was being structured around addressing all of the identified system 

hazards in turn then it would be more appropriate to explicitly clearly state this as the 

argument approach. This is shown in the goal structure fragment shown on the right 

hand side of Figure 37. 

System is acceptably
safe

G1

S1

All hazards have been
removed

Hazard H1 has been
removed

G3

System is acceptably
safe

G1

All hazards have been
removed

G2

Hazard H1 has been
removed

G3

System is acceptably
safe

G1

S1

Argument over all
hazards

Hazard H1 has been
removed

G3

 

Figure 37 – Comparison of Using Strategies and Goals 

In order to guide the developer towards the correct usage of strategy, the method 

recommends that strategies should be expressed in one of the following forms: 

“Argument by <approach>” 

“Approach over <approach>” 

“Argument using <approach>” 

“Argument of <approach>” 

This format is intended to constrain strategy statements to descriptive Noun-Phrase 

statements – the focus of these being the argument itself.  This ensures that strategy 

statements remain at the meta-argument level – thus reducing the likelihood of 

incorrectly using strategies for statements that should be within the argument.   
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3.7 Use of Context to Interrelate Viewpoints 

Having extended GSN to include an explicit representation of context, it now becomes 

much easier to represent how a safety argument relates to, and depends upon, other 

viewpoints1.  For example, it is possible to express the influence of design decisions on 

the structure of the safety argument.  Figure 38 shows a strategy (S1) expressed in the 

context of a particular design decision (referred to by C1).  There may have been many 

criteria involved in the design decision to use triple modular redundancy on the system 

in question (performance, availability, cost etc.) – safety being only one of them.  It is 

not the purpose of the safety argument to address all these separate concerns.  Instead, it 

is desirable to be able to recognise that design decisions have been made that then form 

the context of the safety argument being presented.  Using context as is shown in Figure 

38 it is possible to separate the viewpoint of design decision making from the viewpoint 

of presenting the safety argument.  Without overcomplicating or ‘disrupting’ the flow of 

the safety argument C1 could, for example, refer to other descriptions or representations 

of the design decision – such as a decision tree [49] or multi-criteria decision analysis 

[59]. 

System will tolerate
any single point failure

G1

C1

Design Decision to use
Triple Modular

Redundancy (Ref X)

S1

Argument over the trip
modular redundancy
employed in the system

Single faults are detected
within bounded time

G2

Single faults are tolerated
through available
redundancy

G3

 

Figure 38 – Use of Context to Refer to Design Decisions 

                                                

1 NB – The term ‘viewpoint’ is being used here in the intuitive sense, rather than implying any of the 

methodology associated with the term in the Requirements Engineering field, e.g. as discussed in [58]. 
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Another illustration of interrelated viewpoints is the relationship that exists between the 

safety process and product arguments of the safety case.  It is a common feature of 

safety cases (e.g. as required by Defence Standard 00-55 [9]) that their safety arguments 

are structured on the following two fronts: 

• An argument of safety based on the attributes and evidence surrounding the finished 

product - the ‘product’ safety argument. 

• An argument of safety based on the suitability, adequacy and quality of the 

development and assessment processes involved in the production of the product – 

e.g. arguments of compliance against System or Software Integrity Level 

requirements - the ‘process’ safety argument. 

Although both parts of a common safety case argument, these represent two distinct 

viewpoints that are interrelated.  Using the extension of context it is possible to show 

the connection that exists between the elements of these two arguments. Figure 39 

shows a traditional ‘product’ based argument that has a strategy (ProductS1) of arguing 

safety through addressing the hazards identified from having performed a Functional 

Hazard Analysis (FHA) (ProductC1). 

System is acceptably SAFE

ProductG1

ProductS1

Argument of having
mitigated / eliminated all
identified hazards

ProductC1

Functional Hazard
Analysis Results 

(ProcessSn2)

 

Figure 39 – Product Safety Argument 

At this point, the product argument does not discuss the derivation of these hazards or 

argue the completeness of this list.  This is addressed as part of the overall ‘process’ 

argument, part of which is shown in Figure 40. 
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In Figure 40 the argument is not that the product is safe, but is instead that the process 

by which the product was developed and assessed was ‘safe’ (in this case, effective in 

identifying hazards).  The strand of this argument shown addresses the safety claims 

regarding the Hazard Identification and Assessment performed for the product 

(ProcessG2).  In support of ProcessG2, claims are made regarding the activities, set 

clearly in the context of the information they have relied upon. 

The results derived by the Preliminary Hazard Identification (PHI) activity (ProcessSn1) 

are presented both as evidence to support the PHI claim (ProcessG3) and as the context 

for the claim regarding the Functional Hazard Assessment (FHA) activity (ProcessG4).  

The results of the FHA, put forward as evidence supporting ProcessG4, form the 

context (ProductC1) of the product argument strategy (ProductS1). 

As illustrated, using the representation of context within the GSN it is possible to show 

how evidence used as part of the product argument was derived and also how it formed 

part of the process argument.  Such ‘separation of concerns’ means that arguments can 

clearly focus upon one issue while being explicitly related to arguments addresses other 

issues. 

3.8 Relationship between Goal Structuring Method and Safety 

Argument Evolution 

Where development of a safety argument using goal structuring is run in parallel with 

safety case development it is not expected that the method steps identified can be 

performed repeatedly until all identified goals are decomposed to direct references to 

supporting evidence.  Instead, the goal structure will usually progress in a number of 

stages.  Figure 41 illustrates the evolution of a typical goal-structured safety argument. 

Down the left-hand side of Figure 41 there is an indication of the levels of claim that 

might stated at the different levels within a typical goal-structured safety argument. 

Towards the top of the goal structure general safety objectives are stated whereas 

towards the bottom the claims become increasingly focussed towards the forms of 

supporting evidence that are available.  Down the right-hand side, there is an indication 

of the progression of the safety and design activity necessary to enable the evolution of 

the goal structure. (‘NSPF’ = No Single Point of Failure) 
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Figure 40 – Process Safety Argument
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Prelim. Design
& Safety Analysis
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General safety objectives
(e.g. standards, design concept
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design properties)

Evidence Evidence Evidence

Safety Evidence
(e.g. Test Results,
Fault Trees, Design
Information)  

Figure 41 – Evolution of a Goal Structure 

As a result of the ‘Safety Planning’ activity, but prior to having made any substantial 

design commitment, it would typically be possible to state the overall safety objectives 

of the system safety case.  Having performed some preliminary design, carrying out 

safety activities such as hazard analysis begins to be possible.  Having performed hazard 

analysis, it would then be possible to evolve the general safety objectives stated initially 

into goals regarding the avoidance of specific identified design hazards.  In this way, the 

goal structure can gradually evolve.  It may also be necessary to revisit the goal 

structure already stated and rework if the argument approach has altered, or new 

(structuring) evidence has become available. 

At each point in time, the safety argument is expressed in terms of what is known about 

the system being developed.  At the early stages of project development the safety 

argument is limited to presenting high level objectives.  As design and safety knowledge 

increases during the project these objectives can be increasingly expressed in more 

tangible and specific terms.  
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Evolution of the safety argument following the steps of the method we have defined, 

means that for a particular state of project development there will be a point at which it 

is not possible to progress to the next step in the method.  For example, it may be 

possible to state an objective in Step 1 and to identify the context required to fully 

define that objective (Step 2) – but not actually to have that information at that point in 

the project.  In the press example shown in Figure 30, the need for a definition of the 

press design operation and plant installation may have been recognised.  However, at an 

early stage in the project this information may not be fully defined.  In such a case, it 

would be necessary for the information to be provided before one could be expected to 

continue further with the safety argument.  As discussed in the previous section, this use 

of context shows how the safety argument (at a particular point) depends upon 

information from other viewpoints – in this case the design viewpoint. 

Similarly, it may be that Step1 and Step 2 can be completed (i.e. identified and context-

defined goals exist) but that a strategy for the argument cannot be identified.  As 

discussed in the method ([57]) argument strategies can emerge from any number of 

sources (design attributes, safety evidence, ALARP – As Low As Reasonably 

Practicable - analyses etc.). It is often the case that significant effort will be required 

before an acceptable argument approach can be proposed.  Consider again the press 

example shown in Figure 31.  A preliminary safety planning activity may have to be 

carried out before the two strategies shown in Figure 31 can be defined. 

The contribution identified in this chapter provides two particular areas of support in the 

evolution of safety arguments: 

• The addition of context makes it possible to see how the definition of the safety 

argument relates to, and ‘waits for’, information collated from activities outside of 

argument construction. 

• The method defined (especially through Steps 2, 3 and 4) makes it clear at each 

stage what is required in order to progress the argument further.  Following 

‘interruptions’ to the evolution of the argument, the method also makes explicit the 

next step in development to be performed (i.e. if the development was halted after 

Step 2, development begins again at Step 3). 
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3.9 Experience of Using Goal Structuring in Presentation of 

Preliminary Safety Arguments 

Goal Structuring has been applied in presenting Preliminary Safety Arguments on a 

number of projects, including: 

• Preliminary Safety Argument for a Site Safety Justification – The GSN Method 

was used by Rolls-Royce Marine Power in the early stages of developing a Site 

Safety Justification for a Naval Facility.  In this project a daunting number of safety 

requirements existed and GSN was used as part of a group exercise to help the 

engineers begin to appreciate the scope of the problem, and to identify possible 

argument strategies.  The top layers of the safety argument were constructed as a 

result of iterating through steps 1-5, but few solutions (Step 6) were provided.  This 

application of the GSN Method helped the project to begin to structure their 

approach to constructing the site safety arguments. 

• Preliminary Safety Argument for a Distributed Aero-Engine Controller - The 

use of GSN in supporting an evolving safety argument was piloted for Rolls-Royce 

Aerospace in developing a preliminary safety argument for a novel distributed 

engine controller.  The preliminary safety argument is presented later on in this 

chapter in section 3.9.  As with the site safety arguments, the goal structures present 

the results of iterating through the GSN method steps 1-5, but given the preliminary 

nature of the design, few solutions (the result of Step 6) are provided. The main 

conclusions from this work were that the resulting goal structure aided the process 

of agreeing the safety case, helped gain confidence in the ability to present a 

complete safety case and provided tangible safety objectives for the project. 

• Generic Preliminary Safety Argument for Integrated Modular Avionics (IMA) 

Systems – Based on work published by Fletcher [60], the author has used goal 

structuring to set out clearly the principal safety (and certification) objectives facing 

Integrated Modular Avionics (IMA) systems.  The structure developed was used to 

communicate the safety framework in which IMA solutions are suggested. 

In all these cases the arguments were truly preliminary – safety objectives remained 

unsatisfied, supporting evidence was not yet available.  The purpose of constructing the 

arguments was, in all cases, to scope clearly the concerns of the final safety case – the 

key hazards to be addressed, standards to be complied with etc. – and to begin to outline 
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the argument and evidence that would be used to address these concerns.   As stated 

earlier in the chapter, one of the significant benefits of the notation is that it provides 

engineers with a medium for describing and discussing an evolving safety argument 

quite separately from the onerous responsibility of producing certification 

documentation.  Chapter Six presents some additional conclusions arising out of this 

evaluation of the GSN Method. 

As an example of how goal structuring can be used in the early stages of an evolving 

safety case, the following section describes the preliminary safety argument developed 

jointly by the author with Iain Bate for a distributed aero-engine controller architecture.  

It should be noted that this work has been used as a basis for a real industrial project (as 

part of Rolls-Royce’s contribution to the U.K. Ministry of Defence funded HIgh 

Performance Engine Control System project – HIPECS).  The purpose of constructing 

the preliminary safety argument was to increase confidence in the ability to certify this 

type of system before committing to full-blown development of the architecture (i.e. to 

reduce the project risk associated with certification). 

3.9.1 A Preliminary Safety Argument for a Distributed Aero-Engine 
Controller 

Traditionally engine controllers have been based on a centralised uni-processor 

approach, with direct-wired electrical cabling to all engine sensors and actuators.  There 

are potential cost and weight savings that can be achieved through adopting a 

distributed approach – by using ‘smart’ sensors and actuators and a common databus 

rather than many individual cables.  In addition, distributed processing units can provide 

additional flexibility and scalability in implementing the core controller functions.  

However, the distributed approach is new and therefore attracts particular scrutiny in 

certification (as is commonly the case for novel concepts in the aerospace sector).  For 

this reason, it has been especially important to construct a clearly defined argument, at 

the earliest possible opportunity, for the safety of this platform. 

In this example, we purposefully provide a simplified overview of the distributed 

approach, as our  principal aim is to discuss the safety case.  There are many complex 

issues, such as vote synchronisation and processor state recovery, that are outside the 

scope of this paper. 
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Figure 42 - Subsystem Structure  

In describing the architecture, the following two terms are used: 

• Component – a device that performs some function 

• Subsystem – a configuration of replicated components performing identical 

functions (so that faults may be tolerated) 

The proposed architecture consists of a number of subsystems that together would 

execute the software found on a conventional electronic engine controller.  Figure 42 

shows the top-level design of a single subsystem. 

Each subsystem consists of the following elements: 

1. Voter - An exact consensus voter that compares the output values of three or more 

replicated components and can identify failures if value differences are present.  In 

the event of an identified failure a reset signal is sent to the corresponding 

component.  The component will restart, but will be taken out of service if several 

resets are required in quick succession. When a component is recognised as being 

out of service the voter will no longer use its output. 

2. Processor - The architecture places minimal restrictions on the specific 

microprocessors to be used (in order to support ‘technology transparency’ [61]).  

Provided the processors have comparable throughput they may be used within a 

single subsystem (as the voting logic and scheduling approach facilitates lock 

stepping).  Processor tasks are scheduled using the fixed priority approach [62]. 

3. Timing Watchdog - A countdown timer that will detect processor timing overruns. 
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4. Local Memory - Dedicated memory for each processor to provide a greater degree 

of isolation between replicated components. 

5. Local Clock – Dedicated real-time clock for each processor that can be read and 

updated. 

A Controller Area Network (CAN) [63] databus is used for carrying messages between 

subsystems and the smart engine sensors and actuators.  Messages are scheduled using 

fixed priority scheduling.  In addition, at least one processor unit has a TDMA (Time 

Division Multiple Access) link to allow communication with the airframe.  A global 

time base is maintained for all subsystems through synchronisation of local clocks 

across the databus [64]. 

For an aeroplane engine, the top-level hazards (such as ‘deployment of thrust-reversers 

in flight’) are well understood within the industry.  At the level of the architecture, we 

are concerned with those classes of failure mode that can give rise to hazards.  To 

illustrate the principles of preliminary safety cases, we focus on these specific 

architectural level failure modes. (We believe it is possible to produce generic, reusable 

safety cases for such architectures, but discussion of such issues is outside the scope of 

this chapter.) The classes of failure mode are: 

• Random Failures – Even with the redundancy provided by replicated components, 

there remains a risk that random failures, originating from ageing or breakdown, 

may cause a system hazard. 

• Systematic Failures – Replication of identically implemented functionality will not 

protect against the following two forms of design error: 

• Timing Failures – Failure to meet hard real-time requirements and/or preserve 

functional ordering could result in a system hazard.  

• Functional Failures – Both transient and permanent errors in the control output 

of the subsystems, dependent on the situation, can result in system hazards. A 

transient failure, such as inadvertent thrust reverser actuation on an engine in 

flight, can have catastrophic consequences – as shown in the Lauda Air 767 

disaster. The same error can have different consequences dependent on whether 

it is a transient or permanent error.  For example, a transient error in fuel 

demand output is unlikely to cause a system hazard, namely engine overheat, 
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due to the thermal mass of the engine. However, if the same error were 

permanent – the hazard could occur. 

Random and timing failures are essentially ‘architectural’ issues.  Functional errors, 

however, are predominantly defined by the application.  Working at the architecture 

level, we were therefore only able to consider the overall function of fault-tolerance 

implemented within the elements of the architecture. 

The top level of the safety argument (supporting the claim of acceptable safety) is 

represented in Figure 43.  Relating the production of this structure to the steps of the 

method: Step 1 identified G1, Step 2 identified the stakeholder Sh1, Step 3 identified 

the approach to supporting G1 that was then stated through G2 and G8 (back to Step 1). 

Architecture provides
acceptably safe platform for
engine control

G1

Risk of intolerable platform
failure is sufficiently low
(Quantitative)

G2

All platform safety properties
hold in implementation 
(Qualitative)

G8

Customer ultimately
decides on

'acceptability'

Sh1

 

Figure 43 - Argument for Acceptable Platform Safety 

The goal structure first indicates that it is the Customer who ‘owns’ the top level 

(‘acceptably safe’) goal.  It is the Customer who will ultimately decide on whether the 

goal has been achieved.  The argument is then broken down into two parts: a qualitative 

and quantitative part.  The quantitative part argues that the risk of failure is acceptably 

low, represented in Figure 44.  The qualitative part addresses whether the 

implementation of the architecture successfully meets the necessary safety properties, 

expressed in Figure 45. 

The quantitative argument is shown in Figure 44.  The overall failure rate requirement 

for aircraft loss due to single engine failures is approximately 1x10-5 per flight hour, of 

which a budget of 1x10-6 failures per flight hour is allocated to the engine control 

system.  To ensure the introduction of systematic errors is appropriately minimised the 
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system will be developed to Development Assurance Level A (defined by the civil 

aerospace development guidelines DO-178B [65]). 

The qualitative argument that the safety properties of the system hold is more complex.  

There are two aspects to the argument, shown in Figure 45, to address the functional 

and non-functional safety properties of the system.  The non-functional safety properties 

of the system concern the timing and resource behaviour.  (Resource exhaustion has 

been identified as a potential cause of both timing and application function failures.)  

Experience shows that correct resource requirements are difficult to predict, and this 

frequently leads to rework being carried out to increase resource capability or to 

optimise the use of resources.  Our technique for addressing this problem is to make the 

architecture scalable, allowing extra subsystems to be added with the minimum of 

effort. 

The argument of timing behaviour correctness (shown in Figure 46) consists of two 

parts: whether the timing requirements are correct and whether the requirements are 

satisfied.  The timing requirements come from two sources, most are historical values 

related to the control loops of the engine which are known to provide stable and 

effective performance.  The relevancy of the control timing requirements to this 

particular project is first checked using extensive simulation of an engine model, and 

later through extensive engine trials throughout the operating envelope.  In addition, 

there are design-derived requirements obtained via the hazard analysis process.  An 

example of this type of requirement is shown in Figure 47 through goals G24 and G25, 

where a time bound for fault recovery is defined to reduce the period for which the 

architecture is at risk to additional errors.  To verify that the timing requirements are 

met requires a deterministic scheduling policy, to allow appropriate analysis to be 

performed.  Our solution is to use non pre-emptive fixed priority scheduling, which has 

a firm mathematical basis and determinable control flow. 
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Figure 44 - Argument for Sufficiently Low Risk 



 104

All platform safety
properties hold in
implementation 

G8

All non-functional platform
safety properties hold in
implementation

G9

All functional platform safety
properties hold in
implementation

G10

Exhibited timing behaviour
is correct

G11

Resource usage always
sufficient for needs of
application

G12

G13

Scalable architecture
defined to support growing
resource requirements

Eventual resource requirements are
impossible to determine at this stage -
therefore, architecture made scalable

J2

J

G14

Worst case resource usage is
within defined limits

C5

'Resource usage' =
Processor, Memory and

Databus usage

C6

Resource usage limits
addressed in DO-178B

 

Figure 45 - Argument for Platform Safety Properties 
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Figure 46 - Argument for Correct Timing Behaviour 
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Figure 47 - Argument for Functional Platform Safety Properties 
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The final part of our argument is shown in Figure 47, and predominantly concerns the 

fault-tolerance behaviour of the platform.  The aim is to have a platform that operates 

deterministically even in the presence of faults.  The faults are to be identified and 

recovered, where possible, within a bounded period of time (in order that overall timing 

requirements can be guaranteed).  Value and timing errors are identified in separate 

ways, but handled in the same manner.  Value errors are identified using the trusted 

voting mechanism.  A triplex processor architecture has been initially proposed as this 

will allow the voter to additionally identify the source of detected errors.  For 

commercial reasons, related to the weight of cabling, only two databuses will be 

provided.  However, the CAN databus is considered to be highly fault tolerant in its 

own right with the ability to withstand a wide variety of single and multiple errors.  

Timing errors are identified using the timing watchdog.  Recovery from detected 

processor faults is attempted by restarting the offending processor.  Where recovery 

from failures is not possible, the offending component is taken out of service. 

Within this section we have briefly presented a preliminary safety argument which has 

derived a number of architecture dependent criteria that must be achieved if the system 

is to be safe.  The undeveloped goals in our safety arguments represent the criteria for 

judging the appropriateness of any architecture under consideration.  The criteria could 

be met by a number of different architectural combinations.  For example, the 

component reliability requirement may be achieved using either one ultra-reliable 

component, or a network of replicated components.  The manner in which the 

requirements are satisfied will be part of the developing system design and will be 

presented in the final (operational) safety case.  Production of the preliminary safety 

case has increased confidence that the final certification case can be made.  It can also 

be used to influence the design such that the safety objectives identified can be more 

easily satisfied. 

3.10 Nuclear Trip System Safety Case Example 

Appendix A illustrates the use of the Goal Structuring Notation in the construction and 

presentation of a safety case for a Nuclear Trip System.  The technical basis of the 

safety case and textual description has been taken directly from an example produced by 

Adelard [36].  Goal structures have been integrated with this information to 

communicate the implicit structure explicitly and to improve the traceability of the 

safety argument. 
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In the Adelard example, three key devices were used to communicate the flow of the 

safety argument: 

• Traceability Matrices (mapping requirements to design features) 

• Tabular Arguments 

• Cross-references within safety case text 

The appendix has instead used goal structures (constructed according to the goal 

structuring method defined in [57]) as the principal device for presenting the safety 

arguments. 

Traceability matrices were used in [36] to indicate the mapping that existed between the 

overall requirements of the safety case (Appendix A section 5) and the features of the 

proposed design solution (Appendix A section 6).  For example, the traceability matrix 

communicates that the design feature ‘Design Simplicity’ is related to the overall 

response time requirement.  The difficulty with this approach is that the matrix does not 

(and cannot) communicate how the design feature supports or relates to the requirement.  

The goal structures presented in Appendix A sections 7-11, however, perform the same 

role of relating the design features (referenced using GSN context elements) to the 

overall goals of the safety case but additionally (through use of an interim goal) explain 

the relationship that exists between them. 

Tabular arguments were used in [36] for certain aspects of the safety argument (those 

addressing probability of failure on demand, timing and system updates).  The 

difficulties with the tabular approach to presenting safety arguments have already been 

discussed in Chapter Two, section 2.5.2.  The difficulty in their use here is that there is 

no discipline in the expression of the arguments described under the ‘Argument’ 

heading.  Consequently, arguments are in some cases described only very generally (e.g. 

‘Hardware reliability tests’).  The goal structures presented in Appendix A sections 7-11 

handle the hierarchic decomposition of some of the more complex arguments more 

easily.  At the same time they introduce the missing discipline by forcing statements 

(goals) to be properly formed as propositions, and by insisting that the role of evidence 

(solutions) is stated explicitly. 

The safety argument structure is also implicitly communicated in the Adelard safety 

case through the use of cross-references embedded within the text.  For example, the 

following sentence taken from [36] contains the cross-reference that relates the 
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maintenance requirement (R.SEC) to the design feature that introduces a separate 

monitor computer. 

“The monitor computer can be used for pre-start checks on the consistency 

of the software configurations (R.SEC) …” 

The difficulties faced with this approach are two-fold: 

• Firstly, the relationship between the text and the requirement is cryptic in some 

places and suffers the same problems of comprehension as experienced with the 

traceability matrix. 

• Secondly, the constant use of cross-references disrupts the flow of the document and 

makes it more difficult to read. 

The goal structures presented in Appendix A sections 7-11, however, communicate the 

argument relationships explicitly and reduce the need to attempt to express traceability 

relationships within the text itself. 

The final comparison between the two approaches highlights the fact that whereas the 

Adelard safety case used three different forms of safety argument presentation, the 

reworked example presented in Appendix A uses just one – goal structures.  The use of 

just one medium for expressing the safety argument improves the structure, flow and 

comprehension of the safety case document. 
 

3.11 Role of Contribution in supporting Maintenance & Reuse 

The contribution made in this chapter underpins, and is used by, the later Chapters Four 

(concerning Safety Case Maintenance) and Five (concerning Safety Case Reuse).  

Recognition of the context of the safety argument is crucial to enabling effective 

maintenance of that argument.  If the context of an argument is not captured explicitly 

then the impact on the argument may go unrecognised if the context changes.  However, 

where context is explicitly represented, as for example in the goal structure fragment 

shown in Figure 48, it becomes possible to identify how the safety argument is 

vulnerable to changes made to the context in which it is stated. 



 110

Aircraft safe to operate within
defined operating limits

Aircraft Operating
Limits

 

Figure 48 - Context Change Example 

Figure 48 shows the recorded dependency between the claim regarding 

aircraft safe operation and the context of the set of defined aircraft 

operating limits.  If these limits were changed at any time, the context 

reference would be challenged (as depicted by the strike through). The 

relationship between this context and associated goals would also be 

challenged (as shown).  From this it would it is possible to recognise that 

the safety claim might be affected. 

As discussed in section 3.7, context can be used within the notation to show how the 

safety argument depends upon information arising from different viewpoints.  Every 

time this is done within a goal structure, additional information is being added that 

communicates how changes arising from these viewpoints can propagate through and 

impact the safety argument.  For example, consider the goal structure previously shown 

in Figure 38 where the dependence of the safety argument on a design decision is 

represented.  If the referenced decision is changed at a later stage this recorded link will 

help to identify the impact on the argument strategy adopted. 

Context also plays an important role in defining the applicability of the Safety Case 

Patterns presented in Chapter Five.  Using the representation of context it is possible to 

show what information must be defined in order to construct a certain safety argument 

structure.  For example, in the following figure (Figure 49), (uninstantiated) context is 

used to denote that in order to construct an argument structured around management of 

hazards, a list of hazards must be provided.  (For a full description of this pattern and 

the notation used see Chapter Five.) 

The role of the GSN method in supporting the work presented in Chapters Four and 

Five is less immediate than that fulfilled by the introduction of context, but is 

nevertheless crucial.  In order to provide maximum support to the safety case 

maintenance process (particularly impact analysis based on the goal structure) it is 

important that the goal structure is well formed and well stated.  Obeying the rules 

defined by the method for the phrasing of goal statements as Noun-Phrase Verb-Phrase 
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propositions makes it significantly easier to assess whether goal statements are impacted 

by a change, than if, for example, they were incorrectly formed as Verb Phrase 

statements.  Consider assessing whether the goal statement, “System A is independent 

of System B” is affected by a change, compared with assessing whether the (incorrect) 

goal statement, “Perform Fault Tree Analysis”, is affected. 

G1: {System X}
is safe

S1: Argument by
claiming addressed

all identified
plausible hazards

C1: Identified Hazards for
{System X}

in the

context of

n = # hazards

Provides {Hazard X}

G2: {Hazard X} has
been addressed

n

 

Figure 49 – Use of Context in Safety Case Patterns 

The role of the method in providing a regular, predictable and mutually understood 

definition of the Goal Structuring Notation underpins the concept of safety argument 

reuse as espoused in Chapter Five.  In order to identify reusable safety argument 

structures it is important that similar arguments will be represented similarly in the 

notation (i.e. the notation is not interpreted in wildly varying ways).  In order that the 

application of recorded GSN patterns may be viable it is also important that the ‘style’ 

of goal structuring applied within the pattern does not differ substantially from that of 

the target context.  The Goal Structuring Method discussed in this chapter and defined 

in [57] plays an important role in ensuring the uniformity of style of goal structures 

developed. 
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3.12 Evaluation of Contribution  

The evaluation of the contribution presented in this chapter is discussed fully in Chapter 

Six – Evaluation.  However, it is worth briefly highlighting at this point some of the 

ways in which the ideas presented in this chapter have been evaluated over the course of 

the research.  

The extension of context to the Goal Structuring Notation has been readily and widely 

adopted by all that use the notation.  In addition to researchers at York, this includes 

safety engineers from companies including the Rolls-Royce and British Aerospace 

groups of companies, and the U.K. Defence and Evaluation Research Agency (DERA).  

In particular, work performed by Rolls-Royce Marine Power (formerly Rolls-Royce and 

Associates) under contract for GEC-Alsthom particularly utilised the ideas of ‘Process’ 

and ‘Product’ goal structures (as described in section 3.7 of this chapter) that are 

interrelated through use of context references.  A cross-linked goal structured safety 

case and safety plan were produced that formed the basis of the project documentation 

for a track-side railway system.  (The guidance the author gave to this project on 

applying goal structuring aided the development of the method guidance necessary to 

support wider adoption of the technique.) 

The Goal Structuring Method as defined in [57] has been issued as a ‘GSN Handbook’ 

to over twenty companies involved with the development and assessment of safety-

critical systems.  Although criticism of the method was solicited, only favourable 

comments have so far been received in return.  In addition, presentation material written 

by the author to accompany the guide presented in [57] has been used in the direct 

education of over fifty safety engineers from three companies (British Rail Business 

Systems, Matra BAe UK and Rolls-Royce Marine Power).  The effectiveness of the 

method has been shown on a number of occasions by the production of well-stated and 

formed goal structures using the method independently of any ‘hands-on’ involvement 

by the author or other researchers at York. 

3.13 Summary 

This chapter has presented the contributions the author has made to the representation of 

safety case arguments using the Goal Structuring Method.  To increase the expressive 

power of the notation, the author has introduced the concept of argument ‘context’.  To 

bring GSN to maturity, from simply being a notation to becoming a structured method, 
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the author has defined a six-step process for the construction of goal structures 

(presented in [57]).  Building on both these contributions, the chapter has discussed how 

goal structuring can be used, and has been used, to support an evolving safety argument.  

In particular, the positive benefit of using GSN in presenting Preliminary Safety 

Arguments has been described (including ‘real-life’ examples).  

The results presented in this chapter were developed to ensure a sound basis from which 

the more advanced concepts of applying GSN in safety case maintenance and in safety 

case reuse could be constructed.  These areas are discussed in the following two 

chapters. 
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Chapter 4:  

Using the Goal Structuring Notation to Support 

Safety Case Maintenance 

4.1 Introduction 

In the first instance the safety case argument will typically be constructed and presented 

(e.g. to a regulatory authority) prior to the system operating for the first time.  The 

argument is often therefore based on estimated and predicted operational behaviour 

rather than observed evidence.  For this reason alone, even in the absence of changes to 

the system or the regulatory environment, it is almost inevitable that the safety case will 

require updating throughout the operational lifetime of the system.  Operational 

experience must be reconciled with the predictions made in the initial safety argument. 

The system operators, as the ‘owners’ of the safety case, are typically responsible not 

only for its initial production but also for its maintenance throughout the lifetime of the 

system. There is growing recognition in the standards that appropriate mechanisms must 

be in place for the ongoing maintenance of the safety case. For example, the U.K. 

Railways (Safety Case) Regulations 1994 states in Regulation 6(1) that: 

“A Person who has prepared a safety case persuant to these Regulations 

shall revise its contents whenever it is appropriate…” 

Similarly, for developers of defence related systems in the U.K., the Ministry of 

Defence Safety Standard 00-55 [9] states in section 4.7.1. that: 

“After the preparation of the operational Safety Case, any amendments to 

the deployment of the system should be examined against the assumptions 

and objectives contained in the Safety Case.” 

Although standards, such as those mentioned, demand appropriate and adequate 

revision of safety cases, they offer little advice on how such operations can be carried 

out.  The safety case is a complex web of inter-dependent parts: safety requirements, 

argument, evidence, design and process information.  As such, a single change to a 

safety case may necessitate many other consequential changes - creating a ‘ripple 

effect’.  The difficulty faced with current safety cases lies in discerning those 

consequential changes through the morass of poorly structured documentation.  The 
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level of assurance as to how well a safety case has been updated in the light of a change 

depends largely on the degree to which the document has been understood.  There is 

little guarantee that all changes have been dealt with equally and systematically.  

Subjectivity plays a greater role in safety case maintenance than is desirable. 

This chapter begins by clarifying the key problems currently experienced with safety 

case maintenance.  Discussing how these problems have been addressed, the chapter 

then presents the model and process we have developed for safety case change 

management based on the Goal Structuring Notation. 

4.2 Current Problems in Safety Case Maintenance 

Working from the published literature on this topic (surveyed in Chapter Two), 

discussions with Rolls-Royce safety engineers, and the author’s personal experience of 

safety case management, we have identified the key problems currently being faced in 

safety case maintenance as the following: 

• Difficulty in recognising change 

• Difficulty in identifying the indirect impact of change 

• Lack of assurance / justification of the change process 

• Insufficient information recorded to support the change process 

• Lack of a systematic process 

Together these problems result in an informal and often subjective change management 

process.  Given that the safety case should be maintained as a living argument that 

always correctly portrays the safety of a system, this informality is a serious concern. 

These problems are described in the following sections: 

4.2.1 Difficulty in recognising change 

The first problem in safety case maintenance is that the safety engineer sometimes fails 

to recognise that a ‘real-world’ change should be considered with respect to the safety 

case.  Some changes, such as a minor operational role change, may seem innocuous at 

first when given superficial consideration, but may actually have a significant impact 

with respect to the context and argument of the safety case.  The engineer must ask the 

following questions: 

• Does this change directly affect the objectives of the safety argument? 



 117

• Does this change directly affect the evidence used to support this safety 

argument? 

• Does this change directly affect the context (assumptions etc.) in which the 

safety argument was made? 

These questions can be stated effortlessly. Answering them, however, can require much 

effort.  The nature of current text-based safety cases is that it is often difficult to identify 

the top-level objectives, evidence and context of the safety argument.  Given this 

starting point, it is even more difficult to identify which of these are potentially 

impacted by a change. 

4.2.2 Difficulty in identifying the indirect impact of change 

Identifying the initial impact of a change is only the starting point of the change 

management process.  Safety arguments are a web of dependencies: safety claims are 

put forward to satisfy safety requirements.  Evidence is put forward to satisfy safety 

claims.  Safety claims have a defined and/or an assumed context.  When just one of 

these items changes, it is necessary to identify the ‘knock-on’ effects on dependent 

items.  Does changed evidence still support the safety claim? Does a changed safety 

claim still support the safety requirement? 

In order to identify these indirect effects of a change the engineer must be able to see 

clearly the structure of the argument and where the dependencies lie.  However, these 

dependencies are often inadequately presented, or are obscured in, current text-based 

safety arguments. 

4.2.3 Lack of assurance / justification of the change process 

Faced with a potential challenge to the safety case, those responsible for the 

maintenance of the safety case must decide on an appropriate response.  This response 

will lie somewhere between the two extremes of doing nothing to the safety case and 

doing ‘everything’ (i.e. complete safety case revision).  These decisions about the level 

and nature of response made to a particular challenge must be expressed explicitly and 

justified in order to have confidence in the ongoing validity of the safety case.  As a 

consequence of the difficulties in assessing the impact of change, as described in the 

previous section, difficulties are also experienced in providing a compelling justification 

of when change to elements of the safety case is or isn’t necessary. 
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4.2.4 Insufficient information recorded to support the change process 

The previous problems have addressed the quality of the information recorded in the 

safety case.  However, there is also a problem concerning the quantity of information 

recorded.  A well-stated safety case clearly documents the context in which the safety 

argument is made – recording where information has been drawn into the argument 

from other sources (e.g. other safety cases); where assumptions have been made; the 

relationship between the argument and design detail.  If this information simply isn’t 

recorded in the safety case then recognition of the impact of any changes requires a 

significant amount of detective work!  In many existing safety cases, context is often 

assumed knowledge, and assumptions are often implicit.  

4.2.5 Lack of a systematic process 

Perhaps an aggregation of the preceding problems, the most significant concern with 

current maintenance strategies is that they are not systematic.  Assurance in 

maintenance stems from confidence in a rigorous process where all changes are 

investigated methodically.  However, owing predominantly to the preceding problems, 

there is often insufficient, inadequate or inappropriate information to perform the 

maintenance task.  Consequently, the effort required for systemisation increases 

dramatically and the practical demands of the situation require that ‘best-guess’ and ad-

hoc approaches be adopted instead.  This introduces a degree of subjectivity into the 

process that means even a basic level of repeatable and systematic analysis cannot be 

guaranteed. 

4.3 Application of GSN to Change Management 

A fundamental concern underlying the problems of safety case maintenance identified 

in the previous section is the poor perception of the individual elements of 

conventionally structured safety cases and of the interdependencies that exist between 

them.  The Goal Structuring Notation provides a clear conceptual model of the safety 

case – representing its elements and interdependencies explicitly.  Using the framework 

GSN provides as a basis for establishing a configuration model for safety cases, we will 

now show that is possible to formulate a systematic approach to reasoning about and 

handling change. 
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4.3.1 Dependencies in the Safety Case 

Elaborating on the model introduced in Chapter One, we argue that the safety case can 

be considered as consisting of the following four elements: 

 

• Requirements – the safety objectives that must be addressed to assure safety 

• Evidence – information from study, analysis and test of the system in question 

• Argument – showing how the evidence indicates compliance with the requirements 

• Context – identifying the basis of the argument presented 

These elements are obviously inter-dependent.  As a refinement of the Supporting 

Evidence / High Level Argument view of the safety case presented in Chapter One, we 

have developed the conceptual model shown in Figure 50 to illustrate the macro-

dependencies that exist between these four elements. 

Requirements

Argument

Evidence

Context

Meets

Supports

Valid in

Valid in

Valid in

 

Figure 50 - Dependencies between elements of the Safety Case 

This is a simplification of the dependencies that exist between these elements. 

Dependencies could also exist, for example, between pieces of evidence – e.g. between 

component failure modes and rates in a Failure Modes and Effects Analysis and basic 

events in Fault Tree Analysis.  Figure 50, however, communicates those dependencies 

that exist through the intentional relationships of the safety argument. 

Even simply recognising the aggregated safety case dependencies shown in Figure 50 

helps to highlight where consistency must be maintained when handling change. For 

example, consider the following change scenario: 
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Change Scenario: Based on a changing operational environment, the 

context of the safety argument is altered (e.g. the system now interacts with 

different systems, has different users or has different operating limits).  A 

change is made to the safety case Context. 

Given such a change, the dependencies communicated in Figure 50 prompt 

consideration of the following questions concerning the other safety case elements: 

For the argument: 

• Is the argument still valid in this changed context? If not, what changes 

are necessary? 

• (If the argument is changed as a consequence.) Does the evidence still 

support the modified argument? If not, what changes are necessary? 

• (If the argument is changed as a consequence.) Does the changed 

argument still meet the requirements? If not, are the affected 

requirements negotiable? 

For the requirements: 

• Are the requirements still correctly stated (e.g. are new requirements 

now applicable) within this changed context? If not, what changes are 

necessary? 

• (If the requirements are changed as a consequence.) Does the argument 

support the modified requirements? If not, what changes are necessary? 

For the evidence: 

• Is the evidence still valid in this changed context? If not, what changes 

are necessary? 

• (If evidence is changed as a consequence.) Does the evidence still support 

the argument? If not, what changes are necessary? 

This chapter defines an approach that helps engineers to ask questions, such as 

those given above, in a specific and structured manner through utilising the 

documented dependencies presented in a goal structured safety argument. 



 121

4.3.2 Relationship between GSN and the Safety Case 

The Goal Structuring Notation has been specifically defined to model the entities and 

relationships shown in Figure 50.  Requirements are represented in the notation as top 

level Goals.  Evidence is represented in the notation as Solutions.  Contextual 

information is represented in the notation as Context, Assumption, Justification and 

Models.  Argument is communicated through the structuring of Goals supported by sub-

goals (as discussed in Chapter Three).  Figure 51 illustrates how a goal structure can be 

divided into the four essential elements – requirements, context, evidence and argument. 
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Figure 51 - Relationship between safety case elements and the GSN 

Through the explicit links of a goal structure, such as those shown in Figure 50, 

traceability is provided between the elements of the safety case argument.  The 

following relationships are communicated: 

• How requirements are supported by argument claims 

• How argument claims are supported by other (sub) argument claims 

• The context in which argument claims are stated 

• How argument claims are supported by evidence 

Such relationships are also present in conventional text-only safety cases.  However, it 

is rare that they are communicated as clearly and explicitly as in a goal structure.  
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4.3.3 Establishing a Safety Case Configuration Model 

In conventional configuration management, the ‘configuration’ refers to 

“The totality and the inter-relationships of the hardware, software, 

firmware, services and supplies that make up the system at a given reference 

point in time” [66] 

This definition can be adapted to the safety case domain.  In this context, we define the 

configuration as: 

“The totality and the inter-relationships of the requirements, argument, 

evidence and context that make up the safety argument at a given reference 

point in time” 

A conventional configuration model consists of two parts: 

• Configuration Items (CIs): Entities within a configuration that satisfy an end use 

function that can be uniquely identified at a given reference point. [66] 

• Configuration Relationships (CRs):  The relationships between Configuration 

Items that have been established at a given stage in the development lifecycle [67] 

Using the framework of the Goal Structuring Notation it is possible to relate these 

concepts to the safety case domain. 

• Configuration: A goal structured safety argument 

• Configuration Items (CIs): Individual entities within the goal structure 

representation of a safety argument – i.e. goals, strategies, solutions, contexts, 

models, assumptions, justification etc. 

• Configuration Relationships (CRs): The relationships established between the 

elements of a goal structure – i.e. instances of the SolvedBy and InContextOf 

relations.  For example, these include the relationship declared between a parent 

goal and a child goal, and between a goal and an associated assumption. 

Using the Goal Structuring Notation as a configuration model (and therefore an 

individual goal structure as a configuration), the chapter now goes on to propose a 

process for managing change applied to the safety case in the following section. 

4.4 A Safety Case Change Process 

The safety case change activity can be thought of as consisting of two phases: 
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• The Damage Phase – Where a change is assessed for its impact on the safety 

argument of the safety case 

• The Recovery Phase – Once the damage has been identified, the process of 

identifying a recovery action and following though the consequences of that action 

in recovering the safety argument. 

There is an iterative (and potentially concurrent) relationship between these two phases.  

The action identified to recover the damaged part of the safety case may also result in 

damage to other parts of the safety case.  For any one change, several iterations of the 

damage and recovery activities may be necessary to arrive again at a consistent and 

correct safety case.  This highlights the importance of having an efficient and systematic 

process for carrying out these activities. 

Using the safety case configuration model proposed in the previous section it is possible 

to provide a systematic structure to the activities carried out in these two phases.  This 

structure is shown in Figure 52. 
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Figure 52 – A Process for Safety Case Change Management 

The following sections expand on how using GSN as a configuration model can support 

the six steps identified in Figure 52. 

4.4.1 Step 1: Recognise Challenges to the Validity of the Safety Case 

As identified in Chapter Two, an important aspect of the through life maintenance of the 

safety case is awareness of challenges that could potentially render the safety case 

argument invalid – i.e. being aware of the vulnerability of the safety case argument to 

external change.  This point is also highlighted in [36]. 
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Using the model of the safety case we proposed in Figure 50 – the role of the safety 

argument within the safety case is to establish the relationship between the available 

evidence, safety objectives and contextual information (such as design information). 

These three elements can be viewed as the ‘givens’ of the safety argument.  Challenges 

to the validity of a safety argument will arise through challenging one of these givens, 

i.e. something in the ‘real-world’ context (outside of the safety case) will challenge the 

basis of the safety case presented.  The safety case exists in a real-world context that 

defines: 

• Customer / Regulatory Situation – that sets the ultimate safety objectives that 

must be demonstrated within the safety case, tolerability and acceptability criteria. 

• Evidence Situation – which defines everything that is known about the system in 

question, i.e. the results of observation, analysis and test of this and similar systems. 

• Additional Contextual Information – that bounds, scopes and structures the 

argument provided in the safety case, e.g. interfaces to other systems, intermediate 

pieces of safety evidence (such as hazard logs).  

Ultimately the safety case must be correct, consistent and complete with respect to these 

three areas.  For example, where the requirements listed within the safety case do not 

correctly express the applicable safety requirements of the regulatory context the safety 

case is invalid.  Equally, where the design information used within the safety case is 

inconsistent with the design of the system in operation the safety case is invalid.  

Similarly, a safety case that selectively omits damaging evidence known about the 

system is invalid. 

The safety case will have been produced initially to present a valid safety argument with 

respect to the regulations, evidence and contextual information appropriate at the time.  

The difficulty in safety case maintenance is that any or all of these three elements may 

change over time. For example: 

• An additional regulatory requirement may be added following an operational 

incident.  An example of this from the civil aerospace domain would be the addition 

of a regulation regarding inadvertent thrust reverser deployment (in JAR-E [68]) 

following the Lauda Air thrust reverser deployment in flight accident.  In some 

sectors, constant update of regulatory requirements is expected.  Queener, in [69], 
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describes the process whereby civil nuclear reactor installations in the U.S. must 

respond to changes in the NUclear REGulationS (NUREGS). 

• The design of a system may be changed for perfective, corrective or adaptive 

maintenance reasons or through technology obsolescence.  Hogberg, in [24], 

describes responding to unanticipated problems with the design of a class of nuclear 

reactors.  Another example is that a class of component used within the original 

design may no longer be available and a replacement component type may have to 

be used.   

• Definitions of ‘cost-effectiveness’, ‘tolerability’, ‘negligible risk’ etc. that have been 

used as the basis of the safety argument (e.g. in arguing ALARP – As Low As 

Reasonably Practicable) may alter over time with changing perceptions and 

available technology.  Assumptions regarding the operational lifetime of a system 

also form an important part of the safety case context.  Such assumptions may be 

challenged by a desire to extend plant life beyond the originally intended period.  

Clarke, in [25], describes such a case for the life-extension of the U.K. civil Magnox 

nuclear reactors. 

• Operational experience may challenge the evidence used as the basis of the original 

safety argument.  For example, the safety case may estimate that a certain failure 

mode of a component will occur at a certain rate.  This rate may be brought into 

question by operational data. 

The starting point of a systematic process for ensuring the ongoing validity of the safety 

case is the identification and recognition of such changes on a routine basis.  

Operational data should be collected through in-service monitoring.  This is recognised 

in a number of the existing safety standards.  For example, the HSE Civil Nuclear 

Standards [17] contain the principle: 

Maintenance, inspection and testing (Principle 329): 

The requirements for in-service testing, inspection or other maintenance 

procedures and frequencies for which specific claims have been made in the 

safety case should be identified and included in a maintenance schedule. 

To record system anomalies and updates, failure and correction maintenance action 

reporting systems should be established.  In Defence Standard 00-55 [9] the following 

requirement is stated: 
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8 Data Management 

8.1 The Contractor shall establish a Data Reporting Analysis and 

Corrective Action System (DRACAS) which shall be a documented closed 

loop system for reporting, collecting, recording, analysing, investigating 

and taking timely corrective action on all incidents that may have an impact 

on safety. 

Having used such reporting systems to recognise and record information that may 

impact the safety case, the next step in the process is to express those challenges in the 

terms of the recorded safety argument. 

4.4.2 Step 2: Expressing Challenge in Goal Structure Terms 

Step 2 is concerned with expressing an identified potential challenge in terms of a 

challenge to elements within the goal structure representation of the safety case 

argument. 

There is a correspondence between the types of change introduced and the elements of a 

typical goal structure (constructed according to the method given in Chapter Three). 

These associations are shown in the following table (Figure 53).  A ‘GSN Challenge’ 

will be expressed always in terms of a challenge to elements of the notation representing 

the requirements, evidence or context. 

‘Real-World’ Change 

Type 

Corresponding 

Goal Structure Elements 

Goal Structure Symbols 

Requirements 1. ‘Top’ Goals 

2. Context Elements 

 

Evidence 1. Solutions 

2. Context Elements 
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Context 1. Context 

2. Model 

3. Assumption 

4. Justification 

 
A

J  

Figure 53 - Association between Change Types and Goal Structure Entities 

The following sections illustrate the mappings shown in the above table by providing 

sketch examples of requirements, evidence and context challenges expressed in GSN 

terms.  It is important to realise that within this step, and therefore also in the examples 

presented, the concern is to express the initial challenge to a goal structured safety 

argument (i.e. the start point of impact assessment), rather than the total impact (which 

will be explored in Step 3). 

The convention we have introduced to denote that a GSN element or relationship is 

challenged is to place a cross (×) over that item. 

4.4.2.1 Requirements Challenges Expressed in GSN Terms 

The following figure (Figure 54) depicts the potential challenge created when one of the 

overall objectives of the safety argument is challenged.  In this case, an argument was 

put forward to support a DS 00-55 compliance objective.  If this objective is revised 

(e.g. as a result of a new issue of 00-55, or to demand instead compliance to another 

standard such as DO178B [65]) then the corresponding goal must be marked as 

challenged. (The figure also depicts, through the crossed SolvedBy relationships, that the 

support of this claim through the existing arguments is immediately challenged.) 



 128

Software Developed to
Defence Standard 00-55

Software developed to
Integrity Level 4

Software Safety Case
Produced

Appropriate Safety
Management in place during
development

 

Figure 54 – Requirements Challenge Example #1 

The following figure (Figure 55) illustrates a requirement change that translates into a 

challenge to a context reference made within a goal structure. The HSE Safety 

Assessment Principles are given as context to a strategy that bases its arguments upon 

them.  If these principles change (e.g. are revised or added to) the basis of the existing 

argument is challenged. 

Argument over all
applicable Safety
Assessment Principles

HSE Safety Assessment
Principles for Civil

Nuclear Plants

{Principle 1 Claim} {Principle 2 Claim} {Principle n Claim}

 

Figure 55 - Requirements Challenge Example #2 

The following figure depicts a requirements change that translates into a challenge to a 

justification given within a goal structure.  In this case, a company standard is used to 

justify the use of a particular failure probability figure.  If this company standard is 

updated this justification is potentially challenged and it becomes necessary to check 

that the goal is still supported by the revised standard. 
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Figure 56 - Requirements Challenge Example #3 

4.4.2.2 Evidence Challenges Expressed in GSN Terms 

Figure 57 depicts a real-world evidence change that translates directly into a challenge 

to a solution given within a goal structure.  In this case, a fault tree is used to satisfy the 

probability claim for Hazard X.   If the fault tree is called into question (e.g. through 

operational experience contradicting the basic fault event probabilities used, or the 

implicit claims of independence) the role of this piece of evidence as a solution in the 

safety argument is challenged. 

Probability of Hazard X
occuring is 1 x 10-5 per
operational hour

Fault Tree for
Hazard X

 

Figure 57 - Evidence Challenge Example #1 

The following figure illustrates an evidence challenge that maps to a context reference 

used within a goal structure.  Evidence can be used within safety arguments not only to 

support safety claims (i.e. use as a GSN solution) but also to help structure the 

argument being presented (i.e. use as a GSN context reference).  It is for this reason that 

evidence should not be viewed as only corresponding to GSN solutions. 
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In this case, the results of a Functional Hazard Analysis exercise are used to provide the 

basis for a strategy that argues over each of the hazards identified.  If the hazard 

analysis results were revised – potentially resulting in a different list of identified 

hazards – the argument might be rendered incomplete or incorrect. 

Argument over all
identified hazards

Functional Hazard
Analysis Results

{Hazard H1
Claim}

{Hazard H2
Claim}

{Hazard Hn
Claim}

 

Figure 58 - Evidence Challenge Example #2 

4.4.2.3 Context Challenges Expressed in GSN Terms 

Figure 59 shows a real-world context change that translates directly into a challenge to a 

context reference made within a goal structure.  In this case, the claim of operational 

safety is defined only within certain operating limits.  If these operating limits were 

exceeded for any reason, the basis of the claim is challenged. 

Aircraft safe to operate within
defined operating limits

Aircraft Operating
Limits

 

Figure 59 - Context Challenge Example #1 

Figure 60 illustrates a design change that maps directly to a challenge of a model 

reference made within a goal structure.  In this case, the argument strategy uses the 

design decomposition as the basis for structuring the argument.  If the design 

decomposition was altered (e.g. by adding another subsystem to X) then the validity of 

the argument structure would be questioned. 
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Argument over each of the
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Design of X (showing major
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{Subsystem 1 Claim} {Subsystem 2 Claim} {Subsystem 3 Claim}

 

Figure 60 - Context Challenge Example #2 

Figure 61 illustrates an operating context change that translates directly into a challenge 

to an assumption stated within a goal structure.  In this case, a safety claim is 

specifically stated on the assumption that recommissioning is not required.  If this 

assumption was found to be wrong the claim might no longer hold – e.g. significant 

personnel radiation exposure may be necessary to undo some of the decommissioning 

procedures. 

No radiological hazards posed
by decommissioned reactor
coolant system A

There will never be a
requirement to recommission

system

 

Figure 61 - Context Challenge Example #3 

4.4.2.4 Summary of Expressing Challenges in GSN Terms 

To translate a real-world challenge into a goal structure challenge it is necessary to 

search the appropriate goal structure elements (indicated in Figure 53) for elements that 

correspond to the real-world entity or concept being challenged.   For example, where a 

real-world piece of evidence is challenged, the goal structure should be examined for 

solutions and contexts that correspond to the piece of evidence under question.  It is 

important to recognise that one real-world challenge may well translate into many goal 

structure challenges.  Consider, for example, the case of a hazard log update.  The 

hazard log may be used both as a means of structuring the safety argument (as a context 

reference) as well as a source of evidence to support a goal (as a solution).  This 

situation is illustrated in Figure 62. 
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No intolerable hazards
present in system

Hazard Log

Argument over all
identified hazards

Hazard Log

 

Figure 62 - A Real-World Challenge Impacting many Goal Structure Elements 

Having managed to express a challenge in goal structure terms, the next step is to 

determine the impact of that change on the rest of the safety argument. 

4.4.3 Step 3: Using the Goal Structure to Identify Impact of Challenge 

The most immediate impact of changing an item within a goal structure configuration is 

that it calls into question that item’s relationship to all other directly related items within 

the safety argument configuration.  This can be seen in the Figure 54 to Figure 61 

presented in the previous section.  These diagrams illustrate that a goal structure 

element cannot be challenged without also challenging the directly associated 

relationships.  For example, if a solution item is challenged (as shown in Figure 57) it 

challenges its role as a solution to all goals relying upon it through the SolvedBy 

relationship (shown by the lines headed with solid arrows).  Equally, if a context item is 

challenged (as shown in Figure 59) it challenges the relationship with all goals 

previously expressed in the context of that item using the InContextOf relationship 

(shown by the lines headed with hollow arrows).  

It is the challenge to the structure of the safety argument that must be explored 

(propagated) to determine the ultimate impact of any challenge on the claims of the 

safety argument.  Based upon the semantics of the notation defined in [57] and 
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described in Chapter Three, the rules for the propagation of change within a goal 

structure are provided within the following sections. 

4.4.3.1 Propagation of Challenges to Goals, Strategies and Solutions 

Changing a goal, strategy or solution (G) within a goal structure challenges the 

following relationships within the goal structure: 

• The role of G as a solution of parent goals or strategies (i.e. items higher up the goal 

structure).  This is not a concern for the top goals of a goal structure. 

• The role of G as a parent (objective) of supporting elements (i.e. to items lower 

down the goal structure). This is obviously not a concern for the solution elements 

of a goal structure. 

• The relationship between G and its stated context (i.e. to items left and right of the 

core argument) 

This effect is illustrated in Figure 63.  Consider the case where, as a result of a revision 

of the company standard, the ‘Probability of Hazard’ goal could no longer be justified in 

its current stated form.  Challenging this goal also challenges its relationship to both the 

parent ‘Acceptably low rates’ goal and to the supporting evidence provided (fault tree 

and in-service data).  If the probability claim were weakened, this may mean that the 

parent goal was no longer satisfied.  If the probability claim were strengthened, this may 

mean that it is no longer supported by the solutions presented. 

Probability of Hazard
X occurring
< 1 x 10-6

Hazard X occurs at
acceptably low rates

Fault Tree for
Hazard X

In Service
Data

J

Company Standard defines
1x 10-6 as acceptable for

Major Hazards

CHANGED

 

Figure 63 - Example Effect of Spinal Node Change 
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4.4.3.2 Propagation of Challenges to Context, Models, Justifications and 

Assumptions 

The effect of changing a context element is made more complicated that that of 

changing a goal, strategy or solution owing to the inheritance of context elements 

implied by the semantics of the notation (as presented in [57] and discussed in Chapter 

Three).  Changing a context element challenges not only the most immediately 

associated goal or strategy but also all of the child goals and strategies underneath that 

item within the goal structure.  This effect is illustrated in Figure 64.  Changing the 

Hazard Log (e.g. adding a new hazard) context most directly impacts the strategy of  

‘Arguing over all identified hazards’. However, all the goals and solutions underneath 

are also expressed in the context of the hazard log (due to inheritance) – and may 

therefore also be affected by the change.  For example, in the supporting argument for 

the Hazard H1 goal – the hazard log context may be as the source of a hazard 

probability.  In this case, changing the H1 hazard log entry may affect the supporting 

argument for the claim of having addressed H1. 

System is acceptably
safe

Argument over all
identified hazards

Hazard Log
(All identified

Hazard H1 has been
addressed

Hazard H2 has been
addressed

Hazard H3 has been
addressed

Inherited
Change
Effect

 

Figure 64 - Example Effect of Context Node Change 

Changing a context element (C) challenges the following elements within the goal 

structure: 
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• All goals, strategies and solutions (G) that introduce C as context (through the 

InContextOf relationship). 

• All goals, strategies and solutions which inherit C as context (i.e. all children of G). 

When a goal, strategy or solution is challenged by a context change, the rules of change 

propagation for these elements (defined in the previous section) apply. 

As can be seen from the examples shown in Figure 63 and Figure 64, the initial impact 

of context change is potentially much wider than that of changing an element such as a 

goal. Changes to goals, strategies and solutions have, at least initially, a point effect – 

affecting only most immediate neighbours.  Changes to context elements, however, due 

to rules of inheritance within the semantics of the notation, have an area effect – 

affecting whole sub-trees of the goal structure. 

4.4.3.3 Potential vs. Actual Change Effect – The Role of the Safety Engineer 

It should be noted that the rules we have described for the propagation of change over a 

goal structure define the potential change effect rather than necessarily the actual 

change effect.  The approach taken is pessimistic.  Based only on the semantics of the 

notation, i.e. without entering into any form of semantic analysis of the goal statements, 

it is possible only to flag all possible changes.  The role of the safety engineer 

responsible for maintaining the safety argument is then to examine each of these 

potential areas of impact to decide which require further investigation and which can be 

ignored (i.e. where the change can be considered benign). 

Consider, for example, the situation shown in Figure 65.  Operational experience may 

necessitate an increase in the failure rates quoted in the Component Failure Modes and 

Effects Analysis (FMEA).  According to the impact rules given, a challenge to the 

FMEA would potentially impact its role as a solution to both the No Single Point of 

Failure claim and the Hazard Probability Claim (as indicated by the crossed 

relationships). The engineer must assess both of these potential challenges and decide 

whether they apply in this particular change scenario.  To do this, the nature of the 

change must be considered with respect to the potential challenges flagged.  In this case, 

for example, the FMEA failure rate change may well affect the Hazard Probability 

claim.  However, since no additional failure modes have been introduced or any failure 

mode effects changed, the No Single Point of Failure claim is extremely unlikely to be 

affected (and this challenge can be considered benign with respect to this goal). 
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No single point of failure
can lead to a hazard

Probability of hazard
occuring is tolerably low

Fault tree for hazard shows
probability is 1.4 x 10-6 per
hour

Component Failure
Modes and Effects

Analysis

Fault Tree for
Hazard

 

Figure 65 - Potential Impact Scenario 

The actual initial impact of the FMEA change would therefore be refined as illustrated 

in the following figure (Figure 66). 

(NB – The potential problem of additional dependencies that may exist between the 

evidence solutions shown in Figure 66, but are not communicated through the argument 

structure, is discussed later in Section 4.9.2.) 

No single point of failure
can lead to a hazard

Probability of hazard
occuring is tolerably low

Fault tree for hazard shows
probability is 1.4 x 10-6 per
hour

Component Failure
Modes and Effects

Analysis

Fault Tree for
Hazard

 

Figure 66 – Actual Impact Scenario 
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4.4.3.4 Propagating and Assessing Impact One Step at a Time 

In determining the extent of the impact caused by a single change, the effect should be 

propagated through the structure step by step until some conclusion can be drawn as to 

the overall impact, i.e. by executing the following sequence of steps: 

i. Identify the potential impacted elements and relations according to the rules 

proposed in Sections 4.4.3.1 and 4.4.3.2. 

ii. From the potential impact identify the actual impacted elements and relations 

(as described in Section 4.4.3.3) – at the same time determining which of the 

challenges can be considered benign. 

iii. Repeat process by now executing step i for all identified (actual) impacted items 

Step iii is a recursive call to Step i.  Due to the potential divergent nature of the relations 

within a goal structure – one element being related to many other elements – the impact 

assessment will potentially involve propagation of the challenge down many paths, each 

of which must be individually considered. 

It is important that step ii is performed before step iii to guide the scope of the impact 

assessment before continuing. (Otherwise, according to the pessimistic and mechanistic 

propagation rules given in Sections 4.4.3.1and 4.4.3.2, a single change to any element of 

a goal structure will always impact the whole structure.) 

These steps are shown diagrammatically in Figure 67.  

Step 3: Use
GSN to
Identify
Impact

STOP

3ii: Identify
actual
impact

3iii: Execute
step 3i for all

impacted
items

3i: Identify
potential
impact

?

?

?

 

Figure 67 - Impact Assessment One Step at a Time 
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As can be seen from Figure 67 there is always the question of when to stop the impact 

assessment process – i.e. how far to investigate the damage created by a particular 

challenge.  A particular thread of the impact assessment process can stop for any one of 

the following three reasons: 

• (After stage 3i)  A change has no further potential impact.  An obvious example of 

this would be when the process has ‘run out of goal structure’  - i.e. the impact has 

reached the top goal or a bottom solution. 

• (After stage 3ii) A change has no further actual impact.  In this case, potential 

changes are highlighted but, when assessed by the safety engineer, it is possible to 

say that none of these impacts actually affect the structure.  For example, if a fault 

tree was used as evidence to support a number of claims within the safety argument, 

a change to the fault tree would potentially challenge each of those claims.  

However, upon proper assessment the revised fault tree may still support the claims.  

It should be noted that this is the most positive of outcomes of the impact 

assessment process. 

• (After stage 3iii) Actual impact has been identified, however it has been decided not 

to allow the change effect to extend further.  For example, this would be the case if a 

challenge were identified to a goal representing a regulatory requirement.  The 

challenge to the goal could be identified.  However, as a regulatory requirement the 

goal would probably be viewed as non-negotiable and therefore the impact process 

would stop at this point and the process of recovery would begin. 

When further assessment of all impact paths has been terminated for one of the above 

reasons it possible to describe the total impact created by the initial single challenge.  

Importantly - unlike the initial challenge that was expressed in terms of affected 

solutions, context and top requirements - the impact can now be expressed in terms of 

the goals of the safety argument that can no longer be supported.  These are the ultimate 

consequences of the initial challenge (in terms of the safety argument).  This 

information serves as an important input to the next step – responding to the damaged 

argument. 

4.4.4 Step 4: Deciding Upon Action to Recover Damaged Argument 

Recovery is the process of returning the safety argument to a correct, consistent and 

complete state.  The impact of a change (identified in Step 3) may mean that claims 
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made within the safety argument (e.g. concerning the meeting of regulatory or customer 

requirements) are no longer supported.  In such cases, the safety argument must be 

‘repaired’ in order to bring the safety argument back to the original state of supporting 

the claims. 

It is necessary to decide upon an appropriate action to recover the safety argument.  This 

decision is set in the context of, and should be focused by, the impact that has been 

identified.  For example, if after Step 3 it is found that the claim that ‘No single point of 

failure can lead to hazard’ can no longer be supported, then appropriate action should be 

taken towards re-supporting this objective – e.g. by making a design change that 

introduces redundancy. 

It is important to recognise that safety (expressed in terms of the damaged argument) is 

only one factor involved in the decision on the recovery action.  An action could be 

recommended that enabled the safety argument to be quickly restored, but damaged the 

operational performance or maintenance of the systems. Many factors will typically be 

involved in deciding on the recovery action – e.g. cost, expected lifetime of system, 

availability, performance.  This process merely serves to express the safety viewpoint as 

clearly and effectively as possible. 

In deciding how to recover the argument the following questions should be considered: 

• Can the requirements of the safety argument be altered (e.g. weakened) such 

that the safety argument still holds?  Depending on who is the stakeholder of the 

requirement this may or may not be possible – i.e. it may not be within the authority 

of the design authority to alter the safety requirements.  In some cases, however, this 

option would suggest a process of negotiation with the customer regarding the 

particular requirements prescribed. 

• Can the context of the safety argument be altered (perhaps restricted) such 

that the safety argument still holds? The safety argument may still be valid under 

certain circumstances (highlighted by the impact identified in Step 3).  It may 

simply be possible to restrict the applicability of the safety argument to a narrower 

context than that previously stated.  As with the process of altering the safety 

requirements, this option may involve negotiation with the customer.  For example, 

operating limits or restrictions may be placed on the operation of the system.  The 

customer must decide whether these are acceptable.  Design changes that effectively 

shift the system context fall into this category.   
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• Can additional evidence be found / created such that the safety argument still 

holds?  In the case of weakened supporting evidence, it may be possible to gather 

additional (or diverse) evidence that can be used to ‘shore up’ the argument.  For 

example, a certain form of analysis may (in the light of new evidence) be found to 

be too pessimistic to support a claim.  In this case, a more detailed but less 

pessimistic analysis can perhaps be performed that enables the claim to stand. 

The particular action to recover from a challenge can only be decided on a case-by-case 

basis. However the impact history recorded from Step 3 will offer useful information in 

terms of: 

• How the safety argument has been affected – i.e. the path of impact 

• Ultimately, the claims that are no longer supported 

The damaged claims provide a focus and objective for the change decision.  The impact 

path may also provide guidance on how recovery can be facilitated.  Consider the 

impact path shown in Figure 68. 

System is acceptably safe

Probability of failure on
demand is less than 1e-3 per
annum

Estimated probability of system
failure (From Fault Tree
Analysis) is1.3e-4 per annum

Component reliability
agrees with fault tree
estimates

Component Failure
Modes and Effects

Analysis

Initially Challenged

Im
pa

ct
 P

at
h

End Consequence

 

Figure 68 – An Example Impact Path 
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In Figure 68 a general safety claim can no longer be supported because a supporting 

system reliability claim has failed.  This claim has failed because a supporting fault tree 

claim has failed. This claim has failed because a component reliability claim has failed.  

This claim has failed because a supporting Failure Modes and Effects (FMEA) solution 

has been challenged (e.g. by operational experience). 

The overall consequence of this change is that the general safety claim fails.  However, 

the impact path communicates to the safety engineer that more reliable components are 

required in order that the FMEA evidence can once again support the component 

reliability claim.  The fault tree can then be updated to continue to support the system 

reliability claim, and the latter can then continue to support the general safety claim. 

4.4.4.1 Side-Effects of Recovery Action 

The motivation for identifying and taking recovery action is the need to repair that part 

of the safety argument identified as damaged (as a result of Step 3). However it is 

almost inevitable that the effects of that recovery action cannot be localised to the 

damaged area – i.e. that the recovery action itself necessitates further change to the 

safety argument.  For example, a design change proposed in response to a challenge to 

one part of the safety argument may well challenge evidence used in another part. The 

impact of the recovery action must be assessed and managed in the same manner as the 

initial challenge.  This is why, in addition to the argument recovery defined in the next 

step (Step 5), the process dictates that an impact assessment of the recovery action (for 

the remaining part of the goal structure) must be carried out.  This is shown by the 

recursive call to Step 2.  Where there is high confidence (or little choice) in the selection 

of an optimal recovery strategy, these two paths of the process – recovery and further 

impact assessment - could be carried out concurrently.  However, it is more realistic to 

imagine that Step 5 would not be initiated until the recovery action with least side-

effects (consequences) has been identified – i.e. after possible impact has been explored. 

4.4.5 Step 5: Recover Identified Damaged Argument 

Damaged claims were identified at the end of step 3.  In the damage process the effects 

of change are identified through the extent to which they impact, bottom-up, the claims 

made in the safety argument. The recovery process however works in the opposite 

direction – top-down – starting from the most fundamental claim challenged (i.e. the 
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claim that is highest in the goal structure) and recovering the argument step-by-step 

downwards until the claims can be related back to the available evidence. 

The decision made in Step 4 in order to recover from the impact of the change, whether 

it be a design, evidence or requirements change, has now become an important part of 

the context for the challenged goal.  As part of recording the change history for the goal 

structure a context reference to the change description and decision should be added at 

the start-point of the recovery process.  Figure 69 illustrates the addition of a change 

annotation.  The subsequent action taken underneath the challenged ‘Acceptably Safe’ 

goal will, as a result of the annotation, be clearly set in the context of the change action 

taken.  Such annotation aids future comprehension of the structure and provides the 

reader with some rationale as to why the eventual goal structure is as it is. 

System is acceptably
safe

Argument over all
identified hazards

Hazard Log
(All identified hazards)

Change Action #1

Operational evidence of
new hazard - H4 -

incorporated

Most
'senior'
claim

challenged

Recovery Start Point

Change Annotation

 

Figure 69 - The Start of the Recovery Process 

Having identified and marked the start point, the recovery process involves following 

through the steps of goal structure construction as proposed in Chapter Three and [57]: 

(To avoid confusion with the numbering of the Change Process steps we have added the 

prefix ‘R’ – to denote Recovery - to the Construction Method steps.) 

• Step R1: Identify goals 

• Step R2: Define basis of those goals 

• Step R3: Identify strategy to support goals 

• Step R4: Defined basis of selected strategy 

• Step R5: Elaborate strategy (and therefore back to Step R1) or 

• Step R6: Identify Basic Solution 
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However, unlike the initial construction of the goal structure, these activities are now 

couched in terms of the structure that already exists.  Starting from a challenged goal 

(Step R1) and in the context of the Change Action taken, the question raised by Step R2 

is now “Is the basis of this goal changed as a result of the change action?”  More 

specifically it is necessary to consider: 

• Are there existing context references / statements (including models, assumptions 

and justifications) that are still valid in the light of the change action? or 

• Are there existing context references / statements (including models, assumptions 

and justifications) that must be modified in the light of the change action? or 

• Are new context references / statements necessary to define clearly the new basis of 

the goal in the light of the change action? 

Existing context references that continue to be valid should have their challenged status 

removed (i.e. the crosses indicating a challenged relationship should be removed).  

Having modified the basis of the goal, the question in Step R3 is “Has the strategy for 

supporting the goal changed as a result of the change action?” Again, this question can 

be broken down into the following: 

• Is the existing argument approach to supporting this goal still valid? or 

• Does the existing argument approach to supporting this goal require some 

modification in the light of the change action? or 

• Is a new approach to supporting this goal necessary? 

In the cases where a new approach is necessary, the process of re-constructing the 

argument diverges from the existing structure and construction carries on as for a new 

structure. 

Where an existing approach can still be used the challenged solution relationships can 

be re-established.  The question then posed by Step R4 is “Has the basis of the strategy 

changed as a result of the change action?” The issues covered by Step R2 should again 

be considered at this point. As explained previously, when describing the damage 

process, context change is inherited.  Therefore, if at any point in the recovery process it 

becomes necessary to change pre-existing context, use of that context must be carefully 

examined for all structure elements that inherit it. 
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Step R5 involves examining how the strategy has been developed.  Particularly, if the 

strategy has remained the same, but the basis has changed, it is necessary to check that 

the basis is reflected by the elaboration of the strategy. It is necessary to consider the 

following questions: 

• Do the goals provided continue to fulfil the intent of the strategy and provide an 

adequate solution in the light of the change action? or 

• Is modification of one or more of the goals necessary to ensure that the intent of the 

strategy is fulfilled and an adequate solution provided in the light of the change 

action? or 

• Are new goals required in the light of the change action in order that the intent of 

the strategy is maintained and an adequate solution provided? 

Step R6 applies if, rather than elaborating the strategy, a goal is directly supported by 

evidence.  If this is the case, it is necessary to consider whether the existing evidence 

continues to support the claim, whether this evidence must be modified or whether 

completely new evidence is required. 

Figure 70 shows the progression of the recovery process started in Figure 69. 
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Hazard H1 has been
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Hazard H2 has been
addressed
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Change Action #1
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new hazard - H4 -
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Step R3: Existing Strategy OK

Step R4: Basis updated - new
hazard included

Hazard H4 has been
addressed

Step R1: Challenged Goal

Step R2: No basis - OK

Step R5: New goal added as
elaboration of strategy

Step R1: Challenged / New Goals

 

Figure 70 - Recovering the Safety Argument 

Step R1 identifies the challenged ‘Acceptable Safety’ goal. Step R2 examines the basis 

of that goal.  In this case, apart from the Change Action annotation there is no existing 

context to check and no additional context is required.  Step R3 examines the strategy 

proposed.  In this case the ‘over all hazards’ strategy remains valid – it continues to be a 

perfectly acceptable argument approach.  However, when examining the basis of this 
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strategy in Step R4 it becomes clear that the Hazard Log context reference must be 

updated to incorporate the new hazard identified, H4.  Step R5 identifies that in order to 

maintain the intent of the strategy a new goal (addressing the new hazard H4) must be 

added.  The recovery process then continues for each of the goals for hazards H1 to H3 

and the process of constructing a new supporting argument for the H4 goal begins (i.e. 

back to Step R1 of the construction method). 

When following through the steps of the recovery process, it is expected that at some 

point the existing argument will be deficient – e.g. a strategy will be no longer suitable, 

a piece of evidence will be no longer valid, or a context reference must be changed.  

This is confirmation of the impact identified by the damage process.  

4.5 Examples of the Change Process 

This section illustrates the application of the impact assessment process that has been 

proposed in this chapter to the example safety case (for a nuclear trip system) provided 

in Appendix A and two postulated challenges.  Appendix A provides background on the 

trip system and its associated safety arguments. 

The following two changes are considered: 

• Challenge to the Validity of the Timing Analysis Evidence 

• Removal of Separate PROMS for Software and Trip Limits 

The following subsections ‘walkthrough’ the change process for each of these changes. 

4.5.1 Example 1: Challenge to validity of Timing Analysis 

4.5.1.1 Step 1: Recognising the Challenge to the Safety Case  

After initial acceptance of the safety argument, it is later recognised that there was a 

flaw in the static timing analysis tool used to determine the worst case response time. 

4.5.1.2 Step 2: Expressing Change in Terms of GSN Elements 

After examining the peripheral (context, solution and top requirement) elements of the 

safety argument, it is identified that this challenge directly concerns Sn3 – Timing 

Analysis Results as shown in Figure 131 of Appendix A and reproduced here in the 

following figure.  
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Figure 71 – Challenging the Trip System Timing Analysis Results 

4.5.1.3 Step 3: Use GSN to Identify Impact 

Step 3i  When Sn3 is challenged, as shown in Figure 71, the goal structure 

communicates that claim G.TIM.STATIC.1 is potentially challenged 

Step 3ii  Question: Is G.TIM.STATIC.1 actually challenged? Answer: Yes 

Step 3iii  Consider the effects of challenging G.TIM.STATIC.1 … 

Step 3i  When G.TIM.STATIC.1 is challenged, the goal structure communicates 

that G.TIM.STATIC (a specific timing claim) is also potentially 

challenged. 

Step 3ii  Question: Is G.TIM.STATIC actually challenged? Answer: Yes 

Step 3iii  Consider the effects of challenging G.TIM.STATIC … 
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Figure 72 – Challenging the Trip System Timing Analysis Claim 

Step 3i  When G.TIM.STATIC is challenged, as shown in Figure 72, the goal 

structure communicates that G.TIM (the overall response time 

requirement) is now also potentially challenged.  

Step 3ii  Question: Is G.TIM actually challenged? Answer: Possibly 

At this point, one observes that a diverse argument has been applied in the quantitative 

claims put forward in support of G.TIM.  Both analysis and test have been used.  Even 

though G.TIM.STATIC is questioned, there is still the test claim G.TIM.TEST claim 

to support G.TIM.  One observes also that a safety margin exists between the G.TIM 

and G.TIM.TEST claims, which increases confidence of G.TIM.TEST being able to 

support G.TIM. 

4.5.1.4 Step 4: Decide upon Recovery Action 

Given the diversity of the argument, it is possible to decide simply to accept the damage 

created by challenging the timing analysis results.  However, the remaining argument 

would be weaker and more questionable.  Another possibility would be to batch the 

change, and recover from the timing analysis challenge at a later point in time. 

If responding to the change immediately, the safety engineer must identify an approach 

that will recover the damaged leg of the argument (i.e. the damaged G.TIM.STATIC, 

G.TIM.STATIC.1 and Sn3 elements).  The decision could be to throw it away and 

replace with a completely different supporting argument – i.e. prune back the argument 

to G.TIM and start again. Alternatively, the engineer could decide to replace ‘like for 
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like’ and reinstate the argument in a form similar to that used already. Given that the 

challenge was due only to a flaw in the tool, reinstating the argument in the same form, 

after reworking the analysis on the corrected version of the tool, is probably the most 

effective option. 

The safety engineer must now consider whether this action has any undesirable side-

effects on the rest of the argument, in addition to recovering the damage already 

identified. 

4.5.1.5 Step 2: Expressing Recovery Action in Terms of GSN Elements 

An examination of the peripheral elements of the safety argument shows that the 

recovery action of reworking the analysis does not necessarily damage any other 

element of the argument.  However, the search does highlight the assumption A10 

(shown in Figure 71) that the instructions timings used in the analysis are correct.  This 

assumption must be preserved as the analysis is reworked. 

4.5.1.6 Step 5: Recovering the Damaged Argument 

After reworking the timing analysis, the safety engineer is in a position to recover the 

damaged argument.  Working top-down from G.TIM, he or she needs to question 

whether the damaged G.TIM.STATIC goal must be restated.  For example, if the new 

results were to show a new worst case response time of 2.9 seconds, G.TIM.STATIC 

would need to be restated accordingly.  When G.TIM.STATIC has been recovered, the 

engineer must next examine G.TIM.STATIC.1 and consider whether this also needs to 

be restated.  It does not, and so G.TIM.STATIC.1 can also be recovered.  Sn3 must 

now be examined to see whether it needs to be redefined.   In fact, Sn3 must be altered 

to refer to the new timing analysis results. 

4.5.2 Example 2: Removal of Separate PROMS 

4.5.2.1 Step 1: Recognising the Challenge to the Safety Case  

A number of years into the operational use of the trip system, it is suggested as part of a 

larger system overhaul that the trip system logic and limits should be no longer kept on 

separate PROMs but instead be integrated into one unit.  This has been recognised as a 

potential challenge to the safety argument. 
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4.5.2.2 Step 2: Expressing Change in Terms of GSN Elements 

After examining the peripheral (context, solution and top requirement) elements of the 

safety argument, it is identified that this challenge directly affects the context element 

S3.8 – Program and Trip Parameters in PROM, as shown in Figure 124, Figure 125, 

Figure 134, Figure 136 and Figure 138 of Appendix A and shown here in the following 

figure.  

Design Simplicity assists in
the test and verification of
trip function

G.TRIP.DS

Software has been formally
proven to perform trip
function as specified

G.TRIP.FP

S3.4

Design Simplicity

S3.5

Formally proved
software

Program and trip parameters are
maintained in separate PROMs minimises
risk of introducing failures into trip
function

G.TRIP.PROM 

Program and Trip
Parameters in PROM

S3.8

Mature hardware and software tools
have been used to minimise the risk of
systematic faults within trip function

G.TRIP.MAT
S3.10

Mature Hardware and
Software Tools

Trip system will correctly 
activate if the temperature is
too high in any gas duct

G.TRIP

 

Figure 73 – Challenging the Concept of Separate PROMs 

4.5.2.3 Step 3: Use GSN to Identify Impact 

Step 3i  By challenging S3.8, as shown in Figure 124, Figure 125, Figure 134, 

Figure 136 and Figure 138 of Appendix A, the goal structure 

communicates that the following claims: G.TRIP.PROM, 

G.PFD.PROM, G.SEC.PROM, G.UPD.PROM and G.STR.PROM 

are potentially challenged 
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Step 3ii  Question: Are G.TRIP.PROM, G.PFD.PROM, G.SEC.PROM, 

G.UPD.PROM and G.STR.PROM actually challenged? Answer: Yes 

At this point, the impact assessment is halted.  Challenging the maintenance of the trip 

system logic and limits on separate PROMs has been shown to damage a large number 

of areas of the safety argument. 

4.5.2.4 Step 4: Decide upon Recovery Action 

The recovery action from this position is to preserve the trip logic and limits on separate 

PROMs, i.e. keep things as they are. 

4.5.2.5 Step 5: Recovering the Damaged Argument 

No recovery is necessary.  The importance of this example is to illustrate how the 

process can be used to examine the effects of possible changes, prior to committing to 

the change.  In this case the change was quickly found to have a significant implication 

on the structure and basis of the safety argument and therefore was decided against. 

4.6 Justification of the Change Process 

One of the principal benefits of using the goal structure representation of a safety 

argument as the basis for maintaining the intent of the safety case is that, through use of 

the process that has been proposed in this chapter, it is systematic.  A key element of 

this is the pessimism of the impact assessment in Steps 2 and 3.  All potentially 

impacted items are first highlighted.  Amongst all of the potentially impacted items 

there may be some items that a safety engineer will easily be able to confirm are not 

affected and some that require further impact investigation.  Such decisions of ‘no-

impact’ can have a significant influence on whether the full consequences of a change 

are recognised.  In order to maintain confidence in the change process, and rather than 

leaving such decisions undocumented and unsubstantiated, it can be useful to annotate 

the argument with justifications of where ‘no-impact’ decisions have been made.  

Figure 74 illustrates such an annotation using the scenario described in 4.4.3.3.  In this 

case the FMEA change is considered to impact the fault tree claim but not the ‘no single 

point of failure’ claim.  The change note (added as context) makes it clear that no 

impact of the change on the ‘no single point of failure claim’ was assessed and provides 

the reasons for that decision.   
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No single point of failure
can lead to a hazard

Probability of hazard
occuring is tolerably low

Fault tree for hazard shows
probability is 1.4 x 10-6 per
hour

Component Failure
Modes and Effects

Analysis

Fault Tree for
Hazard

Change Note #1

Claim unaffected by FMEA
change as no new failure

modes introduced

 

Figure 74 - Justification of 'No-Impact' 

Together with the annotations of the changes that were made to the structure, these 

annotations of ‘no-change’ aid future comprehension of the argument and help explain 

how it has (and has not) be changed through time. 

4.7 Supporting the Change Process 

We have implemented all the concepts and notation required to support the change 

process described in this chapter in the SAM 4 (Safety Argument Manager) tool.  A 

screen shot of the SAM tool support for change management is shown in Figure 75. 

Using the tool it is possible to damage elements of a goal structure.  The tool (using the 

rules defined in Step 3) identifies the immediate effects of damaging items. For 

example, when a goal is challenged all affected relations are also challenged.  Following 

the rules defined in Step 3, the tool pessimistically identifies all potentially affected 

items.  The safety engineer can then define what he or she believes the actual impact to 

be by removing any of the challenges proposed.  Having defined the actual impact, the 

tool can be asked to propagate any individual change.  Following a recovery action, the 

tool can be used to step-wise repair the relationships and entities in the goal structure 

and check that a change has been fully closed-out. 
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Figure 75 - Tool Support for the Change Process 

4.8 Safety Argument Design for Change 

Having considered a number of change scenarios over various goal structures, we have 

been able to identify and assess a number of strategies that can help safety arguments to 

improve their ability to withstand the effects of change. In particular, we have 

recognised the usefulness of the following two approaches: 

• Safety Margins 

• Diverse Evidence / Argument 

Both of these approaches have been fully documented as Safety Case Patterns (see 

Chapter Five for a description of the Safety Case Pattern Methodology). While the 

complete patterns can be found in Appendix B, we have provided an overview of both 

approaches here. 
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4.8.1 Safety Margin 

Figure 76 shows an example use of a safety margin within a goal structure.  

Probability of Hazard
H1 < 1x10-6 per annum

G1

Fault Tree for H1 shows
probability of occurrence <
1x10-7 per annum

G2

Fault Tree for
Hazard H1

 

Figure 76 - Use of a Safety Margin with a Goal Structure 

A safety margin is created wherever a sub-goal or solution not only satisfies a parent 

goal, but also exceeds the requirement, thus providing a safety margin.  By doing this, 

confidence is increased in the satisfaction of the parent and there is a ‘margin for error’ 

if the claims put forward in support of the parent goal are weakened at any future 

occasion (e.g. when the claim is challenged by operational data). 

In Figure 76 the goal G2 exceeds the requirement set out by G1.  The margin acts as a 

‘crumple zone’. Change can propagate through a goal structure up to G2. The margin 

between G1 and G2 absorbs the change and prevents further propagation, thus 

protecting the argument above G1. 
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4.8.2 Diverse Argument 

Figure 77 shows an example use of a diverse argument within a goal structure.  

Hazard H1 cannot occur

G1

S1

Argument based upon
diverse forms of evidence

G2

Formal Analysis shows
condition relating to H1
cannot occur

G3

Extensive Rig testing has
shown no occurrences of H1

 

Figure 77 - Use of a Diverse Argument with a Goal Structure 

A diverse argument exists wherever a number of individually sufficient claims or 

evidence are put forward to support a particular parent goal.  By doing this, confidence 

is increased in the satisfaction of the parent. For increased ‘robustness’ the individual 

arguments should ideally be based upon independent forms of evidence.  For example, 

this could mean: 

• Diverse forms of safety analysis and testing information 

• Appealing to independent safety mechanisms in the design 

• Estimated vs. Historical / Operational data 

The greater the diversity achieved between the forms of argument put forward the 

greater the confidence there will be in the satisfaction of the parent goal.  The degree of 

independence between the argument will reduce the vulnerability of the argument to 

common mode failures (e.g. if a certain form of evidence is challenged or the 

effectiveness of a safety mechanism is questioned). 
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4.9 Limitations of the Approach 

The following are the principal limitations of the approach described in this chapter: 

• Reliance upon correspondence between safety argument and safety case 

• Influence of dependencies external to the safety argument 

A brief explanation of each of these limitations is provided here. 

4.9.1 Reliance upon correspondence between safety argument and safety 
case 

The change impact assessment approach described in this chapter is couched in terms of 

a safety argument recorded as a goal structure.  The ability of the approach to express 

accurately and fully the impact of changes on the safety case depends on the degree to 

which the goal structured safety argument corresponds to the documented safety case.  

The usefulness of the approach in helping to maintain the safety case document depends 

on how well the relationship between the goal structure and document is understood.  

Employing document references with the goal structure (e.g. labelling a goal with the 

document section where that requirement is expressed) can explicitly draw out such 

links and improve this situation.  

4.9.2 Influence of dependencies external to the safety argument 

The dependencies recorded within a goal structure are those represented in Figure 50 - 

principally how requirements are supported by argument and how argument is 

supported by evidence.  The impact assessment approach given in this chapter uses 

these dependencies to determine the impact of change on the safety argument.  

However, there are other dependencies that can exist between the safety case elements 

of requirements, evidence and context, for example: 

• Evidence to Evidence links – one piece of evidence may depend upon another 

piece of evidence, e.g. a hazard log may depend upon the results of a HAZOPS 

activity, or a fault tree may use failure modes provided by a component FMEA.  

These relationships are not currently communicated through a goal structured safety 

argument.  For example, in Figure 65, the goal structure is ‘oblivious’ to the 

relationship that exists between the Component FMEA and Fault Tree solutions 

provided. 
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• Requirement to Evidence links – the safety requirements of a regulatory domain 

may determine the admissible forms of safety evidence within the safety case.  For 

example, a safety standard may dictate that Static Code Analysis must be used for 

‘high integrity’ code items. 

• Context (Model) to Evidence links – Safety evidence is typically constructed over 

some representation of the system in question.  For example, a conventional process 

industry HAZOPS is constructed with reference to a Piping and Instrumentation 

(P&I) diagram.  This implies a relationship between these two items that need not 

necessarily be recorded within the safety argument. 

The impact of changes through these dependencies must be resolved before attempting 

to use a goal structure to assess the impact on the safety argument, e.g. it is necessary to 

realise that changing the FMEA also affects the FTA before assessing the impact of that 

change within the safety argument.  Goal structures record a subset of the dependencies 

that exist between the safety case elements.  In order to get a complete model of 

dependencies between the elements, additional models are required to record the 

remaining dependencies.  For example, evidence to evidence dependencies could be 

recorded through a data model such as that presented by Wilson, Kelly and McDermid 

in  [29], shown in Figure 78. 

Condition
Cause Consequence

Likelihood Severity

Hazard

Accident Fault

Failure

Model Component

Consequence AnalysesCausal Analyses

System Modelling

RiskRisk Analyses

Hazard Identification Techniques

 

Figure 78 – Safety Analysis Data Model 
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4.10 Conclusions 

This chapter presents a novel and systematic approach to the management of safety case 

change.  Starting from a goal structured representation of the safety argument, we have 

shown how it is possible to use the recorded dependencies of the goal structure to 

follow through the impact of a change and (having decided upon a corrective action or 

actions) recover from change. Observed successful strategies that can be employed in 

the production of safety arguments to mitigate the effects of change have been 

presented.  Although there are recognised limitations to the approach presented, the 

principal benefit is that it provides a structured and systematic approach to reasoning 

about the effects of change where previously very limited support was available.  
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Chapter 5:  

Safety Case Patterns: Using the Goal Structuring 

Notation to Support Safety Case Reuse 

 

5.1 Introduction 

Observation of a number and variety of existing safety cases, and discussion with safety 

engineers, suggest that whereas the detail of the safety arguments within the safety case 

is likely to change from instance to instance (being based on specific evidence), there is 

often commonality between the structures of argument used in safety cases.  This is 

observed to be particularly true for safety cases within the same domain (e.g. aero-

engine control or nuclear power plant design).  This can be attributed to the stability of 

the certification requirements, forms of evidence used and maturity of knowledge in 

these domains.  However, commonality of approach has also been observed in safety 

cases across different domains.  For example, arguments structured around the ALARP 

principle can be identified in safety cases from many different industrial sectors (e.g. 

work machinery, nuclear installations and offshore oil and gas platforms). 

Discussion with safety engineers also suggests that knowledge of how to develop and 

structure safety arguments is one of the most valuable aspects of safety case 

management.  This knowledge can often be the product of many years’ experience and 

can be said to encapsulate an element of safety case development expertise.  Artefacts 

that were able to capture and communicate this knowledge could therefore be said to 

provide significant insight and to have inherent value.  

This chapter defines the concept of Safety Case Patterns – an approach to supporting 

the systematic reuse of successful safety arguments between safety cases. 

5.2 The Problems of Informal Safety Case Material Reuse 

Informal reuse of safety case material is already commonplace, and it is not uncommon 

for a safety engineer, having recognised a similarity, to plunder a previously developed 

safety case to aid in the development of a safety case in a new project.  In some cases, 

the engineer may believe certain elements of the two projects to be sufficiently similar 
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to actually “cut-and-paste” parts of the original documentation and subject them only to 

minor review and modification. 

The central role of people in the reuse of safety argument approaches is often crucial.  

As described in Chapter One, many existing safety cases fail to present clearly the 

structure, intent and rationale of the safety argument.  Such safety cases cannot easily be 

read and understood in a way that permits re-application of the approach. They require 

interpretation.  To understand the intent of a safety case can take many readings.  To 

understand the rationale behind aspects of a safety case can require a form of ‘reverse 

engineering’. Safety cases with these properties are not readily amenable to reuse. 

Therefore, the safety engineers who worked on a safety case form an important ‘missing 

link’ in any attempt to gain value from it in future safety case developments.  However, 

problems are present where people are the principal medium for cross-project reuse of 

safety argument approaches.  Based upon observation of existing practice, the author 

has identified the following specific problems: 

• Arguments being reused inappropriately 

If the original context of a safety argument is not fully recognised it may be applied 

inappropriately in another context.  An argument of safety from one context that is 

not applicable in the reused context can create a false or misleading picture of a 

system’s safety.  Such reuse can carry “hidden assumptions” from the original 

context that are inconsistent with the application context.  This danger is obviously 

greatest with the extreme of “cut-and-paste” reuse. 

• Reuse occurring in an ad-hoc fashion 

Reuse is dependent entirely on an engineer’s ability, firstly, to recognise the potential 

to reuse an argument approach and, secondly, to recall the appropriate information. 

Consequently, reuse often occurs in a fairly random, opportunistic, fashion and is not 

carried out systematically. Opportunities to reuse an approach may be wasted. 

• Loss of knowledge 

A total reliance on people to achieve cross-project reuse is an admission that project 

documentation is insufficient to support systematic reuse. A danger is that particular 

people, the company ‘experts’, become a bottleneck on any project.  Without 

documentation of their experience or expertise, they become a critical resource in an 

organisation.  They effectively act as an ‘index’ into the organisation’s existing 

documentation.  If such people leave an organisation, disproportionately large 
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amounts of the organisation’s ‘corporate memory’ are lost and, as a result, less reuse 

is possible. 

• Lack of Consistency / Process Maturity 

Without explicitly recognising and documenting the repeatable elements of safety 

case development there can be no assurance that these elements are being used 

consistently. If an approach is not consistently applied, it is difficult to argue that it is 

mature.  It is also difficult to argue how this approach has been, and will be, 

improved and evolved over time. 

• Lack of traceability 

Informal reuse can be invisible in the final safety case produced.  Often, no record is 

kept of reuse from existing documentation.  This lack of traceability can lead to 

problems in maintaining the safety case.  For example, if it were found that a 

particular reused safety argument was unsound (e.g. in the light of contradictory 

operational evidence), it would be necessary to locate all instances of that approach 

in order to update them appropriately.  With no record of where it was reused this 

becomes an extremely difficult task.  Reuse has the potential to propagate one error 

many times.  To deal with such situations requires adequate visibility and traceability 

of the reuse process. 

These problems can be said to stem from two underlying issues: 

• No means of articulating and documenting reusable safety argument approaches. 

• (As result of having no identifiable reuse assets …) No systematic process for the 

reuse of safety argument approaches. 

This chapter defines an approach to support expression and documentation of reusable 

safety argument structures.  Once these structures are “down on paper” they can begin 

to be evaluated and exploited, and to form part of a systematic process. 

In searching for an approach to expressing reusable arguments, the concept of 

identifying and documenting ‘patterns’ was identified as an appropriate and sufficiently 

expressive basis.  The following section provides an overview of the general concepts 

of ‘patterns’. 



 162

5.3 Patterns 

The concept of a ‘pattern’ has application in many different contexts.  The dictionary 

definition of ‘pattern’ communicates just some of the many ways in which patterns are 

used or understood in everyday life: 

pattern n. 1. an arrangement of repeated or corresponding parts, decorative motifs, etc.: 

although the notes seemed random, a careful listener could detect a pattern.  2.  a 

decorative design: a paisley pattern.  3. a style: various patterns of cutlery.  4.  a plan or 

diagram used as a guide in making something: a paper pattern for a dress.  5. a standard 

way of moving, acting etc.: traffic patterns.  6.  a model worthy of imitation: a pattern of 

kindness.  7.  a representative sample.  8.  a wooden or metal shape or model used in a 

foundry to make a mould.  9.a.  the arrangement of marks made in a target by bullets.  10.  

a diagram displaying such an arrangement. [70] 

Although widely applied, published literature on patterns is largely restricted to novel 

applications of the concept.  The books of the architect Christopher Alexander [71-73] 

are a notable and oft-cited example of such work. 

In the book, “The Timeless Way of Building” [70], Alexander argues that “Beyond its 

elements each building is defined by certain patterns of relationships amongst its 

elements”.  Alexander shows how patterns can be used to abstract away from the details 

of particular buildings and capture something essential to the design (the principles 

underlying the building; the reasons why elements of the building are successful or 

unsuccessful) that can then be used elsewhere. 

The concept of patterns as defined by Alexander was adopted by the software 

community in the late 1980’s and early 90’s in the form of ‘Design Patterns’.  It was 

this work that particularly inspired me to apply the pattern concept to the safety case 

domain.  The following section briefly describes the ‘Design Patterns’ concept. 

5.4 Design Patterns 

Inspired by Alexander’s work, the concept of patterns and pattern languages has 

received increasing interest from software designers [74-76]. Designers have turned to 

patterns as a means of capturing the repeatable and successful elements of a software 

design.  Many have been disappointed with the unfulfilled promise of traditional 

component-based (compositional) reuse and believe that successful reuse lies in the 

ability to describe higher level software structures [77]: e.g. how components are 

combined to achieve certain functions, principles of writing interfacing components, 
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etc. The attraction of patterns is that they offer this means of abstracting fundamental 

design strategies from the details of particular designs. 

5.4.1 A Brief History of Design Patterns 

The idea of software Design Patterns was first suggested by Ward Cunningham and 

Kent Beck in 1987 when they proposed a number of software Design Patterns to 

describe elegant Smalltalk user interfaces [78]. Around the same time, James Coplien 

started to document language specific (C++) patterns.  These were labelled idioms at the 

time, although now are commonly accepted as a form of pattern. The idioms were used 

for some time within AT&T as a basis for teaching some of the core principles of C++ 

before eventually being published as “Idioms and Patterns as Architectural Literature” 

in 1997 [79].  Independently, in 1992, work on patterns in object-objected oriented 

analysis and design was published by Coad in “Object-Oriented Patterns” [76]. 

Although discussing the emergence of patterns at a higher level of abstraction than 

Coplien’s language idioms this work shared a common heritage in Alexander’s work 

and visited many of same issues.  In addition to these activities, Erich Gamma, as part 

of his doctoral work on object-oriented software development [80] began in 1991 to 

document recurring design structures.  Gamma’s work continued as part of the “Gang of 

Four” (Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides) and resulted in 

1993 in the production of the first book on the subject – “Design Patterns – Elements of 

Reusable Object-Oriented Software”. Since that time, the field of Design Patterns has 

become well established and is supported by an increasing number of conferences such 

as Pattern Languages of Program Design (PLoP), European Conference on Object-

Oriented Programming (ECOOP) and the ACM SIGPLAN Conference On Object-

Oriented Programming Systems, Languages and Applications (OOPSLA).  

The ancestry of Design Patterns has been well documented in [81].  We refer the reader 

to this source for a more detailed history. 

Whether patterns are used to represent architectural idioms in building design or to 

capture elements of a successful software design, some means of representing the 

pattern is required.  To provide the context for the representation of Safety Case 

Patterns defined in this thesis, the following section describes how existing pattern 

forms have been represented. 
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5.5 Pattern Representation 

Alexander describes a pattern as a “solution to a problem in a context” [71].  In essential 

terms, representation of a pattern will include the following elements: 

• Problem 

• Context 

• Solution 

In both Alexander’s architectural patterns and in Design Patterns, these elements are 

realised through structured prose and diagrams.  An example of a recorded Alexandrian 

pattern (taken from [72]) is shown in Figure 79. 

 

Diagram (Sketch) Prose 

 

 

In the zone where city and country meet, place 
country roads at least one mile apart, so that 

they enclose squares of countryside and 
farmland at least one square mile in area.  Build 
homesteads along these roads, one lot deep, on 

lots of at least half an acre, with the square mile 
of open countryside or farmland behind the 

houses 

Figure 79 - An Alexandrian Pattern for Country Streets 

 

Whereas Alexander used small sketches, in Design Patterns a variety of notations have 

been used to describe the structure of solutions.  In the patterns described by Gamma et 

al in [82], three different diagrammatic notations are used: 

1. Class Diagram – depicting classes, their structure, and the static relationships 

between them 

2. Object Diagram - depicting a particular object structure at run-time 

3. Interaction diagram - showing the flow of requests between objects 

Each pattern includes, as a minimum, a class diagram. The class and object diagrams 

are based on OMT (Object Modelling Technique) [83]. The interaction diagrams are 
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taken from Objectory [84] and the Booch Method [85]. Figure 80 illustrates the use of 

the class diagram notation to represent the ‘Chain of Responsibility Pattern’ (taken from  

[82]). 

ConcreteHandler2

Handler
Client

HandleRequest()

ConcreteHandler1

HandleRequest() HandleRequest()

successor

 

Figure 80 - 'Chain of Responsibility' Class Diagram 

The pattern shown in Figure 80 describes a general scheme for implementing a client-

handler approach whereby a number of handlers are set up for each client. Each handler 

will respond to a certain set of requests from a client (and will therefore be instantiated 

with one of a number of concrete handler sub-types). The handlers are ‘chained’ 

together by a ‘successor’ relationship such that when a request is made, each handler 

can in turn decide, depending on the request type, whether it will handle the request or 

instead pass it along the chain of responsibility to the next handler 

Coad uses a different notation in his description of patterns in object-oriented analysis 

and design [76] as do some of the pattern descriptions given in Coplien and Schmidt’s 

book [86].  However, all the notations similarly represent objects, object classes, 

abstraction (specialisation) relationships and structural (e.g. one-to-one / one-to-many) 

relationships. 

5.6 Safety Case Patterns 

Based on the principles of Design Patterns, particularly the concept of structured 

documentation together with diagrams, the author has developed the concept of Safety 

Case Patterns as a means of documenting and reusing successful safety argument 

structures.  As with Design Patterns, Safety Case Patterns are intended to describe 

partial solutions, i.e. for safety cases – tackling just one aspect of the overall structure 
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of the safety argument contained within a safety case. Safety Case Patterns are not 

intended to provide a reusable model of a safety argument for a complete safety case. 

As described in the previous section, Design Patterns use diagrams to describe the 

overall structure of the solution succinctly, and structured supporting text to document 

important details of how that pattern may be instantiated, together with underlying 

rationale.  In adapting the principle of Design Patterns to the safety argument domain it 

was necessary to consider the following issues: 

• How to represent (in diagrammatic form) the structure of a generalised safety 

argument 

• The format and role of the text that should support such a diagrammatic description 

The following two sections describe how these two issues have been addressed. 

5.7 Representing Safety Case Patterns Diagrammatically 

The Goal Structuring Notation (GSN), as described in Chapter Three and [57], has been 

developed for the description of safety arguments: relating the breakdown of safety 

requirements to argument based upon available evidence. GSN can be used to articulate 

a specific safety argument.  However, to be able to generalise the specific details of a 

safety argument and represent patterns of argument rather than simply instances the 

GSN must also support abstraction.   In the class diagrams used within Design Patterns, 

the following two forms of abstraction are possible: 

• Entity Abstraction – to allow the distinction between object classes and instances, 

and to represent the generalisation / specialisation relationships that exist between 

object classes. 

• Structural Abstraction – to allow the generalisation of a relationship that exists 

between two object instances into a relationship between object classes (e.g. 

representing one-to-one and one-to-many relationships). 

Relating these same concepts to goal-structured safety arguments, structural abstraction 

would allow generalisation of the structure of an argument.   For example, it would be 

possible to describe that in general at least two out of five possible forms of argument 

must be put forward in support of a particular safety claim.  Entity abstraction would 

allow generalisation (or postponement of detail) of an element in the argument 

structure.  For example, for a particular failure rate goal, it would be possible to describe 
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that in general that the solution will be “Quantitative Evidence” without specifying 

whether this is specifically “Fault Tree Analysis” or “Markov Modelling”. 

In order that both structural and entity abstraction can be represented in the GSN it was 

necessary to extend the notation.  We have defined the extensions presented in the 

following two sections for this purpose. 

5.7.1 Extending the GSN to Support Structural Abstraction 

This section describes the extensions to GSN we have defined in order to support the 

following two aspects of structural abstraction: 

• Multiplicity – generalised n-ary relationships between GSN elements 

• Optionality – optional and alternative relationships between GSN elements 

5.7.1.1 Extending the GSN to Support Multiplicity 

The extensions to GSN we have defined in Figure 81 have been adapted from the OMT 

object diagram notation [83]. They enable multiplicity (an aspect of structural 

abstraction) to be represented using the GSN. 

 

Multiplicity Extensions 

These symbols are defined for use as annotations on existing GSN relation types (e.g. 

SolvedBy). Multiplicity symbols can be used to describe how many instances of one 

entity relate to another entity. 

n
 

A solid ball is the symbol for many (meaning zero or more). 

The label next to the ball indicates the cardinality of the 

relationship. 

 
A hollow ball indicates “optional” (meaning zero or one). 

 
A line without multiplicity symbols indicates a one to one 

relationship (as in conventional GSN). 

Figure 81 – GSN Multiplicity Extensions (For Structural Abstraction) 

Figure 82 illustrates example uses of the GSN multiplicity extensions.  
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S1

Argument over major
subsystems

Subsystem  X is safe

G1(n)

Fault Tree Analysis
determines failure rate to be
1e-6 per annum

G2

n

A1
Basic eventsof Fault
Tree are independent

A

Software developed to
appropriate standard

G3 C1
Software Development

Standard

 

Figure 82 – Examples of GSN Multiplicity Extensions 

In Figure 82 S1 must be supported by n goals of the form G1(n).  G2 may have an 

associated assumption A1.  G3 is expressed in the context C1 (conventional GSN). 

5.7.1.2 Extending the GSN to Support Optionality 

The extension to GSN we have defined in Figure 83 has been adapted from notations 

used for entity relationship modelling [87].  It enables structural options (an aspect of 

structural abstraction) to be represented using the GSN. 

 

Optionality Extension 

This symbol is defined for use over the existing GSN relation types.  Choice can be 

used to denote possible alternatives in satisfying a relationship. It can represent 1-of-n 

and m-of-n selection. 

Source

Sink
Sink Sink

 

 

1 source has three possible sinks 

Multiplicity relations can be combined with 

optionality relations. Placing multiplicity symbols 

prior to the ‘choice’ vertex (squashed diamond) 

describes a multiplicity over all the optional 

relations. Placing a multiplicity symbol on 

individual optional relations (i.e. just prior to the 

sink) describes a multiplicity over that relation only. 

Figure 83 - GSN Optionality Extensions (For Structural Abstraction) 

Figure 84 illustrates an example use of the GSN optionality extension.  
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Hazard H1 has been
addressed

G1

Hazard H1 has been
eliminated from design

G2

1 of 2

Probability of Hazard H1
occuring is acceptably low

G3

 

Figure 84 – Example of GSN Optionality Extension 

In Figure 84, G1 is supported by either stating G2 or G3. 

 

5.7.2 Representation of Entity Abstraction in the GSN 

The extensions to GSN we have defined in Figure 85 have been adapted from the OMT 

object diagram notation [83] and the convention for presenting Fault Trees [88]. They 

enable abstract entities to be represented using the GSN. 

 

Entity Abstraction Extensions 

Supertype GSN Element 

 

Subtype GSN Element 

Is_A Relation 

The Is_A relation provides a basis for the 

expression of supertype and subtype relations 

between GSN entities (e.g. ‘Failure rate is less 

than 1x10-6 per annum’ Is_A Failure Rate Claim) 

and can therefore be used to establish type 

hierarchies. 

The relation can be used directly in a goal 

structure pattern to denote subtype relations or 

used apart from a pattern to establish type 

hierarchies for a group of patterns (e.g. on a per-

project basis). 
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Uninstantiated Entity 

This placeholder denotes that the attached entity 

remains to be instantiated, i.e. at some later stage 

the ‘abstract’ entity needs to be replaced 

(instantiated) with a more concrete instance. 

Instantiation may be provided either through 

offering a concrete instance or subtypes denoted 

by the Is_A relation. 

 

Undeveloped Entity 

This placeholder denotes that the attached entity 

requires further development, i.e. at some later 

stage the entity needs to be (hierarchically) 

decomposed and further supported by sub-entities. 

Unlike uninstantiated elements, undeveloped 

elements are not replaced, they are further 

elaborated in the goal structure, i.e. as with 

undeveloped events in conventional Fault Tree 

Notation. 

Figure 85 - GSN Extensions for Entity Abstraction 

Figure 86 illustrates an example use of the Is_A extension. 

Quantitative
Results

Fault Tree
Analysis
Results

Markov
Modelling
Results

Test
Results

 

Figure 86 – Example of GSN Is_A Extension 
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Figure 86 shows the use of the Is_A relation to establish a simple type hierarchy 

representing that Fault Tree Analysis Results, Markov Modelling Results and Test 

Results are subtypes of Quantitative Results 

Figure 87 illustrates example uses of the GSN entity abstraction placeholder extensions. 

Argument over test
results

S1

{Set of Applicable
Regulations}

C1 G1

{Hazard X} has been
eliminated from the design

 

Figure 87 - Examples of Entity Abstraction Placeholders in the GSN 

In Figure 87, C1 remains to be instantiated to refer to an actual set of applicable 

regulations.  S1 remains to be developed, i.e. supported by some sub-goals. G1 remains 

to be instantiated (to refer to a specific hazard) and supported by some sub-goals / 

solutions. 

5.7.3 Combining Entity and Structural Abstraction Extensions 

Together, the entity and structural abstraction extensions can be used to form goal 

structure patterns.  Figure 88 shows a simple goal structure pattern that illustrates how 

these extensions, when used with the existing elements of the goal structuring notation, 

can be used describe a generalised safety argument. 

The GSN pattern shown in Figure 88 illustrates how a system may be claimed to be safe 

(G1) through the strategy (S1) of arguing the safety of all the safety-related functions 

(C1) of that system.  It also shows clearly that at the same time as arguing the safety of 

individual functions (G2) it is also necessary to argue either that there are no 

interactions between functions (G4) or that any interactions between functions are 

benign (G3). 
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G1: {System X} is Safe

G2: {Function Y} is
safe

S1: Argument by
claiming safety of all

safety-related functions
implemented by system

C1: Safety Related
Functions of {System X}

(n = # functions)

n

G3: Interactions
between system

functions are non-
hazardous

G4: All system
functions are
independent

(no interactions)

Provides {Function Y}

Indicates that
element remains
to be developed

(supported)

Indicates that
element remains

to be instantiated

Indicates a 1-to-
many relationship

Indicates that
element remains to
be instantiated and
then developed

 

Figure 88 - Example Use of GSN Extensions  

A Safety Case Pattern is not simply a GSN Pattern as shown in Figure 88.  Additionally, 

there should always be a supporting pattern description.  To define patterns without 

clearly stating the underlying motivation and intent, and without making clear where 

and (perhaps more importantly from a safety perspective) where not patterns should be 

applied could result in ignorant and inappropriate use of argument patterns within new 

projects.  The following section describes the documentation format we have defined 

for Safety Case Patterns. 

5.8 Documenting Safety Case Patterns 

In the Design Patterns community, based on Alexander’s principles of documenting 

problem, solution and context, a number of alternative documentation structures have 

been proposed and used for the description of Design Patterns. Table 7 shows some of 

the documentation formats defined by different authors for the description of software 

Design Patterns. 
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Wolf and Lui [89] Riehle and 

Züllighoven [90] 

Adams [91] 

• Problem 

• Solution 

 

• Purpose 

• Problem 

• Context 

• Solution 

• Compare 

• Aliases 

• History 

• Preconditions 

• Problems 

• Constraints 

• Solution 

Table 7 - Alternative Design Pattern Documentation Formats 

 

Rubel [92] Lajoie and Keller [93] Gamma et al. 

(‘Gang of Four’) [94] 

• Problem 

• Context 

• Forces 

• Solution 

• Resulting Context 

• Design Rationale 

• Related Patterns 

• Rationale / Intent 

• Category 

• Motivating Example 

• Applicability 

• Description 

• Diagram 

• Discussion 

• Implementation 

• Contract Examples 

• See Also 

• Intent 

• Also Known As 

• Motivation 

• Applicability 

• Structure 

• Participants 

• Collaborations 

• Consequences 

• Implementation 

• Sample Code 

• Known Uses 

• Related Patterns 

 Table 7 - Alternative Design Pattern Documentation Formats 
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For the description of safety argument patterns, rather than necessarily defining a new 

template, we first assessed the templates for Design Patterns to determine whether they 

might easily be adapted to the safety argument domain.  In examining the various 

pattern templates, the following criteria were used to assess suitability for the 

description of safety arguments: 

• Freedom of pattern format from software (particularly object-oriented) specific 

concepts and terms 

• Explicit representation of applicability – already identified earlier in this chapter in 

section 2 as being an crucial element of any form of safety case reuse 

• A sufficiently defined and evocative series of headings that, whilst still allowing 

some flexibility of interpretation, would ensure that key elements of required 

contextual information (such as rationale) would be captured in a completed pattern 

description. 

The ‘Gang of Four’ documentation format met these selection criteria and through some 

preliminary evaluation was found to be readily adaptable to the description of safety 

argument patterns.  Based on this format, we defined the following headings for the 

documentation of Safety Case Patterns: 

• Pattern Name 

• Intent 

• Also Known As 

• Motivation 

• Applicability (Necessary Context) 

• Structure 

• Participants 

• Collaborations 

• Consequences 

• Implementation 

• Example Applications 

• Known Uses 

• Related Patterns 

The following sections describe the purpose and expected context of each of these 

elements of a documented Safety Case Pattern.  We originally proposed the 

documentation format for Safety Case Patterns in [95]. This continues to be refined in 

the light of experience of identifying and documenting new Safety Case Patterns (such 

as those presented in Appendix B). 
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5.8.1 Pattern Name 

The pattern name should communicate the key principle or central argument being 

presented by the safety argument pattern.  This will be the label by which people will 

identify this pattern.  Over time this name will hopefully become part of the vocabulary 

through which safety engineers can quickly communicate the concepts and principles of 

their safety arguments.  It is therefore important to choose the pattern name carefully. 

5.8.2 Intent 

This statement should answer the question: what is this pattern trying to achieve? For 

example, if the argument is intended to address a particular certification requirement 

then this should be recorded in this section.  It is important that, through reading this 

section there is a clear understanding between writer and reader of the pattern as to what 

is being attempted. 

5.8.3 Also Known As 

If the pattern could equally well be described or recognised under other names, then 

these should be recorded here. 

5.8.4 Motivation 

This section should briefly describe why the pattern was constructed. Was it because it 

was an argument that was particularly well received by the regulator and therefore 

something that should be replicated where possible? Was it because there was a desire 

to standardise the structure of an argument that had been previously presented in 

slightly differing forms?  

The motivation can be expressed in terms of previous experiences, problems etc.  This 

section should help engineers to interpret and apply correctly the more abstract 

description of the pattern that follows. 

5.8.5 Structure 

It is in this section that the Goal Structuring Notation (using the extensions proposed in 

Section 5.7) is used to present the structure of the argument pattern.  Using the notation, 

it is possible to show the requirements / claims to be addressed, the context in which 

they are stated and the way in which they can be decomposed into (supported by) lower 

level statements.  Using the GSN pattern extensions that we have proposed, it can be 

indicated clearly where the argument is complete, where information must be provided 
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(e.g. where instantiation must occur) and where the argument requires further 

development.  The elements of the goal structure pattern should be labelled clearly (e.g. 

‘Goal G1’) such that they can be referred to by the following sections of the pattern 

description. 

5.8.6 Participants 

This section should augment the Structural description by providing a description of 

each of the elements of the goal structure pattern (i.e. the goals, the contexts, the 

strategies, the solutions etc.).  It is possible in this section to provide fuller description 

of, for example, a safety requirement than is possible within the confines of a graphical 

rendering.  The element descriptions should make clear their function within the overall 

argument pattern. They should also state whether the element requires development or 

instantiation when the pattern is applied. 

5.8.7 Collaborations 

This section should describe how the different elements of the pattern (sources of 

contextual information, argument strategies, goals) work together to achieve the desired 

effect of the pattern – to present an effective argument.  Also, when there are links 

between different elements that are not communicated by the argument structure they 

should be explicitly recorded here in order that they can be recognised by the safety 

engineer when applying the pattern. 

5.8.8 Applicability (Necessary Context) 

This section should record under what circumstance this argument can and should be 

applied.  Of particular concern for safety arguments, this section should make clear the 

assumptions and principles underlying the argument pattern such that it is never 

inappropriately applied in a mismatched context.  Relating specifically to the context 

elements of the goal structure pattern, this section should describe what contextual 

information is required (elements instantiated) in order to be able to apply the pattern.  

In addition to these elements, it can also be useful to provide guidance on how to 

recognise situations in which the pattern can be applied. 

5.8.9 Consequences 

Again, with direct reference to the elements of the structural description, this section 

should make clear what work remains after having applied or carried out an argument 

pattern. In particular, this should highlight where there are goals that remain to be 
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supported, or assumptions to be discharged, etc.  The purpose of this section is to ensure 

that an engineer applying the pattern is under no illusion as to what the pattern does and 

does not do. 

5.8.10   Implementation 

This section should perform the following roles: 

• Communicate how the application of this pattern should be carried out. This may 

even extend to describing in what order elements ought to be developed. 

• Communicate hints or techniques that would ease successful application of the 

pattern. 

• Make clear the ways in which is possible to get it wrong when applying the pattern 

(possible pitfalls).   

• Record common misinterpretations of the terms or concepts used in the pattern. 

5.8.11   Examples 

This section should provide examples that illustrate the instantiation of the pattern. If 

only one example is provided then it should illustrate a typical instantiation of the 

pattern.  If multiple examples can be provided then illustration of atypical applications 

of the pattern should also be provided. 

Analogy is a key problem solving device employed by engineers [96, 97]. The provision 

of examples can therefore be extremely valuable in helping an engineer to understand 

how to apply the pattern in their own context.  

The more abstract a pattern is, the more important it is to provide concrete examples 

within this section. 

5.8.12   Known Uses 

This section should refer to known uses of the form of argument presented in the 

pattern.  As with the Examples section, giving an engineer the ability to observe how a 

pattern can be applied as part of a larger safety argument within a safety case can 

significantly improve understanding of how the pattern might be applied in a new 

context. 
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5.8.13   Related Patterns 

This section should refer to Safety Case Patterns that are related to this pattern, e.g. 

patterns that share the same Intent but are admissible under different applicability 

conditions (e.g. for different regulatory domains or classes of systems).  

The documentation format defined by these headings, together with the diagrammatic 

pattern description using GSN and the extensions we have proposed, provide a means of 

describing Safety Case Patterns.  The following section provides an example of a fully 

documented Safety Case Pattern.  (Many other documented Safety Case Patterns can be 

found in Appendix B). 
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5.9 An Example Fully-Documented Safety Case Pattern 

 

Functional Decomposition Pattern 

Author Tim Kelly 

Created 22/02/99 01:56 Last Modified 22/02/99 02:36 

 

Intent The intent of this pattern is to argue the safety of a system by 

appeal to the safety of the functions implemented by that system.  

Also Known As Functional Safety ‘Divide and Conquer’ Pattern 

Motivation The motivation for this pattern is the need to decompose a high 

level goal (that is difficult to substantiate ‘as-is’) into sub-goals 

that are hopefully easier to address.  

Structure 

{System X} is safe

G1

S1

Argument by claiming safety
of safety-related functions
implemented by system

Safety related functions of
{System X}

C1

G2

{Function Y} is safe

G3

There are no hazardous
interactions between functions

Provides {function Y} 
n = # of functionsn

 

Participants G1 

S1 

 

Defines the overall objective of the pattern 

Presents the strategy (functional decomposition) 

adopted to support G1 
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C1 

 

G2(n of) 

 

G3 

A list of functions performed by System X that could 

impact system safety required to expand S1 

Expresses safety claim for each identified safety-

related function (over items in C1) 

Goal required to validate the approach adopted 

Collaborations • C1 introduces the safety related functions of System X that 

then form the basis for constructing the n G2 goals. 

• Goal G3 is necessary to support the implication that solving 

the goals G2 is sufficient to support G1.  

Applicability This is a very general pattern and, as such, has a wide 

applicability. 

In order to apply the pattern it is necessary to instantiate C1 

(Safety Related Functions of System X). C1 should identify the 

list of all functions of the system that have been identified as 

having a possible impact on system safety. Functional Hazard 

Analysis is a possible approach to identifying safety-related 

functions from the list of all system functions.  

Consequences After instantiating this pattern, a number (n+1, where n=# of 

functions) of unresolved goals will remain: 

• G2 (n of) 

For each function it is necessary to support this claim that the 

function is implemented safely, and appropriate measures 

have been taken to mitigate or eliminate risks associated with 

the function. 

• G3 

To support the functional decomposition of the overall goal of 

safety into sub-goals of safety over each function it is 

necessary to support this claim of independence - i.e. there are 

no hazards generated by the interaction between functions. 

 



 181

Implementation In implementing this pattern it is first necessary to instantiate C1 

(identify the list of system functions) 

Possible Pitfalls 

• Attempting to decompose G1 in sub-goals over functions (G2) 

without adequately supporting the claim of independence 

between functions (G3) 

• Inappropriately instantiating C1 with simply safety functions 

rather than safety-related functions. The distinction being that 

safety functions are those functions that are obviously 

concerned with achieving safety (e.g. protection mechanisms) 

and safety-related functions are any functions in the system 

that have been identified, e.g. through Functional Hazard 

Analysis, as potentially posing a safety hazard. Safety 

functions are a sub-set of safety-related functions. 
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Engine Controller
operates  safely

G1

S1

Argument by claiming safety
of all safety-related functions
of system

C1

Critical Engine Controller 
Functions (Functional

Requirements Document

G2

Fuel Management Function
operates safely

G3

Airframe Communications
Function operates safely

G4

Thrust Reverser Function
operates safely 

G5

There are no hazardous
interactions between
functions

 

This goal structure shows the instantiation of the pattern for an aero-engine controller. 

The top goal (G1) has been instantiated to refer to the system in question. S1 – the 

argument strategy – remains unchanged. C1 is instantiated to refer to a Functional 

Requirements Document (FRD) that clearly identifies the main functions of the 

engine-controller. These functions have then been used as the basis for putting forward 

the claims G2, G3 and G4 – each expressing a goal of safety for a separate functional 

area. (There are more functional areas than those included in this example). Beneath 

this argument, it is then necessary (although not shown here) to support each of these 

functional safety claims together with the independence claim – G5.  

Known Uses Engine Controller for the PT390 Engine (Ref SJ/3.2/97) 

Related Patterns • Hazard Directed Argument Pattern – a pattern that can be 

applied at a similar level in an overall safety argument, but 

which breaks down an overall system safety goal by 

introducing (and claiming safety against) the list of system 

hazards. 

Example 
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5.10 Further Example Safety Case Patterns 

Patterns can emerge at many different levels in the safety argument and at varying 

degrees of specificity.  At the highest level it is possible to identify a number of basic 

argument structures that are used to decompose ill-defined system safety requirements.  

For example, against the ultimate top level requirement … 

“{System X} is acceptably safe” 

… two of a number of possible argument approaches could be applied: 

• Hazard Directed Argument 

• Functional Decomposition Argument 

The Functional Decomposition Argument Pattern has already been described in the 

previous section.  Figure 89 shows the GSN pattern (without supporting documentation) 

representing a hazard directed argument.  In this pattern, the implicit definition of ‘safe’ 

is ‘hazard avoidance’.  The requirement G1 is addressed by arguing that all identified 

hazards have been addressed (S1).  This strategy can only be executed in the context of 

some knowledge of plausible hazards, e.g. identified by Hazard Analysis.  Given this 

information (C1), identifying n hazards, n sub-goals of the form G2 can be constructed. 

The argument then progresses from these ‘hazard avoidance’ goals. 

G1: {System X}
is safe

S1: Argument by
claiming addressed

all identified
plausible hazards

C1: Identified Hazards for
{System X}

in the

context of

n = # hazards

Provides {Hazard X}

G2: {Hazard X} has
been addressed

n

 

Figure 89 - Hazard Avoidance Pattern 
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At lower levels in the safety case argument, patterns also emerge.  For example, when 

arguing the safety of software it is often common to claim a level of software integrity 

from an appeal to having used best practice tools, techniques and methods during 

development and testing.  Other common argument structures emerge from the use of 

particular techniques.  For example, to support the claim that a particular software 

condition cannot arise, a pattern could be identified showing the typical use of either 

formal verification, Software Fault Tree Analysis (SFTA), or black box testing.  Each 

form of evidence would also have associated arguments in order to validate its use 

within the argument, e.g.: 

• Formal verification – argument that the formal specification is an accurate 

representation of the final target code 

• SFTA – argument that sequential composition has been appropriately represented 

within the fault tree 

• Testing – argument that sufficient coverage has been achieved 

Figure 90 shows an example GSN pattern that could be found in the lower levels of a 

safety case argument. 

G2: <property x>
enforced by

software

G1: Software
element of system

is 'fault-free'

C1: Fault = deviation from
intended behaviour that could

lead to a
system level hazard

C2: Free = Software itself
does not initiate any events

that could lead  to a
system level hazard

S1: Argument by
satisfaction of all
software safety

properties/
requirements

S2: Argument by
showing software

cannot cause
any of the identified
hazardous software

conditions

C4: Identified Hazardous
Software Conditions
(m = # of conditions)

C3: Identified Software
Requirements / Properties

(n = # of requirements /
properties)

n

G3: <condition y>
can only occur by

physical component
failure

m

 

Figure 90 – GSN Fault Free Software Pattern 

In this pattern, the claim that the software element in a system is ‘fault free’ (G1) is 

supported by two main strands of argument (S1 and S2).  S1 is arguing safety over 
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positive properties of the software.  Over a list (C3) of identified hazardous software 

conditions (e.g. “Controller demands speed greater than maximum safe speed”) the m 

sub-goals of the form G3 are expressed, to argue that these hazards can only occur 

through physical component failures.  S2 is arguing safety through avoidance of 

negative properties of the software.  Over a list (C4) of identified software requirements 

(e.g. “Operation will not start if operator detected near machinery”) the n sub-goals of 

the form G2 are expressed to argue that these properties are enforced in the software. In 

order that this pattern will be appropriately applied, the context of the pattern is made 

clear through the elements C1 and C2 - both defining key terms in the top-level claim.  

The patterns that have been described so far in this chapter are deliberately general – 

they can be readily understood and have wide applicability across technologies and 

regulatory contexts.  However, in well-understood and stable domains it is also possible 

to identify more specific argument patterns.  For example, in the civil aerospace sector 

common arguments are often developed against particular individual regulations (in 

Europe from the Joint Aviation Requirements) - e.g. capturing what is an acceptable 

approach (‘means of compliance’) to arguing that “Thrust Reverser will not deploy 

during flight”.  Figure 91 shows the GSN pattern that can be used as the basis for 

structuring a compliance argument with civil aerospace requirement JAR-E50(a). 

Control System compliant with
JAR-E50(a) CONTROLS

JAR-E50(a)

E50(a)(1)

All aircraft installation
requirements formally
identified

E50(a)(2)

ECS designed to support selection of
progressive amounts of thrust over
whole range of defined operating
conditions

Thrust levels

C2

E50(a)(4)

Safe engine control under
all likely pilot commands

E50(a)(5)

Safe engine control under all
identified failure conditions

E50(a)(6)

Safe engine control in
presence of operation of
permitted variables

Permitted operation of
variables

C9

Identified failure
conditions

C8

Likely pilot
commands

C7

E50(a)(3)

Selected values of relevant control params.
to be maintained and engine kept with
limits over changing  atmospheric
conditions in defined operating range

Selected values of
relevant control

parameters

C5

Defined engine
operating limits

C6

"Safe engine control"
= ...

C1

Defined operation
conditions

C3

Atmospheric
Operating Conditions

C4

 

Figure 91 – GSN Compliance Pattern for JAR-E50(a) 
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The benefit achieved from this pattern is that, whilst decomposing the overall 

requirements into sub-clauses, it clearly highlights the contextual information (C1-C9) 

that is required in order to truly define (and therefore argue against) the safety 

requirement. 

5.11 Taxonomy of Safety Case Patterns 

The author has identified and extracted a number of Safety Case Patterns from real-

world safety cases and safety standards.  Many of these patterns (e.g. the ALARP 

pattern) have been documented and presented in the pattern catalogue presented as 

Appendix B of this thesis. 

From the patterns that have already been identified it has been possible to recognise and 

define a taxonomy of Safety Case Patterns.  The categorisation is shown in Figure 92. 

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

 

Figure 92 – A Taxonomy of Safety Case Patterns 

Safety Case Patterns can either be specific to a particular domain or class of system (e.g. 

nuclear power generation, railways, aerospace) or applicable across a number of 

domains (i.e. domain independent). 

Safety Case Patterns can describe the decomposition of some objective, e.g. over 

functions or according to some safety principle.  Such patterns are labelled as ‘Top 

Down’ Safety Case Patterns.  The ‘Functional Decomposition’ pattern presented in 

Section 5.9 is an example of such a pattern.  Alternatively, safety case patterns can 

describe how an argument may be constructed from a piece of evidence (in GSN terms 
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– a Solution). These patterns are labelled as ‘Bottom Up’ Safety Case Patterns.  The 

‘Fault Tree Evidence’ pattern presented in Appendix B is an example of such a pattern.  

Finally, Safety Case Patterns can be used to describe some general principle of safety 

argument construction that is neither specifically ‘top down’ or ‘bottom up’.  Such 

patterns are labelled as ‘General Construction’ Safety Case Patterns.  The ‘Diverse 

Argument’ pattern presented in Appendix B is an example of such a pattern. 

5.12 Example Safety Case Pattern Catalogue 

To present further example Safety Case Patterns, and to illustrate the concept of 

collating and structuring a collection of patterns to form an engineering resource, an 

example Safety Case Pattern Catalogue is presented in Appendix B. 

The example catalogue is structured according to the taxonomy of patterns defined in 

the previous section, and contains the following patterns: 

Top-Down Patterns 

• ALARP (As Low As Reasonably Practicable) Argument 

This pattern provides a framework for arguing that identified risks in a system have 

been sufficiently addressed in accordance with the ALARP principle. 

• Hazard Directed Integrity Level Argument 

This pattern demonstrates an approach to arguing that a (sub)system has been 

developed to an integrity level appropriate to the hazards to which the system 

contributes. 

• Control System Architecture Breakdown 

The intent of this pattern is to illustrate a means of structuring an argument to 

support a system safety goal (requirement, avoidance of hazard etc.) by 

decomposition over a generic control system model. 

General Construction Patterns 

• Diverse Argument 

The intent of this pattern is to illustrate the use of diverse arguments to instil a high 

degree of confidence in the satisfaction of a goal and to present arguments that are  

resilient to change and criticism. 

• Safety Margin 

The intent of this pattern is to illustrate the use of safety margins to instil a high 
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degree of confidence in the satisfaction of a goal and to present arguments that are  

resilient to change and criticism. 

Bottom-Up Patterns 

• Fault Tree Evidence 

The intent of this pattern is to show the nature of the claims that can be made from a 

fault tree representation of the causes of a condition. 

This collection of patterns represents a cross-section of the patterns that have so far been 

identified within existing safety cases and safety justifications.  It is not yet claimed to 

be a pattern language for safety case development (i.e. it does not provide a complete 

set of patterns).  

The safety case concept is broad, spans many domains, and can encompass many 

concepts and technologies.  For this reason, the goal of producing a Safety Case Pattern 

Language that can be said to be ‘complete’ may well be difficult to realise.  However, it 

is much more conceivable that pattern languages can be constructed within a bounded 

domain.  For example, the Safety Assessment Principle Patterns identified in Appendix 

B could be considered to be part of an overall language that would include patterns for 

each of the other 78 principles that are given in [98].  The same is true for any domain 

bounded by a set of requirements – e.g. the Joint Awareness Requirements for Engines.  

For some of the same reasons, it is highly conceivable that a pattern language for safety 

cases could be constructed within a particular company – bounded by the regulations 

that apply, the accepted practice of the company, and the forms of evidence and skills 

available within that context. 

5.13 A Safety Case Reuse Process 

The aim in proposing Safety Case Patterns is to make the process of safety case reuse 

more systematic. Figure 93 illustrates the ideal process by which Safety Case Patterns 

could be used to support the safety case reuse activity. 

In  Figure 93 the main activities of safety case pattern reuse are identified as: 

• Identifying potential Safety Case Patterns from within existing safety cases 

• Defining new Safety Case Patterns 

• Reviewing Constructed Patterns 
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• Identifying the appropriate Safety Case Patterns to apply in a new safety case 

development 

• Reviewing the decision to use a Safety Case Pattern within a new safety case 

development 

• Applying Safety Case Patterns within a new safety case 

5.13.1 Identifying New Safety Case Patterns 

In the process of identifying new Safety Case Patterns from within existing safety cases 

the intention is to extract a general form of argument from an existing safety case and to 

generalise it in order that it can be applied in other safety cases.  There are two types of 

candidate argument structures: 

• Arguments that are already informally repeated between safety cases that we wish to 

capture and document in order that they can be reused more explicitly and 

systematically in the safety case development process 

• Novel  ‘successful’ argument structures that we wish to capture in order that they 

can be used by others. These could be arguments in an area where previously the 

approach to constructing a safety argument was unclear. They could also be 

arguments that were particularly well received by a certification or regulatory 

authority. 

In order to identify such argument structures it is first necessary to recognise and 

understand clearly the structure of the argument contained within the safety case.  

Where safety cases already contain an explicit representation of safety argument, e.g. 

through use of goal structures, this can be a straightforward exercise. However, where 

the arguments remain implicitly distributed within the body text of the safety case, it 

may be necessary to attempt to extract the argument and find some means of sketching 

out the structure explicitly (e.g. by constructing a new goal structure). 
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Figure 93 - A Safety Case Reuse Process 
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5.13.2 Constructing New Safety Case Patterns 

This activity describes the process of documenting the reusable argument structures 

identified within an existing safety case as a Safety Case Pattern – using the notation 

and template defined in this chapter.  The purpose of recording a pattern using the 

notation and template is to ensure that the principle is described such that others can 

understand it (sufficiently) from the documentation alone. 

The structural description should represent a generalisation of a specific argument in 

order that it can be instantiated according to the details of another specific application 

context. 

Figure 94 illustrates the generalisation of a simple GSN structure from something that is 

specific to an application context, to something that can be applied in other application 

contexts. 

 

Specific 

Argument 

Structure 
Press  is sufficiently safe to
operate

G5

S3

Argumemt of sufficient mitigation
/ elimination of all identified
hazards of press to operator

C3

Press Operating
Hazard List

Hazard of hands trapped in motor
/ clutch / drive mechanism has
been eliminated

G6

Hazard of plunger operation
whilst operator in danger zone
has been sufficiently mitigated

G7

Hazard of dangerous press
abort has been sufficiently
mitigated

G8
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Argument 

Structure 

C1

{An Overall System Safety
Claim}

S1

Argument of sufficient mitigation
/ elimination of all identified
hazards

{Description of
System Hazards}

C1

G2

Hazard of {H} has been elimated

G3

Hazard of  {H} has been
sufficiently mitigated

n
Provides n  Hazards {H}

 

Figure 94 - Generalisation of Goal Structures 

The goal structure shown in the top of Figure 94 describes the argument for a particular 

system that, of the hazards identified, one has been eliminated (G6) and two have been 

mitigated  (G7 & G8).  Therefore the strategy of all hazards being eliminated / mitigated 

has been fulfilled. The goal structure pattern in the bottom of Figure 94 shows the 

generalisation of this structure: For a hazard log containing n hazards, the strategy will 

have n subgoals (1 for each hazard). These sub-goals will either argue that the hazard 

has been eliminated or mitigated.  Both arguments must be developed further. 

5.13.3 Reviewing Constructed Safety Case Patterns 

Having defined a safety case pattern, it is important that it is then reviewed to assess 

whether the documented form of the pattern has been correctly captured.  The questions 

that should be asked when reviewing the pattern include the following: 

• Does the name of the pattern easily convey the intent and form of the pattern? 

• Has the Intent of the pattern been adequately explained? 

• Is the GSN argument structure correct? Is it over-defined (too restrictive)? Is it 

under-defined? 

• Have all the elements and collaborations of the argument been correctly explained? 

• Has the applicability of the pattern been sufficiently defined? 
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• Is there sufficient implementation guidance to enable someone to instantiate the 

pattern? 

The purpose of asking such questions is to ensure that the pattern is sufficiently well-

defined that the likelihood of it being applied inappropriately at a later stage (by 

someone other than the author) is reduced to the minimum practicable.  Questions of 

completeness and sufficiency of documentation are subjective. The review should 

therefore be performed ideally by a group formed of people who are similarly expert in 

the domain from which the pattern has been identified and others who are not, but have 

a knowledge about safety cases in general.  At least initially, the review of the pattern 

should be conducted without the involvement of the original author (in order that the 

sufficiency of the documentation can be truly assessed). Following this initial review, 

the author can then be involved in the discussion in order to clarify any areas of 

ambiguity and to work with the reviewers to suggest ways in which the pattern may be 

improved. 

Following review (and modification if necessary) of the pattern it can then be added to 

the pattern catalogue. The pattern catalogue is discussed in more detail in section 5.13.7. 

5.13.4 Identifying Applicable Safety Case Patterns 

The processes of identifying, defining and reviewing new patterns work from existing 

safety case material towards the goal of extracting reusable argument structures for 

future safety cases.  Within the framework of the safety case development process, 

therefore, one of the natural opportunities for these activities is in the ‘wash-up’ 

(sometimes called the ‘post-mortem’) phase of the project.  The purpose of the wash-up 

is to identify areas where the safety case produced is deemed to be successful, and to 

capture lessons learnt from the development.  

However, the ‘Identifying Applicable Safety Case Patterns’ activity (and the following 

activities shown on the left-hand side of Figure 93) together correspond to the 

production phase of safety case development, and in particular to the preliminary safety 

case construction phase (described in Chapter Three, section 3.9). The purpose of this 

first activity is to identify patterns from those previously defined and stored in the 

pattern catalogue to aid in the construction of a new safety argument.  The pattern 

catalogue should be examined with a particular problem in mind – e.g. a safety goal that 

needs to be decomposed, or a particular requirement that has to be addressed.  The 

objective is to nominate a pattern that: 
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• Shares the same intent as the problem that you are trying to solve 

• Is suitable for application in this particular safety case development (i.e. satisfies all 

documented applicability conditions). 

It may be the case that more than one pattern in the catalogue matches these criteria. In 

such cases, all possible patterns should be nominated for review at this stage. 

5.13.5 Reviewing Decision to Use a Safety Case Pattern 

The purpose of this activity is to review the decision to use the candidate patterns 

identified in the previous phase.  As with the review conducted in the pattern production 

phase this activity should ideally be conducted by experts within the application domain 

who are capable of independently assessing whether use of the nominated patterns is 

appropriate in this case. 

The motivation behind placing the review ahead of actual application of the pattern is to 

(hopefully) reduce the possibility that wasted and inappropriate effort may be spent in 

applying a pattern that is later rejected.  Where there is a choice of possible approaches 

(i.e. a number of possible patterns that may be applied), a secondary purpose of the 

review is to decide upon the most suitable one to use. 

The review activity independently revisits the questions of matching intent and 

applicability that where considered when searching the pattern catalogue.  In deciding 

whether a pattern is applicable in a particular situation, an additional output of this 

activity may also be preliminary advice on how the pattern is to be applied. 

5.13.6 Instantiate Pattern 

The purpose of this activity is to apply the general solution described by the pattern to 

the details of the specific safety argument being constructed.  The element of the pattern 

description most concerned with this activity is Implementation. This section describes 

how the pattern should be implemented: the contextual information that should be 

provided, how goals should be instantiated etc.  It is important to take note of any 

Potential Pitfalls also identified by this section. 

When instantiating the GSN pattern, multiplicity relations should be expanded, and 

choices evaluated.  Where structural abstractions have been used, concrete instances 

must be provided.  The GSN pattern is therefore “flattened” to the elements of existing 

notation.  Ideally, a record of the application of the underlying pattern should be 
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maintained to provide traceability of the structure back to the pattern.  Maintaining such 

records will ease the process of later change management. 

Figure 95 illustrates the instantiation of a GSN pattern.  In addition, instantiations of the 

‘Diverse Argument’, ‘Safety Margin’ and ‘Fault Tree Evidence’ patterns (presented in 

Appendix B) are highlighted within Appendix A – Nuclear Trip System Safety Case. 

GSN 

Pattern 

(‘Diverse 

Argument’) 

G1

{GOAL}

Gn

{STATEMENT
SUFFICIENT TO
SUPPORT G1}

S1

Argument based upon
diverse forms of evidence

>1

Definition of Diversity

C1

G2

Arguments are diverse and
not subject to common
mode failures

 

Instantiated 

Structure Hazard H1 cannot occur

G1

S1

Argument based upon
diverse forms of evidence

G2

Formal Analysis shows
condition relating to H1
cannot occur

G3

Extensive Rig testing has
shown no occurrences of H1

 

NB – The optional definition of ‘Diversity’ (C1) and common mode 
failure claim have been omitted. 

Figure 95 - Instantiation of a Goal Structure Pattern 

In some cases, it may be pragmatic to leave goal structures partially in pattern form.  

For example, in Figure 95 the pattern at the top of the diagram succinctly communicates 
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the intention of the goal structure without providing large amounts of detail (e.g. as 

there would be if there were fifty identified hazards).  Leaving the pattern uninstantiated 

may therefore provide a more appropriate level of description for some presentations of 

the safety case (i.e. by presenting the argument approach adopted rather than the results 

of applying that approach). 

Whether fully instantiating or partially instantiating a pattern, it is important for 

traceability purposes to document where the pattern has been applied in the overall 

argument.  In this way, if there is ever a need to identify all the places that a particular 

pattern has been used (e.g. if a flaw was discovered in the pattern) then the appropriate 

records exist.  Of equal importance, such information allows patterns to be re-applied if 

changes are ever forced upon the overall safety argument – making sure that the intent 

and structure of the pattern can be preserved. 

5.13.7 Pattern Catalogue 

The Safety Case Pattern Catalogue, as described in section 5.12, is at the heart of the 

concept of Safety Case Patterns, and is the pivot around which the safety case reuse 

process is carried out.  Within an organisation, it is the repository where all patterns are 

stored.  It is the intention that it be available as a resource to all safety case developers.  

Patterns can be added into the catalogue following definition and review.  It should be 

possible to retrieve pattern descriptions by name, content and inter-pattern associations 

(recorded in the Related Patterns field of the pattern description. 

5.14 Summary 

This chapter has defined the concept of Safety Case Patterns – a means of describing 

generalised, reusable, safety argument structures.  In order to support the presentation of 

generalised arguments, we have proposed extensions to the GSN.  In addition, a format 

for the documentation of GSN patterns is defined.  Resulting from evaluation of the 

approach, a number of example patterns are presented.  Based upon categorisation of 

the patterns the author has identified to date, a taxonomy of Safety Case Patterns is 

defined.  Finally, we present a process to support the systematic reuse of safety case 

arguments based upon the concept of developing a Safety Case Patterns Catalogue. 

Evaluation of the approach defined in this chapter is discussed fully in Chapter Six – 

Evaluation
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Chapter 6:  

Evaluation 

6.1 Introduction 

In Chapter One the thesis proposition was stated as the following: 

This thesis provides a method and graphical notation for the presentation 

of safety arguments.  The thesis demonstrates how this approach can be 

used to address the highlighted challenges of safety case development by 

supporting the development, maintenance and reuse of safety arguments. 

The challenges referred to by the proposition (and also presented in Chapter One) were 

the following: 

• Presentation of Clear Safety Arguments 

• Incremental Safety Case Development 

• Through-life Safety Case Maintenance 

• Supporting Trustworthy Safety Case Reuse 

The evaluation of this proposition can be considered on two levels, namely: 

• Demonstrating the feasibility of the approach defined in this thesis (to support safety 

case development, maintenance and reuse) and its acceptance by engineers in 

industry 

• Demonstrating that the approach provides some positive benefit in addressing the 

problems highlighted by the proposition. 

Within the time-scale of the doctoral programme the evaluation activity has focussed 

upon the former of these two levels. Success at this level is an obvious precursor to 

success at the latter level.  The extensive application of the approach within the problem 

domain also aids in the definition of the success criteria against which benefit can be 

assessed (as discussed later on in the chapter in section 6.5) 

Over the course of the research we have been fortunate enough to be given many 

opportunities to expose and trial the approach developed in this thesis to industrial 
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safety engineers and projects.  In particular, three main routes of evaluation have been 

available: 

• Through Rolls-Royce plc (co-sponsors of the research) 

• Through presenting the approach on the High Integrity Systems Engineering Group 

Safety Courses – at the time of writing this has run a total of 25 times for 435 people 

representing 57 organisations. 

• Through the Safety Argument Manager (SAM) Tool and the consortium of 20 

European companies involved in the SAM Club – a user group set up to fund and 

guide further development of the SAM tool. 

The main sections of this chapter (sections 6.2 and 6.3) report the evaluation that has 

been carried out using these three routes to demonstrate the feasibility of the approach 

and to gain its acceptance by industry.  Although within this chapter we have not sought 

to quantitatively argue to benefits of adopting the approach, it should be recognised that 

its acceptance by industry is at least an indication of perceived benefits.  Benefits 

perceived through carrying out the evaluation activity are qualitatively reported within 

the chapter. 

Building upon the success of this level of evaluation, section 6.5 describes how further 

(quantitative) evaluation of the benefits of adopting the approach could be carried out. 

6.2 Forms of Evaluation Applied 

The following forms of evaluation have been applied throughout the course of the 

research to evaluate the approach presented in this thesis: 

• Tool Implementation 

• Peer Review 

• Case Study 

• Pilot Industrial Application 

• Evaluation through Real Industrial Application 

The above list is stated in order of, what we believe to be, strength of evaluation – tool 

implementation being the weakest form of evaluation, and evaluation through 

application on a real industrial project being the strongest.   Before presenting the 
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details of specific activities, the following sub-sections provide a brief description of the 

nature and level of evaluation offered by the forms of evaluation listed above. 

6.2.1 Evaluation through Tool Support 

As described in Chapter Two, the Safety Argument Manager tool has been developed 

over a number of years – first under the EPSRC Safe-IT sponsored ASAM-II project 

(resulting in SAM 3.25), and then through the SAM Club organised by York Software 

Engineering (currently developing SAM 4).  Over 20 companies and other organisations 

now use the SAM 4 tool. 

It has been possible to implement support for the approach presented in Chapters Three 

(Development), Four (Maintenance) and Five (Reuse) to varying levels in the SAM 4 

tool.  Having implemented support for the approach within a tool demonstrates a level 

of sufficient definition, self-consistency and determinism of the approach and 

notation (i.e. the approach is not inherently invalid). Obviously, in addition it has 

provided tool support for the further forms of evaluation. 

6.2.2 Evaluation through Peer Review 

We have used the term peer review to refer to exposure, discussion and application of 

the approach presented in this thesis with safety engineers (e.g. from Rolls-Royce) 

experienced in safety case development through one of the following media: 

• One-on-one interviews between myself and engineers 

• Seminars with initial presentation of material by myself 

• Workshop sessions chaired by myself and involving a group of engineers 

Of these three activities, workshops have enabled the greatest level of feedback.  As is 

described later on in the chapter, all three of these activities have been performed during 

the course of the research. 

Peer review provides some evaluation of the approach with respect to the experience of 

safety case development practitioners.  Addressing questions such as, ‘Does it offer a 

credible and workable solution?’, and, ‘Does it address problems that you have 

experienced?’ 

Workshop sessions have particularly helped to gain confidence in the capability of the 

approach (e.g. in expressing safety arguments) to handle industrial examples. 



 200

6.2.3 Evaluation through Case Study 

Evaluation through case study has involved personal application of the approach using 

examples derived from a real-world context.  This form of evaluation has increased 

confidence in the utility and coherence of the approach.  The extent of evaluation is 

greater than that of workshop sessions (where potential deficiencies in the approach can 

be hidden).  Depending upon the realism of the case study example, this form of 

evaluation again offers some assurance of the capability of the approach when applied 

to real projects. 

6.2.4 Evaluation through Pilot Industrial Application 

Evaluation through a pilot project has involved application of the approach by 

individuals other than myself, but with support provided.  The subject of the evaluation 

is an example taken from a real-world context.  As with case study, not only does this 

increase confidence in the utility of the approach, but confidence is also gained that the 

level of definition of the approach is sufficient that someone else can use it.  It also 

allows some evaluation of the viability of the approach (was it excessively time-

consuming? - did it become difficult to manage?).  It is also another means of evaluating 

the capability of the approach to handle real-world problems. 

6.2.5 Evaluation through Real Industrial Application 

Elements of the approach have attained a level of maturity that have allowed them to be 

applied to real industrial projects.  This has been one of the most powerful modes of 

evaluation.  Successful application has demonstrated that it is a valid approach and 

collated experiences have allowed qualitative observation of the usefulness of the 

approach. 

6.3 Overview of Research Evaluation 

The contribution of this thesis comprises the following three strands: 

• GSN Method and Support for Incremental Development (Chapter Three) 

• GSN Support for Safety Case Maintenance (Chapter Four) 

• GSN Support for Safety Case Reuse: Safety Case Patterns (Chapter Five) 

These three strands have not all been exposed to the same modes of evaluation or to the 

same level of assessment.  The following table summarises the evaluation that has been 

performed in each area: 
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Tool 

Implementation 
Peer Review Case Study 

Pilot Industrial 

Application 

Real Industrial 

Application  

GSN Method and 

Support for Inc. 

Development 

ü ü ü ü ü 

GSN Support for 

Safety Case 

Maintenance 

ü ü ü   

Safety Case 

Patterns 
ü ü ü ü  

 
 

Level of Evaluation 

Table 8 – Levels of Research Evaluation Achieved 

For each of the research areas, and for each form of evaluation marked with a ‘ü’ in 

Table 8, the following sections provide a specific description of the evaluation that has 

been performed. 

6.3.1 GSN Method Evaluation 

The contribution made by the author in defining a method for, and extending, GSN was 

a product of the early activities of the research.  Use of the method and notation is a 

precursor to the application of the more advanced concepts of maintenance support and 

Safety Case Patterns.  Consequently, as shown in Table 8, this strand of the research has 

been subject to the most evaluation. 

6.3.1.1 GSN Method Evaluation: Tool Implementation 

The extension of ‘context’ to the notation was quickly adopted within the SAM 4 tool, 

and has been used within almost all the goal structures produced using the tool observed 

by the author.  This has been taken as an indication of the concept’s usefulness! 

The screen shot shown in Figure 96 shows the use of the new context symbol within the 

SAM 4 tool. 
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Figure 96 – SAM Screen Shot (Showing Adoption of Context) 

The support added to SAM for the GSN extensions necessary to represent GSN patterns 

has also been found useful in representing an incomplete and evolving goal structure (as 

described in Chapter Three).  For example, it has been useful to explicitly mark a leaf 

goal in a preliminary safety argument (such as the engine controller argument presented 

in Chapter Three) as being ‘undeveloped’.  This is shown in the SAM screen shot 

(Figure 97).  

6.3.1.2 GSN Method Evaluation: Peer Review 

The GSN Method, as defined in [57], has been used within a number of workshop 

sessions conducted by the author and involving over forty safety engineers from a 

number of different companies, including: 

• BR Business Systems – concerned with developing and presenting safety 

arguments for railway maintenance information systems. 

• Matra BAe Dynamics – concerned with developing and presenting safety 

arguments for sea and land based missile systems. 

• Rolls-Royce Marine Power – concerned with developing and presenting safety 

arguments for nuclear propulsion systems. 
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Figure 97 – SAM Screen Shot (Showing Use of Pattern Extensions in Incremental 

Development) 

After having presented the principles and steps of the method the workshops have 

culminated in sessions that apply the GSN method in developing a safety argument 

relating to their domain.  In these sessions the method has been found to work well in 

structuring the group discussion – for example, in making sure that context is fully 

defined (Step 2) before attempting to identify a support strategy (Step 3).  Also, the 

phrasing rules given in the method have helped in such sessions to force clarity and 

definition of the safety arguments being developed (avoiding the mistakes described in 

[57]).  A recognised benefit of using the GSN in these workshops has been that it has 

enabled debate and agreement on the safety argument in a way that is not possible when 

there is no clear and explicit means of presenting that argument. 

The GSN method guidance defined in [57] has been distributed (under the title ‘GSN 

Handbook’) to all twenty companies in the SAM Club.  Although criticism was 

explicitly solicited, no significant problems have been identified. One area of debate has 

been the recommendation made in the method regarding the tense used in phrasing 

goals statements (goals to achieve vs. goals achieved).  However, there have been 

arguments on both sides of this issue and consequently the recommendation has been 
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left as it is (with the global caveat given in the method that other approaches are 

possible). 

Through peer review of the GSN terminology and concepts it has been noted that the 

term ‘Goal’ can often mislead engineers as to the intent of this element of the notation – 

i.e. to state logical propositions.  The description of a goal alternatively as a ‘claim that 

we wish to put forward’ (i.e. as done in Claim Structures [9]) has often been more 

readily understood by engineers.  If it weren’t the case that the terminology of the ‘Goal 

Structuring Notation’ and ‘Goals’ was already well established within the companies 

that use GSN it would be desirable to rename ‘Goals’ as ‘Claims’ within the notation.  It 

should be recognised, however, that this choice of terminology has no impact on the 

semantics of the notation. 

The use of goal structuring to support incremental safety case development has formed 

part of the material presented by the author on the High Integrity Systems Engineering 

Group Safety Courses.  In particular, the application of GSN in sketching out 

preliminary safety arguments is presented through the distributed engine controller 

example given in Chapter Three.  Use of GSN in building preliminary safety arguments 

was also the subject of a reviewed paper and presentation [99].  Comments subsequently 

received from experienced practitioners have indicated that GSN is achieving something 

(the ability to present preliminary and incomplete argument architectures) that is 

otherwise difficult to achieve as succinctly in free text. 

 

6.3.1.3 GSN Method Evaluation: Case Study 

It is difficult to demonstrate evaluation of the GSN Method (that defines a dynamic 

process) by any means other than presenting the resultant (static) goal structure.  The 

Nuclear Trip System Case Study, although based upon an existing safety case, presents 

a number of safety arguments that have been constructed according the rules of the GSN 

method (particularly regarding syntax). 

It is one of the underlying premises of this thesis that GSN can be used in 

communicating the safety argument within the structure of a text-based safety case 

document.  Appendix A was constructed to demonstrate that this is possible and also to 

illustrate how it can be done.  A comparison of the goal structured approach used in 
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Appendix A and alternative approaches to expressing the same safety case is presented 

in Chapter Three, section 8. 

One observation, having constructed many goal structures using the rules defined in the 

GSN method, is that it has always been possible to phrase goal statements according to 

the Noun-Phrase Verb-Phrase rule.  However, there are other (sometimes more natural) 

sentential structures that can be used whilst still forming propositional statements.  The 

possible extension of the method syntax rules to include these other structures is one 

area of further work, see Chapter Seven, Section 2. 

As a case study using GSN to sketch an evolving safety argument, based on work 

published by Fletcher [60], the author has used goal structuring to set out clearly the 

principal safety (and certification) objectives facing Integrated Modular Avionics (IMA) 

systems. The top level of this goal structure is shown in Figure 98. 

IMA system is SAFE

G1

Adequate partioning and
isolation provided between
modules

G2

Scheduling policy is at least
as safe as Cyclic Executive

G3

IMA Safely supports
modules of differing
integrity

G4

Reconfiguration of modules
is safe

G5

Module replacement is
performed correctly

G6

Common Cause Failures
between modules are
sufficiently unlikely

G7

Each module
independently is safe

G8

Modules combine safely

G9

 

Figure 98 – Top Level of Integrated Modular Avionics Safety Argument 

Conclusions arising out of this and similar studies have been that presenting preliminary 

arguments in this way enables engineers to reach agreement on the scope and structure 

of a safety argument.  In particular reducing the time and effort required in reaching that 

agreement.  In addition, the final agreed goal structure highlights the safety objectives to 
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be achieved in later stages of project development.  For example, with the above Figure 

98, everyone involved in developing such systems can appreciate the safety framework 

in which IMA solutions are suggested. 

During the course of the research, the author has studied a number of conventionally 

(textually) presented preliminary safety arguments, specifically: 

• Safety Principles Papers (within the Naval Nuclear Propulsion Domain) – 

documents typically produced towards the beginning of a project that argue how the 

system and project will comply with the U.K. Ministry of Defence Safety Principles 

and Criteria for the Nuclear Naval Programme [98]. 

• Joint Airworthiness Requirements – Engines (JAR-E) Compliance Statements 

(within the Civil Aerospace Domain) – again, documents typically produced 

towards the beginning of a project that argue how an engine will comply with the 

JAR-E.  

The textual approach implicit in both these sets of documents can be contrasted with the 

GSN approach suggested in Chapter Three.  The following difficulties have been 

identified with the former approach: 

• It can present vacuous statements of compliance that simply re-express all 

requirements of the form ‘X shall’ into ‘X will’.  

• In later stages of the project it can be unclear what specific objectives have been put 

forward in the preliminary argument. 

Although it is possible in GSN terms to present vacuous compliance claims, they are 

more obviously shown up as such in a goal structure (as an observable lack of ‘distance’ 

between requirement and claim).  Following the GSN method (particularly regarding 

syntax) can avoid the vague statements of some compliance claims. The explicit top-

down structure of a goal-structured preliminary safety argument, exposing undeveloped 

leaf goals, also makes more obvious the claims that are still to be developed in the later 

project stages. 

6.3.1.4 GSN Method Evaluation: Pilot Industrial Application 

The GSN Method has been applied in an industrial pilot project to rework an existing 

submarine power plant decommissioning safety case and express it using GSN (using 

the SAM tool).  The resulting (exhaustive) goal structured argument spanned 39 A4 
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pages and contained over 154 individual goals (structured on 9 levels). The top level of 

this goal structure is shown in Figure 99 (with some details masked).  An internal report 

[100] was written to document the project.  As well as validating the method, the project 

enabled a comparison between the presentation of the safety argument in its existing 

(textual) form and its goal structured counterpart.  Universally, company (and Ministry 

of Defence) individuals who reviewed both versions (the original safety case and the 

corresponding goal structure) declared the goal structure as providing a clearer 

representation of the safety argument. 

Clear and valid goal structures resulted from the Rolls-Royce employees’ use of the 

GSN method.   Over the course of the project three individuals (two engineers from 

Rolls-Royce and myself) all produced separate goal structured versions of the existing 

safety case. The three resulting goal structures exhibited the same goal decomposition 

structures (i.e. they were of similar depth and ‘fan-out’) and used similarly phrased goal 

statements.  Experience suggests that without the definition and use of the GSN method, 

this would have not been the case. 

Company reviewers observed the benefits of the goal-structured version of the safety 

argument as twofold.  Firstly, although the safety requirements and safety claims of the 

existing safety case were stated clearly – the relationship between them (i.e. the 

structure of the safety argument) was unclear.  Once the relationship had been 

rediscovered, however, the goal structure communicated the relationship between 

requirements, claims, and evidence explicitly.  Secondly, in the existing safety case 

there appeared to be elements of the document that had no role within the safety case.  

The goal structure, however, through explicit context and solution references provided a 

means of navigating through all of the blocks of information presented within the 

document and communicating their role within the structure of the argument. 

The use of GSN in supporting an evolving safety argument, as suggested in Chapter 

Three, was piloted in developing a preliminary safety argument for a novel distributed 

engine controller.  This example is described in some detail in Chapter Three.  Rolls-

Royce’s main conclusions were that the goal structure produced aided the process of 

agreeing the safety case, helped gain confidence in the ability to present a complete 

safety case and provided tangible safety objectives for the project.  As a result of this 

project, Rolls-Royce has proposed that suppliers to the project be asked to present goal 

structured preliminary safety arguments in this form in the future. 
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Figure 99 – Top Level of Decommissioning Argument 
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6.3.1.5 GSN Method Evaluation: Real Industrial Application 

One of the earliest applications of the GSN method was on a live project involving the 

production of a safety plan and safety case for a piece of railway track-side equipment 

(for GEC Alsthom).  In particular, this project provided validation of the concept of 

interrelating process and product goal structures, as suggested in Chapter Three.  Goal 

structures were used to communicate the safety argument of the safety plan (process) in 

addition to the structure of the safety case (product).  The outputs of the safety plan 

(solutions of the process goal structure) were linked to the context and evidence 

elements of the product safety argument.  The top level of the safety plan goal structure 

is shown in Figure 104.  The safety plan document out of which Figure 100 was taken 

was 165 pages long and contained 338 goals, 176 justifications, 294 context references 

and 164 solutions.  The goal structures were presented in 167 figures and had up to 5 

layers of decomposition. 

This usage of goal structuring was well received on the project.  The project was multi-

national and the project participants declared that the goal structures were particularly 

useful in improving understanding of the safety plan and safety case across 

organisational and national boundaries. 

The GSN method is currently being used to provide ‘executive summary’ goal 

structures for inclusion at the beginning of a number of base safety reports for a Rolls-

Royce test facility.  GSN is being adopted as it is felt that the safety argument contained 

within these documents can be hard to assimilate and appreciate without spending 

significant time reading through the document.  A number of goal structures have 

already been developed and have been thought (by the engineers and managers 

involved) to address this problem successfully.  Figure 101 shows an extract from one 

of these goal structures (with system specific details hidden).  This goal structure was 

constructed in a group session involving six engineers following the steps of the GSN 

method. 

The GSN Method has been used in the early stages of developing a Site Safety 

Justification for a Naval Facility.  In this project there was a requirement to produce 8 

safety cases supported by over 80 safety reports in the space of 18 months.  GSN was 

used as part of a group exercise to help the engineers to begin to appreciate the scope of 
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the problem, and to identify possible argument strategies.  Figure 102 shows an extract 

from the total goal structure constructed to represent the preliminary safety argument.  

The total structure consisted of over 300 goals structured using 6 levels of 

decomposition.  The structure was created by a team of 4 engineers working for 1 week.  

Although the goal structures produced were not evolved through the later stages of the 

project, managers on the project believed that these preliminary arguments provided a 

“jump start” for the safety justification effort. 

Brand new safety case developments (offering true validation of the GSN approach to 

incremental argument development) are few and far between.  However, the GSN 

approach is currently being proposed for developing the nuclear propulsion safety 

arguments for the new U.K. class of submarines.  If adopted, this would allow GSN to 

be used ‘from cradle to grave’ and it would be possible to gain valuable experience of 

the issues involved in developing a goal structured safety argument over a number of 

years. 

6.3.2 Maintenance Evaluation 

Of the three strands of research, the use of GSN in supporting safety case maintenance 

has been the most problematic to evaluate.  This is due to the fact that it requires a goal-

structured safety case as a pre-requisite.  It then requires a number of ‘real-world’ 

challenges that would normally be experienced and distributed over the total operational 

life of the safety case.  Consequently, as can be observed from Table 8, the strongest 

form of evaluation of this aspect of the research has only been through case study.  It is 

hoped that during the operational life of some of the safety cases now being written by 

Rolls-Royce using GSN there will be further opportunity for evaluation of the 

maintenance support method. 

6.3.2.1 Maintenance Evaluation: Tool Implementation 

We have implemented support for the change process defined in Chapter Four within 

the SAM 4 tool, as shown in Figure 103.  Using the tool it is possible to follow through 

the steps of damaging and repairing a goal structure.  The tool supports the propagation 

of a change according to the rules defined in Chapter Four. 

As highlighted in Chapter Four, the assessment of the impact of a change cannot be 

performed mechanically (by a tool) as it is an interactive process between the tool and 

engineer.  The tool pessimistically prompts the engineer to consider all potential effects 

of the change. The engineer guides the tool to propagate particular impact paths. 
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Compliant safety management
process implemented to ensure
XXX-XX vX is safe

G0

S1

Argument over XXX-XX vX safety
related tasks for project phases 1 to
6 as defined in prEN50126

Cntx.S1:1

CENELEC Stds.: 
prEN50126, 50129

Cntx.S1:2

Company (XXX)
Procedures  &

Standards

prEN50126, 50128, 50129

Just.S1:1

J

There are only 6 project
phases for XXX-XX vX

Just.S1:2

J

Phase 1 (Concept) safety
tasks completed
satisfactorily

G1

Phase 2 (System Definition and
Application Conditions) safety
tasks completed satisfactorily

G2

Phase 3 (Risk Analysis)
safety tasks completed
satisfactorily

G3

Phase 4 (System
Requirements) safety tasks
completed satisfactorily

G4

Phase 5 (Apportionment of
System Requirements) safety
tasks completed satisfactorily

G5

Phase 6 (Design and
Implementation) safety tasks
completed satisfactorily

G6

Safety audits completed
satisfactorily
(decomposition TBD)

G7

Independent Safety
Assessment completed
satisfactorily

G8

 

Figure 100 – Top Level of Safety Process Argument 
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G0

XXX operation is safe

G1

YYY function supports
safe operation of XXXX
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YYY Operation is safe

G3

Systems supporting
operation of YYY are safe

M0
YYY Description 
(Part 2)

AddModel

G4

All identified YYY
hazards are sufficiently

mitigated

G5

YYY satisfies all
functional and integrity

requirements

G6

YYY satisfies all
applicable Safety

Assessment Principles
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Hazards (Part 4)
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Functional and Integrity
Requirements for YYY (Parts
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Cntx2

Safety Principles
Applicable to YYY (Part 4)

G9

All identified YYY hazards
to rest of plant are

sufficiently mitigated

G10

All identified internal YYY
hazards are sufficiently

mitigated

G11

YYY provides adequate support
for ZZZ ZZZ, ZZZ and ZZZ

G12

YYY has sufficient
structural integrity

Cntx3

Performance
Requirements (Part 2.5)

Cntx4

Structural Integrity
Requirements (Part 5.4.4)

 

Figure 101 – Top Level of Base Safety Report Argument 
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and criteria

G0006

Base condition and
operations comply with

principles

G0007

Base condition and
operations comply with

criteria

J0000
Approach mandated
by BR3018

J

JustifiedBy

G0008

Principles addressed at level
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operation

G0009

All nuclear facilities and
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Figure 102 – Extract from Preliminary Site Safety Justification Argument 
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Figure 103 – SAM Screen Shot (Showing Support for Maintenance Process) 

The implementation of the change process defined in Chapter Four within the tool 

demonstrates that the process is workable and deterministic. (If it were not deterministic 

there would have been difficulty implementing the process steps and rules within the 

logic of the tool). 

Implementing the change support within the tool enabled examples of the change 

process to be generated from goal structures already entered into the tool (e.g. the 

Appendix A Trip System Safety Arguments). 

6.3.2.2 Maintenance Evaluation: Peer Review 

The taxonomy of real-world challenges to the safety case (i.e. the division into 

Requirements, Evidence and Context change) and the principles of using goal 

structuring to support change impact analysis have been presented widely through the 

HISE Group Safety Courses.  This exposure, and absence of any dissenting feedback, 

has helped gain confidence in the approach.  However, it is recognised that this form of 

exposure does not constitute a thorough evaluation of the change process. 
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6.3.2.3 Maintenance Evaluation: Case Study 

The main evaluation of the change process has been through case studies of postulated 

changes to existing goal structures.  The challenges to the Appendix A Nuclear Trip 

System Safety Case presented in Chapter Four are examples of this.  The main 

observation arising out of such studies has been that, although the process is workable 

and systematic as a pencil-and-paper technique, it can become extremely difficult to 

track and manage a change as it propagates (potentially through many paths).  As a 

result, tool support – such as that described previously – appears necessary for anything 

other than simple goal structures and trivial changes. 

The value of the change process is not fully demonstrated through the change examples 

presented in Chapter Four (necessarily simple for ease of presentation).  It is important 

to recognise the following two issues: Firstly, the value of the technique increases with 

the complexity of the underlying argument (and the consequent difficulties of 

traceability).  Secondly, in reality the construction of the safety argument will often be 

separated from any maintenance action by a significant time period (e.g. a number of 

years).  To simulate the difficulty of change correctly (and hence the value of this 

approach) it is almost necessary to develop a safety argument, forget it, and then attempt 

maintenance.  The results presented in Chapter Four should be taken as indicative rather 

than definitive evaluation of the technique.  However, the ‘obviousness’ of the change 

examples can perhaps be taken as a positive indication of the ease of carrying out the 

process some time in the future. 

6.3.3 Safety Case Patterns Evaluation 

6.3.3.1 Safety Case Patterns: Tool Implementation 

Support has been implemented in SAM for the GSN extensions necessary to express 

goal structure patterns.  Using the tool it is now possible to define n-ary relations, 

choices, uninstantiated and undeveloped GSN elements.  GSN patterns defined within 

the tool can be copied and pasted into new argument documents and instantiated.  

Documentation of Safety Case Patterns is carried out using Microsoft Word, but with 

the ‘Structure’ element linked from a SAM document. 
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Figure 104 – SAM Screen Shot (Showing Support for Safety Case Patterns) 

The support implemented within SAM has been used in documenting the majority of 

the example patterns presented within this thesis, and in performing the evaluation 

described in the following sections. 

6.3.3.2 Safety Case Patterns: Peer Review 

The principles and instances of Safety Case Patterns have been presented in the 

workshop fora mentioned in Section 6.3.1.2.  Within the workshops these have typically 

followed on from generic material on the goal structuring method.  Consequently, the 

pattern instances have been extremely useful in communicating example applications of 

the technique.  By utilising these examples, engineers began to find the GSN approach 

more accessible. 

Within one of the workshop sessions, engineers were sufficiently comfortable with the 

patterns concept to the extent that they began to recognise and capture Safety Case 

Patterns within the safety argument that the group was constructing.  For them, patterns 

were seen as a means of crystallising and promulgating the positive aspects of their 

safety argument. 
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Safety Case Patterns have also been the subject of a reviewed paper and presentation 

[95].  One concern that has been raised regarding the Safety Case Patterns concept has 

been the potential danger of (possibly inexperienced) engineers blindly applying the 

structure captured in a pattern without thought, but yet creating credible arguments.  

Although this is a valid concern, the pattern format was carefully defined in order to 

capture and present the concepts of applicability and implementation (particularly 

highlighting potential pitfalls in application).  Also, all of the patterns developed to-date 

are observably incomplete – they help in the construction of an argument, but only so 

far.   By presenting solutions that are incomplete, thereby forcing intelligent completion 

of the approach, there is some guarantee that the engineer will not be able to present a 

credible solution based upon use of a pattern alone. 

The author was commissioned by Rolls-Royce (Aerospace) to demonstrate how their 

traditional safety justification format (using Failure Modes and Effects Analysis – 

FMECA – tables) could be translated into goal-structured form.  The resultant goal 

structure patterns are shown in Figure 105 and Figure 106. 

G1

<ATA_Part> has no Hazardous or
Major failure effects which do not
have a satisfactory probability ranking

Acceptable Risk
Levels

C1Acceptable Risk
Provides: 
Definition of
'satisfactory' 

M1

<ATA_Part>
Description

Provides: 
Description of

Severity Categories

C2Severity
e.g. 
Hazardous
(Haz) 

Probability Categories

C3Probability
e.g. 
Probable (P) 
Remote (R) 

All Hazardous and Major Item
failure effects are Extremely
Remote or Remote

G2

All Minor Item failure effects
are less than Probable

G3

Argument over each item
within <ATA_Part>

S1

G4

Failure modes of <Item> lie
within acceptable prob/sev
limits

G6

No reasonable failure of
<Item> is envisaged

 

Figure 105 – Top Part of FMECA-to-GSN Pattern 
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G4

Failure modes of <Item> lie
within acceptable prob/sev limits

M2

Functions of <Item>

S2

Argument over failure modes identified
through consideration of general failure
mechanisms for individual elements in
the assembly of item

Failure modes identified
in <Item> FMECA

C5C4

General Failure
Mechanisms

General

Deformation
and Breakage;
Burning and

M3

Assembly of <Item>

<Item>
e.g.
Reference to
one of 

Functions of
As provided in
'Function'
section of Item

G7

Relief Claim / Argument for
<FailureMode>

Provides: 
<FailureMode>.prob 

<Item> FMECA row
for <FailureMode>

C6

G8

Indication of this failure mode
provided by
<FailureMode>.ind

G9

MSG Level for
<FailureMode> set at
<FailureMode>.msg

G5

Prob. of <FailureMode> leading to
<FailureMode>.effect is
<FailureMode>.prob, Sev. is
<FailureMode>.sev

Provides: 
<FailureMode> 

m

 

Figure 106 – Continuation of FMECA-to-GSN Pattern 

Having explained the GSN and patterning notation, upon presenting the patterns the 

three Rolls-Royce engineers involved quickly understood how goal structuring could be 

applied in their context.  They felt that it offered a more explicit presentation of the 

safety claims and claim structure that was implicitly presented in their FMECA tables.  

Their response provides positive evidence of the ability of the patterns to clearly 

communicate generic safety argument structuring issues and of the GSN to improve the 

clarity of presented safety arguments over tabular formats. 

6.3.3.3 Safety Case Patterns: Case Study 

As described in Chapter Five, a number of Safety Case Patterns have been identified 

and extracted from real-world safety cases and safety standards (e.g. the ALARP 

pattern).  Many of these patterns have been documented and presented in the pattern 

catalogue presented as Appendix B of this thesis. 
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The emphasis so far in the patterns work has been on capturing and documenting best 

practice safety arguments observed within existing safety cases.  Consequently, there 

has been less evaluation of the application of documented patterns in new safety cases.  

However, the ALARP pattern presented in Appendix B was used as the basis of an 

argument constructed for a case study conducted for the U.K. Ministry of Defence 

(evaluating possible application of the ALARP principle to software systems) [101].  

Also, the instances of the Diverse Evidence, Fault Tree and Safety Margin patterns 

presented in Appendix B (developed from personal experience) can be identified within 

the Trip System safety argument presented in Appendix A. 

Experience from the ALARP and Trip System Examples has strongly suggested that 

documented patterns should be used as advisory material in the structuring of new 

arguments.  The structures documented within the Safety Case Patterns should not be 

viewed as definitive solutions, instead they should be used to inspire and guide new 

structures.  In this sense, Safety Case Patterns probably follow the intent of Alexandrian 

patterns [72] more closely than software Design Patterns [82].  The patterns have also 

been found to serve well as a reference point (e.g. in the case of ALARP arguments) for 

checking the quality and completeness of new structures.  Put another way, they have 

been found to form a useful basis for guiding review of safety cases. 

6.3.3.4 Safety Case Patterns: Pilot Industrial Application 

The author is currently involved in a study for Rolls-Royce Marine Power to develop a 

set of Safety Case Patterns capturing successful arguments of compliance against the 78 

safety principles listed in the U.K. Ministry of Defence Safety Principles and Criteria 

for the Nuclear Naval Programme [98].  This work has involved studying a number of 

existing compliance arguments for different classes and levels of equipment – e.g. for 

an overall site down to individual components – and attempting to extract and document 

the essential principles and structure of the arguments as Safety Case Patterns.  A 

number of these Safety Principles Safety Case Patterns have been developed, including 

the following: 

• Overall Safety Principles Compliance Pattern 

• Safety Principle 6 (Defence in Depth) Compliance Pattern 

• Safety Principle 7 (Accident Prevention) Compliance Pattern 

• Safety Principle 8 (Accident Mitigation) Compliance Pattern 
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• Safety Principle 22 (Plant Process Control Systems) Compliance Pattern 

• Safety Principle 24 (Reliability Targets) Compliance Pattern 

(Unfortunately, owing to the security classification of this material, only the Safety 

Principle 6 pattern has been presented in Appendix B)  Although a thorough peer review 

of these patterns has not yet been carried out, they have been used in workshop sessions 

(with groups of engineers within Rolls-Royce Marine Power) to aid in the construction 

of new safety arguments.  For example, the Defence in Depth pattern has been presented 

and used to guide the structure developed, after identification that it applied to the 

system in question. 

Feedback from those engineers who have been exposed to the patterns has suggested 

that there are three principal benefits of the patterns: 

• As exemplar goal structures, they serve as a teaching aid to those unfamiliar with 

the GSN. 

• They help to prevent the engineers from omitting (or glossing over) aspects of the 

compliance arguments. 

• They speed up the process of developing new safety arguments by reducing time 

spent in identifying an approach to structuring the argument. 

There have also been some difficulties identified with the patterns developed.  The 

safety principles expressed in [98] are generically applicable across a wide range of 

systems, and at a number of levels in the system decomposition.  As such it has been 

found that the unique interpretations of the principle offered by the patterns developed 

can be difficult to apply in some circumstances (e.g. if attempting to apply at component 

level a pattern that has been developed at ‘whole system’ level).  Consequently, it has 

been recognised that a number of patterns may need to be developed for each principle 

– representing the different styles of interpretation possible.  However, this can be seen 

to be of value as it is making explicit the fact that there are multiple valid interpretations 

of the principle. 

6.3.3.5 Safety Case Patterns: Real Industrial Application 

To some extent, the pilot project described in the previous section is also a true 

industrial application.  However, Safety Case Patterns have yet to be integrated as part 

of the safety argument development on a live project. 
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Others have already adopted the concept of Safety Case Patterns, as published in [95], 

for use in their research work.  An MSc thesis entitled ‘Patterns for Safety Critical 

Systems’, written by Born [102], has integrated the Safety Case Patterns concept with 

conventional Design Patterns. 

6.4 Summary of Evaluation To Date 

As is hopefully communicated by Section 6.3, the author has been fortunate in being 

able to evaluate the approach defined within Chapters Three, Four and Five of this 

thesis through exposure to industrial practitioners and application on industrial 

examples and projects.  Of the three strands of research the GSN Method and approach 

to supporting incremental development has been most thoroughly evaluated.  Owing to 

the nature of the approach, and time limitations, use of GSN Support in safety case 

maintenance has received least evaluation of the three areas. Safety Case Patterns have 

had substantial evaluation – the presentation of further patterns appears only limited by 

the time required to document them fully! (new candidate patterns are identified 

regularly).  One area lacking is experience of the re-application of patterns.  However, 

as described in Section 3, the patterns have already served one purpose by providing a 

means of simply presenting safety argument construction knowledge. 

6.5 Further User Evaluation 

As described in the introduction to this chapter, in addition to demonstrating the 

feasibility of the approach defined in this thesis (as reported in sections 6.1 and 6.2), it 

is desirable that user evaluation be carried out to demonstrate the positive benefits 

achieved through adopting the approach.  In order to do this it is necessary to derive a 

number of success criteria (or ‘critical success factors’) for the approach. 

Use of thesis approach
provides benefit in safety
case development

BenefitClaim

Use of thesis approach improves
the quality of the safety cases
produced

ProductClaim

Adoption of the thesis
approach improves the safety
case development process

ProcessClaim

 

Figure 107 – Thesis Benefit Argument 
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Figure 107 shows the overall claim that adopting the approach presented in this thesis 

provides benefit in safety case.  This claim can be broken down into two sub-claims.  

The first sub-claim is that the approach improves the processes of safety case 

development. The second sub-claim is that the approach improves the quality of the 

safety case product.  We will address the process argument first. 

Adoption of the thesis
approach improves the safety
case development process

ProcessClaim

OverElements

Argument over the three
elements of the approach

ThesisApproachElements

Elements are: Support for Initial
Development, Support for

Maintenance, and Support for
Reuse

Adoption of the thesis
approach improves the
initial development process

InitDevelopmentProcess

Adoption of the thesis
approach improves the
maintenance process

MaintenanceProcess

Adoption of the thesis
approach improves the reuse
process

ReuseProcess

 

Figure 108 – Thesis Process Benefit Argument 

Figure 108 decomposes the process benefit claim over the three elements of the thesis 

approach – i.e. we are arguing an overall benefit in the process through benefits in the 

specific processes of development, maintenance and reuse.  These general claims can 

now be decomposed to specific success criteria.  Figure 109 shows the derivation of 

success criteria for improvement in the development process.  The following three 

specific claims are put forward for the thesis approach (regarding the development 

process): 

• Quicker Development 

• Reduction in Rework 

• Reduction in Iterations to Agreement (e.g. between developer and independent 

safety assessor, or developer and regulator) 
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Adoption of the thesis
approach improves the initial
development process

InitDevelopmentProcess

QuickerDevelopment

Adoption of thesis approach
results in the quicker definition
of safety arguments

ReduceRework

Adoption of thesis approach reduces
effort wasted in design rework due to
late discovery of certification
concerns 

ReduceIterations

Adoption of thesis approach reduces
effort wasted in excessive iterations of
reaching agreement on argument
approach

 

Figure 109 – Development Process Success Criteria 

Similarly, the maintenance claim can be decomposed to the criteria shown in Figure 

110. 

Adoption of the thesis approach
improves the maintenance
process

MaintenanceProcess

Adoption of the thesis approach
reduces the time required for
safety case maintenance activities

QuickerMaintenance SystematicMaintenance

Adoption of the thesis approach
improves the effectiveness of
safety case impact assessment

ReduceRediscovery

Adoption of the thesis approach
reduces the time required to
'rediscover' safety arguments in
historical safety cases

ReduceImpactIdentification

Adoption of the thesis approach
reduces the time required to identify
the impact of changes to the safety
case

 

Figure 110 – Maintenance Process Success Criteria 

Figure 110 shows that the following three specific claims are put forward for the thesis 

approach regarding the maintenance process: 

• Reduction in the time required to rediscover the arguments in existing safety 

cases 
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• Reduction in the time required to identify the impact of changes to the safety 

case 

• Improvements in the effectiveness of the impact assessment process 

Figure 111 shows the derivation of the reuse related process criteria. 

Adoption of the thesis approach
improves the reuse process

ReuseProcess

QuickerDevelopment

Adoption of thesis approach
results in the quicker definition
of safety arguments

Adoption of the thesis approach
reduces the potential for the (process)
problems of informal safety case
reuse

ReducesReuseProcessProblems
InformalReuseProblems

The Problems of Informal
Safety Case Reuse

(Chapter 5, Section 5.2)

ReduceAdhoc

Adoption of the thesis approach
reduces the ad-hoc nature of
safety case reuse

ReduceLossOfKnowledge

Adoption of the thesis approach
reduces the risk of losing vital
safety case development expertise

 

Figure 111 – Reuse Process Success Criteria 

Figure 110 shows that the following three specific claims are put forward for the thesis 

approach regarding the reuse process: 

• Quicker Development (as also stated in Figure 109) 

• Reduction in ad-hoc reuse of safety case artefacts 

• Reduction in risk of losing safety case development expertise 

The claim that the thesis approach benefits the safety case product can similarly be 

decomposed.  Figure 112 shows the first part of this decomposition (again over the three 

strands of the thesis approach). 
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Use of thesis approach improves
the quality of the safety cases
produced

ProductClaim

Adoption of the thesis
approach improves the quality
of  the future safety cases

ReusedProduct

Adoption of the thesis
approach improves the quality
of  the maintained safety case

MaintainedProduct

Adoption of the thesis
approach improves the quality
of the initial safety case

InitialProduct

ThesisApproachElements

Elements are: Support for Initial
Development, Support for

Maintenance, and Support for
Reuse

OverElements

Argument over the three
elements of the approach

 

Figure 112 – Thesis Process Benefit Argument 

These general claims can now be decomposed to specific success criteria regarding the 

product of the safety case.  Figure 109 shows the derivation of success criteria for 

improvement in the developed product. 

Adoption of the thesis approach
improves the quality of the initial
safety case

InitialProduct

ClearerArguments

Adoption of the thesis approach
results in  more clearly
communicated safety arguments

 

Figure 113 – Developed Product Success Criteria 

The following claim is put forward: 

• More clearly communicated safety arguments 

Figure 114 shows the derivation of the maintenance related product criteria. 
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Adoption of the thesis approach
improves the quality of  the
maintained safety case

MaintainedProduct

AccurateUpdate

Adoption of the thesis approach
results in the safety case being more
accurately and completely updated in
the light of a change

 

Figure 114 – Maintained Product Success Criteria 

The following claim is put regarding the quality of safety cases maintained using the 

thesis approach: 

• More accurately and completely updated safety cases 

Figure 115 shows the derivation of the reuse related product criteria. 

Adoption of the thesis approach
improves the quality of  the
future safety cases

ReusedProduct

InformalReuseProblems

The Problems of Informal
Safety Case Reuse

(Chapter 5, Section 5.2)

Adoption of the thesis approach
reduces the potential for the (prduct) 
problems of informal safety case
reuse

ReducesReuseProductProblems

ReducesInappReuse

Adoption of the thesis
approach reduces
inappropriate safety case reuse

ReducesInconsistency

Adoption of the thesis approach
reduces inconsistency of
arguments between safety cases

ImprovesTraceability

Adoption of the thesis approach
improves the traceability of
reused safety case arguments

 

Figure 115 – Reused Product Success Criteria 

Figure 115 shows that the following three specific claims are put forward for the thesis 

approach regarding ‘reused’ safety cases: 
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• Reduction in inappropriate safety case reuse 

• Reduction in inconsistency of arguments between safety cases 

• Improvement in the traceability of reused safety case arguments 

The undeveloped leaf goals (claims) of the goal structure presented in Figure 107 

through to Figure 115 represent the success criteria against which the thesis approach 

can be assessed.  Whereas the evaluation presented in sections 6.1 and 6.2 sought to 

demonstrate the feasibility and acceptability of the approach, further evaluation can now 

be focussed towards collating evidence to substantiate the specific success criteria.  For 

example, the following two forms of evidence could be used to support the benefit 

argument: 

• Structured questionnaires for engineers experienced in safety case development who 

have used the approach 

• Project metrics 

Questionnaires could be structured around the leaf goals given in the goal structure 

shown in Figure 107 through to Figure 115.  For each leaf goal a response could be 

solicited from the practitioner.  For example, for the ‘QuickerDevelopment’ claim in 

Figure 109, the following question could be posed: 

 

 QuickerDevelopment 

Consider the following statement: 

“Adoption of the GSN Approach results in the quicker definition of safety arguments” 

Do you: 

 Strongly Disagree       Strongly Agree 

 1 2 3 4 5 6 7 8 9 10 

 

Where appropriate a follow-on question could be posed regarding the estimated extent 

of the improvement, e.g.: 
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Continued QuickerDevelopment 

What percentage reduction in time-scales do you estimate can be achieved through 

adoption of the GSN approach? 

 Low         High 

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

 

The value of the (subjective) answers gained from asking such questions depends 

heavily on the experience of those being questioned.  Therefore, it would also therefore 

be important to collate information regarding the experience of the questionnaire 

subjects, e.g. through a question of the following form: 

 

 SCDExperience 

How many years experience of safety case development have you had? 

 0-2  2-5  6-10  10-15  16+ 

 

For more objective evidence to support the claimed benefits of approach it would be 

necessary to collect project metrics.  For each of the identified success criteria we would 

need to identify an appropriate metric.  In some cases, the appropriate metric would be 

easy to determine.  For example, for the ‘QuickerDevelopment’ claim the appropriate 

metrics would be the elapsed time and resource used on the safety argument definition 

task.  For others the choice of metric would be harder to determine.  For example, it 

would be hard to define an appropriate metric to support the ‘ClearerArguments’ claim 

owing to the subjectivity involved in judging the clarity of an argument.  In this case an 

indirect, and therefore imperfect, measure would have to be used, e.g. the Length of 

Presentation (Number of Pages). 

The fundamental problem underlying the use of metrics to substantiate the success 

criteria lies in the relativistic nature of the claims.  We are claiming some improvement 

(e.g. quicker development) over current practice.  Therefore, we require not only 

metrics on the application of the approach, but also on the non-application of the 
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approach.  In an ideal world these metrics would be gained from running a project twice 

- once with the approach and once without the approach.  However, it is extremely 

difficult to get companies such as Rolls-Royce to conduct such a study (due to the effort 

involved).  Therefore in reality we will be forced to make comparisons of new projects 

that use the approach with similar (in terms of size, complexity, staff involved etc.) past 

projects run without using the approach. 

6.6 Conclusions 

This chapter has reported the successful evaluation activities so far carried out 

demonstrate the feasibility and acceptability of the approach defined in Chapters Three, 

Four and Five of this thesis.  In addition we have indicated how further evaluation of the 

benefit of the approach could be conducted.  Although it is has not been possible to 

conduct this form of evaluation within the time-scale of the doctoral programme, we 

believe that the approach has already been shown to be both a valid and capable tool for 

safety case management. 
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Chapter 7:  

Conclusions 

7.1 Concluding Remarks 

This thesis has defined and demonstrated a coherent approach to the development, 

presentation, maintenance and reuse of the safety arguments within a safety case.  This 

approach is based upon a graphical technique – the Goal Structuring Notation (GSN).  

Specifically, the contribution of the research presented in this thesis lies in three areas: 

• Definition and evaluation of a method for the use of the GSN, and description 

of an approach to supporting incremental safety case development. 

• Definition and evaluation of a systematic process for the maintenance of a  

GSN-structured safety argument. 

• Definition and evaluation of Safety Case Patterns – a means of supporting and 

promoting the reuse of successful safety arguments between safety cases. 

The following sections draw some conclusions from each of these elements of the 

research. 

7.1.1 Conclusions on the Presentation and Development Contribution 

In Chapter Two other existing approaches to presenting safety arguments are surveyed.  

It is important to note that the work presented in this thesis pre-dates many of the 

alternative approaches described.  In some cases the principles underlying the approach 

are believed to have influenced these approaches (this is known to be true, for example, 

for the ‘Claim Structures’ presented in DS 00-55 [9, 37]). 

Although these alternative approaches share the fundamental intent of communicating 

clear safety arguments with the approach defined in this thesis in Chapter Three and 

[57], their expressive power is not as great, and neither have they been subject to the 

same extensive evaluation.  In some cases (e.g. Tabular Presentation), the author’s 

observation of examples of their application suggests that they can still suffer some of 

the same problems of ambiguity and comprehension as experienced with free-form text. 

As shown by some of the early experiences of presenting safety arguments using the 

Toulmin notation [42] there is an important trade-off to be recognised between 
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expressive power and ease of adoption.  A technique may have great expressive power, 

but if it proves too complex to be easily understood and adopted by engineers for use on 

real projects it is of little value.  Conversely, a technique may be extremely easy to 

adopt, but may offer little added value in its presentation of safety arguments.  The 

method defined in [57] has attempted to strike the correct balance between these two 

considerations.  In particular, the research has aimed to minimise unnecessary 

complexity – resulting in some simplification of the original GSN concepts. 

The capability of the technique to handle realistic industrial examples has been 

demonstrated through the evaluation activities described in Chapter Six.  Here the 

observations from its exposure to a significant and representative population of 

engineers show that value is added when the technique is adopted.  The successful 

adoption of the GSN method on industrial projects has also enabled me to gain 

confidence that the techniques can be understood and utilised by others than myself. 

7.1.2 Conclusions on the Maintenance Contribution 

The key contribution made by the maintenance approach presented in Chapter Four is 

the definition and evaluation of a systematic process for the maintenance of safety 

arguments where no such systematic process previously existed.  None of the alternative 

approaches described in Chapter Two has been developed to the point at which any 

explicit support for the maintenance of safety arguments has been defined. 

7.1.3 Conclusions on the Reuse Contribution 

The concept of Safety Case Patterns described in Chapter Five, to support the managed 

reuse of safety arguments, is particularly novel.  No comparable approaches appear to 

exist.  Evaluation of Safety Case Patterns in an industrial context has shown them to 

achieve their intended purpose, and to be readily accepted and applied by practitioners. 

7.1.4 Overall Conclusions 

The presentation and management of safety arguments will always be an aspect of 

safety case development where total objectivity is unattainable and subjectivity must 

therefore be expected and managed.  (This is due to the nature of claim and inference 

and human creativity in using such devices). This thesis has aimed to define an 

approach in which subjectivity has been reduced to a realistically low level, whilst 

providing sufficient expressive power to support the activities of safety case 

development, maintenance and reuse.  Evaluation of the approach has also exhibited 
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that subjectivity is correctly restricted to, and highlighted in, the details of the 

arguments presented, rather than appearing in the mechanisms through which they are 

presented. 

It is recognised that the management of safety arguments is only one aspect of the 

overall management of the safety case.  (Other important aspects include the selection 

and management of supporting evidence techniques, hazard log management and 

configuration management of the complex document structures produced).  However, as 

described in Chapter One, the presentation of a clear, comprehensive and compelling 

safety argument remains the prime objective of any safety case.  It is for this reason that 

this thesis can be claimed to have addressed issues that are at the heart of the safety case 

management process. 

7.2 Further Work Areas 

During the course of the research a number of areas worthy of further investigation have 

been identified, these include: 

• Application of GSN approach and method to other (non-safety) domains 

• Development of Anti Safety Case Patterns 

• Expression of Safety Case Architectures using Safety Case Patterns 

• Systems engineering process issues surrounding Safety Case Patterns 

• Integrating Bayesian Belief Networks with the GSN approach 

• Augmentation of the change process to include version management and integration 

with conventional documentation configuration management 

• Tighter interrelation of pattern instantiation and change process 

• Additional (alternative) syntax rules within the GSN method 

A brief introduction to the further work possible in these areas is presented in the 

following sections. 

7.2.1 Application of GSN to other (non-safety) domains 

It has been suggested many times that the Goal Structuring Notation and Method could 

equally usefully be applied in articulating and managing arguments within other 
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domains.  In particular the following possible applications have been suggested to the 

author: 

• Expressing and Maintaining Design Intent – it has been suggested that goal 

structures be developed to represent how design objectives have been decomposed 

and eventually satisfied by introducing particular design features or by taking 

particular design decisions.  Having developed this structure, the principles of 

change management could be used to ensure that design intent is maintained 

throughout the operational life of the design. 

• Use in expressing corporate research / capability acquisition strategy – it has 

been suggested that overall corporate objectives be expressed as goals.  Goal 

structuring could then be used to show how these objectives have been decomposed 

and addressed through particular programmes and projects 

• Use in a management consultancy process  - ‘Issue’ diagrams are often 

constructed as part of a conventional management consultancy process.  These 

diagrams are used in part to express arguments in support of decisions.  It has been 

observed that in the absence of syntax rules and a systematic basis for the expression 

of such arguments, and without any pressure to provide evidence for statements, the 

arguments presented are often ill-expressed and unfounded.  For this application it 

has been suggested that statements of decision and intended effect be expressed as 

top goals with the supporting goal structure being used to express the reasons why 

this decision can be expected to have this effect (and the evidence to support these 

claims). 

The work presented in this thesis has focussed on the use and evaluation of GSN in 

supporting safety case arguments.  However, investigating its wider application in the 

above areas remains an interesting area for further work. 

7.2.2 Anti Safety Case Patterns 

The concept of Safety Case Patterns presented in Chapter Five was developed in order 

to capture and promote examples of ‘best practice’ safety arguments.  However, it 

would also be interesting to develop the concept of ‘anti-patterns’ that communicate 

weak or flawed safety arguments – such that they may be recognised and avoided in 

future developments.  Such patterns could be used as a basis for challenging existing 

safety cases – i.e. by identifying recognised anti-patterns within the argument presented.  
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Such anti-patterns would be useful tools for safety case reviewers, and would offer more 

stringent guidance than checklists or rules on the wording of goals and other elements of 

GSN arguments. 

7.2.3 Safety Case Architectures using Safety Case Patterns? 

Building on the concept of Safety Case Patterns, it would be interesting to investigate 

how patterns can be composed together to form architectural solutions to constructing 

overall safety case arguments.  This work may involve developing the concept of meta-

patterns – i.e. patterns that describe the application of patterns. 

7.2.4 Safety Case Patterns – Process Issues 

With the further industrial application of the Safety Case Patterns concept, issues arise 

concerning how patterns can best be integrated into a total engineering process.  In 

particular, when and how should patterns be introduced into new development activities 

such that they can provide maximum benefit without stifling the creation of (equally or 

more useful) alternative approaches? 

It would also be worthwhile to examine the relationships that exist, or could be 

developed, between Safety Case Patterns and other existing (or future) forms of 

engineering patterns (e.g. software Design Patterns).  Relating patterns in this way 

would begin to communicate the interrelationships that exist between different 

development viewpoints (e.g. recognition that adoption of a particular design strategy 

implies an associated safety argument approach). 

7.2.5 Integrating Bayesian Belief Networks with the GSN approach 

Bayesian Belief Networks (BBNs) were described briefly in chapter 2.  Whereas GSN 

provides a means of presenting (essentially unweighted) inferences between the claims 

of a safety argument, BBNs provide a means of deriving, modelling and quantifying the 

belief in the inferences between claims.  Some initial thought has been given to how 

these two techniques relate.  This has led to the belief that a BBN used to derive a 

quantitative claim (from qualitative or quantitative evidence) has a corresponding GSN 

pattern.  This pattern would present the ‘output’ claim supported by the ‘input’ claims 

of the BBN, justified by the causal links and the conditional probabilities given in the 

BBN.  Further work could be done to explore this belief.  
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7.2.6 Augmentation of Change Management 

The change management process defined in Chapter Four presents the rudimentary 

steps of change management as an illustration of how the GSN can be used to support 

systematic impact assessment.  It would be possible to extend the fine-grain 

configuration management approach so that it became a fine-grained version 

management approach that enabled the development and maintenance of audit trails 

over the goal structure, for example.  Some tentative work by the author in this area has 

revealed the potential complexity of the mechanisms required, but it nonetheless 

remains an area worth further investigation. 

7.2.7 Interrelation of Patterns and Change Management 

The instantiation of Safety Case Patterns within a new safety case development has a 

correspondence with the change management principles proposed.  In the same way that 

a challenged goal structure must go through the process of repair and recovery, an 

instantiated pattern must be reconciled with its target context.  The process of 

reconciliation is analogous to challenging all the peripheral elements of the pattern.  

Further work could be done to explore and define the relationship that exists between 

the activities of reuse and change – possibly leading to a simpler and more powerful 

process. 

7.2.8 Alternative syntax rules within the GSN method 

As already discussed in the previous chapter, evaluation of the GSN method has 

identified that, although the syntax rules as defined achieve the desired intention of 

restricting the phrasing of goal structures such that well-formed and logical arguments 

result, they may be overly restrictive – denying other valid sentential structures.  Further 

study of English syntax and its use in argumentation could be undertaken to define 

additional syntax rules.  (However, there is a real risk that adding complexity to the 

method could make it harder for practitioners to adopt.) 

7.3  Coda 

The ultimate ‘proof’ of the approach defined within this thesis would be that safer 

systems have resulted.  Although evaluation has already been extensive, there is no 

direct evidence of this as yet, simply because to collate and correlate such evidence 

requires more prolonged industrial exposure, and in particular more elapsed time, than 

is possible within the confines of a Doctoral programme.  Nevertheless, conclusions 
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from the research to date, and the level of interest shown by both industry and 

certification bodies, suggest that it is not unrealistic to expect this level of contribution 

in the long run. 
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Appendix A:  

Nuclear Trip System Safety Case Example 

This appendix illustrates the use of the Goal Structuring Notation in the construction 

and presentation of a safety case.  The technical basis of the safety case and textual 

description has been taken directly from an example produced by Adelard - presented in 

[36].  Goal structures have been integrated with this information to communicate the 

implicit structure explicitly and to improve the traceability of the safety argument.   The 

safety case concerns a reactor trip system.  As far as possible, the intention has been to 

present requirements and safety arguments that are similar to those for real reactors. 

Italics have been used to highlight text that has come directly from the Adelard 

example.  This shows clearly that we have used the Adelard text primarily to provide 

the system description and description of supporting evidence.  The presentation of the 

safety requirements and safety arguments (goal structures and supporting text), although 

based upon the argument communicated in the Adelard example, has been generated 

anew. 

In the Adelard example, three key devices were used to communicate the flow of the 

safety argument: 

• Traceability Matrices (mapping requirements to design features) 

• Tabular Arguments 

• Cross-references within safety case text 

In this example, we have instead used goal structures as the principal device for 

presenting the safety arguments.  Discussion of the perceived benefits of adopting this 

approach with this example is presented in Chapter Three, Section 3.10. 

The goal structures presented in this appendix have been constructed according to the 

goal structuring method defined in [57]. 

We have also used this safety case as the basis of two change examples given in Chapter 

Four, Section 5, and to illustrate instances of some of the safety case patterns presented 

in Appendix B.  Footnotes are used to highlight instances of patterns that can be 

observed in the safety argument. 
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A.1 Introduction 

A.1.1 Background 

(The following section is taken from ‘Nuclear Reactor Engineering’ [103].) 

Nuclear power generators are designed to produce heat to satisfy the demand for steam 

by a turbine generator, up to a specified limit. The reactor control system, with its 

automatic and manual controls, serves to maintain safe operating conditions as the 

demand is varied. Because excess cooling capability is provided in the design of the 

reactor system, overpower can be tolerated without causing damage to the fuel rods. If 

the thermal power should exceed the limiting value or if other abnormal conditions 

which might endanger the system should arise, the reactor protection system would 

cause reactor trip (or "scram"). 

The purpose of the protection system is to shut the reactor down and maintain it in a 

safe condition in the event of a system transient or malfunction that might cause damage 

to the core, most likely from overheating. If sensors indicate a transient that cannot be 

corrected immediately by the control system, the reactor is shut down automatically by 

the protection system. 

An essential requirement of the reactor protection system is that it must not fail when 

needed; on the other hand, unnecessary trips must be avoided for availability / economic 

reasons. 

A reactor trip (or primary protection) system forms just one part of the (‘defence-in-

depth’) accident prevention measures taken in a typical reactor. Other measures include 

emergency cooling, the containment offered by the reactor pressure vessel and reactor 

housing, and fans and sprays to prevent over-pressurisation of the reactor coolant 

circuits. 

A.1.2 Objective & Scope 

The objective of this document is to present the argument that the trip system design as 

proposed is acceptably safe to operate as part of the overall safety measures in the 

nuclear reactor. 

This safety case addresses primarily the design of the trip system.  Safety arguments 

addressing the safety of the procedures surrounding the operation and maintenance of 

the system are assumed to be outside the responsibility and scope of this document.  

However, this document does appeal to the existence of such arguments.  The safety 
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case also assumes a design for the broader reactor system and the results of hazard 

analysis at this level to set the probabilistic failure targets used.  The derivation and 

justification of such information is outside the scope of this example. 

As discussed in Section 16, the safety objectives laid out in this document can be further 

apportioned to the subsystems of the system architecture presented.  However, this is 

beyond the scope of this document. 

A.1.3 Document Structure 

Section 2 of the document provides contextual information concerning the environment 

in which the trip system is placed. 

Section 3 sets out the approach that has been adopted in the presentation of the high 

level safety argument for this system. 

Section 4 defines the principal hazards of the trip system. 

Section 5 presents the requirements that have been defined for safe operation. 

Section 6 provides an overview of the trip system design – highlighting the key design 

features. 

Appealing to the safety aspects of the design presented, Sections 7 through 11 present 

the safety arguments in support of the requirements defined in Section 5. 

Process evidence required in support of the safety arguments is discussed in Section 12.  

Summaries of the supporting evidence and analysis developed to support the safety 

claims are presented in Sections 13, 14 and 15. 

The apportionment of the safety objectives set out in this document is discussed in 

Section 16. 

Finally, overall conclusions on the safety of this system design are presented in Section 

17. 

A.2 Trip System Environment 

A.2.1 The Plant 

The plant is a gas-cooled nuclear reactor containing 400 fuel pins. Each pin is in a 

separate gas duct and is cooled by carbon dioxide gas, and if the gas flow is restricted 

in any duct the fuel pin could overheat and rupture. A reactor trip system is required to 

trip the reactor if an excessive temperature is observed in any duct. 
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A.2.2 Sensors and Actuators 

The temperature in each duct is measured by two thermocouples. The reactor trip is 

implemented by dropping safety rods into the reactor. 

A.2.3 Failure Modes 

The rod drop system is designed to be fail-safe – i.e. in case of power loss the control 

rods will drop into the reactor core. 

Thermocouples can fail to an open circuit state, to a short circuit state or gradually 

degrade. 

A.3 Safety Argument Approach 

The argument of acceptable safety presented in this document has been structured 

around the safety requirements defined for the trip system. 

As shown in the following figure, these requirements have been split into the following 

five categories: 

• Functional Requirements 

• Performance Requirements 

• Operational and Maintenance Requirements 

• Through-life Integrity Requirements 

• Safety Criteria 

Safe (Top)

S.FUNC

Argument over functional
requirements

S.PERF

Argument over
Performance Requirements

S.OPER

Argument over operational
and maintenance
requirements S.INT

Argument over
through-life integrity
requirements

S.CRIT

Argument over safety
criteria

Trip system is acceptably
safe to operate

Safe

Trip System
Environment

S2

S5

Trip System
Requirements

S1.2a

Scope

S1.2b

Acceptability defined by
whole reactor system

context

 

Figure 116 – Safety Objective (Safe) and Argument Strategy 
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The claim of acceptable safety is set clearly in the context of the scope as defined in 

Section A.1.2 and clearly linked to the definition of the trip system environment given 

in Section A.2.  Also as discussed in Section A.1.2, ‘acceptability’ is set by the overall 

reactor safety argument (not presented here). 

The Trip System Requirements are presented in detail in Section 5.  These requirements 

are then used as the basis of the arguments presented in sections 7-11. 

Both in Section 5 and the supporting Sections 7 to 11, goal structures have been used to 

summarise the structure of the argument being presented. 

A.4 Trip System Hazards 

Analysis of the trip function has determined that there are the following two principal 

system-level hazards of concern: 

• Failure to trip on demand 

• Tardy trip response to demand 

Performance requirements in respect of these two hazards are defined in Section 5.2. 

A.5 Trip System Requirements 

The following sub-sections define the requirements of a notional reactor trip system 

which has two thermocouple probes in each of the 400 individual reactor coolant ducts 

to detect overheating. 

A.5.1 Functional Requirements 
S.FUNC (Functional Requirements)

S.FUNC

Argument over functional
requirements

Trip system will correctly 
activate if the temperature is
too high in any gas duct

G.TRIP

 

Figure 117 – Functional Requirements (S.FUNC) 

The argument of having satisfied all functional requirements depends on having 

satisfied the one primary functional requirement of this system, that is the requirement 
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for the system to trip the reactor when detected temperatures becoming too high.  An 

argument in support of this requirement is provided in Section 7. 

A.5.2 Performance Requirements 
S.PERF (Performance Requirements)

S.PERF

Argument over
Performance Requirements

Probability of failure on
demand < 0.001 per annum

G.PFD

Maximum response time is
< 5 seconds

G.TIM

 

Figure 118 – Performance Requirements (S.PERF) 

The two performance requirements of the system concern the hazards identified in 

Section 4.  Namely, the hazards of failing to perform the trip function when required 

and a tardy response to trip demand.  For complete failure, a probabilistic requirement 

of 1x10-3 per annum has been set.  For tardy response, a response limit of 5 seconds has 

been defined.  It is necessary to demonstrate that these objectives can be supported. 

Arguments in support of these requirements are provided in Section 8. 

A.5.3 Operational and Maintenance Requirements 
S.OPER (Operational Requirements)

S.OPER

Argument over operational
and maintenance
requirements

Spurious Trip Rate < 0.1 per
annum

G.STR

MTTR (including
identification) =< 10 hours

G.FIX

Trip System must be
testable whilst on-line

G.TST

 

Figure 119 – Operational and Maintenance Requirements (S.OPER) 

The three operational requirements introduced here concern the following issues: 

• Spurious Trips (trips when not required) –an availability concern. 
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• Time Required for Fault Identification and Recovery (Mean Time To Repair 

MTTR) 

• Testability of System whilst continuing reactor operation. 

Arguments in support of these requirements are provided in Section 9. 

A.5.4 Through-life Integrity Requirements 
S.INT (Through Life Requirements)

S.INT

Argument over
through-life integrity
requirements

Trip system can be modified to meet
anticipated changes with minimal risk
of maintenance induced faults

G.UPD

Trip system can withstand
maintenance errors and
malicious attacks

G.SECS14.2

Anticipated Changes
Validity of the Safety Case will
be maintained throughout the
operational life of the system

G.VALID

 

Figure 120 – Through-Life Integrity Requirements (S.INT) 

The requirements introduced here concern the maintenance of the integrity of the trip 

system and (supporting safety case) throughout the operational lifetime of the system.  

The requirements address three separate concerns: 

• ‘Design-for’ maintenance aspects of the trip design – to minimise the difficulties in 

future maintenance. 

• Design (and procedural) safeguards against possible errors in future maintenance. 

• Vulnerability of the safety case evidence and argument to future system changes and 

the adequacy of safety case review procedures 

Arguments in support of these requirements are provided in Section 10. 
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A.5.5 Safety Criteria 
S.CRIT (Safety Criteria)

S.CRIT

Argument over safety
criteria

No single fault affects
availability

G.FAULT1

No two independent faults
affect safety

G.FAULT2

 

Figure 121 – Safety Criteria (S.CRIT) 

Whatever design solution is proposed, it is necessary that it satisfies the safety and 

availability criteria introduced in Figure 121.  It is desirable that the system can tolerate 

single failures without reducing the availability of the reactor.  It is also desirable that 

the system can tolerate two independent component failures (across the total trip 

system) without compromising the safety of the trip function.  Arguments that 

demonstrate how these criteria have been addressed in the design as proposed in the 

following section (Section 6) are given in Section 11. 

A.6 Trip System Design 

A system architecture has been evolved to satisfy the requirements introduced in Section 

5. The system architecture is shown below in Figure 122.  (PAC = Protection Algorithm 

Computer, DCL = Dynamic Check Logic.) 
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Figure 122 – Trip System Architecture 
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An explanation of how this design is intended to function is provided in the following 

sections. 

A.6.1 Redundant channels and thermocouples 

Since there are four channels, a single channel failure will not cause a spurious trip, 

similarly testing can proceed on a single channel without causing a trip. If two channels 

fail to no-trip, the safety function is still maintained. 

The 2oo4 (2 out of 4) channel voting reduces spurious trip rate in the presence of 

random failures. With only two thermocouples however special arrangements are 

needed to minimise the spurious trip rate due to thermocouple failures. If required, one 

sensor of a pair can be disconnected and tested without the need for a veto (discussed 

later). 

The four channels and dual thermocouples also reduce the risk of a failure on demand, 

and the risk of maintenance induced faults. 

A.6.2 Fail-safe design features 

Each Protection Algorithm Computer (PAC) produces a dynamic output signal which is 

checked by the Dynamic Check Logic (DCL) check hardware. This design continuously 

checks the integrity of the input/output and should be fail-safe if it encounters a 

systematic or random fault. This reduces the risk of a failure on demand due to an 

unrevealed fault and can aid fault detection. 

The DCL checks for an expected output trip pattern based on the injection of test 

signals as shown in Figure 123 below. A test signal is fed into each ADC input card 

(which is assumed to service 8 analogue inputs). Half the test inputs are connected to 

test source T1 and the other half to T2. The test sources T1 and T2 can produces values 

which should be just above and just below the trip level. The test values are swapped 

over by a test mode selector output from the DCL (the alternation occurs after a 

complete scan). The test signal inputs to the PAC are carefully chosen to ensure that a 

unique pattern of trip output signals is produced on alternate cycles. This checks the 

operation of the input hardware and the setting of the trip level. It also detects “stuck-

at” inputs because the DCL expects different trip patterns on alternate scans and will 

freeze if the wrong pattern is found. 
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Figure 123 – Dynamic Check Logic for a Reactor Trip Channel 

The integrity of the underlying computer hardware and compiler is checked using the 

reversible computing concept (see reference [104]). This is sensitive to both systematic 

faults and random failures in the hardware or faults created by the compiler and should 

result in a “freeze” which is fail-safe - it would also reveal malicious program 

modifications. Time overruns caused by infinite loops are also detectable by the 

reversible computing technique. 

A.6.3 Separate Monitor Computer 

This is an example of partitioning according to criticality. The more complex, but less 

critical diagnostic functions are performed on a separate system. This simplifies the 

design of the trip channel. Each channel provides: 

• software configuration data (limits, version numbers etc.) 

• measured values and trip results 

The monitor computer can be used for pre-start checks on the consistency of the 

software configurations in the four channels, and for on-line diagnosis of channel 

failures and failures of thermocouples. By comparing outputs from the channels it is 

possible to decide whether the fault resides in a channel or the thermocouple input 

system. It can also be used to monitor long term degradation of thermocouples. If these 

are severe, availability can be maintained by replacement or a “veto”. 

A.6.4 Simplicity 

The design has no intercommunication between channels and the A/D conversion is 

performed within the PAC. There is no need for interrupt handling or buffering so the 

software can be implemented as a simple cyclic program. This should be easy to test, 

verify and maintain. 



 252

Since the program is simple and cyclic, the worst-case response time is bounded, and 

the worst case time is readily determined via timing tests or code analysis. The time 

delays in the interfaces can also be measured to determine the overall response time. 

A.6.5 Formally Proved Software 

The simple cyclic program used within each PAC is amenable to formal proof. 

A.6.6 1oo2 (1 out of 2) High Trip Logic 

In order to minimise the risk of failing to trip on demand, either thermocouple reading 

high will trip the reactor. To reduce the spurious trip rate, this design imposes a fail-

low direction on the thermocouples and buffer amplifiers. A veto for a high-failing 

thermocouple forces the input low, but a double veto is fail-safe as it will cause a trip 

(see below). 

A.6.7 2oo2 (2 out of 2) Low Trip Logic 

To ensure that the system is fail-safe if both sensors fail, the system will trip if a 

thermocouple pair have readings well below the average sensor reading. This design 

can withstand a transient loss of a single sensor (e.g. for repair) or a low-reading 

sensor without using vetoes, this minimises the need for error-prone manual vetoes. The 

sensor comparison can assist in detecting failed sensors. 

A.6.8 Program and Trip Parameters in PROM 

The program and trip parameters are stored in separate PROMs so changes cannot be 

made without PROM-burning equipment and physical access to the machine. 

Configuration errors can also be revealed by the on-line test inputs, the outputs to the 

monitor computer and the periodic tests. This helps to ensure the intended trip function 

is performed and reduces the risk of a failure on demand or a spurious trip. 

A.6.9 Modular Hardware Replacement 

Plug in cards reduce the repair time. Simple input-output interfaces can be easily 

upgraded to accommodate new types of sensor. 

A.6.10 Use of Mature Hardware and Software Tools 

This reduces the risk of systematic faults within the system. This is an example of 

avoidance of novelty. 

A.6.11 Access Constraints 

To limit the scope of maintenance error, all equipments are locked and can only be 
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accessed using the appropriate key (different for each channel). All plugs and sockets 

are uniquely identified or physically different to prevent misconnection. An indicator 

light is used to show the operators when a cabinet is unlocked. 

A.7 Functional Arguments 

The objective of this section is to demonstrate how the functional requirements 

introduced in Section A.5.1 are supported through the design features described in 

Section A.6.  The following goal structure (Figure 124) summarises the argument put 

forward in support of the functional requirement G.TRIP.  The dependency of the 

safety claims on the design features is communicated through use of context references.  

For example, G.TRIP.FP is put forward in the context of the design feature described in 

Section A.6.5 ‘Formally Proved Software’. 

G.TRIP

Design Simplicity assists in
the test and verification of
trip function

G.TRIP.DS

Software has been formally
proven to perform trip
function as specified

G.TRIP.FP

S6.4

Design Simplicity

S6.5

Formally proved
software

Program and trip parameters are
maintained in separate PROMs minimises
risk of introducing failures into trip
function

G.TRIP.PROM 

S6.8

Program and Trip
Parameters in PROM

Mature hardware and software tools
have been used to minimise the risk of
systematic faults within trip function

G.TRIP.MAT
S6.10

Mature Hardware and
Software Tools

Trip system will correctly 
activate if the temperature is
too high in any gas duct

G.TRIP

 

Figure 124 – Functional Arguments (G.TRIP) 

Confidence in the correct execution of the trip function is gained from the following: 
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• Formal Proof of the Software 

• Integrity of the Trip Software and Trip Limits by being kept on separate PROMS 

• Minimising Design Complexity 

• Use of ‘tried and tested’ hardware and software development tools 

A.8 Performance Arguments 

The objective of this section is to demonstrate how the performance requirements 

introduced in Section A.5.2 are supported through the design features described in 

Section A.6. 

A.8.1 Failure on Demand Argument (G.PFD) 

The following goal structure (Figure 125) summarises the argument put forward in 

support of the performance requirement G.PFD. 

G.PFD

Probability of failure on
demand < 0.001 per annum

G.PFD

Either thermocouple reading high
will trip the reactor (to minimise
risk of failing to trip on demand)

G.PFD.1002

Program and trip parameters are
maintained in separate PROMs
minimises risk of introducing failures
leading to failure to trip on demand

G.PFD.PROM

Mature hardware and software tools
have been used to minimise the risk of
systematic faults leading to failure on
demand

G.PFD.MAT

S6.1

Redundant Channels
and Thermocouples

S6.2

Fail Safe Design
Features

S6.5

Formally proved
software

S6.6

1oo2 high trip logic

S6.8

Program and Trip
Parameters in PROM

S6.10

Mature Hardware and
Software Tools

Failure per demand due to
random failures is less than
0.001 per annum

G.PFD.RAND

Software has been formally
proven to perform trip
function as specified

G.TRIP.FP

Failure per demand is less
than 0.001 per annum even
if there are systematic faults

G.PFD.SYST.1

Fail-safe design will ensure that
at least 90% of failures  due to
systematic faults are fail-safe

G.PFD.SYST.2

Risk of failure on demand due to an
unrevealed fault is reduced through
continuous on-line checks

G.PFD.FS

The four channels and dual
thermocouples reduce the
risk of a failure on demand

G.PFD.RED

 

Figure 125 – Failure on Demand Argument (G.PFD) 

Qualitative arguments that provide confidence in the claim of low probability of failure 

on demand are based on the following: 

• Appeal to the redundancy aspects of the design – even without supporting 

quantitative calculation the intuition is that this will improve system reliability. 
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• Formal proof of the software – reducing the probability of failure due to systematic 

errors in the software. 

• On-line checks that make sure faults are not hidden until trip function demanded. 

• Fail-safe nature of trip function 

• Integrity of the Trip Software and Trip Limits by being kept on separate PROMS 

• Use of ‘tried and tested’ hardware and software development tools 

Quantitative arguments that support the claim of low probability of failure on demand 

are based on the following: 

• Exceeding the failure probability target (by 101) with respect to random faults2 

• Meeting the failure probability target even when taking some account of systematic 

faults 

• Coverage of systematic faults by detection measures provided in design 

These quantitative arguments are expanded in the following three sections. 

                                                

2 The relationship between G.PFD.RAND and G.PFD is an instance of the ‘Safety Margin’ pattern 

discussed in Section 8.1 of Chapter Five and presented as a documented pattern in Appendix B.  Use of a 

margin at this point increases confidence in stating G.PFD and reduces vulnerability to later evidence 

and/or requirements change. 
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A.8.1.1 Random Failures (G.PFD.RAND) 
G.PFD.RAND

Failure per demand due to
random failures is less than
0.001 per annum

G.PFD.RAND

Hardware reliability analysis
supports fault tree estimates

G.PFD.REL

Probabilistic Fault Tree
Analysis estimates PFD to be
0.13 x 10-3 per annum

G.PFD.RAND.FTA

A1
Fault detection coverage

A

A2
Fail-safe bias of inputs

A

A3
Component failure rates

A

A4
Common mode factors

A

A5
Repair times

A

Systematic faults are
deemed to be incredible

G.NO-FLT

A12
Demand rate of 1 per

annum
A

S14.1

Probabilistic Fault
Tree Analysis

 

Figure 126 – Random Failures (G.PFD.RAND) 

The argument of having achieved 10-4 probability of failure on demand is primarily 

supported by the estimate derived from the Probabilistic Fault Tree Analysis 

summarised in Section 14.13.  As shown, this estimate is predicated on a number of 

significant assumptions (described in more detail in Section 14.1).  A peer claim to the 

fault tree estimate is that hardware reliability analysis shows, for example, the failure 

probabilities used within the fault tree to be reasonable. 

The fault tree is limited to consideration of random failures.  For the claim to be valid, it 

is used in conjunction with the argument that systematic errors are deemed to be 

extremely improbable (i.e. incredible).  This argument is expanded in the following sub-

section. 

                                                

3 This use of S14.1 to support the G.PFD.RAND.FTA claim is an instance of the ‘Fault Tree Evidence’ 

pattern presented in Appendix B. 
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Incredibility of Systematic Faults (G.NO-FLT) 

G.NO-FLT

Software has no
systematic faults

G.NO-FLT.SW

Hardware has no
systematic flaws

G.NO-FLT.HW

Established Design implies
there will be no systematic
hardware flaws

G.NO-FLT.HW.DES

Tests have not revealed any
systematic hardware flaws

G.NO-FLT.HW.TEST

A6

Inherent flaws will be
revealed and removed as a

result of extensive use A

Systematic faults are
deemed to be incredible

G.NO-FLT

A7

Requirements are correct

A

A8

Functional tests can reveal
all compiler induced faults

A

A9

Tests will reveal all miswiring
and mis-configuration

A

Code has been formally
proved

G.NO-FLT.SW.PRF

System has undergone
functional tests to reveal
compiler induced faults

G.NO-FLT.SW.TEST

 

Figure 127 – Incredibility of Systematic Faults (G.NO-FLT) 

The argument of incredibility of systematic faults presented in  

Figure 127 addresses faults both in hardware and software.  For hardware, the claim is 

supported by appeals to the use of an established design and having not detected any 

flaws in testing.  For software, the claim depends upon having formally proven the 

software and the use of tests to reveal systematic errors introduced (after the 

specification and coding stage) by the compiler.  The assumptions associated with these 

arguments are indicated in the figure. 

A.8.1.2 Systematic Failures (G.PFD.SYST.1 and G.PFD.SYST.2) 

The argument of having achieved 10-3 even when taking account of the possibility of 

systematic failure is supported through appeal to reliability tests performed using 

realistic test scenarios. This argument is depicted in Figure 128. 

The assumption underlying this argument is that the test scenarios used were 

sufficiently realistic that they exercised the majority of the trip system functionality.  

Therefore, systematic faults likely to be experienced in operation would have been 

revealed. 
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G.PFD.SYST.1

Failure per demand is less
than 0.001 per annum even
if there are systematic faults

G.PFD.SYST.1

10e-4 reliability tests using
representative trips without failure
give more than 99% confidence in a
PFD of 10e-3

G.PFD.SYST.1.TESTCONF
A7

Requirements are correct

A

A16
Trip scenarios used in

testing are realistic
A

Sn2

10e-4 Reliability
Tests

 

Figure 128 – Systematic Failures (G.PFD.SYST.1) 

G.PFD.SYST.2

Fail-safe design will ensure that
at least 90% of failures  due to
systematic faults are fail-safe

G.PFD.SYST.2

Flaws in ADC, application software,
configuration, trip limits and trip logic
will be revealed by dynamic on-line
tests

G.CHECKS

Compiler, loader and processor
flaws are protected against by the
reversible computing technique

G.FS-RC

Double thermocouple
disconnection or veto will
cause a trip

G.HTL.TRIP
A13

Thermocouples fail low
in 90% of cases

A

A14

On-line tests detect 90%
of systematic failures

A

A15

Tests indicate a 99.995%
fail-safe bias

A

 

Figure 129 – Systematic Failures (G.PFD.SYST.2) 

The argument supporting the claim of systematic fault detection and tolerance is based 

upon the following three particular design features: 

• The fail-safe trip behaviour in the event of low thermocouple readings. 
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• The protection against systematic compiler, loader and processor flaws offered by 

the use of the reversible computing technique. (This argument is expanded in [104].) 

• The use of dynamic on-line checks to continually monitor the behaviour of the trip 

system. 

A.8.2 Response Time Argument (G.TIM) 

The following goal structure (Figure 130) summarises the argument put forward in 

support of the performance requirement G.TIM. 

G.TIM

Maximum response
time is < 5 seconds

G.TIM

Design simplicity means that worst
case response time is bounded and can
be readily determined via timing tests
or code analysis

G.TIM.DS

S6.2

Fail Safe Design
Features

S6.4

Design Simplicity
Worst case response time
determined to be 2.7

G.TIM.STATIC

Worst measured time is
2.4 seconds

G.TIM.TEST
Excessive or infinite loops will
be detected by the reversible
computing implementation

G.TIM.FS

 

Figure 130 – Response Time Argument (G.TIM) 

This argument is based upon both the worst measured and worst statically analysed 

cycle times4.  Coupled with these claims is an appeal to the simplicity of the trip system 

design (use of a simple cyclic executive etc.) that was needed in order to make timing 

analysis and testing possible.  In addition, use of the reversible computer 

implementation makes it possible to reveal when the trip software may have gone into 

an infinite loop. 

                                                

4 The use of both G.TIM.STATIC and G.TIM.TEST to support G.TIM is an instance of the ‘Diverse 

Argument’ pattern discussed in Section 8.2 of Chapter Four and presented as a documented pattern in 

Appendix B.  Use of diverse argument at this point increases confidence in claiming G.TIM and reduces 

vulnerability to later evidence and/or requirements change (as shown in Section 5.1 of Chapter Four).  

The margin between the G.TIM requirement and the G.TIM.TEST and G.TIM.STATIC claims is also an 

example application of the ‘Safety Margin’ pattern presented in Appendix B. 
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The timing analysis and test arguments are expanded in the following two sections. 

A.8.3 Static Timing Analysis Argument (G.TIM.STAT) 
G.TIM.STATIC

Worst case response time
determined to be 2.7

G.TIM.STATIC

A10

Instruction times are
correct

A

A11

ADC conversions and
output time are correct

A

Static analysis used to
determined worst case path
through code

G.TIM.STATIC.1

Input / Output latency has
been determined

G.TIM.STATIC.2

Sn3

Satic Timing
Analysis Results

 

Figure 131 – Static Timing Analysis Argument 

The static timing analysis argument shown in Figure 131 makes it clear that the time 

given was based upon consideration of both the worst case path through the trip 

function code and the time delays introduced on the inputs to, and outputs from, the 

software.  Both these claims rely upon assumptions regarding underlying timing data. 

A.8.4 Timing Test Argument (G.TIM.TEST) 
G.TIM.TEST

Worst measured time is
2.4 seconds

G.TIM.TEST

Sn1

Timing test results

Execution time is
relatively constant

J1

J

 

Figure 132 – Timing Test Argument (G.TIM.TEST) 
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The argument in Figure 132 makes it clear that the worst measured response time is 

based upon timing test results.  Justification for this claim stems from the cyclic nature 

of the trip program and therefore that the execution time is relatively constant. 

A.9 Operational Arguments 

The objective of this section is to demonstrate how the operational requirements 

introduced in Section A.5.3 are supported through the design features described in 

Section A.6. 

A.9.1 Time to Repair Argument (G.FIX) 

The following goal structure (Figure 133) summarises the argument put forward in 

support of the time to repair requirement G.FIX. 

G.FIX

MTTR (including
identification) =< 10 hours

G.FIX

2oo2 low trip logic sensor
comparison assists in
detecting failed sensors

G.FIX.2002

Modular hardware
replacement reduces the repair
time

G.FIX.MOD

S6.2

Fail Safe Design
Features

S6.3

Separate Monitor
Computer

S6.7

2oo2 low trip logic

S6.9

Modular hardware
replacement

Separate Monitor Computer enables
on-line diagnosis of channel failures and
failures in the thermocouples

G.TST.SMC

Fault detection is aided by system
failing-safe if it encounters a
systematic or random fault

G.FIX.FS

 

Figure 133 – Time to Repair Argument (G.FIX) 

The argument in support of G.FIX is based upon the two strands of adequate fault 

diagnosis and ease of fix. The following claims are put forward in support of the 

revelation and diagnosis of faults: 

• Fail-safe behaviour – making it obvious when a fault is present 
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• On-line diagnosis offered by the Separate Monitor Computer –making it easy to 

identify the faulty element of the system. 

• Faulty sensor detection offered by the low trip logic. 

The argument of ease of fix is based on the modularity of the hardware – making it 

easier and quicker to replace an element of the system hardware that is found to be 

faulty. 

A.9.2 Spurious Trip Rate Argument (G.STR) 

The following goal structure (Figure 134) summarises the argument put forward in 

support of the spurious trip rate requirement G.STR. 

G.STR

Spurious Trip Rate < 0.1
per annum

G.STR

2oo4 voting over redundant
channels reduces the
spurious trip rate

G.STR.RED

Software has been formally
proven to trip ONLY when
required

G.STR.FP

2oo2 low trip logic design can withstand
a transient loss of a single sensor (e.g.
for repair) or a low reading sensor
without using vetoes

G.STR.2002

Program and trip parameters are
maintained in separate PROMs
minimises risk of introducing failures
leading to spurious trips 

G.STR.PROM

Mature hardware and software tools
have been used to minimise the risk of
systematic faults leading to spurious
trips

G.STR.MAT

S6.1

Redundant Channels
and Thermocouples

S6.5

Formally proved
software

S6.7

2oo2 low trip logic

S6.8

Program and Trip
Parameters in PROM

S6.10

Mature Hardware and
Software Tools

 

Figure 134 – Spurious Trip Rate Argument (G.STR) 

Although a quantitative requirement, this objective has been addressed through direct 

appeal to the following deterministic features of the design (in order of significance): 

• Voting to reduce vulnerability to single point failures 

• Ability of trip logic to withstand transient failures 

• Proof of software to trip only when required 

• Integrity of separate PROMs meaning that no new faults can be introduced 
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• Maturity of hardware 

A.9.3 Testability Argument (G.TST) 

The following goal structure (Figure 135) summarises the argument put forward in 

support of the testability requirement G.TST. 

G.TST

Trip System must be
testable whilst on-line

G.TST C1

Periodic on-line test
interval is 3 months

Redundant channels enable
testing to proceed on a single
channel without causing a trip

G.TST.RED

Separate Monitor Computer enables
on-line diagnosis of channel failures and
failures in the thermocouples

G.TST.SMC
S6.1

Redundant Channels
and Thermocouples

S6.3

Separate Monitor
Computer

 

Figure 135 – Testability Argument (G.TST) 

As presented in the goal structure, two facilities are in place to support testing of the trip 

system: 

• Ability to tolerate single channel failures – meaning that testing can proceed on a 

channel without impacting the operation of the whole system. 

• Provision of a Separate Monitor Computer that can diagnose discovered faults 

whilst the system is in operation. 

A.10 Through-life Integrity Arguments 

The objective of this section is to demonstrate how the through-life integrity 

requirements introduced in Section A.5.4 are supported through the design features 

described in Section A.6. 

A.10.1 Maintenance Error Argument (G.SEC) 

The following goal structure (Figure 136) summarises the argument put forward in 

support of the maintenance and security requirement G.SEC. 

Following shut-down and restart of the system, checks are initiated to ensure the 

consistency of the trip software.  These checks protect against errors in updating (or 

maliciously changing) the software across the four channels.  Application of the 

reversible computing technique will also highlight discrepancies in operation caused 

through individual program modifications. 
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Security against unintended or malicious modifications is provided through use of the 

separate PROMs.  Update of the software or trip limits becomes a definite action 

requiring physical access to the machine and PROM burning equipment.  This claim 

goes hand-in-hand with access controls put in place to limit access to the trip system 

equipment. 

G.SEC

Trip system can withstand
maintenance errors and malicious
attacks

G.SEC

Reversible computing
technique will reveal malicious
program modifications

G.SEC.FS

Separate monitor computer  performs
pre-start checks on the consistency of
the software in the four channels

G.SEC.SMC

Changes to trip parameters and logic
cannot be made without
PROM-burning equipment and
physical access to the machine

G.SEC.PROM

Equipment is locked and can only
be accessed using the appropriate
key (different for each channel)

G.SEC.AC

S6.2

Fail Safe Design
Features

S6.3

Separate Monitor
Computer

S6.8

Program and Trip
Parameters in PROM

S6.11

Access Constraints
Safeguards are in place for
all anticipated maintenance
and operational errors

G.SEC.SGS14.3

Anticipated
Maintenance Errors

 

Figure 136 – Maintenance Error Argument (G.SEC) 

In addition it is claimed that safeguards are in place against all anticipated maintenance 

errors.  The credible maintenance errors that have been identified are listed in Section 

A.14.3.  The argument supporting this claim is expanded in the following section. 
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A.10.1.1 Maintenance Safeguards (G.SEC.SG) 
G.SEC.SG

Safeguards are in place for
all anticipated maintenance
and operational errors

G.SEC.SG

Safeguards are in place to
protect against errors in Proof 
Testing

G.SEC.SG.1

Safeguards are in place to
protect against errors in Fault
diagnosis

G.SEC.SG.2

Safeguards are in place to
protect against errors in repair
activities

G.SEC.SG.3

Safeguards are in place to
protect against errors in
operating vetoes

G.SEC.SG.4

Safeguards are in place to
protect against errors in
refuelling

G.SEC.SG.5

S14.3

Analysis of
maintenance and

operations

 

Figure 137 – Maintenance Safeguards (G.SEC.SG) 

The argument shown in Figure 137 shows that five credible sources of maintenance 

error have been identified: 

• Proof Testing 

• Fault Diagnosis 

• Repair Activities 

• Use of Channel Vetoes 

• Refuelling 

The safeguards in place to support this argument are presented in Section A.14.3. 

A.10.2 Update Argument (G.UPD) 

The following goal structure (Figure 138) summarises the argument put forward in 

support of the update requirement G.UPD. 
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G.UPD

Trip system can be modified to meet
anticipated changes with minimal risk
of maintenance induced faults

G.UPD

Design simplicity means
that system can be altered
easily

G.UPD.DS

Simple input-output interfaces can
be easily upgraded to accommodate
new types of sensor

G.UPD.MOD

S6.1

Redundant Channels
and Thermocouples

S6.4

Design Simplicity

S6.9

Modular hardware
replacement

Separate storage of program and
trip Parameters in PROM  isolates
maintenance changes

G.UPD.PROM

Sufficient protection is in place
to prevent updates of data
introducing dangerous faults

G.UPD.DATA

S6.8

Program and Trip
Parameters in PROM

Sufficient protection is in place
to prevent updates of program
introducing dangerous faults

G.UPD.PROGRAM

All anticipated changes can
be accommodated by design
and safety case

G.UPD.AC

Redundancy in channels and
thermocouples reduces susceptibility
to maintenance induced faults

G.UPD.RED
S14.2

Anticipated Changes

 

Figure 138 – Update Argument (G.UPD) 

There are three aspects to the claims presented in Figure 138.  The first aspect of the 

G.UPD requirement is ease of modification.  In support of this, the following claims are 

put forward: 

• Overall design simplicity 

• Particularly, simplicity of input-output interfaces 

The second aspect is minimising the risk due to updates.  In support of this, appeals are 

made to the following: 

• Protection (tolerance) offered by the redundancy built into the system 

• Isolation of changes created by having separate PROMs 

• Protection in place for trip data and program updates (expanded in Section A.10.2.2) 

The third aspect concerns the design for change aspects of the trip design.  Because the 

system is designed in anticipation of certain future updates, the likelihood of 

compromising the integrity of the system in making those modifications is minimised.  

This claim concerning anticipated changes is elaborated in the following section. 
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A.10.2.1 Anticipated Changes (G.UPD.AC) 
G.UPD.AC

All anticipated changes can be
accommodated by design and
safety case

G.UPD.AC

Change in number of inputs
can be accomodated by
design and safety case

G.UPD.AC.1

Change in computer hardware or
software tools can be accommodated
by the design and safety case

G.UPD.AC.2

Anticipated changes in functional
requirements can be accomodated
by the design and safety case

G.UPD.AC.3

Change in sensors can be
accomodated by the design and
safety case

G.UPD.AC.4

Anticipated regulatory changes
can be accommodated by the
design and safety case

G.UPD.AC.5

S14.2

Anticipated Change
Analysis

S14.2
Anticipated Changes

 

Figure 139 – Anticipated Changes (G.UPD.AC) 

The argument shown in Figure 139 shows that five areas of anticipated future change 

have been identified: 

• Changes to Number of Inputs 

• Changes to Hardware 

• Changes to Functional Requirements 

• Changes to Sensors 

• Regulatory Changes 

A discussion of how the system design is expected to cope with these future changes is 

presented in Section A.14.2. 
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A.10.2.2 Changes to Data and Program (G.UPD.DATA & 
G.UPD.PROGRAM) 

The following goal structure (Figure 140) summarises the argument put forward in 

support of the trip data and program update requirements G.UPD.DATA and 

G.UPD.PROGRAM. 

G.UPD.DATA & G.UPD.PROGRAM

Sufficient protection is in place
to prevent updates of data
introducing dangerous faults

G.UPD.DATA

Adequate support infrastructure is in
place to safely accommodate
anticipated changes (e.g. safety case
review)

G.UPD.SUPP

Procedures are in place to test
updates to data and program

G.UPD.TEST

Sufficient protection is in place to
prevent updates of program
introducing dangerous faults

G.UPD.PROGRAM

S15.1

Support
Infrastructure

Flaws in ADC, application software,
configuration, trip limits and trip logic
will be revealed by dynamic on-line
tests

G.CHECKS

 

Figure 140 – Changes to Data and Program (G.UPD.DATA & 

G.UPD.PROGRAM) 

Two different forms of argument are put forward in Figure 140.  Firstly, an argument is 

made that appropriate procedures are in place to ensure that any future change is 

handled appropriately.  These are supported by a definition of the required Support 

Infrastructure (presented in Section A.13).  Secondly, an appeal is made to the on-line 

tests and checks built into the design and operation of the trip system (offered by the 

reversible computing implementation and separate monitor computer). 

A.10.3 Safety Case Validity Argument (G.VALID) 

The following goal structure (Figure 141) presents the argument put forward in support 

of the safety case validity requirement G.VALID. 
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G.VALID

Validity of the Safety Case will
be maintained throughout the
operational life of the system

G.VALID

S15.1

Support
Infrastructure

Adequate support infrastructure is in
place to safely accommodate
anticipated changes (e.g. safety case
review)

G.UPD.SUPP

Operational records will be kept and
analyses performed to confirm the
assumptions and estimates given within
the safety case

G.VALID.REG

S15.3

Regular Analyses

 

Figure 141 – Safety Case Validity Argument (G.VALID) 

It is argued that an appropriate infrastructure is in place to review the impact of future 

design and regulatory changes on the safety argument contained within this safety case.  

In addition, the responsibility for confirmation and validation of the assumptions made 

within this safety case (e.g. those made in the Probabilistic Fault Tree Analysis 

described in Section A.14.1) is recognised.  The regular analyses required to maintain 

the validity of the safety case are defined in Section A.15.3. 

A.11 Safety Criteria 

The objective of this section is to demonstrate how the safety criteria defined in Section 

A.5.5 are supported through the design features described in Section A.6. 

A.11.1 Single faults (G.FAULT1) 

The following claim is put forward in support of the requirement that no single fault 

should affect availability. 
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G.FAULT1

No single fault affects
availability

G.FAULT1

S6.1

Redundant Channels
and Thermocouples

Safety function is maintained
even if two channels fail to
no-trip

G.FAULT.RED

 

Figure 142 – Single Faults (G.FAULT1) 

Because of the redundancy built into the system design, up to two (of the four) channels 

can fail to no-trip before the safe operation of the system is compromised.  The system 

can therefore operate in a safe (but degraded) state, allowing repair whilst maintaining 

availability. 

A.11.2 Two faults (G.FAULT2) 

The following claim is put forward in support of the requirement that no two 

independent faults should affect safe operation. 

G.FAULT2

No two independent faults
affect safety

G.FAULT2

Safety function is maintained
even if two channels fail to
no-trip

G.FAULT.RED

System will fail safe ('freeze') in
presence of systematic faults and
random failures in the hardware or
faults created by the compiler

G.FAULT2.FS
S6.2

Fail Safe Design
Features

S6.1

Redundant Channels
and Thermocouples

 

Figure 143 – Two Faults (G.FAULT2) 

As with G.FAULT1 an appeal is made here to the redundancy within the system 

design. In addition, in the case of detected systematic errors it is claimed that the system 

will fail-safe. 

A.12 Evidence from the Development Process 

The development and verification processes can produce evidence that can be used in 

the safety argument. Documentary evidence is needed to show that the planned 

activities are being carried out correctly (e.g. audits). This is necessary to have 
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confidence in the documented evidence and its relevance to the actual system. 

More specifically there can be tests incorporated within the development process to 

support claims about specific safety attributes, i.e.: 

G.TRIP Proof of conformance to specification 

  High trip tests for pairs and single inputs 

  Low trip tests for pairs and single inputs 

  Tests of independence between inputs from different ducts 

G.PFD  Statistical reliability tests (104 representative trips) 

Tests of fail-safe response (e.g. simulated failures 

G.TIM Static analysis to determine the worst case execution time 

  Time response tests 

G.FIX  Test of diagnosis and repair times using simulated faults 

A.13 Long-term Support Activities 

There are a number of long term infrastructure requirements necessary for maintaining 

and updating the system. The details will not be discussed here, but there are some 

specific support activities which can affect the system integrity, namely: 

Scheduled testing - proof testing to verify all inputs can produce a trip, re-

calibration, etc. Scheduled testing for channels would typically be staggered to 

reduce the risk of a common mode maintenance error. 

On-line fault detection - A fault can be diagnosed from a behavioural anomaly (e.g. 

a partial or total trip), or by apparent discrepancies between channels. 

Fault diagnosis - Using available data from the computer monitor outputs, and 

direct tests on the hardware, the source of the problem is identified. 

Repair - An item is re-calibrated, or an item is replaced. The channel or a channel 

interface is powered down while this is done. The unit is re-tested and the channel 

put on-line. 

Veto - It is sometimes necessary to disable the normal functionality of the system in 

order to maintain availability. The thermocouples are physically located in the 

reactor and cannot be repaired immediately so a veto might also be applied to 
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avoid a spurious trip if a thermocouple sensor was failing high. The trip for an 

individual fuel element may also be temporarily vetoed for on-load refuelling. 

Refuelling - The thermocouple connectors are disconnected on refuelling. This is 

not a problem if the reactor is refuelled off-load, but disconnected thermocouples 

could cause problems on start-up. 

Updates - The software functionality may be changed. Changes are most likely to 

be made to trip limits and scaling parameters, but in some cases the program may 

be modified. The changes have to be verified off-line, and correctly installed (via 

PROM replacement). The likely changes are anticipated to be: 

• trip limit changes 

• change in number of inputs 

• change of computer hardware or software tools 

• change in trip logic 

• change of sensors 

• regulatory changes (design criteria, or evidence) 

A.14 Supporting Analyses 

The safety arguments presented in Sections 7 through to 11 should refer to evidence 

from supporting analyses. This evidence will change as the system is developed. 

Initially the analyses may be based on initial assumptions (e.g. based on past 

experience) and design targets. This can later be supplemented by test evidence and, in 

some cases, there may be a requirement to gather supporting evidence during system 

operation in the longer term (e.g. to confirm initial assumptions in the estimate of the 

probability of failure per demand). 

As can be seen from the goal structures presented, the majority of the goals put forward 

remain unsupported.  This is indicative of the following issues: 

• Some of the goals must be decomposed further to sub-system claims (as discussed in 

Section A.16). 

• Some of the goals should be accepted as ‘statements of fact’ requiring no supporting 

evidence. 

• Not all of the supporting evidence is available at this stage. 
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The following sections present the analyses which are available to support aspects of 

the safety argument presented. 

A.14.1 Probabilistic Fault Tree Analysis 

The evidence summarised in this section supports the probability of failure on demand 

claim G.PFD.RAND.FTA shown in Figure 126 and discussed in Section A.8.1.1. 

The fault tree analysis is based on a system hazard identification study (not discussed 

here) which uses conventional guide words to help identify potentially dangerous 

failure modes of the various system components. A fault tree is then constructed to 

identify combinations of events which can cause a dangerous failure. The top event in 

the tree is when the system is unavailable but the failure is unrevealed. 

To be more concise, the fault tree is represented textually with the top events on the left 

and sub-events indented. Terms in square brackets represent intermediate or top events, 

and are expanded on the subsequent indented lines. The fault tree covers the main 

safety related event - a failure to trip on demand. A similar tree could be constructed for 

spurious trips. 

The probabilities of the base events in the fault tree are based on estimates of hardware 

reliabilities, and the likelihood of human initiated events. The assumptions on which the 

analysis is based are listed first, followed by the quantitative estimates for the minimal 

cut-sets contributing to the top event. Note that some events may be deemed 

“incredible” (i.e. probability zero) based either on deterministic arguments or because 

of the depth of defences. Even if zero, all probabilities are shown for later inspection 

and independent assessment. 

Assumptions 

• 10% of sensor failures are unrevealed 

• 10% of buffer failures are unrevealed 

• Common failures are 10% of individual failures 

• 10% of channel failures are unrevealed by a channel trip 

• 10% of channel failures are unrevealed by the monitor 

• Channel failure rate (CPU + ADC + DCL) 1 per annum 

• Sensor failure rate 10-3 per annum 



 274

• Buffer failure rate 10-3 pa 

• MTTR 10 hours 

• Proof test interval 3 months 

Probability Estimation 

The system is unsafe if a dangerous fault exists but is unrevealed. Internal checks, 

monitor checks and proof tests are the main methods for revealing failures. Systematic 

faults are mainly deemed to be incredible (see the goal G.NO-FLT). 

For random failures we have to include the risk of common cause failures, and the 

chance they will remain undetected until the 3-monthly proof test. Taking the case of the 

sensors, the basic failure rate is estimated to be 10-3 per annum. We assume that the 

common mode failures are 10% of this (10-4 per annum), and 10% of these will be 

undetected until the 3 monthly proof test (10-5 per annum). On average the dangerous 

sensor measurement failure will be unrevealed for one and a half months (0.125 of a 

year), so the probability of unrevealed unavailability is (0.125 x 10-5). The 

unavailability of temperature measurements due to two unrevealed random failures in 

one duct is negligible (around 10-10). Since the demand is only made on one duct, we 

only need to consider the unavailability of a single duct measurement. 

A similar argument can be applied to the isolation amplifiers and buffers. The dominant 

factor is again common mode failure, which is assumed to affect all buffers 

simultaneously, so the calculation is identical to the one used for the thermocouples. 

For the hardware channel failures we assume the common mode failure rate is 10% of 

the single channel failure rate (10-1 per annum). Of these 10% are unrevealed by a 

channel trip (10-2 per annum), and 10% of the remainder are not detected by the 

monitor (10-3 per annum). An unrevealed failure persists an average of 0.125 years, so 

the overall is 12.5 x 10-5. 

The probability assignments for the fault tree events are summarised below, including 

those which are assumed to be incredible (probability zero). 
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[duct-specific fault] 

Demand(i) and 

 2oo2 Sensor (I) failed unrevealed  0.125x 10-5 

 or 

 3oo4 [Buffer (A,l) and Buffer (B,l) fail 0.125x 10-5 

           unrevealed] 

 or 

 software reads input J instead of input I 0 (proof tests, analysis) 

 or 

 multiplexor reads input J instead of input I 0 (proof test, DCL) 

or 

[multiple channel faults] 

 3oo4 [hardware channels fail unrevealed] 12.5x 10-5 

 or 

 wrong trip settings    0 (proof test+monitor+DCL) 

 or 

 operating on stale copy of input data  0 (no copies, DCL) 

 or 

 sends old copy of output data   0 (no copies, DCL) 

 or 

 execution time too long   0 (analysis+test+online test) 

 or 

 high trip logic flawed    0 (formal proof, test, DCL) 

 or 

 multiplexor hardware latches past values 0 (proof test, DCL) 

 or 

 DCL fail-danger flaw    0 (analysis, fault injection) 

PFD       12.7 x 10-5 
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With an unrevealed unavailability of 0.13 x 10-3 and an assumed demand rate of 1 per 

annum, the estimated PFD is 0.13 x 10-3 pa is which is well within the 10-3 pa target. 

A.14.2 Anticipated Change Analysis 

The evidence summarised in this section supports the claims made in the safety 

argument regarding anticipated changes presented in Figure 139 and discussed in 

Section A.10.2.1. 

System Updates. The system and its safety case will need to be updated to respond to 

functional changes, changes in technology, and regulatory requirements (R.UPD). 

Potential changes to the system and their impact are discussed below: 

Trip limit changes. The safety case has to justify that trip limits are valid, the changes 

are correctly implemented, and do not affect the remaining software. The impact of the 

change is minimised by holding the parameters on a separate PROM. The installed 

parameter settings can be verified by proof testing, via the on-line test signals (each 

side of the trip limit) and via the monitor output. 

Change in number of inputs. No fundamental changes are required in the design or the 

safety case. It may requires changes in the input-output hardware, software and DCL, 

but no change in the proof, and only small changes in the program which can be 

verified by proof testing and by testing in conjunction with the modified DCL. 

Change of computer hardware or software tools. The fail-safe integrity checks provide 

protection against flaws in the new hardware and software tools. The separate channel 

structure and simple input-output interfaces permit selective upgrading on a per-

channel basis (phased commissioning). 

Change in functional requirements. Would require repetition of the formal proof and 

the formally developed software. Proof tools have to be available (or be re-

implementable on another system). Formal proof requires relatively scarce expertise 

and could represent a risk in terms of greater implementation delays and higher update 

costs. However licensing risks and the associated costs are likely to be reduced. 

Change of sensors. Relatively simple technology. Changes can be accommodated by re-

scaling the buffer amplifiers or changing the scaling constants in the software. 

Verifiable via proof testing, dynamic on-line tests and the monitor output. 

Regulatory changes. If the requirements for diversity become more stringent, diversely 

implemented channels can be used to protect against systematic hardware and software 
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flaws. This is relatively simple as each channel is independent. Diverse sensors and 

buffers are also feasible. Requirements for more rigorous system testing should be 

feasible as each channel is a standalone unit, and tests can be performed individually 

without the need to test for intersection effects. 

A.14.3 Analysis of Maintenance and Operations 

The evidence summarised in this section supports the claims made in the safety 

argument regarding safeguards against maintenance errors – presented in Figure 137 

and discussed in Section A.10.1.1. 

The possible failures that could occur in maintenance activities are enumerated by 

considering a number of guide words (e.g. incomplete or wrong). The design safeguards 

are identified for each case. These could well be supplemented by procedures, training, 

manual records and checklists, but are not discussed below. 

Proof testing Incomplete - e.g. some elements not tested, transposed - e.g. tests on 

wrong channel, wrong - incorrect recalibration. 

Safeguards - clear identification of channel equipment, access keys  (different for 

each channel), limits on amount of adjustment, cross-checking subsequent 

behaviour via the monitor. 

Fault diagnosis Incomplete - failure to spot discrepancy between channels, transposed - 

identify correct component type but not which one (e.g. channel or thermocouple), 

wrong - identification completely wrong. 

Safeguards - proof tests, cross-checking subsequent behaviour via the monitor, 

system trip (fail-safe, but undesirable). 

Repair Incomplete - repair omitted or partially performed (e.g. not fully reconnected), 

transposed - swap over connections or components, wrong - e.g. wrong component, 

wrong settings. Repair on the wrong channel could cause a spurious trip if one channel 

is tripped already. 

Safeguards - proof tests, cross-checking subsequent behaviour via the monitor, 

PROM and computer self-tests, system trip (fail-safe, but undesirable). 

Veto - Incomplete e.g. sensor not vetoed on all channels, transposed- veto wrong sensor 

of pair, wrong - e.g. wrong channel vetoed. 

Safeguards – proof tests, cross-checking behaviour via the monitor, channel trip 
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when sensor fails low or high, avoidance of vetoes for normal operation and 

designed failure modes. 

Refuelling Incomplete - thermocouple left disconnected, transposed – sensor 

connections transposed, wrong - bad connection (reading low, short circuit). 

Safeguards - reactor start-up checks, proof tests, cross-checking behaviour via the 

monitor, connection labelling. 

Updates Incomplete - incomplete PROMS, transposed - PROMS in wrong order, wrong 

- wrong PROM version used, update incorrect. 

Safeguards - proof tests, PROM integrity checks (e.g. CRC checks across program 

PROMS and parameter PROMS), version and parameter settings echoed to 

monitor. Cross-checking behaviour via the monitor. Channel trip due to pattern 

mismatch at DCL. 

A.15 Safety long-term support requirements 

A.15.1 Support Infrastructure 

This section defined the support infrastructure activities, tools, skill and knowledge 

required to ensure the ongoing validity of the safety case and supporting evidence.  The 

definition (and implementation) of this infrastructure supports the claims made in 

Figure 141 and Figure 140 and discussed in Sections A.10.2.2 and A.10.3. 

Activities: 

• safety reviews 

• problem analysis 

• system/safety case redesign 

Special tools/skills: 

• formal proof methods 

• reversible computer design 

• DCL design 

• test environments 

• test suites 

• FTA and RAMS techniques 
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Domain knowledge: 

• sensor characteristics 

• CMF mechanisms 

Anticipated changes: 

• trip parameters 

• trip logic 

• fault detection 

• number of inputs 

• processor hardware 

• interface hardware 

A.15.2 Maintenance Support Risks 

Most of the maintenance and upgrade safety issues have been addressed in the design, 

but upgrades could be hampered if there was a lack of key skills and technologies. 

Replacement of obsolescent hardware does not require any unusual skills. 

Reprogramming the software is mainly restricted to a re-implementation of the 

reversible computer instruction set and is a relatively straightforward task. Functional 

changes will require a change to the formal proof, and may be vulnerable to 

obsolescence of the support tools and formal methods skills. There will be a significant 

delay if the formal proof has to be re-implemented from scratch using a different formal 

notations and support tools. Obsolescence of the dynamic coded logic could be a 

problem, but the basic structure should be re-implementable in a new technology, and 

the fail-safety can be reviewed by independent specialists and tested directly by fault 

injection. 

As a fall-back, the system could be re-implemented with diverse hardware and software 

in the channels. 

A.15.3 Regular Analyses 

This section supports the claims made regarding the through life maintenance of safety 

case validity presented in Figure 141 and discussed in Section A.10.3. 

The safety case is predicated on a set of design assumptions about the equipment, the 

operational environment and the behaviour of connected equipment.  The following 
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table lists some of the key assumptions that have been made explicit in the safety 

argument.  

Identifier Summary
A1 Fault detection coverage
A2 Fail-safe bias of inputs
A3 Component failure rates
A4 Common mode factors
A5 Repair times
A6 Inherent flaws will be revealed and removed as a result of extensive use
A7 Requirements are correct
A8 Functional tests can reveal all compiler induced faults
A9 Tests will reveal all miswiring and mis-configuration
A10 Instruction times are correct
A11 ADC conversions and output time are correct
A12 Demand rate of 1 per annum
A13 Thermocouples fail low in 90% of cases
A14 On-line tests detect 90% of systematic failures
A15 Tests indicate a 99.995% fail-safe bias
A16 Trip scenarios used in testing are realistic  

Figure 144 – Table of Explicit Safety Case Assumptions 

Records should be maintained of equipment failures and repairs, and these should be 

analysed to determine whether these assumptions are borne out in practice. The 

analyses would typically include: 

• equipment failure rates 

• component failure rates 

• proportion of common mode failures 

• proportion of fail danger faults 

• proportion of gradual and abrupt sensor failures 

• MTTR 

• maintenance error rates 

• proportion of equipment faults found in on-line tests and proof tests 

• spurious trip rate 

• software faults and the proportion which are dangerous 

The impact of these results on the safety case should be assessed. If the results 

undermine the safety case, changes to the system design, operating procedures, or 

monitoring systems may be necessary. 

A.16 Elaboration to subsystem requirements 

If the candidate system architecture, safety case and support requirements are 
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acceptable, the design can be further elaborated into a set of design requirements for 

the subsystems. In the reactor trip system there might be requirements for the following. 

D.ARCH Overall system architecture apportionment of functions, overall design 

safety case, design assumptions, numerical design targets, design 

constraints, required safety case evidence, operation and maintenance 

infrastructure, design for change, long-term support requirements. 

D.ENV Requirements for environmental tests ("shake and bake") for all 

hardware, maximum temperature, humidity, cooling requirements, EMI 

protection. 

D.POW Power supply specifications, reliability requirements. 

D.DCL Specification of the DCL + fail-safety requirements. 

D.INP  Input specifications (number, range, isolation, etc.). 

D.ADC  Requirements for the ADC (number of inputs, range, speed, reliability). 

D.MON  Requirements for the monitor and monitor interfaces. 

D.CPU Requirements for the CPU (speed, PROM capacity, RAM capacity, 

input-output, etc.). 

D.SW  Requirements for the software. 

Note that the subsystem requirements will include any evidence required for the safety 

case (e.g. environmental test evidence, timing, fault tolerance tests, fault injection tests, 

etc.). This evidence could be part of the subsystem deliverable. 

As an example of how the subsystem requirements are elaborated, the requirements for 

the software (D.SW) are given below. The requirements placed on the software are 

based on an apportionment of the top-level safety functions together with additional 

requirements imposed by lower level design decisions. The requirements include the 

basic functional requirements for the software, specific design constraints on the 

implementation method, and requirements for safety case evidence. 

 

A.16.1 Software Functional Requirements 

SW.INFO Supporting G.SEC and G.UPD. Every complete scan cycle, send the 

software configuration data (number of inputs, input scale factors, trip 
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limit values, software version number and sumchecks). 

SW.TRIP Supporting G.TRIP. For all inputs: 

• Scan the two temperature readings (Ra, Rb) from the ADC. 

• Scale the values to Ta and Tb. 

• Perform 1oo2 voted high temperature trip (HiTrip = max(Ta,Tb) > 

Tlimit). 

• Perform 2oo2 voted low temperature trip (LoTrip = max(Ta,Tb) < 

MinOpTemp) 

• (MinOpTemp is MaxDiff below the median operating temperature for 

all ducts). 

• Send (HiTrip or LoTrip) to the DCL. 

• Send Ra, Rb, HiTrip, LoTrip values to the monitor output. 

SW.IO Satisfy the specified interface requirements for the ADC, DCL, and 

Monitor ports (from D.DCL, D.ADC, D.MON). 

SW.CHK Supporting G.MTTR. Halt if an internal failure is detected (PROM 

sumcheck, RAM checks, processor, time overrun). Provide indication of 

the type of fault detected. 

SW.TIM Supporting G.TIM. The software scan cycle should be less than 5 

seconds - including the time required for all input and output operations. 

A.16.1.1 Safety case design constraints imposed on the software 

SW.REV Implement the software using the reversible computer technique. 

SW.FM Formal proof that code implements specification. 

A.16.1.2 Safety case evidence requirements for the software 
development 

SW.CHK.CASE Check the fault detection performance for simulated faults. 

SW.TRIP.CASE Perform 104 demands on the system using realistic trip profiles. 

SW.TIM.CASE Show the timing constraint is satisfied. 

SW.V&V.CASE1       SW.FM.VER Provide proof script, independent 

verification of proof. 
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SW.REV.CASE Demonstrate the reversible computer is 

implemented correctly and formal software 

is correctly mapped to reversible code. 

Provide tests of fail-safe performance. 

SW.V&V.CASE2       SW.TEST.CASE Show all software modules are 

exhaustively tested. Show all modules 

operate independently for all readings. 

SW. DIV.CASE Show diverse implementations are 

independent (languages, tools, staff, V&V). 

SW.DES.CASE Show compliance with the implementation constraints. 

SW.TOOL.CASE Provide impact analysis of faults in support tools, analysis of tool 

quality (e.g. likely number of faults injected). 

Software documentation/QA requirements 

SW.PROCESS Provide evidence for the integrity of the delivered system and the 

development process: safety plan, safety audit records, quality 

plan, QA records, plans, design documents, software, proof files, 

V&V records. 

SW.PRODUCT Provide all necessary items for use and long-term support: 

design documents, software, proof scripts, test environment, 

support tools. 

A.17 Conclusions 

This safety case has presented the argument that the trip system design as proposed is 

acceptably safe to be allowed to operate as part of the nuclear reactor protection 

systems.  The argument has been based upon the following key elements: 

• Redundancy in the design 

• Incredibility of Systematic Errors 

• Probabilistic Analysis of Failure on Demand 

• Fault detection, tolerance and diagnosis offered by design 
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Although incomplete (elaboration of requirements to subsystems and further evidence 

being required) this document has presented the overall structure of the safety argument 

and can be used as a basis of assessing adequate safety. 
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Appendix B:  

Safety Case Patterns Catalogue 

This appendix presents a number of examples of Safety Case Patterns that the author 

has developed (sometimes with others) and have documented using the approach 

defined in Chapter Five. 

As described in Chapter Six (Evaluation) these patterns have been identified from study 

of existing safety cases and safety standards, and from discussion with safety case 

practitioners.  All of the patterns presented have been subjected to peer review. 

Instances of the ‘Diverse Argument’, ‘Safety Margin’ and ‘Fault Tree Evidence’ 

patterns presented in this appendix are highlighted within Appendix A – Nuclear Trip 

System Safety Case. 

B.1 Overview of Catalogue 

The catalogue presented in this appendix is organised according to the categorisation of 

patterns described in Chapter Five and shown in the following figure (Figure 145). 

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

 

Figure 145 – Organisation of Safety Case Patterns Catalogue 

Safety Case Patterns can either be specific to a particular domain or class of system (e.g. 

nuclear power generation, railways, aerospace) or applicable across a number of 

domains (i.e. domain independent). 
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Safety Case Patterns can describe the decomposition of some objective, e.g. over 

functions or according to some safety principle.  Such patterns are labelled as ‘Top 

Down’ Safety Case Patterns. Alternatively, safety case patterns can describe how an 

argument may be constructed from a piece of evidence (in GSN terms – a Solution). 

These patterns are labelled as ‘Bottom Up’ Safety Case Patterns.  Finally,  Safety Case 

Patterns can be used to describe some general principle of safety argument construction 

that is neither specifically ‘top down’ or ‘bottom up’.  Such patterns are labelled as 

‘General Construction’ Safety Case Patterns. 

This appendix presents examples of all three forms of Safety Case Pattern. 

B.1.1 Format of Documented Patterns 

The patterns in this appendix have been documented according to the format defined 

and described in Chapter Five, i.e. using the following headings: 

• Pattern Name 

• Intent 

• Also Known As 

• Motivation 

• Applicability (Necessary Context) 

• Structure 

• Participants 

• Collaborations 

• Consequences 

• Implementation 

• Example Applications 

• Known Uses 

• Related Patterns 

The structural (graphical) description of the Safety Case Patterns uses the pattern 

extensions to the Goal Structuring Notation presented in Chapter Five.  The following 

figure provides a key to the most commonly used GSN extensions: 

Element to be instantiated

Structure to be developed

Element to be instantiated
and developed

Option to be taken

n
Multiple (n) instantiations

required

0/1 instantiations required
 

Figure 146 – Key to GSN Extensions 
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B.2  Domain Independent Safety Case Patterns 

The Safety Case Patterns presented within this section have been identified from, and 

found applicable in, safety arguments from a wide variety of domains. 

 

Domain Independent Safety Case Patterns 

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

 

 

• ALARP (As Low As Reasonably Practicable) Argument 

• Hazard Directed Integrity Level Argument 

• Control System Architecture Breakdown 

• Diverse Argument 

• Safety Margin 

• Fault Tree Evidence 

 

 

(Full descriptions of these patterns are contained within each documented pattern) 
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B.2.1 Domain Independent ‘Top Down’ Safety Case Patterns 

 

Domain Independent:Top Down 

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

 

 

• ALARP (As Low As Reasonably Practicable) Argument 

• Hazard Directed Integrity Level Argument 

• Control System Architecture Breakdown 

 

 

(Full descriptions of these patterns are contained within each documented pattern) 
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ALARP (As-Low-As-Reasonably-Practicable) 

Pattern 

Author Tim Kelly 

Created 22/02/99 01:56 Last Modified 22/02/99 02:36 

 

Intent This pattern provides a framework for arguing that identified 

risks in a system have been sufficiently addressed in accordance 

with the ALARP principle. 

Also Known As • Risk Reduction Argument Pattern 

Motivation This pattern was developed for two reasons: 

• To argue compliance with the ALARP principle at the highest 

level when addressing system level hazards. 

• To provide a more structured approach to presenting a 

‘Hazard Avoidance’ argument (See Hazard Avoidance 

Pattern) by showing differing treatment of hazards according 

to their associated risk. 
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Structure 

System hazards
addressed in

accordance with
ALARP Principle

No intolerable risks
present in system

All tolerable risks
have reduced as

low as reasonably
practicable

Risk associated
with all remaining

hazards is
negligible

Identified system
hazards

Definition of
'intolerable'

Definition of
'tolerable'

Definition of
'negligible'

System Hazard
Log

Risk associated
with {Hazard X} has

been addressed

n = # hazards from
'Identified System

Hazards' (previously)
meeting definition of

intolerable

n>0 n=0

n

{Hazard X} has
been eliminated

and can no longer
occur

Risk associated
with {Hazard X} has
been reduced to a

tolerable level

Risk associated
with {Hazard X} has

been reduced as
low as reasonably

practicable

m

m = # hazards from
'Identified System
Hazards' meeting

definition of
tolerable

{Hazard X} is
necessarily present
in system (because

of some positive
benefit)

Measures have
been taken to

reduce risk
associated with

{Hazard X}

Further reduction of
risk associated with
{Hazard X} requires

disproportionate
expense

Risk associated
with {Hazard X} has
been shown to be

negligible

o

o = # hazards from
'Identified System
Hazards' meeting

definition of
negligible

Provides
{Hazard X}

Definition of
'disproportionate'

G1

G2 G3

G4

G5

G6 G7 G8G9

G10 G11 G12

C1

C2
C3

C4

C5

Sn1

 

Participants G1 Defines the overall objective of the pattern 

 G2, G3, G4 Defines targets for three classes of identified 

risks: negligible, tolerable, and intolerable 

 Sn1 Provided at this point to support the claim that 

no intolerable risks have (ever) been identified 

with the system 
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 G6 or 

G7 and G8 

Claims either that hazard has been eliminated or 

associated risk reduced to a tolerable level and 

dealt with as a tolerable risk. 

 G8 Defines ALARP target for each identified 

tolerable risk 

 G10, G11, 

G12 

Claims required to support ALARP target: 

• Hazard only acceptable if positive benefit 

achieved 

• Risk reduction measures have been taken up 

to the point where further measures would be 

disproportionate to benefit gained. 

 G9 Claims for each remaining hazard that associated 

risk shown to be negligible 

 C1 A context identifying all system hazards, 

including indication of associated risks (e.g. Risk 

Category from A, B, C, D). 

 C2, C3, C4 A workable definition of ‘intolerable’/ 

’tolerable’/ ’negligible’ risks that can be used as 

a basis for selection from the list of hazards(e.g. 

Intolerable = Risk Category A, Tolerable = Risk 

Category B or C, Negligible = D). 

 C5 The ALARP principle relies on some 

understanding of when it is no longer cost-

effective to spend further money on risk 

reduction. This element, a definition of cost-

effectiveness, is therefore required. 

Collaborations An important aspect of this pattern is that it divides and conquers 

the goal of hazard mitigation / elimination according to the level 

of risk associated with each hazard. There are three strands to the 

safety argument: one tackling intolerable risks, one tackling 

tolerable risk and one discounting negligible risks. To support 
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the top-level goal (G1) satisfactorily it is important that these 

three strands address all identified risks. The definitions of 

tolerable, intolerable and negligible (C3, C2 and C4 respectively) 

should therefore be so defined as to cover and classify the range 

of possible levels of risks. 

It should also be noted that the definitions of negligibility (C4) 

and disproportionate (C5) cannot be considered entirely 

independently. It would not make sense, for example, to force 

risk reduction to a level below that identified elsewhere as 

negligible. 

As the goal structure shows, if the means of addressing a 

previously identified intolerable risk is to reduce it to a tolerable 

level, then the remaining risk must be tackled as for all tolerable 

risks. If the level of risk has been reduced to a negligible level, 

then the hazard must be tackled as a negligible risk. 

It is important that the source of Identified System Hazards (C1) 

identifies the level of risk posed by a hazard in a way that 

permits sub-division into the classes of risk defined by C2, C3 

and C4. 

Applicability This pattern is applicable in contexts where the ALARP principle 

is accepted as the device for reasoning about the relative 

importance of risks and the cost-effectiveness of risk reduction. 

In order to apply this pattern it is necessary to have access to the 

following contextual information: 

• C1: Identified System Hazards 

(See Participants section) 

• C2, C3, C4: Definition of Intolerable / Tolerable / 

Negligible Risk 

(See Participants section) 

These definitions are typically provided by the appropriate 

regulatory authority, standards or through investigations by 

safety engineers, including discussions with customers. 
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• C5: Definition of Disproportionate 

(See Participants section) 

Consequences After applying this pattern, there will be a number of 

undeveloped goals of the form: 

• G7: Risk associated with {Hazard X} has been reduced to 

a tolerable level 

• G9: Risk associated with {Hazard X} has been shown to be 

negligible 

• G6: {Hazard X} has been eliminated and can no longer 

occur 

• G10: {Hazard X} is necessarily present in the system 

• G11: Measures have been taken to reduce risk associated 

with {Hazard X} 

• G12: Further reduction of risk associated with {Hazard X} 

requires disproportionate expense 

Implementation Implementation of this pattern involves first instantiating the 

contexts C1, C2, C3, C4. In the context of the list of hazards 

referenced by C1, the solutions to goals G2, G3 and G4 can be 

provided. If no tolerable risks were ever present in the system, 

then reference to the system hazard log (Sn1) is sufficient to 

support the claim G2. However, if any intolerable risks have 

been identified, it is necessary to claim (G5) that these have been 

resolved through complete elimination of the hazard (G6), or 

reduction to a tolerable (G7, G8) or negligible (G9) level. 

For each tolerable risk identified an argument must be 

constructed (G6, G10, G11, G12) to demonstrate that it has been 

addressed in accordance with the ALARP principles. Measures 

taken in risk reduction must be stated in support of G11. Some 

evidence / argument of the non cost-effectiveness of further risk 

reduction measures must be supplied in support of G12, in 

accordance with the definition given by C5. 
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Evidence of risk analysis (probably based upon consideration of 

probability of occurrence) is required in support of each claim of 

hazards posing negligible risk (G9). 

Possible Pitfalls 

• Not providing complete coverage of levels of risk through 

definitions C2, C3, C4 

• Expressing definitions C2, C3, C4 in a way that is difficult to 

apply to the information provided by C1 (and vice versa) 

• Not having a commonly agreed concept of when to stop 

attempting further risk reduction (C1) - this can result in a 

non-uniform approach to tackling risks where significantly 

different levels of effort are committed to risks at the same 

level. 

Examples Not available at this time 

Known Uses See Industrial Press Safety Argument 

Related Patterns • Hazard Mitigation Argument 
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Hazard Directed Integrity Level Argument 

Author Tim Kelly, David Pumfrey 

Created 20/10/97 08:56 Last Modified 22/02/99 02:36  

 

Intent This pattern is intended to argue that a (sub)system has been 

developed to an integrity level appropriate to the hazards to which 

the system contributes. 

Also Known As  

Motivation The motivation for this pattern was to provide an argument where 

the overall objective was expressed in terms of the hazards 

involved and to show how this was then translated into integrity 

level requirements. The top level objective, being expressed in 

terms of hazards and associated hazard classes, can be more 

readily integrated with an overall system level argument. 
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Structure 

G1

{Subsystem X}, implementing
functionality that could contribute to 
hazards of Hazard Class {n}, has been
developed appropriately

G2

{Subsystem X} has been
developed to Integrity Level {m}

Description of
{Subsystem X}

C2

Rules for Integrity
Level Assignment

C4

G3

{Subsystem X} is supported by
environment suitable for
Integrity Level {m}

Development rules for
Integrity Levels

C3

G4

{Subsystem Y} developed to Integrity
Level {m} or better

G5

{Subsystem Y} developed to lower
Integrity Level allowed by Rules for
Integrity Level Assignment

S1

Argument that all subsystems on
which {X} depends are also
developed to an appropriate
Integrity Level

Subsystems on which
{X} depends

C5

Provides {Subsystem Y}

n

Contribution of
{Subsystem X}

functionality to  System

C1

n = # of {Subfunction Y}

 

 

Participants G1 Having identified how the functionality provided by 

a subsystem (described by C2) can contribute to 

system level hazards (C1) and having identified the 

Hazard Class associated with those system hazards it 

is possible to set out a goal of the form G1. The terms 

{Subsystem X} and the Hazard Class {n} should be 

instantiated with real values. It is the overall 

objective of this pattern to support the claim made by 

G1. 

 C1 This context should be instantiated to refer to a 

source of information that describes how the 

functionality implemented by the subsystem can 

contribute to system level hazards (e.g. System level 

Safety Analysis or Subsystem level Hazard Analysis) 
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 C2 This context should be instantiated to refer to a 

description of the subsystem in question – in 

particular, one that describes the functions 

implemented by the subsystem. 

 G2 This goal provides the principal support for the claim 

G1 – i.e. that the subsystem has been developed to a 

particular integrity level. The appropriate integrity 

level for the Hazard Class {n} stated in G1 is defined 

by the rules for integrity level assignment referred to 

by C4 (e.g. a Hazard Risk Index Matrix). In order to 

say that the subsystem has been developed to a 

particular Integrity Level it is also necessary to refer 

to the development rules that apply for each integrity 

level – this is done by instantiating the context 

reference C3. Appropriate argument / evidence must 

be placed in support of this goal. 

 C3 This context should be instantiated to refer to 

development rules defined for each integrity level 

(i.e. that define the technology, tools and techniques 

that are appropriate) 

 C4 This context should be instantiated to refer to the 

rules used for integrity level assignment based on 

Hazard Classification. Usually these rules would be 

expressed as some form of Hazard Risk Index Matrix 

that determines the appropriate integrity level given 

the severity and likelihood of an accident attributable 

to a system hazard. 

 G3 In addition to the claim put forward by G2 it is 

necessary to claim that the integrity of the subsystem 

is not violated (and is preserved) by the environment 

in which the subsystem operates.  
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 S1 This strategy sets out the argument approach to be used in 

support of G3. The strategy is to argue that all subsystems 

on which the subsystem in question {Subsystem X} 

depends (identfied to by the context reference C5) are 

also developed to an appropriate integrity level. For each 

subsystem identified it is necessary to put forward a goal 

either of the form G4 – claiming that the subsystem is 

developed to an integrity level the same or higher than 

that of {X} – or G5 – that the subsystem is of lower 

integrity but in accordance with the assignment rules 

referred to by C4. 

 C5 This context should be instantiated as a reference to the 

description of all subsystems {Y} on which the 

subsystem {X} depends.  An analysis of dependencies 

between subsystems must be performed to provide this 

information. This information could be derived from a 

functional dependency diagram. 

 G4 This is one of the two possible claims that could be made 

for a subsystem {Y} on which {X} depends. G4 claims 

that {Y} is developed to the same or higher integrity level 

as {X}. This claim must be substantiated by further 

argument / evidence. 

 G5 This is one of the two possible claims that could be made 

for a subsystem {Y} on which {X} depends. G5 claims 

that {Y} is developed to a lower integrity level than {X} 

as allowed by the rules referred to by C4. 

Collaborations • C1 identifies the causal relationship between a subsystem’s 

function and system level hazards – making it possible to 

identify the Hazard Class that should be associated with the 

subsystem. 

• C3 provides rules that enables the Integrity Level claim of G2 

to be derived from the Hazard Class claim of G1. 
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• C4 defines what it means to say that a subsystem has been 

‘developed to’ a particular integrity level (as is claimed in 

G2). (One would therefore imagine the information referred to 

by C4 would provide the structure of the argument and 

evidence used in supporting G2.) 

• G2 and G3 work together. It is no use claiming the integrity of 

an individual subsystem if that integrity is potentially violated 

by the environment in which it is placed. 

• C5 provides the basis (list of subsystems) for instantiating  the 

argument strategy defined by S1. 

• An either/or relationship exists between the goals G4 and G5 

(as denoted by the Choice symbol). However, there should be 

(in total) n of the goals of type G4 or G5, where n is the 

number of subsystems on which {X} depends. 

Applicability The starting point of this pattern is to have clearly identified a set 

of subsystems in an overall system. This pattern should be 

instantiated for each subsystem identified.  In order to instantiate 

the pattern the following contextual information is required: 

• C1 – A description of how this subsystem can contribute to 

system level hazards 

• C3 – Development rules / guidelines for each integrity level 

that set out the development practices required. 

• C4 – Rules that, given a hazard classification, can be used to 

set a corresponding integrity level 

• C5 – The results of some analysis that identify the 

subsystems on which the subsystem in question depends. 

General Issues: The pattern is applicable in an environment 

where the concepts of Hazard Classification, Integrity Level and 

Subsystem are defined, understood and accepted as a means of 

arguing development integrity. 
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Consequences After instantiating this pattern, a number of unresolved goals 

will remain: 

• G2 – The central claim that the subsystem has been 

developed to a specific {m} Integrity Level must be 

supported by appropriate argument / evidence that will 

satisfy the customer that the guidelines referred to by C3 

have been followed. 

• G4 / G5 (n of) - There will be n subgoals of either the form 

G4 or G5. As with G2, these integrity level claims must be 

supported by process argument / evidence of having 

followed the rules set out by C3. 

Implementation Start by identifying C1 and C2; State goal G1; Use the 

assignment rules set out by C4 to state the goals G2 and G3. 

Having stated G3, perform the analysis that provides the 

information referred to by C5. Using the list of subfunctions 

identified by C5 develop the strategy S1 by stating (n) goals of 

the form G4 or G5.  

When it comes to supporting S1, the integrity levels of the 

subsystems on which {X} depends, and therefore the choice 

between G4 and G5, will be defined by the concurrent 

instantiation of this pattern for each of these other systems (i.e. 

the Hazard Class of related hazards etc.). 

Examples Not available at this time 

Known Uses See Aircraft Cockpit Display System Argument 

Related Patterns ALARP Pattern – a pattern that addresses hazards according the 

levels of risk they pose. 
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Control System Architecture Breakdown 

Argument 

Author Tim Kelly, Peter Lindsay, Brenton Atchison 

Created 20/10/97 08:56 Last Modified 22/02/99 02:36  

 

Intent The intent of this pattern is to illustrate a means of structuring an 

argument to support a system safety goal (requirement, 

avoidance of hazard etc.) by decomposition over a generic 

control system model. 

Also Known As  

Motivation The motivation for this pattern is the need to breakdown a high 

level goal (that is difficult to substantiate ‘as-is’) into sub-goals 

that are hopefully easier to address.  

Structure 

Argument Pattern 

G1

{System Safety Goal}

S1

Argument by breakdown
over control system
architecture elements

M1

Control System
Architecture

G2

{Sensor Safety Goal}

G3

{Control Logic Safety
Goal}

G4

{Actuator Safety Goal}

System Level Safety
Analysis

C3

System Level Hazard
Analysis

C1

System Level Safety
Requirements

C2

Emerging from one of
these two contexts

Showing how sub-system
level behaviour
contributes to system
behaviour

Providing the model over
which the argument is
decomposed
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Structure  

Generic Control System Architecture 

Sensor Subsystem Control Logic
Subsystem

Actuator
Subsystem

Input 
Signals

Output 
Signals

Controlled
Process

Controlled
Attributes

Measured
Attributes

Control System

 

Participants Argument 

 G1 This goal sets out the principal objective of the 

argument and should express some desired safety 

property of the overall system. The goal could have 

emerged from any one of a number of contexts – but 

most typically it will have arisen either out of the 

statement of System Safety Requirements (C1) or the 

System Hazard Analysis (C2). In a system safety 

case, there would typically be a number of goals like 

G1 – each of which could possibly be addressed 

using the pattern proposed. 

 C1 This context refers to the Statement of Safety 

Requirements that may have been defined for the 

overall system. If the goal G1 has arisen from this 

context, this context reference should be made. 

 C2 This context refers to the results of a System Hazard 

Analysis that may have been performed for the 

overall system. If the goal G1 has arisen from this 

context, this context reference should be made. 
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 S1 This strategy clearly explains that the argument is 

being constructed by breaking down an overall 

requirement (goal) of the system into a requirement 

over individual elements of the system (using the 

model of individual elements provided by M1). 

 M1 This model refers to a model of the overall control 

system of the form shown in the Control System 

Architecture diagram. In this model the system is 

expressed in terms of the basic elements: Sensors, 

Control Logic, Actuators and the Controlled Process. 

 C2 This context refers to the results of a System Hazard 

Analysis that may have been performed for the 

overall system. If the goal G1 has arisen from this 

context, this context reference should be made. 

 C3 This context reference recognises the role that 

System Safety Analysis (such as Fault Tree Analysis) 

has in identifying how the behaviour of lower-level 

elements (such as sensors) of the control system 

contributes to the overall safe behaviour of the 

‘system’.  It should be recognised that there can be 

much effort involved in identifying this ‘causal link’ 

and, therefore, between stating a goal of the form G1 

and identifying appropriate goals G2, G3 or G4. 

 G2 If analysis of the system safety property required by 

G1 shows that behaviour of the Sensor subsystem 

could violate that property then a goal (or goals) of 

the type G2 should be expressed over the subsystem 

setting the requirement (e.g. reliability targets) for 

safe behaviour. These goals must then be supported 

by argument and/or evidence. 

 G3 As for G2 (but w.r.t. Control Logic requirements that 

support the overall system requirement) 
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 G4 As for G2 (but w.r.t. Actuator requirements that 

support the overall system requirement) 

Collaborations • Contexts C1 and C2 provide the basis from which goals of 

type G1 are stated 

• Model M1 provides the terms (description of control system 

elements) over which the goals G2, G3 and G4 are stated 

• Context C3 provides the analysis that supports the allocation 

of the overall safety requirement G1 to the control system 

elements (G2, G3 and G4) 

• It is possible for one goal G1 to be decomposed in any 

number or configuration of the goals G2, G3 and G4 – hence 

the choice and multiplicity symbols on the SolvedBy 

relationship between S1 and the sub-goals. 

 

Applicability The applicability of this pattern depends largely on whether the 

model of the control system shown in Control System 

Architecture is appropriate for the control system in question. 

Where the control system can be decomposed into the primitive 

elements – Sensor Subsystem, Control Logic Subsystem and 

Actuator Subsystem – this form of argument may be used. 

The starting point of the argument is the expression of a system 

safety goal. This pattern assumes that this is possible – either 

because there exists a System Level Statement of Safety 

Requirements or System Level Hazard Analysis. 

Analysis of the type suggested by C3 is also required in order to 

support the decomposition. It should be recognised that where 

C3 does not exist – a decomposition of this type would be 

extremely difficult and (possibly) unjustified. 
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Consequences After instantiating this pattern, a number of unresolved goals will 

remain: 

• G2 / G3 / G4 

For each safety goal expressed over the Sensors / Control 

Logic / Actuators appropriate supporting argument and / or 

evidence should be provided. This argument/evidence should 

be one appropriate to the nature of the goal being stated – i.e. 

Quantitative evidence if a quantitative requirement is 

expressed, qualitative argument if a qualitative goal is 

expressed. 

Implementation Start by identifying C1 or C2; State goal G1; Identify / Perform 

analysis C3 (also using M1); Use C3 to derive goals G2, G3 and 

/ or G4. 

 

Possible Pitfalls 

• Attempting to apply pattern to a system that is not readily 

expressed in term of the Control System Architecture model. 

• Attempting to apply pattern where the system level safety 

analysis (C3) is not available or does not clearly identify the 

causal links between system and subsystem properties 

• Providing goals G2, G3 and G4 that are inappropriate as 

solutions to the goal G1. For example, if G1 is a quantitative 

requirement – it would be normal to expect supporting goals 

to be expressed in quantifiable terms. 

Examples Not available at this time 

Known Uses See Industrial Press Safety Argument in: 

Derivation of Safety Requirements for Simple Computer Based 

Systems 

Brenton Atchison, Peter Lindsay 

submitted to ACSC’98 
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Related Patterns Functional Decomposition Pattern – a pattern of similar style that 

decomposes a system safety goal over system functions rather 

than architectural elements 
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B.2.2 Domain Independent ‘General Construction’ Safety Case Patterns 

 

Domain Independent: General Construction 

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

 

 

• Diverse Argument 

• Safety Margin 

 

 

(Full descriptions of these patterns are contained within each documented pattern) 
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Diverse Argument 

Author Tim Kelly 

Created 28/04/98 09:18:18 Last Modified 22/02/99 02:36  

 

Intent The intent of this pattern is to create arguments that instil a high 

degree of confidence in the satisfaction of a goal and are resilient 

to change and criticism. 

Also Known As Many-pronged Argument 

Motivation It has been observed that arguments not built on this principle are 

vulnerable to single points of failure, i.e.: 

• If a problem is found with, or a criticism is made of, the 

single supporting argument or evidence for a claim then 

confidence in the claim is immediately lost. 

• Particularly, such structures are vulnerable to systematic 

failures in the nature or basis of the argument construction – 

arising perhaps from the underlying method, technology or 

evidence. 

Structure Diverse Argument

G1

{GOAL}

Gn

{STATEMENT
SUFFICIENT TO
SUPPORT G1}

S1

Argument based upon
diverse forms of evidence

>1

Definition of Diversity

C1

G2

Arguments are diverse and
not subject to common
mode failures
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G1 This goal sets out the principal objective of the 

argument and must be instantiated with a specific 

statement 

S1 This strategy explains the diverse argument approach 

and can be left as-is in the instantiated argument 

Participants 

C1 This (optional) context can be instantiated to define 

clearly the definition of diversity that is being adopted 

for the development of this argument – e.g. the degree 

of independence being assumed.  It is useful to include 

this context where developer and audience of the 

argument may have differing definitions. 

 >1 

Gn 

The essence of this pattern is the provision of multiple 

reasons (+ supporting arguments / evidence) as to why 

G1 is satisfied.  Each statement Gn should individually 

be sufficient to support G1. The individual arguments 

should ideally be based upon independent forms of 

evidence.  For example, this could mean: 

• Diverse forms of safety analysis & testing 

information 

• Appealing to independent safety mechanisms in the 

design 

• Estimated vs. Historical / Operational data 

The greater the diversity achieved between the forms of 

Gn put forward the greater the confidence there will 

usually be in the satisfaction of G1.  The degree of 

independence between the arguments will also reduce 

the vulnerability of the overall argument to common 

mode failures (e.g. if a certain form of evidence is 

challenged or the effectiveness of a safety mechanism is 

questioned). 
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 G2 This (optional) claim may be instantiated if it is felt 

necessary to justify that the arguments put forward by 

the goals Gn are actually diverse, independent, free from 

common mode failures etc. 

Collaborations • There is an implicit requirement for diversity between the 

arguments headed by goals Gn 

• All the goals (Gn) put forward should be focussed towards the 

same objective G1 

• The diversity of the goals (Gn) should agree with the 

(optional) definition provided by C1 

• The claim made by goal G2 concerns the diversity between 

the goals (and supporting arguments) of Gn 

Applicability This pattern should be used wherever possible in the construction 

of a safety argument.  Diversity of evidence, however, has a cost 

implication.  It costs money to produce multiple forms of 

argument to substantiate the same claim!  The pattern should 

therefore be applied judiciously wherever greater confidence in a 

goal is required or it is felt that, in the future, challenges may be 

made to the arguments used in support of the goal. 

In some safety standards, e.g. UK Defence Standard 00-55, 

argument diversity is demanded.  Clause 7.3.1 states that: 

“The Software Safety Case shall justify the achieved 

integrity level of the SRS by means of a safety 

analysis of the SRS development process supported 

by two or more diverse safety arguments” 

Arguments based upon both analysis (e.g. proof of correctness) 

and testing are demanded.  This pattern is obviously applicable in 

this case. 

Consequences After instantiating this pattern, a number of unresolved goals will 

remain: 
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• (>1 of) Gn 

For each of these goals appropriate supporting argument and / 

or evidence should be provided. This argument/evidence 

should be one appropriate to the nature of the goal being 

stated – i.e. quantitative evidence if a quantitative requirement 

is expressed, qualitative argument if a qualitative goal is 

expressed.  The requirement for diversity and independence 

should be respected as these goals are developed. 

• G2 

This claim of diversity between the arguments supporting the 

goals Gn must be supported.  Appeals could be made, for 

example, to the independence of data, techniques or 

technologies. 

Implementation Start by defining the goal G1 (e.g. “Hazard H1 cannot occur”). 

State strategy S1.  If useful, instantiate the context C1 to provide 

(or refer to) the definition of diversity being adopted in this 

argument.  Identify the diverse argument approaches used to 

support G1.  Define a goal Gn for each of the approaches 

identified that makes clear the diversity (e.g. “Formal Analysis 

shows condition relating to H1 cannot occur” and “Extensive Rig 

testing has shown no occurrences of H1”).  Provide supporting 

arguments for each of the Gn claims put forward – making sure 

that the independence in these claims is preserved.  If felt 

necessary or appropriate, instantiate the diversity claim G2 and 

provide a supporting argument. 

 

Possible Pitfalls 

• Not selecting sufficiently diverse approaches (such that 

confidence is not increased) 

• Having a common dependency between the argument 

approaches – e.g. reliance on a common design description, 

piece of evidence, critical assumption. 
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• Stating the goals independently, but at some later point 

supporting them by the same argument or piece of evidence. 

• Contradicting the definition of diversity provided by the 

(optional) context C1 through the claims put forward as Gn. 

UK Defence Standard 00-55 Clause 7.3.3 states that: 

“All the safety arguments shall be analysed for 

common mode failures” 

Examples Example of Diverse Argument

Hazard H1 cannot occur

G1

S1

Argument based upon
diverse forms of evidence

G2

Formal Analysis shows
condition relating to H1
cannot occur

G3

Extensive Rig testing has
shown no occurrences of H1

 

 

Known Uses See Figure 130 of Appendix A (Nuclear Trip System Safety 

Case) 

Related Patterns Safety Margin – this pattern is also intended to increase 

confidence and reduce vulnerability to change. 
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Safety Margin 

Author Tim Kelly 

Created 28/04/98 09:18:18 Last Modified 22/02/99 02:36  

 

Intent The intent of this pattern is to create arguments that instil a high 

degree of confidence in the satisfaction of a goal and are resilient 

to change and criticism. 

Also Known As Crumple Zone 

Motivation Arguments that only just manage to satisfy requirements are less 

convincing and more vulnerable to the effects of change. 

• If a challenge is made that questions the extent of the claims 

made by an argument, and those claims only just satisfy the 

target requirement, then satisfaction of that requirement is 

immediately questioned. 

• Especially with probabilistic arguments relying on a degree 

of estimation, unless there is extreme confidence in the 

claims derived, a claim that only just satisfies the target 

requirement may be considered less than compelling. 

Structure Safety Margin

G1

{TARGET GOAL}

G2

{ACHIEVEMENT CLAIM}

1 of 2

S1

Argument with sufficient
safety margin

Definition of
Sufficient

C1
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G1 This goal sets out the principal objective of the 

argument and must be instantiated with a specific 

statement 

S1 There is a choice between providing G2 as a direct 

solution to G1 or providing an explicit description of 

the use of a safety margin through stating this as a 

strategy S1. 

Participants 

C1 If S1 is explicitly stated, then it can be useful to 

instantiate C1 to provide the definition of ‘sufficient’ 

being used to describe the safety margin.  Providing 

such a definition aids maintenance of the intent of the 

safety margin if the argument is ever challenged or 

altered in the future.  It also helps clarify the concept 

for the reader. 

 G2 This goal should be instantiated to state what has been 

achieved against the target set out in G1.  As far as is 

reasonably practicable the objective in constructing a 

safety argument should be to state a goal G2 that not 

only satisfies G1 but also exceeds the requirement, 

thus providing a safety margin.  By doing this, 

confidence is increased in the satisfaction of G1 and 

there is a ‘margin for error’ if the claims made by G2 

have to be weakened at any future occasion (e.g. if the 

claim is challenged by operational data). 

The margin acts as a ‘crumple zone’. Change can 

propagate through a goal structure up to G2. The 

margin between G1 and G2 absorbs the change and 

prevents further propagation, thus protecting the 

argument above G1. 

Collaborations • G2 should be stated to exceed the requirement set out by G1 

• The claim expressed by G2 should be expressed in a form 

congruent to the form of requirement set out in G1 
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• The margin created by the gap between G1 and G2 should 

agree with the definition of ‘sufficient’ given by C1 (if 

provided). 

Applicability This pattern should be used wherever possible in the construction 

of a safety argument.  Providing a safety margin, however, has a 

cost implication.  It costs money (up-front) to exceed safety 

requirements!  The pattern should therefore be applied 

judiciously wherever greater confidence in a goal is required or it 

is felt that, in the future, challenges may be made to the argument 

used in support of the goal.  In the long-term this approach saves 

time and effort by providing a barrier to change – a margin that 

can be called upon as justification for not having to update parts 

of the safety argument above claim G1. 

This approach provides a means of reducing a safety argument’s 

sensitivity to variations in evidence and mitigating uncertainty in 

safety claims.  UK Defence Standard 00-55 states that: 

“All the safety arguments shall be analysed for … 

sensitivity to variations in the evidence.  The main 

sources of uncertainty in the safety arguments shall 

be elaborated.” 

This pattern is therefore obviously applicable in cases where 00-

55 is enacted. 

 

Consequences After instantiating this pattern, an unresolved goal will remain: 

• G2 

Appropriate supporting argument and / or evidence should be 

provided to support this goal. This argument/evidence should 

be appropriate to the nature of the goal being stated – i.e. 

quantitative evidence if a quantitative requirement is 

expressed, qualitative argument if a qualitative goal is 

expressed. 



 316

Implementation Start by defining the target goal G1 (e.g. “Probability of Hazard 

H1 < 1x10-6 per annum”). Decide on whether it is appropriate to 

provide an explicit strategy S1 to explain the approach being 

adopted or whether to simply provide a supporting claim.  If S1 

is used, decide on whether it is appropriate / useful to provide the 

definition of a ‘sufficient’ safety margin as C1.  Based on the 

evidence available, state what has been achieved against this 

requirement as G2 (e.g. “Fault Tree for H1 shows probability of 

occurrence < 1x10-7 per annum”).  The intent of the pattern is 

that this claim should exceed the requirement of G1 – thus 

providing a safety margin.  Argument / evidence should then be 

provided to support the claim made by G2. 

Possible Pitfalls 

• Over-engineering the system / evidence to provide an 

excessive safety margin that will never be fully utilised.  It 

requires engineering judgement based upon experience of 

‘calls to margin’ to decide upon the appropriate level of 

margin to provide / allow between target and achievement. 

• Offering a margin between G1 and G2 that does not agree 

with the definition of a sufficient safety margin given by C1 

(if provided). 
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Examples Example Safety Margin

Probability of Hazard
H1 < 1x10-6 per annum

G1

Fault Tree for H1 shows
probability of occurrence <
1x10-7 per annum

G2

Fault Tree for
Hazard H1

 

 

Known Uses See Figure 130 of Appendix A (Nuclear Trip System Safety 

Case) 

Related Patterns Diverse Argument – this pattern is also intended to increase 

confidence and reduce vulnerability to change. 
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B.2.3 Domain Independent ‘Bottom Up’ Safety Case Patterns 

The Safety Case Patterns presented within this section have been identified from, and 

found applicable in, safety arguments from a wide variety of domains. 

 

Domain Independent: Bottom Up 

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

 

 

• Fault Tree Evidence 

 

 

(Full descriptions of these patterns are contained within each documented pattern) 
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Fault Tree Evidence 

Author Tim Kelly 

Created 01/05/98 15:57 Last Modified 22/02/99 02:36  

 

Intent The intent of this pattern is to show the nature of the claims that 

can be made from a fault tree representation of the causes of a 

condition. 

Also Known As  

Motivation The motivation behind the pattern is to improve understanding of 

the role of Fault Tree Analysis as a form of supporting evidence 

within an overall safety argument. 

Structure 

Fault Tree Evidence

Fault Tree for
Condition {X}

Sn1

G1

{Causes of X are ...} 
(Qualitative)

G2

{Probability of X occuring
is ...} 
(Quantitative)

G3

No single point of failure
can lead to {X}

A1

Basic Failure Events used in Sn1
are independent

A

Sn1 is an accurate
representation of the causes of

X

J1

J

 

Participants Sn1 This solution should be instantiated to refer to a Fault 

Tree representation of the causes of condition X. (X 

is the condition of interest for the purposes of this 

pattern). 
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G1 Based on the causal model provided by the fault tree 

(Sn1) this goal can be instantiated to summarise the 

causes of condition X.  This could be in the form of a 

list of causes (e.g. “Causes of X are pump failure, 

valve failure and processor failure”).  Alternatively it 

could describe the nature of the causes identified by 

Sn1 (e.g. “Causes of X are all physical failures”). 

This is a qualitative claim regarding the structure of 

the fault tree. 

 

G2 Where numerical probabilities have been provided 

for the basic failure events within the fault tree (Sn1) 

and probabilistic analysis has been possible, a 

(quantitative) claim can be put forward regarding the 

probability of condition X occurring.  For 

conventional Fault Tree Analysis, such a claim relies 

heavily upon the assumption A1. 

G3 Where it is borne out by the causal model provided 

by the fault tree (Sn1) this goal can be instantiated to 

state that no single point of failure can lead to the 

condition X, i.e. the number of conditions in the set 

of necessary and sufficient causes of X is >1. 

 

A1 This assumption underpins the claims of both G2 and 

G3.  If this assumption does not hold, the 

probabilistic analysis of the fault tree would provide 

a misleading calculation of Condition X probability 

(hence challenging G2).  It may also mean that a 

common failure mode exists between basic events, 

thus challenging G3. 
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 J1 All of the claims (G1, G2 and G3) are fallacious if 

this justification does not hold.  For the fault tree to 

be a valid piece of supporting evidence for a safety 

argument it must be true that it presents an accurate 

and truthful causal model for X.  For example, it 

must be consistent with design descriptions, 

operational evidence and other safety analyses. 

Collaborations • The claim G3 can only be made if this is an observed property 

of Sn1 

• Claims G1 and G3 should not contradict each other 

Applicability This pattern can be applied wherever: 

• A fault tree for the condition exists – i.e. the skills for the 

construction and validation of such a casual model are 

available. 

• Assumption A1 and Justification J1 can be discharged 

• Fault Tree Analysis is an accepted as a form of evidence to 

be used within a safety argument (i.e. it is accepted and 

recognised by industry and regulatory standards) 

Consequences Following use of the fault tree to support such claims it is 

necessary to ensure that (through-life): 

• The fault tree continues to provide an presents an accurate and 

truthful causal model for condition X 

• The fault tree is consistent with subsidiary forms of evidence 

used in its construction (e.g. Failure Modes and Effects 

Analysis tables used to provide basic failure event 

information) 

• Independence between the basic failure events of the fault tree 

is preserved (and is not compromised through implementation 

decisions or subsequent design changes). 
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Implementation • Start by instantiating Sn1 to refer to the fault tree constructed 

for condition X. 

• Check that the independence assumption A1 holds. 

• Support justification J1 by ensuring that the validity of the 

tree is checked. 

• Based upon cut set analysis of the fault tree, decide whether 

it is possible / appropriate to instantiate G3. 

• If it is appropriate, instantiate G1 to summarise the minimal 

causes identified for the tree. 

• Where probabilistic analysis of the tree is possible, 

summarise the results through instantiating G2. 

Possible Pitfalls 

• Failing to support the independence assumption A1 

• Presenting a fault tree Sn1 that does not support the 

justification J1.  If the validity of the fault tree is not believed, 

then the claims derived from that fault tree will be 

questionable. 

Examples Not available at this time 

Known Uses See Figure 126 of Appendix A (Nuclear Trip System Safety 

Case) 

Related Patterns Markov Model Evidence – this pattern illustrates the claims that 

can be made from a Markov Model. 
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B.3 Domain Specific ‘Top Down’ Safety Case Patterns (Nuclear) 

A number of ‘top down’ decomposition Safety Case Patterns have been identified and 

documented from safety arguments within the naval nuclear propulsion domain. The 

patterns present the structure of arguments of compliance against specific safety 

principles defined in the U.K. Ministry of Defence Safety Principles and Safety Criteria 

for the Naval Nuclear Propulsion Programme – NNTSP/BR3/100/94 [98]. 

Domain Specific (Nuclear): Top Down Safety Case Patterns 

Domain Specific
Domain Independent

Top-down Bottom-up

General
Construction

Top-down Bottom-up

General
Construction

 

 

• Safety Principle 6 (Defence in Depth) Compliance Pattern 
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Safety Principle 6 (Defence in Depth) 

Compliance Pattern 

Authors Tim Kelly, Colin Welsh 

Created 1/3/98 Last Modified 22/02/99 02:36  
 

Structure 

Defence in Depth Principle
Implemented in System

Principle6

Several physical barriers in place
to prevent release of fission
products to  the environment

SevBarriers

{Barrier}

{Barrier} prevents release of
fission product to the
environment

Damage to the barriers is
prevented

BarrierProtection

FailurePath

Each barrier must be violated in
turn before radioactive material can
be released to the environment

BarriersArgument

Argument over all
barriers provided

n

Barriers in system to
prevent fission release

Barriers

{BarrierDiD}

Defence in Depth Concept
applied to {Barrier}

n

System

System Description

SPSCs

Safety Principles and Safety
Criteria for Naval Nuclear

Propulsion Programme

Provides: 

PrimarySafety

Primary (Automatic) Safety
Systems in place to prevent
challenges of barrier integrity

Challenges of (calls on)
barriers prevented are far as
resonably practicable

OnlySecondary

NormalOp2

Normal Plant Operating
Conditions defined to be
within plant design limits

NormalOp1

Normal Plant Operating
Conditions defined to be
within barrier design limits

Instrumentation

Monitoring of plant and barrier
condition provided, including alerts
and support for diagnosis of faults

HumanBarrier

Appropriate QA and admin.
controls, safety reviews lin place
to ensure correct barrier opn.

{BarrierDesign}

Conservative Design (Eng.
Practices and Technologies)
employed in {Barrier}

n

BarrierQuality

Barrier quality checked at build,
manufacture and through life to
ensure safety margins maintained

 

Intent The purpose of this pattern is to argue compliance with Safety 

Principle 6 (Defence in Depth) of the Nuclear Naval Programme 

Safety Principles and Safety Criteria document. 

Also Known As Defence in Depth Pattern 

Motivation The motivation behind this pattern is to communicate the key 

claims that need to be put forward to demonstrate compliance 

with the Defence in Depth Principle and thus show how the 

overall requirement may be decomposed into a number of more 

specific requirements that can be more easily addressed. 
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Goal: 

Principle6 

This goal sets out the overall objective of 

the pattern – to be able claim that the 

Defence in Depth principle has been 

implemented. 

 

Model: 

System 

This model must be instantiated to clearly 

define the basis (scope) for making the 

Principle6 claim. 

 

Context: 

SPSCs 

If not referred to already, this context 

should be used to point to the MoD SPSCs 

document – importantly this context 

should identify the issue being used. This 

document sets out all of the Safety 

Principles (1-78). 

 

Participants 

Goal: 

SevBarriers 

This is the key claim of the Defence in 

Depth argument – that there are multiple 

barriers in place (be they engineered or 

procedural) to prevent release of 

radioactive material. 
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Goal: 

FailurePath 

This goal forms an important part of the 

support argument for SevBarriers – 

namely that the barriers would each have 

to fail in turn for any release to the 

environment to be possible.  Implicit in 

this goal is the idea that the barriers will 

fail in a pre-defined order (i.e. primary 

barrier will fail before secondary and so 

on).  The support argument for this goal 

must address this issue. Also implied is 

this goal is the concept of independence. 

For the barriers to fail in turn rather than at 

all once there must be no common mode 

failures between barriers. For example, it 

would be highly undesirable for a common 

failure to knock out both primary and 

secondary barriers. Such a situation would 

invalidate this claim. 

 

Strategy: 

BarrierArgument 

The argument approach defined by this 

strategy is to argue a number of claims for 

each of the barriers provided in the system 

(defined by the context Barriers). 

 

Participants 

(continued) 

Context: 

Barriers 

This context should be instantiated to refer 

to design documentation / description that 

clearly identifies the barriers being referred 

to.  For example, this context refer to a 

description of 3 barriers provided – fuel 

cladding, primary coolant boundary and 

containment. 
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Goal: 

{Barrier} 

This is the claim (put forward for each 

barrier individually) that the barrier 

performs the function of preventing fission 

release. The supporting argument for this 

claim will identify how the barrier prevents 

fission release. 

 

Goal: 

{BarrierDiD} 

The MoD SPSCs state that the Defence in 

Depth concept should be carried down 

through the system design.  This claim 

states that not only is the barrier part of 

overall Defence in Depth at the system 

level but it is also itself defined using the 

Defence in Depth concepts. A similar 

argument to that applied at the system 

level needs to be applied again at the 

barrier level for each barrier. 

 

Participants 

(continued) 

Goal: 

{BarrierDesign} 

For each barrier, this claim is argues 

appropriate conservatism in the design of 

the barrier.  Support arguments will appeal 

to use of ‘tried and trusted’ techniques, 

development codes, proven technologies. 
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Goal: 

BarrierProtection 

The plant should design so as to prevent 

damage to the barriers. To support this 

claim may require an assessment of the 

activities and equipment that could cause 

damage to the barriers – e.g. activities that 

could damage the integrity of plant 

containment. 

 

Goal: 

NormalOp1 

A key element of the support for 

BarrierProtection is the claim that the 

barriers are designed to cope with the 

normal operating environment and limits 

of the plant.  A deterministic justification 

should be provided that addresses both the 

appropriate definition of the operating 

limits and the ability of the barriers to 

correct operate and function within those 

limits. 

 

Participants 

(continued) 

Goal: 

Instrumentation 

The status of the barriers should be 

annunciated to the system operators at all 

times.  Particularly, calls on barriers should 

be alerted.  Instrumentation should be 

sufficient to aid diagnosis of faults in 

operation. The supporting argument for 

this goal will identify the instrumentation 

available. 
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Goal: 

OnlySecondary 

The presence of multiple barriers in the 

system is not an excuse for not trying to 

control the emergence of fission release 

hazards in the first place (i.e. the initiating 

events).  This claim argues that reliance on 

the barriers has been reduced as low as 

reasonably practicable – by improving the 

design of the core plant and core safety 

control functions. 

 

Goal: 

PrimarySafety 

An important element of the support 

argument for OnlySecondary is the ability 

to claim that there are primary (safety 

control) systems in place to shutdown 

system operation that would in normal 

operation prevent challenges to any of the 

fission release barriers. 

 

Goal: 

NormalOp2 

The core plant must be defined such that 

fission release incidents are minimised.  In 

the case of an NSRP, support arguments 

for this claim are contained within the DJ 

(Deterministic Justification). 

 

Participants 

(continued) 

Goal: 

BarrierQuality 

The build quality of the barriers should be 

checked wherever possible.  Supporting 

argument / evidence for such a claim will 

be based on inspection data, compliance 

with design codes, in-service inspection 

procedures. 
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Participants 

(continued) 

Goal: 

HumanBarrier 

Any operators in a system can be 

considered to be another form of safety 

barrier.  By their actions they can often 

determine the severity of the consequences 

of an accident.  As such, appropriate 

controls should be in place that ensure the 

correct ‘functioning’ of all human 

operators.  The support argument for this 

claim will be based on training procedures, 

operating checks, procedural safety 

systems etc. 

 

Collaborations The System model sets the overall system context.  The Barriers 

context identifies barriers within this system. 

The Barriers context provides the basis for the decomposition of 

BarriersArgument. 

NormalOp1 and NormalOp2 address similar concerns. Op1 

addresses barrier design limits.  Op2 addresses plant design 

limits.  It is possible that similar (or shared) arguments will exist 

to support both of these goals – e.g. a deterministic justification 

for the system that includes both the core plant and barriers. 

Applicability This pattern can be applied to systems that must demonstrate 

satisfaction of the MoD Safety Principles and Safety Criteria for 

the Nuclear Naval Programme (Principle 6).  An implicit 

assumption is that the system is capable of fission product 

release to the environment (i.e. there is fissile material involved). 

Consequences After instantiating this pattern, a number of unresolved goals will 

remain: 

FailurePath 

{Barrier} – n of, for n barriers 

{BarrierDiD} – n of, for n barriers 
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{BarrierDesign} – n of, for n barriers 

Instrumentation 

PrimarySafety 

NormalOp1 

NormalOp2 

BarrierQuality 

HumanBarrier 

See Participants for a description of the forms of support 

argument expected for each of these goals. 

Implementation Start by defining system (System) 

Identify the barriers in System – hence, define context Barriers. 

Construct the {Barrier} arguments for each barrier, then 

{BarrierDiD} and {BarrierDesign} 

Provide argument for FailurePath 

Provide argument for BarrierProtection and NormalOp1 

Then address all remaining goals: Instrumentation, 

PrimarySafety, NormalOp2, BarrierQuality and 

HumanBarrier 

Possible Pitfalls 

Attempting to apply pattern to a system that is not readily 

expressed in terms of a core plant + barriers model. 

The assurance of safety achieved by having multiple barriers is 

weak unless there is clear evidence of independence and absence 

of common mode failures between barriers.  These issues must 

be addressed under FailurePath. 

This pattern expresses a defence in depth argument at an overall 

system level.  When attempting to apply to a system that would 

be considered one of the overall barrier mechanisms – it is still 

worth starting from the Principle6 goal.  Use the System model 
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to scope the system being addressed. Arguments supporting 

{Barrier}, {BarrierDiD} and {BarrierDesign} would be 

unecessary for all barriers other than the one being addressed. 

For FailurePath identify clearly where the barrier being 

addressed sits in the overall intended path of failure.  For such 

situations, PrimarySafety and NormalOp2 and HumanBarrier 

may well be more appropriately addressed elsewhere (at the 

overall system level) and may therefore be omitted.  

BarrierQuality ought to be focussed specifically on the one 

barrier being addressed, as should NormalOp1. 

Examples Not available at this time 

Known Uses Not available at this time 

Related Patterns Principle 7 (Accident Prevention) Compliance Pattern 

Principle 8 (Accident Mitigation) Compliance Pattern 
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